TWI672454B - Design method of point contact curved tooth cosine gear transmission mechanism with preset fourth-order transmission error - Google Patents

Design method of point contact curved tooth cosine gear transmission mechanism with preset fourth-order transmission error Download PDF

Info

Publication number
TWI672454B
TWI672454B TW108100496A TW108100496A TWI672454B TW I672454 B TWI672454 B TW I672454B TW 108100496 A TW108100496 A TW 108100496A TW 108100496 A TW108100496 A TW 108100496A TW I672454 B TWI672454 B TW I672454B
Authority
TW
Taiwan
Prior art keywords
cosine
gear
curved
tooth
curved tooth
Prior art date
Application number
TW108100496A
Other languages
Chinese (zh)
Other versions
TW202026549A (en
Inventor
李政鋼
Original Assignee
正修學校財團法人正修科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正修學校財團法人正修科技大學 filed Critical 正修學校財團法人正修科技大學
Priority to TW108100496A priority Critical patent/TWI672454B/en
Application granted granted Critical
Publication of TWI672454B publication Critical patent/TWI672454B/en
Publication of TW202026549A publication Critical patent/TW202026549A/en

Links

Landscapes

  • Gears, Cams (AREA)

Abstract

一種具有預設四階傳動誤差之點接觸曲齒線餘弦齒輪傳動機構的設計方法,該點接觸曲齒線餘弦齒輪傳動機構包含一曲齒線餘弦小齒輪,及一曲齒線餘弦大齒輪,該設計方法是先設計兩個砂輪或刀刃的迴轉面,其軸剖面輪廓為一餘弦函數曲線,再以該等砂輪或刀刃分別創成該曲齒線餘弦小齒輪及該曲齒線餘弦大齒輪。透過本設計方法所設計出來的點接觸曲齒線餘弦齒輪傳動機構具有預設四階傳動誤差,具有較為平滑的運動曲線,使其在抗噪及抗振能力上優於習知的二階傳動誤差齒輪,且不會削弱太多的齒根強度。A design method of a point contact curved tooth cosine gear transmission mechanism with a preset fourth-order transmission error, the point contact curved tooth cosine gear transmission mechanism comprising a curved tooth cosine pinion gear and a curved tooth cosine gear wheel, The design method is to first design two rotating surfaces of the grinding wheel or the cutting edge, and the axial section profile is a cosine function curve, and the curved tooth cosine pinion gear and the curved tooth cosine large gear are respectively created by the grinding wheels or the cutting edges. The point contact curved tooth cosine gear transmission mechanism designed by the design method has a preset fourth-order transmission error and has a relatively smooth motion curve, which is superior to the conventional second-order transmission error in anti-noise and anti-vibration capability. Gears do not weaken too much root strength.

Description

具有預設四階傳動誤差之點接觸曲齒線餘弦齒輪傳動機構的設計方法Design method of point contact curved tooth cosine gear transmission mechanism with preset fourth-order transmission error

本發明是有關於一種設計方法,特別是指一種曲齒線餘弦齒輪傳動機構的設計方法。The invention relates to a design method, in particular to a design method of a curved tooth cosine gear transmission mechanism.

齒輪機構主要用途是傳遞兩軸間之運動與動力。理論上,除了非勻速比的非圓齒輪外,其餘的勻速比齒輪機構,其被動齒輪之轉速與主動齒輪之轉速總是希望為一固定比例之關係。然而在實務上,由於存在不可避免的製造與裝配誤差,被動齒輪的真實轉速往往無法與期望轉速相符,而是存在著傳動誤差。傳動誤差若為直線型誤差,則嚙合齒面對將互相撞擊,使齒輪機構產生強烈的振動與噪音。為了消除直線型傳動誤差對系統的不良影響,Litvin提出應用一個預先設計的二階傳動誤差(Second-Order Transmission Error)來吸收直線型傳動誤差,使得機構運動的誤差曲線由不連續變成連續,因而可大大地降低系統的振動與噪音。要讓齒輪組具有預設的二階傳動誤差,可透過改變刀具幾何或是改變刀具與被創成齒面間之相對運動來對共軛齒面加以修形而達成。然而二階傳動誤差削弱了太多的齒根強度,且運動曲線也不夠平滑,而且在抑振及降低噪音上仍有改善空間。The main purpose of the gear mechanism is to transmit the motion and power between the two shafts. Theoretically, except for the non-circular gears of non-uniform speed ratio, the other constant speed ratio gear mechanism, the rotational speed of the driven gear and the rotational speed of the driving gear are always expected to be a fixed ratio relationship. However, in practice, due to the inevitable manufacturing and assembly errors, the actual speed of the driven gear often cannot match the expected speed, but there is a transmission error. If the transmission error is a linear error, the meshing teeth face will collide with each other, causing the gear mechanism to generate strong vibration and noise. In order to eliminate the adverse effects of linear transmission errors on the system, Litvin proposes to apply a pre-designed Second-Order Transmission Error to absorb the linear transmission error, so that the error curve of the mechanism motion becomes discontinuous and continuous. Greatly reduce the vibration and noise of the system. In order for the gear set to have a preset second-order transmission error, the conjugate tooth surface can be modified by changing the tool geometry or changing the relative motion between the tool and the created tooth surface. However, the second-order transmission error weakens too much root strength, and the motion curve is not smooth enough, and there is still room for improvement in vibration suppression and noise reduction.

因此,本發明之目的,即在提供一種具有預設四階傳動誤差之齒輪傳動機構的設計方法。Accordingly, it is an object of the present invention to provide a method of designing a gear transmission having a predetermined fourth-order transmission error.

於是,本發明具有預設四階傳動誤差之點接觸曲齒線餘弦齒輪傳動機構的設計方法,該點接觸曲齒線餘弦齒輪傳動機構包含一曲齒線餘弦小齒輪,及一可與該曲齒線餘弦小齒輪相嚙合的曲齒線餘弦大齒輪。Therefore, the present invention has a design method of a point contact curved tooth cosine gear transmission mechanism with a preset fourth-order transmission error, the point contact curved tooth cosine gear transmission mechanism includes a curved tooth cosine pinion gear, and one can be combined with the music A curved tooth cosine gear that meshes with a cosine pinion.

該設計方法包含:設計一砂輪或刀刃,其旋轉時會產生一第一迴轉面,該第一迴轉面的軸剖面輪廓為一餘弦函數曲線,且其位置向量函數為:The design method comprises: designing a grinding wheel or a blade, which rotates to generate a first rotating surface, the axial sectional profile of the first rotating surface is a cosine function curve, and the position vector function thereof is:

其中 為齒根高係數,m為模數,再以該砂輪或刀刃創成該曲齒線餘弦小齒輪,該砂輪或刀刃的座標系為 ,該曲齒線餘弦小齒輪的座標系為 ,該砂輪或刀刃在座標系 中以函數 沿 方向進行線性平移,而該曲齒線餘弦小齒輪在被加工的過程於座標系 中以參數 軸旋轉,函數 及參數 間的關係為四階多項式,如下所示: among them Is the root height coefficient, m is the modulus, and then the curved tooth cosine pinion is created by the grinding wheel or the blade, and the coordinate of the grinding wheel or the blade is , the coordinate system of the curved cosine pinion gear is , the grinding wheel or blade is in the coordinate system Function along The direction is linearly translated, and the curved cosine pinion is processed in the coordinate system Parameter Winding around Axis rotation, function And parameters The relationship between the four-order polynomials is as follows:

其中,m為模數,T p為該齒線餘弦小齒輪的齒數,C 2、C 3及C 4為產生預設四階傳動誤差的待定係數; Where m is the modulus, T p is the number of teeth of the cosine pinion of the tooth line, and C 2 , C 3 and C 4 are the undetermined coefficients for generating the preset fourth-order transmission error;

接著再設計另一個砂輪或刀刃,其旋轉時會產生一第二迴轉面,該第二迴轉面的軸剖面輪廓為一餘弦函數曲線,且其位置向量函數 為: Then another grinding wheel or blade is designed, which generates a second rotating surface when rotating, the axis profile of the second rotating surface is a cosine function curve, and its position vector function for:

,

其中 為齒根高係數,m為模數,再以該砂輪或刀刃創成該曲齒線餘弦大齒輪,該砂輪或刀刃的座標系為 ,該曲齒線餘弦大齒輪的座標系為 ,該砂輪或刀刃在座標系 中以函數 沿 方向進行線性平移,而該曲齒線餘弦大齒輪在被加工的過程於座標系 中以參數 軸旋轉,函數 及參數 間的關係為一階多項式,如下所示: among them Is the root height coefficient, m is the modulus, and then the curved gear cosine gear is created by the grinding wheel or the blade, and the coordinate of the grinding wheel or the blade is The coordinate system of the curved cosine gear is , the grinding wheel or blade is in the coordinate system Function along The direction is linearly translated, and the curved cosine gear is processed in the coordinate system Parameter Winding around Axis rotation, function And parameters The relationship between the first order polynomials is as follows:

其中,m為模數,T g為該齒線餘弦大齒輪的齒數。 Where m is the modulus and T g is the number of teeth of the cosine gear of the tooth line.

本發明之功效在於:透過本設計方法所設計出來的點接觸曲齒線餘弦齒輪傳動機構具有預設四階傳動誤差,具有較為平滑的運動曲線,使其在抗噪及抗振能力上優於習知的二階傳動誤差齒輪,且不會削弱太多的齒根強度。The effect of the invention is that the point contact curved tooth cosine gear transmission mechanism designed by the design method has a preset fourth-order transmission error and has a relatively smooth motion curve, so that the noise resistance and vibration resistance are superior. Conventional second-order transmission error gears do not weaken too much root strength.

參閱圖1,本發明具有預設四階傳動誤差之點接觸曲齒線餘弦齒輪傳動機構的設計方法之實施例,適用於設計及製造一點接觸曲齒線餘弦齒輪傳動機構1,該點接觸曲齒線餘弦齒輪傳動機構1包含一曲齒線餘弦小齒輪11,及一可與該曲齒線餘弦小齒輪11相嚙合的曲齒線餘弦大齒輪12。Referring to FIG. 1 , an embodiment of a design method of a point contact curved tooth cosine gear transmission mechanism with a preset fourth-order transmission error is suitable for designing and manufacturing a point contact curved tooth cosine gear transmission mechanism 1 . The toothed cosine gear transmission mechanism 1 includes a curved tooth cosine pinion 11 and a curved tooth cosine gear 12 engageable with the curved tooth cosine pinion 11.

參閱圖2、圖3,及圖4,在本設計方法中,該曲齒線餘弦小齒輪11及該曲齒線餘弦大齒輪12是分別由兩個砂輪或刀刃所創成,創成該曲齒線餘弦小齒輪11的砂輪或刀刃,其可透過迴轉形成一第一迴轉面111,而創成該曲齒線餘弦大齒輪12的砂輪或刀刃,其外可透過迴轉形成一第二迴轉面121。該第一迴轉面111的迴轉軸為A 1,半徑參數為 ,且軸剖面輪廓(Axial profile,下稱第一軸剖面輪廓1111)為一餘弦函數曲線。該第二迴轉面121的迴轉軸為A 2,半徑參數為 ,而軸剖面輪廓(下稱第二軸剖面輪廓1211)也為一餘弦函數曲線。 Referring to FIG. 2, FIG. 3, and FIG. 4, in the design method, the curved tooth cosine pinion 11 and the curved tooth cosine large gear 12 are respectively created by two grinding wheels or blades, and the curved tooth line is created. The grinding wheel or the blade of the cosine pinion 11 is rotatably formed to form a first rotating surface 111, and the grinding wheel or the blade of the curved tooth cosine large gear 12 is created, and a second rotating surface 121 is formed by the rotation. The rotation axis of the first rotation surface 111 is A 1 , and the radius parameter is The axis profile (Axial profile, hereinafter referred to as the first axis profile 1111) is a cosine function curve. The rotation axis of the second rotation surface 121 is A 2 , and the radius parameter is The axis profile (hereinafter referred to as the second axis profile 1211) is also a cosine function curve.

令座標系 與該第一軸剖面輪廓1111相固連,在座標系 之下,該第一軸剖面輪廓1111的位置向量函數 為: Coordinate system Attached to the first axis profile 1111, in the coordinate system Below, the position vector function of the first axis profile 1111 for:

(1) , (1)

令座標系 與該第二軸剖面輪廓1211相固連,在座標系 之下,該第二軸剖面輪廓1211的位置向量函數 為: Coordinate system Attached to the second axial profile 1211, in the coordinate system Below, the position vector function of the second axis profile 1211 for:

(2) , (2)

參閱圖2、圖4,及圖5,為了建立該第一迴轉面111的位置向量函數,令座標系 與該第一迴轉面111相固連,座標系 與座標系 的關係如圖5所示,在座標系 下,該第一迴轉面111的位置向量函數 為: Referring to FIG. 2, FIG. 4, and FIG. 5, in order to establish a position vector function of the first rotating surface 111, the coordinate system is used. Attached to the first rotating surface 111, the coordinate system And coordinate system The relationship is shown in Figure 5, in the coordinate system Next, the position vector function of the first plane 111 for:

(3) (3)

在座標系 下,該第一迴轉面111的法向量函數 及單位法向量函數 分別為: At the coordinate system Next, the normal vector function of the first surface 111 Unit normal vector function They are:

(4) (4)

(5) (5)

參閱圖3、圖4,及圖6,為了建立該第二迴轉面121的位置向量函數,令座標系 與該第二迴轉面121相固連,座標系 與座標系 的關係如圖6所示,在座標系 下,該第二迴轉面121的位置向量函數 為: Referring to FIG. 3, FIG. 4, and FIG. 6, in order to establish a position vector function of the second rotating surface 121, the coordinate system is used. Attached to the second rotating surface 121, the coordinate system And coordinate system The relationship is shown in Figure 6, in the coordinate system Next, the position vector function of the second surface 121 for:

(6) (6)

在座標系 下,該第二迴轉面121的法向量函數 及單位法向量函數 分別為: At the coordinate system Next, the normal vector function of the second surface 121 Unit normal vector function They are:

(7) (7)

(8) (8)

參閱圖2及圖7,令座標系 與該曲齒線餘弦小齒輪11相連固,當該第一迴轉面111在創成該曲齒線餘弦小齒輪11時,座標系 與座標系 的相對運動關係如圖7所示,座標系 以函數 沿 方向進行線性平移,座標系 以參數 軸旋轉,函數 及參數 間的關係為四階多項式,如下所示: Refer to Figure 2 and Figure 7, to make the coordinate system Coupling with the curved tooth cosine pinion 11 , when the first rotating surface 111 is creating the curved cosine pinion 11 , the coordinate system And coordinate system The relative motion relationship is shown in Figure 7, the coordinate system Function along Directional linear translation, coordinate system Parameter Winding around Axis rotation, function And parameters The relationship between the four-order polynomials is as follows:

(9) (9)

其中,m為模數,T p為該齒線餘弦小齒輪11的齒數,C 2、C 3及C 4為產生預設四階傳動誤差的待定係數。 Where m is the modulus, T p is the number of teeth of the cogwheel pinion 11 of the tooth line, and C 2 , C 3 and C 4 are the undetermined coefficients for generating the preset fourth-order transmission error.

參閱圖3及圖8,令座標系 與該曲齒線餘弦大齒輪12相連固,當該第二迴轉面121在創成該曲齒線餘弦大齒輪12時,座標系 與座標系 的相對運動關係如圖8所示,座標系 以函數 沿 方向進行線性平移,座標系 以參數 軸旋轉,函數 及參數 間的關係為一階多項式,如下所示: Refer to Figure 3 and Figure 8, to make the coordinate system Coupling with the curved tooth cosine gear 12, when the second rotating surface 121 is creating the curved cosine gear 12, the coordinate system And coordinate system The relative motion relationship is shown in Figure 8, the coordinate system Function along Directional linear translation, coordinate system Parameter Winding around Axis rotation, function And parameters The relationship between the first order polynomials is as follows:

(10) (10)

其中,m為模數,T g為該齒線餘弦大齒輪11的齒數。 Where m is the modulus and T g is the number of teeth of the cogwheel large gear 11 of the tooth line.

參閱圖1、圖2,及圖3,該第一迴轉面111在該曲齒線餘弦小齒輪11上形成曲面族 ,根據座標轉換理論(Coordinate transformation theory),曲面族 之位置向量函數 為: Referring to FIG. 1 , FIG. 2 , and FIG. 3 , the first rotating surface 111 forms a curved surface family on the curved tooth cosine pinion 11 . According to Coordinate transformation theory, the surface family Position vector function for:

(11) (11)

其中:among them:

(12) (12)

曲面族 的單位法向量函數 為: Surface family Unit normal vector function for:

(13) (13)

其中:among them:

(14) (14)

根據齒輪嚙合理論(The theory of gearing),曲面族 之包絡存在的必要條件為: According to The theory of gearing, the surface family The necessary conditions for the existence of the envelope are:

(15) (15)

其中:among them:

(16) (16)

(17) (17)

(18) (18)

該第二迴轉面121在該曲齒線餘弦大齒輪12上形成曲面族 ,根據座標轉換理論,曲面族 之位置向量函數 為: The second rotating surface 121 forms a curved surface on the curved tooth cosine gear 12 According to the coordinate conversion theory, the surface family Position vector function for:

(19) (19)

其中:among them:

(20) (20)

曲面族 的單位法向量函數 為: Surface family Unit normal vector function for:

(21) (twenty one)

其中:among them:

(22) (twenty two)

根據齒輪嚙合理論,曲面族 之包絡存在的必要條件為: According to the theory of gear meshing, the surface family The necessary conditions for the existence of the envelope are:

(23) (twenty three)

其中:among them:

(24) (twenty four)

(25) (25)

(26) (26)

將第(24)式、第(25)式及第(26)式代入第(23)式後,可將參數 解成顯函數 After substituting the equations (24), (25), and (26) into the equation (23), the parameters can be Decomposition into an explicit function :

(27) (27)

根據齒輪嚙合理論,將曲面族的位置向量函數與曲面族包絡存在的必要條件聯立,便可得到齒輪之齒面位置向量函數。將曲面族的單位法向量函數與曲面族包絡存在的必要條件聯立,便可得到齒輪之齒面單位法向量函數。因此,該曲齒線餘弦小齒輪11之齒面位置向量函數為:According to the gear meshing theory, the position vector function of the surface family is linked with the necessary conditions of the surface family envelope, and the tooth surface position vector function of the gear can be obtained. By combining the unit normal vector function of the surface family with the necessary conditions of the surface family envelope, the tooth surface unit normal vector function of the gear can be obtained. Therefore, the tooth surface position vector function of the curved tooth cosine pinion 11 is:

(28) (28)

該曲齒線餘弦小齒輪11之齒面單位法向量函數為:The tooth surface unit normal vector function of the curved tooth cosine pinion 11 is:

(29) (29)

該曲齒線餘弦大齒輪12之齒面位置向量函數為:The tooth surface position vector function of the curved tooth cosine gear 12 is:

(30) (30)

該曲齒線餘弦大齒輪12之齒面單位法向量函數為:The tooth surface unit normal vector function of the curved tooth cosine gear 12 is:

(31) (31)

參閱圖1、圖9,及圖10,該曲齒線餘弦小齒輪11與該曲齒線餘弦大齒輪12嚙合傳動時,該曲齒線餘弦小齒輪11以參數 軸旋轉,該曲齒線餘弦大齒輪12以參數 軸旋轉。座標系 是與齒輪箱固連的固定座標系。該曲齒線餘弦小齒輪11與該曲齒線餘弦大齒輪12之接觸點的拘束條件為: Referring to FIG. 1, FIG. 9, and FIG. 10, when the curved tooth cosine pinion 11 is meshed with the curved tooth cosine gear 12, the curved tooth cosine pinion 11 takes parameters. Winding around Axis rotation, the curved cosine gear 12 with parameters Winding around The axis rotates. Coordinate system It is a fixed coordinate system that is attached to the gearbox. The constraint conditions of the contact point of the curved tooth cosine pinion 11 and the curved tooth cosine gear 12 are:

(32) (32)

其中:among them:

(33) (33)

(34) (34)

(35) (35)

(36) (36)

(37) (37)

(38) (38)

(39) (39)

(40) (40)

令該曲齒線餘弦小齒輪11之轉角 作為輸入,該曲齒線餘弦大齒輪12之轉角 作為輸出,則該點接觸曲齒線餘弦齒輪傳動機構的傳動誤差為: Let the corner of the curved cosine pinion 11 As an input, the corner of the curved cosine gear 12 As an output, the transmission error of the point contact curved gear cosine gear transmission mechanism is:

(41) (41)

該傳動誤差的斜率為:The slope of the transmission error is:

(42) (42)

其中:among them:

(43) (43)

(44) (44)

(45) (45)

圖10為該點接觸曲齒線餘弦齒輪傳動機構預設之四階傳動誤差模型,令該曲齒線餘弦小齒輪11與該曲齒線餘弦大齒輪12在R點接觸時,參數有以下條件:10 is a preset fourth-order transmission error model of the point-contact curved tooth cosine gear transmission mechanism, so that when the curved tooth cosine pinion 11 and the curved tooth cosine large gear 12 are in contact at the R point, the following conditions are met: :

(46) (46)

令該曲齒線餘弦小齒輪11與該曲齒線餘弦大齒輪12在L點接觸時,參數有以下條件:When the curved tooth cosine pinion 11 and the curved tooth cosine large gear 12 are in contact at the L point, the parameters have the following conditions:

(47) (47)

由於R點為接觸點,故第(32)式的接觸點之拘束條件在R點亦必須成立。將第(46)式代入第(32)式後得到:Since the point R is the contact point, the constraint condition of the contact point of the equation (32) must also be established at the point R. Substituting the formula (46) into the equation (32) gives:

(48) (48)

由於L點為接觸點,故第(32)式的接觸點之拘束條件在L點亦必須成立。將第(47)式代入第(32)式後得到:Since the point L is the contact point, the constraint condition of the contact point of the (32) type must also be established at the point L. Substituting the formula (47) into the equation (32) gives:

(49) (49)

除此之外,在L點還有傳動誤差斜率為零的拘束條件,將第(47)式代入第(42)式中,並令其等於零,可得:In addition, at the point L, there is a constraint condition that the slope of the transmission error is zero, and the equation (47) is substituted into the equation (42), and is made equal to zero.

(50) (50)

根據圖10,參數 的值已知如下: According to Figure 10, the parameters The values are known as follows:

(51) (51)

由於單位向量的長度已知等於1,即 ,因此,在第(48)式、第(49)式及第(50)式中共有十三條獨立的非線性代數方程式,但這些方程式中的未知數僅有十個: ,因而可以將待定係數C 2、C 3及C 4亦視為是未知數。在將三個待定係數C 2、C 3及C 4也視為是未知數之後,第(48)式、第(49)式及第(50)式遂形成一個有十三條方程式及十三個未知數的非線性聯立方程式系統,如下所示: Since the length of the unit vector is known to be equal to 1, Therefore, there are thirteen independent nonlinear algebraic equations in equations (48), (49), and (50), but there are only ten unknowns in these equations: Therefore, the undetermined coefficients C 2 , C 3 and C 4 can also be regarded as unknown. After considering the three undetermined coefficients C 2 , C 3 and C 4 as unknowns, equations (48), (49) and (50) form a thirteen equation and thirteen Unknown nonlinear joint equation system, as follows:

(52) (52)

接著,應用牛頓求根法解第(52)式便可以求得 等十三個未知數,如此便可求得三個待定係數C 2、C 3及C 4。參閱圖2及圖3,最後,設計出迴轉時可形成該第一迴轉面111的刀刃或砂輪,以創成該曲齒線餘弦小齒輪11,該刀刃或砂輪的第一迴轉面111做一平移運動M1,該曲齒線餘弦小齒輪11則做一旋轉運動M2,而平移運動M1中的三個待定係數C 2、C 3及C 4可依上述之步驟求得。再設計出迴轉時可形成該第二迴轉面121的刀刃或砂輪,以創成該曲齒線餘弦大齒輪12,該刀刃或砂輪的第二迴轉面121做一平移運動M3,該曲齒線餘弦大齒輪12則做一旋轉運動M4。以下透過實驗例來檢視本實施例之功效。 Then, using the Newton root method to solve the equation (52), you can find it. Wait for thirteen unknowns, so you can find three undetermined coefficients C 2 , C 3 and C 4 . Referring to FIG. 2 and FIG. 3, finally, a blade or a grinding wheel which can form the first rotating surface 111 during rotation is designed to create the curved tooth cosine pinion 11 which is translated by the first rotating surface 111 of the cutting edge or the grinding wheel. The motion M1, the curved tooth cosine pinion 11 performs a rotational motion M2, and the three undetermined coefficients C 2 , C 3 and C 4 in the translational motion M1 can be obtained according to the above steps. Then, a blade or a grinding wheel that can form the second rotating surface 121 is formed to create the curved tooth cosine large gear 12, and the second rotating surface 121 of the cutting edge or the grinding wheel performs a translational motion M3, the curved cosine The large gear 12 performs a rotational motion M4. The efficacy of this example is examined below by way of an experimental example.

實驗例:Experimental example:

參閱圖11、圖12,及圖13,並配合下方的表一、表二,及表三,表一為本實驗例所使用之參數設定,表二為該第一迴轉面111(見圖2)與該曲齒線餘弦小齒輪11之相對運動參數數據值。表三為該第二迴轉面121(見圖3)與該曲齒線餘弦大齒輪12之相對運動參數數據值。在表一的參數設定下,透過齒面接觸分析技術(Tooth contact analysis, TCA)可以驗證本實施例之真實傳動誤差確實等於預先設定的四階傳動誤差(Predesigned fourth order transmission error),如圖12所示。此時,該曲齒線餘弦小齒輪11上之接觸齒印21(Bearing contact)為區域化的接觸齒印(Localized bearing contact),如圖13所示,該曲齒線餘弦大齒輪12上之接觸齒印22亦為區域化的接觸齒印22,由此便可明顯看出該曲齒線餘弦小齒輪11及該曲齒線餘弦大齒輪12上的接觸齒印21、22皆集中在齒面中央並遠離齒面邊緣(Tooth edge),因此本實施例所設計出的點接觸曲齒線餘弦齒輪傳動機構1沒有邊緣接觸(Edge contact)的問題。Referring to Figure 11, Figure 12, and Figure 13, together with Table 1, Table 2, and Table 3 below, Table 1 is the parameter setting used in the experimental example, and Table 2 is the first rotation surface 111 (see Figure 2). And the relative motion parameter data value of the curved cosine pinion 11 . Table 3 shows the relative motion parameter data values of the second rotary surface 121 (see FIG. 3) and the curved tooth cosine large gear 12. Under the parameter setting of Table 1, through the Tooth contact analysis (TCA), it can be verified that the real transmission error of this embodiment is indeed equal to the preset fourth order transmission error (Figure 12). Shown. At this time, the contact tooth 21 on the curved tooth cosine pinion 11 is a localized bearing contact, as shown in FIG. 13, the crank line cosine gear 12 is The contact tooth print 22 is also a regional contact tooth mark 22, whereby it can be clearly seen that the curved tooth cosine pinion 11 and the contact tooth marks 21 and 22 on the curved tooth cosine large gear 12 are concentrated on the teeth. The center of the face is far from the Tooth edge, so the point contact curved tooth cosine gear transmission mechanism 1 designed in this embodiment has no problem of edge contact.

表一: 參數名稱符號設定單位模數 10 mm 曲齒線餘弦小齒輪11之齒數 20 -- 曲齒線餘弦大齒輪12之齒數 33 -- 迴轉面111之半徑參數 90 mm 迴轉面121之半徑參數 108 mm 齒根高係數 1.25 mm 小齒輪11之節圓半徑 mm 大齒輪12之節圓半徑 mm 預設四階傳動誤差之幅值 10 arcsec 迴轉面111創成小齒輪11時 之運動參數 6164.5953e-4 迴轉面111創成小齒輪11時 之運動參數 -25977.59701e-4 迴轉面111創成小齒輪11時 之運動參數 24860.52367e-4 Table 1: Parameter Name Symbol Sets the Unit Modulus Number of teeth of 10 mm curved tooth cosine pinion 11 20 -- Number of teeth of the curved tooth cosine gear 12 33 -- radius parameter of the surface 111 Radius parameter of 90 mm rotary surface 121 108 mm root height factor 1.25 Mm pinion 11 radius Mm large gear 12 pitch radius Mm presets the magnitude of the fourth-order transmission error 10 arcsec rotary surface 111 to create the motion parameters of the pinion 11 6164.5953e-4 The motion parameter when the rotary surface 111 is created as the pinion 11 -25977.59701e-4 The motion parameter when the rotary surface 111 is created as the pinion 11 24860.52367e-4

表二: (rad) (mm) -0.095 -9.49201 -0.0636 -6.3568 -0.0322 -3.21927 0 0 0.0306 3.0605 0.062 6.20179 0.0934 9.34345 0.1248 12.4852 0.1562 15.6266 0.1876 18.7676 Table II: (rad) (mm) -0.095 -9.49201 -0.0636 -6.3568 -0.0322 -3.21927 0 0 0.0306 3.0605 0.062 6.20179 0.0934 9.34345 0.1248 12.4852 0.1562 15.6266 0.1876 18.7676

表三: (rad) (mm) -0.055 -9.075 -0.0362 -5.973 -0.0174 -2.871 0 0 0.0202 3.333 0.039 6.435 0.0578 9.537 0.0766 12.639 0.0954 15.741 0.1142 18.843 Table 3: (rad) (mm) -0.055 -9.075 -0.0362 -5.973 -0.0174 -2.871 0 0 0.0202 3.333 0.039 6.435 0.0578 9.537 0.0766 12.639 0.0954 15.741 0.1142 18.843

本實施例以迴轉面(Surface of revolution)作為創成輪齒的工具(Generating tool),故輪齒的齒線為曲齒線(Curvilinear tooth trace)。曲齒線可使傳動軸只受到徑向力而無軸向力,故不需要使用具止推功能之軸承,可減少軸承的使用成本,且該曲齒線餘弦小齒輪11及該曲齒線餘弦大齒輪12的輪齒是以餘弦刀刃迴轉面所創成,與傳統的直邊刀刃迴轉面所創成的輪齒相比,餘弦刀刃迴轉面創成出的輪齒齒根厚度較大,齒根的彎曲應力較低,抗疲勞折斷的能力也較高,輪齒不發生過切(Non-undercutting)之最小齒數更少,故可在強度足夠的前提下透過減少齒數來達成縮小齒輪箱尺寸的目的,故具輕量化與節省材料成本的優勢。In this embodiment, a surface of revolution is used as a tool for creating a tooth, and the tooth line of the tooth is a Curvilinear tooth trace. The curved tooth line can make the transmission shaft only receive radial force and no axial force, so it is not necessary to use the bearing with the thrust function, the use cost of the bearing can be reduced, and the curved tooth cosine pinion 11 and the curved tooth line The gear teeth of the cosine large gear 12 are created by the cosine blade rotary surface. Compared with the gear teeth created by the traditional straight edge rotary surface, the cosine blade rotary surface creates a large tooth root thickness, and the root of the tooth The bending stress is low, the ability to resist fatigue fracture is also high, and the minimum number of teeth of the gear is not under-cutting. Therefore, the gear size can be reduced by reducing the number of teeth under the condition of sufficient strength. Therefore, it has the advantage of being lightweight and saving material costs.

除此之外,本實施例的成品具有預設的四階傳動誤差(Predesigned fourth order transmission error),透過較為平滑的運動曲線,在噪音與振動的抑制上優於二階傳動誤差(Second order transmission error),也不像二階傳動誤差那樣會削弱太多的齒根強度(Tooth fillet strength),且四階傳動誤差也具有對裝配誤差及製造誤差不敏感的特性,故並不要求高精度的裝配調整技術,因此具有較低之裝配成本。In addition, the finished product of the embodiment has a preset fourth order transmission error, which is superior to the second order transmission error in suppressing noise and vibration through a relatively smooth motion curve (Second order transmission error) ), and does not weaken too much Tooth fillet strength like the second-order transmission error, and the fourth-order transmission error also has characteristics that are insensitive to assembly errors and manufacturing errors, so high-precision assembly adjustment is not required. Technology, therefore with lower assembly costs.

最後,製造者只需要在普通的四軸CNC銑床上將立式銑刀替換為面銑刀(Face milling cutter),刀片的刀刃曲線為餘弦函數曲線,並且透過NC程式控制Y軸與A軸的座標,便能輕易加工出本實施例的該曲齒線餘弦小齒輪11及該曲齒線餘弦大齒輪12,由於並不需要使用特殊的專用機台,可大幅降低製造成本。Finally, the manufacturer only needs to replace the vertical milling cutter with a face milling cutter on a common four-axis CNC milling machine. The blade curve of the blade is a cosine function curve, and the Y axis and the A axis are controlled by the NC program. With the coordinates, the curved tooth cosine pinion 11 and the curved tooth cosine large gear 12 of the present embodiment can be easily processed, and since it is not necessary to use a special dedicated machine, the manufacturing cost can be greatly reduced.

綜上所述,透過本設計方法可製得具有預設的四階傳動誤差的點接觸曲齒線餘弦齒輪傳動機構1,且曲齒線可使傳動軸只受到徑向力而無軸向力,故不需要使用具止推功能之軸承,故確實能達成本發明之目的。In summary, the point contact curved tooth cosine gear transmission mechanism 1 with a preset fourth-order transmission error can be obtained by the design method, and the curved tooth line can make the transmission shaft only receive radial force without axial force. Therefore, it is not necessary to use a bearing having a thrust function, so that the object of the present invention can be achieved.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the equivalent equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still The scope of the invention is covered.

1‧‧‧點接觸曲齒線餘弦齒輪傳動機構1‧‧‧ point contact curved wire cosine gear transmission

11‧‧‧曲齒線餘弦小齒輪 11‧‧‧ Curved cosine pinion

111‧‧‧第一迴轉面 111‧‧‧First turning surface

1111‧‧‧第一軸剖面輪廓 1111‧‧‧First axis profile

12‧‧‧曲齒線餘弦大齒輪 12‧‧‧The curved cosine gear

121‧‧‧第二迴轉面 121‧‧‧second turning surface

1211‧‧‧第二軸剖面輪廓 1211‧‧‧Second axis profile

21‧‧‧接觸齒印 21‧‧‧Contact tooth prints

22‧‧‧接觸齒印 22‧‧‧Contact tooth prints

M1‧‧‧平移運動 M1‧‧‧ translational movement

M2‧‧‧旋轉運動 M2‧‧‧ Rotating movement

M3‧‧‧平移運動 M3‧‧‧ translational movement

M4‧‧‧旋轉運動 M4‧‧‧ Rotating movement

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一立體圖,說明本發明具有預設四階傳動誤差之點接觸曲齒線餘弦齒輪傳動機構的設計方法之一實施例; 圖2是一立體圖,說明創成一曲齒線餘弦小齒輪的態樣; 圖3是一立體圖,說明創成一曲齒線餘弦大齒輪的態樣; 圖4是一函數曲線圖,說明一第一軸剖面輪廓及一第二軸剖面輪廓間的關係; 圖5至圖9皆是座標關係示意圖,說明座標系間的相對運動關係; 圖10是一函數曲線圖,說明該點接觸曲齒線餘弦齒輪傳動機構預設的四階傳動誤差模型; 圖11是一函數曲線圖,說明實驗例中,該點接觸曲齒線餘弦齒輪傳動機構預設的四階傳動誤差模型; 圖12是一不完整的立體圖,說明該曲齒線餘弦小齒輪上的接觸齒印;及 圖13是一不完整的立體圖,說明該曲齒線餘弦大齒輪上的接觸齒印。 Other features and effects of the present invention will be apparent from the embodiments of the drawings, in which:  1 is a perspective view showing an embodiment of a design method of a point contact curved tooth cosine gear transmission mechanism having a preset fourth-order transmission error;  Figure 2 is a perspective view showing the state of creating a curved cosine pinion;  Figure 3 is a perspective view showing the state of creating a curved cosine gear;  Figure 4 is a function graph illustrating the relationship between a first axial profile and a second axial profile;  Figures 5 to 9 are schematic diagrams of coordinate relationships, illustrating the relative motion relationship between coordinate systems;  10 is a function graph illustrating a fourth-order transmission error model preset at the point of contact with the curved tooth cosine gear transmission mechanism;  Figure 11 is a function graph illustrating the fourth-order transmission error model preset by the point contact curved gear cosine gear transmission mechanism in the experimental example;  Figure 12 is an incomplete perspective view showing the contact tooth marks on the curved cosine pinion; and  Figure 13 is an incomplete perspective view showing the contact tooth marks on the curved cosine gear.  

Claims (1)

一種具有預設四階傳動誤差之點接觸曲齒線餘弦齒輪傳動機構的設計方法,該點接觸曲齒線餘弦齒輪傳動機構包含一曲齒線餘弦小齒輪,及一可與該曲齒線餘弦小齒輪相嚙合的曲齒線餘弦大齒輪,該設計方法包含:
設計一砂輪或刀刃,其旋轉時會產生一第一迴轉面,該第一迴轉面的軸剖面輪廓為一餘弦函數曲線,且其位置向量函數 為:

其中 為齒根高係數,m為模數,再以該砂輪或刀刃創成該曲齒線餘弦小齒輪,該砂輪或刀刃的座標系為 ,該曲齒線餘弦小齒輪的座標系為 ,該砂輪或刀刃在座標系 中以函數 沿 方向進行線性平移,而該曲齒線餘弦小齒輪在被加工的過程於座標系 中以參數 軸旋轉,函數 及參數 間的關係為四階多項式,如下所示:

其中,m為模數,T p為該齒線餘弦小齒輪的齒數,C 2、C 3及C 4為產生預設四階傳動誤差的待定係數;
接著再設計另一個砂輪或刀刃,其旋轉時會產生一第二迴轉面,該第二迴轉面的軸剖面輪廓為一餘弦函數曲線,且其位置向量函數 為:

其中 為齒根高係數,m為模數,再以該砂輪或刀刃創成該曲齒線餘弦大齒輪,該砂輪或刀刃的座標系為 ,該曲齒線餘弦大齒輪的座標系為 ,該砂輪或刀刃在座標系 中以函數 沿 方向進行線性平移,而該曲齒線餘弦大齒輪在被加工的過程於座標系 中以參數 軸旋轉,函數 及參數 間的關係為一階多項式,如下所示:

其中,m為模數,T g為該齒線餘弦大齒輪的齒數。
A design method of a point contact curved tooth cosine gear transmission mechanism with a preset fourth-order transmission error, the point contact curved tooth cosine gear transmission mechanism comprising a curved tooth cosine pinion gear, and a cosine cosine A curved tooth cosine gear that meshes with a pinion gear, the design method includes:
Designing a grinding wheel or blade, when rotating, a first rotating surface is generated, the axial profile of the first rotating surface is a cosine function curve, and its position vector function for:
,
among them Is the root height coefficient, m is the modulus, and then the curved tooth cosine pinion is created by the grinding wheel or the blade, and the coordinate of the grinding wheel or the blade is , the coordinate system of the curved cosine pinion gear is , the grinding wheel or blade is in the coordinate system Function along The direction is linearly translated, and the curved cosine pinion is processed in the coordinate system Parameter Winding around Axis rotation, function And parameters The relationship between the four-order polynomials is as follows:

Where m is the modulus, T p is the number of teeth of the cosine pinion of the tooth line, and C 2 , C 3 and C 4 are the undetermined coefficients for generating the preset fourth-order transmission error;
Then another grinding wheel or blade is designed, which generates a second rotating surface when rotating, the axis profile of the second rotating surface is a cosine function curve, and its position vector function for:
,
among them Is the root height coefficient, m is the modulus, and then the curved gear cosine gear is created by the grinding wheel or the blade, and the coordinate of the grinding wheel or the blade is The coordinate system of the curved cosine gear is , the grinding wheel or blade is in the coordinate system Function along The direction is linearly translated, and the curved cosine gear is processed in the coordinate system Parameter Winding around Axis rotation, function And parameters The relationship between the first order polynomials is as follows:

Where m is the modulus and T g is the number of teeth of the cosine gear of the tooth line.
TW108100496A 2019-01-07 2019-01-07 Design method of point contact curved tooth cosine gear transmission mechanism with preset fourth-order transmission error TWI672454B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108100496A TWI672454B (en) 2019-01-07 2019-01-07 Design method of point contact curved tooth cosine gear transmission mechanism with preset fourth-order transmission error

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108100496A TWI672454B (en) 2019-01-07 2019-01-07 Design method of point contact curved tooth cosine gear transmission mechanism with preset fourth-order transmission error

Publications (2)

Publication Number Publication Date
TWI672454B true TWI672454B (en) 2019-09-21
TW202026549A TW202026549A (en) 2020-07-16

Family

ID=68619268

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108100496A TWI672454B (en) 2019-01-07 2019-01-07 Design method of point contact curved tooth cosine gear transmission mechanism with preset fourth-order transmission error

Country Status (1)

Country Link
TW (1) TWI672454B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103438186A (en) * 2013-08-27 2013-12-11 西北工业大学 Four-order transmission error curve design method based on spiral bevel gears
CN105223814A (en) * 2015-09-30 2016-01-06 上海理工大学 Involute gear formed grinding wheel computing method
TWI646441B (en) * 2017-12-07 2019-01-01 正修學校財團法人正修科技大學 Design method and product of preset fourth-order transmission error of face gear

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103438186A (en) * 2013-08-27 2013-12-11 西北工业大学 Four-order transmission error curve design method based on spiral bevel gears
CN105223814A (en) * 2015-09-30 2016-01-06 上海理工大学 Involute gear formed grinding wheel computing method
TWI646441B (en) * 2017-12-07 2019-01-01 正修學校財團法人正修科技大學 Design method and product of preset fourth-order transmission error of face gear

Also Published As

Publication number Publication date
TW202026549A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP5040208B2 (en) Gear pair and conical involute gear manufacturing method
CN105156637B (en) A kind of oblique line flank of tooth gear driving pair and facewidth geometric design method
JP4688510B2 (en) Edge shape design method of grinding wheel for second face machining of pinion cutter with arbitrary tooth shape that can be re-sharpened
JP6788025B2 (en) Worm gear measurement
US8205518B2 (en) Pinion meshing with a given face gear in accordance with altered design parameters
CN101829815B (en) Bevel gear tooth crest processing method and bevel gear tooth crest chamfering machine
TWI672454B (en) Design method of point contact curved tooth cosine gear transmission mechanism with preset fourth-order transmission error
CN104006145A (en) Robot node driving eccentric swinging type decelerator
CN106695023A (en) Machining method for rack tooth profile of circulating ball type variable ratio diverter gear pair
JP2006242211A (en) Transmission gear and its manufacturing method
KR20080063179A (en) Aircraft with a modified gear, and method of producing the gear
JP4606042B2 (en) Pinion cutter blade contour design method
JP4763611B2 (en) Evaluation method of edge profile of re-sharpened pinion cutter
CN116956601A (en) Design method of small-modulus helical tooth turning tool based on end face edge shape
JP4923032B2 (en) Geared motor
TWI672448B (en) Design method of point contact cosine helical gear transmission mechanism of fourth-order transmission error
JP3577422B2 (en) Helical concave gear and method of manufacturing the same
CN109812544B (en) Arc tooth surface gear transmission pair and design method
TWI659165B (en) Method for manufacturing point contact sinusoidal gear transmission mechanism with preset second-order or fourth-order transmission error
JP3717052B2 (en) How to hob a curved tooth-gear gear
KR100823538B1 (en) Method for cutting helical enveloping gear meshed with helical gear for crossed axis
JP6963481B2 (en) Gear structure and manufacturing method of gear structure
JPH11264453A (en) High bearing strength gear and its manufacture
JP4973774B2 (en) Worm reducer and electric power steering device
JP2000205379A (en) Face gear set, manufacture of face gear wheel, and machining device thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees