TWI673170B - Method of fabricating flexible display - Google Patents

Method of fabricating flexible display Download PDF

Info

Publication number
TWI673170B
TWI673170B TW107123579A TW107123579A TWI673170B TW I673170 B TWI673170 B TW I673170B TW 107123579 A TW107123579 A TW 107123579A TW 107123579 A TW107123579 A TW 107123579A TW I673170 B TWI673170 B TW I673170B
Authority
TW
Taiwan
Prior art keywords
flexible
layer
thermal expansion
temperature
curing temperature
Prior art date
Application number
TW107123579A
Other languages
Chinese (zh)
Other versions
TW202005809A (en
Inventor
陳發祥
江丞偉
陳泊如
詹志誠
林世亮
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW107123579A priority Critical patent/TWI673170B/en
Priority to CN201811130530.2A priority patent/CN109285869B/en
Application granted granted Critical
Publication of TWI673170B publication Critical patent/TWI673170B/en
Publication of TW202005809A publication Critical patent/TW202005809A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Abstract

本發明提供可撓性顯示器的製造方法以及可撓性顯示器。 本發明提供可撓性顯示器的製造方法包括以下步驟。於載板上形成第一可撓性材料層。以第一固化溫度固化第一可撓性材料層,以形成第一可撓性層。於第一可撓性層上形成緩衝層。於緩衝層上形成第二可撓性材料層。以第二固化溫度固化第二可撓性材料層,以形成第二可撓性層。第二固化溫度小於第一固化溫度。於第二可撓性層上形成元件陣列。 The present invention provides a method for manufacturing a flexible display and a flexible display. The present invention provides a method for manufacturing a flexible display including the following steps. A first flexible material layer is formed on the carrier board. The first flexible material layer is cured at a first curing temperature to form a first flexible layer. A buffer layer is formed on the first flexible layer. A second flexible material layer is formed on the buffer layer. The second flexible material layer is cured at a second curing temperature to form a second flexible layer. The second curing temperature is lower than the first curing temperature. An element array is formed on the second flexible layer.

Description

可撓性顯示器的製造方法 Manufacturing method of flexible display

本發明是有關於一種顯示器及其製造方法,且特別是有關於一種可撓性顯示器及其製造方法。 The present invention relates to a display and a method for manufacturing the same, and more particularly, to a flexible display and a method for manufacturing the same.

隨著攜帶式顯示器被廣泛地應用,針對可撓性顯示器之開發也越趨積極,以實現於不同曲面下仍可顯示的目的。習知的可撓性顯示器包括多層結構,然而,在製造可撓性顯示器的過程中,熱處理製程所產生之氣泡易形成於多層結構內使其表面不平坦,故在形成後續膜層時易產生瑕疵,進而導致顯示異常的問題。 As portable displays are widely used, the development of flexible displays is becoming more and more active to achieve the purpose of displaying under different curved surfaces. The conventional flexible display includes a multilayer structure. However, in the process of manufacturing a flexible display, the bubbles generated by the heat treatment process are easy to form in the multilayer structure and make the surface uneven, so it is easy to generate when forming subsequent films. Defects, which cause display problems.

本發明的至少一實施方式提供一種製造可撓性顯示器的方法,其可提升可撓性顯示器的製程良率。 At least one embodiment of the present invention provides a method for manufacturing a flexible display, which can improve the process yield of the flexible display.

本發明的至少一實施方式提供一種可撓性顯示器,其可具有良好的顯示品質。 At least one embodiment of the present invention provides a flexible display, which can have good display quality.

本發明的至少一實施方式的製造可撓性顯示器的方法包 括以下步驟。於載板上形成第一可撓性材料層。以第一固化溫度固化第一可撓性材料層,以形成第一可撓性層。於第一可撓性層上形成緩衝層。於緩衝層上形成第二可撓性材料層。以第二固化溫度固化第二可撓性材料層,以形成第二可撓性層。第二固化溫度小於第一固化溫度。於第二可撓性層上形成元件陣列。 Method package for manufacturing flexible display according to at least one embodiment of the present invention Include the following steps. A first flexible material layer is formed on the carrier board. The first flexible material layer is cured at a first curing temperature to form a first flexible layer. A buffer layer is formed on the first flexible layer. A second flexible material layer is formed on the buffer layer. The second flexible material layer is cured at a second curing temperature to form a second flexible layer. The second curing temperature is lower than the first curing temperature. An element array is formed on the second flexible layer.

本發明的至少一實施方式的可撓性顯示器包括第一可撓性層、緩衝層、第二可撓性層以及元件陣列。緩衝層位於第一可撓性層上。第二可撓性層位於緩衝層上。元件陣列位於第二可撓性層上。第一可撓性層以及第二可撓性層分別具有第一玻璃轉移溫度以及第二玻璃轉移溫度。在小於第一玻璃轉移溫度時,第二可撓性層的第一熱膨脹係數大於第一可撓性層的第一熱膨脹係數。在介於第一玻璃轉移溫度與第二玻璃轉移溫度時,第二可撓性層的第二熱膨脹係數大於第一可撓性層的第二熱膨脹係數。在大於第二玻璃轉移溫度時,第二可撓性層的第三熱膨脹係數大於第一可撓性層的第三熱膨脹係數。 A flexible display according to at least one embodiment of the present invention includes a first flexible layer, a buffer layer, a second flexible layer, and an element array. The buffer layer is located on the first flexible layer. The second flexible layer is on the buffer layer. The element array is on the second flexible layer. The first flexible layer and the second flexible layer have a first glass transition temperature and a second glass transition temperature, respectively. When the temperature is lower than the first glass transition temperature, the first thermal expansion coefficient of the second flexible layer is greater than the first thermal expansion coefficient of the first flexible layer. When between the first glass transition temperature and the second glass transition temperature, the second thermal expansion coefficient of the second flexible layer is greater than the second thermal expansion coefficient of the first flexible layer. When it is greater than the second glass transition temperature, the third thermal expansion coefficient of the second flexible layer is greater than the third thermal expansion coefficient of the first flexible layer.

基於上述,本發明的至少一實施方式提供的製造可撓性顯示器的方法可減少第一可撓性層與緩衝層之間產生氣泡的數量,甚至可避免於第一可撓性層與緩衝層之間形成氣泡,藉此改善氣泡所導致之膜層表面突起的問題,進而增加可撓性顯示器的製程良率。本發明的至少一實施方式提供的可撓性顯示器,避免或降低第一可撓性層與緩衝層之間的氣泡數,具有良好的顯示品質。 Based on the above, the method for manufacturing a flexible display provided by at least one embodiment of the present invention can reduce the number of bubbles generated between the first flexible layer and the buffer layer, and can even avoid the first flexible layer and the buffer layer. Air bubbles are formed between the two to improve the problem of protrusions on the surface of the film layer caused by the air bubbles, thereby increasing the process yield of the flexible display. The flexible display provided by at least one embodiment of the present invention avoids or reduces the number of bubbles between the first flexible layer and the buffer layer, and has good display quality.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉 實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more comprehensible, the following enumerated The embodiments will be described in detail with the accompanying drawings.

10‧‧‧可撓性顯示器 10‧‧‧ Flexible display

100‧‧‧載板 100‧‧‧ Carrier Board

110‧‧‧第一可撓性層 110‧‧‧first flexible layer

110a‧‧‧第一可撓性材料層 110a‧‧‧first flexible material layer

120‧‧‧緩衝層 120‧‧‧ buffer layer

130‧‧‧第二可撓性層 130‧‧‧second flexible layer

130a‧‧‧第二可撓性材料層 130a‧‧‧second flexible material layer

140‧‧‧元件陣列 140‧‧‧element array

C1、C2‧‧‧固化製程 C1, C2 ‧‧‧ curing process

FS‧‧‧可撓性基板 FS‧‧‧Flexible substrate

圖1A至圖1F為依照本發明一實施方式之可撓性顯示器的製造方法的剖面示意圖。 1A to 1F are schematic cross-sectional views of a method for manufacturing a flexible display according to an embodiment of the present invention.

圖2為實施例7~實施例9以及比較例3的可撓性顯示器的第二可撓性層的靜態熱機械分析圖譜。 FIG. 2 is a static thermomechanical analysis spectrum of the second flexible layer of the flexible displays of Examples 7 to 9 and Comparative Example 3. FIG.

以下將參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。另外,實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。 Hereinafter, the present invention will be explained more fully with reference to the drawings of this embodiment. However, the present invention may be embodied in various forms and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the drawings are exaggerated for clarity. The same or similar reference numbers indicate the same or similar elements, and the following paragraphs will not repeat them one by one. In addition, the directional terms mentioned in the embodiments, such as: up, down, left, right, front, or rear, are only directions referring to the attached drawings. Therefore, the directional terms used are used to illustrate and not to limit the present invention.

圖1A至圖1F為依照本發明一實施方式之可撓性顯示器的製造方法的剖面示意圖。 1A to 1F are schematic cross-sectional views of a method for manufacturing a flexible display according to an embodiment of the present invention.

請參照圖1A,於載板100上形成第一可撓性材料層110a。在一些實施方式中,載板100可為硬質基板(rigid substrate),其在製造過程中不易受外力影響而變形,如此可使得形成於載板100 上的第一可撓性材料層110a具有良好的平坦度,使得後續形成於第一可撓性材料層110a上之膜層具有良好的穩定性。載板100的材料可以是玻璃、聚碳酸酯(polycarbonate,PC)、不銹鋼板或其組合。第一可撓性材料層110a的材料可以是聚亞醯胺(polyimide,PI)、聚萘二甲酸乙醇酯(polyethylene naphthalate;PEN)、聚對苯二甲酸乙二酯(polyethylene terephthalate;PET)或前述至少二種材料之組合。在本實施方式中,第一可撓性材料層110a的材料為聚亞醯胺。第一可撓性材料層110a的形成方法例如是狹縫塗佈法(slit coating)、旋塗法(spin coating)或其組合。 Referring to FIG. 1A, a first flexible material layer 110 a is formed on a carrier board 100. In some embodiments, the carrier board 100 may be a rigid substrate, which is not easily deformed by external forces during the manufacturing process, so that the carrier board 100 may be formed on the carrier board 100. The first flexible material layer 110a has a good flatness, so that the film layer formed on the first flexible material layer 110a has good stability. The material of the carrier plate 100 may be glass, polycarbonate (PC), stainless steel plate, or a combination thereof. The material of the first flexible material layer 110a may be polyimide (PI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), or A combination of the aforementioned at least two materials. In this embodiment, the material of the first flexible material layer 110a is polyimide. The method for forming the first flexible material layer 110 a is, for example, a slit coating method, a spin coating method, or a combination thereof.

請同時參照圖1A以及圖1B,以第一固化溫度固化第一可撓性材料層110a,以形成第一可撓性層110。固化第一可撓性材料層110a的方法例如是在第一固化溫度下進行固化製程C1。在本實施方式中,第一固化溫度為大於或等於480℃且小於或等於500℃。形成之第一可撓性層110的厚度例如是1微米至20微米。在本實施方式中,第一可撓性層110的材料可參照前述實施方式,於此不再贅述。 Referring to FIG. 1A and FIG. 1B at the same time, the first flexible material layer 110 a is cured at a first curing temperature to form the first flexible layer 110. A method of curing the first flexible material layer 110 a is, for example, performing a curing process C1 at a first curing temperature. In this embodiment, the first curing temperature is 480 ° C or higher and 500 ° C or lower. The thickness of the first flexible layer 110 is, for example, 1 μm to 20 μm. In this embodiment, the material of the first flexible layer 110 may refer to the foregoing embodiment, and details are not described herein again.

在本實施方式中,第一可撓性層110的第一玻璃轉移溫度(glass transition temperature)為0℃至350℃,且第一可撓性層110的第二玻璃轉移溫度為350℃至550℃。第一可撓性層110在處於小於第一玻璃轉移溫度的環境溫度時的第一熱膨脹係數(coefficient of thermal expansion)為0至20ppm/℃,在介於第一玻璃轉移溫度與第二玻璃轉移溫度時的第二熱膨脹係數為5至 100ppm/℃,且在大於第二玻璃轉移溫度的環境溫度時的第三熱膨脹係數為30至1000ppm/℃。 In this embodiment, the first glass transition temperature of the first flexible layer 110 is 0 ° C to 350 ° C, and the second glass transition temperature of the first flexible layer 110 is 350 ° C to 550 ℃. The first flexible layer 110 has a first coefficient of thermal expansion when the ambient temperature is lower than the first glass transition temperature is 0 to 20 ppm / ° C, and is between the first glass transition temperature and the second glass transition temperature. Second thermal expansion coefficient at temperature from 5 to 100 ppm / ° C, and the third thermal expansion coefficient at an ambient temperature greater than the second glass transition temperature is 30 to 1000 ppm / ° C.

請參照圖1C,於第一可撓性層110上形成緩衝層120。在本實施方式中,緩衝層120為單層結構,但不以此為限。在其它實施方式中,緩衝層120可為多層堆疊結構。緩衝層120的材料可以是無機材料,例如氧化矽(SiOx)、氮化矽(SiNx)或其組合。緩衝層120的厚度例如是10奈米~1000奈米。緩衝層的形成方法例如是化學氣相沉積法(CVD)、物理氣相沉積法(PVD)、原子層沉積法(ALD)或其組合。 Referring to FIG. 1C, a buffer layer 120 is formed on the first flexible layer 110. In this embodiment, the buffer layer 120 has a single-layer structure, but is not limited thereto. In other embodiments, the buffer layer 120 may be a multilayer stack structure. The material of the buffer layer 120 may be an inorganic material, such as silicon oxide (SiO x ), silicon nitride (SiN x ), or a combination thereof. The thickness of the buffer layer 120 is, for example, 10 nm to 1000 nm. A method for forming the buffer layer is, for example, a chemical vapor deposition method (CVD), a physical vapor deposition method (PVD), an atomic layer deposition method (ALD), or a combination thereof.

請參照圖1D,於緩衝層120上形成第二可撓性材料層130a。第二可撓性材料層130a的材料可以是與第一可撓性材料層110a的材料相同或不同。第二可撓性材料層130a的材料可以是聚亞醯胺、聚萘二甲酸乙醇酯、聚對苯二甲酸乙二酯或前述至少二種材料之組合。在本實施方式中,第二可撓性材料層130a的材料為聚亞醯胺。第二可撓性材料層130a的形成方法例如是狹縫塗佈法、旋塗法或其組合。 Referring to FIG. 1D, a second flexible material layer 130 a is formed on the buffer layer 120. The material of the second flexible material layer 130a may be the same as or different from the material of the first flexible material layer 110a. The material of the second flexible material layer 130a may be polyimide, polyethylene naphthalate, polyethylene terephthalate, or a combination of at least two of the foregoing materials. In this embodiment, the material of the second flexible material layer 130a is polyimide. A method for forming the second flexible material layer 130a is, for example, a slit coating method, a spin coating method, or a combination thereof.

請同時參照圖1D以及圖1E,以第二固化溫度固化第二可撓性材料層130a,以形成第二可撓性層130。固化第二可撓性材料層130a的方法例如是在第二固化溫度下進行固化製程C2。在本實施方式中,第二固化溫度為大於或等於450℃且小於480℃。在本實施方式中,第二固化溫度會小於固化第一可撓性性材料層110a時的第一固化溫度,但本發明不以此為限,在其它實施方式 中,第一固化溫度為大於或等於480℃且第二固化溫度為大於或等於450℃。在本實施例中,第一固化溫度與該第二固化溫度之差大於或等於20℃。第二可撓性層130的厚度例如是1微米至20微米。在本實施方式中,第二可撓性層130的材料可參照前述實施方式,於此不再贅述。 Referring to FIG. 1D and FIG. 1E at the same time, the second flexible material layer 130 a is cured at the second curing temperature to form the second flexible layer 130. A method of curing the second flexible material layer 130a is, for example, performing a curing process C2 at a second curing temperature. In this embodiment, the second curing temperature is greater than or equal to 450 ° C and less than 480 ° C. In this embodiment, the second curing temperature is lower than the first curing temperature when the first flexible material layer 110a is cured, but the present invention is not limited thereto, and in other embodiments Among them, the first curing temperature is 480 ° C or higher and the second curing temperature is 450 ° C or higher. In this embodiment, the difference between the first curing temperature and the second curing temperature is greater than or equal to 20 ° C. The thickness of the second flexible layer 130 is, for example, 1 μm to 20 μm. In this embodiment, the material of the second flexible layer 130 can refer to the foregoing embodiment, and details are not described herein again.

在本實施方式中,第二可撓性層130的第一玻璃轉移溫度為0℃至350℃,且第二可撓性層130的第二玻璃轉移溫度為350℃至550℃。第二可撓性層130在處於小於第一玻璃轉移溫度的環境溫度時的第一熱膨脹係數為0至20ppm/℃,在介於第一玻璃轉移溫度與第二玻璃轉移溫度時的第二熱膨脹係數為5至100ppm/℃,且在大於第二玻璃轉移溫度的環境溫度時的第三熱膨脹係數為30至1000ppm/℃。在本實施方式中,第二可撓性層130的第一熱膨脹係數、第二熱膨脹係數以及第三熱膨脹係數可分別大於第一可撓性層110的第一熱膨脹係數、第二熱膨脹係數以及第三熱膨脹係數。 In this embodiment, the first glass transition temperature of the second flexible layer 130 is 0 ° C to 350 ° C, and the second glass transition temperature of the second flexible layer 130 is 350 ° C to 550 ° C. The second flexible layer 130 has a first thermal expansion coefficient of 0 to 20 ppm / ° C. at an ambient temperature less than the first glass transition temperature, and a second thermal expansion between the first glass transition temperature and the second glass transition temperature. The coefficient is 5 to 100 ppm / ° C, and the third thermal expansion coefficient is 30 to 1000 ppm / ° C at an ambient temperature greater than the second glass transition temperature. In this embodiment, the first, second, and third thermal expansion coefficients of the second flexible layer 130 may be greater than the first, second, and third thermal expansion coefficients of the first flexible layer 110, respectively. Three thermal expansion coefficients.

在本實施方式中,可撓性基板FS可以是由第一可撓性層110、緩衝層120以及第二可撓性層130所構成(例如PI/SiOx/PI或是PI/SiNx/PI)。在本實施方式中,由於使第二固化溫度小於第一固化溫度,因此在固化第二可撓性材料層130a時,在第一可撓性層110與緩衝層120之間不容易形成氣泡,因此可避免第二可撓性層130被氣泡頂起而於其部分表面產生突起,進而提升製程良率。 In this embodiment, the flexible substrate FS may be composed of the first flexible layer 110, the buffer layer 120, and the second flexible layer 130 (for example, PI / SiO x / PI or PI / SiN x / PI). In this embodiment, since the second curing temperature is made lower than the first curing temperature, it is difficult to form a bubble between the first flexible layer 110 and the buffer layer 120 when the second flexible material layer 130a is cured. Therefore, it is possible to prevent the second flexible layer 130 from being lifted up by the bubbles to generate protrusions on a part of the surface thereof, thereby improving the process yield.

在一些實施方式中,由熱處理製程所產生之氣泡可能由環境中的微粒所造成(微粒例如源自機台的金屬碎屑材料,其材料包括鐵、鎳、鉻等元素)。舉例來說,微粒具有一個或是多個孔隙,而氣體會儲存於微粒的孔隙中,因此在進行熱處理製程時,微粒孔隙中的氣體會膨脹並從孔隙中擴散出來,隨著熱處理製程的次數增加,從微粒孔隙中擴散出來的氣體也越來越多。在此情況下,由於在本實施方式中使第二固化溫度小於第一固化溫度,因此在固化第二可撓性材料層130a時,可減少於第一可撓性層110與緩衝層120之間產生氣泡的數量,甚至可避免於第一可撓性層110與緩衝層120之間形成氣泡。 In some embodiments, the air bubbles generated by the heat treatment process may be caused by particles in the environment (eg, particles of metal debris from the machine, the material of which includes iron, nickel, chromium and other elements). For example, particles have one or more pores, and the gas is stored in the pores of the particles. Therefore, during the heat treatment process, the gas in the pores of the particles will expand and diffuse out of the pores. With the number of heat treatment processes, As it increases, more and more gases diffuse out of the pores of the particles. In this case, since the second curing temperature is made lower than the first curing temperature in this embodiment, when curing the second flexible material layer 130a, it can be reduced to a value between the first flexible layer 110 and the buffer layer 120. The number of bubbles generated in between can even avoid the formation of bubbles between the first flexible layer 110 and the buffer layer 120.

請參照圖1F,於第二可撓性層130上形成元件陣列140,以於載板100上形成可撓性顯示器10。在本實施方式中,元件陣列140可以是有機發光二極體(OELD)畫素陣列,但本發明不以此為限。元件陣列140可包括多個主動元件(未繪示)、多條掃描線(未繪示)、多條資料線(未繪示)以及多個子畫素(未繪示),各子畫素可分別與元件陣列140中對應的掃描線以及對應的資料線電性連接,但本發明不以此為限。多個主動元件可例如是低溫多晶矽薄膜電晶體(LTPS-TFT)元件。在本實施方式中,形成元件陣列140的製程溫度小於第一固化溫度以及第二固化溫度。形成元件陣列140的製程溫度例如是400℃至650℃。在本實施方式中,因形成元件陣列140的製程溫度小於第一固化溫度以及第二固化溫度,對應製程溫度較高之第一可撓性層110及第二可撓性 層130之形成步驟係先於對應製程溫度較低之元件陣列140之形成步驟,故元件陣列140在形成時便不會被先前高溫製程所影響或破壞,藉此以穩定地形成元件陣列140於第二可撓性層130上。 Referring to FIG. 1F, a device array 140 is formed on the second flexible layer 130 to form a flexible display 10 on the carrier board 100. In this embodiment, the element array 140 may be an organic light emitting diode (OELD) pixel array, but the present invention is not limited thereto. The device array 140 may include multiple active devices (not shown), multiple scan lines (not shown), multiple data lines (not shown), and multiple sub pixels (not shown). Each sub pixel may be They are electrically connected to corresponding scanning lines and corresponding data lines in the element array 140, but the present invention is not limited thereto. The plurality of active devices may be, for example, low temperature polycrystalline silicon thin film transistor (LTPS-TFT) devices. In this embodiment, the process temperature for forming the element array 140 is lower than the first curing temperature and the second curing temperature. The process temperature for forming the element array 140 is, for example, 400 ° C to 650 ° C. In this embodiment, because the process temperature for forming the element array 140 is lower than the first curing temperature and the second curing temperature, the first flexible layer 110 and the second flexibility corresponding to the higher process temperature The formation step of the layer 130 is prior to the formation step of the element array 140 corresponding to the lower process temperature, so the element array 140 will not be affected or destroyed by the previous high-temperature process during formation, thereby stably forming the element array 140 on On the second flexible layer 130.

以下簡述元件陣列140的製造方法,但本發明不以此為限。在第二可撓性層130形成之後,於第二可撓性層130上形成非晶矽層(未繪示)。接著,對非晶矽層進行熱處理製程以去氫,並藉由對非晶矽層進行準分子雷射退火製程(Excimer Laser Annealing,ELA)以形成多晶矽層(未繪示)。上述的準分子雷射退火製程(Excimer Laser Annealing,ELA)是利用雷射射束依序對不同位置的非晶矽層進行多晶化,以使非晶矽重新排列成多晶矽。之後,局部摻質多晶矽層,然後依續形成閘絕緣層(未繪示)、第一金屬層(未繪示)以及層間絕緣層(未繪示)。層間絕緣層的形成方法例如是先藉由化學氣相沉積法或物理氣相沉積法沉積層間絕緣材料層之後,在藉由進行熱處理製程使層間絕緣層中的氫活化,而使氫可進入多晶矽層修補缺陷。再來,依續形成第二金屬層(未繪示)、第一平坦層(未繪示)、導電層(未繪示)以及第二平坦層(未繪示)。 The manufacturing method of the element array 140 is briefly described below, but the invention is not limited thereto. After the second flexible layer 130 is formed, an amorphous silicon layer (not shown) is formed on the second flexible layer 130. Next, a heat treatment process is performed on the amorphous silicon layer to remove hydrogen, and an excimer laser annealing (ELA) process is performed on the amorphous silicon layer to form a polycrystalline silicon layer (not shown). The above-mentioned excimer laser annealing (ELA) process uses a laser beam to sequentially polymorphize amorphous silicon layers at different positions, so that the amorphous silicon is rearranged into polycrystalline silicon. After that, the polycrystalline silicon layer is partially doped, and then a gate insulating layer (not shown), a first metal layer (not shown), and an interlayer insulating layer (not shown) are sequentially formed. The formation method of the interlayer insulating layer is, for example, firstly depositing an interlayer insulating material layer by a chemical vapor deposition method or a physical vapor deposition method, and then activating the hydrogen in the interlayer insulating layer through a heat treatment process so that hydrogen can enter the polycrystalline silicon. Layer to repair defects. Then, a second metal layer (not shown), a first flat layer (not shown), a conductive layer (not shown), and a second flat layer (not shown) are sequentially formed.

請同時參照圖1E與圖1F,於形成元件陣列140之後,可選擇性地進行剝離製程以分離載板100與第一可撓性層110,但本發明不以此為限。在本實施方式中,剝離製程例如是雷射剝離製程。在其他實施方式中,也可以使用其他適合的方式來分離載板100與第一可撓性層110。 Referring to FIG. 1E and FIG. 1F at the same time, after the element array 140 is formed, a peeling process may be selectively performed to separate the carrier board 100 and the first flexible layer 110, but the present invention is not limited thereto. In this embodiment, the peeling process is, for example, a laser peeling process. In other embodiments, other suitable methods may be used to separate the carrier plate 100 from the first flexible layer 110.

基於上述,在本發明的一實施方式中,製造可撓性顯示器10的方法可減少第一可撓性層110與緩衝層120之間產生氣泡的數量,甚至可避免於第一可撓性層110與緩衝層120之間形成氣泡,進而增加可撓性顯示器10的製程良率。 Based on the above, in an embodiment of the present invention, the method of manufacturing the flexible display 10 can reduce the number of bubbles generated between the first flexible layer 110 and the buffer layer 120, and can even avoid the first flexible layer. A bubble is formed between 110 and the buffer layer 120, thereby increasing the process yield of the flexible display 10.

以下,將藉由圖1F來說明本實施方式的可撓性顯示器。此外,本實施方式的可撓性顯示器雖然是以上述製造方法進行製造,但本發明不限以此。 Hereinafter, the flexible display of this embodiment will be described with reference to FIG. 1F. In addition, although the flexible display of this embodiment is manufactured by the manufacturing method mentioned above, this invention is not limited to this.

可撓性顯示器10包括第一可撓性層110、緩衝層120、第二可撓性層130以及元件陣列140。緩衝層120位於第一可撓性層110上。第二可撓性層130位於緩衝層120上。元件陣列140位於第二可撓性層130上。在本實施方式中,第二可撓性層130的第一熱膨脹係數、第二熱膨脹係數以及第三熱膨脹係數分別大於第一可撓性層110的第一熱膨脹係數、第二熱膨脹係數以及第三熱膨脹係數。 The flexible display 10 includes a first flexible layer 110, a buffer layer 120, a second flexible layer 130, and an element array 140. The buffer layer 120 is located on the first flexible layer 110. The second flexible layer 130 is located on the buffer layer 120. The element array 140 is located on the second flexible layer 130. In this embodiment, the first thermal expansion coefficient, the second thermal expansion coefficient, and the third thermal expansion coefficient of the second flexible layer 130 are greater than the first thermal expansion coefficient, the second thermal expansion coefficient, and the third thermal expansion coefficient of the first flexible layer 110, respectively. Thermal expansion coefficient.

基於上述,在本發明的一實施方式中,可撓性顯示器10的第二可撓性層130的第一熱膨脹係數、第二熱膨脹係數以及第三熱膨脹係數分別大於第一可撓性層110的第一熱膨脹係數、第二熱膨脹係數以及第三熱膨脹係數,因此可減少於第一可撓性層110與緩衝層120之間產生氣泡的數量,甚至可避免於第一可撓性層110與緩衝層120之間形成氣泡,進而增加可撓性顯示器10的製程良率。 Based on the above, in one embodiment of the present invention, the first thermal expansion coefficient, the second thermal expansion coefficient, and the third thermal expansion coefficient of the second flexible layer 130 of the flexible display 10 are larger than those of the first flexible layer 110, respectively. The first coefficient of thermal expansion, the second coefficient of thermal expansion, and the third coefficient of thermal expansion can reduce the number of bubbles generated between the first flexible layer 110 and the buffer layer 120, and can even avoid the first flexible layer 110 and the buffer Bubbles are formed between the layers 120, thereby increasing the process yield of the flexible display 10.

下文將參照實驗例1以及實驗例2更具體地描述本發明 的特徵。雖然描述了以下實施例,但是在不逾越本發明範疇之情況下,可適當地改變所用材料、其量及比率、處理細節以及處理流程等等。因此,不應由下文所述之實施例對本發明作出限制性地解釋。 Hereinafter, the present invention will be described more specifically with reference to Experimental Example 1 and Experimental Example 2. Characteristics. Although the following examples are described, the materials used, their amounts and ratios, processing details, processing flow, and the like can be appropriately changed without going beyond the scope of the invention. Therefore, the present invention should not be interpreted restrictively by the examples described below.

實驗例1Experimental example 1

以下將介紹分別使用不同的第一固化溫度(以下以T1表示)與第二固化溫度(以下以T2表示)以分別固化第一可撓性層與第二可撓性層的實施例1~實施例6及比較例1~比較例2的可撓性顯示器。並且,對實施例1~實施例6及比較例1~比較例2的可撓性顯示器在三個製程階段中進行3次第一可撓性層與緩衝層之間的氣泡數量的測量,其中三個製程階段分別為:1)固化第一可撓性層之後且形成緩衝層之前;2)對非晶矽層進行熱處理製程之後且進行準分子雷射退火製程之前;3)對層間絕緣材料層進行熱處理製程之後且形成第二金屬層之前。上述於三個製程階段中進行第一可撓性層與緩衝層之間的的氣泡數量的測量數據分別整理於以下的表1至表3中,其中測量數據包括氣泡數量的最小值(以下以min表示)、氣泡數量的最大值(以下以max表示)以及氣泡數量的平均值(以下以μ表示)。 In the following, embodiments 1 ~ implementation using different first curing temperature (hereinafter referred to as T1) and second curing temperature (hereinafter referred to as T2) to respectively cure the first flexible layer and the second flexible layer will be described. Examples 6 and Comparative Examples 1 to 2 are flexible displays. In addition, for the flexible displays of Examples 1 to 6 and Comparative Examples 1 to 2, the number of bubbles between the first flexible layer and the buffer layer was measured three times in three process stages, where The three process stages are: 1) after curing the first flexible layer and before forming the buffer layer; 2) after the heat treatment process of the amorphous silicon layer and before the excimer laser annealing process; 3) the interlayer insulation material After the layer is subjected to a heat treatment process and before the second metal layer is formed. The above-mentioned measurement data of the number of bubbles between the first flexible layer and the buffer layer in the three process stages are respectively arranged in Tables 1 to 3 below, where the measurement data includes the minimum value of the number of bubbles (hereinafter min), the maximum value of the number of bubbles (hereinafter referred to as max), and the average value of the number of bubbles (hereinafter referred to as μ).

由表1以及表3可知,與比較例1以及比較例2的可撓性顯示器相比,由於實施例1~實施例6是以大於等於450℃且小於480℃的第二固化溫度來固化可撓性顯示器中的第二可撓性材料層,因此實施例1~實施例6的第一可撓性層與緩衝層之間的氣泡數量明顯小於比較例1~比較例2的第一可撓性層與緩衝層之間的氣泡數量。此情況於在3)對層間絕緣材料層進行熱處理製程之後且形成第二金屬層之前的階段中測量的實驗結果中更為明顯。 As can be seen from Tables 1 and 3, compared with the flexible displays of Comparative Examples 1 and 2, since Examples 1 to 6 are cured at a second curing temperature of 450 ° C. or higher and 480 ° C. or lower, Because of the second flexible material layer in the flexible display, the number of bubbles between the first flexible layer and the buffer layer in Examples 1 to 6 is significantly smaller than the first flexible layer in Comparative Examples 1 to 2. The number of bubbles between the layer and the buffer layer. This situation is more apparent in the experimental results measured in the stage after 3) performing the heat treatment process on the interlayer insulating material layer and before forming the second metal layer.

實驗例2Experimental example 2

請參照圖2,圖2繪示實施例7~實施例9以及比較例3的可撓性顯示器的第二可撓性層的靜態熱機械分析圖譜。在圖2中的x座標為第二可撓性層的形變量(單位為ppm),y座標為環境溫度(單位為℃),且斜率為熱膨脹係數(單位為ppm/℃)。此外,在圖2中,第二可撓性層分別具有處於小於第一玻璃轉化溫度(圖2中以Tg1表示)時的第一熱膨脹係數、介於第一玻璃轉化溫度與第二玻璃轉化溫度(圖2中以Tg2表示)之間時的第二熱膨脹係 數以及處於大於第二玻璃轉化溫度的第三熱膨脹係數。 Please refer to FIG. 2. FIG. 2 illustrates a static thermomechanical analysis spectrum of the second flexible layer of the flexible displays of Examples 7 to 9 and Comparative Example 3. The x-coordinate in FIG. 2 is the deformation amount (unit: ppm) of the second flexible layer, the y-coordinate is the ambient temperature (unit: ° C), and the slope is the coefficient of thermal expansion (unit: ppm / ° C). In addition, in FIG. 2, the second flexible layer has a first thermal expansion coefficient at a temperature lower than the first glass transition temperature (represented by Tg1 in FIG. 2), between the first glass transition temperature and the second glass transition temperature. (Indicated by Tg2 in Figure 2) And a third coefficient of thermal expansion that is greater than the second glass transition temperature.

製備實施例7~實施例9以及比較例3的可撓性顯示器的第二可撓性層所使用之參數資訊如表4所示。 The parameter information used to prepare the second flexible layer of the flexible displays of Examples 7 to 9 and Comparative Example 3 is shown in Table 4.

由圖2可知,實施例7、實施例9的可撓性顯示器的第二可撓性層的第一熱膨脹係數、第二熱膨脹係數以及第三熱膨脹係數分別大於比較例3的可撓性顯示器的第二可撓性層的第一熱膨脹係數、第二熱膨脹係數以及第三熱膨脹係數。 As can be seen from FIG. 2, the first thermal expansion coefficient, the second thermal expansion coefficient, and the third thermal expansion coefficient of the second flexible layer of the flexible display of Examples 7 and 9 are larger than those of the flexible display of Comparative Example 3, respectively. A first thermal expansion coefficient, a second thermal expansion coefficient, and a third thermal expansion coefficient of the second flexible layer.

綜上所述,在依本發明的一實施方式的可撓性顯示器及製造可撓性顯示器的方法中,由於用於固化第二可撓性材料層的第二固化溫度小於用於固化第一可撓性材料層的第一固化溫度,故可減少於第一可撓性層與緩衝層之間產生氣泡的數量,甚至可避免於第一可撓性層與緩衝層之間形成氣泡,藉此改善氣泡所導致之膜層表面突起的問題,進而增加可撓性顯示器的製程良率。 In summary, in the flexible display and the method for manufacturing the flexible display according to an embodiment of the present invention, since the second curing temperature for curing the second flexible material layer is lower than that for curing the first The first curing temperature of the flexible material layer can reduce the number of bubbles generated between the first flexible layer and the buffer layer, and can even avoid the formation of bubbles between the first flexible layer and the buffer layer. This improves the problem of protrusions on the surface of the film layer caused by air bubbles, thereby increasing the process yield of the flexible display.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精 神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above by way of examples, it is not intended to limit the present invention. Any person having ordinary knowledge in the technical field will not depart from the spirit of the present invention. Within the scope of God and Harmony, some modifications and retouching can be made. Therefore, the scope of protection of the present invention shall be determined by the scope of the attached patent application.

Claims (7)

一種可撓性顯示器的製造方法,包括:於一載板上形成一第一可撓性材料層;以一第一固化溫度固化該第一可撓性材料層,以形成一第一可撓性層;於該第一可撓性層上形成一緩衝層;於該緩衝層上形成一第二可撓性材料層;以一第二固化溫度固化該第二可撓性材料層,以形成一第二可撓性層,其中該第二固化溫度小於該第一固化溫度;以及於該第二可撓性層上形成一元件陣列。A manufacturing method of a flexible display includes: forming a first flexible material layer on a carrier board; curing the first flexible material layer at a first curing temperature to form a first flexible material Layer; forming a buffer layer on the first flexible layer; forming a second flexible material layer on the buffer layer; curing the second flexible material layer at a second curing temperature to form a A second flexible layer, wherein the second curing temperature is lower than the first curing temperature; and an element array is formed on the second flexible layer. 如申請專利範圍第1項所述的可撓性顯示器的製造方法,其中該第二固化溫度大於或等於450℃且小於480℃,其中該第一固化溫度為大於或等於480℃且小於或等於500℃。The method for manufacturing a flexible display as described in item 1 of the patent application range, wherein the second curing temperature is greater than or equal to 450 ° C and less than 480 ° C, wherein the first curing temperature is greater than or equal to 480 ° C and less than or equal to 500 ℃. 如申請專利範圍第1項所述的可撓性顯示器的製造方法,其中該第一固化溫度與該第二固化溫度之差大於或等於20℃。The method for manufacturing a flexible display as described in item 1 of the patent application range, wherein the difference between the first curing temperature and the second curing temperature is greater than or equal to 20 ° C. 如申請專利範圍第1項所述的可撓性顯示器的製造方法,其中該第二固化溫度大於或等於450℃,該第一固化溫度為大於或等於480℃,該第一可撓性層的厚度為1微米至20微米,該第二可撓性層的厚度為1微米至20微米,且該緩衝層的厚度為10奈米至1000奈米。The method for manufacturing a flexible display as described in item 1 of the patent application range, wherein the second curing temperature is greater than or equal to 450 ° C, the first curing temperature is greater than or equal to 480 ° C, and the The thickness is 1 μm to 20 μm, the thickness of the second flexible layer is 1 μm to 20 μm, and the thickness of the buffer layer is 10 nm to 1000 nm. 如申請專利範圍第1項所述的可撓性顯示器的製造方法,其中該第一可撓性層以及該第二可撓性層分別具有一第一玻璃轉移溫度以及一第二玻璃轉移溫度,其中在小於該第一玻璃轉移溫度時,該第二可撓性層的一第一熱膨脹係數大於該第一可撓性層的一第一熱膨脹係數;在介於該第一玻璃轉移溫度與該第二玻璃轉移溫度時,該第二可撓性層的一第二熱膨脹係數大於該第一可撓性層的一第二熱膨脹係數;且在大於該第二玻璃轉移溫度時,該第二可撓性層的一第三熱膨脹係數大於該第一可撓性層的一第三熱膨脹係數。The method for manufacturing a flexible display as described in item 1 of the patent application, wherein the first flexible layer and the second flexible layer have a first glass transition temperature and a second glass transition temperature, respectively, When it is less than the first glass transition temperature, a first thermal expansion coefficient of the second flexible layer is greater than a first thermal expansion coefficient of the first flexible layer; between the first glass transition temperature and the At a second glass transition temperature, a second thermal expansion coefficient of the second flexible layer is greater than a second thermal expansion coefficient of the first flexible layer; and at a temperature greater than the second glass transition temperature, the second thermal expansion coefficient A third thermal expansion coefficient of the flexible layer is greater than a third thermal expansion coefficient of the first flexible layer. 如申請專利範圍第5項所述的可撓性顯示器的製造方法,其中該第一玻璃轉移溫度為0℃至350℃,且該第二玻璃轉移溫度為350℃至550℃。The method for manufacturing a flexible display as described in item 5 of the patent application range, wherein the first glass transition temperature is 0 ° C to 350 ° C, and the second glass transition temperature is 350 ° C to 550 ° C. 如申請專利範圍第1項所述的可撓性顯示器的製造方法,其中形成該元件陣列的一製程溫度小於該第一固化溫度以及該第二固化溫度,該第一可撓性層以及該第二可撓性層的材料包括聚亞醯胺、聚對苯二甲酸乙二酯或聚萘二甲酸乙二醇酯。The method for manufacturing a flexible display as recited in item 1 of the patent application range, wherein a process temperature for forming the device array is less than the first curing temperature and the second curing temperature, the first flexible layer and the first The material of the two flexible layers includes polyimide, polyethylene terephthalate or polyethylene naphthalate.
TW107123579A 2018-07-06 2018-07-06 Method of fabricating flexible display TWI673170B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107123579A TWI673170B (en) 2018-07-06 2018-07-06 Method of fabricating flexible display
CN201811130530.2A CN109285869B (en) 2018-07-06 2018-09-27 Flexible display and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107123579A TWI673170B (en) 2018-07-06 2018-07-06 Method of fabricating flexible display

Publications (2)

Publication Number Publication Date
TWI673170B true TWI673170B (en) 2019-10-01
TW202005809A TW202005809A (en) 2020-02-01

Family

ID=65182427

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107123579A TWI673170B (en) 2018-07-06 2018-07-06 Method of fabricating flexible display

Country Status (2)

Country Link
CN (1) CN109285869B (en)
TW (1) TWI673170B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201002527A (en) * 2008-05-16 2010-01-16 Mitsubishi Plastics Inc Gas barrier laminated film for organic devices
CN102760846A (en) * 2012-07-30 2012-10-31 信利半导体有限公司 Flexible organic light emitting diode (OLED) and preparation method thereof
TW201620130A (en) * 2014-11-17 2016-06-01 三星顯示器有限公司 Organic light-emitting diode (OLED) display, electronic device including the same, and method of manufacturing the OLED display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552247B (en) * 2015-12-08 2018-10-26 上海天马微电子有限公司 Composite substrate, flexible display apparatus and preparation method thereof
KR102340066B1 (en) * 2016-04-07 2021-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Peeling method and manufacturing method of flexible device
CN107170778B (en) * 2017-05-12 2020-02-21 京东方科技集团股份有限公司 Flexible substrate preparation method, flexible substrate, display panel and display device
CN107768530B (en) * 2017-11-15 2020-01-17 武汉华星光电半导体显示技术有限公司 Flexible substrate and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201002527A (en) * 2008-05-16 2010-01-16 Mitsubishi Plastics Inc Gas barrier laminated film for organic devices
CN102760846A (en) * 2012-07-30 2012-10-31 信利半导体有限公司 Flexible organic light emitting diode (OLED) and preparation method thereof
TW201620130A (en) * 2014-11-17 2016-06-01 三星顯示器有限公司 Organic light-emitting diode (OLED) display, electronic device including the same, and method of manufacturing the OLED display

Also Published As

Publication number Publication date
CN109285869A (en) 2019-01-29
TW202005809A (en) 2020-02-01
CN109285869B (en) 2020-10-30

Similar Documents

Publication Publication Date Title
US10256425B2 (en) Display substrate and manufacturing method thereof, display device and manufacturing method thereof
US11296122B2 (en) Array substrate, method for fabricating the same and display panel
KR100942555B1 (en) Flexible substrate, Fabrication method of the same and Thin Film Transistor using the same
US11349104B2 (en) Display panel and method of manufacturing the same
US20130188324A1 (en) Method for Manufacturing a Flexible Electronic Device Using a Roll-Shaped Motherboard, Flexible Electronic Device, and Flexible Substrate
WO2016086616A1 (en) Display substrate and manufacturing method therefor, and display device
WO2015077970A1 (en) Flexible display module manufacturing method and flexible display module manufactured by method
JP2006148057A (en) Substrate and substrate including thin-film transistor
JP2010145984A (en) Organic electroluminescent display device and method of manufacturing the same
US11245037B2 (en) Method of fabricating array substrate, array substrate, and display apparatus
TWI651698B (en) Flexible display and method of manufacturing same
US20170170013A1 (en) Display Panel and Method for Fabricating the Same
TWI673170B (en) Method of fabricating flexible display
JP2006352119A (en) Silicon thin-film transistor and method of fabricating the same
US9399336B2 (en) Gas barrier substrate
US8029890B2 (en) Structure of thermal resistive layer and the method of forming the same
TWI687316B (en) Flexible display
WO2014172957A1 (en) Circuit board, preparation method therefor, and display apparatus
US10586936B2 (en) Flexible substrate and manufacturing method thereof
JP5778824B2 (en) Manufacturing method of display device
US20150004776A1 (en) Polysilicon layer preparing method
JP2004304156A (en) Method for manufacturing thin film transistor liquid crystal display device
US20190131550A1 (en) Flexible oled display panel and method for manufacturing same
CN108231794B (en) Preparation method of array substrate and array substrate
CN111564365A (en) Method for depositing film, application of method and method for forming semiconductor active region