TWI680619B - Distributed feedback semiconductor laser device - Google Patents

Distributed feedback semiconductor laser device Download PDF

Info

Publication number
TWI680619B
TWI680619B TW107146535A TW107146535A TWI680619B TW I680619 B TWI680619 B TW I680619B TW 107146535 A TW107146535 A TW 107146535A TW 107146535 A TW107146535 A TW 107146535A TW I680619 B TWI680619 B TW I680619B
Authority
TW
Taiwan
Prior art keywords
grating
layer
semiconductor laser
laser device
grating structure
Prior art date
Application number
TW107146535A
Other languages
Chinese (zh)
Other versions
TW202025582A (en
Inventor
洪勇智
Yung Hung Jr
王彥傑
Yen Chieh Wang
謝秉峰
Ping Feng Hsieh
Original Assignee
國立中山大學
National Sun Yat-Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學, National Sun Yat-Sen University filed Critical 國立中山大學
Priority to TW107146535A priority Critical patent/TWI680619B/en
Application granted granted Critical
Publication of TWI680619B publication Critical patent/TWI680619B/en
Publication of TW202025582A publication Critical patent/TW202025582A/en

Links

Abstract

一種分佈反饋式半導體雷射裝置,包含主動層、第一光柵層和第二光柵層。第一光柵層包含具有第一光柵週期之第一光柵結構。第二光柵層包含具有第二光柵週期之第二光柵結構,其中第二光柵週期實質相異於第一光柵週期。主動層、第一光柵層及第二光柵層係上下堆疊而成,且分佈反饋式半導體雷射裝置的等效光柵週期為(2×P1×P2)/(P1+P2),其中P1和P2分別為第一光柵週期和第二光柵週期。 A distributed feedback semiconductor laser device includes an active layer, a first grating layer, and a second grating layer. The first grating layer includes a first grating structure having a first grating period. The second grating layer includes a second grating structure having a second grating period, wherein the second grating period is substantially different from the first grating period. The active layer, the first grating layer and the second grating layer are stacked on top of each other, and the equivalent grating period of the distributed feedback semiconductor laser device is (2 × P1 × P2) / (P1 + P2), where P1 and P2 These are the first grating period and the second grating period, respectively.

Description

分佈反饋式半導體雷射裝置 Distributed feedback semiconductor laser device

本發明是指於一種半導體雷射裝置,且特別是指一種單一波長光輸出的分佈反饋式(distributed feedback;DFB)半導體雷射裝置。 The present invention relates to a semiconductor laser device, and more particularly to a distributed feedback (DFB) semiconductor laser device with a single wavelength light output.

半導體雷射主要有法布立-培若(Fabry-Perot;FP)雷射、分佈反饋式雷射和垂直共振腔面射型雷射(vertical cavity surface emitting laser;VCSEL)等。對於分佈式反饋雷射而言,其波長穩定度及旁模抑制比(side mode suppression ratio;SMSR)為生產良率的關鍵因素,主要造成雷射失效的原因在於使用均勻對稱光柵結構的分佈式反饋雷射,造成雷射發光的波長不在光柵結構所對應的布拉格波長上,而是發光在其布拉格波長的兩端禁止帶邊緣,形成不穩定的雙波長光輸出。雖然可利用電子束光刻技術製作相位偏移光柵以提升波長穩定度及旁模抑制比,但相對地分佈式反饋雷射的製作成本及時間亦大幅提高。 Semiconductor lasers mainly include Fabry-Perot (FP) lasers, distributed feedback lasers, and vertical cavity surface emitting lasers (VCSELs). For distributed feedback lasers, its wavelength stability and side mode suppression ratio (SMSR) are the key factors for production yield. The main cause of laser failure is the use of a distributed symmetrical grating structure. The feedback laser causes the wavelength of the laser to emit light not at the Bragg wavelength corresponding to the grating structure, but to emit light at both ends of its Bragg wavelength. Forbidden band edges to form unstable dual-wavelength light output. Although phase shift gratings can be fabricated using electron beam lithography to improve wavelength stability and side-mode suppression ratio, the production cost and time of relatively distributed feedback lasers have also increased significantly.

本發明的目的是在於提供一種分佈反饋式半導體雷射裝置,其具有單模輸出特性,即主模能量與次模能量的差距至少為30dB,且具有高波長穩定度、高旁模抑制比及改善操作時的空間燒洞效應。此外,分佈反饋式半導體雷射裝置中的光柵結構可透過雷射干涉微影製程和濕式蝕刻定義,故相較於電子束光刻技術製作方式,可有效降低製作成本及時間。 The object of the present invention is to provide a distributed feedback semiconductor laser device, which has single-mode output characteristics, that is, the difference between the energy of the primary mode and the energy of the secondary mode is at least 30dB, and has high wavelength stability, high side mode suppression ratio, and Improved space cavitation effect during operation. In addition, the grating structure in a distributed feedback semiconductor laser device can be defined through laser interference lithography and wet etching. Therefore, compared with the electron beam lithography technology, the manufacturing cost and time can be effectively reduced.

根據上述目的,本發明提出一種分佈反饋式半導體雷射裝置,其包含主動層、第一光柵層和第二光柵層。第一光柵層包含具有第一光柵週期的第一光柵結構,且第二光柵層包含具有第二光柵週期的第二光柵結構,其中第一光柵週期與第二光柵週期實質相異。主動層、第一光柵層及第二光柵層係上下堆疊而成,且分佈反饋式半導體雷射裝置之等效光柵週期為(2×P1×P2)/(P1+P2),其中P1和P2分別為第一光柵週期和第二光柵週期。 According to the above objective, the present invention provides a distributed feedback semiconductor laser device, which includes an active layer, a first grating layer, and a second grating layer. The first grating layer includes a first grating structure having a first grating period, and the second grating layer includes a second grating structure having a second grating period, wherein the first grating period is substantially different from the second grating period. The active layer, the first grating layer and the second grating layer are stacked on top of each other, and the equivalent grating period of the distributed feedback semiconductor laser device is (2 × P1 × P2) / (P1 + P2), where P1 and P2 These are the first grating period and the second grating period, respectively.

依據本發明的一實施例,上述第一光柵層與上述第二光柵層位於上述主動層的相同側。 According to an embodiment of the present invention, the first grating layer and the second grating layer are located on the same side of the active layer.

依據本發明的又一實施例,上述第二光柵層直接堆疊在上述第一光柵層上。 According to another embodiment of the present invention, the second grating layer is directly stacked on the first grating layer.

依據本發明的又一實施例,上述第一光柵層和上述第二光柵層分別位於上述主動層的相對兩側。 According to another embodiment of the present invention, the first grating layer and the second grating layer are located on opposite sides of the active layer, respectively.

依據本發明的又一實施例,上述第一光柵週期與上述第二光柵週期的差距實質低於1奈米(nm)。 According to another embodiment of the present invention, a gap between the first grating period and the second grating period is substantially lower than 1 nanometer (nm).

依據本發明的又一實施例,上述第一光柵結構與上述第二光柵結構的填充因子(filling factor)約為0.4至0.5。 According to another embodiment of the present invention, a filling factor of the first grating structure and the second grating structure is about 0.4 to 0.5.

依據本發明的又一實施例,光在上述主動層中前進時,對於上述第一光柵結構與上述第二光柵結構的光侷限因子(optical confinement factor)實質相同。 According to another embodiment of the present invention, when the light advances in the active layer, the optical confinement factor for the first grating structure and the second grating structure is substantially the same.

根據上述目的,本發明另提出一種分佈反饋式半導體雷射裝置,其包含主動層和包含光柵結構的光柵層。主動層和光柵層係上下堆疊而成,且光柵結構具有週期性的高度或深度變化。 According to the above object, the present invention further provides a distributed feedback semiconductor laser device including an active layer and a grating layer including a grating structure. The active layer and the grating layer are stacked on top of each other, and the grating structure has periodic height or depth changes.

依據本發明的一實施例,上述光柵結構的高度變化和深度變化對應二相異正弦函數疊加後的波形。 According to an embodiment of the present invention, the height change and the depth change of the grating structure correspond to waveforms after superposition of two different sine functions.

依據本發明的又一實施例,上述光柵結構中微結構的高處、凹槽的深度與其構成之高度和深度變化週期是藉由全像干涉微影製程曝光時間或劑量調整。 According to yet another embodiment of the present invention, the height of the microstructure, the depth of the groove and the height and depth change period of the microstructure in the grating structure are adjusted by the exposure time or dose of the holographic interference lithography process.

100、200、300、400‧‧‧分佈反饋式半導體雷射裝置 100, 200, 300, 400‧‧‧ Distributed feedback semiconductor laser device

110、210、310、410‧‧‧主動層 110, 210, 310, 410‧‧‧ active layer

111、211、311‧‧‧多重量子井層結構 111, 211, 311‧‧‧ multiple quantum well formations

112、212、312‧‧‧下分離侷限異質結構 112, 212, 312, ‧‧‧ separation and limited heterogeneous structure

113、213、313‧‧‧上分離侷限異質結構 113, 213, 313, ‧‧‧, separated confined heterogeneous structures

120、220、320‧‧‧第一光柵層 120, 220, 320‧‧‧‧ First grating layer

121、221、321‧‧‧第一光柵結構 121, 221, 321‧‧‧ first grating structure

122、132、222、232、322、332‧‧‧塗層 122, 132, 222, 232, 322, 332‧‧‧ coating

130、230、330‧‧‧第二光柵層 130, 230, 330‧‧‧ Second grating layer

131、231、331‧‧‧第二光柵結構 131, 231, 331‧‧‧Second grating structure

140、240、340‧‧‧緩衝層 140, 240, 340‧‧‧ buffer layer

150、250、350‧‧‧基板 150, 250, 350‧‧‧ substrate

160、260、360‧‧‧包覆層 160, 260, 360‧‧‧ coating

170、270、370‧‧‧接觸層 170, 270, 370‧‧‧ contact layer

180、280、380‧‧‧鈍化層 180, 280, 380‧‧‧ passivation layer

192、292、392‧‧‧上電極層 192, 292, 392‧‧‧ upper electrode layer

194、294、394‧‧‧下電極層 194, 294, 394‧‧‧ lower electrode layer

420‧‧‧光柵層 420‧‧‧Grating layer

421、421’、421”‧‧‧光柵結構 421, 421 ’, 421” ‧‧‧ grating structure

PL‧‧‧長週期 P L ‧‧‧Long cycle

PS‧‧‧短週期 P S ‧‧‧short cycle

P1、P2‧‧‧週期 P1, P2‧‧‧cycle

W1、W2‧‧‧弦波 W1, W2‧‧‧ String

為了更完整了解實施例及其優點,現參照結合所附圖式所做之下列描述,其中:〔圖1〕為本發明實施例之分佈反饋式半導體雷射裝置的立體示意圖;〔圖2〕為〔圖1〕之分佈反饋式半導體雷射裝置的部份結構剖視圖;〔圖3〕為兩不同週期之弦波及其相加的波形示意圖; 〔圖4〕示出依據本發明實施例之分佈反饋式半導體雷射裝置中,由上述第一光柵結構與上述第二光柵結構等效之光穿透與反射頻譜;〔圖5〕示出依據本發明實施例之分佈反饋式半導體雷射裝置產生之雷射在不同溫度與不同操作電流下的發光功率特性;〔圖6〕示出依據本發明實施例之分佈反饋式半導體雷射裝置產生之雷射光在環境溫度為20℃下的發光頻譜特性;〔圖7〕為依據本發明實施例之分佈反饋式半導體雷射裝置產生之雷射光在環境溫度為20℃下,操作電流變化所造成之波長與旁模抑制比變化的量測結果;〔圖8〕示出依據本發明實施例之分佈反饋式半導體雷射裝置產生之雷射光在操作電流為60mA下,環境溫度變化所造成之波長與旁模抑制比變化的量測結果;〔圖9〕示出依據本發明實施例之分佈反饋式半導體雷射裝置產生之雷射光在不同操作電流下對應的電/光響應(E/O response)S21的量測結果;〔圖10〕示出依據本發明實施例之分佈反饋式半導體雷射裝置產生之雷射光在操作電流為60mA下對應的位元錯誤率(bit error rate;BER)和光學眼圖;〔圖11〕為本發明另一實施例之分佈反饋式半導體雷射裝置的立體示意圖;〔圖12〕為〔圖11〕之分佈反饋式半導體雷射裝置的部份結構剖視圖; 〔圖13〕為本發明另一實施例之分佈反饋式半導體雷射裝置的立體示意圖;〔圖14〕為〔圖13〕之分佈反饋式半導體雷射裝置的部份結構剖視圖;〔圖15〕為本發明另一實施例之分佈反饋式半導體雷射裝置的部份結構剖視圖;〔圖16A〕為〔圖15〕之分佈反饋式半導體雷射裝置產生之雷射光的波形示意圖;以及〔圖16B〕至〔圖16D〕分別為〔圖15〕之光柵層的不同示例。 For a more complete understanding of the embodiment and its advantages, reference is now made to the following description in conjunction with the drawings, in which: [FIG. 1] is a schematic perspective view of a distributed feedback semiconductor laser device according to an embodiment of the present invention; [FIG. 2] [Fig. 1] is a sectional view of a partial structure of a distributed feedback semiconductor laser device; [Fig. 3] is a schematic diagram of sine waves of two different periods and their added waveforms; [Fig. 4] shows a light transmission and reflection spectrum equivalent to the first grating structure and the second grating structure in a distributed feedback semiconductor laser device according to an embodiment of the present invention; [Fig. 5] shows the basis Luminous power characteristics of the lasers generated by the distributed feedback semiconductor laser device according to the embodiment of the present invention at different temperatures and different operating currents; [FIG. 6] shows the results generated by the distributed feedback semiconductor laser device according to the embodiment of the present invention. Luminous spectrum characteristics of laser light at an ambient temperature of 20 ° C; [Fig. 7] is caused by a change in operating current of the laser light generated by a distributed feedback semiconductor laser device according to an embodiment of the present invention at an ambient temperature of 20 ° C Measurement results of changes in wavelength and side mode suppression ratio; [Fig. 8] shows the wavelengths and wavelengths caused by ambient temperature changes of the laser light generated by the distributed feedback semiconductor laser device according to the embodiment of the present invention at an operating current of 60 mA. Measurement results of changes in the side mode suppression ratio; [Fig. 9] shows the laser light generated by the distributed feedback semiconductor laser device according to the embodiment of the present invention at different operating voltages; The corresponding measurement results of the corresponding electrical / optical response (E / O response) S21; [Figure 10] shows the corresponding laser light generated by a distributed feedback semiconductor laser device according to an embodiment of the present invention at an operating current of 60 mA. Bit error rate (BER) and optical eye diagram; [Fig. 11] is a perspective view of a distributed feedback semiconductor laser device according to another embodiment of the present invention; [Fig. 12] is the distribution of [Fig. 11] Partial structure cross-sectional view of a feedback semiconductor laser device; [FIG. 13] is a perspective view of a distributed feedback semiconductor laser device according to another embodiment of the present invention; [FIG. 14] is a partial cross-sectional view of the distributed feedback semiconductor laser device of FIG. 13; [FIG. 15] This is a cross-sectional view of a partial structure of a distributed feedback semiconductor laser device according to another embodiment of the present invention; [FIG. 16A] is a waveform diagram of laser light generated by the distributed feedback semiconductor laser device of FIG. 15; and [FIG. 16B] ] To [Fig. 16D] are different examples of the grating layer of [Fig. 15].

以下仔細討論本發明的實施例。然而,可以理解的是,實施例提供許多可應用的概念,其可實施於各式各樣的特定內容中。所討論、揭示之實施例僅供說明,並非用以限定本發明之範圍。 Embodiments of the invention are discussed in detail below. It is understood, however, that the embodiments provide many applicable concepts that can be embodied in a wide variety of specific content. The embodiments discussed and disclosed are for illustration only and are not intended to limit the scope of the invention.

在本文中所使用的用語僅是為了描述特定實施例,非用以限制申請專利範圍。除非另有限制,否則單數形式的「一」或「該」用語也可用來表示複數形式。此外,空間相對性用語的使用是為了說明元件在使用或操作時的不同方位,而不只限於圖式所繪示的方向。元件也可以其他方式定向(旋轉90度或在其他方向),而在此使用的空間相對性描述也可以相同方式解讀。 The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of patent applications. Unless otherwise limited, the singular forms "a" or "the" can also be used to indicate the plural form. In addition, the term “spatial relativity” is used to explain the different orientations of the components during use or operation, and is not limited to the directions shown in the drawings. Elements can also be oriented in other ways (rotated 90 degrees or in other directions), and the spatially relative description used here can be interpreted in the same way.

為了簡化和明確說明,本文可能會在各種實施例中重複使用元件符號和/或字母,但這並不表示所討論的各種實施例及/或配置之間有因果關係。 For simplicity and clarity of illustration, element symbols and / or letters may be reused in various embodiments herein, but this does not indicate a causal relationship between the various embodiments and / or configurations discussed.

另外,在本文中可能會使用空間相對用語,例如「上方(over)」、「上(on)」、「下方(under)」、「下(below)」等等,以方便說明如圖式所繪示之一元件或一特徵與另一元件或特徵之關係。 In addition, spatial relative terms may be used in this article, such as "over", "on", "under", "below", etc., to facilitate the illustration as shown in the figure Draw the relationship between one element or feature and another element or feature.

為方便理解本案內容,圖式可能僅繪示出完整結構的一部分,但其非意於對本發明之範圍構成任何限制。本發明所屬技術領域中具有通常知識者應可依據本文內容從圖式繪示之部分結構直接推得完整結構。 In order to facilitate understanding of the content of the present case, the drawings may only show a part of the complete structure, but it is not intended to limit the scope of the present invention in any way. Those with ordinary knowledge in the technical field to which the present invention pertains can directly derive the complete structure from the part of the structure shown in the drawings according to the content of this document.

圖1為本發明實施例之分佈反饋式半導體雷射裝置100的立體示意圖。在分佈反饋式半導體雷射裝置100中,主動層110包含多重量子井(multiple quantum well;MQW)層結構111和分離侷限異質結構(separate confinement heterostructure;SCH)層112、113。多重量子井層結構111可包含交錯堆疊的n層量子井層和(n-1)或(n+1)層阻障層,其中量子井層可由砷化銦鎵(indium gallium arsenide;InGaAs)構成,而阻障層可由砷化銦鋁鎵(indium aluminum gallium arsenide;InAlGaAs)構成。每一量子井層的厚度可約為5nm,而每一阻障層的厚度可約為8.5nm。分離侷限異質結構層112、113分別位於多重量子井層結構111的上下兩側,其中分離侷限異質結構層112可由一厚度為50nm之 In0.53AlxGa(0.47-x)As層,其中x為0.36至0.44,以及一厚度為50nm之P型In0.52Al0.48As層所構成;分離侷限異質結構層113可由一厚度為50nm之In0.53AlxGa(0.47-x)As層,其中x為0.36至0.44,以及一厚度為50nm之N型In0.52Al0.48As層所構成。 FIG. 1 is a schematic perspective view of a distributed feedback semiconductor laser device 100 according to an embodiment of the present invention. In the distributed feedback semiconductor laser device 100, the active layer 110 includes a multiple quantum well (MQW) layer structure 111 and a separate confinement heterostructure (SCH) layer 112, 113. The multiple quantum well layer structure 111 may include staggered stacks of n quantum well layers and (n-1) or (n + 1) barrier layers, wherein the quantum well layer may be composed of indium gallium arsenide (InGaAs). The barrier layer may be made of indium aluminum gallium arsenide (InAlGaAs). The thickness of each quantum well layer may be about 5 nm, and the thickness of each barrier layer may be about 8.5 nm. The separated confined heterogeneous structure layers 112 and 113 are respectively located on the upper and lower sides of the multiple quantum well layer structure 111. The confined confined heterogeneous structure layer 112 may include an In 0.53 Al x Ga (0.47-x) As layer with a thickness of 50 nm, where x is 0.36 to 0.44, and a P-type In 0.52 Al 0.48 As layer with a thickness of 50 nm; the separated confined heterostructure layer 113 may include an In 0.53 Al x Ga (0.47-x) As layer with a thickness of 50 nm, where x is 0.36 To 0.44, and an N-type In 0.52 Al 0.48 As layer with a thickness of 50 nm.

請一併參照圖2,其為分佈反饋式半導體雷射裝置100的部份結構剖視圖。如圖1和圖2所示,第一光柵層120和第二光柵層130依序堆疊在主動層110的上方。第一光柵層120具有第一光柵結構121和塗層122,而第二光柵層130具有第二光柵結構131和塗層132。第一光柵結構121的光柵週期P1和第二光柵結構131的光柵週期P2不同。在圖2所示之實施例中,第一光柵結構121的光柵週期P1大於第二光柵結構131的光柵週期P2。在其他實施例中,第一光柵結構121的光柵週期P1可小於第二光柵結構131的光柵週期P2。第一光柵結構121與第二光柵結構131之結合的等效光柵週期為(2×P1×P2)/(P1+P2)。塗層122覆蓋第一光柵結構121且填充第一光柵結構121中的空間,而塗層132覆蓋第二光柵結構131且填充第二光柵結構131中的空間。第一光柵結構121和第二光柵結構131的折射率可分別大於塗層122、132的折射率。 Please refer to FIG. 2 together, which is a partial cross-sectional view of a distributed feedback semiconductor laser device 100. As shown in FIGS. 1 and 2, the first grating layer 120 and the second grating layer 130 are sequentially stacked over the active layer 110. The first grating layer 120 has a first grating structure 121 and a coating layer 122, and the second grating layer 130 has a second grating structure 131 and a coating layer 132. The grating period P1 of the first grating structure 121 and the grating period P2 of the second grating structure 131 are different. In the embodiment shown in FIG. 2, the grating period P1 of the first grating structure 121 is greater than the grating period P2 of the second grating structure 131. In other embodiments, the grating period P1 of the first grating structure 121 may be smaller than the grating period P2 of the second grating structure 131. The equivalent grating period of the combination of the first grating structure 121 and the second grating structure 131 is (2 × P1 × P2) / (P1 + P2). The coating layer 122 covers the first grating structure 121 and fills the space in the first grating structure 121, and the coating layer 132 covers the second grating structure 131 and fills the space in the second grating structure 131. The refractive indexes of the first grating structure 121 and the second grating structure 131 may be greater than the refractive indexes of the coating layers 122 and 132, respectively.

第一光柵結構121的光柵週期P1與第二光柵結構131的光柵週期P2之間的差距可小於1nm,以確保分佈反饋式半導體雷射裝置100的單模輸出特性。此外,第一光柵結構121與第二光柵結構131的填充因子(filling factor)可約為0.4至0.5,以增加第一光柵結構121與第二光柵結構131的光耦合強度。 The gap between the grating period P1 of the first grating structure 121 and the grating period P2 of the second grating structure 131 may be less than 1 nm to ensure the single-mode output characteristics of the distributed feedback semiconductor laser device 100. In addition, the filling factor of the first grating structure 121 and the second grating structure 131 factor) may be about 0.4 to 0.5 to increase the intensity of optical coupling between the first grating structure 121 and the second grating structure 131.

第一光柵結構121和第二光柵結構131的材料可以是P型磷砷化銦鎵(indium gallium arsenide phosphide;InGaAsP),而塗層122、132的材料可以是P型磷化銦(indium phosphide;InP)。在其他實施例中,第一光柵結構121、第二光柵結構131和塗層122、132可由其他材料構成。舉例而言,第一光柵結構121和第二光柵結構131可由P型磷化鋁銦鎵(aluminum indium gallium phosphide;AlInGaP)構成,而塗層122、132可由P型砷化鎵(gallium arsenide;GaAs)構成。第一光柵結構121和第二光柵結構131的厚度可以是相同或不相同,且構成第一光柵結構121和第二光柵結構131的材料也可以是相同或不相同。 The material of the first grating structure 121 and the second grating structure 131 may be P-type indium gallium arsenide phosphide (InGaAsP), and the material of the coating layers 122 and 132 may be P-type indium phosphide; InP). In other embodiments, the first grating structure 121, the second grating structure 131, and the coatings 122, 132 may be composed of other materials. For example, the first grating structure 121 and the second grating structure 131 may be made of P-type aluminum indium gallium phosphide (AlInGaP), and the coating layers 122 and 132 may be made of P-type gallium arsenide (GaAs). ) Structure. The thicknesses of the first grating structure 121 and the second grating structure 131 may be the same or different, and the materials constituting the first grating structure 121 and the second grating structure 131 may be the same or different.

緩衝層140位於主動層110的下方,其可由N型磷化銦構成。基板150位於緩衝層140的下方,其厚度可約為100μm,且其可由磷化銦(indium phosphide;InP)構成。包覆層160位於第二光柵層130的上方,其厚度可約為2μm,且其亦可由P型磷化銦構成。 The buffer layer 140 is located under the active layer 110 and may be composed of N-type indium phosphide. The substrate 150 is located under the buffer layer 140, and has a thickness of about 100 μm. The substrate 150 can be made of indium phosphide (InP). The cladding layer 160 is located above the second grating layer 130. The thickness of the cladding layer 160 may be about 2 μm, and the cladding layer 160 may be made of P-type indium phosphide.

在一些實施例中,在主動層110與第一光柵層120之間還可依序包含厚度約為10nm的P型InP層、厚度約為15nm的P型InGaAsP層、以及厚度約為25nm的P型InP層,且在主動層110與緩衝層140之間還可包含厚度約為10nm的N型In0.53AlxGa(0.47-x)As層,其中x為0.36至0.44。 In some embodiments, between the active layer 110 and the first grating layer 120, a P-type InP layer having a thickness of about 10 nm, a P-type InGaAsP layer having a thickness of about 15 nm, and a P-type layer having a thickness of about 25 nm may be sequentially included. type InP layer, and between the active layer 110 and the buffer layer 140 may comprise a thickness of about 10nm N-type in 0.53 Al x Ga (0.47- x) as layer, where x is from 0.36 to 0.44.

在包覆層160上方的元件包含接觸層170、鈍化層180和上電極層192,而在基板150下方的元件包含下電極層194。如圖1所示,接觸層170、鈍化層180和上電極層192構成脊狀波導結構。接觸層170可由高摻雜濃度之InGaAs和InGaAsP構成,鈍化層180可由氧化矽構成,而上電極層192和下電極層194可由鈦、鉑、金或其他合適金屬構成。 Elements above the cladding layer 160 include a contact layer 170, a passivation layer 180, and an upper electrode layer 192, and elements below the substrate 150 include a lower electrode layer 194. As shown in FIG. 1, the contact layer 170, the passivation layer 180, and the upper electrode layer 192 constitute a ridge waveguide structure. The contact layer 170 may be composed of InGaAs and InGaAsP with a high doping concentration, the passivation layer 180 may be composed of silicon oxide, and the upper electrode layer 192 and the lower electrode layer 194 may be composed of titanium, platinum, gold, or other suitable metals.

另外,依據應用需求,在分佈反饋式半導體雷射裝置100之構成雷射共振腔的兩端面可分別鍍上高反射(high-reflection)膜和抗反射(anti-reflection)膜、分別鍍上抗反射膜和高反射膜、均鍍上高反射膜、均鍍上抗反射膜、或者均不鍍膜。 In addition, according to application requirements, a high-reflection film and an anti-reflection film may be plated on both ends of the laser resonant cavity constituting the distributed feedback semiconductor laser device 100, respectively. Both of the reflective film and the high-reflection film are plated with a high-reflection film, the anti-reflection film is plated, or neither is plated.

請再參照圖2。在分佈反饋式半導體雷射裝置100中,第一光柵結構121和第二光柵結構131對於雷射共振腔的相對位置可以是對準或不對準。也就是說,在位於分佈反饋式半導體雷射裝置100之構成雷射共振腔的任一端面的第一光柵結構121和第二光柵結構131可以是完全對準、完全錯位或是介於兩者之間。 Please refer to FIG. 2 again. In the distributed feedback semiconductor laser device 100, the relative positions of the first grating structure 121 and the second grating structure 131 with respect to the laser cavity may be aligned or misaligned. That is, the first grating structure 121 and the second grating structure 131 located on either end surface of the distributed resonant semiconductor laser device 100 constituting the laser resonant cavity may be completely aligned, completely misaligned, or between the two. between.

分佈反饋式半導體雷射裝置100的製作方式舉例如下。首先,提供基板150,接著在基板150的一平面上依序形成緩衝層140和主動層110,其中主動層110包含由下而上依序堆疊的下分離侷限異質結構112、多重量子井層結構111和上分離侷限異質結構113。之後,在主動層110上依序形成第一光柵層120和第二光柵層130。第一光柵層120和第二光柵層130的形成方式舉例如下。首先,在主動層110上沉積光柵材料層,且接著在光柵材料層上進行雷射干涉微影製程和濕式蝕刻,以形成第一光柵結構121,之後在第一光柵結構121上形成塗層122。在其他實施例中,也可先在主動層110上形成部份塗層122及沉積光柵材料層,且接著在光柵材料層上進行雷射干涉微影製程和濕式蝕刻,以形成第一光柵結構121,之後在第一光柵結構121上形成另一部份塗層122。第一光柵層120完成後,在第一光柵層120上沉積另一光柵材料層,且接著在光柵材料層上再次進行雷射干涉微影製程和濕式蝕刻,以形成第二光柵結構131,之後在第二光柵結構131上形成塗層132。 An example of a manufacturing method of the distributed feedback semiconductor laser device 100 is as follows. First, a substrate 150 is provided, and then a buffer layer 140 and an active layer 110 are sequentially formed on a plane of the substrate 150, where the active layer 110 includes a lower separated confined heterogeneous structure 112 and a multiple quantum well layer structure that are sequentially stacked from bottom to top. 111 and 113 separated on the confined heterogeneous structure. After that, a first grating layer 120 and a second grating layer 130 are sequentially formed on the active layer 110. Examples of the method for forming the first grating layer 120 and the second grating layer 130 are as follows. First, a grating material layer is deposited on the active layer 110, and then a laser interference lithography process and wet etching are performed on the grating material layer to form a first grating structure 121, and then a coating is formed on the first grating structure 121. 122. In other embodiments, a partial coating layer 122 and a grating material layer may be formed on the active layer 110, and then a laser interference lithography process and wet etching are performed on the grating material layer to form a first grating. Structure 121, and then another coating layer 122 is formed on the first grating structure 121. After the first grating layer 120 is completed, another grating material layer is deposited on the first grating layer 120, and then a laser interference lithography process and wet etching are performed on the grating material layer again to form a second grating structure 131. A coating layer 132 is then formed on the second grating structure 131.

接著,在第二光柵層130上形成包覆層160和接觸層170,並定義出脊狀區域。之後,在包覆層160和接觸層170上依序形成鈍化層180和上電極層192,以在分佈反饋式半導體雷射裝置100上形成脊狀波導結構,且最後在基板150的另一平面上形成下電極層194。 Next, a cladding layer 160 and a contact layer 170 are formed on the second grating layer 130, and a ridge region is defined. Thereafter, a passivation layer 180 and an upper electrode layer 192 are sequentially formed on the cladding layer 160 and the contact layer 170 to form a ridge waveguide structure on the distributed feedback semiconductor laser device 100, and finally on another plane of the substrate 150 The lower electrode layer 194 is formed on it.

圖3為兩不同週期之弦波及其相加的波形示意圖,其中弦波W1為第一光柵層120的剖面輪廓,弦波W2為第二光柵層130的剖面輪廓。如圖3所示,弦波W1、W2均為週期性正弦波,且其週期分別為P1和P2。弦波W1、W2的合成波W1+W2具有包絡線的週期性波形,其短週期和長週期分別為PS和PL。合成波W1+W2的短週期PS和長週期PL分別為(2×P1×P2)/(P1+P2)和(2×P1×P2)/|P1-P2|。若是弦波W1、W2的週期分別為202.16nm和201.84nm,則 短週期PS和長週期PL分別約為202nm和250μm,其分別對應反饋式半導體雷射裝置100的等效光柵週期和雷射共振腔長度。依據等效光柵週期PS與發光波長λ的關係式λ=2neffPS,分佈反饋式半導體雷射裝置100產生之雷射光的波長λ可由等效折射率neff及等效光柵週期PS來決定。 FIG. 3 is a schematic diagram of sine waves of two different periods and their added waveforms, where the sine wave W1 is the cross-sectional profile of the first grating layer 120 and the sine wave W2 is the cross-sectional profile of the second grating layer 130. As shown, the sine wave W1 3, W2 are periodic sine wave, and the period, respectively P 1 and P 2. The composite waves W1 + W2 of the sine waves W1 and W2 have a periodic waveform of an envelope, and the short and long periods thereof are P S and P L, respectively . Composite wave W1 + W2 of the short period and long period P S P L respectively (2 × P1 × P2) / (P1 + P2) and (2 × P1 × P2) / | P1-P2 |. If the periods of the sine waves W1 and W2 are 202.16 nm and 201.84 nm, respectively, the short period P S and the long period P L are about 202 nm and 250 μm, respectively, which correspond to the equivalent grating period and the lightning of the feedback semiconductor laser device 100, respectively. Radiation cavity length. Equivalent based on grating period P S emission wavelength [lambda] of the relationship λ = 2n eff P S, the distribution of laser beam 100 to produce a feedback semiconductor laser device of a wavelength [lambda] may be equivalent and the equivalent refractive index n eff grating period P S To decide.

請回到圖2,第一光柵結構121的厚度T1和第二光柵結構131的厚度T2決定其光侷限因子(optical confinement factor)。在第一光柵結構121和第二光柵結構131光柵週期分別為202.16nm和201.84nm下,若是第一光柵結構121的厚度T1和第二光柵結構131的厚度T2均為15nm,則第一光柵結構121和第二光柵結構131的光侷限因子分別約為0.0154和0.0087。第一光柵結構121和第二光柵結構131的侷限因子差異將導致影響第一光柵結構121與第二光柵結構131的光耦合強度。若是將第二光柵結構131的厚度T2變更為27nm,則第一光柵結構121和第二光柵結構131的光侷限因子分別變成約為0.0158和0.0158。由於第一光柵結構121和第二光柵結構131的光侷限因子變為實質相同,故兩光柵具有相同的光耦合強度。此外,第一光柵結構121和第二光柵結構131的光耦合強度約為42.8cm-1Please return to FIG. 2. The thickness T1 of the first grating structure 121 and the thickness T2 of the second grating structure 131 determine the optical confinement factor. When the grating periods of the first grating structure 121 and the second grating structure 131 are 202.16 nm and 201.84 nm, respectively, if the thickness T1 of the first grating structure 121 and the thickness T2 of the second grating structure 131 are both 15 nm, the first grating structure 121 The light confinement factors of 121 and the second grating structure 131 are approximately 0.0154 and 0.0087, respectively. The difference in the limitation factors of the first grating structure 121 and the second grating structure 131 will affect the optical coupling strength of the first grating structure 121 and the second grating structure 131. If the thickness T2 of the second grating structure 131 is changed to 27 nm, the light confinement factors of the first grating structure 121 and the second grating structure 131 become approximately 0.0158 and 0.0158, respectively. Since the light confinement factors of the first grating structure 121 and the second grating structure 131 become substantially the same, the two gratings have the same optical coupling intensity. In addition, the light coupling intensity of the first grating structure 121 and the second grating structure 131 is about 42.8 cm -1 .

圖4為分佈反饋式半導體雷射裝置100中第一光柵結構121和第二光柵結構131等效產生之光穿透與反射頻譜量測結果。由圖4可知,穿透與反射頻譜在波長約為1.31μm(即布拉格波長1310nm)附近具有明顯的穿透與反射光學強度改變,而在其他波長的穿透與反射光學強度則 是大致維持不變。此外,若改變第一光柵結構121與第二光柵結構131的相位差,例如第一光柵結構121與第二光柵結構131的相位差由0度變更為90度,則產生的穿透與反射頻譜仍與圖4之穿透與反射頻譜相似,因此,分佈反饋式半導體雷射裝置100中,第一光柵結構121與第二光柵結構131彼此間不需要精準的相互對準。由上述可知,第一光柵結構121和第二光柵結構131等效產生之光穿透與反射頻譜具備相位移光柵的頻譜響應特性。 FIG. 4 is a measurement result of light transmission and reflection spectrums equivalently generated by the first grating structure 121 and the second grating structure 131 in the distributed feedback semiconductor laser device 100. It can be seen from FIG. 4 that the transmission and reflection spectrum has a significant change in the transmission and reflection optical intensity at a wavelength of about 1.31 μm (ie, the Bragg wavelength of 1310 nm), while the transmission and reflection optical intensity at other wavelengths is Is roughly unchanged. In addition, if the phase difference between the first grating structure 121 and the second grating structure 131 is changed, for example, the phase difference between the first grating structure 121 and the second grating structure 131 is changed from 0 degrees to 90 degrees, the generated transmission and reflection spectrum It is still similar to the transmission and reflection spectrum of FIG. 4. Therefore, in the distributed feedback semiconductor laser device 100, the first grating structure 121 and the second grating structure 131 do not need to be accurately aligned with each other. It can be known from the above that the light transmission and reflection spectrums equivalently generated by the first grating structure 121 and the second grating structure 131 have the spectral response characteristics of a phase shift grating.

圖5為分佈反饋式半導體雷射裝置100產生之分佈反饋式雷射光在不同溫度與不同操作電流下的發光功率量測結果。經由分析圖5之量測結果可得知,分佈反饋式半導體雷射裝置100的臨界電流和特徵溫度分別約為13mA和78K,且可在環境溫度為60℃的條件下具有10mW以上的輸出功率。 FIG. 5 shows the measurement results of the luminous power of the distributed feedback laser light generated by the distributed feedback semiconductor laser device 100 at different temperatures and different operating currents. By analyzing the measurement results in FIG. 5, it can be known that the critical current and characteristic temperature of the distributed feedback semiconductor laser device 100 are about 13 mA and 78 K, respectively, and can have an output power of more than 10 mW at an ambient temperature of 60 ° C. .

圖6為分佈反饋式半導體雷射裝置100產生之分佈反饋式雷射光在環境溫度為20℃下的發光頻譜特性。圖6的量測結果顯示出,分佈反饋式半導體雷射裝置100產生之雷射光的波長非落在禁止帶邊緣(stopband edge),而是落在布拉格波長1310nm附近,其相當於四分之一波長相位移的雷射特性。 FIG. 6 shows the emission spectrum characteristics of the distributed feedback laser light generated by the distributed feedback semiconductor laser device 100 at an ambient temperature of 20 ° C. The measurement results in FIG. 6 show that the wavelength of the laser light generated by the distributed feedback semiconductor laser device 100 does not fall on the stopband edge, but falls near the Bragg wavelength of 1310 nm, which is equivalent to a quarter. Laser characteristics of wavelength phase shift.

圖7為在環境溫度為20℃下,操作電流變化造成之波長變化與旁模抑制比的量測結果,而圖8為在操作電流為60mA下,環境溫度變化造成之波長變化與旁模抑制比的量測結果。圖7和圖8顯示出,在操作電流為20mA至 130mA和環境溫度為20℃至80℃的條件下,分佈反饋式半導體雷射裝置100產生的雷射光的旁模抑制比均大於40dB,故具有良好的單模特性,且其每電流之波長位移量和每溫度之波長位移量分別為34pm/mA與47pm/K。 Figure 7 is the measurement result of the wavelength change and the side mode suppression ratio caused by the operating current change at an ambient temperature of 20 ° C, and Figure 8 is the wavelength change and the side mode suppression caused by the ambient temperature change at the operating current of 60 mA Ratio of measurement results. Figures 7 and 8 show that the operating current is 20mA to Under the conditions of 130mA and ambient temperature of 20 ° C to 80 ° C, the side-mode suppression ratio of the laser light generated by the distributed feedback semiconductor laser device 100 is greater than 40dB, so it has good single model characteristics, and its wavelength shift per current The amount and the amount of wavelength shift per temperature are 34 pm/mA and 47 pm/K, respectively.

圖9為依據本發明實施例之分佈反饋式半導體雷射裝置產生之分佈反饋式雷射光在不同操作電流為60mA下對應的小訊號電/光響應(E/O response)S21的量測結果。由圖9可知,在操作電流為20mA至80mA的-3dB頻寬均大於10GHz。 FIG. 9 is a measurement result of a small signal electrical / optical response (E / O response) S 21 corresponding to a distributed feedback laser light generated by a distributed feedback semiconductor laser device according to an embodiment of the present invention under different operating currents of 60 mA . It can be known from FIG. 9 that the -3dB bandwidth at the operating current of 20mA to 80mA is greater than 10GHz.

進一步地,利用脈衝波形產生器(pulse pattern generator;PPG)產生(231-1)不歸零偽隨機二進制序列(pseudo-random binary sequence;PRBS),其峰對峰(peak-to-peak)偏壓為2V,並在接收端使用速率設定為32Gb/s的PIN檢光器接收光信號,且由採樣示波器顯示量測結果,而10Gb/s不歸零(non-return-to-zero;NRZ)訊號的消光比(extinction ratio)設定為5.7dB。圖10為分佈反饋式半導體雷射裝置100產生之分佈反饋式雷射光在操作電流為60mA下位元錯誤率(bit errorrate;BER)與接收功率之關係和光學眼圖的量測結果。圖10顯示出,在背靠背(back-to-back;BTB)傳輸方式的傳輸速率為10Gb/s下的操作沒有發生錯誤。 Further, a pulse pattern generator (PPG) is used to generate (2 31 -1) a non-return-to-zero pseudo-random binary sequence (PRBS), and its peak-to-peak The bias voltage is 2V, and at the receiving end, a PIN photodetector set at a rate of 32Gb / s is used to receive the optical signal, and the measurement result is displayed by the sampling oscilloscope, and 10Gb / s is non-return-to-zero; The extinction ratio of the (NRZ) signal is set to 5.7dB. FIG. 10 shows the relationship between the bit error rate (BER) and the received power and the optical eye diagram measurement results of the distributed feedback laser light generated by the distributed feedback semiconductor laser device 100 at an operating current of 60 mA. FIG. 10 shows that there is no error in operation when the transmission rate of the back-to-back (BTB) transmission method is 10 Gb / s.

圖11為本發明另一實施例之分佈反饋式半導體雷射裝置200的立體示意圖。如圖11所示,分佈反饋式半導體雷射裝置200包含主動層210、第一光柵層220、第二 光柵層230、緩衝層240、基板250、包覆層260、接觸層270、鈍化層280、上電極層292和下電極層294,其中主動層210包含多重量子井層結構211和分別位於多重量子井層結構211之相對兩側的下分離侷限異質結構212和上分離侷限異質結構213,第一光柵層220包含第一光柵結構221和塗層222,而第二光柵層230包含第二光柵結構222和塗層232。請一併參照圖12,其為分佈反饋式半導體雷射裝置200的部份結構剖視圖。如圖11和圖12所示,第一光柵層220和第二光柵層230依序堆疊在主動層210的下方,其中第一光柵結構221和第二光柵結構231的光柵週期不同。在圖12所示之實施例中,第一光柵結構221的光柵週期P1大於第二光柵結構231的光柵週期P2。在其他實施例中,第一光柵結構221的光柵週期P1可小於第二光柵結構231的光柵週期P2。第一光柵結構221與第二光柵結構231之結合的等效光柵週期為(2×P1×P2)/(P1+P2)。塗層222覆蓋第一光柵結構221且填充第一光柵結構221中的空間,而塗層232覆蓋第二光柵結構231且填充第二光柵結構231中的空間。第一光柵結構221和第二光柵結構221的折射率可分別大於塗層222、232的折射率。 FIG. 11 is a schematic perspective view of a distributed feedback semiconductor laser device 200 according to another embodiment of the present invention. As shown in FIG. 11, the distributed feedback semiconductor laser device 200 includes an active layer 210, a first grating layer 220, and a second The grating layer 230, the buffer layer 240, the substrate 250, the cladding layer 260, the contact layer 270, the passivation layer 280, the upper electrode layer 292, and the lower electrode layer 294, wherein the active layer 210 includes a multiple quantum well layer structure 211 and is located in multiple quantum wells, respectively. The lower separation confined heterostructure 212 and the upper separation confined heterostructure 213 on opposite sides of the well layer structure 211. The first grating layer 220 includes a first grating structure 221 and a coating 222, and the second grating layer 230 includes a second grating structure. 222 and coating 232. Please refer to FIG. 12 together, which is a partial cross-sectional view of a distributed feedback semiconductor laser device 200. As shown in FIGS. 11 and 12, the first grating layer 220 and the second grating layer 230 are sequentially stacked below the active layer 210, wherein the grating periods of the first grating structure 221 and the second grating structure 231 are different. In the embodiment shown in FIG. 12, the grating period P1 of the first grating structure 221 is greater than the grating period P2 of the second grating structure 231. In other embodiments, the grating period P1 of the first grating structure 221 may be smaller than the grating period P2 of the second grating structure 231. The equivalent grating period of the combination of the first grating structure 221 and the second grating structure 231 is (2 × P1 × P2) / (P1 + P2). The coating layer 222 covers the first grating structure 221 and fills the space in the first grating structure 221, and the coating layer 232 covers the second grating structure 231 and fills the space in the second grating structure 231. The refractive index of the first grating structure 221 and the second grating structure 221 may be greater than the refractive indexes of the coating layers 222 and 232, respectively.

第一光柵結構221和第二光柵結構231的材料可以是N型磷砷化銦鎵,而塗層222、232的材料可以是N型磷化銦。在其他實施例中,第一光柵結構221、第二光柵結構231和塗層222、232可以是由其他材料構成。舉例而 言,第一光柵結構221和第二光柵結構231可由N型磷化鋁銦鎵構成,而塗層222、232可由N型砷化鎵構成。 The material of the first grating structure 221 and the second grating structure 231 may be N-type indium gallium arsenide, and the material of the coating layers 222 and 232 may be N-type indium phosphide. In other embodiments, the first grating structure 221, the second grating structure 231, and the coatings 222, 232 may be made of other materials. For example In other words, the first grating structure 221 and the second grating structure 231 may be composed of N-type aluminum indium gallium phosphide, and the coating layers 222 and 232 may be composed of N-type gallium arsenide.

緩衝層240位於第二光柵層230的上方,其可由N型磷化銦構成。基板250位於緩衝層240的下方,其厚度可約為100μm,且其可由磷化銦構成。包覆層260位於緩衝層240的上方,其厚度可約為2μm,且其可由P型磷化銦構成。 The buffer layer 240 is located above the second grating layer 230 and may be composed of N-type indium phosphide. The substrate 250 is located under the buffer layer 240, and the thickness of the substrate 250 may be about 100 μm, and the substrate 250 may be made of indium phosphide. The cladding layer 260 is located above the buffer layer 240 and has a thickness of about 2 μm. The cladding layer 260 can be made of P-type indium phosphide.

在一些實施例中,在主動層210與第一光柵層220之間還可包含厚度約為10nm的N型In0.53AlxGa(0.47-x)As層,且在主動層210與包覆層260之間還可包含厚度約為50nm的P型In0.53AlxGa(0.47-x)As層,其中x為0.36至0.44。 In some embodiments, an N-type In 0.53 Al x Ga (0.47-x) As layer with a thickness of about 10 nm may be further included between the active layer 210 and the first grating layer 220, and the active layer 210 and the cladding layer 260 may further include a P-type In 0.53 Al x Ga (0.47-x) As layer with a thickness of about 50 nm, where x is 0.36 to 0.44.

接觸層270、鈍化層280、上電極層292和上電極層294的配置可分別與分佈反饋式半導體雷射裝置100中接觸層170、鈍化層180、上電極層192和上電極層194的配置相似,故相關說明請參照先前段落,在此不贅述。 The configuration of the contact layer 270, the passivation layer 280, the upper electrode layer 292, and the upper electrode layer 294 may be respectively the same as the configuration of the contact layer 170, the passivation layer 180, the upper electrode layer 192, and the upper electrode layer 194 in the distributed feedback semiconductor laser device 100 Similar, so please refer to the previous paragraphs for related explanations, which will not be repeated here.

同樣地,依據應用需求,在分佈反饋式半導體雷射裝置200之構成雷射共振腔的兩端面可分別鍍上高反射膜和抗反射膜、分別鍍上抗反射膜和高反射膜、均鍍上高反射膜、均鍍上抗反射膜、或者均不鍍膜。此外,在分佈反饋式半導體雷射裝置200中,第一光柵結構221和第二光柵結構231對於雷射共振腔的相對位置可以是對準或不對準。 Similarly, according to application requirements, a high reflection film and an anti-reflection film may be plated on both ends of the laser resonance cavity constituting the distributed feedback semiconductor laser device 200, respectively, and an anti-reflection film and a high-reflection film may be plated on both sides. Have a high-reflection film, all coated with anti-reflection film, or no coating. In addition, in the distributed feedback semiconductor laser device 200, the relative positions of the first grating structure 221 and the second grating structure 231 to the laser cavity may be aligned or misaligned.

分佈反饋式半導體雷射裝置200的製作方式舉例如下。首先,提供基板250,接著在基板250的一平面上 依序形成緩衝層240、第二光柵層230和第一光柵層220。第一光柵層220和第二光柵層230的形成方式舉例如下。首先,在緩衝層240上沉積光柵材料層,且接著在光柵材料層上定義出光柵結構區域,並進行雷射干涉微影製程和濕式蝕刻,以形成第二光柵結構231,之後在第二光柵結構231上形成塗層232。在其他實施例中,也可先在緩衝層240上形成部份塗層232及沉積光柵材料層,且接著在光柵材料層上進行雷射干涉微影製程和濕式蝕刻,以形成第二光柵結構231,之後在第二光柵結構231上形成另一部份塗層232。第二光柵層230完成後,在第二光柵層230上沉積另一光柵材料層,且接著在光柵材料層上進行雷射干涉微影製程和濕式蝕刻,以形成第一光柵結構221,之後在第一光柵結構221上形成塗層222。 An example of a manufacturing method of the distributed feedback semiconductor laser device 200 is as follows. First, a substrate 250 is provided, and then on a plane of the substrate 250 The buffer layer 240, the second grating layer 230, and the first grating layer 220 are sequentially formed. Examples of the method for forming the first grating layer 220 and the second grating layer 230 are as follows. First, a grating material layer is deposited on the buffer layer 240, and then a grating structure region is defined on the grating material layer, and a laser interference lithography process and wet etching are performed to form a second grating structure 231. A coating 232 is formed on the grating structure 231. In other embodiments, a partial coating 232 and a grating material layer may be formed on the buffer layer 240 first, and then a laser interference lithography process and wet etching are performed on the grating material layer to form a second grating. Structure 231, and then another coating 232 is formed on the second grating structure 231. After the second grating layer 230 is completed, another grating material layer is deposited on the second grating layer 230, and then a laser interference lithography process and wet etching are performed on the grating material layer to form a first grating structure 221. A coating layer 222 is formed on the first grating structure 221.

之後,在第一光柵層220上形成主動層210,其包含由下而上依序堆疊的下分離侷限異質結構212、多重量子井層結構211和上分離侷限異質結構213。然後,在主動層210上形成包覆層260和接觸層270,並定義出脊狀區域,接著在包覆層260和接觸層270上依序形成鈍化層280和上電極層292,以在分佈反饋式半導體雷射裝置200上形成脊狀波導結構,且最後在基板250的另一平面上形成下電極層294。 After that, an active layer 210 is formed on the first grating layer 220 and includes a lower separated confined heterostructure 212, a multiple quantum well layer structure 211, and an upper separated confined heterostructure 213, which are sequentially stacked from bottom to top. Then, a cladding layer 260 and a contact layer 270 are formed on the active layer 210 and a ridge region is defined. Then, a passivation layer 280 and an upper electrode layer 292 are sequentially formed on the cladding layer 260 and the contact layer 270 to distribute the A ridge waveguide structure is formed on the feedback semiconductor laser device 200, and a lower electrode layer 294 is finally formed on the other plane of the substrate 250.

圖13為本發明另一實施例之分佈反饋式半導體雷射裝置300的立體示意圖。如圖13所示,分佈反饋式半導體雷射裝置300包含主動層310、第一光柵層320、第二 光柵層330、緩衝層340、基板350、包覆層360、接觸層370、鈍化層380、上電極層392和下電極層394,其中主動層310包含多重量子井層結構311和分別位於多重量子井層結構311之相對兩側的下分離侷限異質結構312和上分離侷限異質結構313,第一光柵層320包含第一光柵結構321和塗層322,而第二光柵層330包含第二光柵結構322和塗層332。請一併參照圖14,其為分佈反饋式半導體雷射裝置300的部份結構剖視圖。如圖13和圖14所示,第一光柵層320和第二光柵層330分別位於主動層310的上方和下方,且第一光柵結構321和第二光柵結構331的光柵週期不同。在圖14所示之實施例中,第一光柵結構321的光柵週期P1大於第二光柵結構331的光柵週期P2。在其他實施例中,第一光柵結構321的光柵週期P1可小於第二光柵結構331的光柵週期P2。第一光柵結構321與第二光柵結構331之結合的等效光柵週期為(2×P1×P2)/(P1+P2)。塗層322覆蓋第一光柵結構321且填充第一光柵結構321中的空間,而塗層332覆蓋第二光柵結構331且填充第二光柵結構331中的空間。第一光柵結構321和第二光柵結構321的折射率可分別大於塗層322、332的折射率。 FIG. 13 is a schematic perspective view of a distributed feedback semiconductor laser device 300 according to another embodiment of the present invention. As shown in FIG. 13, the distributed feedback semiconductor laser device 300 includes an active layer 310, a first grating layer 320, and a second The grating layer 330, the buffer layer 340, the substrate 350, the cladding layer 360, the contact layer 370, the passivation layer 380, the upper electrode layer 392, and the lower electrode layer 394. The active layer 310 includes a multiple quantum well layer structure 311 and multiple quantum well layers. The lower separation confined heterostructure 312 and the upper separation confined heterostructure 313 on opposite sides of the well layer structure 311. The first grating layer 320 includes a first grating structure 321 and a coating layer 322, and the second grating layer 330 includes a second grating structure. 322 and coating 332. Please refer to FIG. 14 together, which is a partial cross-sectional view of a distributed feedback semiconductor laser device 300. As shown in FIGS. 13 and 14, the first grating layer 320 and the second grating layer 330 are located above and below the active layer 310, respectively, and the grating periods of the first grating structure 321 and the second grating structure 331 are different. In the embodiment shown in FIG. 14, the grating period P1 of the first grating structure 321 is greater than the grating period P2 of the second grating structure 331. In other embodiments, the grating period P1 of the first grating structure 321 may be smaller than the grating period P2 of the second grating structure 331. The equivalent grating period of the combination of the first grating structure 321 and the second grating structure 331 is (2 × P1 × P2) / (P1 + P2). The coating layer 322 covers the first grating structure 321 and fills the space in the first grating structure 321, and the coating layer 332 covers the second grating structure 331 and fills the space in the second grating structure 331. The refractive index of the first grating structure 321 and the second grating structure 321 may be larger than the refractive indexes of the coating layers 322 and 332, respectively.

第一光柵結構321的材料可以是P型磷砷化銦鎵,而塗層322的材料可以是P型磷化銦。此外,第二光柵結構331的材料可以是N型磷砷化銦鎵,而塗層332的材料可以是N型磷化銦。在其他實施例中,第一光柵結構321、第二光柵結構331和塗層322、332可以是由其他材料構 成。舉例而言,第一光柵結構321和第二光柵結構331可分別由P型磷化鋁銦鎵和N型磷化鋁銦鎵構成,而塗層322、332可分別由P型砷化鎵和N型砷化鎵構成。 The material of the first grating structure 321 may be P-type indium gallium arsenide, and the material of the coating layer 322 may be P-type indium phosphide. In addition, the material of the second grating structure 331 may be N-type indium gallium arsenide, and the material of the coating layer 332 may be N-type indium phosphide. In other embodiments, the first grating structure 321, the second grating structure 331, and the coatings 322, 332 may be made of other materials. to make. For example, the first grating structure 321 and the second grating structure 331 may be respectively composed of P-type aluminum indium gallium phosphide and N-type aluminum indium gallium phosphide, and the coatings 322 and 332 may be respectively made of p-type gallium arsenide and N-type gallium arsenide.

緩衝層340位於第二光柵層330的下方,其可由N型磷化銦構成。基板350位於緩衝層340的下方,其厚度可約為100μm,且其可由磷化銦構成。包覆層360位於第一光柵結構320層的上方,其厚度可約為2μm,且其亦可由磷化銦構成。 The buffer layer 340 is located below the second grating layer 330 and may be composed of N-type indium phosphide. The substrate 350 is located under the buffer layer 340, and the thickness of the substrate 350 may be about 100 μm, and the substrate 350 may be made of indium phosphide. The cladding layer 360 is located above the first grating structure 320 layer, and the thickness thereof may be about 2 μm, and it may also be made of indium phosphide.

在一些實施例中,在主動層310與第一光柵層320之間還可包含厚度約為50nm的P型In0.53AlxGa(0.47-x)As層,且在主動層310與緩衝層320之間還可包含厚度約為10nm的N型In0.53AlxGa(0.47-x)As層,其中x為0.36至0.44。 In some embodiments, a P-type In 0.53 Al x Ga (0.47-x) As layer having a thickness of about 50 nm may be further included between the active layer 310 and the first grating layer 320, and the active layer 310 and the buffer layer 320 may be included. may further comprise a thickness of about 10nm between the N-type in 0.53 Al x Ga (0.47- x) as layer, where x is from 0.36 to 0.44.

接觸層370、鈍化層380、上電極層392和上電極層394的配置可分別與分佈反饋式半導體雷射裝置100中接觸層170、鈍化層380、上電極層392和上電極層194的配置相似,故相關說明請參照先前段落,在此不贅述。 The configuration of the contact layer 370, the passivation layer 380, the upper electrode layer 392, and the upper electrode layer 394 may be respectively the same as that of the contact layer 170, the passivation layer 380, the upper electrode layer 392, and the upper electrode layer 194 in the distributed feedback semiconductor laser device 100 Similar, so please refer to the previous paragraphs for related explanations, which will not be repeated here.

同樣地,依據應用需求,在分佈反饋式半導體雷射裝置300之構成雷射共振腔的兩端面可分別鍍上高反射膜和抗反射膜、分別鍍上抗反射膜和高反射膜、均鍍上高反射膜、均鍍上抗反射膜、或者均不鍍膜。此外,在分佈反饋式半導體雷射裝置300中,第一光柵結構321和第二光柵結構331對於雷射共振腔的相對位置可以是對準或不對準。 Similarly, according to application requirements, both ends of the laser resonant cavity constituting the distributed feedback semiconductor laser device 300 can be plated with a high-reflection film and an anti-reflection film, respectively, an anti-reflection film and a high-reflection film, and both can be plated. Have a high-reflection film, all coated with anti-reflection film, or no coating. In addition, in the distributed feedback semiconductor laser device 300, the relative positions of the first grating structure 321 and the second grating structure 331 to the laser cavity may be aligned or misaligned.

分佈反饋式半導體雷射裝置300的製作方式舉例如下。首先,提供基板350,接著在基板350的一平面上依序形成緩衝層340和第二光柵層330。第二光柵層330的形成方式可與分佈反饋式半導體雷射裝置200之第二光柵層230的形成方式相似。之後,在第二光柵層330上形成主動層310,其包含由下而上依序堆疊的下分離侷限異質結構312、多重量子井層結構311和上分離侷限異質結構313。然後,在主動層210上第一光柵層320,且接著在第一光柵層320上形成包覆層360和接觸層370,並定義出脊狀區域。第一光柵層320的形成方式可與分佈反饋式半導體雷射裝置100之第一光柵層120的形成方式相似。之後,在包覆層360和接觸層370上依序形成鈍化層380和上電極層392,以在分佈反饋式半導體雷射裝置300上形成脊狀波導結構,且最後在基板350的另一平面上形成下電極層394。 An example of a manufacturing method of the distributed feedback semiconductor laser device 300 is as follows. First, a substrate 350 is provided, and then a buffer layer 340 and a second grating layer 330 are sequentially formed on a plane of the substrate 350. The formation method of the second grating layer 330 may be similar to the formation method of the second grating layer 230 of the distributed feedback semiconductor laser device 200. After that, an active layer 310 is formed on the second grating layer 330, which includes a lower separated confined heterostructure 312, a multiple quantum well layer structure 311, and an upper separated confined heterostructure 313, which are sequentially stacked from bottom to top. Then, a first grating layer 320 is formed on the active layer 210, and then a cladding layer 360 and a contact layer 370 are formed on the first grating layer 320, and a ridge region is defined. The formation method of the first grating layer 320 may be similar to the formation method of the first grating layer 120 of the distributed feedback semiconductor laser device 100. Thereafter, a passivation layer 380 and an upper electrode layer 392 are sequentially formed on the cladding layer 360 and the contact layer 370 to form a ridge waveguide structure on the distributed feedback semiconductor laser device 300, and finally on another plane of the substrate 350 A lower electrode layer 394 is formed thereon.

分佈反饋式半導體雷射裝置100、200、300的只要差異在於,分佈反饋式半導體雷射裝置100中的第一光柵層120和第二光柵層130是在主動層110的上方,分佈反饋式半導體雷射裝置200中的第一光柵層220和第二光柵層230是在主動層210的下方,而分佈反饋式半導體雷射裝置300中的第一光柵層320和第二光柵層330是分別在主動層310的上方和下方。然而,由於將雙層光柵層設置在主動區的上側、下側或是相對兩側,所得到的等效折射率均相同,故分佈反饋式半導體雷射裝置100、200、300的相位移特性亦相同。特別地,在分佈反饋式半導體雷射裝置200中, 由於第一光柵層220和第二光柵層230是在主動層210的下方,故在主動層210上方的結構厚度變薄,使得漏電流和臨界電流值亦進一步降低,提升雷射元件發光效能。 The only difference between the distributed feedback semiconductor laser devices 100, 200, and 300 is that the first grating layer 120 and the second grating layer 130 in the distributed feedback semiconductor laser device 100 are above the active layer 110. The distributed feedback semiconductor The first grating layer 220 and the second grating layer 230 in the laser device 200 are under the active layer 210, and the first grating layer 320 and the second grating layer 330 in the distributed feedback semiconductor laser device 300 are respectively Above and below the active layer 310. However, since the two-layer grating layer is disposed on the upper side, the lower side, or the opposite sides of the active region, the equivalent refractive indices obtained are the same, so the phase shift characteristics of the distributed feedback semiconductor laser device 100, 200, and 300 The same. Particularly, in the distributed feedback semiconductor laser device 200, Since the first grating layer 220 and the second grating layer 230 are below the active layer 210, the thickness of the structure above the active layer 210 becomes thinner, so that the leakage current and the critical current value are further reduced, and the light emitting efficiency of the laser element is improved.

圖15為本發明另一實施例之分佈反饋式半導體雷射裝置400的部份結構剖視圖。在圖15中,光柵層420位於主動層410上且包含振幅莫列波光柵結構,此光柵結構可藉由兩次雷射全像干涉微影步驟而產生,其中第一次曝光和第二次曝光所產生的干涉條紋週期不同。請一併參照第16A至16D圖,其中圖16A為振幅莫列波光柵結構的波形示意圖,而圖16B至16D為分別為光柵層420的不同示例。圖16A所示之波形與圖3所示之合成波W1+W2的波形相似,其亦包含短週期PS和長週期PL。圖16B至16D所示之光柵結構421、421’、421”的每一者為光柵層420的一部分且為振幅莫列波光柵結構。光柵結構421、421’、421”的差異在於,光柵結構421具有週期性的高度和深度變化,光柵結構421’僅具有週期性的深度變化,而光柵結構421”僅具有週期性的高度變化。上述週期性的高度變化和深度變化對應二相異正弦函數疊加後的波形,例如圖3所示之弦波W1、W2疊加後的波形,即合成波W1+W2的波形。此外,每一光柵結構421、421’、421”中微結構的高處、凹槽的深度與其構成之高度和深度變化週期(即長週期PL)可藉由全像干涉微影製程曝光時間或劑量調整。 FIG. 15 is a partial cross-sectional view of a distributed feedback semiconductor laser device 400 according to another embodiment of the present invention. In FIG. 15, the grating layer 420 is located on the active layer 410 and includes an amplitude Molewave grating structure. This grating structure can be generated by two laser holographic interference lithography steps, in which the first exposure and the second exposure Interference fringes are generated at different periods. Please refer to FIGS. 16A to 16D together, where FIG. 16A is a schematic waveform diagram of the amplitude Molewave grating structure, and FIGS. 16B to 16D are different examples of the grating layer 420 respectively. Waveform of the composite wave W1 + W2 of the waveform shown in Figure 16A is similar to FIG. 3, which also comprises a short period and long period P S P L. Each of the grating structures 421, 421 ', and 421 "shown in Figs. 16B to 16D is a part of the grating layer 420 and is an amplitude Morale wave grating structure. The difference between the grating structures 421, 421', and 421" is that the grating structure 421 has periodic height and depth changes. The grating structure 421 'has only periodic depth changes, while the grating structure 421 "has only periodic height changes. The above-mentioned periodic height changes and depth changes correspond to two different sine functions. The superimposed waveforms are, for example, the superimposed waveforms of the sine waves W1 and W2 shown in FIG. 3, that is, the waveforms of the synthesized waves W1 + W2. In addition, the height of the microstructure in each grating structure 421, 421 ', 421 ", The depth of the groove and the height and depth variation period (ie, the long period PL ) of the groove can be adjusted by the exposure time or dose of the holographic interference lithography process.

每一光柵結構421、421’、421”可再由折射率較低的塗層覆蓋之。依據分佈反饋式半導體雷射裝置400的 種類,光柵結構421、421’、421”的材料可以是P型或N型磷砷化銦鎵,而塗層的材料可以是P型或N型磷化銦。另外,在其他實施例中,光柵層420可以是位於主動層410的下方。 Each grating structure 421, 421 ', 421 "may be covered by a coating with a lower refractive index. According to the distributed feedback semiconductor laser device 400, Kind, the material of the grating structure 421, 421 ', 421 "may be P-type or N-type indium gallium arsenide, and the material of the coating layer may be P-type or N-type indium phosphide. In addition, in other embodiments, The grating layer 420 may be located under the active layer 410.

至於分佈反饋式半導體雷射裝置400之未繪示於圖15中的其他元件,例如緩衝層、基板、包覆層、接觸層、鈍化層、上電極層和下電極層等,可分別與前述分佈反饋式半導體雷射裝置100之緩衝層140、基板150、包覆層160、接觸層170、鈍化層180、上電極層192和下電極層194相似,或者分別與分佈反饋式半導體雷射裝置200之緩衝層240、基板250、包覆層260、接觸層270、鈍化層280、上電極層292和下電極層294相似,故相關說明請參照先前段落,在此不贅述。 As for the other components of the distributed feedback semiconductor laser device 400 not shown in FIG. 15, such as a buffer layer, a substrate, a cladding layer, a contact layer, a passivation layer, an upper electrode layer, and a lower electrode layer, etc., they can be respectively separated from the foregoing. The buffer layer 140, the substrate 150, the cladding layer 160, the contact layer 170, the passivation layer 180, the upper electrode layer 192, and the lower electrode layer 194 of the distributed feedback semiconductor laser device 100 are similar to the distributed feedback semiconductor laser device, respectively. The buffer layer 240, the substrate 250, the cladding layer 260, the contact layer 270, the passivation layer 280, the upper electrode layer 292, and the lower electrode layer 294 of 200 are similar, so for related descriptions, please refer to the previous paragraphs, and are not repeated here.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

Claims (9)

一種分佈反饋式(distributed feedback;DFB)半導體雷射裝置,包含:一主動層;一第一光柵層,包含具有一第一光柵週期之第一光柵結構;以及一第二光柵層,包含具有一第二光柵週期之第二光柵結構,該第一光柵週期實質相異於該第二光柵週期;其中該主動層、該第一光柵層及該第二光柵層係上下堆疊而成,且該分佈反饋式半導體雷射裝置之等效光柵週期為(2×P1×P2)/(P1+P2),其中P1和P2分別為該第一光柵週期和該第二光柵週期。A distributed feedback (DFB) semiconductor laser device includes: an active layer; a first grating layer including a first grating structure having a first grating period; and a second grating layer including having a The second grating structure of the second grating period, the first grating period is substantially different from the second grating period; wherein the active layer, the first grating layer, and the second grating layer are stacked on top of each other, and the distribution The equivalent grating period of the feedback semiconductor laser device is (2 × P1 × P2) / (P1 + P2), where P1 and P2 are the first grating period and the second grating period, respectively. 如申請專利範圍第1項所述之分佈反饋式半導體雷射裝置,其中該第一光柵層與該第二光柵層位於該主動層之相同側。The distributed feedback semiconductor laser device according to item 1 of the scope of patent application, wherein the first grating layer and the second grating layer are located on the same side of the active layer. 如申請專利範圍第2項所述之分佈反饋式半導體雷射裝置,其中該第二光柵層直接堆疊在該第一光柵層上。The distributed feedback semiconductor laser device according to item 2 of the patent application scope, wherein the second grating layer is directly stacked on the first grating layer. 如申請專利範圍第1項所述之分佈反饋式半導體雷射裝置,其中該第一光柵層與該第二光柵層分別位於該主動層之相對兩側。The distributed feedback semiconductor laser device according to item 1 of the scope of the patent application, wherein the first grating layer and the second grating layer are located on opposite sides of the active layer, respectively. 如申請專利範圍第1項所述之分佈反饋式半導體雷射裝置,其中該第一光柵週期與該第二光柵週期之差距實質低於1nm。The distributed feedback semiconductor laser device according to item 1 of the scope of the patent application, wherein the difference between the first grating period and the second grating period is substantially lower than 1 nm. 如申請專利範圍第1項所述之分佈反饋式半導體雷射裝置,其中該第一光柵結構與該第二光柵結構之填充因子(filling factor)約為0.4至0.5。The distributed feedback semiconductor laser device according to item 1 of the scope of the patent application, wherein a filling factor of the first grating structure and the second grating structure is about 0.4 to 0.5. 如申請專利範圍第1項所述之分佈反饋式半導體雷射裝置,其中該第一光柵結構與該第二光柵結構之光侷限因子(optical confinement factor)實質相同。The distributed feedback semiconductor laser device according to item 1 of the scope of the patent application, wherein the optical confinement factor of the first grating structure and the second grating structure are substantially the same. 一種分佈反饋式(distributed feedback;DFB)半導體雷射裝置,包含:一主動層;以及一光柵層,包含一光柵結構;其中該主動層及該光柵層係上下堆疊而成,且該光柵結構具有週期性的高度或深度變化,該光柵結構之高度變化和深度變化對應二相異正弦函數疊加後之波形。A distributed feedback (DFB) semiconductor laser device includes: an active layer; and a grating layer including a grating structure; wherein the active layer and the grating layer are stacked on top of each other, and the grating structure has Periodic height or depth changes. The height and depth changes of the grating structure correspond to the waveforms of two different sine functions. 如申請專利範圍第8項所述之分佈反饋式半導體雷射裝置,其中該光柵結構中微結構的高處、凹槽的深度與其構成之高度和深度變化週期是藉由全像干涉微影製程曝光時間或劑量調整。The distributed feedback semiconductor laser device according to item 8 of the scope of the patent application, wherein the height of the microstructure in the grating structure, the depth of the groove and the height and depth of its composition are changed by the holographic interference lithography process. Exposure time or dose adjustment.
TW107146535A 2018-12-21 2018-12-21 Distributed feedback semiconductor laser device TWI680619B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107146535A TWI680619B (en) 2018-12-21 2018-12-21 Distributed feedback semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107146535A TWI680619B (en) 2018-12-21 2018-12-21 Distributed feedback semiconductor laser device

Publications (2)

Publication Number Publication Date
TWI680619B true TWI680619B (en) 2019-12-21
TW202025582A TW202025582A (en) 2020-07-01

Family

ID=69582212

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146535A TWI680619B (en) 2018-12-21 2018-12-21 Distributed feedback semiconductor laser device

Country Status (1)

Country Link
TW (1) TWI680619B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201342753A (en) * 2012-03-19 2013-10-16 Corning Inc Waveguide structure for mid-ir multiwavelength concatenated distributed-feedback laser with an active core made of cascaded stages

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201342753A (en) * 2012-03-19 2013-10-16 Corning Inc Waveguide structure for mid-ir multiwavelength concatenated distributed-feedback laser with an active core made of cascaded stages

Also Published As

Publication number Publication date
TW202025582A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
US7020172B2 (en) Long wavelength vertical cavity surface emitting laser
US7457340B2 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
CN105720479B (en) A kind of high speed semiconductor laser with beam-spreading structure
JP2004146833A (en) Electrically pumped vertical cavity surface-emitting laser(vcsel) having a plurality of active regions
JP5029254B2 (en) Surface emitting laser
JP3842976B2 (en) Distributed feedback semiconductor laser and manufacturing method thereof
US5274660A (en) Semiconductor device and method of making it
JP5455919B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
US6885686B2 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
US6835581B2 (en) Method of coating optical device facets with dielectric layer and device made therefrom
US10916915B2 (en) Distributed feedback semiconductor laser device
JP2002353559A (en) Semiconductor laser and method of manufacturing the same
JP6807643B2 (en) Distribution feedback type semiconductor laser device
TWI680619B (en) Distributed feedback semiconductor laser device
CN107623250B (en) Short-cavity long-surface emitting laser and manufacturing method thereof
CN105140779B (en) Backup type semiconductor laser based on reconstruction-equivalent chirp technology
JP2009094317A (en) Surface-emitting laser
JP2008098234A (en) Surface light emitting laser element
US20130028283A1 (en) High speed vertical-cavity surface-emitting laser
JP4155834B2 (en) Semiconductor laser
JP2003142773A (en) Semiconductor light emitting device
JP2002111125A (en) Distributed feedback semiconductor laser
US10243330B2 (en) Optoelectronic device with resonant suppression of high order optical modes and method of making same
JP2003218462A (en) Distributed feedback semiconductor laser device
JPS63150981A (en) Semiconductor laser