TWI667358B - Method of producing titanium alloy wire rod - Google Patents

Method of producing titanium alloy wire rod Download PDF

Info

Publication number
TWI667358B
TWI667358B TW106144442A TW106144442A TWI667358B TW I667358 B TWI667358 B TW I667358B TW 106144442 A TW106144442 A TW 106144442A TW 106144442 A TW106144442 A TW 106144442A TW I667358 B TWI667358 B TW I667358B
Authority
TW
Taiwan
Prior art keywords
titanium alloy
billet
titanium
temperature
alloy disk
Prior art date
Application number
TW106144442A
Other languages
Chinese (zh)
Other versions
TW201928090A (en
Inventor
伍昭憲
洪胤庭
張孝慈
張俊清
李苙源
楊子青
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW106144442A priority Critical patent/TWI667358B/en
Publication of TW201928090A publication Critical patent/TW201928090A/en
Application granted granted Critical
Publication of TWI667358B publication Critical patent/TWI667358B/en

Links

Abstract

本發明提供一種鈦合金盤元的製造方法,其係先將鈦-15釩-3鉻-3鋁-3錫合金加熱至高於其β相轉變溫度,再利用串列式軋機對鈦合金進行連續軋延步驟,並藉由控制軋延速率,以在單次製程中獲得大量且製得具有等軸β相顯微組織的鈦合金盤元。 The invention provides a method for manufacturing a titanium alloy disk element, which first heats a titanium-15 vanadium-3 chromium-3 aluminum-3 tin alloy to a temperature higher than a β phase transition temperature, and then uses a tandem rolling mill to continuously carry out the titanium alloy. The rolling step, and by controlling the rolling rate, obtains a large number of titanium alloy discs having an equiaxed β phase microstructure in a single process.

Description

鈦合金盤元的製造方法 Method for manufacturing titanium alloy disk element

本發明是關於一種鈦合金盤元的製造方法,特別是關於一種鈦-15釩-3鉻-3鋁-3錫之鈦合金盤元的製造方法。 The present invention relates to a method for producing a titanium alloy disk, and more particularly to a method for producing a titanium alloy plate of titanium-15 vanadium-3 chromium-3 aluminum-3 tin.

鈦合金因兼具質量輕、高強度及耐蝕的特性,常被用於工業、民生、生醫和航太產業中,特別是高價值及輕量化的產品,例如用於汽機車的螺絲及彈簧、醫療用的骨釘以及用於飛機的扣件等。 Titanium alloys are often used in industrial, people's livelihood, biomedical and aerospace industries due to their light weight, high strength and corrosion resistance, especially for high value and lightweight products such as screws and springs for steam locomotives. , medical bone nails and fasteners for aircraft.

鈦合金的結構與組織易受製程之軋延溫度及後續的冷卻速率所影響。再者,根據所添加之β穩定元素(例如:釩、鉬、鉻、鐵等)的含量,鈦合金可區分為α型、(α+β)型及β型。舉例而言,常見的α型鈦合金線材為Gr.9(Grade 9)的鈦-3鋁-2.5釩(Ti-3Al-2.5V)、(α+β)型為Gr.5的鈦-6鋁-4釩(Ti-6Al-4V),以及β型的鈦-15釩-3鉻-3鋁-3錫(Ti-15V-3Cr-3Al-3Sn,Ti-15-3)。除了上述鈦合金的特性之外,鈦-15釩-3鉻-3鋁-3錫合金還具有優異的冷加工特性及可熱處理強化的性質。 The structure and structure of the titanium alloy are susceptible to the rolling temperature of the process and the subsequent cooling rate. Further, the titanium alloy can be classified into an α type, an (α + β) type, and a β type depending on the content of the added β stabilizing element (for example, vanadium, molybdenum, chromium, iron, or the like). For example, a common α-type titanium alloy wire is Ti.3 (Grade 9) titanium-3 aluminum-2.5 vanadium (Ti-3Al-2.5V), (α+β) type Gr.5 titanium-6 Aluminum-4 vanadium (Ti-6Al-4V), and β-type titanium-15 vanadium-3chromium-3 aluminum-3 tin (Ti-15V-3Cr-3Al-3Sn, Ti-15-3). In addition to the characteristics of the above titanium alloy, the titanium-15 vanadium-3 chromium-3 aluminum-3 tin alloy also has excellent cold working characteristics and heat treatable strengthening properties.

習知鈦-15釩-3鉻-3鋁-3錫之盤元的生產多採用分段式的製程方法,其係將合金胚料於高溫加熱後,利用鍛機加上往復式軋延,以使合金具有足夠的塑性變形量,進而成形為特定尺寸的盤元並消除鑄造組織。然而,在進行往復式軋延使合金塑性變形時,由於須待合金胚均通過軋輥後,才可轉向再次通過軋輥,故此等待時間會使合金溫度降低,則合金的變形阻抗會大幅提高。當阻抗過高而無法繼續軋延時,則必須將工件回爐加溫後,始可重新進行軋延。此習知方法由於多火次的作業使得能耗高且單次生產的盤元重量小,進而造成製程成本高且效率低。另外,對於單相的β型鈦合金而言,所製得之盤元需再經過熱處理方可消除其軋延造成的長軸顯微組織。 The production of the conventional titanium-15 vanadium-3 chromium-3 aluminum-3 tin disk unit adopts a segmented process method, which uses a forging machine and a reciprocating rolling after heating the alloy billet at a high temperature. In order to make the alloy have a sufficient amount of plastic deformation, it is formed into a disk of a specific size and the cast structure is eliminated. However, when the reciprocating rolling is performed to plastically deform the alloy, since the alloy embryos are all passed through the rolls, they can be turned to pass the rolls again. Therefore, the waiting time will lower the alloy temperature, and the deformation resistance of the alloy will be greatly improved. When the impedance is too high to continue the rolling delay, the workpiece must be warmed up and then rolled again. This conventional method results in high energy consumption and small weight of single-production discs due to multiple fire operations, resulting in high process cost and low efficiency. In addition, for a single-phase β-type titanium alloy, the prepared disk element needs to be subjected to heat treatment to eliminate the long-axis microstructure caused by the rolling.

有鑑於此,亟須提供一種鈦合金盤元的製造方法,以使鈦-15釩-3鉻-3鋁-3錫合金的製程可減少製程步驟並具有較高生產效率。 In view of this, it is not necessary to provide a method for manufacturing a titanium alloy disk unit, so that the process of the titanium-15 vanadium-3 chromium-3 aluminum-3 tin alloy can reduce the process steps and have high production efficiency.

本發明之一態樣是提供一種鈦合金盤元的製造方法,其係藉由控制高溫鈦合金胚料的出爐溫度及連續軋延步驟的軋延速率,以製得具有等軸β相顯微組織的鈦-15釩-3鉻-3鋁-3錫(Ti-15V-3Cr-3Al-3Sn)合金盤元。 An aspect of the present invention provides a method for manufacturing a titanium alloy disk unit, which is obtained by controlling the temperature of a high temperature titanium alloy billet and the rolling rate of a continuous rolling step to obtain an equiaxed β phase microscope. Organized titanium-15 vanadium-3 chromium-3 aluminum-3 tin (Ti-15V-3Cr-3Al-3Sn) alloy disk.

根據本發明之一態樣,提供一種鈦合金盤元的製造方法,其係包含提供鈦合金胚料、加熱步驟及連續軋延步驟。鈦合金胚料為鈦-15釩-3鉻-3鋁-3錫,且鈦合金胚料 具有β相轉變溫度。對鈦合金胚料進行加熱步驟,以獲得高溫鈦合金胚料,其中高溫鈦合金胚料之溫度大於β相轉變溫度。然後,使用串列式軋機對高溫鈦合金胚料進行連續軋延步驟,以獲得鈦合金盤元。連續軋延步驟的軋延速率為30m/s至70m/s。所獲得之鈦合金盤元之顯微組織為等軸β相顯微組織。 According to an aspect of the present invention, a method of manufacturing a titanium alloy disk element comprising providing a titanium alloy billet, a heating step, and a continuous rolling step is provided. Titanium alloy billet is titanium-15 vanadium-3 chromium-3 aluminum-3 tin, and titanium alloy billet Has a beta phase transition temperature. The titanium alloy billet is subjected to a heating step to obtain a high-temperature titanium alloy billet, wherein the temperature of the high-temperature titanium alloy billet is greater than the β phase transition temperature. Then, the high temperature titanium alloy billet is subjected to a continuous rolling step using a tandem rolling mill to obtain a titanium alloy disk. The rolling rate of the continuous rolling step is from 30 m/s to 70 m/s. The microstructure of the obtained titanium alloy disk element is an equiaxed β phase microstructure.

根據本發明之一實施例,基於上述鈦合金胚料為100wt%,鈦合金胚料係包含69.5wt%至82.5wt%的鈦、13wt%至17wt%的釩、1.5wt%至4.5wt%的鉻、1.5wt%至4.5wt%的鋁、1.5wt%至4.5wt%的錫及小於0.4wt%的氧。 According to an embodiment of the present invention, the titanium alloy billet comprises 69.5 wt% to 82.5 wt% of titanium, 13 wt% to 17 wt% of vanadium, 1.5 wt% to 4.5 wt%, based on the titanium alloy billet being 100 wt%. Chromium, 1.5 wt% to 4.5 wt% aluminum, 1.5 wt% to 4.5 wt% tin, and less than 0.4 wt% oxygen.

根據本發明之一實施例,上述鈦合金胚料之長度大於或等於5公尺。 According to an embodiment of the invention, the length of the titanium alloy billet is greater than or equal to 5 meters.

根據本發明之一實施例,上述高溫鈦合金胚料之溫度為750℃至1200℃。 According to an embodiment of the present invention, the high temperature titanium alloy billet has a temperature of from 750 ° C to 1200 ° C.

根據本發明之一實施例,上述連續軋延步驟之完軋溫度為800℃至1300℃。 According to an embodiment of the present invention, the rolling temperature of the continuous rolling step is 800 ° C to 1300 ° C.

根據本發明之一實施例,上述鈦合金盤元不進行退火處理。 According to an embodiment of the invention, the titanium alloy disk element is not subjected to an annealing treatment.

根據本發明之一實施例,上述鈦合金盤元的製造方法更包含對鈦合金盤元進行抽線步驟、剝皮步驟或酸洗步驟。 According to an embodiment of the present invention, the method for manufacturing a titanium alloy disk unit further comprises a wire drawing step, a stripping step or a pickling step on the titanium alloy disk.

根據本發明之一實施例,上述鈦合金盤元之單次生產重量為600kg至1250kg。 According to an embodiment of the present invention, the titanium alloy disk has a single production weight of 600 kg to 1250 kg.

根據本發明之一實施例,上述鈦合金盤元之線徑為6mm至20mm。 According to an embodiment of the present invention, the titanium alloy disk has a wire diameter of 6 mm to 20 mm.

應用本發明之一種鈦合金盤元的製造方法,其係先將鈦-15釩-3鉻-3鋁-3錫合金加熱至高於其β相轉變溫度,再利用串列式軋機進行連續軋延步驟,並藉由控制軋延速率,以製得具有等軸β相顯微組織的鈦合金盤元。 A method for manufacturing a titanium alloy disk element according to the present invention, which first heats a titanium-15 vanadium-3 chromium-3 aluminum-3 tin alloy to a temperature higher than its β phase transition temperature, and then uses a tandem rolling mill for continuous rolling The steps, and by controlling the rolling rate, produce a titanium alloy disk having an equiaxed β phase microstructure.

100‧‧‧方法 100‧‧‧ method

110‧‧‧提供鈦合金胚料 110‧‧‧ Providing titanium alloy billets

120‧‧‧對鈦合金胚料進行加熱步驟,以獲得高溫鈦合金胚料 120‧‧‧heating the titanium billet to obtain high temperature titanium billets

130‧‧‧對高溫合金胚料進行連續軋延步驟,以獲得鈦合金盤元 130‧‧‧Continuous rolling step for superalloy billets to obtain titanium alloy discs

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下:[圖1]係繪示根據本發明一實施例之鈦合金盤元的製造方法100的流程圖。 The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A flow chart of manufacturing method 100.

[圖2]係顯示本發明實施例一所製得之鈦合金盤元的光學顯微鏡照片。 Fig. 2 is an optical micrograph showing a titanium alloy disk unit produced in Example 1 of the present invention.

[圖3A]及[圖3B]係分別顯示本發明比較例一及比較例二所製得之鈦合金盤元的光學顯微鏡照片。 3A and 3B show optical micrographs of titanium alloy discs obtained in Comparative Example 1 and Comparative Example 2 of the present invention, respectively.

承上所述,本發明提供一種鈦合金盤元的製造方法,其係藉由控制高溫鈦合金胚料的出爐溫度及連續軋延步驟的軋延速率,以製得具有等軸β相顯微組織的鈦-15釩-3鉻-3鋁-3錫(Ti-15V-3Cr-3Al-3Sn)合金盤元。 In view of the above, the present invention provides a method for manufacturing a titanium alloy disk element by controlling the temperature of the high temperature titanium alloy billet and the rolling rate of the continuous rolling step to obtain an equiaxed β phase microscope. Organized titanium-15 vanadium-3 chromium-3 aluminum-3 tin (Ti-15V-3Cr-3Al-3Sn) alloy disk.

請參閱圖1,其係繪示根據本發明一實施例之鈦合金盤元的製造方法100的流程圖。首先,進行步驟110, 提供鈦合金胚料。鈦合金胚料為鈦-15釩-3鉻-3鋁-3錫(Ti-15V-3Cr-3Al-3Sn,Ti-15-3),且具有β相轉變溫度。補充說明的是,鈦合金胚料在低於β相轉變溫度時會同時具有α相和β相,在高於β相轉變溫度時僅會具有β相。在一實施例中,鈦合金胚料之β相轉變溫度為約750℃至770℃。在一實施例中,鈦合金胚料的長度為大於或等於5公尺,以在單次製程中對大量的胚料進行作業。在另一實施例中,鈦合金胚料的重量為600公斤至1250公斤。 Please refer to FIG. 1 , which is a flow chart of a method 100 for fabricating a titanium alloy disk according to an embodiment of the invention. First, proceed to step 110, A titanium alloy billet is provided. The titanium alloy billet is titanium-15 vanadium-3chromium-3 aluminum-3 tin (Ti-15V-3Cr-3Al-3Sn, Ti-15-3) and has a β phase transition temperature. It is additionally noted that the titanium alloy billet has both an α phase and a β phase at a temperature lower than the β phase transition temperature, and only has a β phase at a temperature higher than the β phase transition temperature. In one embodiment, the titanium alloy billet has a beta phase transition temperature of from about 750 °C to 770 °C. In one embodiment, the length of the titanium alloy blank is greater than or equal to 5 meters to operate a large number of blanks in a single process. In another embodiment, the titanium alloy blank has a weight of from 600 kg to 1250 kg.

接著,進行步驟120,對鈦合金胚料進行加熱步驟,以獲得高溫鈦合金胚料。在一實施例中,高溫鈦合金胚料的溫度大於其β相轉變溫度,以使高溫合金胚料僅具有β相。在另一實施例中,高溫合金胚料的溫度為750℃至1200℃,較佳為900℃至1100℃。若高溫合金胚料的溫度太低(例如低於750℃),則在進行後續軋延步驟時,可能因為高溫合金胚料的阻抗太高,而不利於軋延,其至可能導致軋機受損。然而,若高溫合金胚料的溫度太高(例如高於1200℃),則可能使高溫合金胚料的表面產生缺陷及產生氧化物,而影響鈦合金的性質。 Next, in step 120, the titanium alloy billet is subjected to a heating step to obtain a high-temperature titanium alloy billet. In one embodiment, the temperature of the high temperature titanium alloy billet is greater than its beta phase transition temperature such that the superalloy billet has only the beta phase. In another embodiment, the superalloy billet has a temperature of from 750 ° C to 1200 ° C, preferably from 900 ° C to 1100 ° C. If the temperature of the superalloy billet is too low (for example, below 750 ° C), the subsequent rolling step may be due to the high resistance of the superalloy billet, which is not conducive to rolling, which may cause damage to the mill. . However, if the temperature of the superalloy billet is too high (for example, higher than 1200 ° C), it may cause defects and oxides on the surface of the superalloy billet to affect the properties of the titanium alloy.

然後,進行步驟130,對高溫合金胚料進行連續軋延步驟,以獲得鈦合金盤元。在一實施例中,由於所製得之鈦合金盤元即具有等軸β相顯微組織,故可不對盤元進行退火處理,即可直接進行後續的處理製程。在一實施例中,前述處理製程包含抽線步驟、剝皮步驟或酸洗步驟,以將鈦合金盤元製成所需產品。 Then, in step 130, the superalloy billet is subjected to a continuous rolling step to obtain a titanium alloy disk. In one embodiment, since the prepared titanium alloy disk element has an equiaxed β phase microstructure, the subsequent processing process can be directly performed without annealing the disk element. In one embodiment, the foregoing processing process includes a draw step, a stripping step, or a pickling step to form a titanium alloy disk into the desired product.

連續軋延步驟可利用串列式軋機進行,其中串列式軋機係將例如十八座的軋機串聯。在一實施例中,連續軋延步驟的軋延速率為30m/s至70m/s。須理解的是,在此所述之「軋延速率」係指串列式軋機中進行軋延的最後一台軋機的軋延速率。一般而言,隨著合金胚通過的軋機愈多,軋延速率亦隨之上升。 The continuous rolling step can be carried out using a tandem rolling mill in which a tandem rolling mill is connected in series, for example, to an eighteen-seat mill. In one embodiment, the rolling rate of the continuous rolling step is from 30 m/s to 70 m/s. It should be understood that the "rolling rate" as used herein refers to the rolling rate of the last rolling mill in the tandem rolling mill. In general, as the number of rolling mills through which the alloy embryo passes, the rolling rate also increases.

在一實施例中,鈦合金盤元的線徑為6mm至20mm。此線徑可根據產品需求而進行調整。根據串列式軋機之軋延速率及鈦合金盤元之線徑的不同,則連續軋延步驟的完軋溫度亦會有所差異。若軋延速率較高或線徑較小,則可能使鈦合金盤元的溫度上升。因此,於進行連續軋延步驟後,鈦合金盤元之完軋溫度可大於、等於或小於步驟120所獲得之高溫合金胚料的溫度。在一實施例中,連續軋延步驟的完軋溫度較佳為800℃至1300℃,更佳為850℃至1200℃。若完軋溫度於800℃至1300℃時,不僅所製得之鈦合金盤元具有等軸β相顯微組織,且較適於進行例如盤捲等後續製程。須注意的是,由於連續軋延步驟係利用串列式軋機進行,故前述完軋溫度係指鈦合金盤元經過最後一台軋機的完軋溫度。 In one embodiment, the titanium alloy disk has a wire diameter of 6 mm to 20 mm. This wire diameter can be adjusted according to product requirements. Depending on the rolling rate of the tandem mill and the wire diameter of the titanium alloy disk, the rolling temperature of the continuous rolling step will also vary. If the rolling rate is high or the wire diameter is small, the temperature of the titanium alloy disk may be raised. Therefore, after the continuous rolling step, the rolling temperature of the titanium alloy disk may be greater than, equal to, or less than the temperature of the superalloy billet obtained in step 120. In one embodiment, the finishing temperature of the continuous rolling step is preferably from 800 ° C to 1300 ° C, more preferably from 850 ° C to 1200 ° C. If the rolling temperature is between 800 ° C and 1300 ° C, not only the prepared titanium alloy disk has an equiaxed β phase microstructure, but is more suitable for subsequent processes such as coiling. It should be noted that since the continuous rolling step is carried out by a tandem rolling mill, the above-mentioned finishing rolling temperature refers to the finishing temperature of the titanium alloy disk through the last rolling mill.

根據上述,鈦合金盤元的線徑、軋延速率、完軋溫度及加熱溫度係彼此具有相關性的。舉例而言,若欲生產線徑為8mm至12mm的鈦合金盤元,軋延速率可為40m/s至50m/s,且須先將高溫胚料加熱至1100℃至1200℃,而連續軋延步驟的完軋溫度為1000℃至1200℃。藉由 上述的製程控制,可製得具有等軸β相顯微組織且延伸率(Elongation,EL)大於7%的鈦合金盤元。在一實施例中,鈦合金盤元可具有大於600MPa的降伏強度(Yield Strength,YS),大於700MPa的抗拉強度(Tensile Strength,TS),同時具有大於20%的延伸率。 According to the above, the wire diameter, the rolling rate, the rolling temperature, and the heating temperature of the titanium alloy disk are related to each other. For example, if a titanium alloy disk with a wire diameter of 8 mm to 12 mm is to be produced, the rolling rate can be 40 m/s to 50 m/s, and the high temperature billet must be heated to 1100 ° C to 1200 ° C, and the continuous rolling is performed. The finishing temperature of the step is from 1000 ° C to 1200 ° C. By The above process control can produce a titanium alloy disk having an equiaxed β phase microstructure and an elongation (EL) of more than 7%. In one embodiment, the titanium alloy disk may have a Yield Strength (YS) greater than 600 MPa, a Tensile Strength (TS) greater than 700 MPa, and an elongation greater than 20%.

以下利用數個實施例以說明本發明之應用,然其並非用以限定本發明,本發明技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。 The following examples are used to illustrate the application of the present invention, and are not intended to limit the present invention. Those skilled in the art can make various changes without departing from the spirit and scope of the present invention. Retouching.

實施例一Embodiment 1

將長度6.5公尺的鈦-15釩-3鉻-3鋁-3錫合金胚料加熱至高於β相轉變溫度的1100℃。接著,藉由串列式軋機將合金胚料軋延成線徑為8mm的鈦合金盤元,其中軋延速率為50m/s,且完軋溫度為1150℃。藉由實施例一的製程,單次製程即可獲得630公斤的鈦合金盤元。 A titanium -15 vanadium-3 chrome-3 aluminum-3 tin alloy billet having a length of 6.5 m was heated to 1100 ° C above the β phase transition temperature. Next, the alloy blank was rolled into a titanium alloy disk having a wire diameter of 8 mm by a tandem rolling mill, wherein the rolling rate was 50 m/s, and the rolling temperature was 1,150 °C. By the process of the first embodiment, a 630 kg titanium alloy disk element can be obtained in a single process.

請參閱圖2,其係顯示實施例一所製得之鈦合金盤元的光學顯微鏡照片,可看出實施例一可製得具有等軸β相之顯微組織的鈦合金盤元。另外,根據機械性能測試,實施例一的鈦合金盤元之降伏強度為657MPa,抗拉強度為744MPa,且延伸率為21.7%。 Referring to FIG. 2, which is an optical micrograph showing the titanium alloy disk obtained in the first embodiment, it can be seen that the first embodiment can produce a titanium alloy disk having an equiaxed β phase microstructure. Further, according to the mechanical property test, the titanium alloy disk of Example 1 had a lodging strength of 657 MPa, a tensile strength of 744 MPa, and an elongation of 21.7%.

比較例一及比較例二Comparative Example 1 and Comparative Example 2

使用習知方法的往復式軋機對鈦-15釩-3鉻-3鋁-3錫合金胚料重複進行軋延,其中比較例一的鈦合金胚料係先加熱至1000℃,而比較例二的鈦合金胚料係先加熱至1100℃,其溫度皆高於鈦合金胚料的β相轉變溫度。在比較 例一及比較例二中,軋延速率為0.5m/s至1.5m/s,而完軋溫度係在600℃至850℃之間。由於比較例一及比較例二係進行往復式軋延,故單次製程僅能製得小於50公斤的鈦合金盤元。 The titanium-15 vanadium-3 chromium-3 aluminum-3 tin alloy billet was repeatedly rolled using a reciprocating rolling mill of a conventional method, wherein the titanium alloy billet of Comparative Example 1 was first heated to 1000 ° C, and Comparative Example 2 The titanium alloy billet is first heated to 1100 ° C, and its temperature is higher than the β phase transition temperature of the titanium alloy billet. In comparison In the first and second comparative examples, the rolling rate is from 0.5 m/s to 1.5 m/s, and the finishing temperature is between 600 ° C and 850 ° C. Since the first comparative example and the second comparative example are subjected to reciprocating rolling, only a titanium alloy disk of less than 50 kg can be produced in a single process.

請參閱圖3A及圖3B,其係比較例一及比較例二製得之鈦合金盤元的光學顯微鏡照片,可看出其顯微組織係具有大量長軸型的晶粒組織。由於進行往復式軋延時,胚料溫度下降較快,不容易發生再結晶,故所製得之鈦合金盤元具有大量長軸型的晶粒組織。由於長軸型晶粒的延展性較差,因此,須再將盤元經過退火處理以使合金再結晶成等軸β組織,始可進行後續的處理製程。另外,根據機械性能測試,比較例一的鈦合金盤元之降伏強度為761MPa,抗拉強度為816MPa,且延伸率為18%。比較例二的鈦合金盤元之降伏強度為763MPa,抗拉強度為821MPa,且延伸率為18.5%。 Please refer to FIG. 3A and FIG. 3B , which are optical micrographs of titanium alloy discs prepared in Comparative Example 1 and Comparative Example 2, and it can be seen that the microstructure of the microstructure has a large number of long-axis type grain structures. Due to the reciprocating rolling delay, the temperature of the billet drops rapidly and recrystallization is less likely to occur, so that the titanium alloy disc produced has a large number of long-axis type grain structures. Since the long-axis type grain has poor ductility, the disk element must be annealed to recrystallize the alloy into an equiaxed β structure, and the subsequent processing can be performed. Further, according to the mechanical property test, the titanium alloy disk of Comparative Example 1 had a lodging strength of 761 MPa, a tensile strength of 816 MPa, and an elongation of 18%. The titanium alloy disk of Comparative Example 2 had a lodging strength of 763 MPa, a tensile strength of 821 MPa, and an elongation of 18.5%.

根據上述實施例,本發明提供之一種鈦合金盤元的製造方法,其係先將鈦-15釩-3鉻-3鋁-3錫合金加熱至高於其β相轉變溫度,再利用串列式軋機進行連續軋延步驟,並藉由控制軋延速率,以製得具有等軸β相顯微組織的鈦合金盤元,且在單次製程中可具有較高的生產量。 According to the above embodiment, the present invention provides a method for manufacturing a titanium alloy disk element, which first heats a titanium-15 vanadium-3 chromium-3 aluminum-3 tin alloy to a temperature higher than its β phase transition temperature, and then uses a tandem type. The rolling mill performs a continuous rolling step and, by controlling the rolling rate, produces a titanium alloy disk having an equiaxed β phase microstructure, and can have a higher throughput in a single process.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍 所界定者為準。 While the invention has been described above in terms of several embodiments, it is not intended to limit the scope of the invention, and the invention may be practiced in various embodiments without departing from the spirit and scope of the invention. Change and retouch, so the scope of protection of the present invention is attached to the scope of patent application The definition is final.

Claims (9)

一種鈦合金盤元的製造方法,包含:提供一鈦合金胚料,其中該鈦合金胚料為鈦-15釩-3鉻-3鋁-3錫(Ti-15V-3Cr-3Al-3Sn),且該鈦合金胚料具有一β相轉變溫度;對該鈦合金胚料進行一加熱步驟,以獲得一高溫鈦合金胚料,其中該高溫鈦合金胚料之一溫度係大於該β相轉變溫度;以及使用一串列式軋機對該高溫鈦合金胚料進行一連續軋延步驟,以獲得該鈦合金盤元,其中該連續軋延步驟之一軋延速率為30m/s至70m/s,且該鈦合金盤元之一顯微組織為一等軸β相顯微組織。 A method for manufacturing a titanium alloy disk element, comprising: providing a titanium alloy billet, wherein the titanium alloy billet is titanium-15 vanadium-3 chromium-3 aluminum-3 tin (Ti-15V-3Cr-3Al-3Sn), And the titanium alloy billet has a β phase transition temperature; the titanium alloy billet is subjected to a heating step to obtain a high temperature titanium alloy billet, wherein a temperature system of the high temperature titanium alloy billet is greater than the β phase transition temperature And using a tandem rolling mill to perform a continuous rolling step on the high temperature titanium alloy blank to obtain the titanium alloy disk, wherein one of the continuous rolling steps has a rolling rate of 30 m/s to 70 m/s, And one of the microstructures of the titanium alloy disk element is an isometric β phase microstructure. 如申請專利範圍第1項所述之鈦合金盤元的製造方法,其中基於該鈦合金胚料為100wt%,該鈦合金胚料包含69.5wt%至82.5wt%的鈦、13wt%至17wt%的釩、1.5wt%至4.5wt%的鉻、1.5wt%至4.5wt%的鋁、1.5wt%至4.5wt%的錫及小於0.4wt%的氧。 The method for producing a titanium alloy disk according to claim 1, wherein the titanium alloy blank comprises 69.5 wt% to 82.5 wt% of titanium, 13 wt% to 17 wt%, based on the titanium alloy billet being 100 wt%. Vanadium, 1.5 wt% to 4.5 wt% chromium, 1.5 wt% to 4.5 wt% aluminum, 1.5 wt% to 4.5 wt% tin, and less than 0.4 wt% oxygen. 如申請專利範圍第1項所述之鈦合金盤元的製造方法,其中該鈦合金胚料之一長度大於或等於5公尺。 The method for producing a titanium alloy disk according to claim 1, wherein one of the titanium alloy blanks has a length greater than or equal to 5 meters. 如申請專利範圍第1項所述之鈦合金盤元的製造方法,其中該高溫鈦合金胚料之該溫度為750℃至 1200℃。 The method for manufacturing a titanium alloy disk according to claim 1, wherein the temperature of the high temperature titanium alloy billet is 750 ° C to 1200 ° C. 如申請專利範圍第1項所述之鈦合金盤元的製造方法,其中該連續軋延步驟之一完軋溫度為800℃至1300℃。 The method for producing a titanium alloy disk according to claim 1, wherein the one of the continuous rolling steps has a finishing temperature of 800 ° C to 1300 ° C. 如申請專利範圍第1項所述之鈦合金盤元的製造方法,其中該鈦合金盤元不進行一退火處理。 The method for producing a titanium alloy disk according to claim 1, wherein the titanium alloy disk is not subjected to an annealing treatment. 如申請專利範圍第1項所述之鈦合金盤元的製造方法,更包含:對該鈦合金盤元進行一抽線步驟、一剝皮步驟或一酸洗步驟。 The method for manufacturing a titanium alloy disk according to claim 1, further comprising: performing a drawing step, a stripping step or a pickling step on the titanium alloy disk. 如申請專利範圍第1項所述之鈦合金盤元的製造方法,其中該鈦合金盤元之單次生產重量為600kg至1250kg。 The method for producing a titanium alloy disk according to claim 1, wherein the titanium alloy disk has a single production weight of 600 kg to 1250 kg. 如申請專利範圍第1項所述之鈦合金盤元的製造方法,其中該鈦合金盤元之一線徑為6mm至20mm。 The method for producing a titanium alloy disk according to claim 1, wherein the titanium alloy disk has a wire diameter of 6 mm to 20 mm.
TW106144442A 2017-12-18 2017-12-18 Method of producing titanium alloy wire rod TWI667358B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106144442A TWI667358B (en) 2017-12-18 2017-12-18 Method of producing titanium alloy wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106144442A TWI667358B (en) 2017-12-18 2017-12-18 Method of producing titanium alloy wire rod

Publications (2)

Publication Number Publication Date
TW201928090A TW201928090A (en) 2019-07-16
TWI667358B true TWI667358B (en) 2019-08-01

Family

ID=68049076

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106144442A TWI667358B (en) 2017-12-18 2017-12-18 Method of producing titanium alloy wire rod

Country Status (1)

Country Link
TW (1) TWI667358B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201736616A (en) * 2016-04-08 2017-10-16 中國鋼鐵股份有限公司 Method of producing titanium alloy bulk material and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201736616A (en) * 2016-04-08 2017-10-16 中國鋼鐵股份有限公司 Method of producing titanium alloy bulk material and application thereof

Also Published As

Publication number Publication date
TW201928090A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
EP2868759B1 (en) ALPHA + BETA TYPE Ti ALLOY AND PROCESS FOR PRODUCING SAME
TWI602935B (en) Processing of alpha/beta titanium alloys
JP6026416B2 (en) High strength alpha / beta titanium alloy fasteners and fastener stock
JP6342983B2 (en) Split pass free forging for strain path sensitive titanium-based alloys
JP4013761B2 (en) Manufacturing method of titanium alloy bar
JP6734890B2 (en) Method for treating titanium alloy
JP2016512173A5 (en)
CN112719179B (en) Forging method of TC1 titanium alloy bar
JP6871938B2 (en) An improved way to finish extruded titanium products
CN111906225B (en) Forging method of oversized Ti80 titanium alloy forging stock
JP2016503126A5 (en)
CN112981174A (en) Preparation method of high-strength high-plasticity titanium alloy wire
JP6784700B2 (en) Manufacturing method of titanium and titanium alloy articles
CN114161028A (en) Processing method for improving performance of titanium alloy welding wire
CN110205572B (en) Preparation method of two-phase Ti-Al-Zr-Mo-V titanium alloy forged rod
CN110976512A (en) Cold rolling method for TC4 titanium alloy wire
TWI667358B (en) Method of producing titanium alloy wire rod
US9435017B2 (en) Manufacturing method of titanium alloy with high-strength and high-formability and its titanium alloy
CN108396270B (en) Method for producing α, nearly α or α + β titanium alloy bar
RU2569605C1 (en) Method of producing of thin sheets from titanium alloy ti-6,5al-2,5sn-4zr-1nb-0,7mo-0,15si
RU2229952C1 (en) Method for forming blanks of titanium alloys
JP2016023315A (en) Titanium plate and manufacturing method therefor
RU2801383C1 (en) METHOD FOR MANUFACTURING GAS TURBINE ENGINE BLADES FROM ALLOY BASED ON Ti2AlNb ALUMINIDE
JPH06292906A (en) Manufacture of bar and wire rod of titanium and titanium alloy
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees