TWI672448B - Design method of point contact cosine helical gear transmission mechanism of fourth-order transmission error - Google Patents

Design method of point contact cosine helical gear transmission mechanism of fourth-order transmission error Download PDF

Info

Publication number
TWI672448B
TWI672448B TW108100497A TW108100497A TWI672448B TW I672448 B TWI672448 B TW I672448B TW 108100497 A TW108100497 A TW 108100497A TW 108100497 A TW108100497 A TW 108100497A TW I672448 B TWI672448 B TW I672448B
Authority
TW
Taiwan
Prior art keywords
cosine
helical
gear
helical gear
pinion
Prior art date
Application number
TW108100497A
Other languages
Chinese (zh)
Other versions
TW202026547A (en
Inventor
李政鋼
Original Assignee
正修學校財團法人正修科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正修學校財團法人正修科技大學 filed Critical 正修學校財團法人正修科技大學
Priority to TW108100497A priority Critical patent/TWI672448B/en
Application granted granted Critical
Publication of TWI672448B publication Critical patent/TWI672448B/en
Publication of TW202026547A publication Critical patent/TW202026547A/en

Links

Landscapes

  • Gears, Cams (AREA)

Abstract

一種四階傳動誤差之點接觸餘弦螺旋齒輪傳動機構的設計方法,其是透過將實際參數代入曲面位置向量函數後,分別繪製出一冠狀餘弦螺旋小齒輪及一餘弦螺旋大齒輪,接著以兩個砂輪分別製得該冠狀餘弦螺旋小齒輪及該餘弦螺旋大齒輪。該冠狀餘弦螺旋小齒輪及該餘弦螺旋大齒輪為四階傳動誤差在噪音與振動上優於二階傳動誤差,並有較佳的齒根強度,而餘弦螺旋齒輪相較於漸開線螺旋齒輪也有著齒根厚度較大、齒根彎曲應力較低、抗疲勞折斷的能力高、不發生過切之最小齒數較少等優點,且點接觸的設計可避免邊緣接觸所引起之問題。A design method of a point contact cosine helical gear transmission mechanism of a fourth-order transmission error is obtained by substituting actual parameters into a surface position vector function, and then drawing a coronal cosine helical pinion and a cosine helical gear, respectively, followed by two The crown cosine spiral pinion and the cosine spiral gear are respectively produced by a grinding wheel. The coronal cosine helical pinion and the cosine helical gear have a fourth-order transmission error superior to the second-order transmission error in noise and vibration, and have better root strength, and the cosine helical gear has a larger helical gear than the involute helical gear. It has the advantages of large root thickness, low root bending stress, high resistance to fatigue fracture, and minimum number of teeth without overcutting, and the point contact design avoids the problems caused by edge contact.

Description

四階傳動誤差之點接觸餘弦螺旋齒輪傳動機構的設計方法Design method of point contact cosine helical gear transmission mechanism of fourth-order transmission error

本發明是有關於一種設計方法,特別是指一種四階傳動誤差之點接觸餘弦螺旋齒輪傳動機構的設計方法。 The invention relates to a design method, in particular to a design method of a point contact cosine helical gear transmission mechanism with a fourth-order transmission error.

齒輪機構主要用途是傳遞兩軸間之運動與動力。理論上,除了非勻速比的非圓齒輪外,其餘的勻速比齒輪機構,其被動齒輪之轉速與主動齒輪之轉速總是希望為一固定比例之關係。然而在實務上,由於存在不可避免的製造與裝配誤差,被動齒輪的真實轉速往往無法與期望轉速相符,而是存在著傳動誤差。傳動誤差若為直線型誤差,則嚙合齒面對將互相撞擊,使齒輪機構產生強烈的振動與噪音。為了消除直線型傳動誤差對系統的不良影響,Litvin提出應用一個預先設計的二階傳動誤差(Second-Order Transmission Error)來吸收直線型傳動誤差,使得機構運動的誤差曲線由不連續變成連續,因而可大大地降低系統的振動與噪音,然而二階傳動誤差削弱了太多的齒根強度,且運動曲線也不夠平滑,而且在抑振及降低噪音上不甚理想,此外,常見的漸開線螺旋 齒輪因齒根厚度較小且彎曲應力較低等問題而尚有改善之空間。 The main purpose of the gear mechanism is to transmit the motion and power between the two shafts. Theoretically, except for the non-circular gears of non-uniform speed ratio, the other constant speed ratio gear mechanism, the rotational speed of the driven gear and the rotational speed of the driving gear are always expected to be a fixed ratio relationship. However, in practice, due to the inevitable manufacturing and assembly errors, the actual speed of the driven gear often cannot match the expected speed, but there is a transmission error. If the transmission error is a linear error, the meshing teeth face will collide with each other, causing the gear mechanism to generate strong vibration and noise. In order to eliminate the adverse effects of linear transmission errors on the system, Litvin proposes to apply a pre-designed Second-Order Transmission Error to absorb the linear transmission error, so that the error curve of the mechanism motion becomes discontinuous and continuous. Greatly reduce the vibration and noise of the system, but the second-order transmission error weakens too much root strength, and the motion curve is not smooth enough, and it is not ideal for vibration suppression and noise reduction. In addition, the common involute spiral The gear has room for improvement due to problems such as a small root thickness and low bending stress.

因此,本發明之目的,即在提供一種可克服上述問題的點接觸餘弦螺旋齒輪傳動機構之設計方法。 Accordingly, it is an object of the present invention to provide a method of designing a point contact cosine helical gear transmission that overcomes the above problems.

於是,本發明四階傳動誤差之點接觸餘弦螺旋齒輪傳動機構的設計方法,該點接觸餘弦螺旋齒輪傳動機構包含一冠狀餘旋螺旋小齒輪,及一可與該冠狀餘弦螺旋小齒輪相嚙合的餘弦螺旋大齒輪,該設計方法包含:將實際參數代入下列的曲面位置向量函數,繪製出該冠狀餘弦螺旋小齒輪: Therefore, the design method of the point contact cosine helical gear transmission mechanism of the fourth-order transmission error of the present invention, the point contact cosine helical gear transmission mechanism comprises a coronal co-rotating helical pinion gear, and a mesh cosine helical pinion gear can be meshed with the coronal cosine helical pinion gear Cosine spiral gear, the design method includes: substituting the actual parameters into the following surface position vector function to draw the coronal cosine spiral pinion:

再將實際參數代入下列的曲面位置向量函數,繪製出該餘弦螺旋大齒輪: Then substitute the actual parameters into the following surface position vector function to draw the cosine spiral gear:

最後以兩個砂輪分別加工出該冠狀餘弦螺旋小齒輪及該餘弦螺旋大齒輪。 Finally, the crown cosine spiral pinion and the cosine spiral gear are respectively processed by two grinding wheels.

本發明之功效在於:該冠狀餘弦螺旋小齒輪及該餘弦螺旋大齒輪為四階傳動誤差(Fourth order transmission error)在噪音與振動上優於二階傳動誤差(Second order transmission error),四階傳動誤差也不像二階傳動誤差那樣會削弱太多的齒根強度(Tooth fillet strength)。再者,四階傳動誤差也具有對裝配誤差及製造誤差不敏感的特性,故並不要求高精度的裝配調整技術,因此具有較低之裝配成本。此外,相較於漸開線螺旋齒輪,餘弦螺旋齒輪具有下列優點(1)齒根厚度較大(2)齒根彎曲應力較低(3)抗疲勞折斷的能力較高(4)不發生過切(Non-undercutting)之最小齒數較少(5)在強度足夠的前提下可透過減少齒數來達成縮小齒輪箱尺寸的目的,故具輕量化與節省材料成本的優勢。 The effect of the invention is that the coronal cosine helical pinion and the cosine helical gear are fourth order transmission errors superior to second order transmission errors in noise and vibration (Second order transmission) Error), the fourth-order transmission error does not weaken too much Tooth fillet strength like the second-order transmission error. Furthermore, the fourth-order transmission error also has characteristics that are insensitive to assembly errors and manufacturing errors, and therefore does not require high-precision assembly adjustment techniques, and thus has a low assembly cost. In addition, compared with the involute helical gear, the cosine helical gear has the following advantages: (1) the root thickness is large (2) the root bending stress is low (3) the ability to resist fatigue fracture is high (4) does not occur The minimum number of teeth of the non-undercutting is small (5). The strength can be reduced to reduce the size of the gear box by reducing the number of teeth, so that it has the advantages of light weight and material cost saving.

1‧‧‧點接觸餘弦螺旋齒輪傳動機構 1‧‧‧ point contact cosine helical gear transmission

11‧‧‧冠狀餘旋螺旋小齒輪 11‧‧‧Coronal co-rotating spiral pinion

111‧‧‧第一迴轉面 111‧‧‧First turning surface

1111‧‧‧第一餘弦曲線 1111‧‧‧First Cosine Curve

12‧‧‧餘弦螺旋大齒輪 12‧‧‧ Cosine spiral gear

121‧‧‧第二迴轉面 121‧‧‧second turning surface

1211‧‧‧第二餘弦曲線 1211‧‧‧Second cosine curve

21‧‧‧接觸齒印 21‧‧‧Contact tooth prints

22‧‧‧接觸齒印 22‧‧‧Contact tooth prints

A1,A2‧‧‧迴轉軸 A 1 , A 2 ‧‧‧ rotary axis

ρ 1,ρ 2‧‧‧半徑參數 ρ 1 , ρ 2 ‧‧‧ radius parameter

hf‧‧‧齒根高係數 h f ‧‧‧ root height coefficient

M1‧‧‧拋物線運動 M1‧‧‧Parabolic movement

M2‧‧‧平移運動 M2‧‧‧ translational movement

M3‧‧‧旋轉運動 M3‧‧‧Rotary movement

M4‧‧‧平移運動 M4‧‧‧ translational movement

M5‧‧‧平移運動 M5‧‧‧ translational movement

M6‧‧‧旋轉運動 M6‧‧‧Rotary movement

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一立體圖,說明本發明四階傳動誤差之點接觸餘弦螺旋齒輪傳動機構的設計方法之一實施例;圖2是一立體圖,說明創成一冠狀餘弦螺旋小齒輪的態樣;圖3是一立體圖,說明創成一餘弦螺旋大齒輪的態樣;圖4是一函數曲線圖,說明一第一餘弦曲線及一第二餘弦曲線間的關係;圖5至圖11皆是座標關係示意圖,說明座標系間的相對運動關係; 圖12是一函數曲線圖,說明該點接觸餘弦螺旋齒輪傳動機構預設的四階傳動誤差模型;圖13是一函數曲線圖,說明實驗例中,該點接觸餘弦螺旋齒輪傳動機構預設的四階傳動誤差模型;圖14是一不完整的立體圖,說明該冠狀餘弦螺旋小齒輪上的接觸齒印;及圖15是一不完整的立體圖,說明該餘弦螺旋大齒輪上的接觸齒印。 Other features and effects of the present invention will be apparent from the following description of the drawings. FIG. 1 is a perspective view illustrating one of the design methods of the point contact cosine helical gear transmission mechanism of the fourth-order transmission error of the present invention. 2 is a perspective view showing a state of creating a coronal cosine helical pinion; FIG. 3 is a perspective view showing a state of creating a cosine helical large gear; FIG. 4 is a function graph showing a first The relationship between the cosine curve and a second cosine curve; Figure 5 to Figure 11 are schematic diagrams of the coordinate relationship, indicating the relative motion relationship between the coordinate systems; Figure 12 is a function graph showing the fourth-order transmission error model preset by the point contact cosine helical gear transmission mechanism; Figure 13 is a function curve diagram illustrating the preset contact of the point contact cosine helical gear transmission mechanism in the experimental example The fourth-order transmission error model; Figure 14 is an incomplete perspective view illustrating the contact tooth marks on the coronal cosine helical pinion; and Figure 15 is an incomplete perspective view illustrating the contact tooth marks on the cosine helical bull gear.

參閱圖1,本發明四階傳動誤差之點接觸餘弦螺旋齒輪傳動機構的設計方法之一實施例,適用於設計一如圖1所示的點接觸餘弦螺旋齒輪傳動機構1。該點接觸餘弦螺旋齒輪傳動機構1包含一冠狀餘旋螺旋小齒輪11,及一可與該冠狀餘弦螺旋小齒輪11相嚙合的餘弦螺旋大齒輪12。 Referring to FIG. 1, an embodiment of a design method of a point contact cosine helical gear transmission mechanism for a fourth-order transmission error of the present invention is suitable for designing a point contact cosine helical gear transmission mechanism 1 as shown in FIG. The point contact cosine helical gear transmission mechanism 1 includes a coronal co-rotating helical pinion 11 and a cosine helical bull gear 12 engageable with the coronal cosine helical pinion 11 .

參閱圖2、圖3,及圖4,在該設計方法中,是先定義一第一迴轉面111的軸剖面輪廓(Axial profile)為一第一餘弦曲線1111,該第一迴轉面111的迴轉軸為A1,半徑參數為ρ 1。令座標系S 1(x 1,y 1,z 1)與該第一餘弦曲線1111相固連,該第一餘弦曲線1111在該座標系S 1(x 1,y 1,z 1)的位置向量函數r 1(u 1)為: Referring to FIG. 2, FIG. 3, and FIG. 4, in the design method, an Axial profile of a first rotating surface 111 is defined as a first cosine curve 1111, and the first rotating surface 111 is rotated. The axis is A 1 and the radius parameter is ρ 1 . The coordinate system S 1 ( x 1 , y 1 , z 1 ) is fixed to the first cosine curve 1111, and the first cosine curve 1111 is at the position of the coordinate system S 1 ( x 1 , y 1 , z 1 ) The vector function r 1 ( u 1 ) is:

其中為hf為齒根高係數(為1.25m),m為模數,mn為法向模數。 Where h f is the root height coefficient (1.25 m), m is the modulus, and m n is the normal modulus.

再定義一第二迴轉面121的軸剖面輪廓(Axial profile)為一第二餘弦曲線1211,該第二迴轉面121的迴轉軸為A2,半徑參數為ρ 2。令座標系S 2(x 2,y 2,z 2)與該第二餘弦曲線1211相固連,該第二餘弦曲線1211在該座標系S 2(x 2,y 2,z 2)的位置向量函數r 2(u 2)為: The axis profile of the second rotation surface 121 is further defined as a second cosine curve 1211. The rotation axis of the second rotation surface 121 is A 2 and the radius parameter is ρ 2 . The coordinate system S 2 ( x 2 , y 2 , z 2 ) is fixed to the second cosine curve 1211, and the second cosine curve 1211 is at the position of the coordinate system S 2 ( x 2 , y 2 , z 2 ) The vector function r 2 ( u 2 ) is:

其中為hf為齒根高係數(為1.25m),m為模數,mn為法向模數。 Where h f is the root height coefficient (1.25 m), m is the modulus, and m n is the normal modulus.

參閱圖4、圖5,及圖6,創成該冠狀餘弦螺旋小齒輪11之砂輪或刀刃可形成該第一迴轉面111,其是由該第一餘弦曲線1111繞A1軸迴轉所形成的迴轉曲面(Surface of revolution)。令座標系S3(x3,y3,z3)與該第一迴轉面111相固連。因為座標系S1(x1,y1,z1)與該第一餘弦曲線1111相固連,因此座標系S1(x1,y1,z1)與座標系S3(x3,y3,z3)之關係如圖5所示。該第一迴轉面111在座標系S3(x3,y3,z3)之下的位置向量函數r 3(θ 1,u 1)可以透過 以下的座標轉換公式求得: Referring to FIG. 4, 5, and 6, to create the helical pinion crown wheel or cosine blade 11 may be formed of the first surface of revolution 111, which is a rotation about the rotation axis A 1 is formed by the first cosine curve 1111 Surface of revolution. The coordinate system S 3 (x 3 , y 3 , z 3 ) is fixed to the first rotating surface 111. Since the coordinate system S 1 (x 1 , y 1 , z 1 ) is fixed to the first cosine curve 1111, the coordinate system S 1 (x 1 , y 1 , z 1 ) and the coordinate system S 3 (x 3 , The relationship between y 3 and z 3 ) is shown in Fig. 5. The position vector function r 3 ( θ 1 , u 1 ) of the first plane 111 below the coordinate system S 3 (x 3 , y 3 , z 3 ) can be obtained by the following coordinate conversion formula:

其中,M 31(θ 1)是將座標由座標系S 1(x 1,y 1,z 1)轉換到座標系S 3(x 3,y 3,z 3)之座標轉換矩陣,其為: Where M 31 ( θ 1 ) is a coordinate transformation matrix that converts the coordinates from the coordinate system S 1 ( x 1 , y 1 , z 1 ) to the coordinate system S 3 ( x 3 , y 3 , z 3 ), which is:

將第(1)式代入第(3)式後可得: Substituting the formula (1) into the formula (3) gives:

在座標系S 3(x 3,y 3,z 3)下,該第一迴轉面111的法向量函數N 3(θ 1,u 1)及單位法向量函數n 3(θ 1,u 1)可表示如下: Under the coordinate system S 3 ( x 3 , y 3 , z 3 ), the normal vector function N 3 ( θ 1 , u 1 ) of the first plane 111 and the unit normal vector function n 3 ( θ 1 , u 1 ) Can be expressed as follows:

n 3(θ 1,u 1)=N 3/|N 3| (7) n 3 ( θ 1 , u 1 )= N 3 /| N 3 | (7)

創成該餘弦螺旋大齒輪12之砂輪或刀刃可形成該第二迴轉面121,其是由該第二餘弦曲線1211繞A2軸迴轉所形成的迴轉曲面(Surface of revolution)。令座標系S 4(x 4,y 4,z 4)與該第二迴轉面121相固連,因為座標系S 2(x 2,y 2,z 2)與該第二餘弦曲線1211相固連,因此座標系S 2(x 2,y 2,z 2)與座標系S 4(x 4,y 4,z 4)之關係如圖6所示。該第二迴轉面121在座標系S 4(x 4,y 4,z 4)之下的位置向量函數 r 4(θ 2,u 2)可以透過以下的座標轉換公式求得: A grinding wheel or blade that creates the cosine helical bull gear 12 can form the second turning surface 121, which is a Surface of Revolution formed by the second cosine curve 1211 rotating about the A 2 axis. The coordinate system S 4 ( x 4 , y 4 , z 4 ) is fixed to the second rotating surface 121 because the coordinate system S 2 ( x 2 , y 2 , z 2 ) is solidified with the second cosine curve 1211 Therefore, the relationship between the coordinate system S 2 ( x 2 , y 2 , z 2 ) and the coordinate system S 4 ( x 4 , y 4 , z 4 ) is as shown in FIG. 6. The position vector function r 4 ( θ 2 , u 2 ) of the second plane 121 below the coordinate system S 4 ( x 4 , y 4 , z 4 ) can be obtained by the following coordinate conversion formula:

其中,M 42(θ 2)是將座標由座標系S 2(x 2,y 2,z 2)轉換到座標系S 4(x 4,y 4,z 4)之座標轉換矩陣,其為: Where M 42 ( θ 2 ) is a coordinate transformation matrix that converts the coordinates from the coordinate system S 2 ( x 2 , y 2 , z 2 ) to the coordinate system S 4 ( x 4 , y 4 , z 4 ), which is:

將第(2)式代入第(8)式後可得: Substituting the formula (2) into the formula (8) gives:

在座標系S 4(x 4,y 4,z 4)下,該第二迴轉面121的法向量函數N 4(θ 2,u 2)及單位法向量函數n 4(θ 2,u 2)可表示如下: Under the coordinate system S 4 ( x 4 , y 4 , z 4 ), the normal vector function N 4 ( θ 2 , u 2 ) of the second surface 121 and the unit normal vector function n 4 ( θ 2 , u 2 ) Can be expressed as follows:

n 4(θ 2,u 2)=N 4/|N 4| (12) n 4 ( θ 2 , u 2 )= N 4 /| N 4 | (12)

復參閱圖2,並配合圖7及圖8,當以該第一迴轉面111創成該冠狀餘弦螺旋小齒輪11時,該第一迴轉面111會如圖2所示地進行一拋物線運動M1,及一平移運動M2,該冠狀餘弦螺旋小齒輪11則進行一旋轉運動M3。令座標系Sp(xp,yp,zp)與該冠狀餘弦螺旋小齒輪11相固連,座標系S3(x3,y3,z3)與座標系Sp(xp,yp,zp)之相對運動關係如圖7及圖8所示,圖7表示座標系S3(x3,y3,z3)在座 標系S5(x5,y5,z5)上做拋物線運動M1,參數為t1。圖8表示座標系S7(x7,y7,z7)沿(-x 7)方向做平移運動M2,參數為s p ()。座標系Sp(xp,yp,zp)繞(-z p )軸作旋轉運動M3,參數為。座標系S5(x5,y5,z5)與座標系S7(x7,y7,z7)間無相對運動,將座標由座標系S3(x3,y3,z3)轉換到座標系S5(x5,y5,z5)的座標轉換矩陣M 53(t 1)可表示為: Referring to FIG. 2 and FIG. 7 and FIG. 8 , when the crown-shaped cosine helical pinion 11 is created by the first rotating surface 111, the first rotating surface 111 performs a parabolic motion M1 as shown in FIG. 2 . And a translational motion M2, the crown cosine helical pinion 11 performs a rotational motion M3. So that coordinate system S p (x p, y p , z p) and the crown cosine helical pinion 11 fixedly connected, coordinates S 3 (x 3, y 3 , z 3) and the coordinates S p (x p, The relative motion relationship of y p , z p ) is shown in FIG. 7 and FIG. 8. FIG. 7 shows that the coordinate system S 3 (x 3 , y 3 , z 3 ) is in the coordinate system S 5 (x 5 , y 5 , z 5 ). On the parabolic motion M1, the parameter is t 1 . Figure 8 shows that the coordinate system S 7 (x 7 , y 7 , z 7 ) performs a translational motion M2 along the ( -x 7 ) direction with the parameter s p ( ). The coordinate system S p (x p , y p , z p ) is rotated around the (- z p ) axis M3, and the parameter is . There is no relative motion between the coordinate system S 5 (x 5 , y 5 , z 5 ) and the coordinate system S 7 (x 7 , y 7 , z 7 ), and the coordinates are from the coordinate system S 3 (x 3 , y 3 , z 3 The coordinate transformation matrix M 53 ( t 1 ) converted to the coordinate system S 5 (x 5 , y 5 , z 5 ) can be expressed as:

將座標由座標系S 5(x 5,y 5,z 5)轉換到座標系S p (x p ,y p ,z p )的座標轉換矩陣M p5()可表示為: Converting the coordinates from the coordinate system S 5 ( x 5 , y 5 , z 5 ) to the coordinate transformation matrix M p 5 of the coordinate system S p ( x p , y p , z p ) ) can be expressed as:

其中,β為螺旋角,ρ p =m t T p /2,mt為端面模數,Tp為該冠狀餘弦螺旋小齒輪11的齒數。平移運動M2之參數s p ()與旋轉運動M2之參數的關係可表示為四階多項式函數如下: Where β is a helix angle, ρ p = m t T p /2, m t is the end face modulus, and T p is the number of teeth of the coronal cosine helical pinion 11 . The parameter of the translational motion M2 s p ( ) and the parameters of the rotational motion M2 The relationship can be expressed as a fourth-order polynomial function as follows:

其中,C2、C3及C4為待定係數,該第一迴轉面111在座標系S p (x p ,y p ,z p )之下形成的曲面族{Σ111}之位置向量函數(θ 1,u 1,t 1,)可透過以下的座標轉換公式求得: Wherein, C 2, C 3 and C 4 coefficients to be determined, the group {Σ 111} surfaces of the first surface of revolution 111 is formed under the coordinates S p (x p, y p , z p) position vector function ( θ 1 , u 1 , t 1 , ) can be obtained by the following coordinate conversion formula:

將第(5)式代入第(16)式後,可得到: Substituting the formula (5) into the formula (16), you can obtain:

該第一迴轉面111在座標系S p (x p ,y p ,z p )之下所形成的曲面族{Σ111}之單位法向量函數(θ 1,u 1,)可透過以下的座標轉換公式求得: 111} surface set unit normal vector of the function of the surface 111 under the first rotating coordinate system S p (x p, y p , z p) of the formed ( θ 1 , u 1 , ) can be obtained by the following coordinate conversion formula:

其中: among them:

該曲面族{Σ111}之包絡面存在的必要條件為: The necessary conditions for the envelope surface of the surface family {Σ 111 } are:

根據第(20)式,可解得參數t1為: According to the formula (20), the parameter t 1 can be solved as:

由第(17)式、第(21)式及第(22)式可得出該冠狀餘弦 螺旋小齒輪11之曲面位置向量函數如下: From the equations (17), (21) and (22), the surface position vector function of the coronal cosine helical pinion 11 can be obtained as follows:

由第(18)式及第(20)式可得到該冠狀餘弦螺旋小齒輪11之齒面單位法向量函數如下: The tooth surface unit normal vector function of the coronal cosine helical pinion 11 can be obtained by the equations (18) and (20) as follows:

復參閱圖3,並配合圖9及圖10,當以該第二迴轉面121創成該餘弦螺旋大齒輪12時,該第二迴轉面121進行兩個平移運動M4、M5,該餘弦螺旋大齒輪12則進行一旋轉運動M6。令座標系Sg(xg,yg,zg)與該餘弦螺旋大齒輪12相固連,座標系S4(x4,y4,z4)與座標系Sg(xg,yg,zg)之關係如圖9及圖10所示,圖9表示座標系S4(x4,y4,z4)在座標系S6(x6,y6,z6)上做平移運動M4,參數為t2,圖10表示座標系S8(x8,y8,z8)沿(-x 8)方向作平移運動M5,參數為s g (),座標系Sg(xg,yg,zg)繞z g 軸作旋轉運動M6,參數為,座標系S6(x6,y6,z6)與座標系S8(x8,y8,z8)間無相對運動。將座標由座標系S4(x4,y4,z4)轉換到座標系S6(x6,y6,z6)的座標轉換矩陣M 64(t 2)可表示為: Referring to FIG. 3 together with FIG. 9 and FIG. 10, when the cosine helical bull gear 12 is created by the second rotating surface 121, the second rotating surface 121 performs two translational movements M4 and M5, and the cosine helical large gear 12 then performs a rotary motion M6. Let the coordinate system S g (x g , y g , z g ) be fixed to the cosine helical gear 12, the coordinate system S 4 (x 4 , y 4 , z 4 ) and the coordinate system S g (x g , y The relationship between g and z g ) is shown in Fig. 9 and Fig. 10. Fig. 9 shows that the coordinate system S 4 (x 4 , y 4 , z 4 ) is made on the coordinate system S 6 (x 6 , y 6 , z 6 ). The translational motion M4 has a parameter of t 2 , and FIG. 10 shows that the coordinate system S 8 (x 8 , y 8 , z 8 ) performs a translational motion M5 along the (− x 8 ) direction, and the parameter is s g ( ), the coordinate system S g (x g , y g , z g ) is rotated around the z g axis M6, the parameter is There is no relative motion between the coordinate system S 6 (x 6 , y 6 , z 6 ) and the coordinate system S 8 (x 8 , y 8 , z 8 ). The coordinate transformation matrix M 64 ( t 2 ) that converts the coordinates from the coordinate system S 4 (x 4 , y 4 , z 4 ) to the coordinate system S 6 (x 6 , y 6 , z 6 ) can be expressed as:

將座標由座標系S6(x6,y6,z6)轉換到座標系Sg(xg,yg,zg)的座標轉換矩陣M g6()可表示為: Converting the coordinates from the coordinate system S 6 (x 6 , y 6 , z 6 ) to the coordinate transformation matrix M g 6 of the coordinate system S g (x g , y g , z g ) ( ) can be expressed as:

其中,β為螺旋角,ρ g =m t T g /2,mt為端面模數,Tg為該餘弦螺旋大齒輪12的齒數。平移運動M5之參數s g ()與旋轉運動M6之參數的關係可表示為一階多項式函數如下: Where β is the helix angle, ρ g = m t T g /2, m t is the end face modulus, and T g is the number of teeth of the cosine helical bull gear 12 . The parameter s g of the translational motion M5 ( ) and the parameters of the rotational motion M6 The relationship can be expressed as a first-order polynomial function as follows:

該第二迴轉面121在座標系Sg(xg,yg,zg)之下所形成的曲面族{Σ121}之位置向量函數(θ 2,u 2,t 2,)可透過以下的座標轉換公式求得: The position vector function of the surface family {Σ 121 } formed by the second rotating surface 121 under the coordinate system S g (x g , y g , z g ) ( θ 2 , u 2 , t 2 , ) can be obtained by the following coordinate conversion formula:

將第(10)式代入第(28)式後,可得: Substituting the formula (10) into the formula (28), you can obtain:

該第二迴轉面121在座標系Sg(xg,yg,zg)之下所形成的曲面族{Σ121}之單位法向量函數(θ 2,u 2,)可透過以下的座標轉換公 式求得: The unit normal vector function of the surface family {Σ 121 } formed by the second rotation surface 121 under the coordinate system S g (x g , y g , z g ) ( θ 2 , u 2 , ) can be obtained by the following coordinate conversion formula:

其中: among them:

該曲面族{Σ121}之包絡存在的必要條件為: The necessary conditions for the existence of the envelope of the surface family {Σ 121 } are:

根據第(32)式可解得參數θ 2為:θ 2=0 (34) According to the formula (32), the parameter θ 2 can be solved as: θ 2 =0 (34)

根據第(33)式及第(34)式,可將參數θ 2解出: According to the equations (33) and (34), the parameter θ 2 can be solved:

由第(29)式、第(34)式,及第(35)式可得到該餘弦螺旋大齒輪12之齒面位置向量函數: The tooth surface position vector function of the cosine helical bull gear 12 can be obtained from the equations (29), (34), and (35):

由第(30)式、第(34)式,及第(35)式可得到該餘弦螺旋大齒輪12之齒面單位法向量函數: The tooth surface unit normal vector function of the cosine helical bull gear 12 can be obtained by the equations (30), (34), and (35):

參閱圖1、圖4,及圖11,接著決定平移運動M2中的待定係數C2、C3及C4。如圖11所示,該冠狀餘弦螺旋小齒輪11及該餘弦螺旋大齒輪12嚙合傳動時,該冠狀餘弦螺旋小齒輪11以參數φ p z p 軸旋轉,該餘弦螺旋大齒輪12以參數φ g 繞(-z g )軸旋轉,座標系S f (x f ,y f ,z f )是與齒輪箱固連的固定座標系,則該冠狀餘弦螺旋小齒輪11及該餘弦螺旋大齒輪12之齒面接觸點的拘束條件為: Referring to Figures 1, 4, and 11, the undetermined coefficients C 2 , C 3 , and C 4 in the translational motion M2 are then determined. As shown in FIG. 11, when the coronal cosine helical pinion 11 and the cosine helical bull gear 12 are meshed and transmitted, the coronal cosine helical pinion 11 rotates about a z p axis with a parameter φ p , and the cosine helical large gear 12 takes a parameter φ The g -rotating ( -z g ) axis rotates, and the coordinate system S f ( x f , y f , z f ) is a fixed coordinate system fixed to the gear box, and the coronal cosine helical pinion 11 and the cosine helical large gear 12 The constraint conditions for the tooth surface contact points are:

其中: among them:

當以該冠狀餘弦螺旋小齒輪11的轉角φ p 為輸入,並以該餘弦螺旋大齒輪12之轉角φ g 為輸出時,齒輪機構的傳動誤差為: When the rotation angle φ p of the coronal cosine helical pinion 11 is input and the rotation angle φ g of the cosine helical large gear 12 is output, the transmission error of the gear mechanism is:

傳動誤差的斜率為: The slope of the transmission error is:

其中: among them:

參閱圖1、圖11,及圖12,圖12為該點接觸餘弦螺旋齒輪傳動機構1預設的四階傳動誤差模型,當該冠狀餘弦螺旋小齒輪11及該餘弦螺旋大齒輪12在R點接觸時,φ p φ g 有如下條件: Referring to FIG. 1, FIG. 11, and FIG. 12, FIG. 12 is a preset fourth-order transmission error model of the point contact cosine helical gear transmission mechanism 1. When the coronal cosine helical pinion 11 and the cosine helical large gear 12 are at point R When contacting, φ p and φ g have the following conditions:

當該冠狀餘弦螺旋小齒輪11及該餘弦螺旋大齒輪12在L點接觸時,φ p φ g 有如下條件: When the coronal cosine helical pinion 11 and the cosine helical large gear 12 are in contact at point L, φ p and φ g have the following conditions:

當該冠狀餘弦螺旋小齒輪11及該餘弦螺旋大齒輪12在R點接觸時,令θ 1,u 1,,u 2,t 2之條件如下: When the coronal cosine helical pinion 11 and the cosine helical bull gear 12 are in contact at point R, let θ 1 , u 1 , , u 2 , t 2 conditions are as follows:

當該冠狀餘弦螺旋小齒輪11及該餘弦螺旋大齒輪12在L點接觸時,令θ 1,u 1,,u 2,t 2之條件如下: When the coronal cosine helical pinion 11 and the cosine helical bull gear 12 are in contact at point L, let θ 1 , u 1 , , u 2 , t 2 conditions are as follows:

由於R點為接觸點,因此接觸點的拘束式第(38)式在R點亦必須成立,故有: Since the point R is the contact point, the constraint type (38) of the contact point must also be established at the point R, so that:

由於L點為接觸點,因此接觸點的拘束式第(38)式在L點亦必須成立,故有: Since the point L is the contact point, the constraint type (38) of the contact point must also be established at the point L, so that:

此外,在L點還有運動誤差斜率為零的拘束條件,故有: In addition, there is a constraint condition at the point L where the slope of the motion error is zero, so there are:

由於,在第(54)式、第(55)式,及第(56)式中共有十三條獨立的非線性代數方程式,由於方程式中的未知數 只有十個,即θ 1R,u 1R,,θ 1L,u 1L,,u 2L,t 2L ,u 2R,t 2R ,因此多出來的三條方程式便可以用於求解平移運動M2的三個待定係數C2、C3及C4,換言之,將平移運動M2中之三個待定係數C2、C3及C4也視為是未知數之後,第(54)式、第(55)式,及第(56)式遂形成一個有十三條方程式及十三個未知數的非線性聯立方程式系統: due to There are thirteen independent nonlinear algebraic equations in equations (54), (55), and (56). Since there are only ten unknowns in the equation, namely θ 1R , u 1R , , θ 1L , u 1L , , u 2L , t 2 L , u 2R , t 2 R , so the extra three equations can be used to solve the three undetermined coefficients C 2 , C 3 and C 4 of the translational motion M2 , in other words, the translational motion M2 After the three undetermined coefficients C 2 , C 3 and C 4 are also considered to be unknown, equations (54), (55), and (56) form a thirteen equation and thirteen Unknown nonlinear bifurcated program system:

應用牛頓求根法(Newton’s root finding method)解非線性聯立方程式第(57)式便可求得平移運動M2中之三個待定係數C2、C3及C4The three undetermined coefficients C 2 , C 3 and C 4 of the translational motion M2 can be obtained by solving the nonlinear simultaneous equation (57) using the Newton's root finding method.

根據實際需求將參數代入第(23)式及第(36)式中,也就是該冠狀餘弦螺旋小齒輪11之位置向量函數式及該餘弦螺旋大齒輪12之位置向量函數式,進而可以CAD繪製出該冠狀餘弦螺旋小齒輪11及該餘弦螺旋大齒輪12,從而完成本設計方法,最後以一能透過迴轉形成該第一迴轉面111的砂輪或刀刃對一進行旋轉運動M3的待加工件進行加工,該砂輪透過平移運動M2及旋轉運動M3創成該冠狀餘弦螺旋小齒輪11。另外以一能透過迴轉形成該第二迴轉面121的砂輪或刀刃對另一進行旋轉運動M5的待加工件加工,該砂輪或刀刃透過兩個平移運動M4、M5創成該餘弦螺旋大齒 輪12。以下透過實驗例來檢視本實施例之功效。 According to actual needs, the parameters are substituted into the equations (23) and (36), that is, the position vector function of the coronal cosine helical pinion 11 and the position vector function of the cosine helical gear 12, and then can be drawn in CAD. The crown cosine helical pinion 11 and the cosine helical bull gear 12 are completed, thereby completing the design method, and finally, a workpiece to be processed which performs a rotational motion M3 by a grinding wheel or a blade capable of forming the first rotary surface 111 by rotation is performed. Processing, the grinding wheel creates the coronal cosine helical pinion 11 through the translational motion M2 and the rotational motion M3. In addition, a grinding wheel or a blade capable of rotating the second rotating surface 121 is used to process another workpiece to be processed by a rotating motion M5, and the grinding wheel or the blade creates the cosine spiral large tooth through two translational movements M4 and M5. Wheel 12. The efficacy of this example is examined below by way of an experimental example.

實驗例:參閱圖13、圖14,及圖15,本實驗例是以下方表一所列的數值作為參數,並將這些參數代入第(23)式及第(36)式中,以繪製出該冠狀餘弦螺旋小齒輪11及該餘弦螺旋大齒輪12。接著透過齒面接觸分析(Tooth contact analysis,TCA)技術分析出該點接觸餘弦螺旋齒輪傳動機構1的真實傳動誤差,由圖13可知,本實施例的真實傳動誤差(Actual transmission error)確實等於預設的四階傳動誤差(Predesigned fourth order transmission error),此時,該冠狀餘弦螺旋小齒輪11上之接觸齒印(Bearing contact)如圖14所示地為局部化的接觸齒印21(Localized bearing contact)。該餘弦螺旋大齒輪12上之接觸齒印亦如圖15所示地為局部化的接觸齒印22。由圖14與圖15可以明顯看出,該冠狀餘弦螺旋小齒輪11及該餘弦螺旋大齒輪12上的接觸齒印21、22皆集中在齒面中央,並遠離齒面邊緣(Tooth edge),故可避免齒邊緣接觸(Tooth edge contact)所引起應力集中與齒邊緣壓壞崩裂的問題。 Experimental example: Referring to Fig. 13, Fig. 14, and Fig. 15, this experimental example takes the values listed in Table 1 below as parameters, and substitutes these parameters into equations (23) and (36) to draw out The coronal cosine helical pinion 11 and the cosine helical bull gear 12. Then, the true transmission error of the point contact cosine helical gear transmission mechanism 1 is analyzed by the Tooth contact analysis (TCA) technique. As can be seen from FIG. 13, the actual transmission error of the embodiment is indeed equal to the pre-preparation. A fourth-order transmission error (Predesigned fourth order transmission error), at this time, the contact contact on the coronal cosine helical pinion 11 is a localized contact toothing 21 as shown in FIG. 14 (Localized bearing) Contact). The contact tooth marks on the cosine helical bull gear 12 are also localized contact tooth marks 22 as shown in FIG. As is apparent from FIGS. 14 and 15, the crown cosine helical pinion 11 and the contact tooth marks 21, 22 on the cosine helical bull gear 12 are concentrated in the center of the tooth surface and away from the Tooth edge. Therefore, the problem of stress concentration caused by tooth edge contact and crushing of the tooth edge can be avoided.

綜上所述,透過本設計方法可設計出四階傳動誤差的點接觸餘弦螺旋齒輪傳動機構1,餘弦螺旋齒輪具有下列優點(1)齒根厚度較大(2)齒根彎曲應力較低(3)抗疲勞折斷的能力較高(4)不發生過切(Non-undercutting)之最小齒數較少(5)在強度足夠的前提下可透過減少齒數來達成縮小齒輪箱尺寸的目的,故具輕量化與節省材料成本的優勢,且點接觸的設計可避免邊緣接觸所引起之問題,而四階傳動誤差可提升齒根強度,也可提升抑振及降噪之能力,故確實能達成本發明之目的。 In summary, the point contact cosine helical gear transmission mechanism 1 with fourth-order transmission error can be designed by the design method. The cosine helical gear has the following advantages: (1) the root thickness is large (2) the root root bending stress is low ( 3) The ability to resist fatigue fracture is high (4) The minimum number of teeth without non-cutting is small (5) Under the premise of sufficient strength, the gear size can be reduced to achieve the purpose of reducing the size of the gear box. The advantages of light weight and material cost saving, and the design of point contact can avoid the problems caused by edge contact, and the fourth-order transmission error can improve the root strength, and can also improve the ability of vibration suppression and noise reduction, so it can achieve this. The purpose of the invention.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the equivalent equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still The scope of the invention is covered.

Claims (1)

一種四階傳動誤差之點接觸餘弦螺旋齒輪傳動機構的設計方法,該點接觸餘弦螺旋齒輪傳動機構包含一冠狀餘旋螺旋小齒輪,及一可與該冠狀餘弦螺旋小齒輪相嚙合的餘弦螺旋大齒輪,該設計方法包含:
將實際參數代入下列的曲面位置向量函數,繪製出該冠狀餘弦螺旋小齒輪:

再將實際參數代入下列的曲面位置向量函數,繪製出該餘弦螺旋大齒輪:

最後以兩個砂輪或刀刃分別加工出該冠狀餘弦螺旋小齒輪及該餘弦螺旋大齒輪。
A design method of a point contact cosine helical gear transmission mechanism with a fourth-order transmission error, the point contact cosine helical gear transmission mechanism comprising a coronal co-rotating helical pinion, and a cosine spiral that can mesh with the coronal cosine helical pinion Gear, the design method includes:
Substituting the actual parameters into the following surface position vector functions to draw the coronal cosine spiral pinion:

Then substitute the actual parameters into the following surface position vector function to draw the cosine spiral gear:

Finally, the crown cosine spiral pinion and the cosine spiral gear are respectively processed by two grinding wheels or blades.
TW108100497A 2019-01-07 2019-01-07 Design method of point contact cosine helical gear transmission mechanism of fourth-order transmission error TWI672448B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108100497A TWI672448B (en) 2019-01-07 2019-01-07 Design method of point contact cosine helical gear transmission mechanism of fourth-order transmission error

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108100497A TWI672448B (en) 2019-01-07 2019-01-07 Design method of point contact cosine helical gear transmission mechanism of fourth-order transmission error

Publications (2)

Publication Number Publication Date
TWI672448B true TWI672448B (en) 2019-09-21
TW202026547A TW202026547A (en) 2020-07-16

Family

ID=68619266

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108100497A TWI672448B (en) 2019-01-07 2019-01-07 Design method of point contact cosine helical gear transmission mechanism of fourth-order transmission error

Country Status (1)

Country Link
TW (1) TWI672448B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661381A (en) * 2012-05-27 2012-09-12 西北工业大学 Four-stage transmission error curve of spiral bevel gear and design method thereof
CN105138748A (en) * 2015-08-10 2015-12-09 清华大学 Design method of face gear pair
CN106369139A (en) * 2016-09-23 2017-02-01 清华大学 Method for obtaining machining parameters of hypoid gear meeting high-order transmission error
CN108115217A (en) * 2017-12-13 2018-06-05 长安大学 A kind of Machining Spiral Bevel Gear method based on high-order driving error
CN109002654A (en) * 2018-08-23 2018-12-14 西北工业大学 A kind of design method moving synchronously driving error curve and the spiral bevel gear using driving error curve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661381A (en) * 2012-05-27 2012-09-12 西北工业大学 Four-stage transmission error curve of spiral bevel gear and design method thereof
CN105138748A (en) * 2015-08-10 2015-12-09 清华大学 Design method of face gear pair
CN106369139A (en) * 2016-09-23 2017-02-01 清华大学 Method for obtaining machining parameters of hypoid gear meeting high-order transmission error
CN108115217A (en) * 2017-12-13 2018-06-05 长安大学 A kind of Machining Spiral Bevel Gear method based on high-order driving error
CN109002654A (en) * 2018-08-23 2018-12-14 西北工业大学 A kind of design method moving synchronously driving error curve and the spiral bevel gear using driving error curve

Also Published As

Publication number Publication date
TW202026547A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
CN105156637B (en) A kind of oblique line flank of tooth gear driving pair and facewidth geometric design method
CN110826158B (en) Spiral bevel gear tooth surface Ease-off modification design method based on minimum meshing impact
TWI601892B (en) Harmonic gear device with continuous contact tooth profile formed by arc tooth profile
WO2019104777A1 (en) Arc-shaped surface contact-based worm and worm gear transmission type power device
JPWO2006109838A1 (en) Cornu helical gear
CN110929349B (en) Ease-off spiral bevel gear tooth surface free shaping method
CN109783840B (en) Calculation method for time-varying meshing stiffness of straight-tooth cylindrical gear internal meshing gear pair
EP1688202A1 (en) Grinding wheel for relief machining for resharpenable pinion-type cutter
TWI638105B (en) Harmonic gear device with negative offset tooth profile with 2 degree contact
Zheng et al. Research on the tooth modification in gear skiving
KR101773154B1 (en) Harmonic drive that improves transmission accuracy
CN105138748B (en) The design method of face gear pair
CN111259499A (en) Conical surface gear pair and design method
TWI672448B (en) Design method of point contact cosine helical gear transmission mechanism of fourth-order transmission error
CN106735612B (en) A method of improving gear honing processing
US8205518B2 (en) Pinion meshing with a given face gear in accordance with altered design parameters
JP4532465B2 (en) Manufacturing method of gear system
Kawasaki et al. Geometric design of a face gear drive with a helical pinion
JP4763611B2 (en) Evaluation method of edge profile of re-sharpened pinion cutter
EP1504838A1 (en) Resharpenable pinion type cutter with arbitrary tooth shape
TWI672454B (en) Design method of point contact curved tooth cosine gear transmission mechanism with preset fourth-order transmission error
CN109812544B (en) Arc tooth surface gear transmission pair and design method
Mallesh et al. Effect of tooth profile modification in asymmetric spur gear tooth bending stress by finite element analysis
Wang et al. Geometric design and simulation of tooth profile using elliptical segments as its line of action
TWI659165B (en) Method for manufacturing point contact sinusoidal gear transmission mechanism with preset second-order or fourth-order transmission error

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees