TWI671760B - Memory circuit and method for operating three-dimentional cross point memory array - Google Patents

Memory circuit and method for operating three-dimentional cross point memory array Download PDF

Info

Publication number
TWI671760B
TWI671760B TW107134197A TW107134197A TWI671760B TW I671760 B TWI671760 B TW I671760B TW 107134197 A TW107134197 A TW 107134197A TW 107134197 A TW107134197 A TW 107134197A TW I671760 B TWI671760 B TW I671760B
Authority
TW
Taiwan
Prior art keywords
access line
layer
access
layers
memory
Prior art date
Application number
TW107134197A
Other languages
Chinese (zh)
Other versions
TW202008357A (en
Inventor
何信義
龍翔瀾
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Application granted granted Critical
Publication of TWI671760B publication Critical patent/TWI671760B/en
Publication of TW202008357A publication Critical patent/TW202008357A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/10Decoders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • G11C5/063Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

一種積體電路,包括三維交叉點記憶體陣列,此三維交叉點記憶體陣列具有設置在N個第一存取線層和P個第二存取線層的交叉點處的M層的記憶胞。此積體電路還包括第一和第二組的第一存取線驅動器。第一組第一存取線驅動器可操作地耦接以將共第一操作電壓施加到奇數的第一存取線層中所選擇的第一存取線。第二組第一存取線驅動器可操作地耦合以將共第一操作電壓施加到偶數的第一存取線層中所選擇的第一存取線。多組的第二存取線驅動器可操作地配置來將第二操作電壓施加到所選擇的第二存取線層中所選擇的第二存取線。An integrated circuit includes a three-dimensional cross-point memory array, and the three-dimensional cross-point memory array has M layers of memory cells arranged at the intersections of N first access line layers and P second access line layers . The integrated circuit also includes first and second sets of first access line drivers. A first set of first access line drivers are operatively coupled to apply a total first operating voltage to a selected first access line in an odd number of first access line layers. A second set of first access line drivers are operatively coupled to apply a common first operating voltage to a selected first access line in an even number of first access line layers. Multiple sets of second access line drivers are operatively configured to apply a second operating voltage to a selected second access line in a selected second access line layer.

Description

記憶體電路以及用於操作三維交叉點記憶體陣列的方法Memory circuit and method for operating three-dimensional intersection memory array

本發明一般涉及積體電路。更具體地,本發明是有關於交叉點記憶體裝置和交叉點記憶體裝置中的解碼操作。 The present invention relates generally to integrated circuits. More specifically, the present invention relates to a decoding operation in a cross-point memory device and a cross-point memory device.

在三維(3D)交叉點記憶體陣列中,多個記憶胞彼此垂直堆疊以增加在可用於儲存資料的區域中的儲存量。記憶胞設置在交錯排列的第一存取線(例如,位線或字線)和第二存取線(例如,字線或位線)的交叉點處。包括在3D交叉點記憶體陣列中的記憶胞的範例包括磁阻隨機存取記憶體(MRAM)、電阻隨機存取記憶體(RRAM)、鐵電隨機存取記憶體(FRAM)、氧化矽-氮化物-氧化物半導體記憶體、聚合物記憶體和相變記憶體。 In a three-dimensional (3D) cross-point memory array, multiple memory cells are stacked vertically on top of each other to increase the amount of storage in an area available for storing data. The memory cells are disposed at intersections of the first access lines (for example, bit lines or word lines) and the second access lines (for example, word lines or bit lines) that are staggered. Examples of memory cells included in a 3D cross-point memory array include magnetoresistive random access memory (MRAM), resistive random access memory (RRAM), ferroelectric random access memory (FRAM), Nitride-oxide semiconductor memory, polymer memory, and phase change memory.

各種電路(有時稱為周邊電路)可用來在3D交叉點記憶體陣列中從記憶胞中讀取資料並且在記憶胞中寫入資料。範例包括感測放大器、解碼器、通道閘(pass gate)、驅動器、緩衝器、 寄存器等。解碼器連接到用於存取線的驅動器,通過驅動器將操作電壓施加到所選擇的記憶胞以進行讀取和寫入操作。解碼器佔用的區域取決於在3D交叉點記憶體陣列中的第一存取線和第二存取線的數量。堆疊更多的記憶體陣列或在3D交叉點記憶體陣列中增加更多層的記憶胞會導致解碼器更大。較大的解碼器可能很複雜,需要更多區域。 Various circuits (sometimes called peripheral circuits) can be used to read data from and write data to memory cells in a 3D cross-point memory array. Examples include sense amplifiers, decoders, pass gates, drivers, buffers, Registers, etc. The decoder is connected to a driver for the access line, and an operating voltage is applied to the selected memory cell by the driver for reading and writing operations. The area occupied by the decoder depends on the number of first access lines and second access lines in the 3D crosspoint memory array. Stacking more memory arrays or adding more layers of memory cells to a 3D crosspoint memory array will result in a larger decoder. Larger decoders can be complex and require more areas.

提供3D交叉點記憶體陣列較小且較不複雜的解碼器是被期待的。 It is expected to provide a smaller and less complex decoder for a 3D crosspoint memory array.

本揭露描述了一種積體電路,其包括具有M個或更多個層的記憶胞的3D交叉點記憶體陣列,所述記憶胞設置在第一和第二存取線的交叉點處,其中解碼電路可在所述層之間被共享。 This disclosure describes an integrated circuit including a 3D cross-point memory array having memory cells of M or more layers, the memory cells being disposed at the intersections of the first and second access lines, wherein Decoding circuits may be shared between the layers.

3D交叉點記憶體陣列的特徵包括M個層、N個第一存取線層以及與N個第一存取線層交錯的P個第二存取線層,並且具有設置在其間的記憶胞。n從1到N的每個第一存取線層(n)包括用於對應行的記憶胞的多個第一存取線。p從1到P的每個第二存取線層(p)包括用於對應列的記憶胞的多個第二存取線。 The features of the 3D crosspoint memory array include M layers, N first access line layers, and P second access line layers interlaced with the N first access line layers, and have memory cells disposed therebetween. . Each of the first access line layers (n) from n to 1 includes a plurality of first access lines for a memory cell of a corresponding row. Each second access line layer (p) from p to 1 includes a plurality of second access lines for the memory cells of the corresponding column.

在此描述的實施例中,解碼器和驅動器電路被配置用以將操作電壓施加到所選擇和未選擇行的記憶胞中的第一存取線,並將操作電壓施加到所選擇和未選擇列的記憶胞中的第二存取線。 In the embodiment described herein, the decoder and driver circuits are configured to apply an operating voltage to the first access lines in the memory cells of the selected and unselected rows and to apply the operating voltage to the selected and unselected The second access line in the memory cell of the column.

如此所述,對於在陣列中的任何記憶胞的讀取操作來說,藉由向所選擇的第一存取線施加共操作電壓以及對具有多於一個構件的一組第一存取線層中未選擇的第一存取線施加共操作電壓,可減少用於在陣列中存取記憶胞的解碼負荷。因此,解碼負荷會被降低。 As described above, for any read operation of the memory cells in the array, by applying a common operating voltage to the selected first access line and applying a set of first access line layers with more than one component Applying a common operating voltage to the unselected first access line can reduce the decoding load for accessing the memory cells in the array. Therefore, the decoding load is reduced.

在此,將共操作電壓施加到多個存取線(即,具有多於一個構件的一組的構件)意味著多個存取線在對陣列中的任何記憶胞的讀取操作中接收到相同的操作電壓,因此對於此讀取不需要獨立解碼。 Here, applying a common operating voltage to multiple access lines (i.e., a group of components with more than one component) means that multiple access lines are received in a read operation on any memory cell in the array The same operating voltage, so no independent decoding is required for this read.

因此,為選擇佈置在特定第一存取線與特定第二存取線的交叉點中的M層中的特定記憶胞,當特定第一存取線層是第一存取線組的構件時,解碼器和驅動器電路會被配置用以選擇一列的記憶胞來識別所選擇和未選擇的第一存取線,選擇一行的記憶胞來識別所選擇和未選擇的第二存取線,選擇該組第一存取線層來於識別包括特定第一存取線層的所選擇第一存取線層和未選擇第一存取線層,以及包括特定第二存取線層的一個或多個所選第二存取線層,以及未選擇的第二存取線層。在所描述的實施例中,此組第一存取線層包括奇數的第一存取線層(n),其中n為奇數。此外,解碼器和驅動器電路可以被配置用以將共操作電壓施加到第二組第一存取線層,其包括偶數的第一存取線層(n),其中n是偶數。 Therefore, in order to select a specific memory cell arranged in the M layer in the intersection of the specific first access line and the specific second access line, when the specific first access line layer is a component of the first access line group The decoder and driver circuits are configured to select a row of memory cells to identify the selected and unselected first access lines, a row of memory cells to identify the selected and unselected second access lines, select The set of first access line layers is used to identify a selected first access line layer and a non-selected first access line layer including a specific first access line layer, and one or A plurality of selected second access line layers, and an unselected second access line layer. In the described embodiment, the set of first access line layers includes an odd number of first access line layers (n), where n is an odd number. Furthermore, the decoder and driver circuits may be configured to apply a common operating voltage to a second set of first access line layers, which includes an even number of first access line layers (n), where n is an even number.

在一些實施例中,解碼器和驅動器電路被配置用以將共 操作電壓施加到具有多於一個構件的一組第二存取線層中所選擇的第二存取線。因此,減少了用於選擇第二存取線層以及用於選擇第一存取線層的解碼負荷。在一個範例中,此組第二存取線層包括頂部第二存取線層和底部第二存取線層,其包括層(p),其中p為1並且是用於M層陣列的M/2+1。 In some embodiments, the decoder and driver circuits are configured to convert the common An operating voltage is applied to a selected second access line in a set of second access line layers having more than one member. Therefore, the decoding load for selecting the second access line layer and for selecting the first access line layer is reduced. In one example, this set of second access line layers includes a top second access line layer and a bottom second access line layer, which includes a layer (p), where p is 1 and is M for an M-layer array / 2 + 1.

在一些實施例中,記憶胞可包括單向元件。在這些實施例中,甚至可以獲得存取線層之間解碼負荷的更大共享。例如,在解碼器和驅動器電路中的解碼器可以被配置用以將組合操作電壓施加到多組第二存取線層中的第二存取線,其中對於M層陣列來說此多個組包括每兩個第二存取線層的M/4組。 In some embodiments, the memory cell may include a unidirectional element. In these embodiments, even greater sharing of decoding load between access line layers can be obtained. For example, the decoder in the decoder and driver circuits may be configured to apply a combined operating voltage to a second access line in a plurality of sets of second access line layers, where for the M-layer array this plurality of sets Includes M / 4 groups of every two second access line layers.

本揭露還公開了一種以上述方式操作3D交叉點記憶體陣列的方法。 The disclosure also discloses a method for operating a 3D crosspoint memory array in the above manner.

透過檢閱附圖、詳細說明和申請專利範圍,可以看到本技術的其他方面和優點。 Other aspects and advantages of the technology can be seen by reviewing the drawings, detailed description, and scope of patent applications.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

100‧‧‧3D交叉點記憶體陣列 100‧‧‧3D Crosspoint Memory Array

101、102、103、104、105、106、107、108、109‧‧‧第二存取線 101, 102, 103, 104, 105, 106, 107, 108, 109‧‧‧ Second access line

111、112、113、114、115、116‧‧‧第一存取線 111, 112, 113, 114, 115, 116‧‧‧ First access line

121、122、123、124‧‧‧雙向記憶胞 121, 122, 123, 124‧‧‧ Two-way memory cells

161‧‧‧堆疊 161‧‧‧stack

171、172‧‧‧共享解碼器/驅動器 171, 172‧‧‧‧ Shared decoder / driver

151‧‧‧第一元件 151‧‧‧The first element

152‧‧‧第二元件 152‧‧‧Second Element

153‧‧‧記憶元件 153‧‧‧Memory element

202、203、204、204a、204b、204c、206‧‧‧驅動器 202, 203, 204, 204a, 204b, 204c, 206‧‧‧ drives

208‧‧‧驅動器選擇器 208‧‧‧Drive Selector

301、302、303、304、305‧‧‧第二存取線 301, 302, 303, 304, 305‧‧‧ Second access line

311、312、313、314‧‧‧第一存取線 311, 312, 313, 314‧‧‧ first access line

321、322、323、324、325、326、327、328‧‧‧雙向記憶胞 321, 322, 323, 324, 325, 326, 327, 328‧‧‧ two-way memory cells

351‧‧‧共享解碼器 351‧‧‧shared decoder

352、353、361、362、363、364、365‧‧‧驅動器 352, 353, 361, 362, 363, 364, 365‧‧‧ drives

371‧‧‧堆疊 371‧‧‧stack

401、402、403、404、405、406‧‧‧步驟 401, 402, 403, 404, 405, 406‧‧‧ steps

501、502、503、504、505、506、507、508、509‧‧‧第一存取線 501, 502, 503, 504, 505, 506, 507, 508, 509‧‧‧ first access line

511、512、513、514、515、516‧‧‧第二存取線 511, 512, 513, 514, 515, 516‧‧‧ second access line

521、522、523、524‧‧‧單向記憶胞 521, 522, 523, 524‧‧‧ one-way memory cells

561‧‧‧堆疊 561‧‧‧stack

571、572‧‧‧共享解碼器 571, 572‧‧‧ shared decoder

551‧‧‧第一元件 551‧‧‧First component

552‧‧‧第二元件 552‧‧‧Second Element

553‧‧‧記憶元件 553‧‧‧Memory element

554‧‧‧中間元件 554‧‧‧Intermediate element

555‧‧‧方向元件 555‧‧‧Direction element

602、603、605‧‧‧驅動器 602, 603, 605‧‧‧ drives

701、702、703、704、705‧‧‧第一存取線 701, 702, 703, 704, 705‧‧‧ first access line

711、712、713、714‧‧‧第二存取線 711,712,713,714‧‧‧Second Access Line

721、722、723、724、725、726、727、728‧‧‧單向記憶胞 721, 722, 723, 724, 725, 726, 727, 728‧‧‧ one-way memory cells

751‧‧‧共享解碼器 751‧‧‧shared decoder

752、753‧‧‧驅動器 752, 753‧‧‧Drive

761‧‧‧共享解碼器 761‧‧‧shared decoder

762、763‧‧‧驅動器 762, 763‧‧‧Drive

771‧‧‧堆疊 771‧‧‧ stacked

800‧‧‧3D交叉點記憶體陣列 800‧‧‧3D Crosspoint Memory Array

801‧‧‧共享層解碼器 801‧‧‧shared layer decoder

802‧‧‧用於第二存取線層的共享解碼器 802‧‧‧Shared decoder for the second access line layer

803‧‧‧用於第一存取線層的共享解碼器 803‧‧‧shared decoder for the first access line layer

805‧‧‧匯流排 805‧‧‧Bus

806‧‧‧區塊 806‧‧‧block

807‧‧‧匯流排 807‧‧‧Bus

808‧‧‧控制電路 808‧‧‧Control circuit

821‧‧‧資料輸入線 821‧‧‧Data input line

822‧‧‧資料輸出線 822‧‧‧Data output line

850‧‧‧積體電路 850‧‧‧Integrated Circuit

L1‧‧‧第一層 L1‧‧‧First floor

L2‧‧‧第二層 L2‧‧‧The second floor

L3‧‧‧第三層 L3‧‧‧ Third floor

L4‧‧‧第四層 L4‧‧‧Fourth floor

L5‧‧‧第五層 L5‧‧‧Fifth floor

L6‧‧‧第六層 L6‧‧‧ Sixth floor

L7‧‧‧第七層 L7‧‧‧Seventh floor

L8‧‧‧第八層 L8‧‧‧eighth floor

圖1A和圖1B分別繪示具有雙向記憶胞的3D交叉點記憶體陣列和雙向記憶胞。 FIG. 1A and FIG. 1B respectively show a 3D cross-point memory array and a bidirectional memory cell with a bidirectional memory cell.

圖2A是以在具有四層的雙向記憶胞的3D交叉點記憶體陣 列中的共享第一和第二存取線解碼器來繪示單堆疊記憶胞中的第一和第二存取線的佈置。 FIG. 2A is a 3D cross-point memory array in a bidirectional memory cell with four layers The first and second access line decoders in the column are shared to show the arrangement of the first and second access lines in a single stacked memory cell.

圖2B繪示施加於具四層的雙向記憶胞的3D交叉點記憶體陣列中的第一和第二存取線上用於讀取操作的範例電壓。 FIG. 2B illustrates exemplary voltages applied to read operations on the first and second access lines in a 3D cross-point memory array with four layers of bidirectional memory cells.

圖2C繪示共享解碼器和驅動器電路的第一實施例。 FIG. 2C illustrates a first embodiment of a shared decoder and driver circuit.

圖2D繪示共享解碼器和驅動器電路的第二實施例。 FIG. 2D illustrates a second embodiment of a shared decoder and driver circuit.

圖3A繪示具有八層的雙向記憶胞的3D交叉點記憶體陣列中的第一和第二存取線以及共享第一和第二存取線解碼器的佈置。 FIG. 3A illustrates an arrangement of first and second access lines and a shared first and second access line decoder in a 3D crosspoint memory array having eight layers of bidirectional memory cells.

圖3B繪示施加於具有八層的雙向記憶胞的3D交叉點記憶體陣列中的單堆疊記憶胞中的第一和第二存取線上用於讀取操作的範例電壓。 FIG. 3B illustrates exemplary voltages applied to read operations on first and second access lines in a single stacked memory cell in a 3D cross-point memory array with eight layers of bidirectional memory cells.

圖4是繪示用於在具有雙向記憶胞的3D交叉點記憶體陣列的記憶胞中讀取資料的方法的流程圖。 FIG. 4 is a flowchart illustrating a method for reading data in a memory cell of a 3D cross-point memory array having a bidirectional memory cell.

圖5A和圖5B分別繪示具有單向記憶胞的3D交叉點記憶體陣列和單向記憶胞。 5A and 5B illustrate a 3D crosspoint memory array and a unidirectional memory cell with unidirectional memory cells, respectively.

圖6A繪示具有四層的單向記憶胞的3D交叉點記憶體陣列中的第一和第二存取線以及共享第一和第二存取線解碼器的佈置。 FIG. 6A illustrates an arrangement of first and second access lines and a shared first and second access line decoder in a 3D crosspoint memory array having four layers of unidirectional memory cells.

圖6B繪示施加於具有四層的單向記憶胞的3D交叉點記憶體陣列中的第一和第二存取線上用於讀取操作的範例電壓。 FIG. 6B illustrates exemplary voltages applied to read operations on the first and second access lines in a 3D crosspoint memory array having four layers of unidirectional memory cells.

圖7A繪示具有八層的單向記憶胞的3D交叉點記憶體陣列 的第一和第二存取線以及共享第一和第二存取線解碼器的佈置。 FIG. 7A illustrates a 3D cross-point memory array with eight layers of unidirectional memory cells Arrangement of first and second access lines and a shared first and second access line decoder.

圖7B繪示施加於具有八層的雙向記憶胞的3D交叉點記憶體陣列中的第一和第二存取線上用於讀取操作的範例電壓。 FIG. 7B illustrates exemplary voltages applied to read operations on the first and second access lines in a 3D crosspoint memory array having eight layers of bidirectional memory cells.

圖8是根據本發明的一實施例繪示的積體電路的概要方塊圖。 FIG. 8 is a schematic block diagram of an integrated circuit according to an embodiment of the present invention.

以下參考圖1-圖8提供本技術的實施例的詳細描述。 A detailed description of embodiments of the present technology is provided below with reference to FIGS. 1 to 8.

圖1A繪示具有雙向記憶胞(bidirectional memory cell)的3D交叉點記憶體陣列100。3D交叉點記憶體陣列100包括多個雙向記憶胞,其包括雙向記憶胞121、122、123、124。雙向記憶胞設置在沿列方向佈置的多個第一存取線111、112、113、114、115與116和沿行方向佈置的多個第二存取線101、102、103、104、105、106、107、108與109的交叉點處。列方向和行方向是正交方向或非平行方向,以致於能形成交叉點陣列。每個雙向記憶胞連接到特定的第一存取線和特定的第二存取線。例如,雙向記憶胞121連接到第一存取線111和第二存取線101。“雙向”記憶胞允許電流在連接到記憶胞的第一存取線與第二存取線之間的兩個方向上流動。例如,在雙向記憶胞121中,電流可以從第一存取線111(處於較正電壓)流到第二存取線101(處於較負電壓),或者從第二存取線101(處於較正電壓)流到第一存取線111(處於較負電壓)。 FIG. 1A illustrates a 3D crosspoint memory array 100 having a bidirectional memory cell. The 3D crosspoint memory array 100 includes a plurality of bidirectional memory cells, including bidirectional memory cells 121, 122, 123, 124. The bidirectional memory cells are provided in a plurality of first access lines 111, 112, 113, 114, 115, and 116 arranged in a column direction and a plurality of second access lines 101, 102, 103, 104, 105 arranged in a row direction. , 106, 107, 108, and 109. The column and row directions are orthogonal or non-parallel, so that an intersection array can be formed. Each bidirectional memory cell is connected to a specific first access line and a specific second access line. For example, the bidirectional memory cell 121 is connected to the first access line 111 and the second access line 101. A "bidirectional" memory cell allows current to flow in both directions between a first access line and a second access line connected to the memory cell. For example, in the bidirectional memory cell 121, current may flow from the first access line 111 (at a more positive voltage) to the second access line 101 (at a more negative voltage), or from the second access line 101 (at a more positive voltage) ) To the first access line 111 (at a relatively negative voltage).

如本揭露所述,M層的3D交叉點記憶體陣列(例如,堆疊161)中的記憶胞的“堆疊”包括直接堆疊在彼此之上的M個記憶胞,M例如為正整數。堆疊161包括堆疊在另一個之上的雙向記憶胞121、122、123和124。特定堆疊會藉由存取在多個記憶胞層中的特定列和特定行來被選擇。 As described in this disclosure, a "stack" of memory cells in a 3D intersection memory array (eg, stack 161) of M layers includes M memory cells directly stacked on top of each other, where M is a positive integer, for example. Stack 161 includes bi-directional memory cells 121, 122, 123, and 124 stacked on top of each other. A specific stack is selected by accessing specific columns and specific rows in multiple memory cell layers.

實作在圖1A的配置中的3D交叉點記憶體陣列可以具有多個層,並且每個層中具有多個第一存取線和第二存取線以用於非常高密度記憶體裝置的形成。在較佳實施例中,雙向記憶胞的層的數目M可以是2的倍數,例如,M=2、4、8、16、32或64。其他3D配置也可以被實作。具有M層的雙向記憶胞的3D交叉點記憶體陣列可具有N個第一存取線層,N例如為正整數,其中N=M/2。每個第一存取線層(n),包括多個第一存取線,n例如為正整數,其中n為1到M/2。具有M層的3D交叉點記憶體陣列還包括與N個第一存取線層交錯的P個第二存取線層,P例如為正整數,其中P=M/2+1。每個第二存取線層(p),包括多個第二存取線,p例如為正整數,其中對於p為1到M/2+1。 The 3D cross-point memory array implemented in the configuration of FIG. 1A may have multiple layers, and each layer may have multiple first and second access lines for use in a very high density memory device. form. In a preferred embodiment, the number M of layers of the bidirectional memory cell may be a multiple of 2, for example, M = 2, 4, 8, 16, 32, or 64. Other 3D configurations can also be implemented. A 3D cross-point memory array with M layers of bidirectional memory cells may have N first access line layers, where N is a positive integer, for example, where N = M / 2. Each first access line layer (n) includes a plurality of first access lines, where n is, for example, a positive integer, where n is 1 to M / 2. The 3D crosspoint memory array with M layers further includes P second access line layers interlaced with N first access line layers, where P is a positive integer, for example, where P = M / 2 + 1. Each second access line layer (p) includes a plurality of second access lines, where p is, for example, a positive integer, where 1 to M / 2 + 1 for p.

圖1A中的3D交叉點記憶體陣列包括M=4層的定向記憶胞(directional memory cell)、N=2個第一存取線層以及P=3個第二存取線層。3D交叉點記憶體陣列中的第一層的雙向記憶胞插入在包括第二存取線101、102和103的第二存取線層(SAL1)和包括第一存取線111、112和113的第一存取線層(FAL1)之間。3D交叉點記憶體陣列中的第二層的雙向記憶胞插入在包括第一存取 線111、112和113的第一存取線層(FAL1)和包括第二存取線104、105和106的第二存取線層(SAL2)之間。3D交叉點記憶體陣列中的第三層插入在包括第二存取線104、105和106的第二存取線層(SAL2)和包括第一存取線114、115和116的第一存取線層(FAL2)之間。3D交叉點記憶體陣列中的第四層插入在包括第一存取線114、115和116的第一存取線層(FAL2)和包括第二存取線107、108和109的第二存取線層(SAL3)之間。 The 3D crosspoint memory array in FIG. 1A includes M = 4 layers of directional memory cells, N = 2 first access line layers, and P = 3 second access line layers. The first bidirectional memory cell in the 3D cross-point memory array is inserted in the second access line layer (SAL1) including the second access lines 101, 102, and 103 and includes the first access lines 111, 112, and 113 Between the first access line layer (FAL1). The second layer of bidirectional memory cells in the 3D crosspoint memory array is inserted in the first access Between the first access line layer (FAL1) of the lines 111, 112, and 113 and the second access line layer (SAL2) including the second access lines 104, 105, and 106. The third layer in the 3D crosspoint memory array is inserted in the second access line layer (SAL2) including the second access lines 104, 105, and 106 and the first storage line including the first access lines 114, 115, and 116 Take the line layer (FAL2). The fourth layer in the 3D crosspoint memory array is inserted in the first access line layer (FAL2) including the first access lines 114, 115, and 116 and the second storage line including the second access lines 107, 108, and 109. Take the line layer (SAL3).

參考圖1A,實作在圖1A的配置中的M層的3D交叉點記憶體陣列是與解碼器和驅動器電路耦接,此解碼器和驅動器電路包括用於第一存取線層的共享解碼器/驅動器和用於第二存取線層的共享解碼器/驅動器線。解碼器包括回應位址(為清楚起見未在圖1A中繪示)的驅動器選擇電路,其可操作地耦接到驅動器,其將操作電壓施加到由驅動器選擇電路識別的存取線,其中操作電壓具有根據正被執行的操作的值。如本揭露所述,在多於一個層的存取線中用於存取線的驅動器組以共享方式可操作地耦接到解碼器,以致於它們將共操作電壓施加到它們對應的存取線。這降低了裝置的解碼負荷,允許較小或較不複雜的解碼電路。在多於一個層中用於存取線的驅動器組可以包括用於在多個層中每個層的每個存取線的一個驅動器,其可操作地耦接到解碼器以施加共操作電壓。在替代方案中,用在多於一個層中的存取線的驅動器組可包括多個共享驅動器,其中每個共享驅動器在多個層中的存取線上驅動共操作電壓,且在多個層中的每個層中包括一個存 取線。 Referring to FIG. 1A, the 3D cross-point memory array implemented in the M layer in the configuration of FIG. 1A is coupled to a decoder and driver circuit, and the decoder and driver circuit includes shared decoding for the first access line layer Driver / driver and shared decoder / driver line for the second access line layer. The decoder includes a driver selection circuit that responds to an address (not shown in FIG. 1A for clarity), which is operatively coupled to the driver, which applies an operating voltage to an access line identified by the driver selection circuit, where The operation voltage has a value according to an operation being performed. As described in this disclosure, driver groups for access lines in more than one layer of access lines are operatively coupled to the decoder in a shared manner such that they apply a common operating voltage to their corresponding accesses line. This reduces the decoding load of the device, allowing smaller or less complex decoding circuits. A driver set for access lines in more than one layer may include one driver for each access line of each of the multiple layers, which is operatively coupled to the decoder to apply a common operating voltage . In the alternative, a driver set of access lines used in more than one layer may include multiple shared drivers, where each shared driver drives a common operating voltage on access lines in multiple layers, and in multiple layers Each layer in Take the line.

在範例中,用於第一存取線層的共享解碼器是可操作地耦接到第一組第一存取線驅動器和第二組第一存取線驅動器。在第一存取線驅動器組中的給定驅動器可以耦接到來自3D交叉點記憶體陣列的特定層的特定列的一個第一存取線。此外,在第一存取線驅動器組中的給定驅動器可以耦接到來自3D交叉點記憶體陣列的多個層中的每一層的特定列的一個第一存取線。 In an example, the shared decoder for the first access line layer is operatively coupled to the first set of first access line drivers and the second set of first access line drivers. A given driver in the first access line driver set may be coupled to one first access line from a particular column of a particular layer of the 3D crosspoint memory array. Further, a given driver in the first access line driver group may be coupled to one first access line of a particular column from each of a plurality of layers of the 3D crosspoint memory array.

第一組第一存取線驅動器是可操作地耦接到解碼器,以將共操作電壓施加到奇數的第一存取線層(n)中所選擇的第一存取線。第二組第一存取線驅動器可操作地耦接到解碼器,以將共操作電壓施加到偶數的第一存取線層(n)中所選擇的第一存取線。用於第二存取線層的共享解碼器是可操作地耦接到M/2組第二存取線驅動器,此第二存取線驅動器被配置來將共操作電壓施加到所選擇的第二存取線層(p)中所選擇的第二存取線。在第二存取線驅動器組中的每個驅動器可以耦接到M層的3D交叉點記憶體陣列的特定行的第二存取線。來自M/2組第二存取線驅動器的第一組第二存取線驅動器可操作地耦接來將共操作電壓施加到頂部和底部第二存取線層(p)中所選擇的第二存取線,其中p為1與M/2+1。來自M/2組第二存取線路驅動器的每組第二存取線路驅動器(除了第一組第二存取線路驅動器之外)可以是可操作地耦接到解碼器,以將操作電壓施加到在其中一個第二存取線層(p)中所選擇的第二存取線,其中p不是1或M/2+1。 The first set of first access line drivers are operatively coupled to a decoder to apply a common operating voltage to a first access line selected in an odd number of first access line layers (n). The second set of first access line drivers are operatively coupled to the decoder to apply a common operating voltage to the first access lines selected in the even number of first access line layers (n). The shared decoder for the second access line layer is operatively coupled to the M / 2 group of second access line drivers, and the second access line driver is configured to apply a common operating voltage to the selected first access line driver. The second access line selected in the two access line layer (p). Each driver in the second access line driver group may be coupled to a second access line of a particular row of the M-layer 3D crosspoint memory array. The first set of second access line drivers from the M / 2 set of second access line drivers are operatively coupled to apply a common operating voltage to the selected first and second access line layers (p). Two access lines, where p is 1 and M / 2 + 1. Each set of second access line drivers (except the first set of second access line drivers) from the M / 2 set of second access line drivers may be operatively coupled to the decoder to apply an operating voltage To the second access line selected in one of the second access line layers (p), where p is not 1 or M / 2 + 1.

參考圖1A,3D交叉點陣列是與用於第一存取線層的共享解碼器/驅動器171和用於第二存取線層的共享解碼器/驅動器172耦接且電性連通。用於第一存取線層的共享解碼器/驅動器171包括第一組第一存取線驅動器和第二組第一存取線驅動器。用於第二存取線層的共享解碼器/驅動器172可以包括多組第二存取線驅動器。控制電路(未繪示於圖1A中)耦接到用於第一存取線層171的共享解碼器/驅動器、用於第二存取線層172的共享解碼器/驅動器以及積體電路中的其他資源以執行寫入操作、讀取操作和其他需要將操作電壓脈衝序列施加於3D交叉點記憶體陣列中的雙向記憶胞的記憶體裝置操作,其中驅動器被選擇用於特定存取線並且特定操作電壓(例如,讀取電壓、寫入電壓、參考電壓等)是由驅動器設置以回應所解碼的記憶胞位址和正在執行的特定操作。 Referring to FIG. 1A, a 3D crosspoint array is coupled and electrically connected to a shared decoder / driver 171 for a first access line layer and a shared decoder / driver 172 for a second access line layer. The shared decoder / driver 171 for the first access line layer includes a first set of first access line drivers and a second set of first access line drivers. The shared decoder / driver 172 for the second access line layer may include multiple sets of second access line drivers. The control circuit (not shown in FIG. 1A) is coupled to the shared decoder / driver for the first access line layer 171, the shared decoder / driver for the second access line layer 172, and the integrated circuit Other resources to perform write operations, read operations, and other memory device operations that require operating voltage pulse sequences to be applied to bidirectional memory cells in a 3D crosspoint memory array, where the drive is selected for a particular access line and Specific operating voltages (eg, read voltage, write voltage, reference voltage, etc.) are set by the driver in response to the decoded memory cell address and the specific operation being performed.

用於第一存取線層171的共享解碼器/驅動器包括第一和第二組第一存取線驅動器。第一組第一存取線驅動器是可操作地耦接到解碼器,以將共操作電壓施加到奇數的第一存取線層(FAL1)中所選擇的第一存取線,其包括第一存取線111、112和113。第二組第一存取線驅動器是可操作地耦接以將共操作電壓施加到偶數第一存取線層(FAL2)中所選擇的第一存取線,其包括第一存取線114、115和116。以下將參考圖2A和2B描述第一存取線驅動器組和第一存取線之間更多的耦接細節。 The shared decoder / driver for the first access line layer 171 includes first and second sets of first access line drivers. The first set of first access line drivers are operatively coupled to a decoder to apply a common operating voltage to a first access line selected in an odd number of first access line layers (FAL1), including a first An access line 111, 112, and 113. The second set of first access line drivers are operatively coupled to apply a common operating voltage to a first access line selected in an even number of first access line layers (FAL2), which includes a first access line 114 , 115 and 116. Further coupling details between the first access line driver group and the first access line will be described below with reference to FIGS. 2A and 2B.

用於第二存取線層的共享解碼器/驅動器172包括M/2=2 組第二存取線驅動器。第一組第二存取線驅動器是可操作地耦接到解碼器,以將共操作電壓施加到第二存取線層(SAL1)中所選擇的第二存取線(包括第二存取線101、102和103),以及將共操作電壓施加到第二存取線層(p=M/2+1=3)(SAL3)中所選擇的第二存取線(包括第二存取線107、108和109)。第二組第二存取線驅動器是可操作地耦接以將操作電壓施加到第二存取線層(SAL2)中的所選擇的第二存取線(包括第二存取線104、105和106)。以下參考圖2A和2B描述第二存取線驅動器組和第二存取線之間更多的耦接細節。 Shared decoder / driver 172 for the second access line layer includes M / 2 = 2 Set of second access line drivers. The first set of second access line drivers are operatively coupled to the decoder to apply a common operating voltage to the second access line (including the second access line) selected in the second access line layer (SAL1). Lines 101, 102, and 103), and the second access line (including the second access line) selected in the second access line layer (p = M / 2 + 1 = 3) (SAL3) by applying a common operating voltage Lines 107, 108, and 109). The second set of second access line drivers are operatively coupled to apply an operating voltage to a selected second access line (including the second access lines 104, 105) in the second access line layer (SAL2). And 106). Further coupling details between the second access line driver group and the second access line are described below with reference to FIGS. 2A and 2B.

感測放大器(未繪示在圖1A中)可以被配置以連接到第一存取線或第二存取線。在本揭露描述的技術的實施例中,感測放大器是耦接到第一和第二存取線的其中之一,電流源電路(例如基於電流鏡的負載電路)是連接至第一和第二存取線,以限制讀取和寫入操作期間的電流。 The sense amplifier (not shown in FIG. 1A) may be configured to be connected to the first access line or the second access line. In an embodiment of the technology described in this disclosure, the sense amplifier is coupled to one of the first and second access lines, and a current source circuit (such as a current mirror-based load circuit) is connected to the first and second access lines. Two access lines to limit current during read and write operations.

圖1B是圖1A中的範例雙向記憶胞121的近視圖。記憶胞121具有與第一存取線111接觸的第一元件151和與第二存取線101接觸的第二元件152。記憶元件153設置在第一元件151和第二元件152之間。第一元件151將記憶元件153連接到第一存取線111。第二元件152將記憶元件153連接到第二存取線101。 FIG. 1B is a close-up view of the exemplary bidirectional memory cell 121 in FIG. 1A. The memory cell 121 has a first element 151 in contact with the first access line 111 and a second element 152 in contact with the second access line 101. The memory element 153 is disposed between the first element 151 and the second element 152. The first element 151 connects the memory element 153 to the first access line 111. The second element 152 connects the memory element 153 to the second access line 101.

第一元件151和第二元件152可以包括厚度約為5至50nm的導電材料。用於第一元件151和第二元件152的範例材料可以是金屬氮化物,例如氮化鈦(TiN)、氮化鉭(TaN)、氮化鎢 (WN)、氮化鉬(MoN)、氮化鈮(NbN)、氮化鈦矽(TiSiN)、氮化鈦鋁(TiAlN)、氮化鈦硼(TiBN)、氮化鋯矽(ZrSiN)、氮化鎢矽(WSiN)、氮化鎢硼(WBN)、氮化鋯鋁(ZrAlN)、氮化鉬矽(MoSiN)、氮化鋁鉬(MoAlN)、氮化鉭矽(TaSiN)、氮化鉭鋁(TaAlN)。除了金屬氮化物之外,第一元件151和第二元件152可以包括摻雜的多晶矽、鎢(W)、銅(Cu)、鈦(Ti)、鉬(Mo)、鉭(Ta)、矽化鈦(TiSi)、矽化鉭(TaSi)、鈦鎢(TiW)、氮氧化鈦(TiON)、氮氧化鈦鋁(TiAlON)、氮氧化鎢(WON)和氮氧化鉭(TaON)。在一些實施例中,第一元件151可具有與第二元件152不同的材料。 The first element 151 and the second element 152 may include a conductive material having a thickness of about 5 to 50 nm. Example materials for the first element 151 and the second element 152 may be metal nitrides, such as titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), molybdenum nitride (MoN), niobium nitride (NbN), titanium silicon nitride (TiSiN), titanium aluminum nitride (TiAlN), titanium boron nitride (TiBN), zirconium silicon nitride (ZrSiN), Tungsten silicon nitride (WSiN), tungsten boron nitride (WBN), zirconium aluminum nitride (ZrAlN), molybdenum silicon nitride (MoSiN), molybdenum aluminum nitride (MoAlN), tantalum silicon nitride (TaSiN), nitride Tantalum aluminum (TaAlN). In addition to metal nitride, the first element 151 and the second element 152 may include doped polycrystalline silicon, tungsten (W), copper (Cu), titanium (Ti), molybdenum (Mo), tantalum (Ta), and titanium silicide. (TiSi), tantalum silicide (TaSi), titanium tungsten (TiW), titanium oxynitride (TiON), aluminum oxynitride (TiAlON), tungsten oxynitride (WON), and tantalum oxynitride (TaON). In some embodiments, the first element 151 may have a different material from the second element 152.

記憶元件153可包括可程式電阻材料層。可程式電阻材料可具有表示位元“0”的第一電阻值,以及表示位元“1”的第二電阻值。在一些實施例中,可以使用多於兩個的電阻值來為每個單元存儲多個位元。 The memory element 153 may include a layer of a programmable resistive material. The programmable resistance material may have a first resistance value representing a bit “0” and a second resistance value representing a bit “1”. In some embodiments, more than two resistance values may be used to store multiple bits for each cell.

在一個實施例中,記憶元件153包括作為可程式電阻材料與開關元件串聯的相變記憶體材料層。例如,開關元件可以是雙端子、雙向(bidirectional ovonic)閾值開關(OTS),其包括硫屬化物材料。 In one embodiment, the memory element 153 includes a layer of a phase change memory material as a programmable resistive material in series with the switching element. For example, the switching element may be a two-terminal, bidirectional ovonic threshold switch (OTS), which includes a chalcogenide material.

在其他實施例中,開關元件可以包括其他類型的裝置,包括諸如二極管的定向器件與其他雙向器件。 In other embodiments, the switching element may include other types of devices, including directional devices such as diodes and other bidirectional devices.

在包括OTS的實施例中,讀取操作涉及在第一存取線和第二存取線上施加超過OTS閾值的電壓。在本揭露描述的實施例 中,在讀取操作中施加到存取線的操作電壓包括第一電壓(例如+3V)、第二電壓(例如-3V)和中間電壓(例如0V)。為了讀取所選第一和第二存取線的交叉點中的記憶胞,在所選擇的第一和第二存取線上施加第一和第二電壓,以建立超過OTS閾值的讀取電位(例如,6V)。中間電壓是被施加到未選擇的存取線。未選擇的存取線的交叉點中的記憶胞中的讀取電位是0V(或者施加到不同存取線的中間電壓之間的差)。未選擇的存取線和所選擇的存取線的交叉點中的記憶胞上的電壓是中間電壓和第一電壓(例如,+3V)之間的差值和中間電壓和第二電壓(例如,-3V)之間的差值的其中之一。 In embodiments that include OTS, the read operation involves applying a voltage that exceeds the OTS threshold on the first access line and the second access line. Embodiments described in this disclosure Among them, the operation voltage applied to the access line in the read operation includes a first voltage (for example, + 3V), a second voltage (for example, -3V), and an intermediate voltage (for example, 0V). To read memory cells at the intersection of the selected first and second access lines, first and second voltages are applied to the selected first and second access lines to establish a read potential that exceeds the OTS threshold (For example, 6V). The intermediate voltage is applied to an unselected access line. The read potential in the memory cell at the intersection of the unselected access lines is 0V (or the difference between intermediate voltages applied to different access lines). The voltage on the memory cell at the intersection of the unselected access line and the selected access line is the difference between the intermediate voltage and the first voltage (e.g., + 3V) and the intermediate voltage and the second voltage (e.g., , -3V).

相變材料能夠通過施加諸如熱或電流的能量在相對高電阻狀態、非晶相和相對低電阻狀態晶相之間切換。用於記憶元件153的相變材料可包括基於硫族化物的材料和其他材料。硫屬化物合金包含硫屬元素化物與其他材料(例如過渡金屬)的組合。硫屬化物合金通常含有一種或多種元素週期表IVA族元素,如鍺(Ge)和錫(Sn)。通常,硫屬化物合金包括包含銻(Sb)、鎵(Ga)、銦(In)和銀(Ag)中的一種或多種的組合。在技術文獻中已經描述了許多基於相變的記憶體材料,包括合金:Ga/Sb、In/Sb、In/Se、Sb/Te、Ge/Te、Ge/Sb/Te、In/Sb/Te、Ga/Se/Te、Sn/Sb/Te、In/Sb/Ge、Ag/In/Sb/Te、Ge/Sn/Sb/Te、Ge/Sb/Se/Te和Te/Ge/Sb/S。在Ge/Sb/Te合金族中,各種合金組合物都是可行的。此組合物可以是例如Ge2Sb2Te5、GeSb2Te4和GeSb4Te7。更一般地,諸如鉻 (Cr)、鐵(Fe)、鎳(Ni)、鈮(Nb)、鈀(Pd)、鉑(Pt)及其混合物或合金的過渡金屬可與Ge/Sb/Te或Ga/Sb/Te組合形成具有可程式電阻特性的相變合金。記憶體材料的具體實例公開在奧維辛斯基(Ovshinsky)的美國專利第5,687,112號的第11-13欄,這些實施例可參引合併到本揭露中。描述在發明名稱為“SELF-ALIGNED,PROGRAMMABLE PHASE CHANGE MEMORY”的美國專利第6,579,760號中的各種相變記憶裝置,在此可參引合併到本揭露中。 Phase change materials are capable of switching between a relatively high resistance state, an amorphous phase, and a relatively low resistance state crystalline phase by applying energy such as heat or current. Phase change materials for the memory element 153 may include chalcogenide-based materials and other materials. A chalcogenide alloy includes a combination of a chalcogenide and other materials such as transition metals. Chalcogenide alloys usually contain one or more elements of Group IVA of the periodic table, such as germanium (Ge) and tin (Sn). Generally, the chalcogenide alloy includes a combination including one or more of antimony (Sb), gallium (Ga), indium (In), and silver (Ag). Many phase change-based memory materials have been described in technical literature, including alloys: Ga / Sb, In / Sb, In / Se, Sb / Te, Ge / Te, Ge / Sb / Te, In / Sb / Te , Ga / Se / Te, Sn / Sb / Te, In / Sb / Ge, Ag / In / Sb / Te, Ge / Sn / Sb / Te, Ge / Sb / Se / Te, and Te / Ge / Sb / S . In the Ge / Sb / Te alloy family, various alloy compositions are possible. This composition may be, for example, Ge 2 Sb 2 Te 5 , GeSb 2 Te 4 and GeSb 4 Te 7 . More generally, transition metals such as chromium (Cr), iron (Fe), nickel (Ni), niobium (Nb), palladium (Pd), platinum (Pt), and mixtures or alloys thereof can interact with Ge / Sb / Te or Ga / Sb / Te combination forms a phase change alloy with programmable resistance characteristics. Specific examples of memory materials are disclosed in columns 11-13 of U.S. Patent No. 5,687,112 to Ovshinsky, and these embodiments can be incorporated by reference in this disclosure. Various phase change memory devices described in US Pat. No. 6,579,760 entitled “SELF-ALIGNED, PROGRAMMABLE PHASE CHANGE MEMORY” are incorporated herein by reference.

在一個範例中,OTS開關元件可以包括選擇用作雙向閾值開關的硫族化合物層,例如As2Se3、ZnTe和GeSe,並且具有例如約5nm至約25nm的厚度,較佳的是約15nm。在一些實施例中,開關元件可包括與選自碲(Te)、硒(Se)、鍺(Ge)、矽(Si)、砷(As)、鈦(Ti)、硫(S)和銻(Sb)群的一種或多種元素所組合的硫族化合物。 In one example, the OTS switching element may include a chalcogen compound layer, such as As 2 Se 3 , ZnTe, and GeSe, selected for use as a bidirectional threshold switch, and has a thickness of, for example, about 5 nm to about 25 nm, preferably about 15 nm. In some embodiments, the switching element may include a component selected from the group consisting of tellurium (Te), selenium (Se), germanium (Ge), silicon (Si), arsenic (As), titanium (Ti), sulfur (S), and antimony ( Sb) A chalcogen compound in which one or more elements of the group are combined.

在一個實施例中,記憶元件153可以是電阻隨機存取記憶體或鐵電隨機存取記憶體。記憶元件153中的可程式電阻材料可以是金屬氧化物,例如氧化鉿、氧化鎂、氧化鎳、氧化鈮、氧化鈦、氧化鋁、氧化釩、氧化鎢、氧化鋅或氧化鈷。 In one embodiment, the memory element 153 may be a resistive random access memory or a ferroelectric random access memory. The programmable resistance material in the memory element 153 may be a metal oxide, such as hafnium oxide, magnesium oxide, nickel oxide, niobium oxide, titanium oxide, aluminum oxide, vanadium oxide, tungsten oxide, zinc oxide, or cobalt oxide.

在一些實施例中,可以其他電阻記憶結構來實作,例如金屬氧化物電阻記憶體、磁阻記憶體、導電橋電阻記憶體等。 In some embodiments, other resistive memory structures may be implemented, such as metal oxide resistive memory, magnetoresistive memory, conductive bridge resistive memory, and the like.

第一存取線和第二存取線可包括各種金屬、金屬類材料、摻雜半導體或其組合。第一和第二存取線的實施例可以使用 一層或多層材料來實作,例如鎢(W)、鋁(Al)、銅(Cu)、氮化鈦(TiN)、氮化鉭(TaN)、氮化鎢(WN)、摻雜多晶矽、矽化鈷(CoSi)、矽化鎢(WSi)、TiN/W/TiN、及其他材料。第一存取線和第二存取線的厚度可以在10到100nm的範圍內。在其他實施例中,第一存取線和第二存取線可以非常薄或者更厚。 The first access line and the second access line may include various metals, metal-based materials, doped semiconductors, or a combination thereof. Embodiments of the first and second access lines can be used One or more layers to implement, such as tungsten (W), aluminum (Al), copper (Cu), titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), doped polycrystalline silicon, silicidation Cobalt (CoSi), tungsten silicide (WSi), TiN / W / TiN, and other materials. The thickness of the first access line and the second access line may be in a range of 10 to 100 nm. In other embodiments, the first access line and the second access line may be very thin or thicker.

圖2A繪示用於圖1A的雙向記憶胞的堆疊161的第一存取線(FAL)和第二存取線(SAL)以及共享的第一和第二存取線解碼器的佈置。藉由列和行解碼器(未繪示)選擇雙向胞的堆疊161。堆疊中的層是由層解碼器171、172來選擇。 FIG. 2A illustrates an arrangement of a first access line (FAL) and a second access line (SAL) and a shared first and second access line decoder for the stack 161 of the bidirectional memory cell of FIG. 1A. A stack of two-way cells 161 is selected by a column and row decoder (not shown). The layers in the stack are selected by the layer decoders 171, 172.

在實施例中,堆疊包括陣列的四個層中的雙向記憶胞121、122、123和124,其具有相同的列位址和相同的行位址。雙向記憶胞121、122、123和124位於N=2個第一存取線層與P=3個第二存取線層之間的不同層次的交叉點處。第一層L1的雙向記憶胞121插入在第二存取線層(SAL1)的第二存取線101和第一存取線層(FAL1)的第一存取線111之間。第二層L2的雙向記憶胞122插入在第一存取線層(FAL1)的第一存取線111和第二存取線層(SAL2)的第二存取線104之間。第三層L3的雙向記憶胞123插入在第二存取線層(SAL2)的第二存取線104和第一存取線層(FAL2)的第一存取線114之間。第四層L4的雙向記憶胞124插入在第一存取線層(FAL2)的第一存取線114和第二存取線層(SAL3)的第二存取線107之間。 In an embodiment, the stack includes bi-directional memory cells 121, 122, 123, and 124 in four layers of the array, which have the same column address and the same row address. The two-way memory cells 121, 122, 123, and 124 are located at the intersections of different levels between the N = 2 first access line layers and the P = 3 second access line layers. The bidirectional memory cell 121 of the first layer L1 is inserted between the second access line 101 of the second access line layer (SAL1) and the first access line 111 of the first access line layer (FAL1). The bidirectional memory cell 122 of the second layer L2 is inserted between the first access line 111 of the first access line layer (FAL1) and the second access line 104 of the second access line layer (SAL2). The bidirectional memory cell 123 of the third layer L3 is inserted between the second access line 104 of the second access line layer (SAL2) and the first access line 114 of the first access line layer (FAL2). The bidirectional memory cell 124 of the fourth layer L4 is inserted between the first access line 114 of the first access line layer (FAL2) and the second access line 107 of the second access line layer (SAL3).

用於第一存取線層的共享解碼器171是可操作地耦接到 第一和第二組第一存取線驅動器,並且被配置用於回應目標記憶胞的位置與正執行的操作來選擇第一和第二組第一存取線驅動器。在所示的範例中,存在兩個第一存取線層和兩組第一存取線驅動器。隨著層數的增加,這些組可以包括多個構件。藉由選擇組而不是單獨的第一存取線,當組的數量小於第一存取線層的數量時,解碼負荷可以降低。 The shared decoder 171 for the first access line layer is operatively coupled to The first and second sets of first access line drivers are configured to select the first and second sets of first access line drivers in response to the location of the target memory cell and the operation being performed. In the illustrated example, there are two first access line layers and two sets of first access line drivers. As the number of layers increases, these groups can include multiple components. By selecting groups instead of individual first access lines, the decoding load can be reduced when the number of groups is less than the number of first access line layers.

第一組包括用於第一存取線111的驅動器203,其對應於第一存取線層FAL1中所選擇的記憶胞的列。第二組包括用於第一存取線114的驅動器202,其對應於第一存取線層FAL2中所選擇的記憶胞的列。來自第一組第一存取線驅動器的驅動器203被耦接以將操作電壓施加到奇數的第一存取線層(FAL1)中的第一存取線111。來自第二組第一存取線驅動器的驅動器202被耦接以將操作電壓施加到偶數的第一存取線層(FAL2)中的第一存取線114。因此,在此範例中,第一組第一存取線層可以包括所有奇數層,且第二組可以包括所有偶數層。 The first group includes a driver 203 for the first access line 111, which corresponds to a column of memory cells selected in the first access line layer FAL1. The second group includes a driver 202 for the first access line 114, which corresponds to a column of memory cells selected in the first access line layer FAL2. A driver 203 from the first set of first access line drivers is coupled to apply an operating voltage to the first access lines 111 in the odd-numbered first access line layer (FAL1). The driver 202 from the second set of first access line drivers is coupled to apply an operating voltage to the first access lines 114 in the even first access line layer (FAL2). Therefore, in this example, the first set of first access line layers may include all odd-numbered layers, and the second set may include all even-numbered layers.

用於第二存取線層的共享解碼器和驅動器電路172是可操作地耦接到第一和第二組第二存取線驅動器,並且被配置以用於回應目標記憶胞的位置與正執行的操作,來選擇第一和第二組第二存取線驅動器。在用於第二存取線層共享解碼器和驅動器電路172的選擇上,一組第二存取線驅動器會將操作電壓施加到其對應的第二存取線組。在所示的範例中,存在三個第二存取線層和兩組第二存取線驅動器。藉由選擇組而不是單獨的第二存取 線,當組的數量小於第二存取線層的數量時,解碼負荷可以降低。 The shared decoder and driver circuit 172 for the second access line layer is operatively coupled to the first and second sets of second access line drivers and is configured to respond to the position and the positive of the target memory cell. Perform the operation to select the first and second set of second access line drivers. In the selection for the second access line layer shared decoder and driver circuit 172, a group of second access line drivers will apply an operating voltage to its corresponding second access line group. In the example shown, there are three second access line layers and two sets of second access line drivers. By selecting a group instead of a separate second access When the number of groups is smaller than the number of second access line layers, the decoding load can be reduced.

第一組第二存取線驅動器包括與第二存取線層SAL1和SAL 3中所選擇的記憶胞的行相對應的一個或多個驅動器204。一個或多個驅動器204將共操作電壓施加到一組第二存取線,其包括第二存取線層SAL1中的第二存取線101和第二存取線層SAL3中的第二存取線107。在共享解碼器和驅動器電路的第一實施例中(例如,圖2C中所示的驅動器電路),驅動器選擇器208是可操作地連接到一個第二存取線驅動器204a(在此繪示中),其連接到在多於一個第二存取線層中的共同行(或列)的第二存取線,並向連接的存取線驅動共操作電壓。驅動器204a可以連接到此組第二存取線層的所有層中的共同行中的存取線,或者連接到此組第二存取線層中的層的子集。驅動器選擇器被配置以用於使得此範例中的第二存取線驅動器204a能夠施加相同(即,共)操作電壓於第二存取線層SAL1中的第二存取線101和第二存取線層SAL3中的第二存取線107中的第二存取線。在共享解碼器的第二實施例中(例如圖2D中所示的共享解碼器),驅動器選擇器208是可操作地連接到兩個第二存取線驅動器204b和204c。每個驅動器連接到一個第二存取線層中的共同列(或行)中的第二存取線。驅動器204b連接到第二存取線層SAL3中的第二存取線107。驅動器204c連接到第二存取線層SAL1中的第二存取線101。驅動器選擇器208被配置以使得驅動器204b和204c兩者能夠將共操作電壓施加到第二存取線層SAL1中的給定列中的第二存取線101 和第二存取線層SAL3中的給定列中的第二存取線107。因為驅動器較少,共享解碼器和驅動器電路的第一實施例佔用的面積小於第二實施例。因為驅動器僅需負責將操作電壓施加到第二存取線層組中的第二存取線的一者,所以第二實施例所需周邊電路較少。如圖2C和圖2D所示的共享解碼器和驅動器電路的第一和第二實施例的配置都適用於圖3、圖5、圖6和圖7中的任何共享解碼器,包括用於第一存取線和用於第二存取線的任何共享解碼器。 The first set of second access line drivers includes one or more drivers 204 corresponding to the selected row of memory cells in the second access line layers SAL1 and SAL3. One or more drivers 204 apply a common operating voltage to a set of second access lines, which includes the second access line 101 in the second access line layer SAL1 and the second storage line in the second access line layer SAL3. Take the line 107. In a first embodiment of a shared decoder and driver circuit (for example, the driver circuit shown in FIG. 2C), the driver selector 208 is operatively connected to a second access line driver 204a (in this drawing ), Which are connected to a second access line in a common row (or column) in more than one second access line layer, and drive a common operating voltage to the connected access lines. The driver 204a may be connected to an access line in a common row among all the layers of the second set of access line layers, or to a subset of the layers in the second set of access line layers. The driver selector is configured to enable the second access line driver 204a in this example to apply the same (i.e., common) operating voltage to the second access line 101 and the second storage line in the second access line layer SAL1. The second access line in the second access line 107 in the fetch layer SAL3. In a second embodiment of a shared decoder (such as the shared decoder shown in FIG. 2D), the driver selector 208 is operatively connected to two second access line drivers 204b and 204c. Each driver is connected to a second access line in a common column (or row) in a second access line layer. The driver 204b is connected to the second access line 107 in the second access line layer SAL3. The driver 204c is connected to the second access line 101 in the second access line layer SAL1. The driver selector 208 is configured to enable both drivers 204b and 204c to apply a common operating voltage to the second access line 101 in a given column in the second access line layer SAL1. And the second access line 107 in a given column in the second access line layer SAL3. Because there are fewer drivers, the area occupied by the first embodiment of the shared decoder and driver circuit is smaller than that of the second embodiment. Because the driver is only responsible for applying an operating voltage to one of the second access lines in the second access line layer group, the peripheral circuit required by the second embodiment is less. The configurations of the first and second embodiments of the shared decoder and driver circuit as shown in FIG. 2C and FIG. 2D are applicable to any of the shared decoders in FIG. 3, FIG. 5, FIG. 6 and FIG. One access line and any shared decoder for the second access line.

第二組第二存取線驅動器包括對應於所選擇的記憶胞的行的驅動器206,並且在包括第二存取線層SAL2中的第二存取線104的範例中是被耦接以將共操作電壓施加到僅具有一個構件的第二組第二存取線。 The second set of second access line drivers includes a driver 206 corresponding to the row of the selected memory cell, and in the example including the second access line 104 in the second access line layer SAL2 is coupled to transfer A common operating voltage is applied to a second set of second access lines having only one member.

圖2B繪示針對圖2A所示的堆疊161的層L1至L4中的四個記憶胞121-124中的每一個的讀取操作施加到第一和第二存取線的範例操作電壓。在此範例中,驅動器202、203、204、206被配置以施加+3V、0V或-3V作為操作電壓,其取決於針對讀取操作解碼的記憶胞位址。其他大小和極性的電壓可以用作適合特定實施例的電壓。從圖2B的表中可以看出,在陣列的所有讀取操作中,共操作電壓會被施加到層SAL1和SAL3處的第二存取線101和107。這降低了記憶體的解碼負荷。 FIG. 2B illustrates an exemplary operating voltage applied to the first and second access lines for a read operation for each of the four memory cells 121-124 of the layers L1 to L4 of the stack 161 shown in FIG. 2A. In this example, the driver 202, 203, 204, 206 is configured to apply + 3V, 0V, or -3V as the operating voltage, which depends on the memory cell address decoded for a read operation. Voltages of other sizes and polarities can be used as voltages suitable for a particular embodiment. As can be seen from the table of FIG. 2B, in all read operations of the array, a common operating voltage is applied to the second access lines 101 and 107 at the layers SAL1 and SAL3. This reduces the decoding load on the memory.

為了在第一層L1處讀取雙向記憶胞121中的資料,通過第一存取線111和第二存取線101在記憶胞上施加六伏的電壓,而在堆疊的其他記憶胞上施加不超過3伏的電壓。為了施加六伏 電壓,將-3V的共操作電壓施加到第二存取線層(SAL1)的第二存取線101,並且施加到第二存取線層(SAL3)的第二存取線107。藉由驅動器203從第一組第一存取線驅動器向第一存取線層(FAL1)的第一存取線111施加3V的操作電壓。藉由驅動器202將0V的操作電壓施加到第一存取線層(FAL2)的第一存取線114。藉由驅動器206將0V的操作電壓施加到第二存取線層(SAL2)的第二存取線104。 In order to read the data in the bidirectional memory cell 121 at the first layer L1, a voltage of six volts is applied to the memory cell through the first access line 111 and the second access line 101, and the other memory cells on the stack are applied. No more than 3 volts. To apply six volts A voltage of -3 V is applied to the second access line 101 of the second access line layer (SAL1) and a second access line 107 of the second access line layer (SAL3). The driver 203 applies an operating voltage of 3V from the first set of first access line drivers to the first access line 111 of the first access line layer (FAL1). An operating voltage of 0 V is applied to the first access line 114 of the first access line layer (FAL2) by the driver 202. An operating voltage of 0V is applied to the second access line 104 of the second access line layer (SAL2) by the driver 206.

為了在第二層L2處讀取雙向記憶胞122中的資料,通過第一存取線111(FAL1)和第二存取線104(SAL2)在記憶胞上施加六伏電壓,而不超過3伏的電壓會被施加於堆疊中的其他記憶胞。0V的共操作電壓會被施加到第二存取線101(SAL1)和第二存取線107(SAL3)。藉由驅動器203從第一組第一存取線驅動器向第一存取線層(FAL1)的第一存取線111施加3V的操作電壓。藉由驅動器202將0V的操作電壓施加到第一存取線層(FAL2)的第一存取線114。藉由驅動器206將-3V的操作電壓施加到第二存取線層(SAL2)的第二存取線104。 In order to read the data in the two-way memory cell 122 at the second layer L2, a six-volt voltage is applied to the memory cell through the first access line 111 (FAL1) and the second access line 104 (SAL2), not exceeding 3 Volts are applied to other memory cells in the stack. A common operating voltage of 0V is applied to the second access line 101 (SAL1) and the second access line 107 (SAL3). The driver 203 applies an operating voltage of 3V from the first set of first access line drivers to the first access line 111 of the first access line layer (FAL1). An operating voltage of 0 V is applied to the first access line 114 of the first access line layer (FAL2) by the driver 202. An operating voltage of -3V is applied to the second access line 104 of the second access line layer (SAL2) by the driver 206.

為了在第三層L3處讀取雙向記憶胞123中的資料,通過第一存取線114(FAL2)和第二存取線104(SAL2)在記憶胞上施加六伏電壓,而不超過3伏的電壓會被施加於堆疊中的其他記憶胞。0V的共操作電壓會被施加到第二存取線101(SAL1)和第二存取線107(SAL3)。藉由驅動器203從第一組第一存取線驅動器向第一存取線層(FAL1)的第一存取線111施加0V的操作電 壓。藉由驅動器202將3V的操作電壓施加到第一存取線層(FAL2)的第一存取線114。藉由驅動器206將-3V的操作電壓施加到第二存取線層(SAL2)的第二存取線104。 In order to read the data in the bi-directional memory cell 123 at the third layer L3, a six volt voltage is applied to the memory cell through the first access line 114 (FAL2) and the second access line 104 (SAL2), not exceeding 3 Volts are applied to other memory cells in the stack. A common operating voltage of 0V is applied to the second access line 101 (SAL1) and the second access line 107 (SAL3). The driver 203 applies an operating voltage of 0 V from the first set of first access line drivers to the first access line 111 of the first access line layer (FAL1). Pressure. An operating voltage of 3V is applied to the first access line 114 of the first access line layer (FAL2) by the driver 202. An operating voltage of -3V is applied to the second access line 104 of the second access line layer (SAL2) by the driver 206.

為了在第四層L4處讀取雙向記憶胞124中的資料,通過第一存取線114(FAL2)和第二存取線107(SAL3)在記憶胞上施加六伏電壓,而不超過3伏的電壓被施加到堆疊中的其他記憶胞。-3V的共操作電壓會被施加到第二存取線101(SAL1)和第二存取線107(SAL3)。藉由驅動器203從第一組第一存取線驅動器向第一存取線層(FAL1)的第一存取線111施加0V的操作電壓。藉由驅動器202將3V的操作電壓施加到第一存取線層(FAL2)的第一存取線114。藉由驅動器206將0V的操作電壓施加到第二存取線層(SAL2)的第二存取線104。 In order to read the data in the bidirectional memory cell 124 at the fourth layer L4, a six volt voltage is applied to the memory cell through the first access line 114 (FAL2) and the second access line 107 (SAL3), not exceeding 3 Volt voltage is applied to other memory cells in the stack. A common operating voltage of -3V is applied to the second access line 101 (SAL1) and the second access line 107 (SAL3). The driver 203 applies an operating voltage of 0V from the first group of first access line drivers to the first access line 111 of the first access line layer (FAL1). An operating voltage of 3V is applied to the first access line 114 of the first access line layer (FAL2) by the driver 202. An operating voltage of 0V is applied to the second access line 104 of the second access line layer (SAL2) by the driver 206.

圖3A繪示用於3D交叉點記憶體陣列中的雙向記憶胞的堆疊371的第一(列)和第二(行)存取線以及共享的第一和第二存取線解碼器的佈置,其具有從L1到L8的八個層。雙向記憶胞的堆疊371包括雙向記憶胞321、322、323、324、325、326、327和328。雙向記憶胞321、322、323、324、325、326、327和328位於N=M/2=4個第一存取線層(FAL1至FAL4)中的第一存取線與P=M/2+1=5個第二存取線層(SAL1至SAL5)中的第二存取線之間的交叉點處。 FIG. 3A illustrates an arrangement of first (column) and second (row) access lines and a shared first and second access line decoder for a stack 371 of a bidirectional memory cell in a 3D crosspoint memory array. It has eight layers from L1 to L8. The two-way memory cell stack 371 includes two-way memory cells 321, 322, 323, 324, 325, 326, 327, and 328. The bidirectional memory cells 321, 322, 323, 324, 325, 326, 327, and 328 are located in the first access line layer of N = M / 2 = 4 first access line layers (FAL1 to FAL4) and P = M / 2 + 1 = at the intersection between the second access lines in the 5 second access line layers (SAL1 to SAL5).

第一層L1的雙向記憶胞321插入在第二存取線層(SAL1)的第二存取線301和第一存取線層(FAL1)的第一存取 線311之間。第二層L2的雙向記憶胞322插入在第一存取線層(FAL1)的第一存取線311和第二存取線層(SAL2)的第二存取線302之間。第三層L3的雙向記憶胞323插入在第二存取線層(SAL2)的第二存取線302和第一存取線層(FAL2)的第一存取線312之間。第四層L4的雙向記憶胞324插入在第一存取線層(FAL2)的第一存取線312和第二存取線層(SAL3)的第二存取線303之間。第五層L5的雙向記憶胞325插入在第二存取線層(SAL3)的第二存取線303和第一存取線層(FAL3)的第一存取線313之間。第六層L6的雙向記憶胞326插入在第一存取線層(FAL3)的第一存取線313和第二存取線層(SAL4)的第二存取線304之間。第七層L7的雙向記憶胞327插入在第二存取線層(SAL4)的第二存取線304與第一存取線層(FAL4)的第一存取線314之間。第八層L8的雙向記憶胞328插入在第一存取線層(FAL4)的第一存取線314和第二存取線層(SAL5)的第二存取線305之間。 The bidirectional memory cell 321 of the first layer L1 is inserted in the second access line 301 of the second access line layer (SAL1) and the first access of the first access line layer (FAL1). Between lines 311. The bidirectional memory cell 322 of the second layer L2 is inserted between the first access line 311 of the first access line layer (FAL1) and the second access line 302 of the second access line layer (SAL2). The bidirectional memory cell 323 of the third layer L3 is inserted between the second access line 302 of the second access line layer (SAL2) and the first access line 312 of the first access line layer (FAL2). The bidirectional memory cell 324 of the fourth layer L4 is inserted between the first access line 312 of the first access line layer (FAL2) and the second access line 303 of the second access line layer (SAL3). The bidirectional memory cell 325 of the fifth layer L5 is inserted between the second access line 303 of the second access line layer (SAL3) and the first access line 313 of the first access line layer (FAL3). The bidirectional memory cell 326 of the sixth layer L6 is inserted between the first access line 313 of the first access line layer (FAL3) and the second access line 304 of the second access line layer (SAL4). The bidirectional memory cell 327 of the seventh layer L7 is inserted between the second access line 304 of the second access line layer (SAL4) and the first access line 314 of the first access line layer (FAL4). The bidirectional memory cell 328 of the eighth layer L8 is inserted between the first access line 314 of the first access line layer (FAL4) and the second access line 305 of the second access line layer (SAL5).

用於第一存取線層的共享解碼器351是可操作地耦接以在第一組和第二組第一存取線驅動器之間進行選擇。第一組第一存取線驅動器包括用於奇數的第一存取線層(FAL1和FAL3)中的第一存取線的驅動器352。第二組第一存取線驅動器包括用於偶數的第一存取線層(FAL2和FAL4)中的第一存取線的驅動器353。驅動器352是耦接到解碼器以將共第一操作電壓施加到奇數的第一存取線層(FAL1)中的第一存取線311,並且施加到奇數 的第一存取線層中的第一存取線313(FAL3)。驅動器353是可操作地耦接到解碼器,以將共第一操作電壓施加到偶數的第一存取線層(FAL2)中的第一存取線312和偶數的第一存取線層(FAL4)中的第一存取線314。在用於第一存取線層351的共享解碼器的第一實施例中,驅動器選擇器是可操作地連接到兩個第一存取線驅動器,其用於兩個不同層中的共同行(或列)中的第一存取線。驅動器選擇器可以被配置以用於使其中一個第一存取線驅動器將相同(即,共)操作電壓施加到奇數的第一存取線層(FAL1和FAL3)中的共同行中的第一存取線組,並且使得另一個第一個存取線驅動器將相同的操作電壓施加到偶數的第一個存取線路層(FAL2和FAL4)的共同行中的第一存取線路組。在用於第一存取線層的共享解碼器的第二實施例中,驅動器選擇器208是可操作地連接到四個第一存取線驅動器,其中每個驅動器連接到一個第一存取線層中的共同行中的第一存取線。第二實施例中的驅動器選擇器被配置以用於使得連接到奇數的第一存取線層中的共同行中的第一存取線的驅動器能夠將共操作電壓施加到第一存取線層FAL1中的第一存取線311和第一存取線層FAL3中的第一存取線313,並且使得連接到偶數的第一存取線層中的第一存取線的驅動器將共操作電壓施加到第一存取線層FAL2中的共同行中的第一存取線312與第一存取線層FAL4中的共同行中的第一存取線314。 The shared decoder 351 for the first access line layer is operatively coupled to select between the first and second sets of first access line drivers. The first set of first access line drivers includes drivers 352 for the first access lines in the odd-numbered first access line layers (FAL1 and FAL3). The second set of first access line drivers includes drivers 353 for the first access lines in the even-numbered first access line layers (FAL2 and FAL4). The driver 352 is a first access line 311 coupled to the decoder to apply a total first operating voltage to the odd-numbered first access line layer (FAL1), and is applied to the odd-numbered The first access line 313 (FAL3) in the first access line layer of. The driver 353 is operatively coupled to the decoder to apply a total first operating voltage to the first access lines 312 in the even-numbered first access line layer (FAL2) and the even-numbered first access line layers ( FAL4). In a first embodiment of a shared decoder for a first access line layer 351, the driver selector is operatively connected to two first access line drivers for a common line in two different layers (Or row) of the first access line. The driver selector may be configured to cause one of the first access line drivers to apply the same (i.e., common) operating voltage to the first in a common row of the odd first access line layers (FAL1 and FAL3). Access line group, and cause another first access line driver to apply the same operating voltage to the first access line group in a common row of the even first access line layers (FAL2 and FAL4). In a second embodiment of the shared decoder for the first access line layer, the driver selector 208 is operatively connected to four first access line drivers, each of which is connected to one first access The first access line in a common row in the line layer. The driver selector in the second embodiment is configured to enable a driver connected to a first access line in a common row in an odd-numbered first access line layer to apply a common operating voltage to the first access line The first access line 311 in the layer FAL1 and the first access line 313 in the first access line layer FAL3, and the drivers connected to the first access lines in the even-numbered first access line layer will share An operation voltage is applied to the first access line 312 in a common row in the first access line layer FAL2 and the first access line 314 in a common row in the first access line layer FAL4.

用於第二存取線層的共享解碼器361是可操作地耦接以在M/2=4組第二存取線驅動器中進行選擇。第一組第二存取線驅 動器包括用於第二存取線層(SAL1和SAL5)中的第二存取線的驅動器362。第二組第二存取線驅動器包括用於第二存取線層(SAL2)中的第二存取線的驅動器363。第三組第二存取線驅動器包括用於第二存取線層(SAL3)中的第二存取線的驅動器364。第四組第二存取線驅動器包括用於第二存取線層(SAL4)中的第二存取線的驅動器365。驅動器362耦接到解碼器以將共操作電壓施加到第二存取線層(SAL1)中的第二存取線301,並且施加到第二存取線層(SAL5)中的第二存取線305。驅動器363是可操作地耦接到解碼器以將操作電壓施加到第二存取線層(SAL2)中的第二存取線302。驅動器364是可操作地耦接到解碼器以將操作電壓施加到第二存取線層(SAL3)中的第二存取線303。驅動器365是可操作地耦接到解碼器以將操作電壓施加到第二存取線層(SAL4)中的第二存取線304。 The shared decoder 361 for the second access line layer is operatively coupled to select among the M / 2 = 4 sets of second access line drivers. First set of second access line drives The actuator includes a driver 362 for the second access line in the second access line layers (SAL1 and SAL5). The second set of second access line drivers includes a driver 363 for the second access line in the second access line layer (SAL2). The third set of second access line drivers includes a driver 364 for the second access line in the second access line layer (SAL3). The fourth set of second access line drivers includes a driver 365 for the second access line in the second access line layer (SAL4). The driver 362 is coupled to the decoder to apply a common operating voltage to the second access line 301 in the second access line layer (SAL1), and to the second access in the second access line layer (SAL5) Line 305. The driver 363 is a second access line 302 operatively coupled to the decoder to apply an operating voltage to the second access line layer (SAL2). The driver 364 is a second access line 303 operatively coupled to the decoder to apply an operating voltage to the second access line layer (SAL3). The driver 365 is a second access line 304 operatively coupled to the decoder to apply an operating voltage to the second access line layer (SAL4).

圖3B繪示施加到以如圖3A所示的M=8八層的雙向記憶胞的堆疊371中的第一和第二存取線的範例操作電壓。可以看出,對於任何層的記憶胞的讀取操作,共操作電壓會被施加到第一存取線層組,其包括包含奇數層FAL1和FAL3的第一組以及包含偶數層FAL2和FAL4的第二組。而且,對於任何層的記憶胞的讀取操作,共操作電壓會被施加到第二存取線層組,其包括包含頂部層和底部層SAL1和SAL5的第一組、包含層SAL2的第二組、包含層SAL3的第三組以及包含層SAL4的第四組。因此,解碼負荷會從四層的選擇減少到兩組第一存取線層的選擇,並且從五層的 選擇減少到四組第二存取線層的選擇。 FIG. 3B illustrates an exemplary operating voltage applied to the first and second access lines in the stack 371 of the bi-directional memory cell with M = 8 eight layers as shown in FIG. 3A. It can be seen that for the read operation of the memory cells of any layer, the common operating voltage will be applied to the first access line layer group, which includes the first group including the odd layers FAL1 and FAL3 and the first group including the even layers FAL2 and FAL4. Second Group. Moreover, for the read operation of the memory cells of any layer, the common operation voltage is applied to the second access line layer group, which includes the first group including the top and bottom layers SAL1 and SAL5, and the second group including the layer SAL2 Group, a third group containing layer SAL3, and a fourth group containing layer SAL4. Therefore, the decoding load will be reduced from the selection of four layers to the selection of two sets of first access line layers, and from the five layers. The choice is reduced to four sets of second access line layer choices.

圖4是繪示以共享層解碼在3D交叉點記憶體陣列中的記憶胞中讀取資料的方法的流程圖。在讀取操作中,在一些實施例中,讀取命令和要讀取的記憶胞的位址會被接收。控制器執行讀取程序,此程序涉及設置偏置電壓、驅動器和讀出放大器以執行讀取。此外,解碼器是用於決定要驅動哪些存取線以完成特定位址的記憶胞的讀取操作。在3D陣列中,記憶胞可以由列、行和層來表示。圖4中所示的方法開始於解碼記憶胞位址以決定記憶胞的列和行(步驟401)。此外,此方法包括選擇依據記憶胞的層的一組列存取線層(即,第一存取線層)(步驟402)。再者,此方法包括選擇依據記憶胞的層的一組行存取線層(即,第二存取線層)(步驟403)。當解碼器選擇的行存取線層組的數量少於行存取線層的數量時,則解碼負荷會降低。 FIG. 4 is a flowchart illustrating a method for reading data from a memory cell in a 3D cross-point memory array with a shared layer decoding. In a read operation, in some embodiments, a read command and an address of a memory cell to be read are received. The controller executes a read procedure, which involves setting the bias voltage, driver, and sense amplifier to perform the read. In addition, the decoder is used to decide which access lines to drive to complete the read operation of the memory cell at a specific address. In a 3D array, memory cells can be represented by columns, rows, and layers. The method shown in Figure 4 begins by decoding the memory cell address to determine the columns and rows of the memory cell (step 401). In addition, the method includes selecting a set of column access line layers (ie, the first access line layer) according to the layer of the memory cell (step 402). Furthermore, the method includes selecting a set of row access line layers (ie, second access line layers) according to the layers of the memory cells (step 403). When the number of row access line layer groups selected by the decoder is less than the number of row access line layers, the decoding load is reduced.

讀取操作包括將第一操作電壓施加到所選擇的一組列存取線層的每個構件中所決定的列中的列存取線(步驟404)。當解碼器選擇的列存取線層組的數量少於列存取線層的數量時,則解碼負荷會降低。 The read operation includes applying a first operating voltage to a column access line in a determined column in each component of the selected set of column access line layers (step 404). When the number of column access line layer groups selected by the decoder is less than the number of column access line layers, the decoding load is reduced.

同時,此方法包括將第二操作電壓施加到所選擇的一組行存取線層的每個構件中的所決定的行中的行存取線(步驟405)。另外,此方法包括將用於上述類型的記憶胞的中間電壓施加到未選擇的列和行中的列存取線和行存取線,並且在未選擇的列和行存取線層的每個構件中(步驟406)。 At the same time, the method includes applying a second operating voltage to the row access lines in the determined row in each component of the selected set of row access line layers (step 405). In addition, this method includes applying an intermediate voltage for the above-mentioned type of memory cells to the column access lines and row access lines in the unselected columns and rows, and each of the unselected column and row access line layers Components (step 406).

在本揭露描述的技術的實施例中,至少一組列存取線層或至少一組行存取線層包括多於一個的構件。因此,解碼負荷會降低。 In an embodiment of the technology described in this disclosure, at least one set of column access line layers or at least one set of row access line layers includes more than one component. Therefore, the decoding load is reduced.

在上面討論的實施例中,列存取線層或行存取線層會被分組至包括第一組的每個奇數層和第二組的每個偶數層的組中。而列存取線層或行存取線層中的另一個會被分組至包括第一組和其他組的組中,其中此第一組中底部層和頂部層是構件,且此其他組中頂部和底部之間的個別層的中之一是包括在每一組中。 In the embodiments discussed above, the column access line layer or the row access line layer are grouped into a group including each odd layer of the first group and each even layer of the second group. The other of the column access line layer or the row access line layer is grouped into a group including a first group and other groups, wherein the bottom layer and the top layer in this first group are components, and the other groups One of the individual layers between the top and bottom is included in each group.

圖5A繪示具有單向記憶胞的3D交叉點記憶體陣列。3D交叉點陣列包括多個單向記憶胞(unidirectional memory dell),其包括單向記憶胞521、522、523、524。單向記憶胞是設置在沿列方向佈置的多個第一存取線501、502、503、504、505、506、507、508和509(即,列存取線)和沿行方向佈置的多個第二存取線511、512、513、514、515和516(即,行存取線)的交叉點處。每個單向記憶胞是連接到特定的第一存取線和特定的第二存取線。例如,單向記憶胞521是連接到第一存取線501和第二存取線511。除了記憶元件之外,“單向”記憶胞還包括方向元件。方向元件允許電流在記憶胞的特定第一存取線與特定第二存取線之間沿特定方向流入記憶胞中。這種方向元件的例子包括二極管。例如,在單向記憶胞521中,電流可以從第二存取線511流到第一存取線501,但反之不然。堆疊561包括堆疊在另一個頂部上的單向記憶胞521、522、523和524。 FIG. 5A illustrates a 3D cross-point memory array with unidirectional memory cells. The 3D crosspoint array includes a plurality of unidirectional memory cells, which include unidirectional memory cells 521, 522, 523, 524. Unidirectional memory cells are arranged in a plurality of first access lines 501, 502, 503, 504, 505, 506, 507, 508, and 509 (i.e., column access lines) arranged in a column direction and arranged in a row direction. At the intersection of a plurality of second access lines 511, 512, 513, 514, 515, and 516 (ie, row access lines). Each unidirectional memory cell is connected to a specific first access line and a specific second access line. For example, the unidirectional memory cell 521 is connected to the first access line 501 and the second access line 511. In addition to memory elements, "unidirectional" memory cells also include directional elements. The directional element allows a current to flow into the memory cell in a specific direction between a specific first access line and a specific second access line of the memory cell. Examples of such directional elements include diodes. For example, in the unidirectional memory cell 521, a current can flow from the second access line 511 to the first access line 501, but not vice versa. Stack 561 includes unidirectional memory cells 521, 522, 523, and 524 stacked on top of another.

具有實作在圖5A的配置中的單向記憶胞的3D交叉點記憶體陣列可具有許多層且在每個層中具有許多第一存取線和第二存取線,以用於形成非常高密度的記憶體裝置。在較佳實施例中,單向記憶胞的層數M例如為正整數,M可以是2的倍數,例如,M=2、4、8、16、32或64。其他3D配置也可以被實作。具有M層的單向記憶胞的3D交叉點記憶體陣列可具有N個第一存取線層,N例如為正整數,其中N=M/2+1。每個第一存取線層(n)可以包括多個第一存取線,n例如為正整數,其中n從1到M/2+1。具有M層的3D交叉點記憶體陣列還可以包括與N個第一存取線層交錯的P個第二存取線層,P例如為正整數,其中P=M/2。每個第二存取線層(p)可以包括多個第二存取線,p例如為正整數,其中p從1到M/2。 A 3D cross-point memory array with unidirectional memory cells implemented in the configuration of FIG. 5A may have many layers and many first and second access lines in each layer for forming very High-density memory device. In a preferred embodiment, the number of layers M of the unidirectional memory cell is, for example, a positive integer, and M may be a multiple of 2, for example, M = 2, 4, 8, 16, 32, or 64. Other 3D configurations can also be implemented. A 3D crosspoint memory array with M layers of unidirectional memory cells may have N first access line layers, where N is a positive integer, for example, where N = M / 2 + 1. Each first access line layer (n) may include a plurality of first access lines, where n is, for example, a positive integer, where n is from 1 to M / 2 + 1. The 3D crosspoint memory array with M layers may further include P second access line layers interleaved with N first access line layers, where P is a positive integer, for example, where P = M / 2. Each second access line layer (p) may include a plurality of second access lines, where p is, for example, a positive integer, where p is from 1 to M / 2.

圖5A中的3D交叉點記憶體陣列包括M=4層的定向記憶胞、N=3個第一存取線層以及P=2第二存取線層。3D交叉點記憶體陣列中第一層的單向記憶胞插入在包括第一存取線501、502和503的第一存取線層(FAL1)和包括第二存取線511、512和513的第二存取線層(SAL1)之間。3D交叉點記憶體陣列中第二層的單向記憶胞插入在包括第二存取線511、512和513的第二存取線層(SAL1)和包括第一存取線504、505和506的第一存取線層(FAL2)之間。3D交叉點記憶體陣列中的第三層插入在包括第一存取線504、505和506的第一存取線層(FAL2)和包括第二存取線514、515和516的第二存取線層(SAL2)之間。3D交叉點記 憶體陣列中的第四層插入在包括第二存取線514、515和516的第二存取線層(SAL2)和包括第一存取線507、508和509的第一存取線層(FAL3)之間。 The 3D crosspoint memory array in FIG. 5A includes M = 4 layers of directional memory cells, N = 3 first access line layers, and P = 2 second access line layers. The unidirectional memory cell of the first layer in the 3D cross-point memory array is inserted in the first access line layer (FAL1) including the first access lines 501, 502, and 503 and includes the second access line 511, 512, and 513 Between the second access line layer (SAL1). The unidirectional memory cell of the second layer in the 3D cross-point memory array is inserted in the second access line layer (SAL1) including the second access lines 511, 512, and 513 and includes the first access lines 504, 505, and 506. Between the first access line layer (FAL2). The third layer in the 3D crosspoint memory array is inserted in the first access line layer (FAL2) including the first access lines 504, 505, and 506, and the second storage line including the second access lines 514, 515, and 516. Take the line layer (SAL2). 3D Intersection The fourth layer in the memory array is inserted between the second access line layer (SAL2) including the second access lines 514, 515, and 516 and the first access line layer including the first access lines 507, 508, and 509 (FAL3).

圖5A繪示M層的3D交叉點記憶體陣列,其包括用於第一存取線層的共享解碼器571和用於第二存取線層的共享解碼器572。控制電路(圖5A中未繪示)是耦接到用於第一存取線層的共享解碼器571、用於第二存取線層572的共享解碼器以及積體電路中的其他資源,以執行寫入操作、讀取操作和其他需要將電壓脈衝序列施加至3D交叉點記憶體陣列中的單向記憶胞的記憶體裝置操作。 FIG. 5A illustrates a 3D crosspoint memory array of M layers, which includes a shared decoder 571 for a first access line layer and a shared decoder 572 for a second access line layer. The control circuit (not shown in FIG. 5A) is a shared decoder 571 for the first access line layer, a shared decoder for the second access line layer 572, and other resources in the integrated circuit. To perform write operations, read operations, and other memory device operations that require a sequence of voltage pulses to be applied to unidirectional memory cells in the 3D cross-point memory array.

以下參考圖6A描述關於第一存取線解碼器571、第二存取線解碼器572以及第一和第二存取線的佈置的更多細節。 More details regarding the arrangement of the first access line decoder 571, the second access line decoder 572, and the first and second access lines are described below with reference to FIG. 6A.

圖5B是圖5A中的範例單向記憶胞521的近視圖。記憶胞521具有與第一存取線501接觸的第一元件551和與第二存取線511接觸的第二元件552。記憶元件553設置在第一元件551和中間元件554之間。方向元件555設置在中間元件554和第二元件552之間。第一元件551將記憶元件553連接到第一存取線501。第二元件552將方向元件555連接到第二存取線511。在一些實施例中,方向元件可以在中間元件和第一元件之間,並且記憶元件可以在中間元件和第二元件之間。 FIG. 5B is a close-up view of the example unidirectional memory cell 521 in FIG. 5A. The memory cell 521 has a first element 551 in contact with the first access line 501 and a second element 552 in contact with the second access line 511. The memory element 553 is disposed between the first element 551 and the intermediate element 554. The directional element 555 is disposed between the intermediate element 554 and the second element 552. The first element 551 connects the memory element 553 to the first access line 501. The second element 552 connects the directional element 555 to the second access line 511. In some embodiments, the directional element may be between the intermediate element and the first element, and the memory element may be between the intermediate element and the second element.

在圖5B的實施例中,方向元件允許電流從第二元件流到第一元件,但反之則不然。在一些實施例中,方向元件可以允許 電流從第一元件流到第二元件,但反之則不然。 In the embodiment of FIG. 5B, the directional element allows current to flow from the second element to the first element, but not vice versa. In some embodiments, the directional element may allow Current flows from the first element to the second element, but not vice versa.

第一元件551、第二元件552和中間元件554可以包括厚度為約5至50nm的導電材料。範例材料已配合圖1B描述如上。 The first element 551, the second element 552, and the intermediate element 554 may include a conductive material having a thickness of about 5 to 50 nm. Example materials have been described above with reference to FIG. 1B.

記憶元件553可包括一層可程式電阻材料。可程式電阻材料可具有表示位元“0”的第一電阻值,以及表示位元“1”的第二電阻值。在一些實施例中,每一記憶胞可儲存多個位元。 The memory element 553 may include a layer of programmable resistive material. The programmable resistance material may have a first resistance value representing a bit “0” and a second resistance value representing a bit “1”. In some embodiments, each memory cell can store multiple bits.

在一個實施例中,記憶元件553可以是相變記憶體,其包括作為可程式電阻材料的相變材料層,如描述如上的範例。 In one embodiment, the memory element 553 may be a phase change memory, which includes a phase change material layer as a programmable resistive material, as described in the above example.

在其他實施例中,記憶元件553可以是電阻隨機存取記憶體或鐵電隨機存取記憶體。記憶元件553中的可編成電阻材料可以是金屬氧化物,例如氧化鉿、氧化鎂、氧化鎳、氧化鈮、氧化鈦、氧化鋁、氧化釩、氧化鎢、氧化鋅或氧化鈷。 In other embodiments, the memory element 553 may be a resistive random access memory or a ferroelectric random access memory. The programmable resistive material in the memory element 553 may be a metal oxide, such as hafnium oxide, magnesium oxide, nickel oxide, niobium oxide, titanium oxide, aluminum oxide, vanadium oxide, tungsten oxide, zinc oxide, or cobalt oxide.

在一些實施例中,可以實現其他電阻記憶體結構,例如金屬氧化物電阻記憶體、磁阻記憶體、導電橋電阻記憶體等。 In some embodiments, other resistive memory structures may be implemented, such as metal oxide resistive memory, magnetoresistive memory, conductive bridge resistive memory, and the like.

方向元件555例如可以是二極管。 The directional element 555 may be, for example, a diode.

第一存取線和第二存取線可包括各種如上所述的金屬、金屬類材料、摻雜半導體或其組合。 The first access line and the second access line may include various metals, metal-based materials, doped semiconductors, or a combination thereof as described above.

圖6A繪示用於在如圖5A中的陣列中的所選列與所選行中的單向記憶胞的堆疊561的第一和第二存取線以及共享第一和第二存取線解碼器的佈置。單向記憶胞的堆疊561包括彼此堆疊的單向記憶胞521、522、523和524。單向記憶胞521、522、523和524位於N=3個第一存取線層和P=2個第二存取線層之間的交 叉點處。第一層L1的單向記憶胞521插入在第一存取線層(FAL1)的第一存取線501和第二存取線層(SAL1)的第二存取線511之間。第二層L2的單向記憶胞522插入在第二存取線層(SAL1)的第二存取線511和第一存取線層(FAL2)的第一存取線504之間。第三層L3的單向記憶胞523插入在第一存取線層(FAL2)的第一存取線504和第二存取線層(SAL2)的第二存取線514之間。第四層L4的單向存儲單元524插入在第二存取線層(SAL2)的第二存取線514和第一存取線層(FAL3)的第一存取線507之間。 FIG. 6A illustrates first and second access lines and a shared first and second access line for a stack 561 of selected columns and unidirectional memory cells in a selected row in the array as in FIG. 5A The arrangement of the decoder. The stack of unidirectional memory cells 561 includes unidirectional memory cells 521, 522, 523, and 524 stacked on each other. Unidirectional memory cells 521, 522, 523, and 524 are located at the intersection between N = 3 first access line layers and P = 2 second access line layers. At the fork. The unidirectional memory cell 521 of the first layer L1 is inserted between the first access line 501 of the first access line layer (FAL1) and the second access line 511 of the second access line layer (SAL1). The unidirectional memory cell 522 of the second layer L2 is inserted between the second access line 511 of the second access line layer (SAL1) and the first access line 504 of the first access line layer (FAL2). The unidirectional memory cell 523 of the third layer L3 is inserted between the first access line 504 of the first access line layer (FAL2) and the second access line 514 of the second access line layer (SAL2). The unidirectional memory cell 524 of the fourth layer L4 is inserted between the second access line 514 of the second access line layer (SAL2) and the first access line 507 of the first access line layer (FAL3).

用於第一存取線層的共享解碼器571可操作地耦接到第一和第二組第一存取線驅動器,並且被配置選擇第一組或第二組第一存取線驅動器以回應目標記憶胞的位置與正在執行的操作。在所示的範例中,有三個第一存取線層和兩組第一存取線驅動器。藉由選擇組而不是單獨的第一存取線,當組的數量小於第一存取線層的數量時,解碼負荷可以降低。 The shared decoder 571 for the first access line layer is operatively coupled to the first and second sets of first access line drivers and is configured to select the first or second set of first access line drivers to Respond to the location of the target memory cell and the operation being performed. In the example shown, there are three first access line layers and two sets of first access line drivers. By selecting groups instead of individual first access lines, the decoding load can be reduced when the number of groups is less than the number of first access line layers.

第一組第一存取線驅動器包括用於第一存取線501與第一存取線507的驅動器602,第一存取線501是對應第一存取線層FAL1中所選擇的記憶胞的列,第一存取線507是對應在第一個存取線層FAL3中所選擇的記憶胞的列。第二組包括用於第一存取線504的驅動器603,第一存取線504是對應第一存取線層FAL2中所選擇的記憶胞的列。來自第一組第一存取線驅動器的驅動器602是可操作地耦接到解碼器571,以將共操作電壓施加到奇數層,包 括施加共操作電壓施加到第一存取線層FAL1中的第一存取線501和第一個存取線路層FAL3中的第一存取線507。來自第二組第一存取線驅動器的驅動器603是耦接到解碼器571以將共操作電壓施加到偶數層,其包括施加共操作電壓施加到第一存取線層(FAL2)中的第一存取線504。因此,在此範例中,第一組第一存取線層可以包括所有奇數層,且第二組可以包括所有偶數層。 The first group of first access line drivers includes a driver 602 for the first access line 501 and the first access line 507. The first access line 501 is a memory cell corresponding to the first access line layer FAL1. The first access line 507 is a column corresponding to the memory cell selected in the first access line layer FAL3. The second group includes a driver 603 for a first access line 504, which is a column corresponding to the selected memory cell in the first access line layer FAL2. The driver 602 from the first set of first access line drivers is operatively coupled to the decoder 571 to apply a common operating voltage to the odd-numbered layers, including This includes applying a common operating voltage to the first access line 501 in the first access line layer FAL1 and the first access line 507 in the first access line layer FAL3. The driver 603 from the second set of first access line drivers is coupled to the decoder 571 to apply a common operating voltage to the even-numbered layers, which includes applying a common operating voltage to the first An access line 504. Therefore, in this example, the first set of first access line layers may include all odd-numbered layers, and the second set may include all even-numbered layers.

用於第二存取線層的共享解碼器572是可操作地耦接到第一組第二存取線驅動器,並且被配置來選擇一組第二存取線驅動器以回應使用解碼器572的陣列的區塊內的目標記憶胞的位置和正在執行的操作。在所示的範例中,有兩個第二存取線層和一組第二存取線驅動器。藉由選擇組而不是單獨的第二存取線,當組的數量小於第二存取線層的數量時,解碼負荷可以降低。 The shared decoder 572 for the second access line layer is operatively coupled to the first set of second access line drivers and is configured to select a set of second access line drivers in response to using the decoder 572. The location of the target memory cell within the block of the array and the operation being performed. In the example shown, there are two second access line layers and a set of second access line drivers. By selecting a group instead of a separate second access line, when the number of groups is smaller than the number of second access line layers, the decoding load can be reduced.

第一組第二存取線驅動器包括驅動器605,其對應於第二存取線層SAL1和SAL2中所選擇的記憶胞的行。 The first set of second access line drivers includes a driver 605, which corresponds to a selected row of memory cells in the second access line layers SAL1 and SAL2.

圖6B繪示施加到圖6A中的單向記憶胞的堆疊561中的第一和第二存取線用於讀取操作的範例操作電壓。只要共第一操作電壓和第二操作電壓在記憶胞上產生壓降,任何大小和極性的電壓都可以用作共第一操作電壓和第二操作電壓來允許電流流過方向元件以決定記憶胞的電阻狀態(即,決定保存在電阻單元中的位元),由此讀取單向記憶胞中的資料。 FIG. 6B illustrates an example operating voltage applied to the first and second access lines in the stack 561 of the unidirectional memory cell in FIG. 6A for a read operation. As long as the first operating voltage and the second operating voltage generate a voltage drop on the memory cell, any voltage of any size and polarity can be used as the first operating voltage and the second operating voltage to allow current to flow through the directional element to determine the memory cell. (That is, the bits stored in the resistance unit are determined), and thus the data in the unidirectional memory cell is read.

在此範例中,驅動器602、603、605被配置以用於根據用於讀取操作的解碼記憶胞位址施加+3V、0V和-3V中的其中一 個作為操作電壓。其他大小和極性的電壓可以用作適合特定實施例的電壓。從圖6B的表中可以看出,在陣列的所有讀取操作中,共操作電壓會被施加到層SAL1和SAL2處的第二存取線511和514。同時,在陣列的一些讀取操作中,共操作電壓會被施加到層FAL1和FAL3處的第一存取線501和507。此降低了記憶體的解碼負荷。 In this example, the drivers 602, 603, and 605 are configured to apply one of + 3V, 0V, and -3V based on the decoded memory cell address used for the read operation. As the operating voltage. Voltages of other sizes and polarities can be used as voltages suitable for a particular embodiment. It can be seen from the table of FIG. 6B that in all read operations of the array, a common operating voltage is applied to the second access lines 511 and 514 at the layers SAL1 and SAL2. At the same time, in some read operations of the array, a common operating voltage is applied to the first access lines 501 and 507 at the layers FAL1 and FAL3. This reduces the decoding load on the memory.

為了在第一層L1處的單向記憶胞521中讀取資料,6伏的正向偏壓會藉由在第一存取線501上的-3V和在第二存取線511上的+3V穿過記憶胞來被施加,而不超過+3伏的正向偏壓或反向偏壓會穿過堆疊中的其他記憶胞來被施加。為了施加6伏的正向偏壓,會藉由驅動器605將+3V的共操作電壓施加到第二存取線層SAL1的第二存取線511和第二存取線層SAL2的第二存取線514。藉由驅動器602將-3V的操作電壓施加到第一存取線層FAL1的第一存取線501和第一存取線層FAL3的第一存取線507。藉由驅動器603將0V的操作電壓施加到第一存取線層FAL2的第一存取線504。 In order to read data in the unidirectional memory cell 521 at the first layer L1, a forward bias of 6 volts is applied by -3V on the first access line 501 and + on the second access line 511. 3V is applied across the memory cells, and a forward or reverse bias not exceeding +3 volts is applied across the other memory cells in the stack. In order to apply a forward bias of 6 volts, a common operating voltage of + 3V is applied to the second access line 511 of the second access line layer SAL1 and the second storage line of the second access line layer SAL2 by the driver 605. Take line 514. An operation voltage of -3V is applied to the first access line 501 of the first access line layer FAL1 and the first access line 507 of the first access line layer FAL3 by the driver 602. An operating voltage of 0V is applied to the first access line 504 of the first access line layer FAL2 by the driver 603.

為了在第二層L2處的單向記憶胞522中讀取資料,6伏的正向偏壓會通過第一存取線504(FAL2)和第二存取線511(SAL1)穿過記憶胞來被施加,而不超過3伏特或反向偏壓會被施加穿過在堆疊中的其他記憶胞上。為了施加6伏的正向偏壓,-3V的共操作電壓會被施加到第二存取線511和第二存取線514(SAL2)。藉由來自於第二組第一存取線驅動器的驅動器603將 +3V的操作電壓施加到第一存取線層(FAL2)的第一存取線504。通過藉由驅動器602將0V的操作電壓施加到第一存取線層(FAL1)的第一存取線501和第一存取線層FAL3的第一存取線507。 In order to read data in the unidirectional memory cell 522 at the second layer L2, the 6 volt forward bias will pass through the memory cell through the first access line 504 (FAL2) and the second access line 511 (SAL1). Is applied without exceeding 3 volts or reverse bias is applied across the other memory cells in the stack. In order to apply a forward bias of 6 volts, a common operating voltage of -3 V is applied to the second access line 511 and the second access line 514 (SAL2). With the driver 603 from the second set of first access line drivers, An operating voltage of + 3V is applied to the first access line 504 of the first access line layer (FAL2). By applying an operating voltage of 0 V through the driver 602 to the first access line 501 of the first access line layer (FAL1) and the first access line 507 of the first access line layer FAL3.

為了在第三層L3處讀取單向記憶胞523中的資料,6伏的正向偏壓會藉由第一存取線504(FAL2)和第二存取線514(SAL2)施加穿過記憶胞,而不超過3伏特或反向偏壓會被施加在堆疊中的其他記憶胞上。為了施加6伏的正向偏壓,+3V的共操作電壓會被施加到第二存取線514(SAL2)和第二存取線511(SAL1)。-3V的操作電壓會藉由來自於第二組第一存取線驅動器的驅動器603施加到第一存取線層(FAL2)的第一存取線504。0V的操作電壓施會藉由驅動器602施加到第一存取線層(FAL1)的第一存取線501和第一存取線層FAL3的第一存取線507。 In order to read the data in the unidirectional memory cell 523 at the third layer L3, a forward bias of 6 volts is applied through the first access line 504 (FAL2) and the second access line 514 (SAL2). Memory cells, not exceeding 3 volts or reverse bias, will be applied to other memory cells in the stack. To apply a forward bias of 6 volts, a common operating voltage of +3 V is applied to the second access line 514 (SAL2) and the second access line 511 (SAL1). An operating voltage of -3V is applied to the first access line 504 of the first access line layer (FAL2) by a driver 603 from the second set of first access line drivers. An operating voltage of 0V is applied by the driver 602 is applied to the first access line 501 of the first access line layer (FAL1) and the first access line 507 of the first access line layer FAL3.

為了在第四層L4讀取單向記憶胞524中的資料,6伏的正向偏壓會藉由第一存取線507(FAL3)和第二存取線514(SAL2)施加穿過記憶胞,而不超過3伏特或反向偏壓會施加在堆疊中的其他記憶胞上。為了施加6伏的正向偏壓,-3V的共操作電壓會施加到第二存取線514(SAL2)和第二存取線511(SAL1)。0V的操作電壓會藉由來自於第二組第一存取線驅動器的驅動器603施加至第一存取線層(FAL2)的第一存取線504。3V的操作電壓會藉由驅動器602施加到第一存取線層(FAL1)的第一存取線501和第一存取線層FAL3的第一存取線507。 In order to read the data in the unidirectional memory cell 524 at the fourth layer L4, a forward bias of 6 volts is applied through the memory through the first access line 507 (FAL3) and the second access line 514 (SAL2). Cells, no more than 3 volts or reverse bias will be applied to other memory cells in the stack. In order to apply a forward bias of 6 volts, a common operating voltage of -3 V is applied to the second access line 514 (SAL2) and the second access line 511 (SAL1). An operating voltage of 0V is applied to the first access line 504 of the first access line layer (FAL2) by a driver 603 from the second set of first access line drivers. An operating voltage of 3V is applied by the driver 602 To the first access line 501 of the first access line layer (FAL1) and the first access line 507 of the first access line layer FAL3.

圖7A繪示用於M=8層的3D交叉點記憶體陣列中的特定列和行處的單向記憶胞的堆疊771的第一和第二存取線以及共享第一和第二存取線解碼器的佈置。單向記憶胞的堆疊771包括堆疊在另一個之上的單向記憶胞721、722、723、724、725、726、727和728。單向記憶胞721、722、723、724、725、726、727和728位於N=M/2+1=5第一存取線層中的第一存取線和P=M/2=4個第二存取線層中的第二存取線之間的交叉點處。第一層L1的單向記憶胞721插入在第一存取線層(FAL1)的第一存取線701和第二存取線層(SAL1)的第二存取線711之間。第二層L2的單向記憶胞722插入在第二存取線層(SAL1)的第二存取線711和第一存取線層(FAL2)的第一存取線702之間。第三層L3的單向記憶胞723插入在第一存取線層(FAL2)的第一存取線702和第二存取線層(SAL2)的第二存取線712之間。第四層L4的單向記憶胞724插入在第二存取線層(SAL2)的第二存取線712和第一存取線層(FAL3)的第一存取線703之間。第五層L5的單向記憶胞725插入在第一存取線層(FAL3)的第一存取線703和第二存取線層(SAL3)的第二存取線713之間。第六層L6的單向記憶胞726插入在第二存取線層(SAL3)的第二存取線713和第一存取線層(FAL4)的第一存取線704之間。第七層L7的單向記憶胞727插入在第一存取線層(FAL4)的第一存取線704和第二存取線層(SAL4)的第二存取線714之間。第八層L8的單向記憶胞728插入在第二存取線層(SAL4)的第二存取線714和第 一存取線層(FAL5)的第一存取線705之間。 FIG. 7A illustrates first and second access lines of a stack 771 of unidirectional memory cells at specific columns and rows in a 3D cross-point memory array of M = 8 layers and shared first and second accesses Arrangement of line decoder. The one-way memory cell stack 771 includes one-way memory cells 721, 722, 723, 724, 725, 726, 727, and 728 stacked on top of each other. Unidirectional memory cells 721, 722, 723, 724, 725, 726, 727, and 728 are located at the first access line in the N = M / 2 + 1 = 5 first access line layer and P = M / 2 = 4 At the intersection between the second access lines in the two second access line layers. The unidirectional memory cell 721 of the first layer L1 is inserted between the first access line 701 of the first access line layer (FAL1) and the second access line 711 of the second access line layer (SAL1). The unidirectional memory cell 722 of the second layer L2 is inserted between the second access line 711 of the second access line layer (SAL1) and the first access line 702 of the first access line layer (FAL2). The unidirectional memory cell 723 of the third layer L3 is inserted between the first access line 702 of the first access line layer (FAL2) and the second access line 712 of the second access line layer (SAL2). The unidirectional memory cell 724 of the fourth layer L4 is inserted between the second access line 712 of the second access line layer (SAL2) and the first access line 703 of the first access line layer (FAL3). The unidirectional memory cell 725 of the fifth layer L5 is inserted between the first access line 703 of the first access line layer (FAL3) and the second access line 713 of the second access line layer (SAL3). The unidirectional memory cell 726 of the sixth layer L6 is inserted between the second access line 713 of the second access line layer (SAL3) and the first access line 704 of the first access line layer (FAL4). The unidirectional memory cell 727 of the seventh layer L7 is inserted between the first access line 704 of the first access line layer (FAL4) and the second access line 714 of the second access line layer (SAL4). The unidirectional memory cell 728 of the eighth layer L8 is inserted in the second access line 714 and the first access line in the second access line layer (SAL4). Between the first access lines 705 of an access line layer (FAL5).

用於第一存取線層的共享解碼器751包括第一和第二組第一存取線驅動器。第一組第一存取線驅動器包括驅動器752,其耦接用以將共操作電壓施加到奇數的第一存取線層(FAL1)中的第一存取線701、奇數的第一存取線層(FAL3)中的第一存取線703和奇數的第一存取線層(FAL5)中的第一存取線705。第二組第一存取線驅動器包括驅動器753,被耦接用以將共操作電壓施加到偶數的第一存取線層(FAL2)中的第一存取線702和偶數的第一存取線層(FAL4)中的第一存取線704。 The shared decoder 751 for the first access line layer includes first and second sets of first access line drivers. The first set of first access line drivers includes a driver 752, which is coupled to apply a common operating voltage to the first access lines 701 in the odd first access line layer (FAL1), the odd first accesses The first access line 703 in the line layer (FAL3) and the first access line 705 in the odd-numbered first access line layer (FAL5). The second set of first access line drivers includes a driver 753, which is coupled to apply a common operating voltage to the first access line 702 in the even first access line layer (FAL2) and the even first access The first access line 704 in the line layer (FAL4).

用於第二存取線層的共享解碼器761包括M/4=2組第二存取線驅動器。第一組第二存取線驅動器包括驅動器762,其耦接以將共操作電壓施加到第二存取線層(SAL1)中的第二存取線711和第二存取線層(SAL2)中的第二存取線712。第二組第二存取線驅動器包括驅動器763,其耦接以將共操作電壓施加到第二存取線層(SAL3)中的第二存取線713和第二存取線層(SAL4)中的第二存取線714。 The shared decoder 761 for the second access line layer includes M / 4 = 2 sets of second access line drivers. The first set of second access line drivers includes a driver 762 that is coupled to apply a common operating voltage to the second access line 711 and the second access line layer (SAL2) in the second access line layer (SAL1).中 的 第二 access 线 712. The second set of second access line drivers includes a driver 763 coupled to apply a common operating voltage to the second access line 713 and the second access line layer (SAL4) in the second access line layer (SAL3).中 的 second access line 714.

圖7B繪示施加到如圖7A所示的M=8八層的單向記憶胞的堆疊771中的第一和第二存取線的範例操作電壓。可以看出,對於任何層的記憶胞的讀取操作,共操作電壓會被施加到第一存取線層組,其包括包含奇數層FAL1、FAL3和FAL5的第一組,以及包含偶數層FAL2和FAL4的第二組。此外,對於任何層的記憶胞的讀取操作,共操作電壓會被施加到多組第二存取線層,包括 包含層SAL1和SAL2的第一組和包含層SAL3和SAL4的第二組。因此,解碼負荷會從五個第一存取線層的選擇降低到兩組第一存取線層的選擇,以及從四個第二存取線層的選擇降低到兩組第二存取線層的選擇。 FIG. 7B illustrates an exemplary operating voltage applied to the first and second access lines in the stack 771 of the unidirectional memory cells of M = 8 eight layers as shown in FIG. 7A. It can be seen that for the read operation of the memory cells of any layer, the common operation voltage is applied to the first access line layer group, which includes the first group including the odd layers FAL1, FAL3, and FAL5, and the even layer FAL2 And the second set of FAL4. In addition, for a read operation of a memory cell in any layer, a common operating voltage is applied to multiple sets of second access line layers, including The first group containing layers SAL1 and SAL2 and the second group containing layers SAL3 and SAL4. Therefore, the decoding load is reduced from the selection of five first access line layers to the selection of two sets of first access line layers, and from the selection of four second access line layers to two sets of second access lines. Selection of layers.

圖8是包括3D交叉點記憶體陣列800的積體電路850的概要方塊。3D交叉點記憶體陣列800包括在一些實施例中的單向記憶胞以及在其他實施例中的雙向記憶胞。 FIG. 8 is a schematic block diagram of an integrated circuit 850 including a 3D cross-point memory array 800. The 3D crosspoint memory array 800 includes unidirectional memory cells in some embodiments and bidirectional memory cells in other embodiments.

共享層解碼器801是與用於第二存取線層的共享解碼器802和用於第一存取線層的共享解碼器803耦接並電性連通,其是如上所述來實作以降低3D陣列的解碼負荷。用於第二存取線層的共享解碼器802是耦接且電性連通到在3D交叉點陣列800中佈置為列的多個第二存取線。第二存取線解碼器802可包括多組第二存取線驅動器。第一存取線解碼器803是與3D交叉點陣列800中的佈置成行的多個第一存取線耦接且電性連通。第一存取線解碼器803可包括第一組第一存取線驅動器和第二組第一存取線驅動器。匯流排805上的位址會被提供給層解碼器801、用於第二存取線路層的共享解碼器802和用於第一存取線路層的共享解碼器803。在本實施例中,感測放大器和諸如預充電電路等的其他支持電路以及區塊806中的資料輸入結構(data-in-structure)是經由匯流排807耦接到用於第一存取線層的共享解碼器803。在一些實施例中,感測放大器可獨立於區塊806中的資料輸入結構。 The shared layer decoder 801 is coupled to and electrically communicated with the shared decoder 802 for the second access line layer and the shared decoder 803 for the first access line layer. It is implemented as described above to Reduce the decoding load of 3D array. The shared decoder 802 for the second access line layer is coupled and electrically connected to a plurality of second access lines arranged in a column in the 3D intersection array 800. The second access line decoder 802 may include a plurality of sets of second access line drivers. The first access line decoder 803 is coupled to and electrically communicates with a plurality of first access lines arranged in a row in the 3D crosspoint array 800. The first access line decoder 803 may include a first set of first access line drivers and a second set of first access line drivers. The address on the bus 805 is provided to the layer decoder 801, the shared decoder 802 for the second access line layer, and the shared decoder 803 for the first access line layer. In this embodiment, the sense amplifier and other supporting circuits such as a precharge circuit and the data-in-structure in the block 806 are coupled to the first access line via the bus 807 Layer shared decoder 803. In some embodiments, the sense amplifier may be independent of the data input structure in block 806.

資料通過資料輸入線821從積體電路850或其他資料源 上的輸入/輸出端提供給區塊806中的資料輸入結構。資料通過資料輸出線822從區塊806中的感測放大器提供給積體電路850上的輸入/輸出端,或提供給積體電路850內部或外部的其他資料目的地。 Data from the integrated circuit 850 or other data sources via the data input line 821 The input / output terminal on the data input structure is provided to the data input structure in block 806. The data is provided to the input / output terminal on the integrated circuit 850 from the sense amplifier in the block 806 through the data output line 822, or to other data destinations inside or outside the integrated circuit 850.

偏壓配置狀態機是在控制電路808中,控制如本揭露所述的偏壓配置供應電壓808。此外,控制電路在區塊806中協調感測電路和資料輸入結構的操作,以用於讀取和寫入操作,其包括執行圖4的方法。此電路可以使用專用邏輯、通用處理器或其組合來實作,以執行讀取、寫入和抹除操作。 The bias configuration state machine is in a control circuit 808 that controls the bias configuration supply voltage 808 as described in this disclosure. In addition, the control circuit coordinates the operation of the sensing circuit and the data input structure for read and write operations in block 806, which includes performing the method of FIG. 4. This circuit can be implemented using dedicated logic, a general-purpose processor, or a combination thereof to perform read, write, and erase operations.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present disclosure has been disclosed as above by way of example, it is not intended to limit the present disclosure. Any person with ordinary knowledge in the technical field should make some changes and modifications without departing from the spirit and scope of the present disclosure. The scope of protection of this disclosure shall be determined by the scope of the attached patent application.

Claims (20)

一種記憶體電路,包括:三維交叉點記憶體陣列,具有至少M層的記憶胞,設置在第一存取線和第二存取線的交叉點中;用於所述M層的N個第一存取線層,其中n是從1到N的第一存取線層(n)包括耦接到對應列的記憶胞的多個第一存取線;用於所述M層的P個第二存取線層,所述P個第二存取線層與所述N個第一存取線層交錯,其中p是從1到P的第二存取線層(p)包括耦接到對應行的記憶胞的多個第二存取線;解碼器和驅動器電路,用以將共操作電壓施加到一組第一存取線層中所選擇的第一存取線,所述一組第一存取線層具有多於一個且少於N個的構件;以及所述解碼器和驅動器電路,用以將操作電壓施加到所述第二存取線層中所選擇的第二存取線,其中M、N、P、n及p為正整數。A memory circuit includes: a three-dimensional cross-point memory array having at least M layers of memory cells, which are arranged at the intersection of a first access line and a second access line; and the Nth An access line layer, where n is a first access line layer (n) from 1 to N (n) includes a plurality of first access lines coupled to memory cells of a corresponding column; P for the M layers A second access line layer, the P second access line layers are interleaved with the N first access line layers, where p is a second access line layer from 1 to P (p) includes a coupling A plurality of second access lines to the corresponding rows of memory cells; a decoder and a driver circuit for applying a common operating voltage to a selected first access line in a set of first access line layers, said one The group of first access line layers has more than one and less than N components; and the decoder and driver circuit for applying an operating voltage to a selected second memory of the second access line layer. Take a line, where M, N, P, n, and p are positive integers. 如申請專利範圍第1項所述的記憶體電路,其中選擇在所述M層中設置在特定第一存取線層中的特定第一存取線與特定第二存取線的交叉點中的特定記憶胞,當所述特定第一存取線層是所述一組第一存取線層的構件時,所述解碼器和驅動電路更用以為選擇列記憶胞、行記憶胞、所述一組第一存取線層以及一個或多個包括所述特定第二存取線的第二存取線層。The memory circuit according to item 1 of the scope of patent application, wherein the M layer is selected in an intersection of a specific first access line and a specific second access line provided in a specific first access line layer in the M layer. When the specific first access line layer is a component of the group of first access line layers, the decoder and the driving circuit are further used to select a column memory cell, a row memory cell, The set of first access line layers and one or more second access line layers including the specific second access line. 如申請專利範圍第2項所述的記憶體電路,其中所述解碼器和驅動器電路包括第一存取線驅動器,所述第一存取線驅動器可操作地連接到所述一組第一存取線層中多於一個第一存取線層中的共同列中的第一存取線,並且用以使所述第一存取線驅動器將所述共操作電壓施加到所述一組第一存取線層中的多於一個第一存取線層中的共同列中的第一存取線。The memory circuit according to item 2 of the scope of patent application, wherein the decoder and driver circuit includes a first access line driver, and the first access line driver is operatively connected to the group of first memory lines. The first access line in a common column in more than one first access line layer in the fetch layer is used to cause the first access line driver to apply the common operating voltage to the set of first First access lines in a common column in more than one first access line layer. 如申請專利範圍第2項所述的記憶體電路,其中所述解碼器和驅動器電路包括多個第一存取線驅動器,其中所述多個第一存取線驅動器中的第一存取線驅動器可操作地連接到在所述一組第一存取線層中的僅一個第一存取線層中的給定列中的第一存取線,並且用以使所述多個第一存取線驅動器將所述共操作電壓施加到所述一組第一存取線層中的所有第一存取線。The memory circuit according to item 2 of the patent application scope, wherein the decoder and driver circuit includes a plurality of first access line drivers, and wherein the first access lines of the plurality of first access line drivers A driver is operatively connected to a first access line in a given column in only one of the first access line layers in the set and serves to cause the plurality of first access lines to An access line driver applies the common operating voltage to all first access lines in the set of first access line layers. 如申請專利範圍第1項所述的記憶體電路,其中所述一組第一存取線層包括奇數的第一存取線層(n),其中n為奇數,且其中所述解碼器和驅動器電路更用以將共操作電壓施加至第二組第一存取線層中所選擇的第一存取線層,所述第二組第一存取線層包括偶數的第一存取線層(n),其中n是偶數。The memory circuit according to item 1 of the scope of patent application, wherein the set of first access line layers includes an odd number of first access line layers (n), where n is an odd number, and wherein the decoder and The driver circuit is further configured to apply a common operating voltage to a selected first access line layer in the second set of first access line layers, the second set of first access line layers including an even number of first access lines. Layer (n), where n is an even number. 如申請專利範圍第1項所述的記憶體電路,其中在所述三維記憶體陣列中的所述記憶胞包括記憶元件,所述記憶元件包括可程式電阻材料。The memory circuit according to item 1 of the patent application scope, wherein the memory cell in the three-dimensional memory array includes a memory element, and the memory element includes a programmable resistive material. 如申請專利範圍第1項所述的記憶體電路,其中所述解碼器和驅動器電路用以將共操作電壓施加到一組第二存取線層中所選擇的第二存取線,所述一組第二存取線層具有一個以上且少於P個的構件。The memory circuit according to item 1 of the scope of patent application, wherein the decoder and the driver circuit are configured to apply a common operating voltage to a selected second access line in a set of second access line layers, the A set of second access line layers has more than one and less than P components. 如申請專利範圍第7項所述的記憶體電路,其中所述一組第二存取線層包括第二存取線層(p),其中p分別為1與M/2+1。The memory circuit according to item 7 of the scope of patent application, wherein the set of second access line layers includes a second access line layer (p), where p is 1 and M / 2 + 1, respectively. 如申請專利範圍第1項所述的記憶體電路,其中所述陣列中的所述記憶胞是單向的,且其中所述解碼器和驅動器電路用以將共操作電壓施加到多組第二存取線層中的第二存取線,所述多組第二存取線層包括M/4組第二存取線層;以及其中所述M/4組第二存取線層的每組第二存取線層包括一對第二存取線層,所述一對第二存取線層包括第二存取線層(p)和第二存取線層(p+1)。The memory circuit according to item 1 of the patent application scope, wherein the memory cells in the array are unidirectional, and wherein the decoder and the driver circuit are configured to apply a common operating voltage to a plurality of sets of second A second access line in an access line layer, the plurality of sets of second access line layers including M / 4 sets of second access line layers; and wherein each of the M / 4 sets of second access line layers The set of second access line layers includes a pair of second access line layers including a second access line layer (p) and a second access line layer (p + 1). 一種用於操作三維交叉點記憶體陣列的方法,所述三維交叉點記憶體陣列具有設置在第一存取線和第二存取線的交叉點中的至少M層的記憶胞,所述陣列包括用於所述M層的N個第一存取線層,其中n是從1到N的第一存取線層(n)包括耦接到對應列的記憶胞的多個第一存取線;以及與所述N個第一存取線層交錯用於所述M層的P個第二存取線層,其中p是從1到P的第二存取線層(p)包括耦接到對應行的記憶胞的多個第二存取線;所述方法包括:將共操作電壓施加到一組第一存取線層中所選擇的第一存取線,所述一組第一存取線層具有多於一個且少於N個的構件;和將操作電壓施加到所述第二存取線層中所選擇的第二存取線,其中M、N、P、n及p為正整數。A method for operating a three-dimensional cross-point memory array, the three-dimensional cross-point memory array having at least M layers of memory cells arranged at the intersection of a first access line and a second access line, the array Including N first access line layers for the M layers, where n is a first access line layer from 1 to N (n) including a plurality of first accesses coupled to memory cells of a corresponding column And P second access line layers interleaved with the N first access line layers for the M layer, where p is a second access line layer from 1 to P (p) includes a coupling A plurality of second access lines connected to a corresponding row of memory cells; the method includes: applying a common operating voltage to a selected first access line in a set of first access line layers, the set of first access lines An access line layer has more than one and less than N components; and an operating voltage is applied to a selected second access line in the second access line layer, where M, N, P, n, and p is a positive integer. 如申請專利範圍第10項所述的用於操作三維交叉點記憶體陣列的方法,包括:選擇在所述M層中設置在特定第一存取線層中的特定第一存取線與特定第二存取線的交叉點中的特定記憶胞,當所述特定第一存取線層是所述一組第一存取線層的構件時,藉由選擇列記憶胞、行記憶胞、所述一組第一存取線層以及一個或多個包括所述特定第二存取線的第二存取線層。The method for operating a three-dimensional crosspoint memory array according to item 10 of the scope of patent application, comprising: selecting a specific first access line and a specific first access line set in a specific first access line layer in the M layer A specific memory cell at the intersection of the second access lines. When the specific first access line layer is a component of the group of first access line layers, by selecting a column memory cell, a row memory cell, The set of first access line layers and one or more second access line layers including the specific second access line. 如申請專利範圍第10項所述的用於操作三維交叉點記憶體陣列的方法,其中所述一組第一存取線層包括奇數的第一存取線層(n),其中n為奇數,並且所述方法更包括施加共操作電壓至第二組第一存取線層中所選擇的第一存取線,所述第二組第一存取線層包括偶數的第一存取線層(n),其中n是偶數。The method for operating a three-dimensional cross-point memory array according to item 10 of the application, wherein the set of first access line layers includes an odd number of first access line layers (n), where n is an odd number And the method further includes applying a common operating voltage to a selected first access line in the second set of first access line layers, the second set of first access line layers including an even number of first access lines Layer (n), where n is an even number. 如申請專利範圍第10項所述的用於操作三維交叉點記憶體陣列的方法,其中所述三維記憶體陣列中的所述記憶胞包括記憶元件,所述記憶元件包括可程式編程電阻材料。The method for operating a three-dimensional cross-point memory array according to item 10 of the application, wherein the memory cells in the three-dimensional memory array include a memory element, and the memory element includes a programmable resistance material. 如申請專利範圍第10項所述的用於操作三維交叉點記憶體陣列的方法,包括將共操作電壓施加到一組第二存取線層中所選擇的第二存取線,所述一組第二存取線層具有多於一個且少於P個的構件。The method for operating a three-dimensional crosspoint memory array according to item 10 of the patent application scope, comprising applying a common operating voltage to a selected second access line in a set of second access line layers, the first The group second access line layer has more than one and less than P components. 如申請專利範圍第14項所述的用於操作三維交叉點記憶體陣列的方法,其中,所述一組第二存取線層包括第二存取線層(p),其中p分別為1與M/2+1。The method for operating a three-dimensional crosspoint memory array according to item 14 of the scope of patent application, wherein the set of second access line layers includes a second access line layer (p), where p is 1 respectively With M / 2 + 1. 如申請專利範圍第10項所述的用於操作三維交叉點記憶體陣列的方法,其中所述陣列中的所述記憶胞是單向的,並且所述方法包括將共操作電壓施加到多組第二存取線層中的第二存取線,所述多組第二存取線層包括M/4組第二存取線路層;以及其中所述M/4組第二存取線層的每組第二存取線層包括一對第二存取線層,所述一對第二存取線層包括第二存取線層(p)和第二存取線層(p+1)。The method for operating a three-dimensional cross-point memory array as described in claim 10, wherein the memory cells in the array are unidirectional, and the method includes applying a common operating voltage to multiple groups A second access line in a second access line layer, the plurality of sets of second access line layers including M / 4 sets of second access line layers; and wherein the M / 4 sets of second access line layers Each set of second access line layers includes a pair of second access line layers, the pair of second access line layers including a second access line layer (p) and a second access line layer (p + 1) ). 一種記憶體電路,包括:三維交叉點記憶體陣列,具有至少M層的記憶胞,設置在第一存取線和第二存取線的交叉點中;用於所述M層的N個第一存取線層,其中n是從1到N的第一存取線層(n)包括耦接到對應列的記憶胞的多個第一存取線;用於所述M層的P個第二存取線層,所述P個第二存取線層與所述N個第一存取線層交錯,其中p是從1到P的第二存取線層(p)包括耦接到對應行的記憶胞的多個第二存取線;解碼器和驅動器電路,用以將共操作電壓施加到一組第一存取線層中所選擇的第一存取線,所述一組第一存取線層具有多於一個且少於N個的構件,其中所述一組第一存取線層包括奇數的第一存取線層(n),其中n為奇數;以及所述解碼器和驅動器電路用以將共操作電壓施加到多組第二存取線層中的給定行中的第二存取線,所述多組第二存取線層包括M/4組第二存取線層,其中所述M/4組第二存取線層的每組第二存取線層包括一對第二存取線層,所述一對第二存取線層包括第二存取線層(p)和第二存取線層(p+1),其中M、N、P、n及p為正整數。A memory circuit includes: a three-dimensional cross-point memory array having at least M layers of memory cells, which are arranged at the intersection of a first access line and a second access line; and the Nth An access line layer, where n is a first access line layer (n) from 1 to N (n) includes a plurality of first access lines coupled to memory cells of a corresponding column; P for the M layers A second access line layer, the P second access line layers are interleaved with the N first access line layers, where p is a second access line layer from 1 to P (p) includes a coupling A plurality of second access lines to the corresponding rows of memory cells; a decoder and a driver circuit for applying a common operating voltage to a selected first access line in a set of first access line layers, said one A set of first access line layers having more than one and less than N components, wherein the set of first access line layers includes an odd number of first access line layers (n), where n is an odd number; and The decoder and driver circuit are used to apply a common operating voltage to a second access line in a given row of a plurality of sets of second access line layers, the plurality of sets of second access line layers including M / 4 groups Second access Layer, wherein each of the M / 4 sets of second access line layers includes a pair of second access line layers, and the pair of second access line layers includes a second access line Layer (p) and second access line layer (p + 1), where M, N, P, n, and p are positive integers. 如申請專利範圍第17項所述的記憶體電路,其中選擇在所述M層中設置在特定第一存取線層中的特定第一存取線與特定第二存取線的交叉點中的特定記憶胞,當所述特定第一存取線層是所述一組第一存取線層的構件時,所述解碼器和驅動電路用以為選擇列記憶胞、行記憶胞、所述一組第一存取線層以及一個或多個包括所述特定第二存取線的第二存取線層。The memory circuit according to item 17 of the scope of patent application, wherein the M layer is selected in an intersection of a specific first access line and a specific second access line provided in a specific first access line layer in the M layer. When the specific first access line layer is a component of the group of first access line layers, the decoder and the driving circuit are configured to select a column memory cell, a row memory cell, the A set of first access line layers and one or more second access line layers including the specific second access line. 如申請專利範圍第17項所述的記憶體電路,其中所述三維記憶體陣列中的所述記憶胞包括記憶元件,所述記憶元件包括可程式編程電阻材料。The memory circuit according to item 17 of the scope of patent application, wherein the memory cell in the three-dimensional memory array includes a memory element, and the memory element includes a programmable resistive material. 如申請專利範圍第17項所述的記憶體電路,其中所述解碼器和驅動器電路更用以將共同操作電壓施加到第二組第一存取線層中的給定列中的所選擇的第一存取線,所述第二組第一存取線層包括偶數的第一存取線層(n),其中n是偶數。The memory circuit of claim 17 in which the decoder and the driver circuit are further configured to apply a common operating voltage to a selected one of the given columns in the second set of first access line layers. A first access line, the second set of first access line layers including an even number of first access line layers (n), where n is an even number.
TW107134197A 2018-07-24 2018-09-27 Memory circuit and method for operating three-dimentional cross point memory array TWI671760B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/043,692 2018-07-24
US16/043,692 US10497437B1 (en) 2018-07-24 2018-07-24 Decoding scheme for 3D cross-point memory array

Publications (2)

Publication Number Publication Date
TWI671760B true TWI671760B (en) 2019-09-11
TW202008357A TW202008357A (en) 2020-02-16

Family

ID=68618988

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107134197A TWI671760B (en) 2018-07-24 2018-09-27 Memory circuit and method for operating three-dimentional cross point memory array

Country Status (3)

Country Link
US (1) US10497437B1 (en)
CN (1) CN110751969B (en)
TW (1) TWI671760B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797648B (en) * 2020-10-02 2023-04-01 美商桑迪士克科技有限責任公司 Improved mram cross-point memory with reversed mram element vertical orientation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355554B2 (en) 2020-05-08 2022-06-07 Micron Technology, Inc. Sense lines in three-dimensional memory arrays, and methods of forming the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001534A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation Resistance change type nonvolatile storage device
US20120051137A1 (en) * 2010-09-01 2012-03-01 Macronix International Co., Ltd. Memory Architecture of 3D Array With Diode In Memory String
WO2013035327A1 (en) * 2011-09-09 2013-03-14 パナソニック株式会社 Cross-point variable resistance non-volatile storage device and writing method for same
US20130337646A1 (en) * 2012-06-15 2013-12-19 Sandisk 3D Llc Method for forming staircase word lines in a 3d non-volatile memory having vertical bit lines
TW201517250A (en) * 2013-10-31 2015-05-01 Macronix Int Co Ltd Stacked 3D memory
TW201606993A (en) * 2014-08-05 2016-02-16 旺宏電子股份有限公司 Memory architecture of 3D array with interleaved control structures
TW201640321A (en) * 2014-12-27 2016-11-16 英特爾公司 Tier mode for access operations to 3D memory
TW201737519A (en) * 2016-01-27 2017-10-16 三星電子股份有限公司 Memory device, method of manufacturing the same and electronic apparatus including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
KR100631929B1 (en) * 2005-02-15 2006-10-04 삼성전자주식회사 Semiconductor memory device having signal delay controller
CN105469823B (en) * 2014-09-12 2019-10-25 上海华虹宏力半导体制造有限公司 Memory array
US9767896B2 (en) * 2016-01-21 2017-09-19 Micron Technology, Inc. Apparatuses and methods for accessing memory cells in semiconductor memories
US10157671B1 (en) 2017-09-12 2018-12-18 Macronix International Co., Ltd. Fast switching 3D cross-point array

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001534A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation Resistance change type nonvolatile storage device
US20120051137A1 (en) * 2010-09-01 2012-03-01 Macronix International Co., Ltd. Memory Architecture of 3D Array With Diode In Memory String
WO2013035327A1 (en) * 2011-09-09 2013-03-14 パナソニック株式会社 Cross-point variable resistance non-volatile storage device and writing method for same
US20130337646A1 (en) * 2012-06-15 2013-12-19 Sandisk 3D Llc Method for forming staircase word lines in a 3d non-volatile memory having vertical bit lines
TW201517250A (en) * 2013-10-31 2015-05-01 Macronix Int Co Ltd Stacked 3D memory
TW201606993A (en) * 2014-08-05 2016-02-16 旺宏電子股份有限公司 Memory architecture of 3D array with interleaved control structures
TW201640321A (en) * 2014-12-27 2016-11-16 英特爾公司 Tier mode for access operations to 3D memory
TW201737519A (en) * 2016-01-27 2017-10-16 三星電子股份有限公司 Memory device, method of manufacturing the same and electronic apparatus including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797648B (en) * 2020-10-02 2023-04-01 美商桑迪士克科技有限責任公司 Improved mram cross-point memory with reversed mram element vertical orientation

Also Published As

Publication number Publication date
US10497437B1 (en) 2019-12-03
TW202008357A (en) 2020-02-16
CN110751969B (en) 2021-07-16
CN110751969A (en) 2020-02-04

Similar Documents

Publication Publication Date Title
US9991315B2 (en) Memory device including ovonic threshold switch adjusting threshold voltage thereof
US20210134332A1 (en) Memory devices
US10644069B2 (en) Memory devices having crosspoint memory arrays therein with multi-level word line and bit line structures
TWI701663B (en) Integrated circuit having memory cells and method of writing a selected memory cell in a memory array
US8605495B2 (en) Isolation device free memory
US8335100B2 (en) Circuit, biasing scheme and fabrication method for diode accessed cross-point resistive memory array
KR20180010790A (en) Memory device
KR102507303B1 (en) Memory device
US10395733B2 (en) Forming structure and method for integrated circuit memory
TW201917889A (en) Superlattice-like switching devices
KR101854023B1 (en) Non-linear switching device, method of fabricating the same, and non-volatile memory device having the same
JP2020013970A (en) Arsenic, selenium and germanium chalcogenide not containing tellurium for selector device and memory device using the same
WO2019146268A1 (en) Storage element and storage device
TWI671760B (en) Memory circuit and method for operating three-dimentional cross point memory array
US7974116B2 (en) Variable resistance memory device
US9165643B2 (en) Nonvolatile semiconductor memory device
US11961555B2 (en) Resistive memory device with boundary and edge transistors coupled to edge bit lines
KR20200048751A (en) Non-linear switching device, method of fabricating the same, and non-volatile memory device having the same
TWI817659B (en) Multi-layer ovonic threshold switch (ots) for switching devices and memory devices using the same
KR102678527B1 (en) Resistance variable memory device and method for fabricating the same
KR102672267B1 (en) Resistance variable memory device
US20220406844A1 (en) Resistive memory device
CN103632718B (en) Nonvolatile semiconductor memory device