TWI675197B - Gas-sensing apparatus - Google Patents
Gas-sensing apparatus Download PDFInfo
- Publication number
- TWI675197B TWI675197B TW107147397A TW107147397A TWI675197B TW I675197 B TWI675197 B TW I675197B TW 107147397 A TW107147397 A TW 107147397A TW 107147397 A TW107147397 A TW 107147397A TW I675197 B TWI675197 B TW I675197B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- gas sensing
- electrode layer
- gas
- sensing device
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/126—Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
一種氣體感測設備,包含一個氣體感測裝置,及一個與該氣體感測裝置間隔設置的發光件。該氣體感測裝置包括一個用來與待測氣體作用且包括有機半導體材料的光及氣體感測件、一個連接該光及氣體感測件的第一電極,及一個與該第一電極間隔設置且連接該光及氣體感測件的第二電極。該發光件在該光及氣體感測件與該待測氣體作用後用來提供朝向該光及氣體感測件照射且能夠被該光及氣體感測件吸收的光。A gas sensing device includes a gas sensing device and a light-emitting member spaced from the gas sensing device. The gas sensing device includes a light and gas sensing element for interacting with a gas to be measured and includes an organic semiconductor material, a first electrode connected to the light and gas sensing element, and a distance from the first electrode. The second electrode of the light and gas sensor is connected. The light-emitting element is used to provide light that is irradiated toward the light and gas sensing element and can be absorbed by the light and gas sensing element after the light and gas sensing element interacts with the gas to be measured.
Description
本發明是有關於一種感測設備,特別是指一種氣體感測設備。The invention relates to a sensing device, in particular to a gas sensing device.
以往氣體感測器中由無機半導體材料所形成的氣體感測膜感測氣體後,是利用氮氣、空氣,加熱(例如紅外光)等方式,將感測後產生的電流值回復至感測前的電流值,以進行下一次的感測。然而,該方式存在有(1)回復的時間過長;(2)當給予回復的時間不足時,會導致下一次感測後產生的電流訊號減小而不明顯或電流訊號的變異隨著使用次數增加而增加,以至於重複性差或無法再使用。In the conventional gas sensors, after gas is sensed by a gas sensing film formed of an inorganic semiconductor material, nitrogen, air, heating (such as infrared light), and the like are used to restore the current value generated after sensing to before sensing Current value for the next sensing. However, this method has (1) the response time is too long; (2) when the response time is not enough, it will cause the current signal generated after the next sensing to be reduced and not obvious, or the variation of the current signal will be used with the use The number of times increases, so that the repeatability is poor or can no longer be used.
Nano letters, 2003, vol.3, NO.7, 929-933揭示一種氣體感測器,能夠在室溫下感測氣體或有機揮發物,且以奈米碳管作為感測膜。該氣體感測器可利用UV光促使氣體脫附(desorption),以使感測後產生的電流值回復至感測前的電流值,而達到減少回復時間的特性。 Nano letters , 2003, vol. 3, NO. 7, 929-933 disclose a gas sensor capable of sensing gas or organic volatiles at room temperature, and using a carbon nanotube as a sensing film. The gas sensor can use UV light to promote the desorption of the gas, so that the current value generated after the sensing is restored to the current value before the sensing, thereby reducing the recovery time.
一篇「單根氧化鋅奈米線一氧化氮氣體感測器製作與吸附動力學研究,鄭宜驊,國立清華大學」的學術論文揭示一種氣體感測器,可在室溫下感測氣體,且以氧化鋅奈米線作為感測膜。該氣體感測器可利用日光燈照射感測膜,以使感測後產生的電流值回復至感測前的電流值,且相較於UV光,方便且回復快速。An article entitled "Single Zinc Oxide Nanowire Nitric Oxide Gas Sensor Production and Adsorption Kinetics, Zheng Yizheng, National Tsinghua University" revealed a gas sensor that can sense gases at room temperature, and A zinc oxide nanowire was used as a sensing film. The gas sensor can use a fluorescent lamp to illuminate the sensing film, so that the current value generated after the sensing is restored to the current value before the sensing, and compared with UV light, it is convenient and quick to return.
美國專利公告第5448906號揭示一種能夠在室溫下感測氣體的氣體感測器。該氣體感測器包括一個用來待測氣體的多晶半導體氧化物薄膜、兩個連接該多晶半導體氧化物薄膜且分別位於該多晶半導體氧化物薄膜的上方左右兩側的電極,及一個位於該多晶半導體氧化物薄膜上方的UV燈。該UV燈所提供的光源能夠被該多晶半導體氧化物薄膜吸收,而使被吸附的待測氣體能在該多晶半導體氧化物薄膜上進行光脫附(photodesorption)。US Patent Publication No. 5448906 discloses a gas sensor capable of sensing a gas at room temperature. The gas sensor includes a polycrystalline semiconductor oxide film for a gas to be measured, two electrodes connected to the polycrystalline semiconductor oxide film and located on the left and right sides of the polycrystalline semiconductor oxide film, respectively, and a A UV lamp located above the polycrystalline semiconductor oxide film. The light source provided by the UV lamp can be absorbed by the polycrystalline semiconductor oxide film, and the adsorbed gas to be measured can be photodesorption on the polycrystalline semiconductor oxide film.
雖然上述的氣體感測器能夠透過日光燈及UV燈讓待測氣體脫離無機半導體膜,以使感測後產生的電流值回復至感測前的電流值,但回復的時間仍過長,且在回復的過程中,電流值的改變是緩慢的。Although the above-mentioned gas sensor can remove the gas to be measured from the inorganic semiconductor film through a fluorescent lamp and a UV lamp, so that the current value generated after the sensing returns to the current value before the sensing, but the recovery time is still too long, and During the recovery process, the current value changes slowly.
因此,本發明的目的,即在提供一種具有短的電流回復時間的氣體感測設備。Therefore, an object of the present invention is to provide a gas sensing device having a short current recovery time.
於是,本發明氣體感測設備,包含一個氣體感測裝置,及一個與該氣體感測裝置間隔設置的發光件。該氣體感測裝置包括一個用來與待測氣體作用且包括有機半導體材料的光及氣體感測件、一個連接該光及氣體感測件的第一電極,及一個與該第一電極間隔設置且連接該光及氣體感測件的第二電極。該發光件用來提供朝向該光及氣體感測件照射且能夠被該光及氣體感測件吸收的光。Therefore, the gas sensing device of the present invention includes a gas sensing device and a light-emitting member disposed at a distance from the gas sensing device. The gas sensing device includes a light and gas sensing element for interacting with a gas to be measured and includes an organic semiconductor material, a first electrode connected to the light and gas sensing element, and a distance from the first electrode. The second electrode of the light and gas sensor is connected. The light-emitting element is used to provide light that is radiated toward the light and gas sensing element and can be absorbed by the light and gas sensing element.
本發明的功效在於:透過該發光件與該光及氣體感測件的搭配,於感測後開啟該發光件,在回復的過程中,由於該光及氣體感測件能夠吸收光而能夠將光訊號寫入電流訊號,同時光也能促使該待測氣體脫附,以至於能夠使感測後產生的電流值迅速回升並回復至感測前的電流值,繼而提升回復效率,以進行下一次的感測。因此,本發明氣體感測設備具有短的電流回復時間。The effect of the present invention is that through the combination of the light-emitting element and the light and gas sensing element, the light-emitting element is turned on after sensing. During the recovery process, since the light and gas sensing element can absorb light, The optical signal writes the current signal, and at the same time, the light can also promote the desorption of the gas to be measured, so that the current value generated after sensing can be quickly recovered and restored to the current value before sensing, and then the recovery efficiency is improved to perform the following Once sensing. Therefore, the gas sensing device of the present invention has a short current recovery time.
在本發明被詳細描述前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are represented by the same numbers.
參閱圖1及圖2,本發明氣體感測設備的一第一實施例,安裝在一個充滿氮氣或空氣且透明的玻璃容器3內,且包含一個感測裝置1及一個發光件2。該玻璃容器3的體積為30mm 3且包含一個供待測氣體進入的進氣口31,及一個相反於該進氣口31設置的出氣口32。該待測氣體例如但不限於氧化性氣體或還原性氣體等。該待測氣體例如但不限於氨氣、丙酮、一氧化氮,或二氧化氮等。 Referring to FIG. 1 and FIG. 2, a first embodiment of the gas sensing device of the present invention is installed in a transparent glass container 3 filled with nitrogen or air, and includes a sensing device 1 and a light-emitting element 2. The volume of the glass container 3 is 30 mm 3 and includes an air inlet 31 for the gas to be measured to enter, and an air outlet 32 provided opposite to the air inlet 31. The test gas is, for example, but not limited to, an oxidizing gas or a reducing gas. The gas to be measured is, for example, but not limited to, ammonia, acetone, nitric oxide, or nitrogen dioxide.
該氣體感測裝置1包括一個第一電極層11、一個與該第一電極層11間隔設置的第二電極層12,及一個位於該第一電極層11及該第二電極層12間且連接該第一電極層11及該第二電極層12的光及氣體感測件13。The gas sensing device 1 includes a first electrode layer 11, a second electrode layer 12 disposed at a distance from the first electrode layer 11, and a first electrode layer 11 and a second electrode layer 12 which are located between and connected to each other. The light and gas sensor 13 of the first electrode layer 11 and the second electrode layer 12.
該第一電極層11具有兩個相反設置的表面111,及具有複數個貫穿該等表面111且用來裸露出該光及氣體感測件13的貫孔10。該第一電極層11的材質例如但不限於金屬、金屬化合物,或導電有機材料等。該金屬例如但不限於鋁、金、銀、鈣、鎳,或鉻等。該金屬化合物例如但不限於氧化鋅、氧化鉬,或氟化鋰等。該導電有機材料例如但不限於聚二氧乙基噻吩-聚苯乙烯磺酸。該第一電極層11的厚度範圍為0.01μm至1μm。該等貫孔10的尺寸範圍為10nm至1000nm。在該第一實施例中,該第一電極層11的材質為鋁,且厚度為60nm,而該等貫孔10的尺寸為200nm。The first electrode layer 11 has two oppositely disposed surfaces 111 and a plurality of through holes 10 penetrating through the surfaces 111 and used to expose the light and gas sensor 13. The material of the first electrode layer 11 is, for example, but not limited to, a metal, a metal compound, or a conductive organic material. The metal is, for example, but not limited to, aluminum, gold, silver, calcium, nickel, or chromium. The metal compound is, for example, but not limited to, zinc oxide, molybdenum oxide, or lithium fluoride. The conductive organic material is, for example, but not limited to, polydioxyethylthiophene-polystyrenesulfonic acid. The thickness of the first electrode layer 11 ranges from 0.01 μm to 1 μm. The size of the through holes 10 ranges from 10 nm to 1000 nm. In the first embodiment, the first electrode layer 11 is made of aluminum and has a thickness of 60 nm, and the sizes of the through holes 10 are 200 nm.
該第二電極層12的材質例如但不限於氧化銦錫、金屬、金屬化合物,或導電有機材料等。該金屬例如但不限於鋁、金、銀、鈣、鎳,或鉻等。該金屬化合物例如但不限於氧化鋅、氧化鉬,或氟化鋰等。該導電有機材料例如但不限於聚二氧乙基噻吩-聚苯乙烯磺酸[PEDOT:PSS]。該第二電極層12的厚度範圍為2nm至1000nm。在該第一實施例中,該第二電極層12的材質為氧化銦錫,且厚度為200nm。The material of the second electrode layer 12 is, for example, but not limited to, indium tin oxide, a metal, a metal compound, or a conductive organic material. The metal is, for example, but not limited to, aluminum, gold, silver, calcium, nickel, or chromium. The metal compound is, for example, but not limited to, zinc oxide, molybdenum oxide, or lithium fluoride. The conductive organic material is, for example, but not limited to, polydioxyethylthiophene-polystyrenesulfonic acid [PEDOT: PSS]. The thickness of the second electrode layer 12 ranges from 2 nm to 1000 nm. In the first embodiment, the material of the second electrode layer 12 is indium tin oxide, and the thickness is 200 nm.
該光及氣體感測件13位於該第一電極層11的其中一表面111。該光及氣體感測件13用來與待測氣體作用,且包括有機半導體材料。該有機半導體材料例如但不限於聚(9,9-二辛基芴)[poly(9,9-dioctylfluorene),簡稱PFO]、9,9-二辛基芴-苯并噻二唑共聚物[poly(9,9-dioctylfluorene-co-benzothiadiazole),簡稱F8BT]、9,9-二辛基芴-N-(4-丁基苯基)二苯胺共聚物{poly[9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine],簡稱TFB}、聚(3-己烷基噻吩)[poly(3-hexylthiophene),簡稱P3HT]、聚{4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b;4,5-b’]二噻吩-2,6-二基-4-(2-乙基己氧基羰基)-3-氟基-噻吩并[3,4-b]噻吩-2,6-二基)} {poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-4-(2-ethylhexyloxycarbonyl)-3-fluoro-thieno[3,4-b]-thiophene))-2,6-diyl],簡稱PBDTTT-EFT}、聚{4,8-二[(2-乙基己基)氧基]苯并[1,2-b;4,5-b’]二噻吩-2,6-二基}{3-氟基-2-[(2-乙基己基)羰基]-噻吩并[3,4-b]噻吩二基)} {poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophenediyl],簡稱PTB7},或,聚{4,8-二(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b;4,5-b’]二噻吩-2,6-二基-4-(2-乙基己醯基)-噻吩并[3,4-b]噻吩-2,6-二基}{poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-4-(2-ethylhexanoyl)-thieno[3,4-b]-thiophene)-2,6-diyl],簡稱PBDTTT-CT}等。該9,9-二辛基芴-苯并噻二唑共聚物例如但不限於9,9-二辛基芴-2,1,3-苯并噻二唑共聚物,或9,9-二辛基芴-1,2,3-苯并噻二唑共聚物等。該光及氣體感測件13的厚度範圍為10nm至300nm。在該第一實施例中,該光及氣體感測件13的厚度為20nm。The light and gas sensor 13 is located on one surface 111 of the first electrode layer 11. The light and gas sensor 13 is used to interact with the gas to be measured, and includes an organic semiconductor material. The organic semiconductor material is, for example but not limited to, poly (9,9-dioctylfluorene) [poly (9,9-dioctylfluorene), PFO for short], 9,9-dioctylfluorene-benzothiadiazole copolymer [ poly (9,9-dioctylfluorene-co-benzothiadiazole), referred to as F8BT], 9,9-dioctylfluorene-N- (4-butylphenyl) diphenylamine copolymer {poly [9,9-dioctylfluorene-co -N- (4-butylphenyl) diphenylamine], referred to as TFB}, poly (3-hexylthiophene) [poly (3-hexylthiophene), referred to as P3HT], poly {4,8-bis (5- (2-ethyl Hexyl) thiophen-2-yl) benzo [1,2-b; 4,5-b '] dithiophene-2,6-diyl-4- (2-ethylhexyloxycarbonyl) -3- Fluoro-thieno [3,4-b] thiophene-2,6-diyl)} {poly [4,8-bis (5- (2-ethylhexyl) thiophene-2-yl) -benzo [1,2 -b; 4,5-b '] dithiophene-2,6-diyl-4- (2-ethylhexyloxycarbonyl) -3-fluoro-thieno [3,4-b] -thiophene))-2,6-diyl], PBDTTT-EFT}, poly {4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b; 4,5-b '] dithiophene-2,6-diyl} {3-Fluoro-2-[(2-ethylhexyl) carbonyl] -thieno [3,4-b] thiophene diyl)} {poly [4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5-b '] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thie no [3,4-b] -thiophenediyl], referred to as PTB7}, or poly {4,8-bis (5- (2-ethylhexyl) thiophen-2-yl) benzo [1,2-b; 4,5-b '] dithiophene-2,6-diyl-4- (2-ethylhexyl) -thieno [3,4-b] thiophene-2,6-diyl} {poly [ 4,8-bis (5- (2-ethylhexyl) thiophene-2-yl) -benzo [1,2-b; 4,5-b '] dithiophene-2,6-diyl-4- (2-ethylhexanoyl) -thieno [3,4-b] -thiophene) -2,6-diyl], referred to as PBDTTT-CT}, etc. The 9,9-dioctylfluorene-benzothiadiazole copolymer, such as, but not limited to, 9,9-dioctylfluorene-2,1,3-benzothiadiazole copolymer, or 9,9-bis Octylfluorene-1,2,3-benzothiadiazole copolymers and the like. The thickness of the light and gas sensor 13 ranges from 10 nm to 300 nm. In the first embodiment, the thickness of the light and gas sensor 13 is 20 nm.
該發光件2位於該氣體感測裝置1的該第一電極層11的上方,且在該光及氣體感測件13與該待測氣體作用後,用來提供朝向該光及氣體感測件13照射並通過該第一電極層11的該等貫孔10而與該光及氣體感測件13接觸的光。該發光件2例如可見光燈、紫外光燈,或紅外光燈等。The light-emitting element 2 is located above the first electrode layer 11 of the gas sensing device 1, and is used to provide the light and gas sensing element after the light and gas sensing element 13 interacts with the gas to be measured. 13 irradiates and passes through the through holes 10 of the first electrode layer 11 to contact the light and the gas sensor 13. The light-emitting element 2 is, for example, a visible light lamp, an ultraviolet light lamp, or an infrared light lamp.
參閱圖1及圖3,本發明氣體感測設備的一第二實施例,安裝在如同第一實施例中所述的玻璃容器3內,且包含一個氣體感測裝置1及一個發光件2。Referring to FIG. 1 and FIG. 3, a second embodiment of a gas sensing device according to the present invention is installed in a glass container 3 as described in the first embodiment, and includes a gas sensing device 1 and a light-emitting element 2.
該氣體感測裝置1包括一個第一電極層11、一個與該第一電極層11間隔設置的第二電極層12、一個光及氣體感測件13,及一個介電層14。The gas sensing device 1 includes a first electrode layer 11, a second electrode layer 12 spaced from the first electrode layer 11, a light and gas sensing element 13, and a dielectric layer 14.
該第一電極層11如同該第一實施例的第一電極層11所述,故不再贅述。該第二電極層12與該第一電極層11間隔設置。該第二電極層12如同該第一實施例的第二電極層12所述,故不再贅述。The first electrode layer 11 is the same as the first electrode layer 11 of the first embodiment, so it will not be described again. The second electrode layer 12 is spaced from the first electrode layer 11. The second electrode layer 12 is the same as the second electrode layer 12 of the first embodiment, so it will not be described again.
該介電層14位於該第一電極層11的其中一表面111及該第二電極層12間,並連接該第一電極層11的其中一表面111及該第二電極層12。該介電層14的材質例如但不限於聚乙烯酚[poly(vinylphenol),簡稱PVP]、聚甲基丙烯酸甲酯(polymethylmethacrylate,簡稱PMMA),或聚乙烯醇(poly(vinyl alcohol),簡稱PVA)等。該介電層14的厚度範圍為200nm至400nm。該介電層14具有分別與該第一電極層11的該等貫孔10連通的複數個穿孔20。該介電層14的該等穿孔20的尺寸範圍為100nm至300nm。The dielectric layer 14 is located between one surface 111 of the first electrode layer 11 and the second electrode layer 12, and is connected to one surface 111 of the first electrode layer 11 and the second electrode layer 12. The material of the dielectric layer 14 is, for example, but not limited to, poly (vinylphenol) (PVP), polymethylmethacrylate (PMMA), or poly (vinyl alcohol) (PVA) )Wait. The thickness of the dielectric layer 14 ranges from 200 nm to 400 nm. The dielectric layer 14 has a plurality of through-holes 20 communicating with the through-holes 10 of the first electrode layer 11 respectively. The size of the perforations 20 of the dielectric layer 14 ranges from 100 nm to 300 nm.
該光及氣體感測件13與該介電層14相反設置,且連接該第一電極層11的另一表面111,並延伸進入該第一電極層11的該等貫孔10及該介電層14的該等穿孔20,而連接該第二電極層12。該光及氣體感測件13如同該第一實施例的光及氣體感測件13,故不再贅述。The light and gas sensing element 13 is disposed opposite to the dielectric layer 14 and is connected to the other surface 111 of the first electrode layer 11 and extends into the through holes 10 and the dielectric of the first electrode layer 11. The through holes 20 of the layer 14 are connected to the second electrode layer 12. The light and gas sensing element 13 is similar to the light and gas sensing element 13 of the first embodiment, so it will not be described again.
該發光件2位於該氣體感測裝置1的該光及氣體感測件13的上方,且在該光及氣體感測件13與該待測氣體作用後,用來提供朝向該光及氣體感測件13照射的光。該發光件2如同該第一實施例的發光件2,故不再贅述。The light-emitting element 2 is located above the light and gas sensing element 13 of the gas sensing device 1, and is used to provide a sense of light and gas after the light and gas sensing element 13 interacts with the gas to be measured. Light irradiated by the test piece 13. The light-emitting element 2 is the same as the light-emitting element 2 of the first embodiment, so it will not be described again.
在操作該第一實施例及第二實施例的氣體感測設備時,將該氣體感測裝置1的該第一電極層11及該第二電極層12連接一個電器設備(圖未示),而該電器設備包括電壓供應器(圖未示)及一個電流檢測器(圖未示),以透過該電壓供應器提供電壓並透過該電流檢測器輸出電流。該電壓供應器的電壓依據氣體感測裝置1中所選用的光及氣體感測件13調整。接著,將待測氣體導入該玻璃容器3內,並使該待測氣體與該氣體感測設備的該氣體感測裝置1的光及氣體感測件13在一段感測期間內接觸,於此同時,該電流檢測器在這段感測期間會不斷地輸出感測電流值。然後,停止該待測氣體與該光及氣體感測件13接觸,並開啟該發光件2。該發光件2發射出朝向該光及氣體感測件13照射的光,且該光與該光及氣體感測件13在一段回復期間內接觸,而在這段回復期間內,該電流檢測器會不斷地輸出回復電流值。When operating the gas sensing devices of the first and second embodiments, the first electrode layer 11 and the second electrode layer 12 of the gas sensing device 1 are connected to an electrical device (not shown), The electrical equipment includes a voltage supply (not shown) and a current detector (not shown), so as to provide a voltage through the voltage supply and output a current through the current detector. The voltage of the voltage supplier is adjusted according to the light and the gas sensing element 13 selected in the gas sensing device 1. Next, the gas to be measured is introduced into the glass container 3, and the gas to be measured is brought into contact with the light and the gas sensing element 13 of the gas sensing device 1 of the gas sensing device within a sensing period, and here At the same time, the current detector continuously outputs the sensed current value during this sensing period. Then, the gas to be measured is stopped from contacting the light and gas sensing element 13, and the light emitting element 2 is turned on. The light-emitting element 2 emits light irradiated toward the light and gas sensing element 13, and the light is in contact with the light and gas sensing element 13 during a recovery period, and during this recovery period, the current detector It will continuously output the recovery current value.
參閱表1,在本發明中,提供編號1至7的氣體感測設備的實驗數據。該編號1至5的氣體感測設備為該第一實施例的氣體感測設備,而該編號1至5不同在於該氣體感測裝置1的感測件13的材質及發光件2發射的光,參閱表1。該編號6至7的氣體感測設備為第一實施例的氣體感測設備,且與該編號1至5不同的是無發光件2,且是利用通入空氣進行回復。該待測氣體為氨氣,且濃度為300ppb。Referring to Table 1, in the present invention, experimental data of gas sensing devices numbered 1 to 7 is provided. The gas sensing devices of the numbers 1 to 5 are the gas sensing devices of the first embodiment, and the numbers 1 to 5 are different in the material of the sensing member 13 of the gas sensing device 1 and the light emitted by the light emitting member 2. See Table 1. The gas sensing devices of the numbers 6 to 7 are the gas sensing devices of the first embodiment, and are different from the numbers 1 to 5 in that there is no light-emitting member 2 and the air is used for recovery. The test gas is ammonia and its concentration is 300 ppb.
表1
為了說明本發明氣體感測設備之所以能夠使感測後產生的電流值迅速回升並回復至感測前的電流值,主要貢獻之一是來自能夠將光訊號寫入電流訊號,本發明提供一個氣體感測設備的測試例,可用來獲得在該回復期間內該待測氣體的脫附量。該測試例的氣體感測設備安裝在一個充滿氮氣或空氣且透明的玻璃容器3內,且包含一個氣體感測裝置1及一個發光件2。該玻璃容器3如同上述。 參閱圖4,該氣體感測裝置1包括一個第一電極層11、一個與該第一電極層11間隔設置的第二電極層12、一個位於該第一電極層11且相反於該第二電極層12的光及氣體感測件13,及一個位於該第一電極層11及該第二電極層12間且相反於該光及氣體感測件13並連接該第一電極層11及該第二電極層12的壓電層15。In order to explain why the gas sensing device of the present invention can quickly increase the current value generated after sensing and return to the current value before sensing, one of the main contributions is from being able to write a light signal into the current signal. The present invention provides a The test example of the gas sensing device can be used to obtain the desorption amount of the gas to be measured during the recovery period. The gas sensing device of this test example is installed in a transparent glass container 3 filled with nitrogen or air, and includes a gas sensing device 1 and a light-emitting element 2. The glass container 3 is as described above. Referring to FIG. 4, the gas sensing device 1 includes a first electrode layer 11, a second electrode layer 12 spaced from the first electrode layer 11, and a second electrode layer located on the first electrode layer 11 and opposite to the second electrode. The light and gas sensing element 13 of the layer 12 and a light and gas sensing element 13 located between the first electrode layer 11 and the second electrode layer 12 and opposite to the light and gas sensing element 13 and connected to the first electrode layer 11 and the first The piezoelectric layer 15 of the two electrode layers 12.
該第一電極層11具有兩個相反設置的表面111。該第一電極層11的材質為金。該第二電極層12的材質為金。該光及氣體感測件13與該壓電層15分別位於該第一電極層11的該等表面111,且該壓電層15位於該第一電極層11及該第二電極層12間。該光及氣體感測件13的材質與該第一實施例的編號2的光及氣體感測件13相同。該壓電層15的材質為石英。該發光件2與該第一實施例的編號2的發光件2相同。該氣體感測裝置1的第一電極層11、第二電極層12及壓電層15是採用日本 Seiko EG&G的型號QCM922A的晶體振盪器測量系統中的晶片。The first electrode layer 11 has two opposite surfaces 111. The material of the first electrode layer 11 is gold. The material of the second electrode layer 12 is gold. The light and gas sensor 13 and the piezoelectric layer 15 are respectively located on the surfaces 111 of the first electrode layer 11, and the piezoelectric layer 15 is located between the first electrode layer 11 and the second electrode layer 12. The material of the light and gas sensor 13 is the same as that of the light and gas sensor 13 of the first embodiment. The material of the piezoelectric layer 15 is quartz. The light-emitting element 2 is the same as the light-emitting element 2 of the first embodiment. The first electrode layer 11, the second electrode layer 12 and the piezoelectric layer 15 of the gas sensing device 1 are wafers in a crystal oscillator measurement system using a model QCM922A of Seiko EG & G, Japan.
在操作該測試例的氣體感測設備時,將該氣體感測裝置1的該第一電極層11及該第二電極層12連接一個電器設備(圖未示),而該電器設備包括一個頻率計數器(圖未示)。將待測氣體導入該玻璃容器3內,並使該待測氣體與該氣體感測設備的該氣體感測裝置1的光及氣體感測件13在一段感測期間內接觸,於此同時,該頻率計數器在這段感測期間會不斷地輸出感測頻率值。然後,停止該待測氣體與該光及氣體感測件13接觸,並開啟該發光件2。該發光件2會發射出朝向該光及氣體感測件13照射的光,且該光與該光及氣體感測件13在一段回復期間內接觸,而在這段回復期間內,該頻率計數器會不斷地輸出回復頻率值。將該感測頻率值及該回復頻率值帶入sauerbrey equation,並換算出該待測氣體的吸附量及脫附量。When operating the gas sensing device of the test example, the first electrode layer 11 and the second electrode layer 12 of the gas sensing device 1 are connected to an electrical device (not shown), and the electrical device includes a frequency Counter (not shown). The gas to be measured is introduced into the glass container 3, and the gas to be measured is brought into contact with the light and gas sensing element 13 of the gas sensing device 1 of the gas sensing device within a sensing period, and at the same time, The frequency counter continuously outputs a sensed frequency value during this sensing period. Then, the gas to be measured is stopped from contacting the light and gas sensing element 13, and the light emitting element 2 is turned on. The light-emitting element 2 emits light irradiated toward the light and the gas sensing element 13, and the light is in contact with the light and the gas sensing element 13 during a recovery period, and during this recovery period, the frequency counter The response frequency value is continuously output. The sensing frequency value and the recovery frequency value are brought into a sauerbrey equation, and the adsorption amount and desorption amount of the gas to be measured are converted.
參閱圖5,是利用編號2的氣體感測設備在有照光及無照光的條件下所獲得的數據圖,且以一峰底為界線,在該峰底前為該感測期間的電流變化率,在該峰底後為該回復期間的電流變化率,其中,上方線是在有照光的條件下進行,而下方線是在無照光的條件下進行,該電流變化率為[(A-B)/A]×100%,A表示該光及氣體感測件13未與該待測氣體作用時的電流值,而B表示該感測期間的電流值或該回復期間的電流值。參閱圖6,是利用測試例的氣體感測設備在有照光及無照光下所獲得的數據圖,且以一峰底為界線,在該峰底前為該感測期間的頻率差值,在該峰底後為該回復期間的頻率差值,其中,上方線是在有照光的條件下進行,而下方線是在無照光的條件下進行,該頻率差值為(C-D),C表示該光及氣體感測件13未與該待測氣體作用時的頻率值,而D表示該感測期間的頻率值或該回復期間的頻率值。由圖6的上方線可知,該回復期間的第30秒時,感測後產生的頻率值回升但並未回復至感測前的頻率值,表示在該回復期間的第30秒該待測氣體並未完全自該光及氣體感測件13上脫附,但由圖5的上方線可知,該回復期間的第30秒時,感測後產生的電流值回升並已回復至感測前的電流值,由此可知,在回復的過程中,使感測後產生的電流值回升的貢獻不僅是光使該待測氣體進行脫附,還存在該光及氣體感測件13能夠吸收光而能夠將光訊號寫入電流訊號,以至於能夠使感測後產生的電流值迅速回升並回復至感測前的電流值。Refer to FIG. 5, which is a data chart obtained by using a gas sensing device of No. 2 under illuminated and unlit conditions, with a peak bottom as a boundary line, and the current change rate during the sensing period before the peak bottom. After the peak bottom is the current change rate during the recovery period, where the upper line is performed under the condition with light, and the lower line is performed under the condition without light. The current change rate is [(AB) / A ] × 100%, A represents the current value when the light and gas sensing element 13 does not interact with the gas to be measured, and B represents the current value during the sensing period or the current value during the recovery period. Refer to FIG. 6, which is a data chart obtained by using a gas sensing device of a test example under illuminated and unlit light, with a peak bottom as a boundary line, and before the peak bottom, a frequency difference value during the sensing period. After the bottom of the peak is the frequency difference during the recovery period, where the upper line is performed with light, and the lower line is performed without light. The frequency difference is (CD), and C indicates the light. And the frequency value when the gas sensing element 13 is not interacting with the gas to be measured, and D represents the frequency value during the sensing period or the frequency value during the recovery period. It can be seen from the upper line in FIG. 6 that at the 30th second of the recovery period, the frequency value generated after the sensing rises but does not return to the frequency value before the sensing, indicating that the gas to be measured is at the 30th second of the recovery period. It is not completely desorbed from the light and gas sensor 13, but it can be seen from the upper line of FIG. 5 that at the 30th second of the recovery period, the current value generated after sensing has picked up and has returned to the value before the sensing. It can be known from this that during the recovery process, the contribution of the current value generated after sensing is not only the desorption of the gas to be measured by light, but also the light and the gas sensing element 13 can absorb light. The optical signal can be written into the current signal, so that the current value generated after sensing can be quickly recovered and returned to the current value before sensing.
綜上所述,透過該發光件2與該光及氣體感測件13的搭配,於感測後開啟該發光件2,在回復的過程中,由於該光及氣體感測件13能夠吸收光而能夠將光訊號寫入電流訊號,同時,光也能促使該待測氣體脫附,以至於能夠使感測後產生的電流值迅速回升並回復至感測前的電流值,繼而提升回復效率,以進行下一次的感測。因此,本發明氣體感測設備具有短的電流回復時間,故確實能達成本發明的目的。In summary, through the combination of the light-emitting element 2 and the light and gas sensing element 13, the light-emitting element 2 is turned on after sensing. During the recovery process, since the light and gas sensing element 13 can absorb light The light signal can be written into the current signal, and at the same time, the light can also promote the desorption of the gas to be measured, so that the current value generated after the sensing can be quickly recovered and restored to the current value before the sensing, thereby improving the recovery efficiency. For the next sensing. Therefore, the gas sensing device of the present invention has a short current recovery time, so it can indeed achieve the purpose of the present invention.
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention. When the scope of implementation of the present invention cannot be limited by this, any simple equivalent changes and modifications made according to the scope of the patent application and the contents of the patent specification of the present invention are still Within the scope of the invention patent.
1‧‧‧氣體感測裝置1‧‧‧Gas sensing device
11‧‧‧第一電極層 11‧‧‧first electrode layer
111‧‧‧表面 111‧‧‧ surface
10‧‧‧貫孔 10‧‧‧ through hole
12‧‧‧第二電極層 12‧‧‧Second electrode layer
13‧‧‧光及氣體感測件 13‧‧‧Light and gas sensor
14‧‧‧介電層 14‧‧‧ Dielectric layer
15‧‧‧壓電層 15‧‧‧piezoelectric layer
20‧‧‧穿孔 20‧‧‧ perforation
2‧‧‧發光件 2‧‧‧lighting parts
3‧‧‧玻璃容器 3‧‧‧ glass container
31‧‧‧進氣口 31‧‧‧air inlet
32‧‧‧出氣口 32‧‧‧air outlet
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是本發明氣體感測設備的一第一實施例的一示意圖; 圖2是該實施例的一個氣體感測裝置的一示意圖; 圖3是本發明氣體感測設備的一第二實施例的一氣體感測裝置的一示意圖; 圖4是一個測試例的一個氣體感測裝置的一示意圖; 圖5是一數據圖,說明本發明氣體感測設備的一實施例在有照光及無照光的條件下電流回復情況;及 圖6是一數據圖,說明一氣體感測設備的一測試例在有照光及無照光的條件下電流回復情況。Other features and effects of the present invention will be clearly presented in the embodiment with reference to the drawings, in which: FIG. 1 is a schematic diagram of a first embodiment of a gas sensing device of the present invention; FIG. 2 is a schematic view of the embodiment A schematic diagram of a gas sensing device; FIG. 3 is a schematic diagram of a gas sensing device of a second embodiment of a gas sensing device of the present invention; FIG. 4 is a schematic diagram of a gas sensing device of a test example; FIG. 5 is a data diagram illustrating the current recovery of an embodiment of the gas sensing device of the present invention with and without light; and FIG. 6 is a data diagram illustrating a test example of a gas sensing device. Current recovery with and without light.
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107147397A TWI675197B (en) | 2018-12-27 | 2018-12-27 | Gas-sensing apparatus |
CN201911158063.9A CN111380925A (en) | 2018-12-27 | 2019-11-22 | Gas sensing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107147397A TWI675197B (en) | 2018-12-27 | 2018-12-27 | Gas-sensing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI675197B true TWI675197B (en) | 2019-10-21 |
TW202024604A TW202024604A (en) | 2020-07-01 |
Family
ID=69023529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107147397A TWI675197B (en) | 2018-12-27 | 2018-12-27 | Gas-sensing apparatus |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111380925A (en) |
TW (1) | TWI675197B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI736133B (en) * | 2020-02-14 | 2021-08-11 | 國立陽明交通大學 | Gas sensor |
TWI762855B (en) * | 2020-01-10 | 2022-05-01 | 國立陽明交通大學 | Gas sensor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI804391B (en) * | 2022-07-22 | 2023-06-01 | 國立臺北科技大學 | Gas sensing module |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201215882A (en) * | 2010-10-11 | 2012-04-16 | Univ Nat Chiao Tung | Vertical type sensor |
TW201708813A (en) * | 2014-10-31 | 2017-03-01 | 國立交通大學 | Vertical sensor and manufacturing method thereof |
WO2018095524A1 (en) * | 2016-11-23 | 2018-05-31 | Robert Bosch Gmbh | Gas sensor and method for detecting a gas |
CN108362741A (en) * | 2018-02-27 | 2018-08-03 | 上海交通大学 | A kind of preparation method and its application method of the gas sensor based on metal phthalocyanine |
WO2018180792A1 (en) * | 2017-03-28 | 2018-10-04 | 富士フイルム株式会社 | Insect detection method, gas sensor for insect detection, gas sensor array for insect detection, and electric machine product |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4030211C2 (en) * | 1990-09-24 | 1996-07-11 | Siemens Ag | Method for determining the concentration of a gas component in a gas mixture |
JPH06165933A (en) * | 1992-09-29 | 1994-06-14 | Mitsubishi Electric Corp | Nitrogen oxide selectively adsorbing material reaction control method therefor and device for detecting, adsorption-removing and decomposing gas using them |
CN103630576A (en) * | 2013-12-09 | 2014-03-12 | 电子科技大学 | Preparation method of OTFT(organic thin-film transistor)-based nitrogen dioxide gas sensor |
CN103760207B (en) * | 2014-01-26 | 2016-03-16 | 江苏物联网研究发展中心 | Based on polar molecule gas sensor and the preparation method of organic effect tubular construction |
CN107064218A (en) * | 2016-10-31 | 2017-08-18 | 扬州大学 | Based on reduced graphene semiconductor room temperature nitrogen dioxide sensor preparation method |
TWI615611B (en) * | 2016-12-20 | 2018-02-21 | Gas detector | |
CN108663406A (en) * | 2018-03-29 | 2018-10-16 | 上海电机学院 | A kind of application of light excitation air-sensitive sensing testing system |
-
2018
- 2018-12-27 TW TW107147397A patent/TWI675197B/en active
-
2019
- 2019-11-22 CN CN201911158063.9A patent/CN111380925A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201215882A (en) * | 2010-10-11 | 2012-04-16 | Univ Nat Chiao Tung | Vertical type sensor |
TW201708813A (en) * | 2014-10-31 | 2017-03-01 | 國立交通大學 | Vertical sensor and manufacturing method thereof |
WO2018095524A1 (en) * | 2016-11-23 | 2018-05-31 | Robert Bosch Gmbh | Gas sensor and method for detecting a gas |
WO2018180792A1 (en) * | 2017-03-28 | 2018-10-04 | 富士フイルム株式会社 | Insect detection method, gas sensor for insect detection, gas sensor array for insect detection, and electric machine product |
CN108362741A (en) * | 2018-02-27 | 2018-08-03 | 上海交通大学 | A kind of preparation method and its application method of the gas sensor based on metal phthalocyanine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI762855B (en) * | 2020-01-10 | 2022-05-01 | 國立陽明交通大學 | Gas sensor |
TWI736133B (en) * | 2020-02-14 | 2021-08-11 | 國立陽明交通大學 | Gas sensor |
Also Published As
Publication number | Publication date |
---|---|
CN111380925A (en) | 2020-07-07 |
TW202024604A (en) | 2020-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI675197B (en) | Gas-sensing apparatus | |
Yu et al. | Morphology-driven high-performance polymer transistor-based ammonia gas sensor | |
Ou et al. | Degradable photonic synaptic transistors based on natural biomaterials and carbon nanotubes | |
Zheng et al. | A flexible self‐powered sensing element with integrated organic thermoelectric generator | |
TWI407610B (en) | Infrared light distance sensing device for organic semiconductors | |
TWI615611B (en) | Gas detector | |
Han et al. | Flexible Near‐Infrared Plastic Phototransistors with Conjugated Polymer Gate‐Sensing Layers | |
Huang et al. | Short‐wave infrared synaptic phototransistor with ambient light adaptability for flexible artificial night visual system | |
Kattamis et al. | Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device | |
Rajeev et al. | Ammonia gas detection using field-effect transistor based on a solution-processable organic semiconductor | |
Yim et al. | Phase-separated thin film structures for efficient polymer blend light-emitting diodes | |
Yun et al. | Generating semi-metallic conductivity in polymers by laser-driven nanostructural reorganization | |
Li et al. | Achieving humidity-insensitive ammonia sensor based on Poly (3, 4-ethylene dioxythiophene): Poly (styrenesulfonate) | |
Park et al. | Highly conductive PEDOT: PSS patterns based on photo-crosslinkable and water-soluble diacetylene diol additives | |
US20230049675A1 (en) | Gas sensor | |
TWI762855B (en) | Gas sensor | |
Vohra et al. | Impact of the electron acceptor nature on the durability and nanomorphological stability of bulk heterojunction active layers for organic solar cells | |
TWI672487B (en) | Gas detection wafer and manufacturing method thereof | |
Meier et al. | Drift in the resistance of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) printed films during thermal cycling | |
Chen et al. | High-resolution proximity sensor using flexible semi-transparent organic photo detector | |
CN112802984B (en) | Preparation method of electronic device and display device | |
KR101824383B1 (en) | High performance sensor based on maximization of surface roughness of organic semiconductor thin film using control of surface energy of buffer layer | |
CN107686965B (en) | Method for manufacturing gas sensor | |
Zhang et al. | Kilohertz organic complementary inverters driven by surface-grafting conducting polypyrrole electrodes | |
TWI736133B (en) | Gas sensor |