TWI679841B - Solar concentrator - Google Patents

Solar concentrator Download PDF

Info

Publication number
TWI679841B
TWI679841B TW107127961A TW107127961A TWI679841B TW I679841 B TWI679841 B TW I679841B TW 107127961 A TW107127961 A TW 107127961A TW 107127961 A TW107127961 A TW 107127961A TW I679841 B TWI679841 B TW I679841B
Authority
TW
Taiwan
Prior art keywords
solar
optical film
light
transparent glass
film
Prior art date
Application number
TW107127961A
Other languages
Chinese (zh)
Other versions
TW202010242A (en
Inventor
江政忠
Cheng-Chung Jaing
萬威利
Wei-li WAN
楊寶賡
Pao-Keng Yang
Original Assignee
明新學校財團法人明新科技大學
Minghsin University Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明新學校財團法人明新科技大學, Minghsin University Of Science And Technology filed Critical 明新學校財團法人明新科技大學
Priority to TW107127961A priority Critical patent/TWI679841B/en
Application granted granted Critical
Publication of TWI679841B publication Critical patent/TWI679841B/en
Publication of TW202010242A publication Critical patent/TW202010242A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一種太陽能集光器,由透明玻璃、太陽能板、稜鏡片與光學薄膜所形成,其中太陽能板設置於透明玻璃側面,稜鏡片設置於透明玻璃上方,以導引入射太陽光至太陽能板,而光學薄膜設置於透明玻璃下方,可使太陽光的部分波段範圍被反射再回到透明玻璃中進行傳遞,來提升太陽能板的收光效率,以達到較高的太陽能發電電流,也可使太陽光的部分波段範圍穿透光學薄膜,控制離開此太陽能集光器的太陽光之顏色及量。另外,可將螢光膠層設置於光學薄膜下方,以將太陽光轉換成太陽能板響應較佳的波段區域,可進一步提高太陽能板的發電電流。A solar collector is formed by transparent glass, a solar panel, a cymbal, and an optical film. The solar panel is disposed on the side of the transparent glass, and the cymbal is disposed above the transparent glass to guide incident sunlight to the solar panel. The thin film is set under the transparent glass, which can reflect part of the wavelength range of the sunlight and return to the transparent glass for transmission, so as to improve the solar panel's light collection efficiency, to achieve a higher solar power generation current, and to make the solar light Part of the waveband range penetrates the optical film to control the color and amount of sunlight leaving the solar collector. In addition, a fluorescent adhesive layer can be set under the optical film to convert sunlight into a region of the solar panel with a better response band, which can further increase the power generation current of the solar panel.

Description

太陽能集光器Solar collector

本發明係關於一種太陽能集光器,特別是有關於一種使用稜鏡片與光學薄膜來提升發電效率的太陽能集光器。The invention relates to a solar light collector, in particular to a solar light collector using a cymbal and an optical film to improve power generation efficiency.

太陽能集光器(solar concentrator)可將太陽光收集起來,並聚焦到較小面積的太陽能電池接受面上,以增加太陽光的收集效能,來提高太陽能電池之光電轉換效率,並降低太陽能電池材料的使用量,如此一來,可解決太陽能電池材料昂貴的價格問題。A solar concentrator can collect sunlight and focus it on a small area solar cell receiving surface to increase the efficiency of collecting sunlight, improve the photoelectric conversion efficiency of solar cells, and reduce the material of solar cells. In this way, it can solve the problem of expensive prices of solar cell materials.

然而,傳統的太陽能集光器不論是反射式(reflective)或者折射式(refractive),依照性能、價格及製造等因素考量都仍有極大改進空間;例如,必須使用數目不等的透鏡或反射鏡來收集足夠的陽光,導致整個鏡組的體積往往十分龐大及笨重,成本昂貴,有需要予以尺寸精簡化,並達到較高的集光效率。However, whether a traditional solar collector is reflective or refractive, there is still much room for improvement in consideration of factors such as performance, price, and manufacturing; for example, a different number of lenses or mirrors must be used To collect enough sunlight, the volume of the entire mirror group is often very large and cumbersome, and it is expensive. It is necessary to simplify the size and achieve higher light collection efficiency.

進一步改良的太陽能集光器中,也幾乎都使用幾何形狀的面鏡或透鏡之集光系統,來提高太陽能集光器的導光能力。例如,中華民國專利第200937655號揭露一種薄膜太陽能集光器/收集器,乃在光導表面形成有棱鏡特徵,入射於光導上之環境光藉由棱鏡特徵轉向至光導中,且藉由全內反射導引透過光導;使用光導來將光收集、集中並定向至光電池,以提高將光能轉換成熱量及電力之效率及降低光電裝置之成本。又,中華民國專利第M373472號揭露一種集光器表面結構改良,改良方法為以電解拋光於一金屬基材結構表面而成,有效增加集光器耐侵蝕耐候性能並保有亮面特性。再者,中華民國專利第I540744號揭露一種寬頻反射器、集光式太陽能系統及其使用方法,將一個紫外反射的多層光學薄膜堆疊在一個可見/紅外反射的金屬層上,可得到從紫外光到紅外光反射的寬頻反射器。另外,中華民國專利第I473279號揭露一種太陽能集光器,其利用光線匯聚元件,減少太陽能集光器的材料成本,達到薄型化的優點。此外,中華民國專利第I473279號揭露一種集光方法、集光系統以及光能轉換裝置,集光系統包括一聚光元件以及一反射曲面元件,可使得集光系統將大量的入射光收集後,以較密集的較小光區域出射。而中華民國專利第484702號揭露一種穿透式全像太陽能集光器,改良傳統的太陽能集光器之聚焦透鏡,以全像光學元件取代,減少厚透鏡的研磨,減輕重量。In the further improved solar light collectors, almost all geometric collection mirrors or lenses are used to improve the light guide ability of the solar light collectors. For example, the Republic of China Patent No. 200937655 discloses a thin-film solar collector / collector that has prism features formed on the surface of the light guide. The ambient light incident on the light guide is redirected into the light guide by the prism feature and by total internal reflection. Guide through the light guide; use the light guide to collect, concentrate, and direct the light to the photovoltaic cell to increase the efficiency of converting light energy into heat and electricity and reduce the cost of the photovoltaic device. In addition, the Republic of China Patent No. M373472 discloses an improvement of the surface structure of the light collector. The improvement method is electrolytic polishing on the surface of a metal substrate structure, which effectively increases the corrosion resistance and weather resistance of the light collector and maintains bright surface characteristics. Furthermore, the Republic of China Patent No. I540744 discloses a wide-band reflector, a concentrating solar system, and a method of using the same. A UV-reflecting multilayer optical film is stacked on a visible / infrared-reflecting metal layer to obtain ultraviolet light. Broadband reflector that reflects infrared light. In addition, the Republic of China Patent No. I473279 discloses a solar concentrator, which uses a light converging element to reduce the material cost of the solar concentrator and achieves the advantage of being thin. In addition, the Republic of China Patent No. I473279 discloses a light collection method, a light collection system, and a light energy conversion device. The light collection system includes a light collecting element and a reflective curved surface element, which can make the light collecting system collect a large amount of incident light. Emitted in a denser, smaller light area. The Republic of China Patent No. 484702 discloses a penetrating holographic solar concentrator, which improves the focusing lens of the traditional solar concentrator, and is replaced by holographic optical elements, reducing the grinding of thick lenses and reducing weight.

隨著各種集光系統的開發,加上太陽能電池效率的提高,使得太陽能集光器具發展潛力。因此,如何提供一種改良的太陽能集光器,能有效的利用太陽能,同時減低其體積和重量,將成本大幅降低,仍是目前研究人員亟需克服及解決的重要課題之一。With the development of various light collection systems and the improvement of solar cell efficiency, the development potential of solar light collection appliances has been made. Therefore, how to provide an improved solar concentrator that can effectively use solar energy, while reducing its volume and weight, and greatly reducing costs is still one of the important issues that researchers currently need to overcome and solve.

有鑑於此,本發明的主要目的在於提供一種太陽能集光器,結合稜鏡片、光學薄膜、透明玻璃與太陽能板,除了可降低太陽能板的用量與成本,還能提升太陽能板的收光效率,以達到較高的太陽能發電電流與發電效率。In view of this, the main object of the present invention is to provide a solar light collector that combines a cymbal, an optical film, a transparent glass, and a solar panel, in addition to reducing the amount and cost of the solar panel, and improving the light collection efficiency of the solar panel. To achieve higher solar power generation current and power generation efficiency.

本發明的另一目的在於提供一種太陽能集光器,是於太陽能集光器中進一步設置螢光膠層,可將太陽光轉換成太陽能板響應較佳的波段區域,可再提高太陽能板的發電電流。Another object of the present invention is to provide a solar light collector, which is further provided with a fluorescent glue layer in the solar light collector, which can convert sunlight into a band region with a better response of the solar panel, and can further increase the power generation of the solar panel. Current.

因此,為達上述目的,本發明揭露一種太陽能集光器,包含一透明玻璃、一太陽能板、一稜鏡片以及至少一光學薄膜;其中,太陽能板設置於透明玻璃之側面;稜鏡片設置於透明玻璃之頂面,可以將進入稜鏡片表面的太陽光產生偏折,使太陽光有更多機會導引至側向太陽能板;而光學薄膜設置於透明玻璃之底面,用以反射或透射太陽光的部分波段範圍,讓太陽光可再進入透明玻璃中進行傳遞,提高太陽光照射到太陽能板的機會,藉以達到較高的太陽能板發電電流,同時,可控制離開太陽能集光器的太陽光之量與顏色,使得此太陽能集光器具有顏色選擇與亮度的控制能力。Therefore, in order to achieve the above object, the present invention discloses a solar light collector, which includes a transparent glass, a solar panel, a cymbal, and at least one optical film; wherein the solar panel is disposed on the side of the transparent glass; the cymbal is disposed on the transparent The top surface of the glass can deflect the sunlight entering the surface of the cymbal, so that the sunlight has more opportunities to be guided to the side solar panel; and the optical film is set on the bottom surface of the transparent glass to reflect or transmit the sunlight Part of the band range allows sunlight to re-enter into transparent glass for transmission, increasing the chance of sunlight shining on the solar panel, thereby achieving a higher solar panel power generation current, and controlling the amount of sunlight leaving the solar collector. The amount and color make this solar collector have the ability to control color selection and brightness.

根據本發明的實施例,太陽能集光器的光學薄膜下方可設置一螢光膠層,以將太陽光轉換成太陽能板響應較佳的波段區域,進一步來提高太陽能板的發電電流。According to the embodiment of the present invention, a fluorescent adhesive layer may be disposed under the optical film of the solar light collector to convert sunlight into a region of the solar panel with a better response band, and further increase the power generation current of the solar panel.

底下藉由具體實施例配合所附的圖式詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。In the following, detailed descriptions will be made through specific embodiments in conjunction with the accompanying drawings to make it easier to understand the purpose, technical content, features and effects of the present invention.

請參照第1圖,其繪示本發明第一實施例所提供之太陽能集光器100的示意圖。Please refer to FIG. 1, which illustrates a schematic diagram of a solar light collector 100 provided by a first embodiment of the present invention.

本實施例中,使用透明玻璃10、太陽能板20、稜鏡片30與光學薄膜40形成一種太陽能集光器100。其中,透明玻璃10具有一頂面11、一底面12和複數側面13,並將太陽能板20貼附於透明玻璃10的一個側面13,將稜鏡片30貼附於透明玻璃10的頂面11,將光學薄膜40貼附於透明玻璃10的底面12。當太陽光由稜鏡片30表面入射透明玻璃10,稜鏡片30可以將進入稜鏡片30表面的太陽光產生偏折,使太陽光有更多機會導引至側向的太陽能板20,而光學薄膜40可選擇反射或穿透太陽光的部分波段範圍,一方面當太陽光被光學薄膜40反射後,可再經稜鏡片30內面的反射,使得太陽光可多次進入透明玻璃10,並進行橫向傳遞,使太陽光有更多機會導引至側向的太陽能板20,另一方面,利用穿透光學薄膜40的太陽光,則不僅可控制離開太陽能集光器100的太陽光顏色,也可控制離開太陽能集光器100的太陽光之量的多寡,使得此太陽能集光器100具有顏色選擇與亮度的控制能力。In this embodiment, a transparent glass 10, a solar panel 20, a cymbal 30, and an optical film 40 are used to form a solar light collector 100. The transparent glass 10 has a top surface 11, a bottom surface 12 and a plurality of side surfaces 13. The solar panel 20 is attached to one side surface 13 of the transparent glass 10, and the cymbal 30 is attached to the top surface 11 of the transparent glass 10. The optical film 40 is attached to the bottom surface 12 of the transparent glass 10. When sunlight enters the transparent glass 10 from the surface of the diaphragm 30, the diaphragm 30 can deflect the sunlight entering the surface of the diaphragm 30, so that the sunlight has more opportunities to be guided to the lateral solar panel 20, and the optical film 40 can choose to reflect or penetrate a part of the wavelength range of sunlight. On the one hand, after the sunlight is reflected by the optical film 40, it can be reflected by the inner surface of the cymbal 30, so that the sunlight can enter the transparent glass 10 multiple times. The lateral transmission allows the sunlight to have more opportunities to be guided to the lateral solar panel 20. On the other hand, using sunlight that penetrates the optical film 40 can not only control the color of the sunlight leaving the solar collector 100, but also The amount of sunlight leaving the solar collector 100 can be controlled, so that the solar collector 100 has the ability to control color selection and brightness.

本實施例所使用的透明玻璃10材質較佳為B270,長寬大小為5公分(cm) × 5cm,厚度為5毫米(mm),並採用矽太陽能板20,矽太陽能板20的尺寸大小為5cm×0.5cm,而光學薄膜40可為至少一片或多片,光學薄膜40可選自可見光區穿透、藍光區穿透、綠光區穿透、藍光區與紅光區穿透、紅光區穿透的光學薄膜之一種或多種的組合,且光學薄膜40可結合於一片或多片的基板上,基板可例如塑膠或玻璃基板41。The transparent glass 10 used in this embodiment is preferably B270, with a length and width of 5 cm (cm) × 5 cm and a thickness of 5 mm (mm). The silicon solar panel 20 is used. The size of the silicon solar panel 20 is 5cm × 0.5cm, and the optical film 40 may be at least one or more pieces, and the optical film 40 may be selected from visible light penetration, blue light penetration, green light penetration, blue and red light penetration, and red light. A combination of one or more optical films penetrated by the region, and the optical film 40 may be combined on one or more substrates, such as a plastic or glass substrate 41.

請參照第2圖與第3圖,其顯示六種光學薄膜V1、V2、B、G、M和R的穿透率圖;其中,第2圖中的V1與V2為可見光區穿透、B為藍光區穿透,第3圖中的G為綠光區穿透,M為藍光區與紅光區穿透,R為紅光區穿透。此六種光學薄膜V1、V2、B、G、M和R均由高折射率薄膜與低折射率薄膜依序互相堆疊所組成,高折射率薄膜與低折射率薄膜分別可為二氧化鈦薄膜與二氧化矽薄膜,但實務上不限於此,也可分別為氧化物薄膜、氟化物薄膜氮化物薄膜或金屬薄膜。如第2圖所示,光學薄膜V1的可見光區穿透範圍從388奈米(nm)至644nm,近紅外光區高反射而不穿透範圍從691nm至1119nm,光學薄膜V2的可見光區穿透範圍從410nm至717nm,近紅外光區高反射而不穿透範圍從777nm至1169nm,光學薄膜B的可見光區穿透範圍從350nm至517nm,大部分屬於藍光範圍。如第3圖所示,光學薄膜G的可見光區穿透範圍從494nm至587nm,大部分屬於綠光範圍,光學薄膜M則是從387nm至529nm,再從598nm至近紅外光區都屬高穿透範圍,光學薄膜R是從596nm至近紅外光區都屬高穿透範圍,穿透光的顏色為紅色。由上述得知,光學薄膜B、G、M與R的近紅外光區都屬可穿透範圍,因此若再貼附光學薄膜V1或V2,會使得近紅外光區為高反射而不穿透區,且貼附一片或兩片玻璃基板,使得如表一所列示的六種光學薄膜組合之穿透率都在80%附近。表一為六種光學薄膜組合與玻璃基板組合之組成說明;此些光學薄膜組合是由上述光學薄膜V1、V2、B、G、M和R中的一種或多種與玻璃基板之組合。Please refer to FIG. 2 and FIG. 3, which show the transmittance graphs of six types of optical films V1, V2, B, G, M, and R. Among them, V1 and V2 in FIG. 2 are visible light transmission, B Is the penetration of the blue light region, G in FIG. 3 is the penetration of the green light region, M is the penetration of the blue light region and the red light region, and R is the penetration of the red light region. The six optical films V1, V2, B, G, M, and R are each composed of a high-refractive index film and a low-refractive index film sequentially stacked on each other. The high-refractive index film and the low-refractive index film may be a titanium dioxide film and a The silicon oxide film is not limited in practice, and may be an oxide film, a fluoride film, a nitride film, or a metal film, respectively. As shown in Fig. 2, the visible light region of the optical film V1 penetrates from 388 nanometers (nm) to 644 nm, and the near-infrared light region has high reflection without penetration from 691 nm to 1119 nm. The visible light region of the optical film V2 penetrates The range is from 410nm to 717nm. The near-infrared region is highly reflective and does not penetrate from 777nm to 1169nm. The visible range of optical film B is from 350nm to 517nm, most of which belong to the blue range. As shown in Figure 3, the visible light range of the optical film G ranges from 494 nm to 587 nm, and most of it belongs to the green light range. The optical film M is from 387 nm to 529 nm, and then from 598 nm to the near-infrared region. In the range, the optical film R has a high transmission range from 596 nm to the near-infrared region, and the color of the transmitted light is red. It is known from the above that the near-infrared light regions of the optical films B, G, M, and R all belong to the transmissive range. Therefore, if the optical film V1 or V2 is attached, the near-infrared light region will be highly reflective and not penetrate And attach one or two glass substrates, so that the transmittances of the six optical film combinations listed in Table 1 are around 80%. Table 1 is a description of the composition of the six types of optical film combinations and glass substrate combinations; these optical film combinations are a combination of one or more of the above-mentioned optical films V1, V2, B, G, M, and R with a glass substrate.

表一 光學薄膜組合 組成 SUBT 玻璃基板+玻璃基板+玻璃基板 V1T V1+玻璃基板+玻璃基板 V2T V2+玻璃基板+玻璃基板 BT B+V1+玻璃基板 GT G+V1+玻璃基板+玻璃基板 MT M+V2+玻璃基板+玻璃基板 RT R+V2+玻璃基板 Table I Optical film combination composition SUBT Glass substrate + glass substrate + glass substrate V1T V1 + glass substrate + glass substrate V2T V2 + glass substrate + glass substrate BT B + V1 + glass substrate GT G + V1 + glass substrate + glass substrate MT M + V2 + glass substrate + glass substrate RT R + V2 + glass substrate

請參照第4圖,其為三種光學薄膜組合V1T、V2T與BT的穿透率圖,以及請參照第5圖,其為三種光學薄膜組合GT、MT與RT的穿透率圖,均顯示六種光學薄膜組合V1T、V2T、BT、GT、MT與RT的近紅外光區為高反射而不穿透區,且穿透區的穿透率都在80%附近。如第4圖所示,光學薄膜組合V1T的可見光區穿透範圍從388nm至644nm,近紅外光區高反射而不穿透範圍從693nm至1119nm,光學薄膜組合V2T的可見光區穿透範圍從410nm至711nm,近紅外光區高反射而不穿透範圍從774nm至1162nm,光學薄膜組合BT的可見光區穿透範圍從392nm至517nm,大部分屬於藍光範圍,近紅外光區高反射而不穿透範圍從529nm至1130nm。如第5圖所示,光學薄膜組合GT的可見光區穿透範圍從494nm至586nm,大部分屬於綠光範圍,近紅外光區高反射而不穿透範圍從607nm至1119nm,光學薄膜組合MT的可見光區穿透範圍從410nm至529nm與從598nm至712nm,近紅外光區高反射而不穿透範圍從774nm至1164nm,光學薄膜組合RT的可見光區穿透範圍從596nm至712nm,大部分屬於紅光範圍,近紅外光區高反射而不穿透範圍從776nm至1167nm。由於人類視覺無法觀察近紅外光區,因此這六種光學薄膜組合V1T、V2T、BT、GT、MT與RT均將近紅外光區高反射,再經稜鏡片內面的反射,使得近紅外光區的太陽光可多次進入透明玻璃,並進行橫向傳遞,使近紅外光區太陽光有更多機會導引至側向太陽能板,提高太陽能板發電電流。Please refer to Figure 4, which shows the transmittance diagrams of three optical film combinations V1T, V2T, and BT, and please refer to Figure 5, which shows the transmittance diagrams of three optical film combinations GT, MT, and RT, all showing six The near-infrared light region of this optical film combination V1T, V2T, BT, GT, MT, and RT is highly reflective and does not penetrate, and the penetration of the penetrating region is around 80%. As shown in Figure 4, the visible light range of the optical film combination V1T ranges from 388 nm to 644 nm, the near-infrared light region has a high reflection without penetration range from 693 nm to 1119 nm, and the visible light range of the optical film combination V2T ranges from 410 nm. To 711nm, near-infrared region with high reflection without penetration range from 774nm to 1162nm, visible film region of optical film combination BT from 392nm to 517nm, most of which belong to blue light range, near-infrared region with high reflection without penetration The range is from 529nm to 1130nm. As shown in Figure 5, the visible light range of the optical film combination GT ranges from 494 nm to 586 nm, and most of it belongs to the green light range. The near-infrared light region has high reflection without transmission range from 607 nm to 1119 nm. The visible light range penetrates from 410nm to 529nm and 598nm to 712nm, the near-infrared region is highly reflective and does not penetrate from 774nm to 1164nm. The visible light region of the optical film combination RT ranges from 596nm to 712nm, most of which are red. Light range, near-infrared light region with high reflection without penetration range from 776nm to 1167nm. Because human vision cannot observe the near-infrared light region, the six optical film combinations V1T, V2T, BT, GT, MT, and RT all highly reflect the near-infrared light region, and then reflect through the inner surface of the diaphragm to make the near-infrared light region The sunlight can enter the transparent glass multiple times and be transmitted laterally, so that the sunlight in the near-infrared region has more opportunities to be guided to the side solar panel, and the solar panel power generation current is increased.

進一步地,本實施例利用陽光模擬器的太陽光來照射太陽能集光器,太陽能集光器分別採用如表一所示的六種光學薄膜組合V1T、V2T、BT、GT、MT、RT與玻璃基板組合SUBT,連續5次量測太陽能板的短路電流並加以平均,其量測結果如表二與第6圖之下方曲線所示;其中,不同組別的太陽能集光器以光學薄膜組合或玻璃基板組合的名稱來代表。Further, in this embodiment, sunlight of a solar simulator is used to illuminate a solar concentrator. The solar concentrator uses six types of optical film combinations V1T, V2T, BT, GT, MT, RT, and glass as shown in Table 1. The substrate combination SUBT measures the short-circuit current of the solar panel for five consecutive times and averages them. The measurement results are shown in the lower curve of Table 2 and Figure 6. Among them, the solar collectors of different groups are combined with optical films or The name of the glass substrate combination is represented.

表二 組別 短路電流(mA) SUBT 16.5 V1T 24.38 V2T 23.83 BT 25.23 GT 25.22 MT 24.7 RT 24.9 Table II Group Short-circuit current (mA) SUBT 16.5 V1T 24.38 V2T 23.83 BT 25.23 GT 25.22 MT 24.7 RT 24.9

從表二與第6圖得知,不同光學薄膜組合均能提升太陽能板短路電流,且從第4圖與第5圖得知,會有不同顏色與不同亮度的太陽光穿透太陽能集光器。It is known from Table 2 and Figure 6 that different combinations of optical films can increase the short-circuit current of solar panels. From Figures 4 and 5, it is known that sunlight of different colors and different brightness penetrates the solar collector. .

另外,請參照第7圖,其繪示本發明第二實施例所提供之太陽能集光器200的示意圖。In addition, please refer to FIG. 7, which illustrates a schematic diagram of the solar light collector 200 provided by the second embodiment of the present invention.

本實施例中,乃將螢光膠層50貼附於第一實施例之太陽能集光器100(見第1圖)的光學薄膜40下方,以將太陽光轉換成太陽能板20響應較佳的波段區域,可再提高太陽能板20的短路電流。有關螢光膠層50的製作方式,是使用膠粉比10%的黃色無機螢光粉層,先將螢光粉末以重量百分比10%與矽膠進行混合,利用離心脫泡機進行均勻地攪拌,以及抽真空帶走混合溶液內的空氣,之後利用旋轉塗佈法的方式以旋轉速度900rpm、旋轉時間25秒,最後利用高溫烘箱,進行150℃兩個小時將試片烘乾,而製得螢光膠層50。In this embodiment, the fluorescent adhesive layer 50 is attached below the optical film 40 of the solar light collector 100 (see FIG. 1) of the first embodiment to convert sunlight into a solar panel 20 with a better response. In the band region, the short-circuit current of the solar panel 20 can be further increased. The manufacturing method of the fluorescent adhesive layer 50 is to use a yellow inorganic fluorescent powder layer with a rubber powder ratio of 10%. First, the fluorescent powder is mixed with silicon rubber at a weight percentage of 10%, and is evenly stirred with a centrifugal defoamer. Then, the air in the mixed solution was evacuated, and then the spin coating method was used to spin the test piece at a rotation speed of 900 rpm and a rotation time of 25 seconds. Finally, the test piece was dried at 150 ° C for two hours in a high-temperature oven to obtain fluorescent light.光 胶层 50。 Light adhesive layer 50.

同樣地,本實施例利用陽光模擬器的太陽光來照射具有螢光膠層的太陽能集光器,且太陽能集光器也分別採用如表一所示的六種光學薄膜組合V1T、V2T、BT、GT、MT、RT與玻璃基板組合SUBT,連續5次量測太陽能板的短路電流並加以平均,其量測結果如表三與第6圖之上方曲線所示;其中,不同組別的太陽能集光器以光學薄膜組合或玻璃基板組合的名稱來代表Similarly, in this embodiment, sunlight of a sunlight simulator is used to illuminate a solar collector with a fluorescent glue layer, and the solar collector also uses six optical film combinations V1T, V2T, and BT as shown in Table 1. , GT, MT, RT and glass substrate combined SUBT, measure the short-circuit current of the solar panel 5 times in a row and average them. The measurement results are shown in the upper curve of Table 3 and Figure 6. Among them, the solar energy of different groups The light collector is represented by the name of the optical film combination or the glass substrate combination

表三 組別 短路電流(mA) SUBT 20.68 V1T 25.07 V2T 24.87 BT 25.51 GT 25.6 MT 24.91 RT 25.15 Table three Group Short-circuit current (mA) SUBT 20.68 V1T 25.07 V2T 24.87 BT 25.51 GT 25.6 MT 24.91 RT 25.15

從表三與第6圖得知,不同光學薄膜組合均能提升太陽能板短路電流,且從第4圖與第5圖得知,會有不同顏色與不同亮度的太陽光穿透太陽能集光器。It is known from Table 3 and Figure 6 that different combinations of optical films can increase the short-circuit current of solar panels. From Figures 4 and 5, it is known that sunlight of different colors and different brightness penetrates the solar collector. .

本發明之多個實施例中,光學薄膜不僅可貼附於透明玻璃底面,也可鍍製於透明玻璃底面,可減少貼附用的基板,降低成本。同樣地,螢光膠層也可鍍製於光學薄膜下方,可減少貼附用的基板,降低成本。In various embodiments of the present invention, the optical film can be attached not only to the bottom surface of transparent glass, but also can be plated on the bottom surface of transparent glass, which can reduce the substrate for attachment and reduce the cost. Similarly, the fluorescent adhesive layer can also be plated under the optical film, which can reduce the substrate for attachment and reduce the cost.

綜合上述,根據本發明所揭露之太陽能集光器,乃藉由稜鏡片搭配光學薄膜的特殊設計,可在降低太陽能板的用量與成本下,仍能提升太陽能板的收光效率,以達到較高的太陽能發電電流。進一步地,將螢光膠層設置於光學薄膜下方,將太陽光轉換成太陽能板響應較佳的波段區域,可再提高太陽能板的發電電流。且上述太陽能集光器,透過使用不同的光學薄膜,不僅可控制離開太陽能集光器的太陽光之量與顏色,同時,可提升太陽能集光器的收光效率,並提高太陽能板發電電流與發電效率。In summary, the solar light collector disclosed in the present invention has a special design of a cymbal with an optical film, which can reduce the amount and cost of the solar panel, and still improve the light collection efficiency of the solar panel to achieve a relatively High solar power current. Furthermore, the fluorescent adhesive layer is disposed under the optical film, and the sunlight is converted into a region where the solar panel has a better response, which can further increase the power generation current of the solar panel. In addition, through the use of different optical films, the above-mentioned solar light collector can not only control the amount and color of sunlight leaving the solar light collector, but also improve the light collection efficiency of the solar light collector and increase the solar panel power generation current and Power generation efficiency.

再者,根據本發明所揭露之太陽能集光器,可廣泛應用在如螢光太陽能集光器、發光層太陽能集光器等太陽能技術領域,以增加其收光效率與發電效率,達到較高的太陽能板發電電流。Furthermore, the solar light collector disclosed in the present invention can be widely used in solar technology fields such as fluorescent solar light collectors, light-emitting layer solar light collectors, etc., in order to increase its light collection efficiency and power generation efficiency, and achieve higher Solar panels generate electricity.

以上所述之實施例僅係為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。The above-mentioned embodiments are only for explaining the technical ideas and characteristics of the present invention. The purpose is to enable those skilled in the art to understand the contents of the present invention and implement them accordingly. When the scope of the patent of the present invention cannot be limited, That is, any equivalent changes or modifications made in accordance with the spirit disclosed in the present invention should still be covered by the patent scope of the present invention.

100‧‧‧太陽能集光器100‧‧‧solar collector

10‧‧‧透明玻璃10‧‧‧ clear glass

11‧‧‧頂面11‧‧‧Top

12‧‧‧底面12‧‧‧ underside

13‧‧‧側面13‧‧‧ side

200‧‧‧太陽能集光器200‧‧‧solar collector

20‧‧‧太陽能板20‧‧‧ solar panels

30‧‧‧稜鏡片30‧‧‧ cymbals

40‧‧‧光學薄膜40‧‧‧Optical film

41‧‧‧玻璃基板41‧‧‧ glass substrate

50‧‧‧螢光膠層50‧‧‧Fluorescent adhesive layer

V1、V2、B、G、M、R‧‧‧光學薄膜V1, V2, B, G, M, R‧‧‧ optical film

V1T、V2T、BT、GT、MT、RT‧‧‧光學薄膜組合V1T, V2T, BT, GT, MT, RT‧‧‧ optical film combination

第1圖為本發明第一實施例所提供之太陽能集光器的示意圖。 第2圖為本發明所使用的光學薄膜V1、V2和B的穿透率圖。 第3圖為本發明所使用的光學薄膜G、M和R的穿透率圖。 第4圖為本發明所使用的光學薄膜組合V1T、V2T與BT的穿透率圖。 第5圖為本發明所使用的光學薄膜組合GT、MT與RT的穿透率圖。 第6圖為本發明第一實施例與第二實施例之太陽能集光器使用不同光學薄膜組合的太陽能板短路電流之量測結果;其中,下方和上方的曲線分別代表一一實施例和第二實施例。 第7圖為本發明第二實施例所提供之太陽能集光器的示意圖。FIG. 1 is a schematic diagram of a solar light collector provided by a first embodiment of the present invention. FIG. 2 is a transmittance chart of the optical films V1, V2, and B used in the present invention. FIG. 3 is a transmittance chart of optical films G, M, and R used in the present invention. FIG. 4 is a transmittance chart of the optical film combinations V1T, V2T, and BT used in the present invention. FIG. 5 is a transmittance diagram of the optical film combination GT, MT, and RT used in the present invention. FIG. 6 is a measurement result of short-circuit current of a solar panel using different combinations of optical films in the solar concentrators of the first and second embodiments of the present invention; wherein the lower and upper curves represent the first and the first embodiments, respectively. Two embodiments. FIG. 7 is a schematic diagram of a solar light collector provided by a second embodiment of the present invention.

Claims (7)

一種太陽能集光器,包含:一透明玻璃,具有一頂面、一底面與複數側面;一太陽能板,其係設置於該透明玻璃之一該側面;一稜鏡片,其係設置於該透明玻璃之該頂面;至少一光學薄膜,設置於該透明玻璃之該底面;以及一螢光膠層,設置於該光學薄膜下方。A solar light collector includes: a transparent glass having a top surface, a bottom surface, and a plurality of sides; a solar panel disposed on one side of the transparent glass; and a diaphragm disposed on the transparent glass The top surface; at least one optical film disposed on the bottom surface of the transparent glass; and a fluorescent adhesive layer disposed under the optical film. 如請求項1所述之太陽能集光器,其中該光學薄膜係由高折射率薄膜與低折射率薄膜依序互相堆疊所組成。The solar light collector according to claim 1, wherein the optical film is composed of a high refractive index film and a low refractive index film sequentially stacked on each other. 如請求項2所述之太陽能集光器,其中該高折射率薄膜與該低折射率薄膜係分別選自氧化物薄膜、氟化物薄膜、氮化物薄膜和金屬薄膜的其中一種。The solar collector according to claim 2, wherein the high-refractive index film and the low-refractive index film are respectively selected from one of an oxide film, a fluoride film, a nitride film, and a metal film. 如請求項1所述之太陽能集光器,其中該光學薄膜為可見光區穿透、藍光區穿透、綠光區穿透、藍光區與紅光區穿透、紅光區穿透的光學薄膜中的一種或多種的組合。The solar collector according to claim 1, wherein the optical film is an optical film that penetrates in a visible region, a blue region, a green region, a blue region and a red region, and a red region. A combination of one or more of these. 如請求項1所述之太陽能集光器,其中該光學薄膜係結合於至少一基板,該基板為塑膠或玻璃基板。The solar light collector according to claim 1, wherein the optical film is bonded to at least one substrate, and the substrate is a plastic or glass substrate. 如請求項1所述之太陽能集光器,其中該光學薄膜係貼附或鍍製於該透明玻璃之該底面。The solar light collector according to claim 1, wherein the optical film is attached or plated on the bottom surface of the transparent glass. 如請求項1所述之太陽能集光器,其中該螢光膠層係貼附或鍍製於該光學薄膜下方。The solar light collector according to claim 1, wherein the fluorescent adhesive layer is attached or plated under the optical film.
TW107127961A 2018-08-10 2018-08-10 Solar concentrator TWI679841B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107127961A TWI679841B (en) 2018-08-10 2018-08-10 Solar concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107127961A TWI679841B (en) 2018-08-10 2018-08-10 Solar concentrator

Publications (2)

Publication Number Publication Date
TWI679841B true TWI679841B (en) 2019-12-11
TW202010242A TW202010242A (en) 2020-03-01

Family

ID=69582377

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107127961A TWI679841B (en) 2018-08-10 2018-08-10 Solar concentrator

Country Status (1)

Country Link
TW (1) TWI679841B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101138100A (en) * 2005-02-16 2008-03-05 荷兰科学技术基金会 Luminescent multilayer system and utilisation thereof
TW201034223A (en) * 2008-12-30 2010-09-16 3M Innovative Properties Co Broadband reflectors, concentrated solar power systems, and methods of using the same
TW201234624A (en) * 2010-12-30 2012-08-16 Ind Tech Res Inst Focusing solar light guide module
TW201520605A (en) * 2013-11-08 2015-06-01 Qualcomm Mems Technologies Inc Light redirection hologram for reflective displays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101138100A (en) * 2005-02-16 2008-03-05 荷兰科学技术基金会 Luminescent multilayer system and utilisation thereof
TW201034223A (en) * 2008-12-30 2010-09-16 3M Innovative Properties Co Broadband reflectors, concentrated solar power systems, and methods of using the same
TW201234624A (en) * 2010-12-30 2012-08-16 Ind Tech Res Inst Focusing solar light guide module
TW201520605A (en) * 2013-11-08 2015-06-01 Qualcomm Mems Technologies Inc Light redirection hologram for reflective displays

Also Published As

Publication number Publication date
TW202010242A (en) 2020-03-01

Similar Documents

Publication Publication Date Title
CN105144397B (en) Photovoltaic module
JP6242902B2 (en) Laminated glazing with colored reflection and high solar transmittance suitable for solar energy system
CN101728437B (en) Backboard with packaging function and solar panel using same
ES2902754T3 (en) Solar module with structured cover plate and optical interference layer
CN102544174A (en) Solar cell assembly for increasing light energy utilization ratio
ES2898720T3 (en) Solar module with structured cover plate and optical interference layer
ES2906970T3 (en) Interferential filter with angular independent orange reflection color and high solar transmittance, suitable for roof integration of solar energy systems
JP7383817B2 (en) Colored facade elements with composite pane structure
TWI679841B (en) Solar concentrator
CN217641361U (en) Photovoltaic packaging material and photovoltaic module
WO2014180019A1 (en) Solar module
CN201956361U (en) Antireflection system for film solar battery
CN204289486U (en) Photovoltaic module
JP2023511701A (en) Color plate-shaped component with structured cover plate and color filter layer
CN106653902A (en) Solar battery assembly
CN209447810U (en) A kind of encaustic tile
CN209199955U (en) A kind of photovoltaic module
WO2019214059A1 (en) Solar component and solar power generation device
TWI651863B (en) Solar concentrator
CN205985035U (en) Glass photovoltaic module
CN104600142A (en) Photovoltaic module
CN213242571U (en) Light-gathering panel with TIR lens infinitesimal structure
CN209087868U (en) A kind of color brilliant double glass photovoltaic modulies
CN208478349U (en) Solar panel
CN107611184B (en) A kind of solar battery based on light splitting spectra system