TWI681118B - Miniature fluid transportation module - Google Patents

Miniature fluid transportation module Download PDF

Info

Publication number
TWI681118B
TWI681118B TW107139381A TW107139381A TWI681118B TW I681118 B TWI681118 B TW I681118B TW 107139381 A TW107139381 A TW 107139381A TW 107139381 A TW107139381 A TW 107139381A TW I681118 B TWI681118 B TW I681118B
Authority
TW
Taiwan
Prior art keywords
electrically connected
circuit
type metal
signal
latch
Prior art date
Application number
TW107139381A
Other languages
Chinese (zh)
Other versions
TW202018183A (en
Inventor
莫皓然
余榮侯
張正明
戴賢忠
廖文雄
黃啟峰
韓永隆
李偉銘
Original Assignee
研能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 研能科技股份有限公司 filed Critical 研能科技股份有限公司
Priority to TW107139381A priority Critical patent/TWI681118B/en
Application granted granted Critical
Publication of TWI681118B publication Critical patent/TWI681118B/en
Publication of TW202018183A publication Critical patent/TW202018183A/en

Links

Images

Abstract

A miniature fluid transportation module is disclosed and comprises a microprocessor, a special applying integrated circuit, an oscillating circuit and a plurality of MEMS pumps. The microprocessor outputs a time signal, a latch signal and an information signal, the special applying integrated circuit electrically couples with the microprocessor for receiving the time signal, the latch signal and the information signal and comprises a plurality of control circuits, wherein each of the control circuit comprises a shift register, a latch circuit, an AND circuit and a inverter electrical. The shift register electrically couples with the microprocessor for receiving the time signal and the information signal, the latch circuit electrically couples with the microprocessor and the shift register for receiving the latch signal and the information signal, the AND circuit electrically couples with the latch circuit for receiving the information signal outputted from the latch circuit; an inverter electrically couples with the AND circuit. The oscillating circuit outputs an oscillating signal, and the plurality of MEMS pumps electrically couple with the corresponding control circuits.

Description

微型流體輸送模組 Miniature fluid delivery module

本案係關於一種微型流體輸送模組,尤指一種利用控制電路輔助微處理器來精確控制多個微機電泵浦的模組。 This case relates to a micro-fluid delivery module, especially a module that uses a control circuit to assist a microprocessor to precisely control multiple micro-electromechanical pumps.

隨著科技的日新月異,流體輸送裝置的應用上亦愈來愈多元化,舉凡工業應用、生醫應用、醫療保健、電子散熱等等,甚至近來熱門的穿戴式裝置皆可見它的踨影,可見傳統的泵浦已漸漸有朝向裝置微小化的趨勢。請參閱第1圖,第1圖為習知的微機電泵浦模組之架構示意圖,習知的微機電泵浦模組雖可將微機電泵浦3’的體積微小化至微米等級,但微米等級的微機電泵浦3’會因為過小的體積限制了流體傳輸量,故需要多個微機電泵浦3’搭配使用,而目前皆是透過一個高階微處理器1’作個別控制,但高階微處理器1’本身成本高,且每個微機電泵浦3’都必須要兩個接腳連接,增加了高階微處理器1’的成本,導致微機電泵浦模組之成本居高不下,難以普及,因此,如何降低微機電泵浦模組的驅動端的成本,實為目前首要克服的難關。 With the rapid development of technology, the application of fluid delivery devices is becoming more and more diversified. For example, industrial applications, biomedical applications, medical care, electronic heat dissipation, etc., and even recent popular wearable devices can be seen in its shadow. The traditional pump has gradually been towards the miniaturization of the device. Please refer to FIG. 1. FIG. 1 is a schematic diagram of the structure of a conventional MEMS pump module. Although the conventional MEMS pump module can reduce the volume of the MEMS pump 3′ to the micron level, but The micro-electromechanical pump 3'of micron level will limit the fluid transmission volume due to the too small volume, so multiple micro-electro-mechanical pumps 3'are required to be used together. At present, they are individually controlled by a high-end microprocessor 1', but The high-end microprocessor 1'itself has a high cost, and each MEMS pump 3'must have two pins connected, which increases the cost of the high-end microprocessor 1', resulting in the high cost of the MEMS pump module It is difficult to popularize. Therefore, how to reduce the cost of the driving end of the microelectromechanical pump module is the first difficulty to overcome.

本案之主要目的在於提供一種微型流體輸送模組,用以特殊應用積體電路協助微處理器來控制微米等級的微機電泵浦,來達到有效控制多個微機電泵浦。 The main purpose of this case is to provide a micro-fluid delivery module for the special application of integrated circuits to assist the microprocessor to control micro-level micro-electromechanical pumps to effectively control multiple micro-electromechanical pumps.

為達上述目的,本案之較廣義實施態樣為提供一種微型流體輸送模組,包含:一印刷電路板、一微處理器,設置於該印刷電路板,用以輸出一時脈訊號、一閂鎖訊號及一資料訊號;一特殊應用積體電路,設置於該印刷電路板且電連接該微處理器用以接收該時脈訊號、該閂鎖訊號及該資料訊號,該特殊應用積體電路包含有複數個控制電路,每一控制電路包含有:一移位暫存器,電連接該微處理器以接收該時脈訊號及該資料訊號;一閂鎖電路,電連接該微處理器及該移位暫存器,以接收該閂鎖訊號及該移位暫存器輸出之該資料訊號;一及電路,電連接該閂鎖電路,以接收該閂鎖電路輸出之該資料訊號;以及一反向器,電連接該及電路;一震盪電路,電連接該及電路以輸出一震盪訊號;複數個微機電泵浦,與該些控制電路分別對應電連接。 To achieve the above purpose, the broader implementation of this case is to provide a micro-fluid delivery module, which includes: a printed circuit board and a microprocessor, which are arranged on the printed circuit board for outputting a clock signal and a latch Signal and a data signal; a special application integrated circuit, which is arranged on the printed circuit board and electrically connected to the microprocessor for receiving the clock signal, the latch signal and the data signal, and the special application integrated circuit includes: A plurality of control circuits, each control circuit includes: a shift register electrically connected to the microprocessor to receive the clock signal and the data signal; a latch circuit electrically connected to the microprocessor and the shift A bit register to receive the latch signal and the data signal output by the shift register; an AND circuit electrically connected to the latch circuit to receive the data signal output by the latch circuit; and an inverse The commutator is electrically connected to the sum circuit; an oscillating circuit is electrically connected to the sum circuit to output an oscillating signal; a plurality of micro-electromechanical pumps are respectively electrically connected to the control circuits.

100‧‧‧微型流體輸送模組 100‧‧‧Miniature fluid delivery module

1A‧‧‧印刷電路板 1A‧‧‧Printed circuit board

1、1’‧‧‧微處理器 1. 1’‧‧‧ microprocessor

2‧‧‧特殊應用積體電路 2‧‧‧ Special application integrated circuit

20‧‧‧控制電路 20‧‧‧Control circuit

20A‧‧‧第一組控制電路 20A‧‧‧The first group of control circuits

20B‧‧‧第二組控制電路 20B‧‧‧The second group of control circuits

21‧‧‧移位暫存器 21‧‧‧Shift register

21a‧‧‧時脈訊號輸入端 21a‧‧‧clock signal input terminal

21b‧‧‧第一資料接收端 21b‧‧‧First data receiver

21c‧‧‧第一資料輸出端 21c‧‧‧First data output

21d‧‧‧移位傳輸閘 21d‧‧‧shift transmission gate

21e‧‧‧移位反向器 21e‧‧‧shift inverter

211‧‧‧P型金氧半場效電晶體 211‧‧‧P type metal oxide half field effect transistor

211a‧‧‧P型閘極輸入端 211a‧‧‧P-type gate input

211b‧‧‧第一訊號輸入端 211b‧‧‧First signal input

211c‧‧‧第一訊號輸出端 211c‧‧‧ First signal output

212‧‧‧N型金氧半場效電晶體 212‧‧‧N-type metal oxide half field effect transistor

212a‧‧‧N型閘極輸入端 212a‧‧‧N-type gate input

212b‧‧‧第二訊號輸入端 212b‧‧‧Second signal input terminal

212c‧‧‧第二訊號輸出端 212c‧‧‧Second signal output

213‧‧‧傳輸閘輸入端 213‧‧‧Transmission gate input

214‧‧‧傳輸閘輸出端 214‧‧‧Transmission gate output

22‧‧‧閂鎖電路 22‧‧‧ latch circuit

22a‧‧‧閂鎖訊號輸入端 22a‧‧‧ latch signal input terminal

22b‧‧‧第二資料接收端 22b‧‧‧Second data receiver

22c‧‧‧第二資料輸出端 22c‧‧‧Second data output terminal

22d‧‧‧閂鎖傳輸閘 22d‧‧‧Latch transmission gate

22e‧‧‧閂鎖反向器 22e‧‧‧Latch Reverse

23‧‧‧震盪電路 23‧‧‧ Oscillation circuit

231‧‧‧第一P型金氧半場效電晶體 231‧‧‧First P-type metal oxide half field effect transistor

232‧‧‧第二P型金氧半場效電晶體 232‧‧‧Second P-type metal oxide half field effect transistor

233‧‧‧第三P型金氧半場效電晶體 233‧‧‧The third P-type metal oxide half field effect transistor

234‧‧‧第一N型金氧半場效電晶體 234‧‧‧First N-type metal oxide half field effect transistor

235‧‧‧第二N型金氧半場效電晶體 235‧‧‧Second N-type metal oxide half field effect transistor

236‧‧‧第三N型金氧半場效電晶體 236‧‧‧Third N-type metal oxide half field effect transistor

237‧‧‧儲存電容 237‧‧‧storage capacitor

238‧‧‧第一震盪反向器 238‧‧‧First Oscillating Inverter

239‧‧‧第二震盪反向器 239‧‧‧ Second Oscillating Inverter

24‧‧‧及電路 24‧‧‧ and circuit

24a‧‧‧第三資料接收端 24a‧‧‧The third data receiving end

24b‧‧‧震盪訊號接收端 24b‧‧‧ Receiver of shock signal

24c‧‧‧第一控制訊號輸出端 24c‧‧‧ First control signal output

24d‧‧‧第二控制訊號輸出端 24d‧‧‧Second control signal output

241‧‧‧反及閘 241‧‧‧Reverse gate

242‧‧‧及電路反向器 242‧‧‧and circuit inverter

24a‧‧‧第三資料接收端 24a‧‧‧The third data receiving end

24b‧‧‧震盪訊號接收端 24b‧‧‧ Receiver of shock signal

24c‧‧‧第一控制訊號輸出端 24c‧‧‧ First control signal output

24d‧‧‧第二控制訊號輸出端 24d‧‧‧Second control signal output

25‧‧‧反向器 25‧‧‧Inverter

25a、238a、239a‧‧‧輸入端 25a, 238a, 239a ‧‧‧ input

25b、238b、239b‧‧‧輸出端 25b, 238b, 239b ‧‧‧ output

3、3’‧‧‧微機電泵浦 3. 3’‧‧‧ Microelectromechanical pump

31‧‧‧第一電極 31‧‧‧First electrode

32‧‧‧第二電極 32‧‧‧Second electrode

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

T1、T2‧‧‧接點 T1, T2‧‧‧contact

第1圖為習知的微型流體輸送模組之架構示意圖。 FIG. 1 is a schematic structural diagram of a conventional micro-fluid delivery module.

第2A圖為本案微型流體輸送模組之架構示意圖。 Figure 2A is a schematic diagram of the architecture of the micro-fluid delivery module of the present case.

第2B圖為本案微型流體輸送模組之電路結構示意圖。 Figure 2B is a schematic diagram of the circuit structure of the micro-fluid delivery module of the present case.

第3A圖為第2圖之第一組控制電路其移位暫存器及閂鎖電路示意圖。 FIG. 3A is a schematic diagram of the shift register and latch circuit of the first group of control circuits in FIG. 2.

第3B圖為第3A圖之移位傳輸閘之電路架構示意圖。 FIG. 3B is a schematic diagram of the circuit architecture of the shift transmission gate in FIG. 3A.

第3C圖為第3A圖之閂鎖傳輸閘之電路架構示意圖。 FIG. 3C is a schematic diagram of the circuit architecture of the latch transmission gate in FIG. 3A.

第4A圖為第2圖之震盪電路的電路示意圖。 FIG. 4A is a circuit schematic diagram of the oscillation circuit of FIG. 2.

第4B圖為第4A圖之震盪電路的波形圖。 FIG. 4B is a waveform diagram of the oscillation circuit of FIG. 4A.

第5圖為第2圖之及電路的電路示意圖。 Fig. 5 is a schematic diagram of the circuit shown in Fig. 2 and the circuit.

第6圖為第2圖之第二組控制電路其移位暫存器及閂鎖電路示意圖。 FIG. 6 is a schematic diagram of a shift register and a latch circuit of the second group of control circuits in FIG. 2.

體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖示在本質上當作說明之用,而非用以限制本案。 Some typical embodiments embodying the characteristics and advantages of this case will be described in detail in the description in the following paragraphs. It should be understood that this case can have various changes in different forms, which all do not deviate from the scope of this case, and the descriptions and illustrations therein are essentially used for explanation rather than to limit this case.

請參閱第2A圖及第2B圖,本案之微型流體輸送模組100,包含:一印刷電路板1A、一微處理器1、一特殊應用積體電路2及複數個微機電泵浦3,微處理器1、特殊應用積體電路2及微機電泵浦3皆設置於印刷電路板1A,特殊應用積體電路2具有複數個控制電路20,接收微處理器1輸出之一時脈訊號、一閂鎖訊號及一資料訊號,每一控制電路20皆各自對應電連接該些微機電泵浦3的其中之一,且不重複,用以分別控制該些微機電泵浦3;其中,每一微機電泵浦3皆具有一第一電極31及一第二電極32。 Please refer to FIGS. 2A and 2B. The micro-fluid delivery module 100 in this case includes: a printed circuit board 1A, a microprocessor 1, a special application integrated circuit 2 and a plurality of microelectromechanical pumps 3, micro The processor 1, the special application integrated circuit 2 and the MEMS pump 3 are all provided on the printed circuit board 1A. The special application integrated circuit 2 has a plurality of control circuits 20 and receives a clock signal and a latch output by the microprocessor 1 For the lock signal and a data signal, each control circuit 20 is electrically connected to one of the microelectromechanical pumps 3, and is not repeated to control the microelectromechanical pumps 3; wherein each microelectromechanical pump All of Pu 3 have a first electrode 31 and a second electrode 32.

上述之該些控制電路20皆分別具有一移位暫存器21、一閂鎖電路22、一及電路24以及一反向器25;移位暫存器21包含有至少一時脈訊號輸入端21a、一第一資料接收端21b及一第一資料輸出端21c,時脈訊號輸入端21a電連接微處理器1,用以接收微處理器1所輸出之時脈訊號,第一資料接收端21b亦電連接微處理器1,以接收資料訊號;閂鎖電路22具有至少一閂鎖訊號輸入端22a、一第二資料接收端22b及一第二資料輸出端22c,閂鎖訊號輸入端22a電連接微處理器1以接收微處理器1輸出之閂鎖訊號,該第二資料接收端22b電連接移位暫存器21之第一資料輸出端21c,以接收移位暫存器21所輸出之資料訊號;及電路24包含有一第三資料接收端24a、第一控制訊號輸出端24c及一第二控制訊號輸出端24d,第三資料接收端24a電連接閂鎖電路22的第二資料輸出端22c,來接收閂鎖電路22輸出之該資料訊號,第二控制訊號輸出端24d 電連接其對應之微機電泵浦3之第一電極31;反向器25具有一輸入端25a及一輸出端25b,輸入端25a電連接及電路24之第一控制訊號輸出端24c,輸出端25b電連接微機電泵浦3之第二電極32。 The above control circuits 20 each have a shift register 21, a latch circuit 22, a sum circuit 24, and an inverter 25; the shift register 21 includes at least one clock signal input terminal 21a 1. A first data receiving terminal 21b and a first data output terminal 21c. The clock signal input terminal 21a is electrically connected to the microprocessor 1 for receiving the clock signal output by the microprocessor 1. The first data receiving terminal 21b The microprocessor 1 is also electrically connected to receive data signals; the latch circuit 22 has at least one latch signal input terminal 22a, a second data receiver terminal 22b and a second data output terminal 22c, and the latch signal input terminal 22a is electrically Connected to the microprocessor 1 to receive the latch signal output by the microprocessor 1, the second data receiving terminal 22b is electrically connected to the first data output terminal 21c of the shift register 21 to receive the output of the shift register 21 Data signal; and the circuit 24 includes a third data receiving end 24a, a first control signal output end 24c and a second control signal output end 24d, the third data receiving end 24a is electrically connected to the second data output of the latch circuit 22 Terminal 22c to receive the data signal output by the latch circuit 22, and the second control signal output terminal 24d The first electrode 31 of the corresponding microelectromechanical pump 3 is electrically connected; the inverter 25 has an input terminal 25a and an output terminal 25b, the input terminal 25a is electrically connected to the first control signal output terminal 24c of the circuit 24, and the output terminal 25b is electrically connected to the second electrode 32 of the microelectromechanical pump 3.

本案之微型流體輸送模組100更包含有一震盪電路23,及電路24具有一震盪訊號接收端24b電連接震盪電路23,以接收震盪電路23輸出的一震盪訊號,此外,震盪電路23可設置於印刷電路板1A。 The micro-fluid delivery module 100 in this case further includes an oscillating circuit 23, and the circuit 24 has an oscillating signal receiving end 24b electrically connected to the oscillating circuit 23 to receive an oscillating signal output by the oscillating circuit 23. In addition, the oscillating circuit 23 may be provided in Printed circuit board 1A.

前述之該些控制電路20可區分為第一組控制電路20A及第二組控制電路20B,請參閱第3A圖所示,第3A圖為移位暫存器21與閂鎖電路22的電路結構圖,第一組控制電路20A之移位暫存器21包含有複數個移位傳輸閘21d及複數個移位反向器21e,於本實施例中,移位傳輸閘21d及移位反向器21e的數量皆為4個,如第3B圖所示,第3B圖為移位傳輸閘21d之細部結構圖,每一移位傳輸閘21d分別包含一P型金氧半場效電晶體211、一N型金氧半場效電晶體212、一傳輸閘輸入端213及一傳輸閘輸出端214,兩個金屬氧化物半導體場效電晶體(MOSFET)作為開關使用,P型金氧半場效電晶體211具有一P型閘極輸入端211a、一第一訊號輸入端211b及一第一訊號輸出端211c,N型金氧半場效電晶體212具有一N型閘極輸入端212a、一第二訊號輸入端212b及一第二訊號輸出端212c,P型金氧半場效電晶體211之第一訊號輸入端211b及N型金氧半場效電晶體212之第二訊號輸入端212b電連接作為傳輸閘輸入端213,第一訊號輸出端211c及第二訊號輸出端212c電連接作為傳輸閘輸出端214,而P型金氧半場效電晶體211的P型閘極輸入端211a及N型金氧半場效電晶體212的N型閘極輸入端212a皆分別電連接移位暫存器21之時脈訊號輸入端21a用來接收微處理器1所發出之時脈訊號;請繼續參閱第3A圖,移位暫存器21內的4個移位傳輸閘21d為串聯連接,為首的移位 傳輸閘21d其傳輸閘輸入端213電連接至移位暫存器21的第一資料接收端21b,傳輸閘輸出端214電連接到次之的移位傳輸閘21d的傳輸閘輸入端213,次之的移位傳輸閘21d的傳輸閘輸出端214電連接到再次之的移位傳輸閘21d的傳輸閘輸入端213,再次之的移位傳輸閘21d的傳輸閘輸出端214電連接尾端之移位傳輸閘21d的傳輸閘輸入端213,尾端移位傳輸閘21d的傳輸閘輸出端214電連接移位暫存器21之第一資料輸出端21c,此外,4個移位反向器21e兩兩串連後分別與前述的次之移位傳輸閘21d及尾端之移位傳輸閘21d並聯。 The aforementioned control circuits 20 can be divided into a first group of control circuits 20A and a second group of control circuits 20B. Please refer to FIG. 3A. FIG. 3A shows the circuit structure of the shift register 21 and the latch circuit 22 In the figure, the shift register 21 of the first group of control circuits 20A includes a plurality of shift transmission gates 21d and a plurality of shift inverters 21e. In this embodiment, the shift transmission gates 21d and the shift inversion The number of the devices 21e is four, as shown in FIG. 3B. FIG. 3B is a detailed structural diagram of the shift transmission gate 21d. Each shift transmission gate 21d includes a P-type metal oxide half field effect transistor 211, An N-type metal oxide semiconductor field effect transistor 212, a transmission gate input terminal 213 and a transmission gate output terminal 214, two metal oxide semiconductor field effect transistors (MOSFETs) are used as switches, and P-type metal oxide semiconductor field effect transistors 211 has a P-type gate input terminal 211a, a first signal input terminal 211b and a first signal output terminal 211c, and the N-type metal oxide semi-field effect transistor 212 has an N-type gate input terminal 212a and a second signal The input terminal 212b and a second signal output terminal 212c, the first signal input terminal 211b of the P-type metal-oxide half field effect transistor 211 and the second signal input terminal 212b of the N-type metal-oxide half field effect transistor 212 are electrically connected as a transmission gate The input terminal 213, the first signal output terminal 211c and the second signal output terminal 212c are electrically connected as the transmission gate output terminal 214, and the P-type gate input terminal 211a and the N-type metal oxide half field of the P-type metal oxide semi-field effect transistor 211 The N-type gate input terminals 212a of the effect transistor 212 are respectively electrically connected to the clock signal input terminal 21a of the shift register 21 to receive the clock signal sent by the microprocessor 1; please continue to refer to FIG. 3A, The four shift transmission gates 21d in the shift register 21 are connected in series, and the shift is led by The transmission gate input terminal 213 of the transmission gate 21d is electrically connected to the first data receiving terminal 21b of the shift register 21, and the transmission gate output terminal 214 is electrically connected to the transmission gate input terminal 213 of the second shift transmission gate 21d. The transmission gate output terminal 214 of the shift transmission gate 21d is electrically connected to the transmission gate input terminal 213 of the shift transmission gate 21d again, and the transmission gate output terminal 214 of the shift transmission gate 21d is electrically connected to the tail terminal The transmission gate input terminal 213 of the shift transmission gate 21d, the transmission gate output terminal 214 of the rear-end shift transmission gate 21d are electrically connected to the first data output terminal 21c of the shift register 21, and in addition, four shift inverters 21e are connected in series with each other in parallel with the aforementioned second shift transmission gate 21d and the tail shift transmission gate 21d.

承上所述,同一移位傳輸閘21d的P型閘極輸入端211a與N型閘極輸入端212a的時脈訊號為反向訊號,如第3A圖所示,為首的移位傳輸閘21d之P型閘極輸入端211a接收反向之時脈訊號時,其N型閘極輸入端212a則接收時脈訊號,排第三位的移位傳輸閘21d之P型閘極輸入端211a則接收與首位之P型閘極輸入端211a相反之時脈訊號,排第三位的移位傳輸閘21d之N型閘極輸入端212a接收反向之時脈訊號,次之(第二位)移位傳輸閘21d的P型閘極輸入端211a接收時脈訊號、N型閘極輸入端212a接收反向之時脈訊號,尾端(第四位)的移位傳輸閘21d的P型閘極輸入端211a接收與第二位之移位傳輸閘21d的P型閘極輸入端211a相反的反向之時脈訊號,其N型閘極輸入端212a接收時脈訊號,以此類推。 As described above, the clock signals of the P-type gate input terminal 211a and the N-type gate input terminal 212a of the same shift transmission gate 21d are reverse signals, as shown in FIG. 3A, the head shift transmission gate 21d When the P-type gate input terminal 211a receives the reverse clock signal, its N-type gate input terminal 212a receives the clock signal, and the P-type gate input terminal 211a of the third-order shift transmission gate 21d Receives the clock signal opposite to the first P-type gate input terminal 211a, and the N-type gate input terminal 212a of the third-order shift transmission gate 21d receives the reverse clock signal, followed by (second position) The P-type gate input terminal 211a of the shift transmission gate 21d receives the clock signal, the N-type gate input terminal 212a receives the reverse clock signal, and the P-type gate of the shift transmission gate 21d at the tail end (fourth digit) The pole input terminal 211a receives the reverse clock signal opposite to the P-type gate input terminal 211a of the second shift transmission gate 21d, and the N-type gate input terminal 212a receives the clock signal, and so on.

請繼續參閱第3A圖,閂鎖電路22具有二閂鎖傳輸閘22d及二閂鎖反向器22e,請參考第3C圖所示,二閂鎖傳輸閘22d分別包含有一P型金氧半場效電晶體211、一N型金氧半場效電晶體212、一傳輸閘輸入端213及一傳輸閘輸出端214,兩個金屬氧化物半導體場效電晶體(MOSFET)作為開關使用,閂鎖傳輸閘22d的結構與上述之移位傳輸閘21d為相同結構之傳輸閘,故不加以贅述,其中,閂鎖傳輸閘22d的P型金氧半場效電 晶體的P型閘極輸入端211a、N型金氧半場效電晶體的N型閘極輸入端212a分別電連接閂鎖電路22之閂鎖訊號輸入端22a,使其接收微處理器1所發送之閂鎖訊號;兩閂鎖傳輸閘22d串聯連接,位於前端的閂鎖傳輸閘22d的傳輸閘輸入端213電連接閂鎖電路22的第二資料接收端22b,來進一步電連接移位暫存器21的第一資料輸出端21c,而傳輸閘輸出端214電連接位於後端的閂鎖傳輸閘22d的傳輸閘輸入端213,後端的閂鎖傳輸閘22d的傳輸閘輸出端214電連接閂鎖電路22的第二資料輸出端22c,而2個閂鎖反向器22e串連後與後端的閂鎖傳輸閘22d並聯連接;此外,P型閘極輸入端211a與N型閘極輸入端212a所接收的閂鎖訊號為反向訊號,前端之閂鎖傳輸閘22d的P型閘極輸入端211a與後端之閂鎖傳輸閘22d的P型閘極輸入端211a的閂鎖訊號亦為反向訊號,如第3A圖所示,前端的閂鎖傳輸閘22d其P型閘極輸入端211a接收閂鎖訊號時,其N型閘極輸入端212a接收反向閂鎖訊號,後端之閂鎖傳輸閘22d之P型閘極輸入端211a接收與前端閂鎖傳輸閘22d之P型閘極輸入端211a相反之反向閂鎖訊號,其N型閘極輸入端212a接收閂鎖訊號。 Please continue to refer to FIG. 3A. The latch circuit 22 has two latch transmission gates 22d and two latch inverters 22e. Please refer to FIG. 3C. The two latch transmission gates 22d each include a P-type metal oxide half field effect Transistor 211, an N-type metal oxide half field effect transistor 212, a transmission gate input terminal 213 and a transmission gate output terminal 214, two metal oxide semiconductor field effect transistors (MOSFETs) are used as switches, and the transmission gate is latched The structure of 22d is the same as the above-mentioned shift transmission gate 21d, so it will not be described in detail. Among them, the P-type metal oxide half field effect of the latch transmission gate 22d The P-type gate input terminal 211a of the crystal and the N-type gate input terminal 212a of the N-type metal oxide half field effect transistor are respectively electrically connected to the latch signal input terminal 22a of the latch circuit 22, so that it receives the signal sent by the microprocessor 1 Latch signal; two latch transmission gates 22d are connected in series, and the transmission gate input terminal 213 of the latch transmission gate 22d at the front end is electrically connected to the second data receiving terminal 22b of the latch circuit 22 to further electrically connect the shift temporary storage The first data output terminal 21c of the device 21, the transmission gate output terminal 214 is electrically connected to the transmission gate input terminal 213 of the latch transmission gate 22d at the rear end, and the transmission gate output terminal 214 of the rear latch transmission gate 22d is electrically connected to the latch The second data output terminal 22c of the circuit 22, and two latch inverters 22e are connected in series and connected in parallel with the rear latch transmission gate 22d; in addition, the P-type gate input terminal 211a and the N-type gate input terminal 212a The received latch signal is a reverse signal, and the latch signal of the P-type gate input terminal 211a of the front latch transmission gate 22d and the P-type gate input terminal 211a of the rear latch transmission gate 22d are also reversed. Direction signal, as shown in FIG. 3A, when the front-end latch transmission gate 22d receives the latch signal at its P-type gate input terminal 211a, its N-type gate input terminal 212a receives the reverse latch signal, and the rear-end latch The P-type gate input terminal 211a of the lock transmission gate 22d receives the reverse latch signal opposite to the P-type gate input terminal 211a of the front latch transmission gate 22d, and the N-type gate input terminal 212a receives the latch signal.

請參閱第4A圖所示,震盪電路23包含有一第一P型金氧半場效電晶體231、一第二P型金氧半場效電晶體232、一第三P型金氧半場效電晶體233、一第一N型金氧半場效電晶體234、一第二N型金氧半場效電晶體235、一第三N型金氧半場效電晶體236、一儲存電容237、一第一震盪反向器238及一第二震盪反向器239,第一P型金氧半場效電晶體231的基極電連接源極、第二P型金氧半場效電晶體232的基極及源極、第三P型金氧半場效電晶體233的基極以及定電壓3.3伏特,第一P型金氧半場效電晶體231的閘極電連接其汲極、第二P型金氧半場效電晶體232的閘極及第一N型金氧半場效電晶體234的汲極,第一N型金氧半場效電晶 體234的基極電連接其源極並接地,而閘極電連接至第二N型金氧半場效電晶體235的閘極以及輸入電壓Vin,第二N型金氧半場效電晶體235的源極會電連接其基極、第三N型金氧半場效電晶體236的基極並接地,第三N型金氧半場效電晶體236的汲極電連接第三P型金氧半場效電晶體233的汲極、儲存電容237的一端以及第一震盪反向器238的輸入端238a,第一震盪反向器238的輸出端238b電連接至第二震盪反向器239的輸入端239a,最後第二震盪反向器239的輸出端239b連接至及電路24的震盪訊號接收端24b以及回授第三P型金氧半場效電晶體233、第三N型金氧半場效電晶體236的閘極。 As shown in FIG. 4A, the oscillation circuit 23 includes a first P-type metal-oxide half-field transistor 231, a second P-type metal-oxide half-field transistor 232, and a third P-type metal-oxide half-field transistor 233 , A first N-type metal oxide half-field transistor 234, a second N-type metal oxide half-field transistor 235, a third N-type metal oxide half-field transistor 236, a storage capacitor 237, a first oscillation inversion The commutator 238 and a second oscillating inverter 239, the base of the first P-type metal-oxide half-field transistor 231 is electrically connected to the source, the base and source of the second P-type metal-oxide half-field transistor 232, The base of the third P-type MOS transistor 233 and a constant voltage of 3.3 volts, the gate of the first P-type MOS transistor 231 is electrically connected to its drain, and the second P-type MOS transistor 231 The gate of 232 and the drain of the first N-type metal oxide half-field transistor 234, the first N-type metal oxide half-field transistor The base of the body 234 is electrically connected to its source and ground, and the gate is electrically connected to the gate of the second N-type metal oxide semi-field effect transistor 235 and the input voltage Vin. The source is electrically connected to its base and the base of the third N-type metal-oxide half-effect transistor 236 and grounded, and the drain of the third N-type metal-oxide half-effect transistor 236 is electrically connected to the third P-type metal-oxide half-field effect The drain of the transistor 233, one end of the storage capacitor 237, and the input end 238a of the first oscillating inverter 238, the output end 238b of the first oscillating inverter 238 is electrically connected to the input end 239a of the second oscillating inverter 239 Finally, the output end 239b of the second oscillation inverter 239 is connected to the oscillation signal receiving end 24b of the AND circuit 24 and the feedback of the third P-type metal oxide half-field transistor 233 and the third N-type metal oxide half-field transistor 236 Gate.

請參閱第4B圖所示,第4B圖為第4A圖震盪電路的波形圖,輸入電壓Vin輸入電壓範圍為1~3.3V,當輸入電壓Vin為3.3V時,第一P型金氧半場效電晶體231、第二P型金氧半場效電晶體232、第三P型金氧半場效電晶體233、第一N型金氧半場效電晶體234及第二N型金氧半場效電晶體235皆為導通,第三N型金氧半場效電晶體236關閉,此時儲存電容237會進行充電,當儲存電容237充飽後,輸出一正訊號至第一震盪反向器238的輸入端238a,正訊號通過第一震盪反向器238後會輸出一負訊號至第二震盪反向器239的輸入端239a,負訊號通過第二震盪反向器239後,震盪電路23將輸出正訊號,同時,正訊號會回溯至第三P型金氧半場效電晶體233、第三N型金氧半場效電晶體236的閘極,此時,第三P型金氧半場效電晶體233會關閉,儲存電容237將開始放電,儲存電容237放完電後,將輸出負訊號至第一震盪反向器238的輸入端238a,第一震盪反向器238再將負訊號反向為正訊號輸出至第二震盪反向器239的輸入端239a,第二震盪反向器239再將正訊號反向為負訊號輸出,以及再回溯至第三P型金氧半場效電晶體233及第三N型金氧半場效電晶 體236的閘極,第三N型金氧半場效電晶體236即關閉,第一P型金氧半場效電晶體231、第二P型金氧半場效電晶體232及第三P型金氧半場效電晶體233皆導通,儲存電容237便開始充電,充電後輸出正訊號,持續以上步驟,使得震盪電路23得以持續輸出相反之正訊號及負訊號,而於儲存電容237與第一震盪反向器238連接的接點T1會產生近三角波的震盪訊號,而近三角波的控制訊號通過第一震盪反向器238後,會將控制訊號轉換近方波震盪訊號,因此於第一震盪反向器238的輸出端238b會產生近似方波的震盪訊號(接點T2),再利用第二震盪反向器239將近似方波的控制訊號調整為方波的震盪訊號,最後由第二震盪反向器239的輸出端239b輸出波形為方波的震盪訊號;此外,前述之第一震盪反向器238、第二震盪反向器239亦可使用舒密特電路取代,並不以此為限。 Please refer to Fig. 4B. Fig. 4B is the waveform diagram of the oscillation circuit in Fig. 4A. The input voltage Vin has an input voltage range of 1~3.3V. When the input voltage Vin is 3.3V, the first P-type metal oxide half field effect Transistor 231, second P-type metal oxide half-field transistor 232, third P-type metal oxide half-field transistor 233, first N-type metal oxide half-field transistor 234, and second N-type metal oxide half-field transistor All 235 are turned on, the third N-type metal-oxide half-effect transistor 236 is turned off, and the storage capacitor 237 will be charged. When the storage capacitor 237 is full, a positive signal is output to the input terminal of the first oscillating inverter 238 238a. After the positive signal passes the first oscillating inverter 238, it outputs a negative signal to the input terminal 239a of the second oscillating inverter 239. After the negative signal passes through the second oscillating inverter 239, the oscillating circuit 23 will output a positive signal At the same time, the positive signal will be traced back to the gates of the third P-type metal-oxide half-field transistor 233 and the third N-type metal-oxide half-field transistor 236. At this time, the third P-type metal-oxide half-field transistor 233 will Closed, the storage capacitor 237 will start to discharge. After the storage capacitor 237 is discharged, it will output a negative signal to the input terminal 238a of the first oscillating inverter 238. The first oscillating inverter 238 then reverses the negative signal to a positive signal Output to the input terminal 239a of the second oscillating inverter 239. The second oscillating inverter 239 then inverts the positive signal to a negative signal, and then traces back to the third P-type metal oxide semi-field effect transistor 233 and the third N-type gold oxide half field effect transistor The gate of the body 236, the third N-type metal oxide half-field transistor 236 is closed, the first P-type metal oxide half-field transistor 231, the second P-type metal oxide half-field transistor 232, and the third P-type metal oxide The half-effect transistors 233 are all turned on, and the storage capacitor 237 begins to charge. After charging, the positive signal is output. The above steps are continued, so that the oscillation circuit 23 can continue to output the opposite positive and negative signals, and the storage capacitor 237 is opposite to the first oscillation. The contact T1 connected to the commutator 238 will generate a near triangle wave oscillation signal, and after the near triangle wave control signal passes through the first oscillation inverter 238, the control signal will be converted into a near square wave oscillation signal, so the first oscillation is reversed The output terminal 238b of the device 238 will generate an oscillating signal similar to a square wave (contact T2), and then use the second oscillating inverter 239 to adjust the control signal of the approximate square wave to the oscillating signal of the square wave, and finally the second oscillating signal The output end 239b of the commutator 239 outputs an oscillating signal whose waveform is a square wave; in addition, the aforementioned first oscillating inverter 238 and second oscillating inverter 239 can also be replaced by Schmitt circuits, which is not limited to this .

請參閱第5圖所示,及電路24具有一反及閘241、一及電路反向器242,反及閘241的兩輸入端分別連接第三資料接收端24a及震盪訊號接收端24b輸出端電連接及電路反向器242的輸入端,及電路反向器242的輸出端電連接第一控制訊號輸出端24c及第二控制訊號輸出端24d。 Please refer to FIG. 5, and the circuit 24 has an inverting gate 241 and an inverting circuit 242. The two inputs of the inverting gate 241 are connected to the output ends of the third data receiving end 24a and the oscillation signal receiving end 24b, respectively The electrical connection and the input terminal of the circuit inverter 242 and the output terminal of the circuit inverter 242 are electrically connected to the first control signal output terminal 24c and the second control signal output terminal 24d.

請在參閱第2B圖所示,及電路24將會依據震盪訊號及資料訊號輸出由第一控制訊號輸出端24c及第二控制訊號輸出端24d輸出控制訊號,並由微機電泵浦3的第一電極31接收控制訊號,以及由第二電極32接收反向器25傳輸之反向的控制訊號,由第一電極31與第二電極32接收相反的控制訊號來使微機電泵浦3內的壓電元件(未圖示)得以接受透過壓電效應來傳輸流體。 Please refer to FIG. 2B, and the circuit 24 will output the control signal from the first control signal output terminal 24c and the second control signal output terminal 24d according to the oscillation signal and the data signal, and the MEMS pump 3 An electrode 31 receives the control signal, and the second electrode 32 receives the reverse control signal transmitted by the inverter 25, and the first electrode 31 and the second electrode 32 receive the opposite control signal to make the MEMS pump 3 Piezo elements (not shown) are able to accept the transmission of fluid through the piezoelectric effect.

請繼續參考第2B圖所示,第一組控制電路20A具有多個控制電路20,於第一組控制電路20A中居首的控制電路20其為移位暫存器21的第一 資料接收端21b電連接微處理器1用以接收資料訊號,其第一資料輸出端21c除了電連接同一控制電路20的閂鎖電路22外,亦電連接下一個控制電路20的移位暫存器21的第一資料接收端21b,後續的控制電路20亦同,來將資料訊號向下傳遞。 Please continue to refer to FIG. 2B, the first group of control circuits 20A has a plurality of control circuits 20, and the first group of control circuits 20A is the first control circuit 20 of the shift register 21 The data receiving terminal 21b is electrically connected to the microprocessor 1 for receiving data signals. In addition to the latch circuit 22 of the same control circuit 20, the first data output terminal 21c is also electrically connected to the shift register of the next control circuit 20. The first data receiving end 21b of the device 21, and the subsequent control circuit 20 are the same, to transmit the data signal downwards.

請同時參閱第3A圖及第6圖,其中第6圖為第二組控制電路20B的移位暫存器21與閂鎖電路22的電路結構圖,如圖所示,控制電路20的第二組控制電路20B其結構與第一組控制電路20A相同,差異點為兩者輸入的時脈訊號相反。 Please also refer to FIG. 3A and FIG. 6, wherein FIG. 6 is a circuit structure diagram of the shift register 21 and the latch circuit 22 of the second group of control circuits 20B. As shown in the figure, the second of the control circuit 20 The group control circuit 20B has the same structure as the first group control circuit 20A, and the difference is that the clock signals input by the two are opposite.

綜上所述,本案提供一種微型流體輸送模組,微處理器利用多個控制電路輔助來分別控制多個微機電泵浦,可減少微處理器的負擔,無須使用多個接腳的高成本高階處理器,便可以輕易完成精確控制各微機電泵浦,並且解決先前極具產業之利用價值,爰依法提出申請。 In summary, this case provides a micro-fluid delivery module. The microprocessor uses multiple control circuits to assist in controlling multiple micro-electromechanical pumps, which can reduce the burden on the microprocessor and eliminate the high cost of using multiple pins. The high-end processor can easily complete the precise control of each micro-electromechanical pump, and solve the previously extremely valuable industrial use value, and file an application according to law.

本案得由熟習此技術之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。 This case may be modified by any person familiar with the technology as a craftsman, but none of them may be as protected as the scope of the patent application.

1‧‧‧微處理器 1‧‧‧ Microprocessor

2‧‧‧特殊應用積體電路 2‧‧‧ Special application integrated circuit

20‧‧‧控制電路 20‧‧‧Control circuit

20A‧‧‧第一組控制電路 20A‧‧‧The first group of control circuits

20B‧‧‧第二組控制電路 20B‧‧‧The second group of control circuits

21‧‧‧移位暫存器 21‧‧‧Shift register

21a‧‧‧時脈訊號輸入端 21a‧‧‧clock signal input terminal

21b‧‧‧第一資料接收端 21b‧‧‧First data receiver

21c‧‧‧第一資料輸出端 21c‧‧‧First data output

22‧‧‧閂鎖電路 22‧‧‧ latch circuit

22a‧‧‧閂鎖訊號輸入端 22a‧‧‧ latch signal input terminal

22b‧‧‧第二資料接收端 22b‧‧‧Second data receiver

22c‧‧‧第二資料輸出端 22c‧‧‧Second data output terminal

23‧‧‧震盪電路 23‧‧‧ Oscillation circuit

24‧‧‧及電路 24‧‧‧ and circuit

24a‧‧‧第三資料接收端 24a‧‧‧The third data receiving end

24b‧‧‧震盪訊號接收端 24b‧‧‧ Receiver of shock signal

24c‧‧‧第一控制訊號輸出端 24c‧‧‧ First control signal output

24d‧‧‧第二控制訊號輸出端 24d‧‧‧Second control signal output

25‧‧‧反向器 25‧‧‧Inverter

3‧‧‧微機電泵浦 3‧‧‧Microelectromechanical pump

31‧‧‧第一電極 31‧‧‧First electrode

32‧‧‧第二電極 32‧‧‧Second electrode

Claims (11)

一種微型流體輸送模組,包含:一印刷電路板;一微處理器,設置於該印刷電路板,用以輸出一時脈訊號、一閂鎖訊號及一資料訊號;一特殊應用積體電路,設置於該印刷電路板且電連接該微處理器,用以接收該時脈訊號、該閂鎖訊號及該資料訊號,該特殊應用積體電路包含有複數個控制電路,每一該控制電路包含有:一移位暫存器,電連接該微處理器以接收該時脈訊號及該資料訊號;一閂鎖電路,電連接該微處理器及該移位暫存器,以接收該閂鎖訊號及該移位暫存器輸出之該資料訊號;一及電路,電連接該閂鎖電路,以接收該閂鎖電路輸出之該資料訊號;以及一反向器,電連接該及電路;一震盪電路,電連接該及電路,以輸出一震盪訊號至該及電路;以及複數個微機電泵浦,設置於該印刷電路板並與該複數個控制電路分別對應電連接。 A micro-fluid delivery module, comprising: a printed circuit board; a microprocessor, which is arranged on the printed circuit board and used for outputting a clock signal, a latch signal and a data signal; an integrated circuit for special applications, setting The printed circuit board is electrically connected to the microprocessor for receiving the clock signal, the latch signal and the data signal. The special application integrated circuit includes a plurality of control circuits, each of which includes : A shift register electrically connected to the microprocessor to receive the clock signal and the data signal; a latch circuit electrically connected to the microprocessor and the shift register to receive the latch signal And the data signal output by the shift register; an AND circuit electrically connected to the latch circuit to receive the data signal output by the latch circuit; and an inverter electrically connected to the AND circuit; an oscillation The circuit is electrically connected to the sum circuit to output an oscillating signal to the sum circuit; and a plurality of microelectromechanical pumps are provided on the printed circuit board and are electrically connected to the plurality of control circuits respectively. 如申請專利範圍第1項所述之微型流體輸送模組,其中該移位暫存器包含有至少一時脈訊號輸入端、一第一資料接收端及一第一資料輸出端,該時脈訊號輸入端電連接該微處理器以接收該時脈訊號,該第一資料接收端電連接該微處理器以接收該資料訊號。 The micro-fluid delivery module as described in item 1 of the patent application, wherein the shift register includes at least one clock signal input terminal, a first data receiving terminal and a first data output terminal, the clock signal The input end is electrically connected to the microprocessor to receive the clock signal, and the first data receiving end is electrically connected to the microprocessor to receive the data signal. 如申請專利範圍第2項所述之微型流體輸送模組,其中該閂鎖電路包含有至少一閂鎖訊號輸入端、一第二資料接收端及一第二資料輸出端,該閂鎖訊號輸入端電連接該微處理器以接收該閂鎖訊號,該第二資料接收端電連接該第一資料輸出端。 The micro-fluid delivery module as described in item 2 of the patent application scope, wherein the latch circuit includes at least a latch signal input terminal, a second data receiving terminal and a second data output terminal, the latch signal input The terminal is electrically connected to the microprocessor to receive the latch signal, and the second data receiving end is electrically connected to the first data output end. 如申請專利範圍第3項所述之微型流體輸送模組,其中該及電路包含有一第三資料接收端、一震盪訊號接收端、一第一控制訊號輸出端及一第二控制訊號輸出端,該第三資料接收端電連接該第二資料輸出端,該震盪訊號接收端電連接該震盪電路。 The micro-fluid delivery module as described in item 3 of the patent application scope, wherein the sum circuit includes a third data receiving end, an oscillation signal receiving end, a first control signal output end and a second control signal output end, The third data receiving end is electrically connected to the second data output end, and the oscillation signal receiving end is electrically connected to the oscillation circuit. 如申請專利範圍第4項所述之微型流體輸送模組,其中該反向器電連接該第一控制訊號輸出端。 The micro fluid delivery module as described in item 4 of the patent application scope, wherein the inverter is electrically connected to the first control signal output terminal. 如申請專利範圍第5項所述之微型流體輸送模組,其中該複數個微機電泵浦皆分別具有兩電極,該兩電極分別電連接其對應之該反向器及該及電路之該第二控制訊號輸出端。 The micro-fluid delivery module as described in item 5 of the patent application scope, wherein each of the plurality of micro-electromechanical pumps has two electrodes, and the two electrodes are electrically connected to the corresponding inverter and the circuit 2. Control signal output terminal. 如申請專利範圍第1項所述之微型流體輸送模組,其中該震盪電路設置於該印刷電路板。 The micro-fluid delivery module as described in item 1 of the patent application scope, wherein the oscillating circuit is disposed on the printed circuit board. 如申請範圍第1項所述之微型流體輸送模組,其中該移位暫存器分別包含有四移位傳輸閘及四移位反向器,該四移位傳輸閘串聯連接,該四移位反向器兩兩串聯後分別與該四移位傳輸閘之其中之二並聯。 The micro-fluid delivery module as described in item 1 of the application scope, wherein the shift register includes a four-shift transmission gate and a four-shift inverter, the four-shift transmission gates are connected in series, and the four-shift The bit inverters are connected in series with each other in parallel with two of the four shift transmission gates. 如申請專利範圍第1項所述之微型流體輸送模組,其中該閂鎖電路包含有二閂鎖傳輸閘及二閂鎖反向器,該二閂鎖傳輸閘串聯連接,該二閂鎖反向器串聯後與該二閂鎖傳輸閘其中之一並聯。 The micro-fluid delivery module as described in item 1 of the patent application scope, wherein the latch circuit includes two latch transmission gates and two latch reversers, the two latch transmission gates are connected in series, and the two latch reverse The commutator is connected in series with one of the two latch transmission gates in parallel. 如申請專利範圍第1項所述之微型流體輸送模組,其中該震盪電路包含有一第一P型金氧半場效電晶體、一第二P型金氧半場效電晶體、 一第三P型金氧半場效電晶體、一第一N型金氧半場效電晶體、一第二N型金氧半場效電晶體、一第三N型金氧半場效電晶體、一儲存電容、一第一震盪反向器及一第二震盪反向器,該第一P型金氧半場效電晶體、該第二P型金氧半場效電晶體、該第三P型金氧半場效電晶體、該第一N型金氧半場效電晶體、該第二N型金氧半場效電晶體及該第三N型金氧半場效電晶體皆分別具有一基極、一閘極、一源極及一汲極,該第一P型金氧半場效電晶體之該基極電連接其該源極、該第二P型金氧半場效電晶體之該基極及其該源極、該第三P型金氧半場效電晶體之該基極以及一定電壓,該第一P型金氧半場效電晶體之該閘極電連接其該汲極與該第二P型金氧半場效電晶體之該閘極、該第一N型金氧半場效電晶體之該汲極,該第一N型金氧半場效電晶體之該基極及其源極並接地,而該閘極電連接至該第二N型金氧半場效電晶體之該閘極以及一輸入電壓,該第二N型金氧半場效電晶體該之源極會電連接其該基極、該第三N型金氧半場效電晶體之該基極並接地,該第三N型金氧半場效電晶體之該汲極電連接該第三P型金氧半場效電晶體之該汲極、該儲存電容之一端以及該第一震盪反向器之一輸入端,該第一震盪反向器之一輸出端電連接至該第二震盪反向器之一輸入端,最後該第二震盪反向器之一輸出端電連接至該及電路24並且回授至該第三P型金氧半場效電晶體之該閘極、該第三N型金氧半場效電晶體之該閘極。 The micro-fluid delivery module as described in item 1 of the patent application scope, wherein the oscillating circuit includes a first P-type metal oxide semi-field effect transistor, a second P-type metal oxide half-field transistor, A third P-type metal oxide half-field transistor, a first N-type metal oxide half-field transistor, a second N-type metal oxide half-field transistor, a third N-type metal oxide half-field transistor, a storage A capacitor, a first oscillating inverter and a second oscillating inverter, the first P-type metal oxide half-field transistor, the second P-type metal oxide half-field transistor, the third P-type metal oxide half-field transistor The effect transistor, the first N-type metal oxide half-field effect transistor, the second N-type metal oxide half-field effect transistor and the third N-type metal oxide half-field effect transistor each have a base electrode, a gate electrode, A source electrode and a drain electrode, the base electrode of the first P-type metal oxide semi-field effect transistor is electrically connected to the source electrode thereof, the base electrode of the second P-type metal oxide semi-field effect transistor and the source electrode thereof , The base of the third P-type MOS transistor and a certain voltage, the gate of the first P-type MOS transistor is electrically connected to the drain and the second P-type MOSFET The gate electrode of the effect transistor, the drain electrode of the first N-type metal oxide half field effect transistor, the base and the source of the first N-type metal oxide half field effect transistor are connected to ground, and the gate electrode Electrically connected to the gate of the second N-type metal-oxide-half field-effect transistor and an input voltage, the source of the second N-type metal-oxide-half field-effect transistor is electrically connected to the base and the third N The base of the metal-oxide-semiconductor field-effect transistor and the ground, the drain of the third N-type metal-oxide-half field-effect transistor is electrically connected to the drain of the third P-type metal-oxide-half field-effect transistor, and the storage capacitor One end and an input end of the first oscillating inverter, an output end of the first oscillating inverter is electrically connected to an input end of the second oscillating inverter, and finally the second oscillating inverter An output terminal is electrically connected to the sum circuit 24 and fed back to the gate of the third P-type metal oxide semi-field effect transistor and the gate of the third N-type metal oxide semi-field effect transistor. 如申請專利範圍第1項所述之微型流體輸送模組,其中該及電路包含有一反及閘及一及電路反向器,該反及閘及該及電路反向器串聯連接。 The micro-fluid delivery module as described in item 1 of the scope of the patent application, wherein the sum circuit includes an AND gate and an AND circuit inverter, and the AND gate and the AND circuit inverter are connected in series.
TW107139381A 2018-11-06 2018-11-06 Miniature fluid transportation module TWI681118B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107139381A TWI681118B (en) 2018-11-06 2018-11-06 Miniature fluid transportation module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107139381A TWI681118B (en) 2018-11-06 2018-11-06 Miniature fluid transportation module

Publications (2)

Publication Number Publication Date
TWI681118B true TWI681118B (en) 2020-01-01
TW202018183A TW202018183A (en) 2020-05-16

Family

ID=69942630

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107139381A TWI681118B (en) 2018-11-06 2018-11-06 Miniature fluid transportation module

Country Status (1)

Country Link
TW (1) TWI681118B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518900A (en) * 1982-07-15 1985-05-21 Tokyo Shibaura Denki Kabushiki Kaisha Pulse motor driving apparatus
CN1368706A (en) * 2001-02-05 2002-09-11 力捷电脑股份有限公司 Device and method for controlling multiple sets of motors and sensors of scanner
CN1922401A (en) * 2004-02-23 2007-02-28 日本电气株式会社 Piezoelectric pump driving circuit, and cooling system using the same
TW200838118A (en) * 2007-02-01 2008-09-16 Sanyo Electric Co Integrated circuit for driving a motor
CN103929105A (en) * 2014-04-17 2014-07-16 上海杰傲湃思医疗科技有限公司 Novel system with single microcontroller controlling multiple stepping motors
US20140333234A1 (en) * 2008-09-30 2014-11-13 Semiconductor Components Industries, Llc Motor control circuit
TWM576159U (en) * 2018-11-06 2019-04-01 研能科技股份有限公司 Micro fluid delivery module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518900A (en) * 1982-07-15 1985-05-21 Tokyo Shibaura Denki Kabushiki Kaisha Pulse motor driving apparatus
CN1368706A (en) * 2001-02-05 2002-09-11 力捷电脑股份有限公司 Device and method for controlling multiple sets of motors and sensors of scanner
CN1922401A (en) * 2004-02-23 2007-02-28 日本电气株式会社 Piezoelectric pump driving circuit, and cooling system using the same
TW200838118A (en) * 2007-02-01 2008-09-16 Sanyo Electric Co Integrated circuit for driving a motor
US20140333234A1 (en) * 2008-09-30 2014-11-13 Semiconductor Components Industries, Llc Motor control circuit
CN103929105A (en) * 2014-04-17 2014-07-16 上海杰傲湃思医疗科技有限公司 Novel system with single microcontroller controlling multiple stepping motors
TWM576159U (en) * 2018-11-06 2019-04-01 研能科技股份有限公司 Micro fluid delivery module

Also Published As

Publication number Publication date
TW202018183A (en) 2020-05-16

Similar Documents

Publication Publication Date Title
JP6685361B2 (en) Semiconductor device
JP6599463B2 (en) Gate drive circuit capable of scanning in forward and reverse directions
WO2016197531A1 (en) Shift register unit and drive method therefor, gate drive circuit and display apparatus
US7079617B2 (en) Shift register and driving method thereof
US8098791B2 (en) Shift register
JP2003101394A (en) Pulse output circuit, shift register and display unit
WO2019196893A1 (en) Touch electrode drive circuit, touch electrode driver and touch display device
TW201426718A (en) Gate driving device
WO2019019608A1 (en) Shift register circuit and driving method therefor, scan driving circuit and display apparatus
WO2016115797A1 (en) Touch control circuit, touch control panel and display apparatus
CN111140482B (en) Micro fluid delivery module
TW201409455A (en) Display panels
WO2019024443A1 (en) Scanning drive circuit and device
TWI681118B (en) Miniature fluid transportation module
TWI696908B (en) Miniature fluid transportation module
TWI696909B (en) Miniature fluid transportation module
TWM576159U (en) Micro fluid delivery module
TW200828228A (en) Shift register and liquid crystal display device
TWM576158U (en) Micro fluid delivery module
TWM576160U (en) Micro fluid delivery module
JP2004258147A (en) Shift register and display device
CN107645295B (en) Time-sharing sampling holding circuit
CN111140483B (en) Micro fluid delivery module
CN111140481B (en) Micro fluid delivery module
CN208966543U (en) Minisize fluid conveyor module