TWI675460B - Memory structure and manufacturing method thereof - Google Patents

Memory structure and manufacturing method thereof Download PDF

Info

Publication number
TWI675460B
TWI675460B TW107144387A TW107144387A TWI675460B TW I675460 B TWI675460 B TW I675460B TW 107144387 A TW107144387 A TW 107144387A TW 107144387 A TW107144387 A TW 107144387A TW I675460 B TWI675460 B TW I675460B
Authority
TW
Taiwan
Prior art keywords
doped region
recessed gate
transistor
metal silicide
substrate
Prior art date
Application number
TW107144387A
Other languages
Chinese (zh)
Other versions
TW202023032A (en
Inventor
魏易玄
I-Shuan Wei
李志鵬
Chih-Peng Lee
林家佑
Jia-you LIN
Original Assignee
力晶積成電子製造股份有限公司
Powerchip Semiconductor Manufacturing Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司, Powerchip Semiconductor Manufacturing Corporation filed Critical 力晶積成電子製造股份有限公司
Priority to TW107144387A priority Critical patent/TWI675460B/en
Application granted granted Critical
Publication of TWI675460B publication Critical patent/TWI675460B/en
Publication of TW202023032A publication Critical patent/TW202023032A/en

Links

Abstract

一種記憶體結構,包括基底、第一電晶體、第二電晶體與電容器。第一電晶體包括第一凹入式閘極、第一摻雜區、第二摻雜區與第一金屬矽化物層。第一金屬矽化物層設置在第一摻雜區上。沒有直接設置在第二摻雜區上的金屬矽化物層。第二電晶體包括第二凹入式閘極、第三摻雜區、第四摻雜區與第二金屬矽化物層。第二金屬矽化物層設置在第四摻雜區上。沒有直接設置在第三摻雜區上的金屬矽化物層。第二摻雜區與第三摻雜區位在第一凹入式閘極與第二凹入式閘極之間。電容器包括第一電極、第二電極與絕緣層。第一電極直接連接至第二摻雜區與第三摻雜區。A memory structure includes a substrate, a first transistor, a second transistor, and a capacitor. The first transistor includes a first recessed gate, a first doped region, a second doped region, and a first metal silicide layer. The first metal silicide layer is disposed on the first doped region. There is no metal silicide layer disposed directly on the second doped region. The second transistor includes a second recessed gate, a third doped region, a fourth doped region, and a second metal silicide layer. The second metal silicide layer is disposed on the fourth doped region. There is no metal silicide layer directly disposed on the third doped region. The second doped region and the third doped region are located between the first recessed gate and the second recessed gate. The capacitor includes a first electrode, a second electrode, and an insulating layer. The first electrode is directly connected to the second doped region and the third doped region.

Description

記憶體結構及其製造方法Memory structure and manufacturing method thereof

本發明是有關於一種半導體結構及其製造方法,且特別是有關於一種記憶體結構及其製造方法。The present invention relates to a semiconductor structure and a manufacturing method thereof, and more particularly, to a memory structure and a manufacturing method thereof.

目前發展出一種記憶體結構,包括彼此耦接電晶體與電容器。在此種記憶體結構中,使用電容器作為儲存組件。然而,如何提升此種記憶體元件的電性效能為目前業界持續努力的目標。Currently, a memory structure is developed, which includes a transistor and a capacitor coupled to each other. In such a memory structure, a capacitor is used as a storage component. However, how to improve the electrical performance of such memory devices is the goal of continuous efforts in the industry.

本發明提供一種記憶體結構及其製造方法,其可提升記憶體元件的電性效能。The invention provides a memory structure and a manufacturing method thereof, which can improve the electrical performance of a memory element.

本發明提出一種記憶體結構,包括基底、第一電晶體、第二電晶體與電容器。第一電晶體包括第一凹入式閘極(recess gate)、第一摻雜區、第二摻雜區與第一金屬矽化物層。第一凹入式閘極設置在基底中。第一凹入式閘極絕緣於基底。第一摻雜區與第二摻雜區位在第一凹入式閘極的兩側的基底中。第一金屬矽化物層設置在第一摻雜區上。沒有直接設置在第二摻雜區上的金屬矽化物層。第二電晶體位在第一電晶體的一側。第二電晶體包括第二凹入式閘極、第三摻雜區、第四摻雜區與第二金屬矽化物層。第二凹入式閘極設置在基底中。第二凹入式閘極絕緣於基底。第三摻雜區與第四摻雜區位在第二凹入式閘極的兩側的基底中。第二金屬矽化物層設置在第四摻雜區上。沒有直接設置在第三摻雜區上的金屬矽化物層。第二摻雜區與第三摻雜區位在第一凹入式閘極與第二凹入式閘極之間。電容器耦接在第一電晶體與第二電晶體之間。電容器包括第一電極、第二電極與絕緣層。第一電極直接連接至第二摻雜區與第三摻雜區。第二電極設置在第一電極上。絕緣層設置在第一電極與第二電極之間。The invention provides a memory structure including a substrate, a first transistor, a second transistor, and a capacitor. The first transistor includes a first recess gate, a first doped region, a second doped region, and a first metal silicide layer. A first recessed gate is disposed in the substrate. The first recessed gate is insulated from the substrate. The first doped region and the second doped region are located in a substrate on both sides of the first recessed gate. The first metal silicide layer is disposed on the first doped region. There is no metal silicide layer disposed directly on the second doped region. The second transistor is located on one side of the first transistor. The second transistor includes a second recessed gate, a third doped region, a fourth doped region, and a second metal silicide layer. A second recessed gate is disposed in the substrate. The second recessed gate is insulated from the substrate. The third doped region and the fourth doped region are located in a substrate on both sides of the second recessed gate. The second metal silicide layer is disposed on the fourth doped region. There is no metal silicide layer directly disposed on the third doped region. The second doped region and the third doped region are located between the first recessed gate and the second recessed gate. The capacitor is coupled between the first transistor and the second transistor. The capacitor includes a first electrode, a second electrode, and an insulating layer. The first electrode is directly connected to the second doped region and the third doped region. The second electrode is disposed on the first electrode. An insulating layer is provided between the first electrode and the second electrode.

依照本發明的一實施例所述,在上述記憶體結構中,第一電晶體與第二電晶體分別可為N型金氧半導體電晶體與P型金氧半導體電晶體中的一者與另一者。According to an embodiment of the present invention, in the above memory structure, the first transistor and the second transistor may be one of an N-type metal-oxide semiconductor transistor and a P-type metal-oxide semiconductor transistor, respectively, and the other One.

依照本發明的一實施例所述,在上述記憶體結構中,部分第一凹入式閘極與部分第二凹入式閘極可突出於基底。According to an embodiment of the present invention, in the memory structure, part of the first recessed gate and part of the second recessed gate may protrude from the base.

依照本發明的一實施例所述,在上述記憶體結構中,第一電晶體更可包括第一介電層。第一介電層設置在第一凹入式閘極與基底之間。第二電晶體更可包括第二介電層。第二介電層設置在第二凹入式閘極與基底之間。According to an embodiment of the present invention, in the above memory structure, the first transistor may further include a first dielectric layer. The first dielectric layer is disposed between the first recessed gate and the substrate. The second transistor may further include a second dielectric layer. The second dielectric layer is disposed between the second recessed gate and the substrate.

依照本發明的一實施例所述,在上述記憶體結構中,第一電晶體更可包括第三金屬矽化物層。第三金屬矽化物層設置在第一凹入式閘極上。第二電晶體更可包括第四金屬矽化物層。第四金屬矽化物層設置在第二凹入式閘極上。According to an embodiment of the present invention, in the above memory structure, the first transistor may further include a third metal silicide layer. The third metal silicide layer is disposed on the first recessed gate. The second transistor may further include a fourth metal silicide layer. A fourth metal silicide layer is disposed on the second recessed gate.

本發明提出一種記憶體結構的製造方法,包括以下步驟。提供基底。形成第一電晶體。第一電晶體包括第一凹入式閘極、第一摻雜區、第二摻雜區與第一金屬矽化物層。第一凹入式閘極設置在基底中。第一凹入式閘極絕緣於基底。第一摻雜區與第二摻雜區位在第一凹入式閘極的兩側的基底中。第一金屬矽化物層設置在第一摻雜區上。沒有直接設置在第二摻雜區上的金屬矽化物層。在第一電晶體的一側形成第二電晶體。第二電晶體包括第二凹入式閘極、第三摻雜區、第四摻雜區與第二金屬矽化物層。第二凹入式閘極設置在基底中。第二凹入式閘極絕緣於基底。第三摻雜區與第四摻雜區位在第二凹入式閘極的兩側的基底中。第二金屬矽化物層設置在第四摻雜區上。沒有直接設置在第三摻雜區上的金屬矽化物層。第二摻雜區與第三摻雜區位在第一凹入式閘極與第二凹入式閘極之間。形成耦接在第一電晶體與第二電晶體之間的電容器。電容器包括第一電極、第二電極與絕緣層。第一電極直接連接至第二摻雜區與第三摻雜區。第二電極設置在第一電極上。絕緣層設置在第一電極與第二電極之間。The invention provides a method for manufacturing a memory structure, which includes the following steps. Provide a substrate. A first transistor is formed. The first transistor includes a first recessed gate, a first doped region, a second doped region, and a first metal silicide layer. A first recessed gate is disposed in the substrate. The first recessed gate is insulated from the substrate. The first doped region and the second doped region are located in a substrate on both sides of the first recessed gate. The first metal silicide layer is disposed on the first doped region. There is no metal silicide layer disposed directly on the second doped region. A second transistor is formed on one side of the first transistor. The second transistor includes a second recessed gate, a third doped region, a fourth doped region, and a second metal silicide layer. A second recessed gate is disposed in the substrate. The second recessed gate is insulated from the substrate. The third doped region and the fourth doped region are located in a substrate on both sides of the second recessed gate. The second metal silicide layer is disposed on the fourth doped region. There is no metal silicide layer directly disposed on the third doped region. The second doped region and the third doped region are located between the first recessed gate and the second recessed gate. A capacitor is formed between the first transistor and the second transistor. The capacitor includes a first electrode, a second electrode, and an insulating layer. The first electrode is directly connected to the second doped region and the third doped region. The second electrode is disposed on the first electrode. An insulating layer is provided between the first electrode and the second electrode.

依照本發明的一實施例所述,在上述記憶體結構的製造方法中,第一凹入式閘極與第二凹入式閘極的形成方法可包括以下步驟。在基底中形成第一凹槽與第二凹槽。形成填入第一凹槽與第二凹槽的閘極材料層。對閘極材料層進行圖案化製程,而分別在第一凹槽與第二凹槽中形成第一凹入式閘極與第二凹入式閘極。According to an embodiment of the present invention, in the method for manufacturing a memory structure, the method for forming the first recessed gate and the second recessed gate may include the following steps. A first groove and a second groove are formed in the substrate. A gate material layer is formed to fill the first groove and the second groove. A patterning process is performed on the gate material layer, and a first recessed gate and a second recessed gate are formed in the first groove and the second groove, respectively.

依照本發明的一實施例所述,在上述記憶體結構的製造方法中,第一凹入式閘極與第二凹入式閘極的形成方法更可包括以下步驟。在第一凹入式閘極與基底之間形成第一介電層。在第二凹入式閘極與基底之間形成第二介電層。According to an embodiment of the present invention, in the method for manufacturing a memory structure, the method for forming the first recessed gate and the second recessed gate further includes the following steps. A first dielectric layer is formed between the first recessed gate and the substrate. A second dielectric layer is formed between the second recessed gate and the substrate.

依照本發明的一實施例所述,在上述記憶體結構的製造方法中,第一金屬矽化物層與第二金屬矽化物層的形成方法可包括以下步驟。在基底上形成自對準金屬矽化物阻擋層。自對準金屬矽化物阻擋層暴露出第一摻雜區與第四摻雜區,且覆蓋第二摻雜區與第三摻雜區。藉由自對準金屬矽化物製程分別在第一摻雜區與第四摻雜區上形成第一金屬矽化物層與第二金屬矽化物層。According to an embodiment of the present invention, in the method for manufacturing a memory structure, the method for forming the first metal silicide layer and the second metal silicide layer may include the following steps. A self-aligned metal silicide barrier layer is formed on the substrate. The self-aligned metal silicide blocking layer exposes the first and fourth doped regions and covers the second and third doped regions. A self-aligned metal silicide process is used to form a first metal silicide layer and a second metal silicide layer on the first doped region and the fourth doped region, respectively.

依照本發明的一實施例所述,在上述記憶體結構的製造方法中,藉由自對準金屬矽化物製程更可分別在第一凹入式閘極與第二凹入式閘極上形成第三金屬矽化物層與第四金屬矽化物層。According to an embodiment of the present invention, in the method for manufacturing a memory structure, a self-aligned metal silicide process can further form a first recessed gate and a second recessed gate, respectively. The three metal silicide layer and the fourth metal silicide layer.

基於上述,在本發明所提出的記憶體結構的製造方法中,由於電容器的第一電極直接連接至第二摻雜區與第三摻雜區,因此可形成肖特基接觸(Schottky contact),進而可降低電容器的漏電流。此外,由於第一凹入式閘極與第二凹入式閘極設置在基底中,因此可有效地增加第一電晶體與第二電晶體的通道長度。如此一來,可進一步地縮短第一凹入式閘極與第二凹入式閘極的閘極長度,進而縮小記憶體元件的尺寸。另外,由於第一金屬矽化物層與第二金屬矽化物層分別設置在第一摻雜區與第二摻雜區上,因此可有效地降低接觸電阻。Based on the above, in the manufacturing method of the memory structure proposed by the present invention, since the first electrode of the capacitor is directly connected to the second doped region and the third doped region, a Schottky contact can be formed. Further, the leakage current of the capacitor can be reduced. In addition, since the first recessed gate and the second recessed gate are disposed in the substrate, the channel length of the first transistor and the second transistor can be effectively increased. In this way, the gate lengths of the first recessed gate and the second recessed gate can be further shortened, thereby reducing the size of the memory element. In addition, since the first metal silicide layer and the second metal silicide layer are respectively disposed on the first doped region and the second doped region, the contact resistance can be effectively reduced.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

圖1A至圖1F為本發明一實施例的記憶體結構的製造流程剖面圖。1A to 1F are cross-sectional views of a manufacturing process of a memory structure according to an embodiment of the present invention.

請參照圖1A,提供基底100。基底100例如是半導體基底,如矽基底。基底100可具有第一導電型。以下,所記載的第一導電型與第二導電型可分別為P型導電型與N型導電型中的一者與另一者。在本實施例中,第一導電型是以P型導電型為例,且第二導電型是以N型導電型為例,但本發明並不以此為限。Referring to FIG. 1A, a substrate 100 is provided. The substrate 100 is, for example, a semiconductor substrate such as a silicon substrate. The substrate 100 may have a first conductivity type. Hereinafter, the first conductivity type and the second conductivity type described may be one of the P-type conductivity type and the N-type conductivity type and the other. In this embodiment, the first conductivity type is a P-type conductivity type and the second conductivity type is an N-type conductivity type, but the present invention is not limited thereto.

接著,可在基底100中形成井區102。井區102可具有第二導電型(如,N型)。井區102的形成方法例如是離子植入法。Then, a well region 102 may be formed in the substrate 100. The well region 102 may have a second conductivity type (eg, N-type). A method for forming the well region 102 is, for example, an ion implantation method.

然後,可在基底100中形成凹槽104與凹槽106。凹槽104與凹槽106的形成方法例如是藉由微影製程與蝕刻製程對基底100進行圖案化。Then, a groove 104 and a groove 106 may be formed in the substrate 100. The grooves 104 and the grooves 106 are formed by, for example, patterning the substrate 100 by a lithography process and an etching process.

接下來,可在基底100上可形成介電層108。介電層108的材料例如是氧化矽。介電層108的形成方法例如是熱氧化法。Next, a dielectric layer 108 may be formed on the substrate 100. The material of the dielectric layer 108 is, for example, silicon oxide. A method of forming the dielectric layer 108 is, for example, a thermal oxidation method.

再者,可在介電層108上形成填入凹槽104與凹槽106的閘極材料層110。閘極材料層110的材料例如是導體材料,如摻雜多晶矽。閘極材料層110的形成方法例如是化學氣相沉積法。Furthermore, a gate material layer 110 may be formed on the dielectric layer 108 and filled with the grooves 104 and 106. The material of the gate material layer 110 is, for example, a conductive material, such as doped polycrystalline silicon. A method for forming the gate material layer 110 is, for example, a chemical vapor deposition method.

請參照圖1B,對閘極材料層110進行圖案化製程,而分別在凹槽104與凹槽106中形成凹入式閘極110a與凹入式閘極110b。藉此,可在基底100中形成凹入式閘極110a與凹入式閘極110b。由於凹入式閘極110a與凹入式閘極110b設置在基底100中,因此可在基底100中形成凹入式通道,進而可有效地增加後續所形成的電晶體的通道長度。此外,部分凹入式閘極110a與部分凹入式閘極110b可突出於基底100。對閘極材料層110所進行圖案化製程包括微影製程與蝕刻製程。Referring to FIG. 1B, a patterning process is performed on the gate material layer 110, and a recessed gate 110a and a recessed gate 110b are formed in the grooves 104 and 106, respectively. Thereby, the recessed gate 110a and the recessed gate 110b can be formed in the substrate 100. Since the recessed gate 110a and the recessed gate 110b are disposed in the substrate 100, a recessed channel can be formed in the substrate 100, and the channel length of the transistor formed later can be effectively increased. In addition, the partially recessed gate 110 a and the partially recessed gate 110 b may protrude from the substrate 100. The patterning process of the gate material layer 110 includes a lithography process and an etching process.

接著,可移除未被凹入式閘極110a與凹入式閘極110b所覆蓋的部分介電層108,而在凹入式閘極110a與基底100之間形成介電層108a,且在凹入式閘極110b與基底100之間形成介電層108b。部分介電層108的移除方法包括乾式蝕刻法。凹入式閘極110a可藉由介電層108a而絕緣於基底100。凹入式閘極110b可藉由介電層108b而絕緣於基底100。Then, a portion of the dielectric layer 108 not covered by the recessed gate 110a and the recessed gate 110b may be removed, and a dielectric layer 108a is formed between the recessed gate 110a and the substrate 100, A dielectric layer 108b is formed between the recessed gate 110b and the substrate 100. A method of removing a portion of the dielectric layer 108 includes a dry etching method. The recessed gate 110a can be insulated from the substrate 100 by a dielectric layer 108a. The recessed gate 110b may be insulated from the substrate 100 by a dielectric layer 108b.

請參照圖1C,可在凹入式閘極110a的側壁與凹入式閘極110b的側壁上分別形成間隙壁112與間隙壁114。間隙壁112與間隙壁114可為單層結構或多層結構。間隙壁112與間隙壁114的材料例如是氧化矽、氮化矽或其組合。間隙壁112與間隙壁114的形成方法例如是先在凹入式閘極110a的側壁與凹入式閘極110b上形成間隙壁材料層(未示出),再對間隙壁材料層進行回蝕刻製程。Referring to FIG. 1C, a gap wall 112 and a gap wall 114 can be formed on the sidewall of the recessed gate 110a and the sidewall of the recessed gate 110b, respectively. The partition wall 112 and the partition wall 114 may be a single-layer structure or a multi-layer structure. The material of the partition wall 112 and the partition wall 114 is, for example, silicon oxide, silicon nitride, or a combination thereof. The formation method of the spacer wall 112 and the spacer wall 114 is, for example, first forming a spacer material layer (not shown) on the sidewall of the recessed gate 110a and the recessed gate 110b, and then performing etch-back Process.

接著,可在凹入式閘極110a的兩側的基底100中形成摻雜區116與摻雜區118。摻雜區116與摻雜區118可具有第二導電型(如,N型)。摻雜區116與摻雜區118的形成方法例如是離子植入法。Next, a doped region 116 and a doped region 118 may be formed in the substrate 100 on both sides of the recessed gate 110a. The doped regions 116 and 118 may have a second conductivity type (eg, N-type). The method of forming the doped region 116 and the doped region 118 is, for example, an ion implantation method.

此外,可在凹入式閘極110b的兩側的基底100中形成摻雜區120與摻雜區122。摻雜區120與摻雜區122可具有第一導電型(如,P型)。摻雜區120與摻雜區122可位在井區102中。摻雜區120與摻雜區122的形成方法例如是離子植入法。In addition, a doped region 120 and a doped region 122 may be formed in the substrate 100 on both sides of the recessed gate 110b. The doped region 120 and the doped region 122 may have a first conductivity type (for example, a P type). The doped region 120 and the doped region 122 may be located in the well region 102. The method of forming the doped region 120 and the doped region 122 is, for example, an ion implantation method.

另外,所屬技術領域具有通常知識者可依據製程需求來決定摻雜區116、摻雜區118、摻雜區120與摻雜區122的形成順序。In addition, those skilled in the art can determine the order of forming the doped region 116, the doped region 118, the doped region 120, and the doped region 122 according to the process requirements.

接下來,可在基底100上形成自對準金屬矽化物阻擋層(salicide block,SAB)124。自對準金屬矽化物阻擋層124暴露出摻雜區116與摻雜區122,且覆蓋摻雜區118與摻雜區120。此外,自對準金屬矽化物阻擋層124更可暴露出凹入式閘極110a與凹入式閘極110b。自對準金屬矽化物阻擋層124的材料例如是氧化矽。自對準金屬矽化物阻擋層124的形成方法例如是組合使用沉積製程、微影製程與蝕刻製程。Next, a self-aligned metal silicide block (SAB) 124 may be formed on the substrate 100. The self-aligned metal silicide blocking layer 124 exposes the doped region 116 and the doped region 122 and covers the doped region 118 and the doped region 120. In addition, the self-aligned metal silicide blocking layer 124 can further expose the recessed gate 110a and the recessed gate 110b. The material of the self-aligned metal silicide barrier layer 124 is, for example, silicon oxide. The method for forming the self-aligned metal silicide barrier layer 124 is, for example, a combination of a deposition process, a lithography process, and an etching process.

請參照圖1D,藉由自對準金屬矽化物製程分別在摻雜區116與摻雜區122上形成金屬矽化物層126與金屬矽化物層128,藉此可有效地降低接觸電阻。此外,藉由上述自對準金屬矽化物製程更可分別在凹入式閘極110a與凹入式閘極110b上形成金屬矽化物層130與金屬矽化物層132,藉此可有效地降低接觸電阻。金屬矽化物層126、金屬矽化物層128、金屬矽化物層130與金屬矽化物層132的材料例如是矽化鈷或矽化鎳。Referring to FIG. 1D, a metal silicide layer 126 and a metal silicide layer 128 are formed on the doped region 116 and the doped region 122 respectively by a self-aligned metal silicide process, thereby effectively reducing contact resistance. In addition, through the aforementioned self-aligned metal silicide process, a metal silicide layer 130 and a metal silicide layer 132 can be formed on the recessed gate 110a and the recessed gate 110b, respectively, thereby effectively reducing contact. resistance. The material of the metal silicide layer 126, the metal silicide layer 128, the metal silicide layer 130, and the metal silicide layer 132 is, for example, cobalt silicide or nickel silicide.

如此一來,可形成電晶體134,且可在電晶體134的一側形成電晶體136。雖然電晶體134與電晶體134的形成方法是以上述方法為例進行說明,但本發明並不以此為限。In this way, the transistor 134 can be formed, and the transistor 136 can be formed on one side of the transistor 134. Although the method of forming the transistor 134 and the transistor 134 is described by taking the above method as an example, the present invention is not limited thereto.

電晶體134可具有第二導電型,且電晶體136可具有第一導電型。電晶體134與電晶體136分別可為N型金氧半導體電晶體與P型金氧半導體電晶體中的一者與另一者。在本實施例中,電晶體134是以N型金氧半導體電晶體為例,且電晶體136是以P型金氧半導體電晶體為例,但本發明並不以此為限。The transistor 134 may have a second conductivity type, and the transistor 136 may have a first conductivity type. The transistor 134 and the transistor 136 may be one of the N-type metal-oxide semiconductor transistor and the P-type metal-oxide semiconductor transistor, respectively. In this embodiment, the transistor 134 is an N-type metal-oxide-semiconductor transistor, and the transistor 136 is a P-type metal-oxide semiconductor transistor. However, the present invention is not limited thereto.

電晶體134包括凹入式閘極110a、摻雜區116、摻雜區118與金屬矽化物層126。凹入式閘極110a設置在基底100中。凹入式閘極110a絕緣於基底100。摻雜區116與摻雜區118位在凹入式閘極110a的兩側的基底100中。金屬矽化物層126設置在摻雜區116上。沒有直接設置在摻雜區118上的金屬矽化物層。The transistor 134 includes a recessed gate 110 a, a doped region 116, a doped region 118, and a metal silicide layer 126. The recessed gate 110 a is disposed in the substrate 100. The recessed gate 110 a is insulated from the substrate 100. The doped regions 116 and 118 are located in the substrate 100 on both sides of the recessed gate 110 a. A metal silicide layer 126 is disposed on the doped region 116. There is no metal silicide layer disposed directly on the doped region 118.

此外,電晶體134更可包括介電層108a、間隙壁112與金屬矽化物層130中的至少一者。介電層108a設置在凹入式閘極110a與基底100之間。間隙壁112設置在凹入式閘極110a的側壁上。金屬矽化物層130設置在凹入式閘極110a上。In addition, the transistor 134 may further include at least one of a dielectric layer 108a, a spacer 112, and a metal silicide layer 130. A dielectric layer 108 a is disposed between the recessed gate 110 a and the substrate 100. The partition wall 112 is disposed on a side wall of the recessed gate electrode 110a. The metal silicide layer 130 is disposed on the recessed gate 110a.

電晶體136包括凹入式閘極110b、摻雜區120、摻雜區122與金屬矽化物層128。凹入式閘極110b設置在基底100中。凹入式閘極110b絕緣於基底100。摻雜區120與摻雜區122位在凹入式閘極110b的兩側的基底100中。金屬矽化物層128設置在摻雜區122上。沒有直接設置在摻雜區120上的金屬矽化物層。此外,摻雜區118與摻雜區120位在凹入式閘極110a與凹入式閘極110b之間。The transistor 136 includes a recessed gate 110b, a doped region 120, a doped region 122, and a metal silicide layer 128. The recessed gate electrode 110 b is disposed in the substrate 100. The recessed gate electrode 110 b is insulated from the substrate 100. The doped region 120 and the doped region 122 are located in the substrate 100 on both sides of the recessed gate 110b. A metal silicide layer 128 is disposed on the doped region 122. There is no metal silicide layer directly disposed on the doped region 120. In addition, the doped region 118 and the doped region 120 are located between the recessed gate 110a and the recessed gate 110b.

此外,電晶體136更可包括井區102、介電層108b、間隙壁114與金屬矽化物層132中的至少一者。井區102位在基底100中,且摻雜區120與摻雜區122可位在井區102中。介電層108b設置在凹入式閘極110b與基底100之間。間隙壁114設置在凹入式閘極110b的側壁上。金屬矽化物層132設置在凹入式閘極110b上。In addition, the transistor 136 may further include at least one of the well region 102, the dielectric layer 108b, the spacer 114, and the metal silicide layer 132. The well region 102 is located in the substrate 100, and the doped region 120 and the doped region 122 may be located in the well region 102. The dielectric layer 108 b is disposed between the recessed gate 110 b and the substrate 100. The partition wall 114 is disposed on a side wall of the recessed gate electrode 110b. The metal silicide layer 132 is disposed on the recessed gate 110b.

在本實施例中,電晶體134與電晶體136的結構僅為舉例說明,但本發明並不以此為限。所屬技術領域具有通常知識者可依照產品需求來調整電晶體134與電晶體136的結構。舉例來說,電晶體134與電晶體136更可包括輕摻雜汲極(lightly doped drain,LDD)(未示出)等,於此不再說明。In this embodiment, the structures of the transistor 134 and the transistor 136 are merely examples, but the present invention is not limited thereto. Those skilled in the art can adjust the structures of the transistor 134 and the transistor 136 according to product requirements. For example, the transistor 134 and the transistor 136 may further include a lightly doped drain (LDD) (not shown), etc., which will not be described herein.

請參照圖1E,可形成覆蓋電晶體134與電晶體136的介電層138。介電層138可為單層結構或多層結構。介電層138的材料例如是氧化矽、氮化矽或其組合。介電層138形成方法例如是化學氣相沉積法。Referring to FIG. 1E, a dielectric layer 138 may be formed to cover the transistor 134 and the transistor 136. The dielectric layer 138 may be a single-layer structure or a multi-layer structure. The material of the dielectric layer 138 is, for example, silicon oxide, silicon nitride, or a combination thereof. The method for forming the dielectric layer 138 is, for example, a chemical vapor deposition method.

接著,形成耦接在電晶體134與電晶體136之間的電容器140。電容器140可位在介電層138中,且部分電容器140可位在介電層138上。電容器140包括電極142、電極144與絕緣層146。電極142直接連接至摻雜區118與摻雜區120。電極142可用以作為電容器140的下電極。電極144設置在電極142上。電極142可用以作為電容器140的上電極。電極142與電極144的材料例如是Ti、TiN、Ta、Al、In、Nb、Hf、Sn、Zn、Zr、Cu、Y或其組合。絕緣層146設置在電極142與電極144之間。絕緣層146的材料例如是高介電常數材料(high-k material)、氧化矽、氮化矽、氧化矽/氮化矽/氧化矽(oxide-nitride-oxide,ONO)或其組合。高介電常數材料例如是氧化鉭(Ta 2O 5)、氧化鋁(Al 2O 3)、氧化鉿(HfO 2)、氧化鈦(TiO 2)、氧化鋯(ZrO 2)或其組合。在電容器140中,由於絕緣層146設置在電極142與電極144之間,藉此可形成金屬-絕緣體-金屬(metal-insulator-metal,MIM)電容器。 Next, a capacitor 140 is formed between the transistor 134 and the transistor 136. The capacitor 140 may be located in the dielectric layer 138, and a portion of the capacitor 140 may be located on the dielectric layer 138. The capacitor 140 includes an electrode 142, an electrode 144, and an insulating layer 146. The electrode 142 is directly connected to the doped region 118 and the doped region 120. The electrode 142 can be used as a lower electrode of the capacitor 140. The electrode 144 is provided on the electrode 142. The electrode 142 can be used as an upper electrode of the capacitor 140. The materials of the electrodes 142 and 144 are, for example, Ti, TiN, Ta, Al, In, Nb, Hf, Sn, Zn, Zr, Cu, Y, or a combination thereof. An insulating layer 146 is provided between the electrode 142 and the electrode 144. The material of the insulating layer 146 is, for example, a high-k material, silicon oxide, silicon nitride, silicon oxide / silicon nitride / silicon oxide (ONO), or a combination thereof. The high dielectric constant material is, for example, tantalum oxide (Ta 2 O 5 ), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), titanium oxide (TiO 2 ), zirconia (ZrO 2 ), or a combination thereof. In the capacitor 140, a metal-insulator-metal (MIM) capacitor can be formed because the insulating layer 146 is disposed between the electrode 142 and the electrode 144.

在形成電容器140的過程中,會移除部分自對準金屬矽化物阻擋層124,以暴露出摻雜區118與摻雜區120。藉此,電容器140的電極142可直接連接至摻雜區118與摻雜區120。如此一來,由於電容器140的電極142直接連接至摻雜區118與摻雜區120,因此可形成肖特基接觸,進而可降低電容器140的漏電流。電容器140的形成方法可採用所屬技術領域具有通常知識者所周知的方法,於此不再說明。During the formation of the capacitor 140, a part of the self-aligned metal silicide blocking layer 124 is removed to expose the doped region 118 and the doped region 120. Accordingly, the electrode 142 of the capacitor 140 can be directly connected to the doped region 118 and the doped region 120. In this way, since the electrode 142 of the capacitor 140 is directly connected to the doped region 118 and the doped region 120, a Schottky contact can be formed, and the leakage current of the capacitor 140 can be reduced. The method for forming the capacitor 140 may be a method well known to those having ordinary knowledge in the technical field, and will not be described here.

然後,可在介電層138上形成覆蓋電容器140的介電層148。介電層148的材料例如是氧化矽。介電層148的形成方法例如是化學氣相沉積法。Then, a dielectric layer 148 may be formed on the dielectric layer 138 to cover the capacitor 140. The material of the dielectric layer 148 is, for example, silicon oxide. A method of forming the dielectric layer 148 is, for example, a chemical vapor deposition method.

請參照圖1F,可在介電層148與介電層138中形成接觸窗150與接觸窗152。接觸窗150與接觸窗152可分別經由金屬矽化物層126與金屬矽化物層128而耦接至摻雜區116與摻雜區122。接觸窗150與接觸窗152的材料例如是鎢。接觸窗150與接觸窗152的形成方法例如是金屬鑲嵌法。Referring to FIG. 1F, a contact window 150 and a contact window 152 may be formed in the dielectric layer 148 and the dielectric layer 138. The contact window 150 and the contact window 152 may be coupled to the doped region 116 and the doped region 122 through the metal silicide layer 126 and the metal silicide layer 128, respectively. The material of the contact window 150 and the contact window 152 is, for example, tungsten. A method of forming the contact window 150 and the contact window 152 is, for example, a damascene method.

接著,可在介電層148上形成介電層154。介電層154的材料例如是氧化矽。介電層154的形成方法例如是化學氣相沉積法。Next, a dielectric layer 154 may be formed on the dielectric layer 148. The material of the dielectric layer 154 is, for example, silicon oxide. A method of forming the dielectric layer 154 is, for example, a chemical vapor deposition method.

然後,可在介電層154中形成導體層156、導體層158與導體層160。導體層156、導體層158與導體層160可分別耦接至接觸窗150、接觸窗152與電極144。導體層156、導體層158與導體層160的材料例如是銅。導體層156、導體層158與導體層160的形成方法例如是金屬鑲嵌法。Then, a conductive layer 156, a conductive layer 158, and a conductive layer 160 may be formed in the dielectric layer 154. The conductive layer 156, the conductive layer 158, and the conductive layer 160 may be coupled to the contact window 150, the contact window 152, and the electrode 144, respectively. The material of the conductive layer 156, the conductive layer 158, and the conductive layer 160 is, for example, copper. A method of forming the conductive layer 156, the conductive layer 158, and the conductive layer 160 is, for example, a damascene method.

以下,藉由圖1F來說明本實施例的記憶體結構10。在本實施例中,此外,雖然記憶體結構10的形成方法是以上述方法為例進行說明,但本發明並不以此為限。Hereinafter, the memory structure 10 of this embodiment will be described with reference to FIG. 1F. In this embodiment, in addition, although the method for forming the memory structure 10 is described by taking the above method as an example, the present invention is not limited thereto.

請參照圖1F,記憶體結構10包括基底100、電晶體134、電晶體136與電容器140。記憶體結構10例如是二電晶體靜態隨機存取記憶體(two-transistor static random access memory,2T SRAM),但本發明並不以此為限。電晶體134包括凹入式閘極110a、摻雜區116、摻雜區118與金屬矽化物層126,且更可包括介電層108a、間隙壁112與金屬矽化物層130中的至少一者。電晶體136位在電晶體134的一側。電晶體136包括凹入式閘極110b、摻雜區120、摻雜區122與金屬矽化物層128,且更可包括井區102、介電層108b、間隙壁114與金屬矽化物層132中的至少一者。電容器140耦接在電晶體134與電晶體136之間。電容器140包括電極142、電極144與絕緣層146。此外,記憶體結構10中的各構件的材料、設置方式、導電型態、形成方法與功效已於上述實施例進行詳盡地說明,於此不再重複說明。Referring to FIG. 1F, the memory structure 10 includes a substrate 100, a transistor 134, a transistor 136, and a capacitor 140. The memory structure 10 is, for example, a two-transistor static random access memory (2T SRAM), but the invention is not limited thereto. The transistor 134 includes a recessed gate 110a, a doped region 116, a doped region 118, and a metal silicide layer 126, and further includes at least one of a dielectric layer 108a, a spacer 112, and a metal silicide layer 130 . The transistor 136 is located on one side of the transistor 134. The transistor 136 includes a recessed gate 110b, a doped region 120, a doped region 122, and a metal silicide layer 128, and further includes a well region 102, a dielectric layer 108b, a spacer 114, and a metal silicide layer 132 At least one of them. The capacitor 140 is coupled between the transistor 134 and the transistor 136. The capacitor 140 includes an electrode 142, an electrode 144, and an insulating layer 146. In addition, the materials, installation methods, conductive types, formation methods, and functions of the components in the memory structure 10 have been described in detail in the above embodiments, and are not repeated here.

基於上述實施例可知,在上述記憶體結構10及其製造方法中,由於電容器140的電極142直接連接至摻雜區118與摻雜區120,因此可形成肖特基接觸,進而可降低電容器140的漏電流。此外,由於凹入式閘極110a與凹入式閘極110b設置在基底100中,因此可有效地增加電晶體134與電晶體136的通道長度。如此一來,可進一步地縮短凹入式閘極110a與凹入式閘極110b的閘極長度,進而縮小記憶體元件的尺寸。另外,由於金屬矽化物層126與金屬矽化物層128分別設置在摻雜區116與摻雜區122上,因此可有效地降低接觸電阻。Based on the above embodiments, it can be known that in the above-mentioned memory structure 10 and the manufacturing method thereof, since the electrode 142 of the capacitor 140 is directly connected to the doped region 118 and the doped region 120, a Schottky contact can be formed, thereby reducing the capacitor 140 Leakage current. In addition, since the recessed gate 110a and the recessed gate 110b are disposed in the substrate 100, the channel length of the transistor 134 and the transistor 136 can be effectively increased. In this way, the gate lengths of the recessed gate 110a and the recessed gate 110b can be further shortened, thereby reducing the size of the memory element. In addition, since the metal silicide layer 126 and the metal silicide layer 128 are respectively disposed on the doped region 116 and the doped region 122, the contact resistance can be effectively reduced.

綜上所述,藉由上述記憶體結構及其製造方法,可降低電容器的漏電流、縮小記憶體元件的尺寸與降低接觸電阻,因此可提升記憶體元件的電性效能。In summary, with the above memory structure and manufacturing method thereof, the leakage current of the capacitor can be reduced, the size of the memory element can be reduced, and the contact resistance can be reduced, so the electrical performance of the memory element can be improved.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

10‧‧‧記憶體結構10‧‧‧Memory structure

100‧‧‧基底 100‧‧‧ substrate

102‧‧‧井區 102‧‧‧well area

104、106‧‧‧凹槽 104, 106‧‧‧ groove

108、108a、108b、138、148、154‧‧‧介電層 108, 108a, 108b, 138, 148, 154‧‧‧ dielectric layers

110‧‧‧閘極材料層 110‧‧‧Gate material layer

110a、110b‧‧‧凹入式閘極 110a, 110b ‧‧‧ recessed gate

112、114‧‧‧間隙壁 112, 114‧‧‧ wall

116、118、120、122‧‧‧摻雜區 116, 118, 120, 122‧‧‧ doped regions

124‧‧‧自對準金屬矽化物阻擋層 124‧‧‧Self-aligned metal silicide barrier

126、128、130、132‧‧‧金屬矽化物層 126, 128, 130, 132‧‧‧ metal silicide layers

134、136‧‧‧電晶體 134, 136‧‧‧ Transistors

140‧‧‧電容器 140‧‧‧Capacitor

142、144‧‧‧電極 142, 144‧‧‧ electrodes

146‧‧‧絕緣層 146‧‧‧Insulation

150、152‧‧‧接觸窗 150, 152‧‧‧ contact windows

156、158、160‧‧‧導體層 156, 158, 160‧‧‧ conductor layer

圖1A至圖1F為本發明一實施例的記憶體結構的製造流程剖面圖。1A to 1F are cross-sectional views of a manufacturing process of a memory structure according to an embodiment of the present invention.

Claims (10)

一種記憶體結構,包括: 基底; 第一電晶體,包括: 第一凹入式閘極(recess gate),設置在所述基底中,且絕緣於所述基底; 第一摻雜區與第二摻雜區,位在所述第一凹入式閘極的兩側的所述基底中;以及 第一金屬矽化物層,設置在所述第一摻雜區上,其中沒有直接設置在所述第二摻雜區上的金屬矽化物層; 第二電晶體,位在所述第一電晶體的一側,且包括: 第二凹入式閘極,設置在所述基底中,且絕緣於所述基底; 第三摻雜區與第四摻雜區,位在所述第二凹入式閘極的兩側的所述基底中;以及 第二金屬矽化物層,設置在所述第四摻雜區上,其中沒有直接設置在所述第三摻雜區上的金屬矽化物層,且所述第二摻雜區與所述第三摻雜區位在所述第一凹入式閘極與所述第二凹入式閘極之間;以及 電容器,耦接在所述第一電晶體與所述第二電晶體之間,且包括: 第一電極,直接連接至所述第二摻雜區與所述第三摻雜區; 第二電極,設置在所述第一電極上;以及 絕緣層,設置在所述第一電極與所述第二電極之間。A memory structure includes: a substrate; a first transistor including: a first recess gate disposed in the substrate and insulated from the substrate; a first doped region and a second A doped region is located in the substrate on both sides of the first recessed gate; and a first metal silicide layer is disposed on the first doped region, wherein none is directly disposed on the first doped region A metal silicide layer on a second doped region; a second transistor, located on one side of the first transistor, and including: a second recessed gate, disposed in the substrate and insulated from The substrate; a third doped region and a fourth doped region located in the substrate on both sides of the second recessed gate; and a second metal silicide layer provided in the fourth On the doped region, there is no metal silicide layer directly disposed on the third doped region, and the second doped region and the third doped region are located on the first recessed gate And the second recessed gate; and a capacitor coupled between the first transistor and the second transistor And comprising: a first electrode directly connected to the second doped region and the third doped region; a second electrode provided on the first electrode; and an insulating layer provided on the first Between the electrode and the second electrode. 如申請專利範圍第1項所述的記憶體結構,其中所述第一電晶體與所述第二電晶體分別為N型金氧半導體電晶體與P型金氧半導體電晶體中的一者與另一者。The memory structure according to item 1 of the scope of patent application, wherein the first transistor and the second transistor are one of an N-type metal-oxide semiconductor transistor and a P-type metal-oxide semiconductor transistor, respectively. The other. 如申請專利範圍第1項所述的記憶體結構,其中部分所述第一凹入式閘極與部分所述第二凹入式閘極突出於所述基底。The memory structure according to item 1 of the scope of the patent application, wherein part of the first recessed gate and part of the second recessed gate protrude from the base. 如申請專利範圍第1項所述的記憶體結構,其中 所述第一電晶體更包括第一介電層,其中所述第一介電層設置在所述第一凹入式閘極與所述基底之間,且 所述第二電晶體更包括第二介電層,其中所述第二介電層設置在所述第二凹入式閘極與所述基底之間。The memory structure according to item 1 of the patent application scope, wherein the first transistor further includes a first dielectric layer, and the first dielectric layer is disposed between the first recessed gate and the first recessed gate. Between the substrates, and the second transistor further includes a second dielectric layer, wherein the second dielectric layer is disposed between the second recessed gate and the substrate. 如申請專利範圍第1項所述的記憶體結構,其中 所述第一電晶體更包括第三金屬矽化物層,其中所述第三金屬矽化物層設置在所述第一凹入式閘極上,且 所述第二電晶體更包括第四金屬矽化物層,其中所述第四金屬矽化物層設置在所述第二凹入式閘極上。The memory structure according to item 1 of the patent application scope, wherein the first transistor further includes a third metal silicide layer, and the third metal silicide layer is disposed on the first recessed gate. The second transistor further includes a fourth metal silicide layer, wherein the fourth metal silicide layer is disposed on the second recessed gate. 一種記憶體結構的製造方法,包括: 提供基底; 形成第一電晶體,其中所述第一電晶體包括: 第一凹入式閘極(recess gate),設置在所述基底中,且絕緣於所述基底; 第一摻雜區與第二摻雜區,位在所述第一凹入式閘極的兩側的所述基底中;以及 第一金屬矽化物層,設置在所述第一摻雜區上,其中沒有直接設置在所述第二摻雜區上的金屬矽化物層; 在所述第一電晶體的一側形成第二電晶體,其中所述第二電晶體包括: 第二凹入式閘極,設置在所述基底中,且絕緣於所述基底; 第三摻雜區與第四摻雜區,位在所述第二凹入式閘極的兩側的所述基底中;以及 第二金屬矽化物層,設置在所述第四摻雜區上,其中沒有直接設置在所述第三摻雜區上的金屬矽化物層,且所述第二摻雜區與所述第三摻雜區位在所述第一凹入式閘極與所述第二凹入式閘極之間;以及 形成耦接在所述第一電晶體與所述第二電晶體之間的電容器,其中所述電容器包括: 第一電極,直接連接至所述第二摻雜區與所述第三摻雜區; 第二電極,設置在所述第一電極上;以及 絕緣層,設置在所述第一電極與所述第二電極之間。A method for manufacturing a memory structure includes: providing a substrate; forming a first transistor, wherein the first transistor includes: a first recess gate disposed in the substrate and insulated from the substrate; The substrate; a first doped region and a second doped region located in the substrate on both sides of the first recessed gate; and a first metal silicide layer disposed in the first On the doped region, there is no metal silicide layer directly disposed on the second doped region; a second transistor is formed on one side of the first transistor, and the second transistor includes: Two recessed gates, which are arranged in the substrate and are insulated from the substrate; a third doped region and a fourth doped region, which are located on both sides of the second recessed gate A substrate; and a second metal silicide layer disposed on the fourth doped region, wherein there is no metal silicide layer directly disposed on the third doped region, and the second doped region and The third doped region is located between the first recessed gate and the second recessed gate; And forming a capacitor coupled between the first transistor and the second transistor, wherein the capacitor includes: a first electrode directly connected to the second doped region and the third doped A region; a second electrode disposed on the first electrode; and an insulating layer disposed between the first electrode and the second electrode. 如申請專利範圍第6項所述的記憶體結構的製造方法,其中所述第一凹入式閘極與所述第二凹入式閘極的形成方法包括: 在所述基底中形成第一凹槽與第二凹槽; 形成填入所述第一凹槽與所述第二凹槽的閘極材料層;以及 對所述閘極材料層進行圖案化製程,而分別在所述第一凹槽與所述第二凹槽中形成所述第一凹入式閘極與所述第二凹入式閘極。The method for manufacturing a memory structure according to item 6 of the scope of patent application, wherein the method of forming the first recessed gate and the second recessed gate includes: forming a first in the substrate; A groove and a second groove; forming a gate material layer filled in the first groove and the second groove; and performing a patterning process on the gate material layer, respectively, in the first groove The first recessed gate and the second recessed gate are formed in the groove and the second groove. 如申請專利範圍第7項所述的記憶體結構的製造方法,其中所述第一凹入式閘極與所述第二凹入式閘極的形成方法更包括: 在所述第一凹入式閘極與所述基底之間形成第一介電層;以及 在所述第二凹入式閘極與所述基底之間形成第二介電層。The method for manufacturing a memory structure according to item 7 of the scope of patent application, wherein the method of forming the first recessed gate and the second recessed gate further includes: Forming a first dielectric layer between the gate and the substrate; and forming a second dielectric layer between the second recessed gate and the substrate. 如申請專利範圍第6項所述的記憶體結構的製造方法,其中所述第一金屬矽化物層與所述第二金屬矽化物層的形成方法包括: 在所述基底上形成自對準金屬矽化物阻擋層,其中所述自對準金屬矽化物阻擋層暴露出所述第一摻雜區與所述第四摻雜區,且覆蓋所述第二摻雜區與所述第三摻雜區;以及 藉由自對準金屬矽化物製程分別在所述第一摻雜區與所述第四摻雜區上形成所述第一金屬矽化物層與所述第二金屬矽化物層。The method for manufacturing a memory structure according to item 6 of the patent application, wherein the method for forming the first metal silicide layer and the second metal silicide layer includes: forming a self-aligned metal on the substrate The silicide blocking layer, wherein the self-aligned metal silicide blocking layer exposes the first doped region and the fourth doped region, and covers the second doped region and the third doped region. Region; and forming the first metal silicide layer and the second metal silicide layer on the first doped region and the fourth doped region by a self-aligned metal silicide process, respectively. 如申請專利範圍第9項所述的記憶體結構的製造方法,更包括藉由所述自對準金屬矽化物製程分別在所述第一凹入式閘極與所述第二凹入式閘極上形成第三金屬矽化物層與第四金屬矽化物層。The method for manufacturing a memory structure according to item 9 of the scope of the patent application, further comprising separately applying the self-aligned metal silicide process to the first recessed gate and the second recessed gate. A third metal silicide layer and a fourth metal silicide layer are formed on the electrode.
TW107144387A 2018-12-10 2018-12-10 Memory structure and manufacturing method thereof TWI675460B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107144387A TWI675460B (en) 2018-12-10 2018-12-10 Memory structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107144387A TWI675460B (en) 2018-12-10 2018-12-10 Memory structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI675460B true TWI675460B (en) 2019-10-21
TW202023032A TW202023032A (en) 2020-06-16

Family

ID=69023536

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107144387A TWI675460B (en) 2018-12-10 2018-12-10 Memory structure and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI675460B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201005809A (en) * 2008-07-30 2010-02-01 Nanya Technology Corp Semiconductor device and method of manufacturing the same
WO2011025804A1 (en) * 2009-08-31 2011-03-03 Globalfoundries Inc. Work function adjustment in high-k gates stacks including gate dielectrics of different thickness
US20110244670A1 (en) * 2010-03-30 2011-10-06 Globalfoundries Inc. Replacement Gate Approach for High-K Metal Gate Stacks by Avoiding a Polishing Process for Exposing the Placeholder Material
US20120161243A1 (en) * 2010-12-22 2012-06-28 Globalfoundries Inc. High-K Metal Gate Electrode Structures Formed by Cap Layer Removal Without Sacrificial Spacer
US8445344B2 (en) * 2009-06-30 2013-05-21 Globalfoundries Inc. Uniform high-k metal gate stacks by adjusting threshold voltage for sophisticated transistors by diffusing a metal species prior to gate patterning
TW201721721A (en) * 2015-09-18 2017-06-16 鴻海精密工業股份有限公司 TFT array substrate, display device and method for making the TFT array substrate
TW201820450A (en) * 2016-11-17 2018-06-01 聯華電子股份有限公司 Semiconductor device and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201005809A (en) * 2008-07-30 2010-02-01 Nanya Technology Corp Semiconductor device and method of manufacturing the same
US8445344B2 (en) * 2009-06-30 2013-05-21 Globalfoundries Inc. Uniform high-k metal gate stacks by adjusting threshold voltage for sophisticated transistors by diffusing a metal species prior to gate patterning
WO2011025804A1 (en) * 2009-08-31 2011-03-03 Globalfoundries Inc. Work function adjustment in high-k gates stacks including gate dielectrics of different thickness
US20110244670A1 (en) * 2010-03-30 2011-10-06 Globalfoundries Inc. Replacement Gate Approach for High-K Metal Gate Stacks by Avoiding a Polishing Process for Exposing the Placeholder Material
US20120161243A1 (en) * 2010-12-22 2012-06-28 Globalfoundries Inc. High-K Metal Gate Electrode Structures Formed by Cap Layer Removal Without Sacrificial Spacer
TW201721721A (en) * 2015-09-18 2017-06-16 鴻海精密工業股份有限公司 TFT array substrate, display device and method for making the TFT array substrate
TW201820450A (en) * 2016-11-17 2018-06-01 聯華電子股份有限公司 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
TW202023032A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
TWI696285B (en) Memory structure
US9449964B2 (en) Semiconductor process
CN102169829B (en) Integrated circuit structure and method to stop contact metal from extruding into gate
US7838946B2 (en) Method for fabricating semiconductor structure and structure of static random access memory
US10068797B2 (en) Semiconductor process for forming plug
TW201501299A (en) Method for fabricating FinFET transistor
TWI696247B (en) Memory structure
CN111370422B (en) Memory structure and manufacturing method thereof
TWI675460B (en) Memory structure and manufacturing method thereof
KR102611247B1 (en) Semiconducting metal oxide transistors having a patterned gate and methods for forming the same
TWI701804B (en) Memory structure and manufacturing method thereof
US10283412B2 (en) Semiconductor device and fabrication method thereof
TWI691051B (en) Memory structure
TWI636491B (en) Memory device and method of fabricating the same
CN116709776B (en) Semiconductor device, manufacturing method thereof and electronic equipment
TWI725769B (en) Capacitor and method for manufacturing the same
CN116709775B (en) Semiconductor device, manufacturing method thereof and electronic equipment
TWI581433B (en) Semiconductor structure and process thereof
TW202412191A (en) Integrated circuit device
TWI581316B (en) Method of forming metal silicide layer
CN117673024A (en) Integrated circuit device