TWI671779B - 用於控制離子束的方法和系統、及多向離子束掃描裝置 - Google Patents

用於控制離子束的方法和系統、及多向離子束掃描裝置 Download PDF

Info

Publication number
TWI671779B
TWI671779B TW104122267A TW104122267A TWI671779B TW I671779 B TWI671779 B TW I671779B TW 104122267 A TW104122267 A TW 104122267A TW 104122267 A TW104122267 A TW 104122267A TW I671779 B TWI671779 B TW I671779B
Authority
TW
Taiwan
Prior art keywords
ion beam
item
patent application
rings
tube
Prior art date
Application number
TW104122267A
Other languages
English (en)
Other versions
TW201603099A (zh
Inventor
葛夫瑞 瑞德
塔卡歐 沙卡西
特多爾 史密克
Original Assignee
美商尼特羅恩治療公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商尼特羅恩治療公司 filed Critical 美商尼特羅恩治療公司
Publication of TW201603099A publication Critical patent/TW201603099A/zh
Application granted granted Critical
Publication of TWI671779B publication Critical patent/TWI671779B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/083Beam forming
    • H01J2237/0835Variable cross-section or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24405Faraday cages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3109Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3142Ion plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

本發明係揭示一種用於控制高功率離子束的系統,比如涉及轉向、測量、和/或耗散束的功率。在一實施例中,可控制離子束,賦予其進入圓柱形管(例如,法拉第杯),並且偏轉離子束以一角度撞擊管內壁,從而增加束在壁上的作用面積。亦通過繞著內壁的圓周旋轉偏轉的束,進一步增加離子束的作用面積,從而吸收(消散)壁上的高功率離子束。在另一實施例中,離子束可通過第一、第二及第三磁性調整環。通過調整各環之間的相對角度及所有環的合併旋轉角度,因此偏轉離子束可繞著功率吸收管的內壁圓周旋轉。

Description

用於控制離子束的方法和系統、及多向離子束掃描裝置
本發明係關於一種系統用於控制高功率離子束,如於離子佈植機,並且,更具體而言涉及轉向、測量和/或消散高功率離子束的功率,以及一種相關的磁性束轉向系統。
離子佈植係一種材料工程過程,通過將離子化的材料在電場中加速並植入固體中。這個過程是用於改變固體的物理、化學、或電氣性質。離子佈植通常用於半導體元件製程和金屬表面處理,以及在材料科學的各種應用。離子佈植設備通常包括:離子源,產生所需元素的離子;加速器,將離子由靜電加速至高能量;以及目標腔室,將離子植入欲佈植之材料。離子的能量,與離子種類及目標的組成一樣,決定離子在固體的穿透深度,即離子的「範圍」。
離子佈植係具各種用途,如將摻雜劑(例如,硼、磷或砷)植入半導體材料,例如矽。離子佈植另一用途係將硬質結晶材料,例如矽、藍寶石等,解理(剝離) 成薄板(薄片)。通常,此過程包括植入輕離子至材料表面的下方。而後,加熱(例如)該材料,使植入層上方的材料解理或剝離成薄板或薄片。
質子加速器作為離子束源產生離子束。在一些情況下,該等離子束具有大約100kW的功率強度,並且其直徑大約係10mm。一般而言,無法以固定式水冷或輻射冷卻表面處理該功率密度,尤其是消散或“傾倒”束功率。該問題一般係在大區域消散功率而解決。一種可實現的配置係旋轉受離子束撞擊的目標,如大磁盤或圓桶,因而目標沒有任一部份吸收離子束的全功率。例如,在典型的束收集系統中目標的直徑可約2m或更大,其轉速約為100rpm或更高,因而擴散的功率在大區域消散。另一替代方法係於較大區域掃描該束,亦即,移動該束至目標,而非移動目標。
目前用於控制高功率離子束之系統,特別是經由束收集器消散束功率,係龐大、笨重且昂貴,並且不提供吸收離子束功率以外其他任何功能。
本發明係關於一種系統用於控制高功率離子束,如用於離子佈植機(例如,用於半導體摻雜或氫離子誘發剝離(hydrogen induced exfoliation)),並且,更具體而言涉及轉向、測量和/或耗散高功率離子束的功率,以及一種相關的磁性束轉向系統。
一實施例係可通過控制離子束(具有原橫截 面面積)賦予離子束沿束路徑,如至管的底端,並使離子束自束路徑偏轉,且以一角度撞擊目標表面,如管的內壁,在目標壁上產生大於原橫截面面積的離子束作用面積。亦通過掃描或旋轉偏轉的離子束,如繞著管的內壁的圓周,進一步增加離子束在目標內壁的作用面積,從而通過在內壁上的增加的作用面積吸收(消散或傾倒)離子束功率。替代地,或另外地,可機械地移動目標壁至束路徑,從而吸收離子束且使束功率消散。
另一實施例,該管係法拉第杯,且可測量束功率撞擊內壁的離子束強度。具體實施例中,該法拉第杯的內壁可區分為多分段,允許更大的測量粒度。
又另一用於控制離子束的實施例,係離子束可通過第一、第二及第三調節環,各環配置磁鐵,以產生磁場向量,第一環係最接近離子束通道的入口,第三環係最接近離子束通道的出口,且第二環係介於第一及第三環之間。可調整第一、第二及第三環之間的相對角度,以控制離子束從出口偏轉的大小。此外,可調節所有第一、第二及第三環之合併的旋轉角度,以控制離子束偏轉的方位角方向。該方法(例如,使用離子束控制磁結構)係使偏轉離子係繞著功率吸收管的內壁的圓周旋轉,如上所述。
更進一步,本發明所述之系統在一具體實施例中,可使用於硼中子捕獲治療(BNCT),指示自管新生之質子離子束至鋰目標,以提供中子源,該中子源由鋰(p,n)核反應產生。
另一實施例中,本發明所述之系統可用於質子誘發剝離(proton induced exfoliation),使其可生產超薄層板,如藍寶石單晶。該等層板與較便宜的材料連結,從而提供具有藍寶石性質但整體成本較低。例如,本實施例中,厚晶片基板(例如,藍寶石)以高能質子束照射,如氫離子束。該離子穿透至藍寶石晶片表面下方一精確的深度,形成缺陷層,而後加熱晶片使表面層解理,或剝離,從而產生一具精確厚度之薄層,其厚度等於原先氫佈植之深度。由於該等層板極薄,此步驟可重複多次,從而由單一初始晶片剝離出多個且高品質之層板。
應當理解的是,上述之一般描述及下述之詳細描述皆只是示例及說明,目的係提供對本發明或申請專利範圍之進一步說明。
本發明之實施例可通過附圖並結合下述描述更好地理解,其中相似的附圖標記表示相同或功能相似之元件,其中:
第1至3圖,係實施例說明控制高功率離子束至小型管狀束偏轉系統及可選的法拉第杯結構內,消散束功率。
第4圖,係實施例說明小型管狀束偏轉系統中的分段法拉第杯。
第5圖,係實施例說明旋轉磁束偏轉系統。
第6A及6B圖,係實施例說明三環磁束偏轉系統。
第7A及7B圖,係實施例說明束收集及直通模式之離 子束控制器系統。
第8圖,係說明離子束控制器系統。
第9圖,係實施例說明離子束撞擊靶晶片/基板。
第10圖,係實施例說明控制高功率離子束之簡化程序,特別是消散離子束功率,及其他功能。
第11圖,係實施例說明控制高功率離子束之簡化程序,特別是以一個多向束掃描系統控制束。
本發明之技術係結合離子束掃描及目標掃描至一小型結構中,其亦可提供總束強度之資訊及高功率離子束之分佈。例如,該系統描述可用於引導、攔截、及測量高功率離子束,如使用於約80-120kW(例如,100kW)強度之束功率。應當注意的是,本發明之技術亦可用於其它束強度,如低功率離子束(例如,1-80kW)或更高功率離子束(例如,120kW和更大者)。
一種增加離子束在目標的作用面積之方式,係令目標傾斜使其表面與入射束有一極傾斜之角度,θ(theta)。此方式使作用面積增加1/cos(θ)倍。例如,將作用角度自正常(例如,θ等於0度)改變至傾斜(例如,θ等於85度),將使作用面積增加約11.5倍。另一方式係使束掃描整個目標,以此降低束強度的平均功率密度,從而增加有效作用面積,如移動束或目標。此狀況下,束功率分佈於目標,然而束掃描目標必須足夠快以避免瞬間加熱影響任一特定作用面積。
本發明利用上述一或二者之技術,優選的小型系統係結合上述二者方法,該系統係以一角度偏轉離子束以及使離子束掃描整個目標,從而使功率密度降低大於100。一般而言,在本發明中,離子束的路徑改變或偏轉,使束沿束路徑撞擊目標位置並產生大於束截面積的作用面積。優選的是,該離子束通過管,並使束偏轉撞擊管的內壁的表面。該管可具有各種橫截面形狀,如矩形、正方形或圓形。優選的是,該管係圓柱形。此外,如下所述,此描述之配置亦可用於提供離子束位置、方向及強度分佈等的有效資訊。
本發明的一或多個具體的實施例可參考第1至3圖之一般描述。特別的是,該等具體實施例,離子束被賦予自離子束源射至圓柱形管(例如,直徑100mm之管)的底端。詳細說明,如第1圖所示,離子束係可具100kW功率強度之直徑40mm束(原橫截面面積),其在管的底端(例如,端板/帽或出口)時,束功率密度大約是8kW/cm2
第2圖係說明離子束控制器使束偏轉5度之影響,此時束沿圓柱的內側撞擊一較大區域。此狀況下,功率密度可減少至約690kW/cm2(x sin(5度))。另一說明,偏轉離子束以一角度撞擊管的內壁,在管的內壁產生大於原橫截面面積之作用面積,因而擴展離子束功率。另外,角度(創造的,例如,經由磁場力,如下所述)5度僅為一範例,角度係可基於管的內部尺寸及在內壁所需的離子束作用面積。
為移動偏轉束的目標,第3圖顯示關於繞束軸旋轉,偏轉束的旋轉效果(例如,通過旋轉偏轉裝置,或場向量如下所述,抑或旋轉管本身),因此使束均勻掃描管內部。此時,束功率密度可更減少至90W/cm2(束直徑/管周長),總減少98.87%的功率密度或88.9倍。特別的是,通過繞著該管的內壁的圓周旋轉偏轉離子束,離子束在管的內壁的撞擊面積增大,因而通過在管的內壁的增加的作用面積,使高功率離子束的束功率被吸收。
尤其是,至少於此束撞擊管(例如,在“收集”模式,如下所述)係設計為處理高束功率。在一實施例中,管可由銅外管及石墨內壁所組成。例如,一種實現此結果的方式係提供一薄壁(例如,約2mm)石墨管,並使其“熱收縮”後置入外銅管的內壁。同時注意,可配置各式液體冷卻系統,特別是從管外部以液體冷卻該管,(例如,水冷卻真空離子束系統外部)。
第1至3圖亦證明將實施例中所述之管配置為法拉第杯係具有獨特的優勢。即,法拉第杯分析器可配置為測量束功率撞擊內壁的離子束強度。如本領域技術人員所理解,法拉第杯係設計為捕獲帶電顆粒的導電(例如,金屬)結構。可測量所產生之電流(“i”)及用於確定撞擊結構的離子或電子數目。一般而言,法拉第杯設計係具離子束的入口,但無出口(因此,“杯”),然而,只要該結構係包含在真空中,且具有任何合適的導電表面則已充分。因此,雖然稱為“杯”,本發明中所揭露之管,無論該管 係具封端或開放出口,其本質上係作為法拉第“杯”,如下所述。
第4圖說明如第3圖中描述的相同基本幾何形狀,但在此例時法拉第杯的筒壁已分割,因此可分別地測量撞擊各個管狀部(法拉第杯的電隔離分段)的束流。即,通過將內壁分割成多分段,束功率分別撞擊多分段,法拉第杯分析器可分別地測量各個分段的離子束強度(例如,“i1”,“i2”及“i3)。此時,基於分別地測量離子束強度,係可確認關於尺寸、形狀及離子束的方向等資訊。例如,如第4圖所示,由於分佈在三個分段上之偏轉束的作用面積係不同量,因此各個分段相關聯的電流(一般對應於撞擊空間的所得表面積)可用於計算推斷出上述所需的信息,此可為本領域的技術人員所理解。
尤其是,如本發明所述,至少基於測量的離子束強度(例如,加上束的大小、形狀及/或方向),離子束控制器可相應地調整離子束,如“調整”離子束以達到希望之結果(強度、大小、形狀、方向等)。
此外,即使分段法拉第杯於第4圖顯示係三個分段,根據本發明之實施例係可使用任何數量的分段,並以更多分段達到更大粒度之測量能力。又,通過校正離子束及分散不同質量組成(例如,通過特定磁性控制特性)撞擊分段法拉第杯相對應之不同分段,上述增加之粒度係可用於鑑定特定質量組成的離子束,如H+、H2 +及H3 +。以此方式,本發明所述之系統可配置作為質譜術,例如,使 用30分段以測量離子束的完整輪廓,並獲得完整的質譜。亦即,法拉第杯分析器可作為質譜術來執行,其係基於由多個電隔離分段分別地測量離子束強度。
更進一步,為提供更大的測量能力,離子束控制器可配置為令偏轉離子束掃描(掠過)過多分段而獲得束的輪廓。特別是,隨時間推移偏轉離子束掃描各法拉第杯分段,基於此法拉第杯分析器可測量離子束的資訊,且在控制離子束由一分段移至下一分段時,允許作額外的測量。
根據本發明中一或多實施例,使用於偏轉及旋轉離子束的離子束控制器,係如上所述可包括多向束掃描系統。特別是,具許多方式偏轉及旋轉射入離子束,如通常使用於離子束傳輸及注入系統之常規電磁學或靜電束掃描系統。“XY掃描器”係一種磁掃描系統可產生所需磁場,其可使離子束彎曲在“X”和“Y”垂直的方向上。XY掃描器的一例是被揭露使用於共同擁有,同時待審中的專利案,係由Park等人於2014年3月13日申請,題為“Magnetic Scanning System for Ion Implanters”,美國臨時專利申請序列號61/952610
一具體實施例中,多向束掃描系統係包括替代設計,如第5圖所示係使用內含磁鐵(例如,永久磁鐵)的磁軛組合,其產生固定且均勻的磁場。如下所述,優勢係將該系統整體置於上述管的外側,因此管內需無可移動部件。
如範例所示,中央束管(如上述之管/法拉第杯)直徑係100mm,且磁鐵及磁軛裝置產生通過管的磁場係約1,500G(如所示大致上垂直線由頂端磁鐵至底部磁體,此可被本領域的技術人員所理解)。適合於上述之束偏轉的磁場,係使2MeV質子束產生約5度的偏轉角。其它磁場強度可作用於不同程度的偏轉和/或用於改變束功率/強度
在本發明的實施例中,磁體組件可安裝在軸承系統上,置於離子束通過的清空的束腔/管外側,以使其易於繞著束軸旋轉。如上述第4圖所述之情況時,磁場向量旋轉以及質子束此時在管內部掃描一大的有效區域。
本發明所揭露之系統係可提供更大靈活性的控制,其中係如第5圖所示,磁偏轉裝置分為三部分且各部分可獨立旋轉。如第6A圖所示之例,其中3控制環(如,共用第5圖之磁軛的磁鐵結構),即第一、第二及第三調節環(容許離子束通過之限定孔構),第一環係最接近於離子束通道的入口,第三環係最接近於離子束通道的出口,第二環介於第一環與第三環之間。各環皆配置磁鐵,以產生磁場向量(B磁場),如第6A圖所示,可皆校正為同一方向(有效地產生磁效應,係與第5圖的單磁結構產生之磁效應相同),從而使離子束彎曲。(需注意,彎曲束的角度及B磁場的方向係以二維繪製示意,然而本領域技術人員將理解該敘述僅為範例,且相對角度並未意味按比例繪製或限制本發明的範圍。)
根據本發明一或多實施例,且參考第6A及6B圖中,調整第一、第二及第三環間的相對角度控制離子束自出口偏轉的幅度。例如,假設偏轉部分的總長度為L。說明實施例中所示三段分別為,L/4、L/2及L/4(即,第一及第三環的長度基本上相等,第二環的長度基本上等於第一及第三環的長度的兩倍)。若在中心(第二)段產生的磁場向量係發生轉動,因而使其與外側(第一及第三)段的磁場向量同方向後,該離子束將達到最大的偏轉,如第6A圖所示(即,產生離子束偏轉的最大幅度)。另一方面,若該中心段旋轉180度,使磁場向量(L/2長度者)與入口及出口處的磁場向量呈相反的方向,如第6B圖所示(即,與第一和第三環的磁場向量呈180度反向),則束的淨偏轉值為零(離子束偏轉幅度係零度)。本質上,這有效地在離子束通過磁偏轉裝置時,係產生一輕微的“減速彎道”,其中該束離開裝置時與其進入時,係位於同一直線上。注意,實施例中,由旋轉點的觀點而言,係可便於連接入口端至出口端,從而構成第一及第三環調整一致。
如上所述,調整偏轉部中心段和底段之間的相對角度,以控制束偏轉的幅度。此外,根據其中一或多個實施例,調整偏轉裝置的合併旋轉角度,以控制方位角方向的修正。另一方面,調整所有的第一、第二及第三環的合併旋轉角度,以控制離子束偏轉的方位角方向。實施例中,第一、第二及第三環通過一致地移動而視為單一組件,配置其為調整旋轉角度,然而亦可作其他安排(即, 協調各環的個別移動)。
以此方式,且參考第7A圖,當離子束通過圓筒形管(如參考第1至4圖)時,如上所述,束可通過多向束掃描系統(第5至6B圖)而偏轉,以一角度撞擊管的內壁,從而在內壁上產生大於離子束原橫截面面積之離子束作用面積,以及亦繞著管的內壁的圓周旋轉(轉動)以進一步增加作用面積,從而通過增加的作用面積吸收離子束的束功率。該配置在本發明所述之系統稱為“束收集”,係在安全地控制方式下消散離子束的能量。此外,在此模式中,管配置為法拉第杯,係可基於如上所述的法拉第杯測量值,以調整第一、第二及第三環之間相對角度及各環的合併旋轉角度。
值得注意的是,參考第7A及7B圖,本發明所述之系統可交替使用束收集模式和直通模式。例如,當進行目標基板的設置、更換、調整等動作時,係可使用束收集模式,以防止離子束離開管的底端及撞擊目標基板。也就是例如,在直通模式時,在離子束源相對的一端,管具有一個出口(例如,固定式開口或可移除的端帽),且離子束控制器指示離子束離開管而撞擊目標基板(即,以離子束的原橫截面)。此外,當管配置為法拉第杯時,在收集模式下,離子束係可基於獲得之測量值而進行調整,因此當束改變為直通模式(例如,通過旋轉/轉動磁體組件成“非彎”束)時,以所需的束配置撞擊目標基板,該目標基板位於管的底端外。通過簡單地改變磁偏轉分段之間的旋 轉角度,所述之配置可作為“可移動束收集”及“束輪廓測量”系統。此外,因磁性組件(例如,第一,第二和第三環)可置於整個清空的束腔的外部,該束腔係離子束行進通過者,故上述功能之實現,係於真空系統中無需具有任何可動式機械裝置。
亦應當注意的是,當束處於“直通”模式時,該體系結構係可作為“束轉向器”,如第7B圖所示。例如,束之任何輕微的角度偏差,均可通過適當地調整磁偏轉分段的旋轉角度,進行簡單地修正,特別是相對於第一及第三環的磁場向量,第二環的磁場向量係可以任何方向進行調整。注意,在簡化的實施例中,第二環的磁場向量被配置為是:i)與第一及第三環相同的磁場向量,或ii)係在與第一及第三環的磁場向量180度相反的方向上(例如,“鎖定”在兩個極端位置)。然而,根據前述之實施例,任何程度的旋轉角度之變化,係皆可有效地調整離子束的偏轉。此可作為特殊用途,使用於當束的目標(例如,晶片或基板)比照射束的橫截面大時,從而使束掃描整個目標的表面。注意在附加實施例中,附加的束控制系統係可置於管的出口端,以更加(例如,更廣泛)控制離子束。
雖然使用永久磁鐵的偏轉組件之實施例,係可於各式配置中旋轉,但替代(或附加)實施例在類似的方式中係使用電磁鐵。例如,離子束控制器包括電磁鐵系統,固定電磁鐵系統可配置為通過調整磁場強度、極性等,旋轉偏轉離子束。即,實施例中電磁鐵是固定的,且調整 並旋轉磁場,使束移動。
最好的是,其中所述之技術,係提供系統用於控制高功率離子束,例如用於離子佈植。特別是,其中所述之系統,係可轉向、測量、和/或消散高功率離子束的功率,且可聯合使用磁性束轉向系統。特別的是,其中所述之系統相較於常規束收集設計,該系統係小型且低廉的,例如,比旋轉盤或旋轉鼓系統小約十倍。又,其中所述之系統在真空系統的真空中無須設置可移動部件或水冷,因此避免旋轉真空密封件及旋轉水密封,且可在無移動部件的真空中,“射入”或“移出”束,係十分簡化束收集之操作。需注意,在實施例中仍可能通過旋轉管進行偏轉離子束的旋轉,因此,在該實施例中可能需要真空密封件、水/冷卻密封件等。
如第8圖所示,係可控制高功率離子束系統的簡化示意圖,包括:產生離子束的離子束源810、離子束控制器820、法拉第杯830以及束控制部件840,其中820可具有電腦822,其配置為分析來自法拉第杯830的測量訊號以及發送控制訊號至束控制部件840,840係如上所述之多方向束掃描系統。注意,束源810、控制器820、電腦822和/或束控制部件840可以任意組合共同設置,或通過通訊連結(例如,如圖所示之通訊通路/網路)互連個別(分離)裝置。
第9圖所示係說明離子束系統及目標晶片/基板之簡化示意圖。例如,離子束源(產生器)810配置為朝 向目標基板930產生離子束920a。經由通過束控制部件840(或“掃描器”),控制離子束920b撞擊目標基板930的特定XY範圍。注意,為要求在目標基板上具有所需的束大小(XY覆蓋範圍),束控制部件840可以漂移長度(距離)遠離目標基板930,例如,對單數的晶片或小批量的晶片(為較少覆蓋範圍而接近),或對較大之生產工具批量(為更多覆蓋範圍而更遠離)。
第10圖係說明控制高功率離子束之簡化程序1000,其為根據本說明書所述之一或多個實施例,特別是針對消散離子束的功率,及包括其他特徵。程序1000由步驟1005開始,至步驟1010,離子束(具原橫截面面積)自離子束源施加至圓柱形管的一端,於前述具較詳細說明。步驟1015,係可偏轉(例如,在“收集”模式)該離子束,使離子束以一角度撞擊管的內壁,從而在內壁上產生大於離子束原橫截面面積的作用面積。應注意,如上述,管可具有其他橫截面形狀,並且,進一步,角度的決定可基於該管的內部尺寸及所期望離子束在內壁的作用面積。步驟1020,係可繞著管的內壁的圓周旋轉偏轉離子束,從而增加離子束在內壁上的作用面積,因此通過在內壁的增加的作用面積吸收離子束的束功率。
應注意,該管係法拉第杯,步驟1025中從束功率撞擊內壁的離子束強度可如上述測定。例如,當內壁區分為多段,束功率撞擊多分段各部分的離子束強度可分別測量(例如,特別是當偏轉離子束掃描過多分段)。如 上所述通過使用法拉第杯,可測量關於強度、大小、形狀及方向的一或多離子束相關的訊息。(具體而言,在一或多實施例,質譜術可基於分別測量離子束強度進行執行)。此外,在步驟1030,係離子束可至少基於測量的離子束強度(例如,尺寸、形狀等)進行調整
一實施例中,在步驟1035,可引導離子束離開管(例如,“直通”模式)而撞擊目標,如在步驟1040自離子束佈植離子至結晶基板,使其在結晶基板的表面下形成剝離解理面,從而自結晶基板解理結晶薄片(如下所述)。
因此,程序1000說明結束在步驟1045,然而應注意係可在收集/測量模式和直通/佈植模式之間來回選擇,以及根據測量結果調整離子束。
此外,第11圖係根據本發明一或多實施例所述之控制離子束的簡化程序1100,特別是用於如上所述以多向束掃描系統控制束。程序1100由步驟1105開始,至步驟1110,前述具較詳細說明,離子束可通過第一、第二及第三調節環,各環配置磁鐵,以產生磁場向量。接著在步驟1115中,可調整第一、第二及第三環之間的相對角度,以控制離子束自出口偏轉的大小。例如,如上所述,可偏轉離子束以一角度撞擊管的內壁,使離子束在內壁上產生的作用面積大於離子的原橫截面面積。步驟1120係可調整一合併所有第一、第二及第三環之旋轉角度,以控制離子束偏轉的方位角方向(例如,旋轉/轉動整個磁組件)。 該方式中,如上所述,偏轉離子束可繞著管的內壁的圓周旋轉,從而增加離子束在內壁上的作用面積。簡化程序1100結束在步驟1125,然而應注意其具選擇控制離子束的大小及方位角方向。
應當注意,如上所述程序1000及1100其中某些步驟係可選的,第10至11圖所述步驟僅為範例說明,且係可根據所需包括或排除某些其他步驟。此外,儘管步驟係以特定順序所示,然而該順序僅係說明,且在不背離本發明所述實施例的範圍下,可對步驟做任何適當的布局。又,儘管程序1000及1100係分別描述,然而某些步驟係可結合至另一程序中,程序並不意味係互斥的。
應當注意的是,本發明中之技術係可使用任何離子束系統,尤其係具高功率束者。例如,一實施例中指示管新興之質子離子束至鋰目標,以提供中子源,該中子源由鋰(p,n)核反應產生。普遍認為該反應係用於硼中子捕獲治療(BNCT)的主要中子產生反應。該治療需要高功率質子加速器技術,該技術能可靠地產生及控制能量高達2.5MeV的20至30mA質子束。
上述另一實施例中,離子佈植係使用於剝離目標基板層的層剝離過程中。即,如上所述,管係具有出口,其可允許引導離子束離開管而撞擊目標結晶基板,自離子束佈植離子至結晶基板,從而在結晶基板的表面下產生剝離解理面,使結晶薄層自結晶基板解理。
例如,層剝離過程的說明係可包括:提供 目標基板為供體,且佈植離子劑量穿過供體的表面。採用該佈植法,在供體表面下方形成解理面,從而可使供體自解理面剝離薄層。離子劑量係可包括,例如,氫、氦或其組合。佈植條件可依所需改變,以產生含目標特性的特定薄層(例如,藍寶石層),如厚度及強度。例如,離子劑量係可介於1.0×1014至1.0×1018H/cm2間任何劑量,例如,0.5至3.0×1017H/cm2。亦可改變劑量強度,例如約500keV至3MeV之間。某些實施例中,可控制離子佈植溫度約在200至950℃之間,例如300至800℃或550至750℃之間。又某些實施例中,佈植溫度係可基於特定材料類型及供體的定向進行調整。其他可調整之佈植條件係包括初始過程參數,例如佈植劑量及佈植離子的比例(如氫/氦離子比)。其他實施例中,係可與剝離條件組合而優化佈植條件,剝離條件例如,剝離溫度、剝離基座的真空鍍,加熱速率和/或剝離壓力。例如,玻璃溫度可在約400℃至約1200℃間變化。通過調整佈植及剝離條件,可最大化所得之薄層的面積,其基本上無物理缺陷。所得之剝離層視所需可進一步處理,例如產生平滑的最終表面。
具體實施例,其中所述之系統係可使用比常規技術更高之電壓加速離子(例如,氫)至足夠快的速度,使其穿透至基板(例如,藍寶石)表面下所需的深度。例如,產生能量達2MeV的氫離子束,且具有高強度(例如,電流達50mA)。該等高電流係滿足大規模量產藍寶石薄層的生產性及目標成本所需。除管內的真空環境,整個 系統可使用加壓氣體,例如SF6,封裝於高壓槽中,其具良好的電絕緣特性,使其可在高電壓下操作。又,一具體實施例,在加速器(束產生器)後產生,束可經由分析磁鐵聚焦及偏轉45度,該分析磁鐵過濾所有多餘的離子。經此方法,輸送至處理腔的束純度大於99.9%。
本發明係可用於製備電子裝置的蓋板。具體實施例係,該方法包括以下步驟:提供供體,如藍寶石,由離子劑量佈植入供體表面,在表面下方形成解理面,沿解理面自供體剝離薄層,以及以該薄層形成蓋板,且其厚度小於50微米。優選的係離子劑量包含氫或氦離子。
例如,使用於目前許多類型的移動電子設備,該設備包括至少部分透明的顯示螢幕組件。例如,手持電子設備,如:媒體播放器、行動電話(手機)、個人數據助理(PDA)、尋呼機,以及平板電腦和筆記型電腦。顯示螢幕組件可包括多部件層,例如,視覺顯示層,如液晶顯示器(LCD)、使用者輸入用之觸控感應層以及至少一層外覆蓋層用於保護視覺顯示。該等層係一般而言層壓或黏結一起。
許多目前使用的移動電子設備受到過度的機械和/或化學性損傷,特別是操作不慎和/或滴液;物品與螢幕碰撞,如用戶的口袋或錢包中的鑰匙;或頻繁地觸控屏用法。例如,智慧型手機及PDA的觸控螢幕表面及界面因擦傷而磨損,該擦傷係經由劃傷及物理性凹陷用戶界面,而該等磨損係可為應力集中作用點,在更機械性或其 他衝擊事件中,使螢幕和/或底層組件更易破裂。此外,自使用者皮膚或其他碎片而來的油,係可覆蓋表面且進一步促使裝置的降解。該等磨損及化學作用係導致底層電子螢幕部件的視覺清晰度降低,因此潛在妨礙設備的使用和享受以及限制其使用期限。
使用各式方法與材料,以增加移動電子設備顯示螢幕的耐久性。例如,聚合物塗料或層應用於觸控螢幕表面作為對抗降解的屏障。然而,該等層係干擾底層電子部件的視覺清晰度以及干擾觸控螢幕的敏感度。此外,由於塗層材料通常亦是軟材質,其本身容易損壞,需要定期更換或限制設備的使用期限。
另一常見之方法係使用更高度化學和耐劃傷材料作為顯示螢幕的表面。例如,一些移動設備的觸敏螢幕係包括化學強化的含鹼鋁硅酸鹽玻璃層,以鉀離子取代鈉離子而增強的硬度,如康寧的“大猩猩玻璃”。然而,即使係該等類型的玻璃,係仍被許多堅硬的材料劃傷,進一步,玻璃係容易發生脆性破壞或碎裂。亦建議及使用藍寶石作為顯示部件的外層材料或作為單獨的保護片,應用於顯示螢幕。然而,藍寶石相對而言係昂貴的,尤其是目前可用的藍寶石層,其厚度難以作為超薄層使用。
因此,使用本發明之小型磁掃描系統係提供離子佈植,其可用於剝離一或多藍寶石層,且厚度小於50微米,例如小於30微米,例如小於25微米,以及例如小於15微米。
前面所述之本發明的優選實施例其目的係為說明及描述。並非旨在窮盡或限制本發明為所揭露的精確形式。根據上述的指導各式修改及變化係可能的,或可自本發明的實踐中獲得。實施例的選擇和說明係為解釋本發明及其實際應用的原理,其係為使本技術領域具有通常知識者能利用本發明的各式實施例與各式修改,從而適用於預期的特定用途。例如,雖然顯示及描述圓柱形管,然而明確預期可能係各式的橫截面,如方形、矩形、橢圓形、三角形等,並且管的尺寸沿管長不一定係均勻的(例如,部分更寬或更窄,部分係圓形或方形等)。應當注意的是,作為法拉第杯進行測量和分析時,不同的形狀(例如,內壁層係平面)可提供更高的準確性。又,雖然優選實施例係作為束周圍管,在“直通”模式時,使用大致平行於束之吸收板,類似於如上所述之管的內壁的方法,偏轉束撞擊該板。因此其旨在由申請專利範圍及其等同物而界定本發明的範圍。

Claims (68)

  1. 一種控制離子束之方法,該方法包括:自離子束源賦予離子束至圓柱形管之一端,該離子束具有原橫截面面積;偏轉該離子束,使其以一角度撞擊該管的內壁,從而使該離子束在該內壁上產生大於該原橫截面面積之作用面積;以及繞著該管的該內壁的圓周旋轉該偏轉的離子束,從而增加該離子束在該內壁上之該作用面積;其中,該離子束的束功率由該內壁上的該增加之作用面積吸收。
  2. 如申請專利範圍第1項所述之方法,其中,該管係法拉第杯,該方法復包括:測量撞擊該內壁的該束功率的離子束強度。
  3. 如申請專利範圍第2項所述之方法,其中,該內壁區分為複數個段,該方法復包括:分別地測量撞擊該複數個段的個別段的該束功率的離子束強度。
  4. 如申請專利範圍第3項所述之方法,復包括:基於該分別地測量的離子束強度,決定與該離子束的尺寸、形狀以及方向的一個或多個相關之資訊。
  5. 如申請專利範圍第3項所述之方法,復包括:掃描通過該複數個段的該偏轉的離子束;以及,基於在該複數個段的特定一者上隨著時間經過所掃描的該偏轉的離子束,測量離子束資訊。
  6. 如申請專利範圍第3項所述之方法,復包括:基於該分別地測量的離子束強度,實施質譜術。
  7. 如申請專利範圍第2項所述之方法,復包括:基於至少該測量的離子束強度,調整該離子束。
  8. 如申請專利範圍第1項所述之方法,復包括:基於該管的內部尺寸及該離子束在該內壁上期望的作用面積,決定該角度。
  9. 如申請專利範圍第1項所述之方法,其中,該管具有出口,該出口係位於相對於該離子束源之一端,該方法復包括:引導該離子束離開該管,並以該離子束撞擊目標。
  10. 如申請專利範圍第9項所述之方法,其中,該目標係結晶基板,該方法復包括:自該離子束佈植離子至該結晶基板,從而在該結晶基板的表面下方形成剝離解理平面,以將結晶薄板自該結晶基板解理。
  11. 如申請專利範圍第1項所述之方法,其中,係使用多向束掃描系統實施偏轉該離子束及旋轉該偏轉的離子束。
  12. 如申請專利範圍第11項所述之方法,復包括:使用作為該多向束掃描系統的第一、第二和第三調節環,該第一、第二和第三調節環定義孔,該孔係配置允許該離子束的通道,各環配置磁鐵,以產生磁場向量,該第一環係最接近該離子束通道之入口,該第三環係最接近該離子束通道的出口,而該第二環係在該第一及第三環之間;調整該第一、第二及第三環間的相對角度,以控制自該出口的離子束偏轉的大小;以及,調整該第一、第二及第三環的合併旋轉角度,以控制該離子束偏轉的方位角方向。
  13. 如申請專利範圍第11項所述之方法,其中,該多向束掃描系統係置於該離子束通過之清空的束腔的外側。
  14. 如申請專利範圍第1項所述之方法,其中,係使用電磁系統實施偏轉該離子束。
  15. 如申請專利範圍第1項所述之方法,其中,係使用固定式電磁系統實施旋轉該偏轉的離子束。
  16. 如申請專利範圍第1項所述之方法,其中,係以旋轉該管而實施旋轉該偏轉的離子束。
  17. 如申請專利範圍第1項所述之方法,其中,該管係包括銅外管,該銅外管的內壁內襯石墨。
  18. 如申請專利範圍第1項所述之方法,復包括:自該管的外部液體冷卻該管。
  19. 如申請專利範圍第1項所述之方法,其中,該離子束的該束功率的強度係約80至120kW。
  20. 一種控制離子束之系統,該系統包括:圓柱形管;離子束源,配置為賦予離子束進入該圓柱形管之一端,該離子束係具有原橫截面面積;以及離子束控制器,配置為:偏轉離子束,使其以一角度撞擊該管的內壁,從而使該離子束在該內壁上產生大於該原橫截面面積之作用面積;以及繞著該管的該內壁的圓周旋轉該偏轉的離子束,從而增加該離子束在該內壁上之該作用面積,其中,該離子束的束功率由該內壁上的該增加之作用面積吸收。
  21. 如申請專利範圍第20項所述之系統,其中,該管係法拉第杯,該系統復包括:法拉第杯分析器,係配置為測量撞擊該內壁的該束功度的離子束強度。
  22. 如申請專利範圍第21項所述之系統,其中,該內壁區分為複數個段,該法拉第杯分析器復配置為分別地測量撞擊該複數個段的個別段的該束功率的離子束強度。
  23. 如申請專利範圍第22項所述之系統,其中,該法拉第杯分析器復配置為基於該分別地測量的離子束強度,決定與該離子束的尺寸、形狀以及方向的一個或多個相關之資訊。
  24. 如申請專利範圍第21項所述之系統,其中,該離子束控制器復配置為掃描通過該複數個段的該偏轉的離子束,以及其中,該法拉第杯分析器復配置為基於在該複數個段的特定一者上隨著時間經過所掃描的該偏轉的離子束,測量離子束資訊。
  25. 如申請專利範圍第21項所述之系統,其中,該法拉第杯分析器復配置為基於該分別地測量的離子束強度實施質譜術。
  26. 如申請專利範圍第21項所述之系統,其中,該離子束控制器復配置為基於至少該測量的離子束強度調整該離子束。
  27. 如申請專利範圍第20項所述之系統,其中,該角度係基於該管的內部尺寸及在該離子束在該內壁上的期望作用面積。
  28. 如申請專利範圍第20項所述之系統,其中,該管具有出口,該出口係位於相對於該離子束源之一端,該離子束控制器復配置為引導該離子束離開該管,並以該離子束源的該原橫截面面積撞擊目標。
  29. 如申請專利範圍第28項所述之系統,其中,該目標係結晶基板,以及其中,撞擊該目標自該離子束佈植離子至該結晶基板,從而在該結晶基板的表面下方形成剝離解理平面,以將結晶薄板自該結晶基板解理。
  30. 如申請專利範圍第20項所述之系統,其中,該離子束控制器係包括多向束掃描系統。
  31. 如申請專利範圍第30項所述之系統,其中,該多向束掃描系統係包括:第一、第二和第三調節環,定義孔,該孔係配置為允許離子束的通道,各環配置磁鐵,以產生磁場向量,該第一環係最接近該離子束通道之入口,該第三環係最接近的該離子束通道的出口,而該第二環係在該第一及第三環之間;其中,調整該第一、第二及第三環間的相對角度控制控制自該出口的離子束偏轉的大小;以及其中,調整該第一、第二及第三環的合併旋轉角度控制該離子束偏轉的方位角方向。
  32. 如申請專利範圍第30項所述之系統,其中,該多向束掃描系統係置於該離子束通過之清空的束腔的外側。
  33. 如申請專利範圍第20項所述之系統,其中,該離子束控制器係包括電磁系統。
  34. 如申請專利範圍第33項所述之系統,其中,該電磁系統係包括固定式電磁系統,配置為旋轉該偏轉的離子束。
  35. 如申請專利範圍第20項所述之系統,其中,該離子束控制器係配置為藉由旋轉該管,以旋轉該偏轉的離子束。
  36. 如申請專利範圍第20項所述之系統,其中,該管係包括銅外管,該銅外管的內壁內襯石墨。
  37. 如申請專利範圍第20項所述之系統,復包括:液體冷卻系統,係配置為自該管的外部液體冷卻該管。
  38. 如申請專利範圍第20項所述之系統,其中,該離子束的束功率的強度係約80至120kW。
  39. 一種多向離子束掃描裝置,係包括:第一、第二和第三調節環,定義孔,該孔係配置為允許離子束的通道,各環配置磁鐵,以產生磁場向量,該第一環係最接近該離子束通道之入口,該第三環係最接近的該離子束通道的出口,而該第二環係在該第一及第三環之間;其中,調整該第一、第二及第三環間的相對角度控制自該出口離子束偏轉的大小;以及,其中,調整該第一、第二及第三環的合併旋轉角度控制該離子束偏轉的方位角方向。
  40. 如申請專利範圍第39項所述之裝置,其中,該第一及第三環配置為調整係一致。
  41. 如申請專利範圍第39項所述之裝置,其中,該第一及第三環之第一長度基本上係相等。
  42. 如申請專利範圍第41項所述之裝置,其中,該第二環之第二長度基本上係該第一長度的兩倍。
  43. 如申請專利範圍第39項所述之裝置,其中,該第一、第二及第三環係置於該離子束通過之清空的束腔的外側。
  44. 如申請專利範圍第39項所述之裝置,其中,該第二環的磁場向量與該第一及第三環的磁場向量係同方向產生最大的離子束偏轉,以及其中,該第二環的磁場向量的方向係180度反向於該第一及第三環產生0度的離子束偏轉。
  45. 如申請專利範圍第44項所述之裝置,其中,該第二環的該磁場向量僅配置為i)係與該第一及第三環的磁場向量相同或ii)係180度反向於該第一及第三環的磁場向量。
  46. 如申請專利範圍第45項所述之裝置,其中,該第二環的磁場向量係可調整為相對於該第一及第三環的任何方向。
  47. 如申請專利範圍第39項所述之裝置,其中,該第一、第二及第三環係配置為藉由如單一部件一致行動以調整該旋轉角度。
  48. 如申請專利範圍第39項所述之裝置,其中,該離子束通過圓柱形管,其中,該裝置配置為:偏轉離子束,使其以一角度撞擊該管的內壁,從而使該離子束在該內壁上產生大於該離子束的原橫截面面積之作用面積;以及,繞著該管的該內壁的圓周旋轉該偏轉的離子束,從而增加該離子束在該內壁上之作用面積,其中,該離子束的束功率由該內壁上的該增加之作用面積吸收。
  49. 如申請專利範圍第48項所述之裝置,其中,該管配置為法拉第杯,該法拉第杯係測量束強度、形狀、尺寸及方向的一或多個,以及其中,該裝置配置為基於該法拉第杯的測量,以進行下述其一或二者之調整,i)該第一、第二及第三環間的相對角度及ii)該第一、第二及第三環的合併旋轉角度,其係。
  50. 如申請專利範圍第39項所述之裝置,其中,該磁鐵包括永久磁鐵。
  51. 如申請專利範圍第39項所述之裝置,其中,磁鐵包括具有可調整磁場強度的電磁鐵。
  52. 如申請專利範圍第51項所述之裝置,其中,該電磁具有可調極性。
  53. 如申請專利範圍第51項所述之裝置,其中,該電磁係固定的,並且配置為無移動該第一、第二及第三環下,進行下述其一或二者之調整,i)該第一、第二及第三環間的相對角度及ii)該第一、第二及第三環的合併旋轉角度。
  54. 一種控制離子束之方法,該方法係包括:離子束通過第一、第二及第三調整環,各環配置磁鐵,以產生磁場向量,該第一環係最接近離子束通道之入口,該第三環係最接近該離子束通道的出口,而該第二環係在該第一及第三環之間;其中,調整該第一、第二及第三環間的相對角度,以控制自該出口的離子束偏轉的大小;以及,其中,調整該第一、第二及第三環的合併旋轉角度,以控制該離子束偏轉的方位角方向。
  55. 如申請專利範圍第54項所述之方法,復包括:調整該第一及第三環配置係一致。
  56. 如申請專利範圍第54項所述之方法,其中,該第一及第三環之第一長度基本上係相等。
  57. 如申請專利範圍第56項所述之方法,其中,該第二環之第二長度基本上係該第一長度的兩倍。
  58. 如申請專利範圍第54項所述之方法,其中,該第一、第二及第三環係置於該離子束通過之清空的束腔的外側。
  59. 如申請專利範圍第54項所述之方法,其中,該第二環的磁場向量與該第一及第三環係同方向產生最大的離子束偏轉,以及其中,該第二環的磁場向量的方向180度反向於該第一及第三環產生0度的離子束偏轉。
  60. 如申請專利範圍第59項所述之方法,其中,該第二環的磁場向量僅配置為i)係與該第一及第三環的磁場向量相同或ii)180度反向於該第一及第三環的磁場向量。
  61. 如申請專利範圍第59項所述之方法,其中,該第二環的磁場向量係可調整為相對於該第一及第三環的任何方向。
  62. 如申請專利範圍第54項所述之方法,復包括:藉由移動該第一、第二及第三環一致行動如單一部件,以調整該旋轉角度。
  63. 如申請專利範圍第54項所述之方法,其中,該離子束通過圓柱形管,其中,該方法復包括:偏轉離子束,使其以一角度撞擊該管的內壁,從而使該離子束在該內壁上產生大於原橫截面面積之作用面積;以及繞著該管的該內壁的圓周旋轉該偏轉的離子束,從而增加該離子束在該內壁上之該作用面積,其中,該離子束的束功率由該內壁上的該增加之作用面積吸收。
  64. 如申請專利範圍第63項所述之方法,其中,該管配置為法拉第杯,該法拉第杯係測量束強度、形狀、尺寸及方向的一或多個,以及其中,該方法復包括:基於該法拉第杯的測量,進行下述其一或二者之調整,i)該第一、第二及第三環間的相對角度以及ii)該第一、第二及第三環的合併旋轉角度。
  65. 如申請專利範圍第54項所述之方法,其中,該磁鐵包括永久磁鐵。
  66. 如申請專利範圍第54項所述之方法,其中,該磁鐵包括電磁鐵,該方法復包括:調整該電磁的磁場強度。
  67. 如申請專利範圍第66項所述之方法,復包括:調整該電磁鐵的極性。
  68. 如申請專利範圍第66項所述之方法,其中,該電磁鐵係固定的,該方法復包括:經由控制固定式電磁鐵,在無移動該第一、第二及第三環下,進行下述其一或二者之調整,i)該第一、第二及第三環間的相對角度及ii)該第一、第二及第三環的合併旋轉角度。
TW104122267A 2014-07-11 2015-07-09 用於控制離子束的方法和系統、及多向離子束掃描裝置 TWI671779B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462023526P 2014-07-11 2014-07-11
US62/023,526 2014-07-11

Publications (2)

Publication Number Publication Date
TW201603099A TW201603099A (zh) 2016-01-16
TWI671779B true TWI671779B (zh) 2019-09-11

Family

ID=55064809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104122267A TWI671779B (zh) 2014-07-11 2015-07-09 用於控制離子束的方法和系統、及多向離子束掃描裝置

Country Status (3)

Country Link
US (1) US9887066B2 (zh)
TW (1) TWI671779B (zh)
WO (1) WO2016007588A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6820352B2 (ja) * 2016-05-12 2021-01-27 ニュートロン・セラピューティクス・インコーポレイテッドNeutron Therapeutics Inc. 中性子発生装置のためのイオンビームフィルタ
TWI614042B (zh) * 2016-12-02 2018-02-11 財團法人工業技術研究院 中子束源產生器及其濾屏
US10468148B2 (en) 2017-04-24 2019-11-05 Infineon Technologies Ag Apparatus and method for neutron transmutation doping of semiconductor wafers
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
US11476084B2 (en) * 2019-09-10 2022-10-18 Applied Materials, Inc. Apparatus and techniques for ion energy measurement in pulsed ion beams

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090084757A1 (en) * 2007-09-28 2009-04-02 Yuri Erokhin Uniformity control for ion beam assisted etching
US20100237232A1 (en) * 2009-03-18 2010-09-23 Jiong Chen Apparatus & method for ion beam implantation using scanning and spot beams with improved high dose beam quality
US7982195B2 (en) * 2004-09-14 2011-07-19 Axcelis Technologies, Inc. Controlled dose ion implantation
US20130146451A1 (en) * 2011-12-07 2013-06-13 Intermolecular, Inc. Magnetic Confinement and Directionally Driven Ionized Sputtered Films For Combinatorial Processing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8655431B2 (en) 2011-05-31 2014-02-18 Vanderbilt University Apparatus and method for real-time imaging and monitoring of an electrosurgical procedure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982195B2 (en) * 2004-09-14 2011-07-19 Axcelis Technologies, Inc. Controlled dose ion implantation
TWI387993B (zh) * 2004-09-14 2013-03-01 Axcelis Tech Inc 用於離子植入器之裝置及用於實施離子植入之方法
US20090084757A1 (en) * 2007-09-28 2009-04-02 Yuri Erokhin Uniformity control for ion beam assisted etching
US20100237232A1 (en) * 2009-03-18 2010-09-23 Jiong Chen Apparatus & method for ion beam implantation using scanning and spot beams with improved high dose beam quality
US20130146451A1 (en) * 2011-12-07 2013-06-13 Intermolecular, Inc. Magnetic Confinement and Directionally Driven Ionized Sputtered Films For Combinatorial Processing

Also Published As

Publication number Publication date
US20170178859A1 (en) 2017-06-22
TW201603099A (zh) 2016-01-16
WO2016007588A1 (en) 2016-01-14
US9887066B2 (en) 2018-02-06

Similar Documents

Publication Publication Date Title
TWI671779B (zh) 用於控制離子束的方法和系統、及多向離子束掃描裝置
TWI364787B (en) Faraday dose and uniformity monitor for plasma based ion implantation
EP2720518B1 (en) Plasma-generating source comprising a belt-type magnet, and thin-film deposition system using same
US8664098B2 (en) Plasma processing apparatus
TWI415159B (zh) 離子植入系統以及離子束角度測量裝置
KR101097329B1 (ko) 스퍼터링 장치
US20100255683A1 (en) Plasma processing apparatus
CN105551922B (zh) 一种SiC高温高能铝离子注入机
CN110024075B (zh) 用于在晶片中注入离子的方法和设备
Scandale et al. Observation of multiple volume reflection by different planes in one bent silicon crystal for high-energy negative particles
Ishii et al. Thermal barrier potential and two‐dimensional space‐potential measurements with gold neutral‐beam probes in GAMMA 10
CN104054155A (zh) 离子注入设备和注入离子的方法
Sytov et al. First design of a crystal-based extraction of 6 GeV electrons for the DESY II Booster Synchrotron
US8895945B2 (en) Dose measurement device for plasma-immersion ion implantation
Arredondo et al. SIESTA: a high current ion source for erosion and retention studies
KR20160038787A (ko) 플라즈마 처리 장치
Trivedi et al. Ion beam facilities at the national centre for accelerator based research using a 3 MV Pelletron accelerator
KR101403101B1 (ko) 선형 이온빔 발생장치
Stamate et al. Complex ion-focusing effect by the sheath above the wafer in plasma immersion ion implantation
JPH1060641A (ja) 傾斜ターゲット型マグネトロンスパッタ装置
KR102391045B1 (ko) 전자빔 방출 소스를 이용한 플라즈마 장치
Tynan et al. Nonlinear dynamics of shear flows and plasma rotation in a simple laboratory plasma system
Nakashima et al. Research plan for divertor simulation studies and its recent results using the GAMMA 10 tandem mirror
Murali et al. Ion flux mapping in an inertial-electrostatic confinement device using a chordwire diagnostic
CN101922046A (zh) 一种等离子体浸没注入装置