TWI677437B - Phase shift mask base, manufacturing method of phase shift mask, and display device manufacturing method - Google Patents

Phase shift mask base, manufacturing method of phase shift mask, and display device manufacturing method Download PDF

Info

Publication number
TWI677437B
TWI677437B TW107135068A TW107135068A TWI677437B TW I677437 B TWI677437 B TW I677437B TW 107135068 A TW107135068 A TW 107135068A TW 107135068 A TW107135068 A TW 107135068A TW I677437 B TWI677437 B TW I677437B
Authority
TW
Taiwan
Prior art keywords
phase shift
film
layer
reflectance
shift mask
Prior art date
Application number
TW107135068A
Other languages
Chinese (zh)
Other versions
TW201902684A (en
Inventor
谷口和丈
Kazutake Taniguchi
坪井誠治
Seiji Tsuboi
牛田正男
Masao Ushida
Original Assignee
日商Hoya股份有限公司
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司, Hoya Corporation filed Critical 日商Hoya股份有限公司
Publication of TW201902684A publication Critical patent/TW201902684A/en
Application granted granted Critical
Publication of TWI677437B publication Critical patent/TWI677437B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本發明提供一種相偏移光罩基底,該相偏移光罩基底係用於形成具有優異之圖案剖面形狀及優異之CD均一性且形成有微細之圖案之顯示裝置用之相偏移光罩。 設置於透明基板上之包含鉻系材料之相偏移膜具有:相偏移層、反射率降低層、設置於相偏移層與反射率降低層之間且於350 nm~436 nm之波長區域中具有相較反射率降低層之消光係數更高之消光係數的金屬層,且相偏移膜對於曝光光線之透過率及相位差滿足作為相偏移膜所必需之特定之光學特性,並且相偏移膜之膜面反射率於350 nm~436 nm之波長區域中為10%以下。The present invention provides a phase shift mask substrate, which is used to form a phase shift mask for a display device having excellent pattern cross-sectional shape and excellent CD uniformity and forming a fine pattern. . A phase shift film containing a chromium-based material provided on a transparent substrate has a phase shift layer, a reflectance reduction layer, and a wavelength region between 350 nm and 436 nm, which is provided between the phase shift layer and the reflectance reduction layer. A metal layer having a higher extinction coefficient than a reflectance-reduced layer, and the phase shift film's transmittance and phase difference for exposure light satisfy specific optical characteristics necessary as a phase shift film, and The film surface reflectance of the offset film is 10% or less in a wavelength region of 350 nm to 436 nm.

Description

相偏移光罩基底及使用其之相偏移光罩之製造方法、以及顯示裝置之製造方法Phase shift mask base, manufacturing method of phase shift mask, and display device manufacturing method

本發明係關於一種相偏移光罩基底及使用其之相偏移光罩之製造方法、以及顯示裝置之製造方法。The present invention relates to a method for manufacturing a phase shift mask substrate, a phase shift mask using the same, and a method for manufacturing a display device.

近年來,隨著FPD(Flat Panel Display,平板顯示器)等顯示裝置之高解像度化、高精細化,而正在尋求一種具有優異之圖案剖面形狀及優異之CD(crystal display,液晶顯示)均一性且形成有微細之圖案之顯示裝置用之相偏移光罩。 又,受到FPD等顯示裝置之低價化之影響,而必須削減相偏移光罩之製造成本。於相偏移膜上形成有遮光性膜之先前之相偏移光罩基底之情形時,將抗蝕膜圖案作為遮罩對遮光性膜進行蝕刻,形成遮光性膜圖案,其後,將遮光性膜圖案作為遮罩對相偏移膜進行蝕刻,形成相偏移膜圖案,其後,將抗蝕膜圖案剝離,進而,將遮光性膜圖案剝離,製造具有相偏移膜圖案之相偏移光罩。另一方面,於相偏移膜上未形成有遮光性膜之相偏移光罩基底之情形時,無需相偏移膜上之遮光性膜圖案之形成步驟及剝離步驟,從而能夠削減製造成本。 對應於此種近年之情況,而要求一種使用相偏移膜上未形成有遮光性膜之相偏移光罩基底製造之具有優異之圖案剖面形狀及優異之CD均一性且形成有微細之圖案之顯示裝置用之相偏移光罩。 例如,專利文獻1中提出有一種於透明基板上具備積層有2層以上薄膜之構成之相偏移膜之顯示裝置用之相偏移光罩基底。構成該相偏移膜之各薄膜雖具有互不相同之組成,但包含均可藉由相同之蝕刻溶液進行蝕刻之物質,且因組成不同而具有不同之蝕刻速度。專利文獻1係於相偏移膜之圖案化時,調整構成相偏移膜之各薄膜之蝕刻速度,以陡峭地形成相偏移膜圖案之邊緣部分之剖面傾斜。 再者,專利文獻1中亦提出有一種於相位反轉膜之上部或下部配置有包含以遮光成膜、半透過膜、蝕刻阻止膜、及硬質光罩膜為首之轉印用圖案所需之膜中之一種以上膜之功能性膜的顯示裝置用之相偏移光罩基底。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2014-26281號公報In recent years, as display devices such as FPD (Flat Panel Display, flat panel display) have become high-resolution and high-definition, an excellent pattern cross-sectional shape and excellent CD (crystal display) uniformity and Phase shift masks for display devices with fine patterns. In addition, affected by the lower cost of display devices such as FPDs, it is necessary to reduce the manufacturing cost of phase shift masks. In the case of the previous phase shift mask substrate on which the light-shielding film was formed on the phase shift film, the light-shielding film was etched by using the resist film pattern as a mask to form a light-shielding film pattern. The phase shift film is etched with the protective film pattern as a mask to form a phase shift film pattern. Thereafter, the resist film pattern is peeled off, and the light-shielding film pattern is peeled off to produce a phase shift film having the phase shift film pattern. Shift the hood. On the other hand, in the case where the phase shift mask substrate on which the light-shielding film is not formed on the phase shift film, the step of forming the light-shielding film pattern on the phase shift film and the step of peeling are not necessary, thereby reducing the manufacturing cost. . Corresponding to such a situation in recent years, a phase shift mask substrate without a light-shielding film formed on the phase shift film is required to have an excellent pattern cross-sectional shape and excellent CD uniformity, and a fine pattern is formed. Phase shift masks for display devices. For example, Patent Document 1 proposes a phase shift mask substrate for a display device including a phase shift film having a structure in which two or more thin films are laminated on a transparent substrate. Although the thin films constituting the phase shift film have different compositions from each other, they include substances that can be etched by the same etching solution, and have different etching rates due to different compositions. In Patent Document 1, when the phase shift film is patterned, the etching rate of each thin film constituting the phase shift film is adjusted so that the cross section of the edge portion of the phase shift film pattern is formed steeply. Furthermore, Patent Document 1 proposes a method for disposing a pattern including a light-shielding film, a semi-transmissive film, an etching stopper film, and a hard mask film above or below the phase inversion film. A phase shift mask substrate for a display device of a functional film with one or more of the films. [Prior Art Document] [Patent Document] [Patent Document 1] Japanese Patent Laid-Open No. 2014-26281

[發明所欲解決之問題] 先前提出之顯示裝置用之相偏移光罩中使用之相偏移膜係未考慮到因用於形成相偏移膜圖案而使用之抗蝕膜於圖案化時所使用之雷射描繪光之反射引起之對抗蝕膜之影響而設計。因此,相偏移膜對於雷射描繪光之膜面反射率超過20%。其結果,抗蝕膜中產生駐波,抗蝕膜圖案之CD均一性變差,甚至存在將抗蝕膜圖案作為遮罩進行圖案化而形成之相偏移膜圖案之CD均一性無法滿足近年所要求之值之情況。 因此,本發明係鑒於上述問題點而完成者,其目的在於提供一種用於藉由具備使對於用作雷射描繪光之350 nm~436 nm之波長區域之光之膜面反射率降低之相偏移膜,而形成具有優異之圖案剖面形狀及優異之CD均一性且形成有微細之圖案之顯示裝置用之相偏移光罩之相偏移光罩基底、及使用其之相偏移光罩之製造方法。進而,本發明之目的在於藉由使用具有優異之圖案剖面形狀及優異之CD均一性且形成有微細之圖案之顯示裝置用之相偏移光罩而提供一種高解像度、高精細之顯示裝置之製造方法。 [解決問題之技術手段] 本發明者為了達成上述目的進行了努力研究,從而獲得如下見解:可藉由至少以3層構成相偏移膜,且設計構成相偏移膜之各層之組成或膜厚,而一面使相偏移膜對於曝光光線之透過率及相位差滿足作為相偏移膜所需之特定之光學特性,一面使相偏移膜對於350 nm~436 nm之波長區域之光之膜面反射率降低。 本發明係基於該見解而成者,且具有以下構成。 (構成1) 一種相偏移光罩基底,其特徵在於:其係於透明基板上具備包含鉻系材料之相偏移膜者,且 上述相偏移膜具有:相偏移層,其主要具有調整對於曝光光線之透過率及相位差之功能;反射率降低層,其配置於該相偏移層之上側,且具有使對於自上述相偏移膜側入射之光之反射率降低之功能;金屬層,其配置於上述相偏移層與上述反射率降低層之間,且於350 nm~436 nm之波長區域中,具有相較上述反射率降低層之消光係數更高之消光係數; 藉由上述相偏移層、上述金屬層及上述反射率降低層之積層構造,上述相偏移膜對於曝光光線之透過率及相位差具有特定之光學特性,且上述相偏移膜對於自上述相偏移膜側入射之光之膜面反射率於350 nm~436 nm之波長區域中為10%以下。 (構成2) 一種相偏移光罩基底,其特徵在於:其係於透明基板上具備包含鉻系材料之相偏移膜者,且 上述相偏移膜具有:相偏移層,其主要具有調整對於曝光光線之透過率及相位差之功能;反射率降低層,其配置於該相偏移層之上側,且具有使對於自上述相偏移膜側入射之光之反射率降低之功能;金屬層,其配置於上述相偏移層與上述反射率降低層之間,且具有相較上述反射率降低層之鉻含有率更高之鉻含有率; 藉由上述相偏移層、上述金屬層及上述反射率降低層之積層構造,上述相偏移膜對於曝光光線之透過率及相位差具有特定之光學特性,且上述相偏移膜對於自上述相偏移膜側入射之光之膜面反射率於350 nm~436 nm之波長區域中為10%以下。 (構成3) 如構成1或2記載之相偏移光罩基底,其特徵在於:上述相偏移膜之膜面反射率之變動幅度於350 nm~436 nm之波長區域中為5%以下。 (構成4) 如構成1或2記載之相偏移光罩基底,其特徵在於:上述相偏移膜之膜面反射率於313 nm~436 nm之波長區域中為13%以下。 (構成5) 如構成4記載之相偏移光罩基底,其特徵在於:上述相偏移膜之膜面反射率之變動幅度於313 nm~436 nm之波長區域中為10%以下。 (構成6) 如構成1至5中任一項記載之相偏移光罩基底,其特徵在於:於上述透明基板與上述相偏移膜之間具備遮光性膜圖案。 (構成7) 一種相偏移光罩之製造方法,其特徵在於具有如下步驟:於如構成1至6中任一項記載之相偏移光罩基底之上述相偏移膜上,藉由使用具有選自350 nm~436 nm之波長區域中之任一波長之雷射光之描繪處理、及顯影處理而形成抗蝕膜圖案;及 將該抗蝕膜圖案作為遮罩對上述相偏移膜進行蝕刻,於上述透明基板上形成相偏移膜圖案。 (構成8) 一種顯示裝置之製造方法,其特徵在於具有如下步驟: 將藉由如構成7記載之製造方法所製造之相偏移光罩載置於曝光裝置之光罩台; 對上述相偏移光罩照射曝光光線,將上述相偏移膜圖案轉印至形成於顯示裝置基板上之抗蝕膜。 (構成9) 如構成8記載之顯示裝置之製造方法,其特徵在於:上述曝光光線為包含選自313 nm~436 nm之波長區域中之複數個波長之光的複合光。 [發明之效果] 如上所述,本發明之相偏移光罩基底係設置於透明基板上之包含鉻系材料之相偏移膜具有相偏移層、反射率降低層、及設置於相偏移層與反射率降低層之間且於350 nm~436 nm之波長區域具有相較反射率降低層之消光係數更高之消光係數之金屬層,且相偏移膜對於曝光光線之透過率及相位差滿足作為相偏移膜所需之特定之光學特性,並且相偏移膜之膜面反射率於350 nm~436 nm之波長區域中為10%以下。因此,可使用該相偏移光罩基底,製造具有優異之圖案剖面形狀及優異之CD均一性且形成有微細之圖案之相偏移光罩。又,可使用該相偏移光罩,製造高解像度、高精細之顯示裝置。 又,另一本發明之相偏移光罩基底係設置於透明基板上之包含鉻系材料之相偏移膜具有相偏移層、反射率降低層、及設置於相偏移層與反射率降低層之間之具有相較反射率降低層之鉻含有率更高之鉻含有率的金屬層,且相偏移膜對於曝光光線之透過率及相位差滿足作為相偏移膜所需之特定之光學特性,並且相偏移膜之膜面反射率於350 nm~436 nm之波長區域中為10%以下。因此,可使用該相偏移光罩基底,製造具有優異之圖案剖面形狀及優異之CD均一性且形成有微細之圖案之相偏移光罩。又,可使用該相偏移光罩,製造高解像度、高精細之顯示裝置。[Problems to be Solved by the Invention] The phase shift film used in the phase shift mask for display devices previously proposed does not take into consideration the pattern of the resist film used for forming the phase shift film pattern during patterning. The laser used is designed to describe the effect on the resist film caused by the reflection of light. Therefore, the phase-reflection film has a film surface reflectance of more than 20% for laser drawing light. As a result, standing waves are generated in the resist film, and the CD uniformity of the resist film pattern is deteriorated. Even the phase uniformity of the phase shift film pattern formed by patterning the resist film pattern as a mask cannot satisfy the recent years. Situation of required value. Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide a phase for reducing the reflectance of the film surface of light in a wavelength range of 350 nm to 436 nm used as laser drawing light. Shift film to form a phase shift mask base for a phase shift mask for a display device having excellent pattern cross-sectional shape and excellent CD uniformity and forming a fine pattern, and phase shift light using the same Manufacturing method of the cover. Furthermore, an object of the present invention is to provide a high-resolution, high-definition display device by using a phase shift mask for a display device having excellent pattern cross-sectional shape and excellent CD uniformity and forming a fine pattern. Production method. [Technical means to solve the problem] The present inventors conducted diligent research in order to achieve the above-mentioned object, and obtained the following insight: The phase shift film can be composed of at least three layers, and the composition or film of each layer constituting the phase shift film can be designed. Thick, while making the phase shift film transmittance and phase difference to the exposure light satisfy the specific optical characteristics required as a phase shift film, while making the phase shift film to light in the wavelength range of 350 nm to 436 nm The film surface reflectance decreases. This invention is based on this knowledge, and has the following structures. (Composition 1) A phase shift mask substrate characterized in that it is provided on a transparent substrate with a phase shift film containing a chrome-based material, and the phase shift film has: a phase shift layer, which mainly has The function of adjusting the transmittance and phase difference of the exposure light; the reflectance reducing layer is arranged on the upper side of the phase shift layer and has the function of reducing the reflectance of the light incident from the phase shift film side; The metal layer is disposed between the phase shift layer and the reflectance reducing layer, and has a higher extinction coefficient than the reflectance reducing layer in a wavelength region of 350 nm to 436 nm; The phase shift layer, the metal layer, and the reflectance reduction layer have a laminated structure. The phase shift film has specific optical characteristics with respect to transmittance and phase difference of the exposure light. The film surface reflectance of the light incident on the shift film side is 10% or less in a wavelength region of 350 nm to 436 nm. (Composition 2) A phase shift mask substrate characterized in that it is provided on a transparent substrate with a phase shift film containing a chrome-based material, and the phase shift film has: a phase shift layer, which mainly has The function of adjusting the transmittance and phase difference of the exposure light; the reflectance reducing layer is arranged on the upper side of the phase shift layer and has the function of reducing the reflectance of the light incident from the phase shift film side; The metal layer is disposed between the phase shift layer and the reflectance reducing layer, and has a chromium content higher than the chromium content of the reflectance reducing layer. With the phase shift layer and the metal, Layer and the reflectance reducing layer, the phase shift film has specific optical characteristics for the transmittance and phase difference of the exposure light, and the phase shift film is a film for light incident from the phase shift film side The surface reflectance is 10% or less in a wavelength range of 350 nm to 436 nm. (Structure 3) The phase shift mask base according to Structure 1 or 2 is characterized in that the fluctuation range of the film surface reflectance of the phase shift film is 5% or less in a wavelength region of 350 nm to 436 nm. (Structure 4) The phase shift mask base according to Structure 1 or 2, characterized in that the film surface reflectance of the phase shift film is 13% or less in a wavelength region of 313 nm to 436 nm. (Structure 5) The phase shift mask base according to Structure 4, characterized in that the fluctuation range of the film surface reflectance of the phase shift film is 10% or less in a wavelength range of 313 nm to 436 nm. (Structure 6) The phase shift mask base according to any one of Structures 1 to 5, wherein a light-shielding film pattern is provided between the transparent substrate and the phase shift film. (Composition 7) A method for manufacturing a phase shift mask, which is characterized by having the following steps: on the above-mentioned phase shift film of the phase shift mask base described in any one of 1 to 6, by using Forming a resist film pattern with a drawing process and a development process of laser light having a wavelength selected from a wavelength region of 350 nm to 436 nm; and performing the phase shift film with the resist film pattern as a mask Etching forms a phase shift film pattern on the transparent substrate. (Structure 8) A method for manufacturing a display device, which comprises the following steps: placing a phase shift mask manufactured by the manufacturing method described in Structure 7 on a mask stage of an exposure device; The light shifting cover irradiates the exposure light, and transfers the phase shift film pattern to a resist film formed on a display device substrate. (Structure 9) The manufacturing method of the display device according to Structure 8, wherein the exposure light is a composite light including light having a plurality of wavelengths selected from a wavelength range of 313 nm to 436 nm. [Effects of the Invention] As described above, the phase shift mask base of the present invention is a phase shift film containing a chromium-based material provided on a transparent substrate, and has a phase shift layer, a reflectance reduction layer, and a phase shift layer. A metal layer having a higher extinction coefficient than the reflectance-reduced layer in the wavelength region of 350 nm to 436 nm between the transfer layer and the reflectivity-reduced layer, and the phase shift film's transmittance and The phase difference satisfies specific optical characteristics required as a phase shift film, and the film surface reflectance of the phase shift film is 10% or less in a wavelength region of 350 nm to 436 nm. Therefore, the phase shift mask substrate can be used to manufacture a phase shift mask having excellent pattern cross-sectional shape and excellent CD uniformity and having a fine pattern formed. In addition, the phase shift mask can be used to manufacture a high-resolution and high-definition display device. In addition, another phase shift mask base of the present invention is a phase shift film containing a chromium-based material provided on a transparent substrate, and includes a phase shift layer, a reflectance reducing layer, and a phase shift layer and a reflectance. A metal layer having a higher chromium content than the reduced reflectance layer between the reduced layers, and the transmittance and phase difference of the phase shift film with respect to the exposure light satisfy the specific requirements for a phase shift film The optical characteristics of the phase shift film are 10% or less in the wavelength region of 350 nm to 436 nm. Therefore, the phase shift mask substrate can be used to manufacture a phase shift mask having excellent pattern cross-sectional shape and excellent CD uniformity and having a fine pattern formed. In addition, the phase shift mask can be used to manufacture a high-resolution and high-definition display device.

以下,對於本發明之實施形態一面參照圖式一面詳細地進行說明。再者,以下實施形態係將本發明進行具體化時之一形態,而並非將本發明限定於該範圍內。再者,圖中存在對於同一或同等之部分標註同一符號且簡化甚至省略其說明之情況。 實施形態1. 實施形態1係對相偏移光罩基底進行說明。 圖1係表示相偏移光罩基底10之膜構成之模式圖。相偏移光罩基底10具備對於曝光光線透明之透明基板20、及配置於透明基板20上之包含鉻系材料之相偏移膜30。透明基板20於設為無表面反射損耗時,對於曝光光線具有85%以上之透過率、較佳為90%以上之透過率。相偏移膜30具有自透明基板20側起依序地配置之相偏移層31、金屬層33、及反射率降低層32。相偏移層31、金屬層33及反射率降低層32係分別由包含鉻(Cr)之鉻系材料而形成。因此,相偏移層31、金屬層33及反射率降低層32能夠藉由相同之蝕刻溶液進行蝕刻。 相偏移層31係配置於透明基板20之主表面上。相偏移層31具有調整對於曝光光線之透過率及相位差之功能。 相偏移層31係由包含鉻(Cr)、氧(O)及氮(N)中之至少一種之鉻化合物而形成。又,相偏移層31亦可由包含鉻(Cr)、氧(O)及氮(N)之中之至少一種且更包含碳(C)及氟(F)中之至少一種之鉻化合物而形成。例如,作為形成相偏移層31之材料,可列舉:CrO、CrN、CrOFCrNF、CrON、CrCO、CrCN、CrOCN、CrFCO、CrFCON。 相偏移層31可藉由濺鍍而形成。 反射率降低層32係配置於相偏移層31之上側。反射率降低層32具有使對於自相偏移膜30側(即,反射率降低層32之與透明基板20側相反之側)入射之光之反射率降低之功能。 反射率降低層32係由包含鉻(Cr)及氧(O)之鉻化合物而形成。又,反射率降低層32亦可由包含鉻(Cr)及氧(O)且更包含氮(N)、碳(C)及氟(F)中之至少一種之鉻化合物而形成。例如,作為形成反射率降低層32之材料,可列舉:CrO、CrON、CrCO、CrOF、CrOCN、CrFON。 反射率降低層32可藉由濺鍍而形成。 金屬層33係配置於相偏移層31與反射率降低層32之間。金屬層33具有調整對於曝光光線之透過率之功能,並且與反射率降低層32組合而具有使對於自相偏移膜30側入射之光之反射率降低之功能。 金屬層33係由鉻(Cr)、或包含鉻(Cr)、碳(C)及氮(N)中之至少一種之鉻化合物而形成。又,金屬層33亦可由包含鉻(Cr)、碳(C)及氮(N)中之至少一種且更包含氧(O)及氟(F)中之至少一種之鉻化合物而形成。例如,作為形成金屬層33之材料,可列舉:Cr、CrC、CrN、CrCN、CrCO、CrCF。 因具備金屬層33,相偏移膜之薄片電阻降低,故而能夠防止相偏移光罩基底及相偏移光罩之充電。於不具備金屬層33之情形時,使相偏移光罩基底及相偏移光罩自殼體進出時產生之電不會逸出,且於相偏移光罩基底及相偏移光罩中蓄電,故容易使異物附著。又,於相偏移光罩形成有較小之圖案時,容易使電自圖案進入圖案,導致引起靜電破壞。 金屬層33可藉由濺鍍而形成。 金屬層33係於350 nm~436 nm之波長區域中具有相較反射率降低層32之消光係數更高之消光係數。又,較佳為於313 nm~436 nm之波長區域中,具有相較反射率降低層32之消光係數更高之消光係數。 金屬層33之消光係數與反射率降低層32之消光係數之差較佳為1.5~3.5,更佳為1.8~3.5。若消光係數之差為1.5~3.5,則能夠提高金屬層33與反射率降低層32之界面之上述波長區域(350 nm~436 nm之波長區域、或313 nm~436 nm之波長區域)中之反射率,故而可進一步發揮反射率降低效果,因而較佳。 再者,金屬層33係於350 nm~436 nm之波長區域中具有相較相偏移層31之消光係數更高之消光係數。又,較佳為於313 nm~436 nm之波長區域中,具有相較相偏移層31之消光係數更高之消光係數。 消光係數能夠使用n&k分析儀或橢圓偏光計等進行測定。 金屬層33具有相較反射率降低層32之鉻(Cr)含有率(原子%)更高之鉻(Cr)含有率(原子%)。 金屬層33之Cr含有率與反射率降低層32之Cr含有率之差較佳為10~80原子%,更佳為15~80原子%。若Cr含有率之差為10~80原子%,則能夠提高金屬層33與反射率降低層32之界面之上述波長區域(350 nm~436 nm之波長區域、或313 nm~436 nm之波長區域)中之反射率,故而可進一步發揮反射率降低效果,因而較佳。再者,金屬層33之蝕刻速度可藉由使鉻(Cr)中含有氮(N)、氧(O)、碳(C)、氟(F)成為鉻化合物而進行調整。例如,可藉由使鉻(Cr)中含有碳(C)或氟(F)而減慢濕式蝕刻速度,且可藉由使鉻(Cr)中含有氮(N)或氧(O)而加快濕式蝕刻速度。可藉由考量與形成於金屬層33之上下之相偏移層31、反射率降低層32之濕式蝕刻速度,設為鉻中添加有上述元素之鉻化合物,而使蝕刻後之相偏移膜30之剖面形狀變得良好。 再者,金屬層33具有相較相偏移層31之鉻(Cr)含有率更高之鉻(Cr)含有率。 Cr含有率可使用歐傑電子分光裝置或X射線光電子光譜裝置(XPS)等進行測定。 相偏移層31、金屬層33及反射率降低層32之各者較佳為於350 nm~436 nm之波長區域中具有2.0以上之折射率。若具有2.0以上之折射率,則能夠將獲得所需之光學特性(透過率及相位差)所需之相偏移膜30之膜厚薄膜化。因此,使用具備該相偏移膜30之相偏移光罩基底10所製作之相偏移光罩能夠具備具有優異之圖案剖面形狀及優異之CD均一性之相偏移膜圖案。 折射率可使用n&k分析儀或橢圓偏光計等進行測定。 藉由相偏移層31、金屬層33及反射率降低層32之積層構造,相偏移膜30對於曝光光線之透過率及相位差具有特定之光學特性。 相偏移膜30對於曝光光線之透過率滿足作為相偏移膜30所需之值。相偏移膜30之透過率係相對於曝光光線中包含之特定之波長之光(以下,稱為代表波長),較佳為1%~20%,更佳為3%~10%。即,於曝光光線為包含313 nm以上且436 nm以下之波長範圍之光之複合光之情形時,相偏移膜30對於該波長範圍中包含之代表波長之光具有上述透過率。例如,於曝光光線為包含i線、h線及g線之複合光之情形時,相偏移膜30對於i線、h線及g線之任一者具有上述透過率。 相偏移膜30對於曝光光線之相位差滿足作為相偏移膜30所需之值。相偏移膜30之相位差係相對於曝光光線中包含之代表波長之光,較佳為160°~200°,更佳為170°~190°。可藉由該性質,而將曝光光線中包含之代表波長之光之相位改變160°~200°。因此,於透過相偏移膜30之代表波長之光與僅透過透明基板20之代表波長之光之間產生160~200°之相位差。即,於曝光光線為包含313 nm以上且436 nm以下之波長範圍之光之複合光之情形時,相偏移膜30對於該波長範圍中包含之代表波長之光具有上述相位差。例如,於曝光光線為包含i線、h線及g線之複合光之情形時,相偏移膜30對於i線、h線及g線之任一者具有上述相位差。 相偏移膜30之透過率及相位差可藉由調整構成相偏移膜30之相偏移層31、金屬層33及反射率降低層32各自之組成及厚度而控制。因此,於該實施形態中,以相偏移膜30之透過率及相位差具有上述特定之光學特性之方式,調整相偏移層31、金屬層33及反射率降低層32各自之組成及厚度。再者,相偏移膜30之透過率主要受到相偏移層31及金屬層33之組成及厚度影響。相偏移膜30之折射率主要受到相偏移層31之組成及厚度影響。 透過率及相位差可使用相偏移量測定裝置等進行測定。 相偏移膜30對於自相偏移膜30側入射之光之膜面反射率於350 nm~436 nm之波長區域中為10%以下。又,較佳為於313 nm~436 nm之波長區域中為13%以下。即,較佳為,相偏移膜30對於自相偏移膜30側入射之光之膜面反射率於350 nm~436 nm之波長區域中為10%以下,且即便波長區域擴大至313 nm~436 nm亦為13%以下。若相偏移膜30之膜面反射率於350 nm~436 nm之波長區域中為10%以下,則對於雷射描繪光之膜面反射率降低,因此能夠形成具有優異之CD均一性之相偏移光罩。又,若相偏移膜30之膜面反射率於313 nm~436 nm之波長區域中為13%以下,則對於曝光光線之膜面反射率降低,故而於將形成於相偏移光罩之圖案轉印時,能夠防止因來自顯示裝置基板之反射光引起之轉印圖案之模糊(閃光)。 相偏移膜30之膜面反射率之變動幅度較佳為於350 nm~436 nm之波長區域中為9%以下,進而較佳為8.5%以下。又,較佳為於313 nm~436 nm之波長區域中為12.5%以下,進而較佳為12%。即,較佳為,相偏移膜30之膜面反射率之變動幅度於350 nm~436 nm之波長區域中為9%以下,進而為8.5%以下,且較佳為,即便將波長區域擴大至313 nm~436 nm亦為12.5%以下,進而為12%以下。 相偏移膜30之膜面反射率及其變動幅度可藉由對構成相偏移膜30之相偏移層31、金屬層33及反射率降低層32各自之折射率、消光係數及厚度進行調整而控制。消光係數及折射率可藉由調整組成而控制,故而於該實施形態中,以相偏移膜30之膜面反射率及其變動幅度具有上述特定之物性之方式,調整相偏移層31、金屬層33及反射率降低層32各自之組成及厚度。再者,相偏移膜30之膜面反射率及其變動幅度主要受到金屬層33及反射率降低層32各自之組成及厚度影響。 膜面反射率可使用分光光度計等進行測定。膜面反射率之變動幅度可根據350 nm~436 nm或313 nm~436 nm之波長區域中之最大反射率與最小反射率之差而求出。 相偏移層31可為包含組成均一之單一之膜之情況,亦可為包含組成不同之複數個膜之情況,亦可為包含組成於厚度方向連續地變化之單一之膜之情況。金屬層33及反射率降低層32亦情況相同。 圖2係表示相偏移光罩基底10之其他膜構成之模式圖。如圖2所示,相偏移光罩基底10亦可為於透明基板20與相偏移膜30之間具備遮光性膜圖案40者。 於相偏移光罩基底10具備遮光性膜圖案40之情形時,遮光性膜圖案40配置於透明基板20之主表面上。遮光性膜圖案40具有遮擋曝光光線之透過之功能。 形成遮光性膜圖案40之材料只要為具有遮擋曝光光線之透過之功能之材料,則並無特別限制。例如可列舉鉻系材料。作為鉻系材料,可列舉鉻(Cr)、或包含鉻(Cr)、碳(C)及氮(N)中之至少一種之鉻化合物。此外,可列舉包含鉻(Cr)、氧(O)及氟(F)中之至少一種之鉻化合物、或包含鉻(Cr)、碳(C)及氮(N)中之至少一種且更包含氧(O)及氟(F)中之至少一種之鉻化合物。例如,作為形成遮光性膜圖案40之材料,可列舉Cr、CrC、CrN、CrCN。 遮光性膜圖案40可藉由將利用濺鍍所成膜之遮光性膜利用蝕刻進行圖案化而形成。 於相偏移膜30與遮光性膜圖案40積層而成之部分中,相對於曝光光線之光學密度較佳為3以上,更佳為3.5以上。 光學密度可使用分光光度計或者OD(Optical Densitometer,光密度)計等進行測定。 遮光性膜圖案40可為包含組成均一之單一之膜之情況,亦可為包含組成不同之複數個膜之情況,亦可為包含組成於厚度方向連續地變化之單一之膜之情況。 再者,相偏移光罩基底10亦可為於相偏移膜30上具備抗蝕膜者。 繼而,對該實施形態之相偏移光罩基底10之製造方法進行說明。相偏移光罩基底10可藉由進行以下準備步驟及相偏移膜形成步驟而製造。 以下,對各步驟詳細地進行說明。 1.準備步驟 於準備步驟中,首先,準備透明基板20。透明基板20之材料只要為對於使用之曝光光線具有透光性之材料,則並無特別限制。例如可列舉合成石英玻璃、鈉鈣玻璃、無鹼玻璃。 於製造具備遮光性膜圖案40之相偏移光罩基底10之情形時,其後,於透明基板20上藉由濺鍍而例如形成包含鉻系材料之遮光性膜。其後,於遮光性膜上形成抗蝕膜圖案,將抗蝕膜圖案作為遮罩對遮光性膜進行蝕刻,形成遮光性膜圖案40。其後,將抗蝕膜圖案剝離。 2.相偏移膜形成步驟 於相偏移膜形成步驟中,於透明基板20上藉由濺鍍而形成包含鉻系材料之相偏移膜30。此處,於透明基板20上形成有遮光性膜圖案40之情形時,以覆蓋遮光性膜圖案40之方式形成相偏移膜30。 相偏移膜30係藉由於透明基板20之主表面上成膜相偏移層31,於相偏移層31上成膜金屬層33,且於金屬層33上成膜反射率降低層32而形成。 相偏移層31之成膜係使用包含鉻或鉻化合物之濺鍍靶,例如於包含惰性氣體與活性氣體之混合氣體之濺鍍氣體氛圍下進行,該惰性氣體包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種,該活性氣體包含選自由氧氣、氮氣、一氧化氮氣體、二氧化氮氣體、二氧化碳氣體、烴系氣體、氟系氣體所組成之群中之至少一種。作為烴系氣體,例如可列舉甲烷氣體、丁烷氣體、丙烷氣體、苯乙烯氣體等。 同樣地,金屬層33之成膜係使用包含鉻或鉻化合物之濺鍍靶,例如於含有包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種之惰性氣體之濺鍍氣體氛圍下進行,或於包含惰性氣體與活性氣體之混合氣體之濺鍍氣體氛圍下進行,該惰性氣體包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種,該活性氣體包含選自由氧氣、氮氣、一氧化氮氣體、二氧化氮氣體、二氧化碳氣體、烴系氣體、氟系氣體所組成之群中之至少一種。作為烴系氣體,例如可列舉:甲烷氣體、丁烷氣體、丙烷氣體、苯乙烯氣體等。 同樣地,反射率降低層32之成膜係使用包含鉻或鉻化合物之濺鍍靶,例如於包含惰性氣體與活性氣體之混合氣體之濺鍍氣體氛圍下進行,該惰性氣體包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種,該活性氣體包含選自由氧氣、氮氣、一氧化氮氣體、二氧化氮氣體、二氧化碳氣體、烴系氣體、氟系氣體所組成之群中之至少一種。作為烴系氣體,例如可列舉:甲烷氣體、丁烷氣體、丙烷氣體、苯乙烯氣體等。 於成膜相偏移層31、金屬層33及反射率降低層32時,相偏移層31、金屬層33及反射率降低層32各自之組成及厚度係以相偏移膜30之透過率及相位差具有上述特定之光學特性,且相偏移膜30之膜面反射率及其變動幅度具有上述特定之物性之方式進行調整。相偏移層31、金屬層33及反射率降低層32各自之組成可藉由濺鍍氣體之組成及流量等而控制。相偏移層31、金屬層33及反射率降低層32各自之厚度可藉由濺鍍功率、濺鍍時間等而控制。又,於濺鍍裝置為連續式濺鍍裝置之情形時,亦可藉由基板之搬送速度而控制相偏移層31、金屬層33及反射率降低層32各自之厚度。 於相偏移層31包含組成均一之單一之膜之情形時,於不改變濺鍍氣體之組成及流量之情況下僅進行1次上述成膜製程。於相偏移層31包含組成不同之複數個膜之情形時,在每一成膜製程時改變濺鍍氣體之組成及流量地進行複數次上述成膜製程。於相偏移層31包含組成於厚度方向連續地變化之單一之膜之情形時,一面使濺鍍氣體之組成及流量變化一面僅進行1次上述成膜製程。金屬層33之成膜及反射率降低層32之成膜亦情況相同。於進行複數次成膜製程之情形時,可減小對濺鍍靶施加之濺鍍功率。 相偏移層31、金屬層33及反射率降低層32較佳為使用連續式濺鍍裝置連續地成膜,而不會因將透明基板20取出至裝置外而暴露於大氣中。可藉由不取出至裝置外地連續進行成膜,而防止意外之各層之表面氧化或表面碳化。各層之意外之表面氧化或表面碳化存在使對於將形成於相偏移膜30上之抗蝕膜描繪時所使用之雷射光、或於將相偏移膜圖案轉印至形成於顯示裝置基板上之抗蝕膜時使用之曝光光線的反射率產生變化,又,使氧化部分或碳化部分之蝕刻速率產生變化之虞。 再者,於製造具備抗蝕膜之相偏移光罩基底10之情形時,繼而,於相偏移膜上形成抗蝕膜。 該實施形態1之相偏移光罩基底10係設置於透明基板20上之包含鉻系材料之相偏移膜30具有相偏移層31、反射率降低層32、及設置於相偏移層31與反射率降低層32之間之於350 nm~436 nm之波長區域中具有相較反射率降低層32之消光係數更高之消光係數的金屬層33,且一方面相偏移膜30對於曝光光線之透過率及相位差滿足作為相偏移膜30所需之特定之光學特性,一方面相偏移膜30之膜面反射率於350 nm~436 nm之波長區域中為10%以下。因此,可使用該相偏移光罩基底10,製造具有優異之圖案剖面形狀及優異之CD均一性且形成有微細之圖案之相偏移光罩。 又,該實施形態1之相偏移光罩基底10係設置於透明基板20上之包含鉻系材料之相偏移膜30具有相偏移層31、反射率降低層32、及設置於相偏移層31與反射率降低層32之間之具有相較反射率降低層32之鉻含有率更高之鉻含有率的金屬層33,且一方面相偏移膜30對於曝光光線之透過率及相位差滿足作為相偏移膜30所需之特定之光學特性,一方面相偏移膜30之膜面反射率於350 nm~436 nm之波長區域中為10%以下。因此,可使用該相偏移光罩基底10,製造具有優異之圖案剖面形狀及優異之CD均一性且形成有微細之圖案之相偏移光罩。 實施形態2. 實施形態2係對相偏移光罩之製造方法進行說明。相偏移光罩基底可藉由進行以下之抗蝕膜圖案形成步驟及相偏移膜圖案形成步驟而製造。 以下,對各步驟詳細地進行說明。 1.抗蝕膜圖案形成步驟 於抗蝕膜圖案形成步驟中,首先,於實施形態1之相偏移光罩基底10之相偏移膜30上,形成抗蝕膜。其中,於相偏移光罩基底10係於相偏移膜30上具備抗蝕膜者之情形時,不進行抗蝕膜之形成。所用之抗蝕膜材料並無特別限制。只要為對後文所述之具有選自350 nm~436 nm之波長區域中之任一波長之雷射光感光者即可。又,抗蝕膜可為正型、負型之任一者。 其後,使用具有選自350 nm~436 nm之波長區域中之任一波長之雷射光,於抗蝕膜上描繪特定之圖案。作為於抗蝕膜上所描繪之圖案,可列舉線與間隙圖案或接觸孔圖案。 其後,利用特定之顯影液將抗蝕膜顯影,於相偏移膜30上形成抗蝕膜圖案。 2.相偏移膜圖案形成步驟 於相偏移膜圖案形成步驟中,首先,將抗蝕膜圖案作為遮罩對相偏移膜30進行蝕刻,形成相偏移膜圖案。構成相偏移膜30之相偏移層31、金屬層33及反射率降低層32之各者係由包含鉻(Cr)之鉻系材料形成。因此,相偏移層31、金屬層33及反射率降低層32可藉由相同之蝕刻介質(蝕刻溶液、蝕刻氣體)進行蝕刻。蝕刻相偏移膜30之蝕刻介質(蝕刻溶液、蝕刻氣體)只要為能夠選擇性地將相偏移膜30蝕刻者,則並無特別限制。具體而言,可列舉:包含硝酸鈰銨及過氯酸之蝕刻溶液、或包含氯氣與氧氣之混合氣體之蝕刻氣體。 其後,使用抗蝕剝離液或藉由灰化,將抗蝕膜圖案剝離。 根據該實施形態2之相偏移光罩之製造方法,能夠製造具有優異之圖案剖面形狀及優異之CD均一性且形成有微細之圖案之相偏移光罩。 實施形態3. 於實施形態3中,對顯示裝置之製造方法進行說明。顯示裝置可藉由進行以下之光罩載置步驟及圖案轉印步驟而製造。 以下,對各步驟詳細地進行說明。 1.載置步驟 載置步驟係將實施形態2中製造之相偏移光罩載置於曝光裝置之光罩台。此處,相偏移光罩係以介隔曝光裝置之投影光學系統而與形成於顯示裝置基板上之抗蝕膜對向之方式配置。 2.圖案轉印步驟 圖案轉印步驟係對相偏移光罩照射曝光光線,將相偏移膜圖案轉印至形成於顯示裝置基板上之抗蝕膜。曝光光線係包含選自313 nm~436 nm之波長區域中之複數個波長之光之複合光、或自313 nm~436 nm之波長區域利用濾光片等將某一波長區域截止而選擇之單色光。例如,曝光光線係包含i線、h線及g線之複合光、或包含j光線、i線、h線及g線之混合光、或i線之單色光。若使用複合光作為曝光光線,則能夠增高曝光光線強度提昇產出量,故而能夠降低顯示裝置之製造成本。 根據該實施形態3之顯示裝置之製造方法,能夠製造高解像度、高精細之顯示裝置。 [實施例] 以下,基於實施例及比較例,對本發明進一步具體地進行說明。再者,以下實施例為本發明之一例,且並非限定本發明。 實施例1~4及比較例1~3之相偏移光罩基底具備透明基板、及配置於透明基板上之包含鉻系材料之相偏移膜。作為透明基板,使用大小為800 mm×920 mm且厚度為10 mm之合成石英玻璃基板。 圖3係表示實施例1、3、4之相偏移光罩基底之相偏移膜之膜面反射率光譜,圖4係表示比較例1、2之相偏移光罩基底之相偏移膜之膜面反射率光譜,圖5係表示比較例1、3之相偏移光罩基底之相偏移膜之膜面反射率光譜。 以下,對實施例1~4及比較例1~3詳細地進行說明。 實施例1. 實施例1之相偏移光罩基底之相偏移膜包含自透明基板側依序配置之相偏移層(CrOCN、膜厚89 nm)、金屬層(CrC、膜厚10 nm)、及反射率降低層(CrOCN、膜厚30 nm)。 相偏移層(CrOCN)係波長313 nm中之折射率為2.44及消光係數為0.71,波長350 nm中之折射率為2.51及消光係數為0.59,波長365 nm中之折射率為2.52及消光係數為0.55,波長413 nm中之折射率為2.54及消光係數為0.44,波長436 nm中之折射率為2.54及消光係數為0.40。 金屬層(CrC)係波長313 nm中之折射率為2.14及消光係數為2.61,波長350 nm中之折射率為2.24及消光係數為2.85,波長365 nm中之折射率為2.29及消光係數為2.94,波長413 nm中之折射率為2.52及消光係數為3.20,波長436 nm中之折射率為2.65及消光係數為3.3。 反射率降低層(CrOCN) 中波長313 nm中之折射率為2.46及消光係數為0.47,波長350 nm中之折射率為2.47及消光係數為0.37,波長365 nm中之折射率為2.47及消光係數為0.33,波長413 nm中之折射率為2.43及消光係數為0.23,波長436 nm中之折射率為2.41及消光係數為0.20。 再者,相偏移層之折射率及消光係數係使用n&k Technology公司製造之n&k Analyzer 1280(商品名)進行測定。相偏移層之折射率及消光係數之測定係於合成石英玻璃基板上對利用與以下所示之相偏移層之成膜條件相同之條件成膜所得之試樣進行。金屬層之折射率及消光係數之測定、以及反射率降低層之折射率及消光係數之測定亦同樣地進行。又,於實施例2~4及比較例1~3中亦同樣地進行測定。 相偏移層(CrOCN)之Cr含有率為32原子%,金屬層(CrC)之Cr含有率為46原子%,反射率降低層(CrOCN)之Cr含有率為28原子%。 再者,Cr含有率係使用ULVAC-PHI公司製造之SAM670型掃描型歐傑電子分光裝置(商品名)進行測定。於實施例2~4及比較例1~3中亦同樣地進行測定。 相偏移膜係藉由上述3層構造而具有對於365 nm之光之透過率5.98%及相位差178.66°。 再者,透過率及相位差係使用日本Lasertec公司製造之MPM-100(商品名)進行測定。於實施例2~4及比較例1~3中亦同樣地進行測定。 相偏移膜之膜面反射率係於313 nm之波長中為12.0%,於350 nm中為8.3%,於365 nm之波長中為7.3%,於405 nm之波長中為6.6%,於413 nm之波長中為6.6%,於436 nm之波長中為6.8%。又,相偏移膜之膜面反射率之變動幅度於350 nm~436 nm之波長區域中為1.7%,於365 nm~436 nm之波長區域中為0.7%,於313 nm~436 nm之波長區域中為5.5%。 圖3中之曲線a表示實施例1之相偏移光罩基底之相偏移膜之膜面反射率光譜。 再者,膜面反射率係使用島津製作所公司製造之SolidSpec-3700(商品名)進行測定。於實施例2~4及比較例1~3中亦同樣地進行測定。 相偏移膜之薄片電阻為508 Ω/□。因此,實施例1之相偏移光罩基底能夠防止充電。 再者,薄片電阻係使用共和理研公司製造之K-705RM(商品名)進行測定。於實施例2~4及比較例1~3中亦同樣地進行測定。 實施例1之相偏移光罩基底係藉由以下方法而製造。 首先,準備作為透明基板之合成石英玻璃基板。對透明基板之兩主表面進行鏡面研磨。對於實施例2~4及比較例1~3中所準備之透明基板之兩主表面亦同樣地進行鏡面研磨。 其後,將透明基板搬入連續式濺鍍裝置。於連續式濺鍍裝置中設置有濺鍍室。 其後,對配置於濺鍍室之鉻靶施加2.7 kW之濺鍍功率,且一面將Ar氣體、N2 氣體及CO2 氣體之混合氣體導入至濺鍍室內一面以200 mm/min之速度搬送透明基板。於透明基板通過鉻靶附近時,於透明基板之主表面上成膜包含CrOCN之膜厚89 nm之相偏移層。此處,混合氣體係以Ar成為35 sccm之流量,N2 成為35 sccm之流量,CO2 成為14.5 sccm之流量之方式導入至濺鍍室內。 其後,對鉻靶施加0.4 kW之濺鍍功率,且一面將Ar氣體與CH4 氣體之混合氣體(於Ar氣體中以8%之濃度包含有CH4 氣體之混合氣體)以100 sccm之流量導入至濺鍍室內,一面以400 mm/min之速度搬送透明基板。於透明基板通過鉻靶附近時,於相偏移層上成膜包含CrC之膜厚10 nm之金屬層。 其後,對鉻靶施加2.0 kW之濺鍍功率,且一面將Ar氣體與N2 氣體及CO2 氣體之混合氣體導入至濺鍍室內,一面以200 mm/min之速度搬送透明基板。於透明基板通過鉻靶附近時,於金屬層上成膜包含CrOCN之膜厚30 nm之反射率降低層。此處,混合氣體係以Ar成為35 sccm之流量,N2 成為35 sccm之流量,CO2 成為18.2 sccm之流量之方式導入至濺鍍室內。 其後,將形成有包含相偏移層(CrOCN,膜厚89 nm)、金屬層(CrC,膜厚10 nm)、及反射率降低層(CrOCN,膜厚30 nm)之相偏移膜之透明基板自連續式濺鍍裝置取出,進行洗淨。 再者,相偏移層之成膜、金屬層之成膜、及反射率降低層之成膜係於連續式濺鍍裝置內連續地進行,而不會因將透明基板取出至連續式濺鍍裝置外導致暴露於大氣中。 使用上述相偏移光罩基底,藉由以下方法製造相偏移光罩。 首先,於上述相偏移光罩基底之相偏移膜上形成包含酚醛清漆系之正型光阻(photoresist)之抗蝕膜。 其後,藉由雷射描繪機而使用波長413 nm之雷射光,於抗蝕膜上描繪特定之圖案。 其後,利用特定之顯影液將抗蝕膜顯影,於相偏移膜上形成抗蝕膜圖案。 其後,將抗蝕膜圖案作為遮罩將相偏移膜進行蝕刻,形成相偏移膜圖案。構成相偏移膜之相偏移層、金屬層及反射率降低層之各者係由包含鉻(Cr)之鉻系材料形成。因此,相偏移層、金屬層及反射率降低層能夠藉由相同之蝕刻溶液進行蝕刻。此處,作為蝕刻相偏移膜之蝕刻溶液,使用包含硝酸鈰銨及過氯酸之蝕刻溶液。 其後,使用抗蝕劑剝離液將抗蝕膜圖案剝離。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案剖面係於位於相偏移膜圖案之膜厚方向之中央部之金屬層中產生有若干腐蝕,但為不影響光罩特性之程度。 再者,相偏移光罩之相偏移膜圖案剖面係使用電子顯微鏡(日本電子股份有限公司製造之JSM7401F(商品名))進行觀察。於實施例2~4及比較例1~3中亦同樣地進行測定。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案之CD不均較良好且為70 nm。CD不均係與作為目標之線與間隙圖案(線圖案之寬度:2.0 μm,間隙圖案之寬度:2.0 μm)相距之偏移寬度。 再者,相偏移光罩之相偏移膜圖案之CD不均係使用Seiko Instruments Nano Technologies公司製造之SIR8000進行測定。於實施例2~4及比較例1~3中亦同樣地進行測定。 上述相偏移光罩具有優異之圖案剖面形狀及優異之CD均一性,又,相偏移膜圖案對於曝光光線之膜面反射率較低,故而可使用上述相偏移光罩,製造高解像度且高精細之顯示裝置。 又,該相偏移光罩可使用具備薄片電阻較小之相偏移膜之相偏移光罩基底而製造,故而即便形成有較小之圖案之情形時,電亦不易自圖案進入圖案,從而不易引起靜電破壞。 實施例2. 實施例2之相偏移光罩基底之相偏移膜包含自透明基板側依序配置之相偏移層(CrOCN,膜厚89 nm)、金屬層(CrC,膜厚20 nm)、及反射率降低層(CrOCN,膜厚30 nm)。僅金屬層與實施例1之相偏移光罩基底不同。 相偏移層(CrOCN)之折射率及消光係數之值係與實施例1相同。 金屬層(CrC)係波長313 nm中之折射率為2.09及消光係數為2.05,波長350 nm中之折射率為2.08及消光係數為2.18,波長365 nm中之折射率為2.08及消光係數為2.24,波長413 nm中之折射率為2.11及消光係數為2.45,波長436 nm中之折射率為2.15及消光係數為2.55。 反射率降低層(CrOCN)之折射率及消光係數之值與實施例1相同。 相偏移層(CrOCN)及反射率降低層(CrOCN)之Cr含有率與實施例1相同。金屬層(CrC)之Cr含有率為43原子%。 相偏移膜係藉由上述3層構造而具有對於365 nm之光之透過率5.78%及相位差179.02°。 相偏移膜係膜面反射率於313 nm之波長中為12.0%,於350 nm中為8.4%,於365 nm之波長中為8.4%,於405 nm之波長中為8.2%,於413 nm波長中為8.4%,於436 nm之波長中為8.7%。又,相偏移膜係膜面反射率之變動幅度於350 nm~436 nm之波長區域中為1.0%,於365 nm~436 nm之波長區域中為0.6%,於313 nm~436 nm之波長區域中為3.8%。 相偏移膜之薄片電阻為560 Ω/□。因此,實施例2之相偏移光罩基底能夠防止充電。 實施例2係於金屬層之成膜時,對鉻靶施加0.33 kW之濺鍍功率,一面將Ar氣體與CH4 氣體之混合氣體(於Ar氣體中以15%之濃度含有CH4 氣體之混合氣體)以100 sccm之流量導入至濺鍍室內,一面以400 mm/min之速度搬送透明基板。於透明基板通過鉻靶附近時,於相偏移層上成膜包含CrC之膜厚20 nm之金屬層。其他方面係藉由與實施例1相同之方法,而製造實施例2之相偏移光罩基底。 使用上述相偏移光罩基底,藉由與實施例1相同之方法,而製造相偏移光罩。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案剖面為垂直,且於金屬層中未產生腐蝕。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案之CD不均較良好且為50 nm。 上述相偏移光罩具有優異之圖案剖面形狀及優異之CD均一性,又,相偏移膜圖案對於曝光光線之膜面反射率較低,故而可使用上述相偏移光罩,製造高解像度且高精細之顯示裝置。 又,該相偏移光罩可使用具備薄片電阻較小之相偏移膜之相偏移光罩基底而製造,故而即便形成有較小之圖案之情形時,電亦不易自圖案進入圖案,從而不易引起靜電破壞。 實施例3. 實施例3之相偏移光罩基底之相偏移膜包含自透明基板側依序地配置之相偏移層(CrOCN,膜厚89 nm)、金屬層(CrCN,膜厚22 nm)、及反射率降低層(CrOCN,膜厚30 nm)。僅金屬層與實施例1之相偏移光罩基底不同。 相偏移層(CrOCN)之折射率及消光係數之值係與實施例1相同。 金屬層(CrCN)係波長313 nm中之折射率為2.07及消光係數為2.14,波長350 nm中之折射率為2.12及消光係數為2.28,波長365 nm中之折射率為2.14及消光係數為2.35,波長413 nm中之折射率為2.26及消光係數為2.55,波長436 nm中之折射率為2.33及消光係數為2.64。 反射率降低層(CrOCN)之折射率及消光係數之值與實施例1相同。 相偏移層(CrOCN)及反射率降低層(CrOCN)之Cr含有率與實施例1相同。金屬層(CrCN)之Cr含有率為40原子%。 相偏移膜藉由上述3層構造而具有對於365 nm之光之透過率6.00%及相位差176.78°。 相偏移膜係膜面反射率於313 nm之波長中為13.0%,於350 nm中為9.5%,於365 nm之波長中為8.4%,於405 nm之波長中為7.6%,於413 nm之波長中為7.6%,於436 nm之波長中為7.6%。又,相偏移膜係膜面反射率之變動幅度於350 nm~436 nm之波長區域中為1.9%,於365 nm~436 nm之波長區域中為0.8%,於313 nm~436 nm之波長區域中為5.6%。 圖3中之曲線b表示實施例3之相偏移光罩基底之相偏移膜之膜面反射率光譜。 相偏移膜之薄片電阻為800 Ω/□。因此,實施例3之相偏移光罩基底能夠防止充電。 實施例3係於金屬層之成膜時,對鉻靶施加0.42 kW之濺鍍功率,一面將Ar氣體與CH4 氣體及N2 氣體之混合氣體導入至濺鍍室內,一面以400 mm/min之速度搬送透明基板。於透明基板通過鉻靶附近時,於相偏移層上成膜包含CrCN之膜厚22 nm之金屬層。此處,混合氣體係以Ar氣體與CH4 氣體之混合氣體(於Ar氣體中以8%之濃度含有CH4 氣體之混合氣體)成為100 sccm,且N2 成為30 sccm之流量之方式導入至濺鍍室內。其他方面係藉由與實施例1相同之方法而製造實施例3之相偏移光罩基底。 使用上述相偏移光罩基底,且藉由與實施例1相同之方法,而製造相偏移光罩。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案剖面係於位於相偏移膜圖案之膜厚方向之中央部之金屬層中產生有若干腐蝕,但並非影響光罩特性之程度。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案之CD不均較良好且為75 nm。 上述相偏移光罩具有優異之圖案剖面形狀及優異之CD均一性,又,相偏移膜圖案對曝光光線之膜面反射率較低,故而可使用上述相偏移光罩,製造高解像度且高精細之顯示裝置。 又,該相偏移光罩可使用具備薄片電阻較小之相偏移膜之相偏移光罩基底而製造,故而即便形成有較小之圖案之情形時,電亦不易自圖案進入圖案,從而不易引起靜電破壞。 實施例4. 實施例4之相偏移光罩基底之相偏移膜包含自透明基板側依序地配置之相偏移層(CrOCN,膜厚91.5 nm)、金屬層(CrC,膜厚10 nm)、及反射率降低層(CrOCN,膜厚28 nm)。 相偏移層(CrOCN)、金屬層(CrN)及反射率降低層(CrOCN)各自之折射率及消光係數之值與實施例1相同。 相偏移層(CrOCN)、金屬層(CrN)及反射率降低層(CrOCN)各自之Cr含有率與實施例1相同。 相偏移膜藉由上述3層構造而具有對於365 nm之光之透過率5.55%及相位差182.30°。 相偏移膜係膜面反射率於313 nm之波長中為12.3%,於350 nm中為9.2%,於365 nm之波長中為8.5%,於405 nm之波長中為8.3%,於413 nm之波長中為8.5%,於436 nm之波長中為8.8%。又,相偏移膜係膜面反射率之變動幅度於350 nm~436 nm之波長區域中為1.0%,於365 nm~436 nm之波長區域中為0.6%,於313 nm~436 nm之波長區域中為4.2%。 圖3中之曲線c表示實施例4之相偏移光罩基底之相偏移膜之膜面反射率光譜。 相偏移膜之薄片電阻為510 Ω/□。因此,實施例4之相偏移光罩基底能夠防止充電。 實施例4係於相偏移層之成膜時,以205 mm/min之速度搬送透明基板。於金屬層之成膜時,將Ar氣體與CH4 氣體之混合氣體(於Ar氣體中以15%之濃度含有CH4 氣體之混合氣體)以200 sccm之流量導入至濺鍍室內。於反射率降低層之成膜時,以215 mm/min之速度搬送透明基板。其他方面係藉由與實施例1相同之方法,而製造實施例4之相偏移光罩基底。 使用上述相偏移光罩基底,且藉由與實施例1相同之方法,而製造相偏移光罩。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案剖面係於位於相偏移膜圖案之膜厚方向之中央部之金屬層中產生有極輕微之腐蝕,但並非影響光罩特性之程度。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案之CD不均較良好且為55 nm。 上述相偏移光罩具有優異之圖案剖面形狀及優異之CD均一性,又,對於曝光光線之膜面反射率較低,故而可使用上述相偏移光罩,製造高解像度且高精細之顯示裝置。 又,該相偏移光罩可使用具備薄片電阻較小之相偏移膜之相偏移光罩基底而製造,故而即便形成有較小之圖案之情形時,電亦不易自圖案進入圖案,從而不易引起靜電破壞。 比較例1. 比較例1之相偏移光罩基底之相偏移膜僅包含相偏移層(CrOCN,膜厚122 nm)。比較例1之相偏移光罩基底係於相偏移膜不具備金屬層及反射率降低層之方面不同於實施例之相偏移光罩基底。 相偏移層(CrOCN)係波長313 nm中之折射率為2.36及消光係數為0.74,波長350 nm中之折射率為2.43及消光係數為0.66,波長365 nm中之折射率為2.45及消光係數為0.62,波長413 nm中之折射率為2.49及消光係數為0.53,波長436 nm中之折射率為2.50及消光係數為0.49。 相偏移層(CrOCN)之Cr含有率為32原子%。 相偏移膜係藉由上述1層構造而具有對於365 nm之光之透過率5.20%及相位差179.60°。 相偏移膜係膜面反射率於313 nm之波長中為19.9%,於350 nm中為20.3%,於365 nm之波長中為20.7%,於405 nm之波長中為22.0%,於413 nm之波長中為22.1%,於436 nm之波長中為22.2%。又,相偏移膜係膜面反射率之變動幅度於350 nm~436 nm之波長區域中為1.9%,於365 nm~436 nm之波長區域中為1.6%,於313 nm~436 nm之波長區域中為2.4%。 圖4、5中之曲線d表示比較例1之相偏移光罩基底之相偏移膜之膜面反射率光譜。 相偏移膜之薄片電阻係無法測定(∞)。因此,比較例1之相偏移光罩基底係引起充電之可能性高於實施例之相偏移光罩基底。 比較例1之相偏移光罩基底係藉由以下方法而製造。 首先,準備作為透明基板之合成石英玻璃基板。 其後,將透明基板搬入至連續式濺鍍裝置。 其後,對配置於濺鍍室之鉻靶施加3.5 kW之濺鍍功率,一面將Ar氣體與N2 氣體及CO2 氣體之混合氣體導入至濺鍍室內,一面以200 mm/min之速度搬送透明基板。於透明基板通過鉻靶附近時,於透明基板之主表面上成膜包含CrOCN之膜厚122 nm之相偏移層。此處,混合氣體係以Ar成為46 sccm、N2 成為46 sccm,且CO2 成為18.5 sccm之流量之方式導入至濺鍍室內。 其後,將形成有包含相偏移層(CrOCN,膜厚122 nm)之相偏移膜之透明基板自連續式濺鍍裝置取出,進行洗淨。 使用上述相偏移光罩基底,且藉由與實施例1相同之方法,而製造相偏移光罩。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案剖面為垂直。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案之CD不均為90 nm,未達到用於高解像度且高精細之顯示裝置之製造之相偏移光罩所要求之等級。 上述相偏移光罩雖呈優異之圖案剖面形狀,但因CD不均較大,又,相偏移膜圖案對於曝光光線之膜面反射率較高,故而無法使用上述相偏移光罩,製造高解像度且高精細之顯示裝置。 又,該相偏移光罩可使用具備薄片電阻較大之相偏移膜之相偏移光罩基底而製造,故而即便形成有較小之圖案之情形時,電亦容易自圖案進入圖案,從而容易引起靜電破壞。 比較例2. 比較例2之相偏移光罩基底之相偏移膜包含自透明基板側依序地配置之相偏移層(CrOCN,膜厚113.4 nm)、及反射率降低層(CrOCN,膜厚7 nm)。比較例2之相偏移光罩基底係於相偏移膜不具備金屬層之方面不同於實施例之相偏移光罩基底。 相偏移層(CrOCN)係波長313 nm中之折射率為2.37及消光係數為0.72,波長350 nm中之折射率為2.45及消光係數為0.64,波長365 nm中之折射率為2.48及消光係數為0.60,波長413 nm中之折射率為2.52及消光係數為0.48,波長436 nm中之折射率為2.53及消光係數為0.44。 反射率降低層(CrOCN)係波長313 nm中之折射率為2.24及消光係數為0.36,波長350 nm中之折射率為2.20及消光係數為0.28,波長365 nm中之折射率為2.18及消光係數為0.26,波長413 nm中之折射率為2.13及消光係數為0.20,波長436 nm中之折射率為2.11及消光係數為0.17。 相偏移層(CrOCN)之Cr含有率為33原子%,且反射率降低層(CrOCN)之Cr含有率為26原子%。 相偏移膜藉由上述2層構造而具有對於365 nm之光之透過率8.40%及相位差172.50°。 相偏移膜係膜面反射率於313 nm之波長中為16.2%,於350 nm中為17.9%,於365 nm之波長中為18.9%,於405 nm之波長中為20.4%,於413 nm之波長中為20.4%,於436 nm之波長中為19.7%。又,相偏移膜係膜面反射率之變動幅度於350 nm~436 nm之波長區域中為2.5%,於365 nm~436 nm之波長區域中為1.5%,於313 nm~436 nm之波長區域中為4.2%。 圖4中之曲線e表示比較例2之相偏移光罩基底之相偏移膜之膜面反射率光譜。 相偏移膜之薄片電阻係無法測定(∞)。因此,比較例2之相偏移光罩基底係引起充電之可能性高於實施例之相偏移光罩基底。 比較例2之相偏移光罩基底係藉由以下方法而製造。 首先,準備作為透明基板之合成石英玻璃基板。 其後,將透明基板搬入至連續式濺鍍裝置。 其後,對配置於濺鍍室之鉻靶施加3.4 kW之濺鍍功率,一面將Ar氣體、N2 氣體及CO2 氣體之混合氣體導入至濺鍍室內,一面以200 mm/min之速度搬送透明基板。於透明基板通過鉻靶附近時,於透明基板之主表面上成膜包含CrOCN之膜厚113.4 nm之相偏移層。此處,混合氣體係以Ar成為35 sccm,N2 成為35 sccm,且CO2 成為19.8 sccm之流量之方式導入至濺鍍室內。 其後,對配置於濺鍍室之鉻靶施加0.5 kW之濺鍍功率,一面將Ar氣體、N2 氣體及CO2 氣體之混合氣體導入至濺鍍室內,一面以200 mm/min之速度搬送透明基板。於透明基板通過鉻靶附近時,於相偏移層上成膜包含CrOCN之膜厚7 nm之反射率降低層。此處,混合氣體係以Ar成為35 sccm,N2 成為35 sccm,且CO2 成為19.8 sccm之流量之方式導入至濺鍍室內。 其後,將形成有包含相偏移層(CrOCN,膜厚113.4 nm)及反射率降低層(CrOCN、膜7 nm)之相偏移膜之透明基板自連續式濺鍍裝置取出,進行洗淨。 再者,相偏移層之成膜及反射率降低層之成膜係於連續式濺鍍裝置內連續地進行,而不必將透明基板取出至連續式濺鍍裝置外暴露於大氣中。 使用上述相偏移光罩基底,且藉由與實施例1相同之方法,而製造相偏移光罩。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案剖面係於與抗蝕膜之界面產生有蝕刻溶液之浸入之形狀。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案之CD不均為200 nm,未達到用於高解像度且高精細之顯示裝置之製造之相偏移光罩所要求之等級。 上述相偏移光罩係於與抗蝕膜之界面產生有浸入之圖案剖面形狀,又,CD不均較大,進而,相偏移膜圖案對於曝光光線之膜面反射率較高,故而無法使用上述相偏移光罩製造高解像度且高精細之顯示裝置。 又,該相偏移光罩可使用具備薄片電阻較大之相偏移膜之相偏移光罩基底而製造,故而即便形成有較小之圖案之情形時,電亦容易自圖案進入圖案,從而容易引起靜電破壞。 比較例3. 比較例3之相偏移光罩基底之相偏移膜包含自透明基板側依序地配置之相偏移層(CrOCN,膜厚113.4 nm)、第1反射率降低層(CrOCN,膜厚7 nm)、及第2反射率降低層(CrOCN,膜厚13.6 nm)。比較例3之相偏移光罩基底之相偏移膜相當於在比較例2之相偏移光罩基底之反射率降低層上設置有第2反射率降低層(CrOCN)而成者。 相偏移層(CrOCN)之折射率及消光係數之值係與比較例2之相偏移層(CrOCN)之折射率及消光係數之值相同。 第1反射率降低層(CrOCN)之折射率及消光係數之值係與比較例2之反射率降低層(CrOCN)之折射率及消光係數之值相同。 第2反射率降低層(CrOCN)係波長313 nm中之折射率為2.41及消光係數為0.41,波長350 nm中之折射率為2.40及消光係數為0.32,波長365 nm中之折射率為2.39及消光係數為0.29,波長413 nm中之折射率為2.35及消光係數為0.21,波長436 nm中之折射率為2.33及消光係數為0.19。 相偏移層(CrOCN)及第1反射率降低層(CrOCN)之Cr含有率係與比較例2之相偏移層(CrOCN)及反射率降低層(CrOCN)之Cr含有率相同。第2反射率降低層(CrOCN)之Cr含有率為29原子%。 相偏移膜藉由上述3層構造而具有對於365 nm之光之透過率8.00%及相位差190.00°。 相偏移膜係膜面反射率於313 nm之波長中為12.9%,於350 nm中為12.2%,於365 nm之波長中為12.8%,於405 nm之波長中為15.7%,於413 nm之波長中為16.3%,於436 nm之波長中為17.5%。又,相偏移膜係膜面反射率之變動幅度於350 nm~436 nm之波長區域中為5.2%,於365 nm~436 nm之波長區域中為4.6%,於313 nm~436 nm之波長區域中為5.4%。 圖5中之曲線f表示比較例3之相偏移光罩基底之相偏移膜之膜面反射率光譜。 相偏移膜之薄片電阻係無法測定(∞)。因此,比較例3之相偏移光罩基底係引起充電之可能性高於實施例之相偏移光罩基底。 比較例3係於比較例2之反射率降低層之成膜後,對配置於濺鍍室之鉻靶施加1.0 kW之濺鍍功率,一面將Ar氣體、N2 氣體及CO2 氣體之混合氣體導入至濺鍍室內,一面以200 mm/min之速度搬送透明基板。於透明基板通過鉻靶附近時,於第1反射率降低層上成膜包含CrOCN之膜厚13.6 nm之第2反射率降低層。此處,混合氣體係以Ar成為35 sccm,N2 成為35 sccm,且CO2 成為19.8 sccm之流量之方式導入至濺鍍室內。其他方面係藉由與比較例2相同之方法,而製造比較例3之相偏移光罩基底。 使用上述相偏移光罩基底,且藉由與實施例1相同之方法,而製造相偏移光罩。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案剖面為垂直,但其係於與抗蝕膜之界面產生有蝕刻溶液之浸入之形狀。 使用上述相偏移光罩基底所製造之相偏移光罩之相偏移膜圖案之CD不均為180 nm,未達到用於高解像度且高精細之顯示裝置之製造之相偏移光罩所要求之等級。 上述相偏移光罩係於與抗蝕膜之界面產生有浸入之圖案剖面形狀,又,CD不均較大,進而,相偏移膜圖案對於曝光光線之膜面反射率較高,故而無法使用上述相偏移光罩,製造高解像度且高精細之顯示裝置。 又,該相偏移光罩可使用具備薄片電阻較大之相偏移膜之相偏移光罩基底而製造,故而即便形成有較小之圖案之情形時,電亦容易自圖案進入圖案,從而容易引起靜電破壞。 如以上所述,基於實施形態及實施例對本發明詳細地進行了說明,但本發明並不限定於此。只要為具有該領域中之一般知識者,便明白能夠於本發明之技術思想內進行變化或改良。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the following embodiment is a form which embodies this invention, and does not limit this invention to this range. Furthermore, the same or equivalent parts may be denoted by the same symbols in the drawings, and the description thereof may be simplified or omitted. Embodiment 1. Embodiment 1 describes a phase shift mask base. FIG. 1 is a schematic view showing a film configuration of a phase shift mask substrate 10. The phase shift mask base 10 includes a transparent substrate 20 that is transparent to exposure light, and a phase shift film 30 made of a chromium-based material and disposed on the transparent substrate 20. When the transparent substrate 20 is set to have no surface reflection loss, it has a transmittance of 85% or more for the exposure light, and preferably a transmittance of 90% or more. The phase shift film 30 includes a phase shift layer 31, a metal layer 33, and a reflectance reduction layer 32 which are sequentially arranged from the transparent substrate 20 side. The phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 are each formed of a chromium-based material containing chromium (Cr). Therefore, the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 can be etched by the same etching solution. The phase shift layer 31 is disposed on the main surface of the transparent substrate 20. The phase shift layer 31 has a function of adjusting transmittance and phase difference with respect to exposure light. The phase shift layer 31 is formed of a chromium compound containing at least one of chromium (Cr), oxygen (O), and nitrogen (N). The phase shift layer 31 may be formed of a chromium compound containing at least one of chromium (Cr), oxygen (O), and nitrogen (N) and further containing at least one of carbon (C) and fluorine (F). . For example, examples of the material for forming the phase shift layer 31 include CrO, CrN, CrOFCrNF, CrON, CrCO, CrCN, CrOCN, CrFCO, and CrFCON. The phase shift layer 31 can be formed by sputtering. The reflectance reduction layer 32 is disposed on the upper side of the phase shift layer 31. The reflectance reduction layer 32 has a function of reducing the reflectance of light incident on the phase shift film 30 side (that is, the side of the reflectance reduction layer 32 opposite to the transparent substrate 20 side). The reflectance reduction layer 32 is formed of a chromium compound containing chromium (Cr) and oxygen (O). The reflectance reducing layer 32 may be formed of a chromium compound containing chromium (Cr) and oxygen (O) and further containing at least one of nitrogen (N), carbon (C), and fluorine (F). Examples of the material for forming the reflectance-reducing layer 32 include CrO, CrON, CrCO, CrOF, CrOCN, and CrFON. The reflectance reduction layer 32 can be formed by sputtering. The metal layer 33 is disposed between the phase shift layer 31 and the reflectance reduction layer 32. The metal layer 33 has a function of adjusting the transmittance with respect to the exposure light, and in combination with the reflectance reducing layer 32 has a function of reducing the reflectance with respect to light incident from the phase shift film 30 side. The metal layer 33 is formed of chromium (Cr) or a chromium compound containing at least one of chromium (Cr), carbon (C), and nitrogen (N). The metal layer 33 may be formed of a chromium compound containing at least one of chromium (Cr), carbon (C), and nitrogen (N), and further containing at least one of oxygen (O) and fluorine (F). Examples of the material for forming the metal layer 33 include Cr, CrC, CrN, CrCN, CrCO, and CrCF. Since the metal layer 33 is provided, the sheet resistance of the phase shift film is reduced, so that it is possible to prevent the phase shift mask base and the phase shift mask from being charged. When the metal layer 33 is not provided, the phase shift mask base and the electricity generated when the phase shift mask comes in and out of the housing will not escape, and the phase shift mask base and the phase shift mask will not escape. Medium power storage makes it easy for foreign matter to adhere. In addition, when a relatively small pattern is formed in the phase shift mask, it is easy for electricity to enter the pattern from the pattern and cause static electricity damage. The metal layer 33 can be formed by sputtering. The metal layer 33 has a higher extinction coefficient in the wavelength region of 350 nm to 436 nm than the extinction coefficient of the reflectance reduction layer 32. Moreover, it is preferable to have an extinction coefficient higher in the wavelength range of 313 nm-436 nm than the extinction coefficient of the reflectance reduction layer 32. The difference between the extinction coefficient of the metal layer 33 and the extinction coefficient of the reflectance reduction layer 32 is preferably 1.5 to 3.5, and more preferably 1.8 to 3.5. If the difference in extinction coefficient is 1.5 to 3.5, it is possible to increase the wavelength range of the interface between the metal layer 33 and the reflectance reduction layer 32 (the wavelength range of 350 nm to 436 nm or the wavelength range of 313 nm to 436 nm). The reflectance is more preferable because it can further exert the effect of reducing the reflectance. Furthermore, the metal layer 33 has a higher extinction coefficient in the wavelength region of 350 nm to 436 nm than the extinction coefficient of the offset layer 31. In addition, it is preferable that the wavelength range of 313 nm to 436 nm has an extinction coefficient higher than that of the offset layer 31. The extinction coefficient can be measured using an n & k analyzer, an ellipsometer, or the like. The metal layer 33 has a chromium (Cr) content rate (atomic%) higher than the chromium (Cr) content rate (atomic%) of the reflectance reduction layer 32. The difference between the Cr content rate of the metal layer 33 and the Cr content rate of the reflectance reduction layer 32 is preferably 10 to 80 atomic%, more preferably 15 to 80 atomic%. If the difference in Cr content is 10 to 80 atomic%, the above-mentioned wavelength region (a wavelength region of 350 nm to 436 nm or a wavelength region of 313 nm to 436 nm) of the interface between the metal layer 33 and the reflectance reduction layer 32 can be increased. ), It is preferable because the reflectance reduction effect can be further exerted. In addition, the etching rate of the metal layer 33 can be adjusted by making nitrogen (N), oxygen (O), carbon (C), and fluorine (F) contained in chromium (Cr) into a chromium compound. For example, the wet etching rate can be slowed by containing carbon (C) or fluorine (F) in chromium (Cr), and the nitrogen (N) or oxygen (O) can be contained in chromium (Cr) Speed up wet etching. The phase of the etched phase can be shifted by considering the wet etching speed of the phase shift layer 31 and the reflectance reduction layer 32 formed on the metal layer 33 and the reflectance reduction layer 32. The cross-sectional shape of the film 30 becomes favorable. In addition, the metal layer 33 has a chromium (Cr) content rate higher than that of the offset layer 31. The Cr content can be measured using an Auje electronic spectrometer, an X-ray photoelectron spectrometer (XPS), or the like. Each of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 preferably has a refractive index of 2.0 or more in a wavelength region of 350 nm to 436 nm. If it has a refractive index of 2.0 or more, the film thickness of the phase shift film 30 required for obtaining the required optical characteristics (transmittance and retardation) can be made thin. Therefore, a phase shift mask produced using the phase shift mask substrate 10 provided with the phase shift film 30 can have a phase shift film pattern having an excellent pattern cross-sectional shape and excellent CD uniformity. The refractive index can be measured using an n & k analyzer or an ellipsometer. With the laminated structure of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32, the phase shift film 30 has specific optical characteristics with respect to the transmittance and phase difference of the exposure light. The transmittance of the phase shift film 30 to the exposure light satisfies a value required as the phase shift film 30. The transmittance of the phase shift film 30 is preferably 1% to 20%, and more preferably 3% to 10% with respect to light of a specific wavelength (hereinafter, referred to as a representative wavelength) included in the exposure light. That is, when the exposure light is a composite light including light in a wavelength range of 313 nm to 436 nm, the phase shift film 30 has the above-mentioned transmittance for light of a representative wavelength included in the wavelength range. For example, when the exposure light is a composite light including i-line, h-line, and g-line, the phase shift film 30 has the above-mentioned transmittance for any of the i-line, h-line, and g-line. The phase difference of the phase shift film 30 with respect to the exposure light satisfies a value required as the phase shift film 30. The phase difference of the phase shift film 30 is preferably 160 ° to 200 °, and more preferably 170 ° to 190 ° with respect to light having a representative wavelength included in the exposure light. By this property, the phase of light having a representative wavelength included in the exposure light can be changed by 160 ° to 200 °. Therefore, a phase difference of 160 to 200 ° occurs between light having a representative wavelength transmitted through the phase shift film 30 and light having a representative wavelength transmitted through the transparent substrate 20 only. That is, when the exposure light is a composite light including light in a wavelength range of 313 nm to 436 nm, the phase shift film 30 has the above-mentioned phase difference with respect to light of a representative wavelength included in the wavelength range. For example, when the exposure light is a composite light including i-line, h-line, and g-line, the phase shift film 30 has the above-mentioned phase difference for any of the i-line, h-line, and g-line. The transmittance and phase difference of the phase shift film 30 can be controlled by adjusting the composition and thickness of each of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 constituting the phase shift film 30. Therefore, in this embodiment, the composition and thickness of each of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 are adjusted so that the transmittance and phase difference of the phase shift film 30 have the above-mentioned specific optical characteristics. . Moreover, the transmittance of the phase shift film 30 is mainly affected by the composition and thickness of the phase shift layer 31 and the metal layer 33. The refractive index of the phase shift film 30 is mainly affected by the composition and thickness of the phase shift layer 31. The transmittance and phase difference can be measured using a phase shift amount measuring device or the like. The film surface reflectance of the phase shift film 30 with respect to light incident from the side of the phase shift film 30 is 10% or less in a wavelength region of 350 nm to 436 nm. The wavelength range of 313 nm to 436 nm is preferably 13% or less. That is, it is preferable that the film surface reflectance of the phase shift film 30 with respect to light incident from the phase shift film 30 side is 10% or less in a wavelength range of 350 nm to 436 nm, and even if the wavelength range is expanded to 313 nm ~ 436 nm is also less than 13%. If the film surface reflectance of the phase shift film 30 is 10% or less in the wavelength range of 350 nm to 436 nm, the film surface reflectance of the laser drawing light is reduced, so that a phase having excellent CD uniformity can be formed. Offset mask. In addition, if the film surface reflectance of the phase shift film 30 is 13% or less in the wavelength region of 313 nm to 436 nm, the film surface reflectance with respect to the exposure light is reduced, and therefore the film formed in the phase shift mask During pattern transfer, it is possible to prevent blurring (flashing) of the transferred pattern due to reflected light from the display device substrate. The fluctuation range of the film surface reflectance of the phase shift film 30 is preferably 9% or less in the wavelength region of 350 nm to 436 nm, and more preferably 8.5% or less. The wavelength range of 313 nm to 436 nm is preferably 12.5% or less, and more preferably 12%. That is, it is preferable that the variation range of the film surface reflectance of the phase shift film 30 is 9% or less, and further 8.5% or less in the wavelength range of 350 nm to 436 nm, and it is preferable that the wavelength range is enlarged even if the wavelength range is enlarged. It is also 12.5% to 313 nm to 436 nm, and further to 12%. The film surface reflectance of the phase shift film 30 and its fluctuation range can be determined by the respective refractive indices, extinction coefficients, and thicknesses of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 constituting the phase shift film 30. Adjust and control. The extinction coefficient and refractive index can be controlled by adjusting the composition. Therefore, in this embodiment, the phase shift layer 31, the film surface reflectance of the phase shift film 30, and the variation range thereof are adjusted to have the specific physical properties described above. The composition and thickness of each of the metal layer 33 and the reflectance reduction layer 32. In addition, the film surface reflectance of the phase shift film 30 and its fluctuation range are mainly affected by the composition and thickness of each of the metal layer 33 and the reflectance reduction layer 32. The film surface reflectance can be measured using a spectrophotometer or the like. The variation range of the reflectance of the film surface can be obtained from the difference between the maximum reflectance and the minimum reflectance in the wavelength region of 350 nm to 436 nm or 313 nm to 436 nm. The phase shift layer 31 may be a case where a single film having a uniform composition is included, a case where a plurality of films having different compositions are included, or a case where a single film whose composition is continuously changed in the thickness direction is included. The same applies to the metal layer 33 and the reflectance reduction layer 32. FIG. 2 is a schematic view showing another film configuration of the phase shift mask base 10. As shown in FIG. 2, the phase shift mask base 10 may be one having a light-shielding film pattern 40 between the transparent substrate 20 and the phase shift film 30. When the phase shift mask base 10 includes a light-shielding film pattern 40, the light-shielding film pattern 40 is disposed on the main surface of the transparent substrate 20. The light-shielding film pattern 40 has a function of blocking the transmission of the exposure light. The material for forming the light-shielding film pattern 40 is not particularly limited as long as it has a function of blocking the transmission of exposure light. Examples include chromium-based materials. Examples of the chromium-based material include chromium (Cr) or a chromium compound containing at least one of chromium (Cr), carbon (C), and nitrogen (N). In addition, examples include a chromium compound containing at least one of chromium (Cr), oxygen (O), and fluorine (F), or at least one of chromium (Cr), carbon (C), and nitrogen (N) and further including A chromium compound of at least one of oxygen (O) and fluorine (F). Examples of the material for forming the light-shielding film pattern 40 include Cr, CrC, CrN, and CrCN. The light-shielding film pattern 40 can be formed by patterning a light-shielding film formed by sputtering by etching. In a portion where the phase shift film 30 and the light-shielding film pattern 40 are laminated, the optical density with respect to the exposure light is preferably 3 or more, and more preferably 3.5 or more. The optical density can be measured using a spectrophotometer or an OD (Optical Densitometer). The light-shielding film pattern 40 may be a case including a single film having a uniform composition, a case including a plurality of films having different compositions, or a case including a single film having a composition that continuously changes in thickness direction. In addition, the phase shift mask base 10 may be one having a resist film on the phase shift film 30. Next, a method for manufacturing the phase shift mask base 10 according to this embodiment will be described. The phase shift mask substrate 10 can be manufactured by performing the following preparation steps and a phase shift film formation step. Hereinafter, each step will be described in detail. 1. Preparation Step In the preparation step, first, the transparent substrate 20 is prepared. The material of the transparent substrate 20 is not particularly limited as long as the material is transparent to the exposure light used. Examples include synthetic quartz glass, soda lime glass, and alkali-free glass. When the phase shift mask base 10 provided with the light-shielding film pattern 40 is manufactured, thereafter, a light-shielding film containing a chromium-based material is formed on the transparent substrate 20 by sputtering, for example. Thereafter, a resist film pattern is formed on the light-shielding film, and the light-shielding film is etched using the resist film pattern as a mask to form a light-shielding film pattern 40. Thereafter, the resist film pattern is peeled. 2. Phase shift film forming step In the phase shift film forming step, a phase shift film 30 containing a chromium-based material is formed on the transparent substrate 20 by sputtering. Here, when the light-shielding film pattern 40 is formed on the transparent substrate 20, the phase shift film 30 is formed so as to cover the light-shielding film pattern 40. The phase shift film 30 is formed by forming a phase shift layer 31 on the main surface of the transparent substrate 20, a metal layer 33 on the phase shift layer 31, and a reflectance reduction layer 32 on the metal layer 33. form. The film formation of the phase shift layer 31 is performed using a sputtering target containing chromium or a chromium compound, for example, under a sputtering gas atmosphere containing a mixed gas of an inert gas and an active gas. The inert gas contains a material selected from the group consisting of helium and neon. At least one of the group consisting of argon, argon, krypton, and xenon, and the active gas includes a gas selected from the group consisting of oxygen, nitrogen, nitrogen monoxide, nitrogen dioxide, carbon dioxide, hydrocarbon, and fluorine. At least one of the group. Examples of the hydrocarbon-based gas include methane gas, butane gas, propane gas, and styrene gas. Similarly, the metal layer 33 is formed using a sputtering target containing chromium or a chromium compound, for example, an inert gas containing at least one selected from the group consisting of helium, neon, argon, krypton, and xenon. Performed under a sputtering gas atmosphere or a sputtering gas atmosphere containing a mixed gas of an inert gas and an active gas. The inert gas includes a gas selected from the group consisting of helium, neon, argon, krypton, and xenon. At least one of a group, the active gas contains at least one selected from the group consisting of oxygen, nitrogen, nitrogen monoxide gas, nitrogen dioxide gas, carbon dioxide gas, hydrocarbon-based gas, and fluorine-based gas. Examples of the hydrocarbon-based gas include methane gas, butane gas, propane gas, and styrene gas. Similarly, the film formation of the reflectance reduction layer 32 is performed using a sputtering target containing chromium or a chromium compound, for example, under a sputtering gas atmosphere containing a mixed gas of an inert gas and an active gas, the inert gas containing At least one of the group consisting of: neon, argon, krypton, and xenon; the active gas includes a gas selected from the group consisting of oxygen, nitrogen, nitrogen monoxide, nitrogen dioxide, carbon dioxide, hydrocarbon, and fluorine At least one of the groups formed. Examples of the hydrocarbon-based gas include methane gas, butane gas, propane gas, and styrene gas. When the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 are formed, the composition and thickness of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 are based on the transmittance of the phase shift film 30. The phase difference and the phase difference have the specific optical characteristics described above, and the film surface reflectance of the phase shift film 30 and the variation range thereof are adjusted in such a manner as to have the specific physical properties described above. The composition of each of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 can be controlled by the composition and flow rate of the sputtering gas. The thickness of each of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 can be controlled by sputtering power, sputtering time, and the like. When the sputtering apparatus is a continuous sputtering apparatus, the thickness of each of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 can be controlled by the substrate transfer speed. When the phase shift layer 31 includes a single film having a uniform composition, the above-described film formation process is performed only once without changing the composition and flow rate of the sputtering gas. In the case where the phase shift layer 31 includes a plurality of films having different compositions, the composition and flow rate of the sputtering gas are changed at each film formation process to perform the above-mentioned film formation process a plurality of times. When the phase shift layer 31 includes a single film whose composition continuously changes in the thickness direction, the above-described film formation process is performed only while changing the composition and flow rate of the sputtering gas. The same applies to the film formation of the metal layer 33 and the film formation of the reflectance reduction layer 32. In the case of performing a plurality of film formation processes, the sputtering power applied to the sputtering target can be reduced. The phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 are preferably formed continuously using a continuous sputtering device without being exposed to the atmosphere by taking the transparent substrate 20 out of the device. Film formation can be continuously performed without taking it out of the device to prevent accidental surface oxidation or surface carbonization of each layer. Unexpected surface oxidation or surface carbonization of each layer causes laser light used for drawing a resist film formed on the phase shift film 30 or transfers a phase shift film pattern onto a display device substrate The reflectance of the exposure light used in the resist film may change, and the etching rate of the oxidized portion or the carbonized portion may change. When a phase shift mask substrate 10 including a resist film is manufactured, a resist film is then formed on the phase shift film. The phase shift mask base 10 of the first embodiment is a phase shift film 30 made of a chrome-based material provided on a transparent substrate 20, and includes a phase shift layer 31, a reflectance reduction layer 32, and a phase shift layer. The metal layer 33 having a higher extinction coefficient than the reflectance reduction layer 32 in a wavelength region between 350 nm and 436 nm between the 31 and the reflectance reduction layer 32, and the phase shift film 30 is The transmittance and phase difference of the exposure light satisfy specific optical characteristics required as the phase shift film 30. On the one hand, the film surface reflectance of the phase shift film 30 is 10% or less in a wavelength region of 350 nm to 436 nm. Therefore, the phase shift mask substrate 10 can be used to manufacture a phase shift mask having excellent pattern cross-sectional shape and excellent CD uniformity and having a fine pattern formed. The phase shift mask base 10 of the first embodiment is a phase shift film 30 containing a chrome-based material provided on a transparent substrate 20, and includes a phase shift layer 31, a reflectance reduction layer 32, and a phase shift layer. The metal layer 33 having a higher chromium content than the reflectance-reducing layer 32 between the shift layer 31 and the reflectance-reducing layer 32, and on the one hand the phase shift film 30's transmittance and The phase difference satisfies specific optical characteristics required as the phase shift film 30. On the one hand, the film surface reflectance of the phase shift film 30 is 10% or less in a wavelength region of 350 nm to 436 nm. Therefore, the phase shift mask substrate 10 can be used to manufacture a phase shift mask having excellent pattern cross-sectional shape and excellent CD uniformity and having a fine pattern formed. Embodiment 2. Embodiment 2 describes a method for manufacturing a phase shift mask. The phase shift mask substrate can be manufactured by performing the following resist film pattern formation steps and phase shift film pattern formation steps. Hereinafter, each step will be described in detail. 1. Resist film pattern forming step In the resist film pattern forming step, first, a resist film is formed on the phase shift film 30 of the phase shift mask base 10 of Embodiment 1. However, in the case where the phase shift mask substrate 10 is provided with a resist film on the phase shift film 30, the formation of the resist film is not performed. The material of the resist film is not particularly limited. It suffices to be a person who is sensitive to laser light having a wavelength selected from a wavelength range of 350 nm to 436 nm described later. The resist film may be either a positive type or a negative type. Thereafter, a specific pattern is drawn on the resist film using laser light having any wavelength selected from a wavelength range of 350 nm to 436 nm. Examples of the pattern drawn on the resist film include a line and gap pattern or a contact hole pattern. After that, the resist film is developed using a specific developing solution to form a resist film pattern on the phase shift film 30. 2. Phase shift film pattern forming step In the phase shift film pattern forming step, first, the phase shift film 30 is etched using the resist film pattern as a mask to form a phase shift film pattern. Each of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 constituting the phase shift film 30 is formed of a chromium-based material containing chromium (Cr). Therefore, the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 can be etched by using the same etching medium (etching solution, etching gas). The etching medium (etching solution, etching gas) for etching the phase shift film 30 is not particularly limited as long as it can selectively etch the phase shift film 30. Specific examples include an etching solution containing cerium ammonium nitrate and perchloric acid, or an etching gas containing a mixed gas of chlorine gas and oxygen. Thereafter, the resist film pattern is peeled using a resist stripping solution or by ashing. According to the manufacturing method of the phase shift mask of the second embodiment, a phase shift mask having excellent pattern cross-sectional shape and excellent CD uniformity and having a fine pattern formed can be manufactured. Embodiment 3. In Embodiment 3, the manufacturing method of a display device is demonstrated. The display device can be manufactured by performing the following mask mounting steps and pattern transfer steps. Hereinafter, each step will be described in detail. 1. Mounting step The mounting step is to place the phase shift mask manufactured in Embodiment 2 on a mask stage of an exposure device. Here, the phase shift mask is disposed so as to face the resist film formed on the display device substrate through the projection optical system of the exposure device. 2. Pattern transfer step The pattern transfer step irradiates the phase shift mask with exposure light, and transfers the phase shift film pattern to a resist film formed on a display device substrate. The exposure light is a composite light including a plurality of wavelengths of light selected from a wavelength range of 313 nm to 436 nm, or a single wavelength region selected by using a filter or the like from a wavelength range of 313 nm to 436 nm. Shade. For example, the exposure light is a composite light including i-line, h-line, and g-line, or a mixed light including j-ray, i-line, h-line, and g-line, or a monochromatic light of i-line. If composite light is used as the exposure light, the intensity of the exposure light can be increased to increase the output, so the manufacturing cost of the display device can be reduced. According to the method for manufacturing a display device according to the third embodiment, a high-resolution and high-definition display device can be manufactured. [Examples] Hereinafter, the present invention will be described more specifically based on examples and comparative examples. In addition, the following embodiment is an example of the present invention, and the present invention is not limited thereto. The phase shift mask bases of Examples 1 to 4 and Comparative Examples 1 to 3 are provided with a transparent substrate and a phase shift film containing a chromium-based material disposed on the transparent substrate. As the transparent substrate, a synthetic quartz glass substrate having a size of 800 mm × 920 mm and a thickness of 10 mm was used. FIG. 3 shows the film surface reflectance spectrum of the phase shift film of the phase shift mask substrates of Examples 1, 3, and 4. FIG. 4 shows the phase shift of the phase shift mask substrates of Comparative Examples 1 and 2. The film surface reflectance spectrum of the film. FIG. 5 shows the film surface reflectance spectrum of the phase shift film of the phase shift mask base of Comparative Examples 1 and 3. Hereinafter, Examples 1 to 4 and Comparative Examples 1 to 3 will be described in detail. Example 1. The phase shift film of the phase shift mask base of Example 1 includes a phase shift layer (CrOCN, film thickness 89 nm), a metal layer (CrC, film thickness 10 nm) sequentially arranged from the transparent substrate side. ), And a reflectance reduction layer (CrOCN, film thickness 30 nm). The phase shift layer (CrOCN) has a refractive index of 2.44 and an extinction coefficient of 0.71 at a wavelength of 313 nm, a refractive index of 2.51 and an extinction coefficient of 0.59 at a wavelength of 350 nm, and a refractive index of 2.52 and an extinction coefficient at a wavelength of 365 nm. Is 0.55, the refractive index is 2.54 and the extinction coefficient is 0.44 at a wavelength of 413 nm, and the refractive index is 2.54 and the extinction coefficient is 0.40 at a wavelength of 436 nm. The metal layer (CrC) has a refractive index of 2.14 at a wavelength of 313 nm and an extinction coefficient of 2.61, a refractive index of 2.24 at a wavelength of 350 nm and an extinction coefficient of 2.85, a refractive index at a wavelength of 365 nm of 2.29 and an extinction coefficient of 2.94 The refractive index at a wavelength of 413 nm is 2.52 and the extinction coefficient is 3.20, and the refractive index at a wavelength of 436 nm is 2.65 and the extinction coefficient is 3.3. The refractive index reduction layer (CrOCN) has a refractive index of 2.46 and an extinction coefficient of 0.47 at a wavelength of 313 nm, a refractive index of 2.47 and an extinction coefficient of 0.37 at a wavelength of 350 nm, and a refractive index of 2.47 and an extinction coefficient at a wavelength of 365 nm. It is 0.33, the refractive index at a wavelength of 413 nm is 2.43 and the extinction coefficient is 0.23, and the refractive index at a wavelength of 436 nm is 2.41 and the extinction coefficient is 0.20. The refractive index and extinction coefficient of the phase shift layer were measured using n & k Analyzer 1280 (trade name) manufactured by n & k Technology. The measurement of the refractive index and the extinction coefficient of the phase shift layer was performed on a synthetic quartz glass substrate with a sample formed under the same conditions as the film formation conditions of the phase shift layer shown below. The measurement of the refractive index and the extinction coefficient of the metal layer and the measurement of the refractive index and the extinction coefficient of the reflectance-reducing layer were performed in the same manner. The measurement was performed in the same manner in Examples 2 to 4 and Comparative Examples 1 to 3. The Cr content of the phase shift layer (CrOCN) was 32 atomic%, the Cr content of the metal layer (CrC) was 46 atomic%, and the Cr content of the reflectance reduction layer (CrOCN) was 28 atomic%. In addition, the Cr content was measured using a SAM670 scanning-type Ogilvy electronic spectrometer (trade name) manufactured by ULVAC-PHI. The measurement was performed in the same manner in Examples 2 to 4 and Comparative Examples 1 to 3. The phase shift film has a transmittance of 5.98% for a light of 365 nm and a phase difference of 178.66 ° by the above-mentioned three-layer structure. The transmittance and phase difference are measured using MPM-100 (trade name) manufactured by Japan Lasertec Corporation. The measurement was performed in the same manner in Examples 2 to 4 and Comparative Examples 1 to 3. The phase reflectance of the phase shift film is 12.0% at a wavelength of 313 nm, 8.3% at 350 nm, 7.3% at a wavelength of 365 nm, 6.6% at a wavelength of 405 nm, and 413 It has a wavelength of 6.6% in nm and 6.8% in a wavelength of 436 nm. In addition, the variation range of the film surface reflectance of the phase shift film is 1.7% in a wavelength region of 350 nm to 436 nm, 0.7% in a wavelength region of 365 nm to 436 nm, and a wavelength of 313 nm to 436 nm. In the region it is 5.5%. Curve a in FIG. 3 shows the film surface reflectance spectrum of the phase shift film of the phase shift mask substrate of Example 1. The film surface reflectance was measured using SolidSpec-3700 (trade name) manufactured by Shimadzu Corporation. The measurement was performed in the same manner in Examples 2 to 4 and Comparative Examples 1 to 3. The sheet resistance of the phase shift film is 508 Ω / □. Therefore, the phase shift mask substrate of Embodiment 1 can prevent charging. The sheet resistance was measured using K-705RM (trade name) manufactured by Kyowa Riken Co., Ltd. The measurement was performed in the same manner in Examples 2 to 4 and Comparative Examples 1 to 3. The phase shift mask substrate of Example 1 was manufactured by the following method. First, a synthetic quartz glass substrate is prepared as a transparent substrate. Mirror-polishing both major surfaces of the transparent substrate. The two main surfaces of the transparent substrates prepared in Examples 2 to 4 and Comparative Examples 1 to 3 were also mirror-polished in the same manner. Thereafter, the transparent substrate was carried into a continuous sputtering apparatus. A sputtering chamber is provided in the continuous sputtering device. After that, a sputtering power of 2.7 kW was applied to the chromium target disposed in the sputtering chamber, and Ar gas, N 2 Gas and CO 2 The mixed gas of the gas is introduced into the sputtering chamber, and the transparent substrate is conveyed at a speed of 200 mm / min. When the transparent substrate passed near the chromium target, a phase shift layer including CrOCN with a film thickness of 89 nm was formed on the main surface of the transparent substrate. Here, the mixed gas system has a flow rate of Ar of 35 sccm, N 2 Becomes a flow of 35 sccm, CO 2 A flow rate of 14.5 sccm was introduced into the sputtering chamber. After that, a sputtering power of 0.4 kW was applied to the chromium target, and Ar gas and CH 4 Gas mixture (contains CH at 8% concentration in Ar gas) 4 The gas mixture is introduced into the sputtering chamber at a flow rate of 100 sccm, and the transparent substrate is conveyed at a speed of 400 mm / min. When the transparent substrate passes near the chromium target, a metal layer with a thickness of 10 nm including CrC is formed on the phase shift layer. Thereafter, a sputtering power of 2.0 kW was applied to the chromium target, and Ar gas and N 2 Gas and CO 2 The mixed gas of the gas is introduced into the sputtering chamber, and the transparent substrate is conveyed at a speed of 200 mm / min. When the transparent substrate passes near the chromium target, a reflectance-reducing layer having a thickness of 30 nm including CrOCN is formed on the metal layer. Here, the mixed gas system has a flow rate of Ar of 35 sccm, N 2 Becomes a flow of 35 sccm, CO 2 It was introduced into the sputtering chamber at a flow rate of 18.2 sccm. Thereafter, a phase shift film including a phase shift layer (CrOCN, film thickness 89 nm), a metal layer (CrC, film thickness 10 nm), and a reflectance reduction layer (CrOCN, film thickness 30 nm) will be formed. The transparent substrate was taken out from the continuous sputtering apparatus and cleaned. Furthermore, the film formation of the phase shift layer, the film formation of the metal layer, and the film formation of the reflectance reduction layer are continuously performed in the continuous sputtering device without taking out the transparent substrate to the continuous sputtering. Outside the unit leads to exposure to the atmosphere. Using the phase shift mask substrate described above, a phase shift mask is manufactured by the following method. First, a resist film including a novolac-type positive photoresist is formed on the phase shift film of the phase shift mask substrate. Thereafter, a specific pattern is drawn on the resist film using laser light with a wavelength of 413 nm by a laser drawing machine. After that, the resist film is developed with a specific developing solution to form a resist film pattern on the phase shift film. Thereafter, the phase shift film is etched using the resist film pattern as a mask to form a phase shift film pattern. Each of the phase shift layer, the metal layer, and the reflectance reduction layer constituting the phase shift film is formed of a chromium-based material containing chromium (Cr). Therefore, the phase shift layer, the metal layer, and the reflectance reduction layer can be etched by the same etching solution. Here, as an etching solution for etching the phase shift film, an etching solution containing ceric ammonium nitrate and perchloric acid was used. After that, the resist film pattern was peeled using a resist stripping solution. The phase shift film pattern cross-section of the phase shift mask manufactured using the phase shift mask substrate described above has some corrosion in the metal layer located in the center portion of the film thickness direction of the phase shift film pattern, but it The extent to which the mask characteristics are affected. The phase shift film pattern cross section of the phase shift mask was observed using an electron microscope (JSM7401F (trade name) manufactured by Japan Electronics Co., Ltd.). The measurement was performed in the same manner in Examples 2 to 4 and Comparative Examples 1 to 3. The CD unevenness of the phase shift film pattern of the phase shift mask manufactured using the above phase shift mask substrate is relatively good and is 70 nm. The CD unevenness is an offset width from the target line and gap pattern (width of line pattern: 2.0 μm, width of gap pattern: 2.0 μm). The CD unevenness of the phase shift film pattern of the phase shift mask was measured using SIR8000 manufactured by Seiko Instruments Nano Technologies. The measurement was performed in the same manner in Examples 2 to 4 and Comparative Examples 1 to 3. The phase shift mask described above has excellent pattern cross-sectional shape and excellent CD uniformity, and the phase shift film pattern has a low reflectance to the film surface of the exposed light. Therefore, the phase shift mask can be used to manufacture a high resolution And high-definition display device. In addition, the phase shift mask can be manufactured using a phase shift mask substrate provided with a phase shift film having a small sheet resistance, so even when a small pattern is formed, it is difficult for electricity to enter the pattern from the pattern. It is not easy to cause static damage. Example 2. The phase shift film of the phase shift mask base of Example 2 includes a phase shift layer (CrOCN, film thickness 89 nm), a metal layer (CrC, film thickness 20 nm) sequentially arranged from the transparent substrate side. ), And a reflectance reducing layer (CrOCN, film thickness 30 nm). Only the metal layer is different from the phase shift mask substrate of Example 1. The values of the refractive index and the extinction coefficient of the phase shift layer (CrOCN) are the same as those of the first embodiment. The metal layer (CrC) has a refractive index of 2.09 and an extinction coefficient of 2.05 at a wavelength of 313 nm, a refractive index of 2.08 and an extinction coefficient of 2.18 at a wavelength of 350 nm, and a refractive index of 2.08 and an extinction coefficient of 2.24 at a wavelength of 365 nm. The refractive index at a wavelength of 413 nm is 2.11 and the extinction coefficient is 2.45, and the refractive index at a wavelength of 436 nm is 2.15 and the extinction coefficient is 2.55. The values of the refractive index and the extinction coefficient of the reflectance reduction layer (CrOCN) are the same as those of the first embodiment. The Cr content of the phase shift layer (CrOCN) and the reflectance reduction layer (CrOCN) are the same as those in Example 1. The Cr content of the metal layer (CrC) was 43 atomic%. The phase shift film has a transmittance of 5.78% for a light of 365 nm and a phase difference of 179.02 ° by the above three-layer structure. The phase shift film surface reflectance is 12.0% at a wavelength of 313 nm, 8.4% at 350 nm, 8.4% at a wavelength of 365 nm, 8.2% at a wavelength of 405 nm, and 413 nm. It was 8.4% in wavelength and 8.7% in 436 nm. In addition, the variation range of the reflectance of the phase shift film surface is 1.0% in a wavelength range of 350 nm to 436 nm, 0.6% in a wavelength range of 365 nm to 436 nm, and a wavelength of 313 nm to 436 nm. In the region it was 3.8%. The sheet resistance of the phase shift film is 560 Ω / □. Therefore, the phase shift mask substrate of Embodiment 2 can prevent charging. In Example 2, when forming a metal layer, a sputtering power of 0.33 kW was applied to a chromium target, and Ar gas and CH 4 Gas mixture (containing 15% CH in Ar gas) 4 The gas mixture is introduced into the sputtering chamber at a flow rate of 100 sccm, and the transparent substrate is conveyed at a speed of 400 mm / min. When the transparent substrate passes near the chromium target, a metal layer with a thickness of 20 nm including CrC is formed on the phase shift layer. Otherwise, the phase shift mask substrate of Example 2 was manufactured by the same method as that of Example 1. Using the phase shift mask substrate described above, a phase shift mask was manufactured by the same method as in Example 1. The phase shift film pattern cross-section of the phase shift mask manufactured using the phase shift mask substrate is vertical, and no corrosion occurs in the metal layer. The CD unevenness of the phase shift film pattern of the phase shift mask manufactured using the above phase shift mask substrate is relatively good and is 50 nm. The phase shift mask described above has excellent pattern cross-sectional shape and excellent CD uniformity, and the phase shift film pattern has a low reflectance to the film surface of the exposed light. Therefore, the phase shift mask can be used to manufacture a high resolution And high-definition display device. In addition, the phase shift mask can be manufactured using a phase shift mask substrate provided with a phase shift film having a small sheet resistance, so even when a small pattern is formed, it is difficult for electricity to enter the pattern from the pattern. It is not easy to cause static damage. Example 3. The phase shift film of the phase shift mask base of Example 3 includes a phase shift layer (CrOCN, film thickness 89 nm), a metal layer (CrCN, film thickness 22) sequentially arranged from the transparent substrate side. nm), and a reflectance reduction layer (CrOCN, film thickness 30 nm). Only the metal layer is different from the phase shift mask substrate of Example 1. The values of the refractive index and the extinction coefficient of the phase shift layer (CrOCN) are the same as those of the first embodiment. The metal layer (CrCN) has a refractive index of 2.07 and an extinction coefficient of 2.14 at a wavelength of 313 nm, a refractive index of 2.12 and an extinction coefficient of 2.28 at a wavelength of 350 nm, a refractive index of 2.14 and an extinction coefficient of 2.35 at a wavelength of 365 nm The refractive index at a wavelength of 413 nm is 2.26 and the extinction coefficient is 2.55, and the refractive index at a wavelength of 436 nm is 2.33 and the extinction coefficient is 2.64. The values of the refractive index and the extinction coefficient of the reflectance reduction layer (CrOCN) are the same as those of the first embodiment. The Cr content of the phase shift layer (CrOCN) and the reflectance reduction layer (CrOCN) are the same as those in Example 1. The Cr content of the metal layer (CrCN) is 40 atomic%. The phase shift film has a transmittance of 6.00% for a light of 365 nm and a phase difference of 176.78 ° by the above three-layer structure. The phase reflectance of the film surface is 13.0% at a wavelength of 313 nm, 9.5% at 350 nm, 8.4% at a wavelength of 365 nm, 7.6% at a wavelength of 405 nm, and 413 nm. The wavelength is 7.6% and the wavelength at 436 nm is 7.6%. The variation range of the phase shift film surface reflectance is 1.9% in a wavelength region of 350 nm to 436 nm, 0.8% in a wavelength region of 365 nm to 436 nm, and a wavelength of 313 nm to 436 nm. In the region it is 5.6%. Curve b in FIG. 3 shows the film surface reflectance spectrum of the phase shift film of the phase shift mask substrate of Example 3. The sheet resistance of the phase shift film is 800 Ω / □. Therefore, the phase shift mask substrate of Embodiment 3 can prevent charging. In Example 3, when a metal layer was formed, a sputtering power of 0.42 kW was applied to a chromium target, and Ar gas and CH 4 Gas and N 2 The mixed gas of the gas is introduced into the sputtering chamber, and the transparent substrate is conveyed at a speed of 400 mm / min. When the transparent substrate passed near the chromium target, a metal layer with a thickness of 22 nm including CrCN was formed on the phase shift layer. Here, the mixed gas system uses Ar gas and CH 4 Gas mixture (containing 8% CH in Ar gas) 4 Gas mixture) becomes 100 sccm, and N 2 A flow rate of 30 sccm was introduced into the sputtering chamber. Otherwise, the phase shift mask substrate of Example 3 was manufactured by the same method as that of Example 1. The phase shift mask substrate was used, and a phase shift mask was manufactured by the same method as in Example 1. The phase shift film pattern section of the phase shift mask manufactured using the above phase shift mask substrate has some corrosion in the metal layer located at the center portion of the film thickness direction of the phase shift film pattern, but it does not affect The extent of the mask characteristics. The CD unevenness of the phase shift film pattern of the phase shift mask manufactured using the above phase shift mask substrate is relatively good and is 75 nm. The phase shift mask described above has excellent pattern cross-sectional shape and excellent CD uniformity, and the phase shift film pattern has a low reflectance on the film surface of the exposed light. Therefore, the phase shift mask can be used to manufacture a high resolution And high-definition display device. In addition, the phase shift mask can be manufactured using a phase shift mask substrate provided with a phase shift film having a small sheet resistance, so even when a small pattern is formed, it is difficult for electricity to enter the pattern from the pattern. It is not easy to cause static damage. Example 4. The phase shift film of the phase shift mask base of Example 4 includes a phase shift layer (CrOCN, film thickness 91.5 nm), a metal layer (CrC, film thickness 10) sequentially arranged from the transparent substrate side. nm), and a reflectance reduction layer (CrOCN, film thickness 28 nm). The values of the refractive index and the extinction coefficient of the phase shift layer (CrOCN), the metal layer (CrN), and the reflectance reduction layer (CrOCN) are the same as those of the first embodiment. The Cr content of each of the phase shift layer (CrOCN), the metal layer (CrN), and the reflectance reduction layer (CrOCN) is the same as that of Example 1. The phase shift film has a transmittance of 5.55% and a phase difference of 182.30 ° for 365 nm light by the above-mentioned three-layer structure. The phase shift film surface reflectance is 12.3% at a wavelength of 313 nm, 9.2% at 350 nm, 8.5% at a wavelength of 365 nm, 8.3% at a wavelength of 405 nm, and 413 nm The wavelength was 8.5% and the wavelength at 436 nm was 8.8%. In addition, the variation range of the reflectance of the phase shift film surface is 1.0% in a wavelength range of 350 nm to 436 nm, 0.6% in a wavelength range of 365 nm to 436 nm, and a wavelength of 313 nm to 436 nm. In the region it was 4.2%. Curve c in FIG. 3 shows the film surface reflectance spectrum of the phase shift film of the phase shift mask substrate of Example 4. The sheet resistance of the phase shift film is 510 Ω / □. Therefore, the phase shift mask substrate of Embodiment 4 can prevent charging. In Example 4, the transparent substrate was transported at a speed of 205 mm / min when the phase shift layer was formed. When forming the metal layer, Ar gas and CH 4 Gas mixture (containing 15% CH in Ar gas) 4 A mixed gas of gases) was introduced into the sputtering chamber at a flow rate of 200 sccm. When forming the reflectance-reducing layer, the transparent substrate was transported at a speed of 215 mm / min. Otherwise, the phase shift mask substrate of Example 4 was manufactured by the same method as that of Example 1. The phase shift mask substrate was used, and a phase shift mask was manufactured by the same method as in Example 1. The phase shift film pattern cross-section of the phase shift mask manufactured using the phase shift mask substrate described above has extremely slight corrosion in the metal layer located at the center portion of the phase shift film pattern in the film thickness direction, but Not to the extent that the characteristics of the mask are affected. The CD unevenness of the phase shift film pattern of the phase shift mask manufactured using the above phase shift mask substrate is relatively good and is 55 nm. The above-mentioned phase shift mask has excellent pattern cross-sectional shape and excellent CD uniformity, and the film surface reflectance for exposure light is low. Therefore, the above-mentioned phase shift mask can be used to produce a high-resolution and high-definition display. Device. In addition, the phase shift mask can be manufactured using a phase shift mask substrate provided with a phase shift film having a small sheet resistance, so even when a small pattern is formed, it is difficult for electricity to enter the pattern from the pattern. It is not easy to cause static damage. Comparative Example 1. The phase shift film of the phase shift mask substrate of Comparative Example 1 contained only a phase shift layer (CrOCN, film thickness 122 nm). The phase shift mask substrate of Comparative Example 1 is different from the phase shift mask substrate of the Example in that the phase shift film does not include a metal layer and a reflectance reduction layer. The phase shift layer (CrOCN) has a refractive index of 2.36 and an extinction coefficient of 0.74 at a wavelength of 313 nm, a refractive index of 2.43 and an extinction coefficient of 0.66 at a wavelength of 350 nm, and a refractive index of 2.45 and an extinction coefficient at a wavelength of 365 nm. It is 0.62, the refractive index at a wavelength of 413 nm is 2.49 and the extinction coefficient is 0.53, and the refractive index at a wavelength of 436 nm is 2.50 and the extinction coefficient is 0.49. The Cr content of the phase shift layer (CrOCN) was 32 atomic%. The phase shift film has a transmittance of 5.20% for a light of 365 nm and a phase difference of 179.60 ° by the above-mentioned one-layer structure. The phase reflectance of the film is 19.9% at a wavelength of 313 nm, 20.3% at 350 nm, 20.7% at a wavelength of 365 nm, 22.0% at a wavelength of 405 nm, and 413 nm The wavelength was 22.1%, and the wavelength at 436 nm was 22.2%. In addition, the variation range of the reflectance of the phase shift film surface is 1.9% in the wavelength region of 350 nm to 436 nm, 1.6% in the wavelength region of 365 nm to 436 nm, and the wavelength of 313 nm to 436 nm. In the region it was 2.4%. Curves d in FIGS. 4 and 5 show the film surface reflectance spectrum of the phase shift film of the phase shift mask base of Comparative Example 1. The sheet resistance of the phase shift film cannot be measured (∞). Therefore, the phase shift mask substrate of Comparative Example 1 is more likely to cause charging than the phase shift mask substrate of Example. The phase shift mask base of Comparative Example 1 was manufactured by the following method. First, a synthetic quartz glass substrate is prepared as a transparent substrate. After that, the transparent substrate was carried into a continuous sputtering apparatus. Thereafter, a sputtering power of 3.5 kW was applied to the chromium target disposed in the sputtering chamber, and Ar gas and N 2 Gas and CO 2 The mixed gas of the gas is introduced into the sputtering chamber, and the transparent substrate is conveyed at a speed of 200 mm / min. When the transparent substrate passed near the chromium target, a phase shift layer including CrOCN with a thickness of 122 nm was formed on the main surface of the transparent substrate. Here, the mixed gas system is 46 sccm, N with Ar 2 Becomes 46 sccm, and CO 2 A flow rate of 18.5 sccm was introduced into the sputtering chamber. Thereafter, the transparent substrate on which the phase shift film including the phase shift layer (CrOCN, film thickness: 122 nm) was formed was taken out from the continuous sputtering apparatus and washed. The phase shift mask substrate was used, and a phase shift mask was manufactured by the same method as in Example 1. The phase shift film pattern section of the phase shift mask manufactured using the phase shift mask substrate is vertical. The CDs of the phase shift film patterns of the phase shift masks manufactured using the above phase shift mask substrates are not all 90 nm, and do not reach the phase shift masks used for the manufacture of high-resolution and high-definition display devices. Required level. Although the above phase shift mask has an excellent pattern cross-sectional shape, the phase shift film pattern has a large CD unevenness, and the film reflectance of the phase shift film pattern to the exposure light is high, so the phase shift mask cannot be used. Manufacture of high-resolution and high-definition display devices. In addition, the phase shift mask can be manufactured by using a phase shift mask base having a phase shift film with a large sheet resistance, so even when a small pattern is formed, electricity is easy to enter the pattern from the pattern. It is easy to cause electrostatic damage. Comparative Example 2. The phase shift film of the phase shift mask base of Comparative Example 2 includes a phase shift layer (CrOCN, film thickness: 113.4 nm) and a reflectance reduction layer (CrOCN, Film thickness 7 nm). The phase shift mask substrate of Comparative Example 2 is different from the phase shift mask substrate of the Example in that the phase shift film does not have a metal layer. The phase shift layer (CrOCN) has a refractive index of 2.37 at a wavelength of 313 nm and an extinction coefficient of 0.72, a refractive index of 2.45 at a wavelength of 350 nm and an extinction coefficient of 0.64, and a refractive index at a wavelength of 365 nm of 2.48 and an extinction coefficient. It is 0.60, the refractive index at a wavelength of 413 nm is 2.52 and the extinction coefficient is 0.48, and the refractive index at a wavelength of 436 nm is 2.53 and the extinction coefficient is 0.44. The reflectance reduction layer (CrOCN) has a refractive index of 2.24 and an extinction coefficient of 0.36 at a wavelength of 313 nm, a refractive index of 2.20 and an extinction coefficient of 0.28 at a wavelength of 350 nm, and a refractive index of 2.18 and an extinction coefficient at a wavelength of 365 nm. It is 0.26, the refractive index is 2.13 and the extinction coefficient is 0.20 at a wavelength of 413 nm, and the refractive index is 2.11 and the extinction coefficient is 0.17 at a wavelength of 436 nm. The Cr content of the phase shift layer (CrOCN) was 33 atomic%, and the Cr content of the reflectance reduction layer (CrOCN) was 26 atomic%. The phase shift film has a transmittance of 8.40% for a light of 365 nm and a phase difference of 172.50 ° by the above two-layer structure. The phase shift film surface reflectance is 16.2% at a wavelength of 313 nm, 17.9% at 350 nm, 18.9% at a wavelength of 365 nm, 20.4% at a wavelength of 405 nm, and 413 nm. The wavelength was 20.4%, and the wavelength at 436 nm was 19.7%. In addition, the variation range of the phase reflectance film surface reflectance is 2.5% in a wavelength range of 350 nm to 436 nm, 1.5% in a wavelength range of 365 nm to 436 nm, and a wavelength of 313 nm to 436 nm. In the region it was 4.2%. The curve e in FIG. 4 represents the film surface reflectance spectrum of the phase shift film of the phase shift mask base of Comparative Example 2. The sheet resistance of the phase shift film cannot be measured (∞). Therefore, the phase shift mask substrate of Comparative Example 2 is more likely to cause charging than the phase shift mask substrate of Example. The phase shift mask base of Comparative Example 2 was manufactured by the following method. First, a synthetic quartz glass substrate is prepared as a transparent substrate. After that, the transparent substrate was carried into a continuous sputtering apparatus. After that, a sputtering power of 3.4 kW was applied to the chromium target disposed in the sputtering chamber, while Ar gas, N 2 Gas and CO 2 The mixed gas of the gas is introduced into the sputtering chamber, and the transparent substrate is conveyed at a speed of 200 mm / min. When the transparent substrate passed near the chromium target, a phase shift layer including CrOCN with a film thickness of 113.4 nm was formed on the main surface of the transparent substrate. Here, the mixed gas system uses Ar as 35 sccm, N 2 Becomes 35 sccm, and CO 2 A flow rate of 19.8 sccm was introduced into the sputtering chamber. After that, a sputtering power of 0.5 kW was applied to the chromium target disposed in the sputtering chamber, and Ar gas, N 2 Gas and CO 2 The mixed gas of the gas is introduced into the sputtering chamber, and the transparent substrate is conveyed at a speed of 200 mm / min. When the transparent substrate passed near the chromium target, a 7 nm-thickness reflectance-reducing layer including CrOCN was formed on the phase shift layer. Here, the mixed gas system uses Ar as 35 sccm, N 2 Becomes 35 sccm, and CO 2 A flow rate of 19.8 sccm was introduced into the sputtering chamber. Thereafter, the transparent substrate on which the phase shift film including the phase shift layer (CrOCN, film thickness of 113.4 nm) and the reflectance reduction layer (CrOCN, film 7 nm) was formed was taken out from the continuous sputtering apparatus and washed. . Furthermore, the film formation of the phase shift layer and the film formation of the reflectance reduction layer are continuously performed in the continuous sputtering apparatus, without having to take out the transparent substrate to the outside of the continuous sputtering apparatus and expose it to the atmosphere. The phase shift mask substrate was used, and a phase shift mask was manufactured by the same method as in Example 1. The phase shift film pattern cross section of the phase shift mask manufactured using the phase shift mask substrate described above is in a shape where an etching solution is immersed in the interface with the resist film. The CDs of the phase shift film patterns of the phase shift masks manufactured using the above phase shift mask substrates are not all 200 nm, and do not reach the phase shift masks used for the manufacture of high resolution and high definition display devices Required level. The phase shift mask is formed in a cross-sectional shape of a pattern with immersion at the interface with the resist film, and the CD unevenness is large. Furthermore, the phase shift film pattern has a high reflectance to the film surface of the exposure light, so it cannot be used. The phase shift mask is used to manufacture a high-resolution and high-definition display device. In addition, the phase shift mask can be manufactured by using a phase shift mask base having a phase shift film with a large sheet resistance, so even when a small pattern is formed, electricity is easy to enter the pattern from the pattern. It is easy to cause electrostatic damage. Comparative Example 3. The phase shift film of the phase shift mask base of Comparative Example 3 includes a phase shift layer (CrOCN, film thickness: 113.4 nm) and a first reflectance reduction layer (CrOCN) which are sequentially arranged from the transparent substrate side. , Film thickness 7 nm), and a second reflectance reduction layer (CrOCN, film thickness 13.6 nm). The phase shift film of the phase shift mask base of Comparative Example 3 corresponds to a case where a second reflectance reduction layer (CrOCN) is provided on the reflectance reduction layer of the phase shift mask base of Comparative Example 2. The values of the refractive index and the extinction coefficient of the phase shift layer (CrOCN) are the same as the values of the refractive index and the extinction coefficient of the phase shift layer (CrOCN) of Comparative Example 2. The values of the refractive index and the extinction coefficient of the first reflectance-reducing layer (CrOCN) are the same as the values of the refractive index and the extinction coefficient of the reflectance-reducing layer (CrOCN) of Comparative Example 2. The second reflectance reduction layer (CrOCN) has a refractive index of 2.41 and an extinction coefficient of 0.41 at a wavelength of 313 nm, a refractive index of 2.40 and an extinction coefficient of 0.32 at a wavelength of 350 nm, and a refractive index of 2.39 and 365 nm. The extinction coefficient is 0.29, the refractive index at a wavelength of 413 nm is 2.35 and the extinction coefficient is 0.21, the refractive index at a wavelength of 436 nm is 2.33, and the extinction coefficient is 0.19. The Cr content of the phase shift layer (CrOCN) and the first reflectance reduction layer (CrOCN) are the same as those of the phase shift layer (CrOCN) and the reflectance reduction layer (CrOCN) of Comparative Example 2. The Cr content of the second reflectance reduction layer (CrOCN) was 29 atomic%. The phase shift film has a transmittance of 8.00% for a light of 365 nm and a phase difference of 190.00 ° by the above three-layer structure. The phase reflectance of the film is 12.9% at a wavelength of 313 nm, 12.2% at 350 nm, 12.8% at a wavelength of 365 nm, 15.7% at a wavelength of 405 nm, and 413 nm The wavelength was 16.3%, and the wavelength at 436 nm was 17.5%. The variation range of the phase shift film surface reflectance is 5.2% in a wavelength region of 350 nm to 436 nm, 4.6% in a wavelength region of 365 nm to 436 nm, and a wavelength of 313 nm to 436 nm. In the region it was 5.4%. The curve f in FIG. 5 represents the film surface reflectance spectrum of the phase shift film of the phase shift mask base of Comparative Example 3. The sheet resistance of the phase shift film cannot be measured (∞). Therefore, the phase shift mask substrate of Comparative Example 3 is more likely to cause charging than the phase shift mask substrate of Example. In Comparative Example 3, after forming the reflectance-reducing layer of Comparative Example 2, a sputtering power of 1.0 kW was applied to a chromium target disposed in a sputtering chamber, and Ar gas, N 2 Gas and CO 2 The mixed gas of the gas is introduced into the sputtering chamber, and the transparent substrate is conveyed at a speed of 200 mm / min. When the transparent substrate passed near the chromium target, a second reflectance-reducing layer having a thickness of 13.6 nm including CrOCN was formed on the first reflectance-reducing layer. Here, the mixed gas system uses Ar as 35 sccm, N 2 Becomes 35 sccm, and CO 2 A flow rate of 19.8 sccm was introduced into the sputtering chamber. Otherwise, the phase shift mask substrate of Comparative Example 3 was manufactured by the same method as that of Comparative Example 2. The phase shift mask substrate was used, and a phase shift mask was manufactured by the same method as in Example 1. The phase shift film pattern cross section of the phase shift mask manufactured using the phase shift mask substrate is vertical, but it is in a shape where an etching solution is immersed at the interface with the resist film. The CDs of the phase shift film patterns of the phase shift masks manufactured using the above phase shift mask substrates are not all 180 nm, and do not reach the phase shift masks used for the manufacture of high resolution and high definition display devices Required level. The phase shift mask is formed in a cross-sectional shape of a pattern with immersion at the interface with the resist film, and the CD unevenness is large. Furthermore, the phase shift film pattern has a high reflectance to the film surface of the exposure light, so it cannot Using the phase shift mask described above, a high-resolution and high-definition display device is manufactured. In addition, the phase shift mask can be manufactured by using a phase shift mask base having a phase shift film with a large sheet resistance, so even when a small pattern is formed, electricity is easy to enter the pattern from the pattern. It is easy to cause electrostatic damage. As mentioned above, although this invention was demonstrated in detail based on embodiment and an Example, this invention is not limited to this. As long as they have general knowledge in the field, they will understand that changes or improvements can be made within the technical idea of the present invention.

10‧‧‧相偏移光罩基底10‧‧‧phase shift mask base

20‧‧‧透明基板20‧‧‧ transparent substrate

30‧‧‧相偏移膜30‧‧‧phase shift film

31‧‧‧相偏移層31‧‧‧phase offset layer

32‧‧‧反射率降低層32‧‧‧Reflectivity reduction layer

33‧‧‧金屬層33‧‧‧metal layer

40‧‧‧遮光性膜圖案40‧‧‧Light-shielding film pattern

圖1係表示相偏移光罩基底之膜構成之模式圖。 圖2係表示相偏移光罩基底之其他膜構成之模式圖。 圖3係實施例1、3、4之相偏移光罩基底之相偏移膜之膜面反射率光譜。 圖4係比較例1、2之相偏移光罩基底之相偏移膜之膜面反射率光譜。 圖5係比較例1、3之相偏移光罩基底之相偏移膜之膜面反射率光譜。FIG. 1 is a schematic view showing a film configuration of a phase shift mask base. FIG. 2 is a schematic view showing the structure of another film of the phase shift mask base. FIG. 3 is a film surface reflectance spectrum of the phase shift film of the phase shift mask substrate of Examples 1, 3, and 4. FIG. 4 is a film surface reflectance spectrum of the phase shift film of the phase shift mask base of Comparative Examples 1 and 2. FIG. FIG. 5 is a film surface reflectance spectrum of the phase shift film of the phase shift mask base of Comparative Examples 1 and 3. FIG.

Claims (10)

一種相偏移光罩基底,其特徵在於:其係於透明基板上具備由鉻系材料形成之相偏移膜之製造顯示裝置用之相偏移光罩基底,且上述相偏移膜具有:相偏移層,其主要具有調整對於曝光光線之透過率及相位差之功能;反射率降低層,其配置於該相偏移層之上側,且具有使對於自上述相偏移膜側入射之光之反射率降低之功能;及金屬層,其配置於上述相偏移層與上述反射率降低層之間,且具有相較上述反射率降低層之鉻含有率更高之鉻含有率;上述相偏移膜為上述相偏移層、上述金屬層及上述反射率降低層之積層構造,藉由調整上述相偏移層、上述金屬層及上述反射率降低層各自之組成及厚度,上述相偏移膜對於曝光光線之透過率為1%~20%,上述相偏移膜對於曝光光線之相位差為160°~200°,且上述相偏移膜對於自上述相偏移膜側入射之光之膜面反射率於313nm~436nm之全波長區域中為13%以下。A phase shift mask base is characterized in that it is a phase shift mask base for manufacturing a display device, which is provided with a phase shift film formed of a chrome-based material on a transparent substrate, and the phase shift film has: The phase shift layer mainly has the function of adjusting the transmittance and phase difference with respect to the exposure light; the reflectance reducing layer is arranged on the upper side of the phase shift layer, and has a function to make the phase shift layer incident on the phase shift film side A function of reducing the reflectance of light; and a metal layer disposed between the phase shift layer and the reflectance reducing layer, and having a chromium content higher than the chromium content of the reflectance reducing layer; The phase shift film has a laminated structure of the phase shift layer, the metal layer, and the reflectance reducing layer. By adjusting the composition and thickness of each of the phase shift layer, the metal layer, and the reflectance reducing layer, the phase The transmittance of the shift film to the exposure light is 1% to 20%, the phase difference of the phase shift film to the exposure light is 160 ° to 200 °, and the phase shift film is suitable for the light incident from the phase shift film side. Film reflectance of light - the entire wavelength region of 313nm 436nm is 13% or less. 如請求項1之相偏移光罩基底,其中上述金屬層之Cr含有率與上述反射率降低層之Cr含有率之差為10~80原子%。For example, the phase shift mask substrate of claim 1, wherein the difference between the Cr content rate of the metal layer and the Cr content rate of the reflectance reduction layer is 10 to 80 atomic%. 一種相偏移光罩基底,其特徵在於:其係於透明基板上具備由鉻系材料形成之相偏移膜之製造顯示裝置用之相偏移光罩基底,且上述相偏移膜具有:相偏移層,其主要具有調整對於曝光光線之透過率及相位差之功能;反射率降低層,其配置於該相偏移層之上側,且具有使對於自上述相偏移膜側入射之光之反射率降低之功能;及金屬層,其配置於上述相偏移層與上述反射率降低層之間,且於313nm~436nm之波長區域中,具有相較上述反射率降低層之消光係數更高之消光係數;上述相偏移膜為上述相偏移層、上述金屬層及上述反射率降低層之積層構造,藉由調整上述相偏移層、上述金屬層及上述反射率降低層各自之組成及厚度,上述相偏移膜對於曝光光線之透過率為1%~20%,上述相偏移膜對於曝光光線之相位差為160°~200°,且上述相偏移膜對於自上述相偏移膜側入射之光之膜面反射率於313nm~436nm之全波長區域中為13%以下。A phase shift mask base is characterized in that it is a phase shift mask base for manufacturing a display device, which is provided with a phase shift film formed of a chrome-based material on a transparent substrate, and the phase shift film has: The phase shift layer mainly has the function of adjusting the transmittance and phase difference with respect to the exposure light; the reflectance reducing layer is arranged on the upper side of the phase shift layer, and has a function to make the phase shift layer incident on the phase shift film side A function of reducing the reflectance of light; and a metal layer disposed between the phase shift layer and the reflectance reducing layer, and having an extinction coefficient compared to the reflectance reducing layer in a wavelength range of 313 nm to 436 nm Higher extinction coefficient; the phase shift film is a laminated structure of the phase shift layer, the metal layer, and the reflectance reduction layer, and each of the phase shift layer, the metal layer, and the reflectance reduction layer is adjusted by adjusting In terms of composition and thickness, the transmittance of the phase shift film to the exposure light is 1% to 20%, the phase difference of the phase shift film to the exposure light is 160 ° to 200 °, and the phase shift film is Phase shift film The film surface reflectance of the side incident light is 13% or less in the entire wavelength range of 313nm to 436nm. 如請求項3之相偏移光罩基底,其中上述金屬層之消光係數與上述反射率降低層之消光係數之差為1.5~3.5。For example, the phase shift mask substrate of claim 3, wherein the difference between the extinction coefficient of the metal layer and the extinction coefficient of the reflectance reduction layer is 1.5 to 3.5. 如請求項1至4中任一項之相偏移光罩基底,其中上述相偏移膜之膜面反射率之變動幅度於313nm~436nm之波長區域中為10%以下。For example, the phase shift mask substrate according to any one of claims 1 to 4, wherein the variation range of the film surface reflectance of the phase shift film is 10% or less in a wavelength range of 313 nm to 436 nm. 如請求項1至4中任一項之相偏移光罩基底,其中上述相偏移層為包含鉻、與氧及氮中至少一種之鉻化合物,上述金屬層為鉻,或包含鉻、與碳及氮中至少一種之鉻化合物,且上述反射率降低層係由包含鉻與氧之鉻化合物所構成。The phase shift mask substrate according to any one of claims 1 to 4, wherein the phase shift layer is a chromium compound containing chromium, at least one of oxygen and nitrogen, and the metal layer is chromium, or contains chromium, and A chromium compound of at least one of carbon and nitrogen, and the reflectance reducing layer is composed of a chromium compound containing chromium and oxygen. 如請求項1至4中任一項之相偏移光罩基底,其於相偏移膜上具備抗蝕膜。The phase shift mask substrate according to any one of claims 1 to 4, which has a resist film on the phase shift film. 一種相偏移光罩之製造方法,其特徵在於具有如下步驟:對如請求項7之相偏移光罩基底之上述抗蝕膜進行使用雷射光之描繪處理、及顯影處理,藉此於上述相偏移膜上形成抗蝕膜圖案;及將該抗蝕膜圖案作為遮罩對上述相偏移膜進行蝕刻,於上述透明基板上形成相偏移膜圖案。A method for manufacturing a phase shift mask, comprising the steps of: performing a drawing process using laser light on the above-mentioned resist film of the phase shift mask base as claimed in claim 7, and a development process, whereby Forming a resist film pattern on the phase shift film; and etching the phase shift film using the resist film pattern as a mask to form a phase shift film pattern on the transparent substrate. 一種顯示裝置之製造方法,其特徵在於具有如下步驟:將藉由如請求項8之製造方法所製造之相偏移光罩載置於曝光裝置之光罩台;及對上述相偏移光罩照射曝光光線,將上述相偏移膜圖案轉印至形成於顯示裝置基板上之抗蝕膜。A method for manufacturing a display device is characterized by having the steps of: placing a phase shift mask manufactured by the manufacturing method as claimed in claim 8 on a mask stage of an exposure device; and the phase shift mask described above. The exposure light is irradiated to transfer the phase shift film pattern to a resist film formed on a display device substrate. 如請求項9之顯示裝置之製造方法,其中上述曝光光線為包含選自313nm~436nm之波長區域中之複數個波長之光的複合光。The method for manufacturing a display device according to claim 9, wherein the exposure light is a composite light including a plurality of wavelengths of light selected from a wavelength range of 313 nm to 436 nm.
TW107135068A 2015-07-17 2016-06-20 Phase shift mask base, manufacturing method of phase shift mask, and display device manufacturing method TWI677437B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-142927 2015-07-17
JP2015142927A JP6352224B2 (en) 2015-07-17 2015-07-17 Phase shift mask blank, method of manufacturing phase shift mask using the same, and method of manufacturing display device

Publications (2)

Publication Number Publication Date
TW201902684A TW201902684A (en) 2019-01-16
TWI677437B true TWI677437B (en) 2019-11-21

Family

ID=57843194

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105119339A TWI641493B (en) 2015-07-17 2016-06-20 Phase shift mask base, manufacturing method of phase shift mask, and display device manufacturing method
TW107135068A TWI677437B (en) 2015-07-17 2016-06-20 Phase shift mask base, manufacturing method of phase shift mask, and display device manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW105119339A TWI641493B (en) 2015-07-17 2016-06-20 Phase shift mask base, manufacturing method of phase shift mask, and display device manufacturing method

Country Status (4)

Country Link
JP (1) JP6352224B2 (en)
KR (2) KR101935448B1 (en)
CN (1) CN106353963B (en)
TW (2) TWI641493B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102568807B1 (en) * 2017-03-28 2023-08-21 호야 가부시키가이샤 Phase shift mask blank and method for manufacturing phase shift mask using the same, and pattern transfer method
JP6998181B2 (en) * 2017-11-14 2022-02-04 アルバック成膜株式会社 Mask blank, phase shift mask and its manufacturing method
KR20240046289A (en) * 2018-03-15 2024-04-08 다이니폰 인사츠 가부시키가이샤 Large-Sized Photomask
JP7062480B2 (en) * 2018-03-22 2022-05-06 アルバック成膜株式会社 Mask blanks and photomasks, their manufacturing methods
JP6999460B2 (en) 2018-03-23 2022-01-18 Hoya株式会社 A phase shift mask blank, a phase shift mask intermediate, a method for manufacturing a phase shift mask using these, and a method for manufacturing a display device.
JP6938428B2 (en) * 2018-05-30 2021-09-22 Hoya株式会社 Manufacturing method of mask blank, phase shift mask and semiconductor device
KR102468553B1 (en) * 2020-09-15 2022-11-22 주식회사 에스앤에스텍 Blankmask and Photomask

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201033729A (en) * 2003-10-24 2010-09-16 Shinetsu Chemical Co Phase shift mask blank, phase shift mask, and pattern transfer method
CN101937170A (en) * 2009-06-30 2011-01-05 爱发科成膜株式会社 Method for manufacturing phase shift mask, method for manufacturing flat panel display, and phase shift mask

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151945A (en) * 1981-03-17 1982-09-20 Hoya Corp Photomask blank and its manufacture
JPH09244212A (en) * 1996-03-12 1997-09-19 Dainippon Printing Co Ltd Halftone phase shift photomask and blank for halftone phase shift photomask
JP2983020B1 (en) * 1998-12-18 1999-11-29 ホーヤ株式会社 Halftone type phase shift mask blank and halftone type phase shift mask
EP1117000B1 (en) * 2000-01-12 2004-01-02 Shin-Etsu Chemical Co., Ltd. Phase shift mask blank, phase shift mask, and method of manufacture
JP2002244274A (en) * 2001-02-13 2002-08-30 Shin Etsu Chem Co Ltd Photomask blank, photomask and method for producing these
JP2005092241A (en) * 2002-03-01 2005-04-07 Hoya Corp Method for producing halftone phase shift mask blank
JP2006078825A (en) * 2004-09-10 2006-03-23 Shin Etsu Chem Co Ltd Photomask blank, photomask and method for manufacturing same
EP1746460B1 (en) * 2005-07-21 2011-04-06 Shin-Etsu Chemical Co., Ltd. Photomask blank, photomask and fabrication method thereof
KR101503932B1 (en) * 2005-09-30 2015-03-18 호야 가부시키가이샤 Photomask blank and process for producing the same, process for producing photomask, and process for producing semiconductor device
JP4509050B2 (en) * 2006-03-10 2010-07-21 信越化学工業株式会社 Photomask blank and photomask
KR101151685B1 (en) * 2011-04-22 2012-07-20 주식회사 에스앤에스텍 Blankmask and photomask
JP6127977B2 (en) * 2011-10-21 2017-05-17 大日本印刷株式会社 Large phase shift mask and manufacturing method of large phase shift mask
KR101282040B1 (en) 2012-07-26 2013-07-04 주식회사 에스앤에스텍 Phase shift blankmask and photomask using the flat pannel display
JP5934434B2 (en) * 2013-04-17 2016-06-15 アルバック成膜株式会社 Phase shift mask manufacturing method, phase shift mask, and phase shift mask manufacturing apparatus
JP6138676B2 (en) * 2013-12-27 2017-05-31 Hoya株式会社 Phase shift mask blank, method for manufacturing the same, and method for manufacturing the phase shift mask

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201033729A (en) * 2003-10-24 2010-09-16 Shinetsu Chemical Co Phase shift mask blank, phase shift mask, and pattern transfer method
CN101937170A (en) * 2009-06-30 2011-01-05 爱发科成膜株式会社 Method for manufacturing phase shift mask, method for manufacturing flat panel display, and phase shift mask

Also Published As

Publication number Publication date
CN106353963A (en) 2017-01-25
KR20170009722A (en) 2017-01-25
KR101935448B1 (en) 2019-01-07
CN106353963B (en) 2020-08-25
TW201902684A (en) 2019-01-16
TW201707956A (en) 2017-03-01
KR20190002403A (en) 2019-01-08
JP6352224B2 (en) 2018-07-04
KR102003650B1 (en) 2019-07-24
TWI641493B (en) 2018-11-21
JP2017026701A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
TWI677437B (en) Phase shift mask base, manufacturing method of phase shift mask, and display device manufacturing method
TWI698702B (en) Manufacturing method of phase shift mask base and phase shift mask using the same, and manufacturing method of display device
JP6823703B2 (en) Photomask blank and its manufacturing method, photomask manufacturing method, and display device manufacturing method
TWI631414B (en) Phase shift mask substrate, method of manufacturing the same, and method of manufacturing phase shift mask
TWI813644B (en) Phase shift mask substrate, manufacturing method of phase shift mask, and manufacturing method of display device
TWI784733B (en) Mask base, method of manufacturing transfer mask, and method of manufacturing semiconductor device
JP7095157B2 (en) A method for manufacturing a phase shift mask blank and a phase shift mask using the blank, and a method for manufacturing a display device.
CN108319103B (en) Phase shift mask blank, method for manufacturing phase shift mask using the same, and method for manufacturing display device
TWI758382B (en) Phase shift mask blanke, method of manufacturing a phase shift mask, and method of manufacturing a display device
JP2021144146A (en) Photomask blank, photomask blank production method, photomask production method, and display device production method
JP2019148789A (en) Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device
JP6999460B2 (en) A phase shift mask blank, a phase shift mask intermediate, a method for manufacturing a phase shift mask using these, and a method for manufacturing a display device.
JP2018173644A (en) Phase shift mask blank, manufacturing method of phase shift mask, and manufacturing method of display device
CN108319104B (en) Phase shift mask blank for manufacturing display device, method for manufacturing phase shift mask for manufacturing display device, and method for manufacturing display device
JP2019061106A (en) Phase shift mask blank and method for manufacturing phase shift mask using the same, and method for manufacturing display device
JP2023051759A (en) Photomask blank, photomask, manufacturing method of photomask, and manufacturing method of display device
TW202336522A (en) Photomask blank, photomask, method for manufacturing a photomask, and method for manufacturing a display device
JP7126836B2 (en) PHASE SHIFT MASK BLANK, METHOD FOR MANUFACTURING PHASE SHIFT MASK USING SAME, AND PATTERN TRANSFER METHOD
TW202141169A (en) Photomask blank, method for manufacturing photomask, and method for manufacturing display device
CN115145110A (en) Photomask blank, method for manufacturing photomask, and method for manufacturing display device
JP2020046468A (en) Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device