TWI666639B - Memory device with dynamic target calibration - Google Patents

Memory device with dynamic target calibration Download PDF

Info

Publication number
TWI666639B
TWI666639B TW107117813A TW107117813A TWI666639B TW I666639 B TWI666639 B TW I666639B TW 107117813 A TW107117813 A TW 107117813A TW 107117813 A TW107117813 A TW 107117813A TW I666639 B TWI666639 B TW I666639B
Authority
TW
Taiwan
Prior art keywords
target
memory
page
memory system
error
Prior art date
Application number
TW107117813A
Other languages
Chinese (zh)
Other versions
TW201909183A (en
Inventor
徠立 J 考德
布魯斯 A 利卡嫩
Original Assignee
美商美光科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商美光科技公司 filed Critical 美商美光科技公司
Publication of TW201909183A publication Critical patent/TW201909183A/en
Application granted granted Critical
Publication of TWI666639B publication Critical patent/TWI666639B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0614Improving the reliability of storage systems
    • G06F3/0619Improving the reliability of storage systems in relation to data integrity, e.g. data losses, bit errors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0646Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
    • G06F3/065Replication mechanisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0688Non-volatile semiconductor memory arrays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5628Programming or writing circuits; Data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3454Arrangements for verifying correct programming or for detecting overprogrammed cells
    • G11C16/3459Circuits or methods to verify correct programming of nonvolatile memory cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/349Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
    • G11C16/3495Circuits or methods to detect or delay wearout of nonvolatile EPROM or EEPROM memory devices, e.g. by counting numbers of erase or reprogram cycles, by using multiple memory areas serially or cyclically
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/021Detection or location of defective auxiliary circuits, e.g. defective refresh counters in voltage or current generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/2254Calibration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/562Multilevel memory programming aspects
    • G11C2211/5621Multilevel programming verification

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Security & Cryptography (AREA)
  • Read Only Memory (AREA)

Abstract

一種記憶體系統包含:一記憶體陣列,其包含複數個記憶體胞;及一控制器,其經耦合至該記憶體陣列,該控制器經組態以:判定包含分佈目標之一目標量變曲線,其中該等分佈目標之各者表示對應於該等記憶體胞之一邏輯值之一程式驗證目標;基於實施用於處理資料之一處理位準而判定一回饋量度;及基於根據該回饋量度調整該程式驗證目標而動態地產生一經更新目標。A memory system includes: a memory array including a plurality of memory cells; and a controller coupled to the memory array, the controller configured to: determine a target quantity change curve including a distributed target Where each of the distribution targets represents a program verification target corresponding to one of the logical values of the memory cells; a feedback metric is determined based on the implementation of a processing level for processing data; and based on the feedback metric The program verification target is adjusted to dynamically generate an updated target.

Description

具有動態目標校準之記憶體裝置Memory device with dynamic target calibration

所揭示實施例係關於記憶體裝置,且特定言之係關於具有用於程式驗證目標之動態校準之一機構之記憶體裝置。The disclosed embodiments relate to memory devices, and in particular to memory devices having a mechanism for dynamic calibration of program verification targets.

記憶體系統可採用記憶體裝置來儲存及存取資訊。記憶體裝置可包含揮發性記憶體裝置、非揮發性記憶體裝置或一組合裝置。非揮發性記憶體裝置可包含採用「NAND」技術或邏輯閘、「NOR」技術或邏輯閘或其等組合之快閃記憶體。Memory systems can use memory devices to store and access information. The memory device may include a volatile memory device, a non-volatile memory device, or a combination device. Non-volatile memory devices may include flash memory using "NAND" technology or logic gates, "NOR" technology or logic gates, or combinations thereof.

記憶體裝置(諸如快閃記憶體)利用電能連同對應臨限位準或處理電壓位準來儲存及存取資料。然而,快閃記憶體裝置之效能或特性隨時間推移或因使用而改變或劣化。隨時間推移,效能或特性之改變與臨限或處理電壓位準相衝突,從而導致錯誤及其他效能問題。Memory devices (such as flash memory) use electrical energy in conjunction with corresponding threshold levels or processing voltage levels to store and access data. However, the performance or characteristics of flash memory devices change or deteriorate over time or as a result of use. Over time, changes in performance or characteristics conflict with thresholds or processing voltage levels, leading to errors and other performance issues.

因此,需要一種具有動態目標校準機構之記憶體裝置。鑑於不斷增加之商業競爭壓力連同不斷增長之消費者預期及區分市場產品之期望,越來越期望找到解決此等問題之答案。另外,降低成本、改良效率及效能且應對競爭壓力之需要為找到此等問題之答案增加甚至更大壓力。Therefore, there is a need for a memory device having a dynamic target calibration mechanism. Given the increasing pressure of commercial competition, as well as the growing consumer expectations and expectations of differentiated market products, there is an increasing desire to find answers to these questions. In addition, the need to reduce costs, improve efficiency and effectiveness, and respond to competitive pressures adds even more pressure to find answers to these questions.

在一些實施例中,一種記憶體裝置包括:一記憶體陣列,其包含複數個記憶體胞;及一控制器,其經耦合至該記憶體陣列,該控制器經組態以:判定包含分佈目標之一目標量變曲線,其中該等分佈目標之各者表示對應於該等記憶體胞之一邏輯值之一程式驗證目標;基於實施用於處理資料之一處理位準而判定一回饋量度;及基於根據該回饋量度調整該程式驗證目標而動態地產生一經更新目標。In some embodiments, a memory device includes: a memory array including a plurality of memory cells; and a controller coupled to the memory array, the controller configured to: determine that a distribution is included A target quantity change curve of targets, wherein each of the distribution targets represents a program verification target corresponding to a logical value of the memory cells; a feedback measure is determined based on a processing level implemented for processing data; And dynamically generate an updated target based on adjusting the program verification target according to the feedback measure.

在一些實施例中,一種記憶體裝置包括:一記憶體陣列,其包含配置於記憶體頁中之複數個記憶體胞;及一控制器,其經耦合至該記憶體陣列,該控制器經組態以:判定包含邊緣目標及中間目標之一目標量變曲線,其中該等目標之各者表示對應於該等記憶體胞之一邏輯值之一程式驗證目標;基於對應於一讀取位準電壓之錯誤判定一回饋量度;及基於根據該回饋量度改變該等中間目標之一或多者而動態地產生一或多個經更新目標。In some embodiments, a memory device includes: a memory array including a plurality of memory cells arranged in a memory page; and a controller coupled to the memory array, the controller is The configuration is: determining a target quantity change curve including one of an edge target and an intermediate target, wherein each of the targets represents a program verification target corresponding to a logical value of the memory cells; based on a corresponding read level The error in voltage determines a feedback metric; and dynamically generates one or more updated targets based on changing one or more of the intermediate targets according to the feedback metric.

在一些實施例中,一種方法用於操作包含一控制器及一記憶體陣列之一記憶體裝置。該方法包括:判定包含分佈目標之一目標量變曲線,其中該等分佈目標之各者表示對應於記憶體胞之一邏輯值之一程式驗證目標;基於實施用於處理資料之一處理位準而判定一回饋量度;及使用該控制器,基於根據該回饋量度調整該程式驗證目標而動態地產生一經更新目標以用於跨該等記憶體胞之多個頁類型平衡一錯誤量度。In some embodiments, a method is used to operate a memory device including a controller and a memory array. The method includes: determining a target quantity variation curve including one of the distribution targets, wherein each of the distribution targets represents a program verification target corresponding to a logical value of a memory cell; and based on implementing a processing level for processing data, Determine a feedback metric; and use the controller to dynamically generate an updated target for balancing an error metric across multiple page types of the memory cells based on adjusting the program verification target based on the feedback metric.

相關申請案 本申請案含有與由Bruce A. Liikanen及Larry J. Koudele同時申請之標題為「MEMORY DEVICE WITH DYNAMIC PROGRAMMING CALIBRATION」之美國專利申請案相關之標的物。相關申請案轉讓給Micron Technology, Inc.,且藉由檔案號10829-9199.US00來識別。本申請案之標的物以引用方式併入本文中。Related Applications This application contains subject matter related to a US patent application entitled "MEMORY DEVICE WITH DYNAMIC PROGRAMMING CALIBRATION" filed by both Bruce A. Liikanen and Larry J. Koudele. Related applications were assigned to Micron Technology, Inc. and identified by file number 10829-9199.US00. The subject matter of this application is incorporated herein by reference.

本申請案含有與由Bruce A. Liikanen及Larry J. Koudele同時申請之標題為「MEMORY DEVICE WITH DYNAMIC PROCESSING LEVEL CALIBRATION」之美國專利申請案相關之標的物。相關申請案轉讓給Micron Technology, Inc.,且藉由檔案號10829-9201.US00來識別。本申請案之標的物以引用方式併入本文中。This application contains subject matter related to a US patent application entitled "MEMORY DEVICE WITH DYNAMIC PROCESSING LEVEL CALIBRATION" filed by both Bruce A. Liikanen and Larry J. Koudele. Related applications were assigned to Micron Technology, Inc. and identified by file number 10829-9201.US00. The subject matter of this application is incorporated herein by reference.

如下文更詳細描述,本文中所揭示之技術涉及記憶體裝置、具有記憶體裝置之系統及用於動態地校準記憶體裝置之程式驗證目標之相關方法。在記憶體裝置之初始製造或組態之後,記憶體裝置可使用一校準機構來動態地校準一或多個頁類型之一或多個分佈目標。記憶體裝置可經組態以在使用(例如,操作)記憶體裝置之同時動態地校準程式驗證目標。As described in more detail below, the techniques disclosed herein relate to memory devices, systems with memory devices, and related methods for dynamically calibrating program verification targets for memory devices. After the initial manufacturing or configuration of the memory device, the memory device may use a calibration mechanism to dynamically calibrate one or more distribution targets of one or more page types. The memory device may be configured to dynamically calibrate the program verification target while using (eg, operating) the memory device.

為校準程式驗證目標,記憶體裝置可在校準記憶體裝置之各個不同態樣之同時或在使用記憶體裝置之同時收集多個樣本或結果,諸如資料計數或錯誤率。記憶體裝置可使用樣本或結果以在校準程式驗證目標時計算一回饋量度(例如,錯誤率或對應於用來收集樣本之不同讀取位準電壓之錯誤計數之一差)。記憶體裝置可使用回饋動態地調整程式驗證目標,以運用介於一臨限電壓與對應於相鄰邏輯狀態(稱為讀取窗範圍或RWB)之電壓之間的一離距來跨不同頁類型平衡錯誤率。To verify the goal of the calibration procedure, the memory device can collect multiple samples or results, such as data counts or error rates, while calibrating different aspects of the memory device or while using the memory device. The memory device may use the samples or results to calculate a feedback metric (eg, the error rate or the difference in error counts corresponding to the different read level voltages used to collect the samples) when the calibration program verifies the target. Memory devices can dynamically adjust program verification targets using feedback to use a distance between a threshold voltage and a voltage corresponding to an adjacent logic state (known as the read window range or RWB) to span different pages Type balance error rate.

足夠詳細地描述下文實施例以使熟習此項技術者能夠製作及使用該等實施例。然而,熟習相關技術者將理解,本發明可具有額外實施例且本發明可在無下文參考圖1至圖8所描述之實施例之若干細節之情況下實踐。The following embodiments are described in sufficient detail to enable those skilled in the art to make and use the embodiments. However, those skilled in the relevant art will appreciate that the present invention may have additional embodiments and that the present invention may be practiced without certain details of the embodiments described below with reference to FIGS. 1 to 8.

在下文所闡釋之實施例中,記憶體裝置係在併入基於NAND之非揮發性儲存媒體(例如,NAND快閃記憶體)之裝置之背景下進行描述。然而,除基於NAND之儲存媒體外或代替基於NAND之儲存媒體,根據本發明之其他實施例組態之記憶體裝置亦可包含其他類型之適合儲存媒體,諸如基於NOR之儲存媒體、磁性儲存媒體、相變儲存媒體、鐵電儲存媒體等。In the embodiments explained below, the memory device is described in the context of a device incorporating a NAND-based non-volatile storage medium (eg, NAND flash memory). However, in addition to or instead of NAND-based storage media, the memory device configured according to other embodiments of the present invention may also include other types of suitable storage media, such as NOR-based storage media, magnetic storage media , Phase change storage media, ferroelectric storage media, etc.

如本文中所使用之術語「處理」包含操縱信號及資料,諸如寫入或程式化、讀取、擦除、刷新、調整或改變值,計算結果,執行指令,組合,傳送及/或操縱資料結構。術語資料結構包含配置為位元、字組或碼字、區塊、檔案、輸入資料、系統所產生資料(諸如所計算或所產生資料)及程式資料之資訊。此外,如本文中所使用之術語「動態」描述在操作、使用或部署一對應裝置、系統或實施例期間及在運行製造商或第三方韌體之後或之同時發生之程序、函數、動作或實施方案。動態地發生之程序、函數、動作或實施方案可在設計、製造及初始測試、設置或組態之後或緊接其後發生。The term "processing" as used herein includes manipulating signals and data, such as writing or programming, reading, erasing, refreshing, adjusting or changing values, calculating results, executing instructions, combining, transmitting, and / or manipulating data structure. The term data structure includes information configured as bits, words or codes, blocks, files, input data, system-generated data (such as calculated or generated data), and program data. In addition, the term "dynamic" as used herein describes a program, function, action, or process that occurs during the operation, use, or deployment of a corresponding device, system, or embodiment and after or concurrently with the operation of a manufacturer or third-party firmware. implementation plan. A program, function, action, or implementation that occurs dynamically can occur after or immediately after design, manufacturing, and initial testing, setup, or configuration.

圖1係根據本發明之一實施例組態之具有動態處理位準校準機構之一記憶體系統100之一方塊圖。記憶體系統100包含一記憶體裝置102。如所展示,記憶體裝置102包含一記憶體陣列104 (例如,NAND快閃記憶體)及一控制器106。記憶體裝置102可將記憶體陣列104可操作地耦合至一主機裝置108 (例如,一上游中央處理器(CPU))。記憶體陣列104可包含經組態以將資料儲存於記憶體陣列104中且提供對記憶體陣列104中之資料之存取之電路。可將記憶體陣列104提供為電腦或其他電子裝置中之半導體、積體電路及/或外部可移除裝置。記憶體陣列104包含複數個記憶體區或記憶體單元120。記憶體單元120可為個別記憶體晶粒、單個記憶體晶粒中之記憶體平面、與矽通孔(TSV)垂直連接之一記憶體晶粒堆疊、或類似者。在一項實施例中,記憶體單元120之各者可由一半導體晶粒形成且與其他記憶體單元晶粒一起配置於單個裝置封裝(未展示)中。在其他實施例中,記憶體單元120之一或多者可共同定位於單個晶粒上及/或跨多個裝置封裝分佈。記憶體裝置102及/或個別記憶體單元120亦可包含用於存取及/或程式化(例如,寫入)資料及其他功能(諸如用於處理資訊及/或與控制器106通信)之其他電路組件(未展示),諸如多工器、解碼器、緩衝器、讀取/寫入驅動器、位址暫存器、資料輸出/資料輸入暫存器等。FIG. 1 is a block diagram of a memory system 100 having a dynamic processing level calibration mechanism configured according to an embodiment of the present invention. The memory system 100 includes a memory device 102. As shown, the memory device 102 includes a memory array 104 (eg, NAND flash memory) and a controller 106. The memory device 102 may operatively couple the memory array 104 to a host device 108 (eg, an upstream central processing unit (CPU)). The memory array 104 may include circuitry configured to store data in the memory array 104 and provide access to data in the memory array 104. The memory array 104 may be provided as a semiconductor, integrated circuit, and / or external removable device in a computer or other electronic device. The memory array 104 includes a plurality of memory regions or memory cells 120. The memory unit 120 may be an individual memory die, a memory plane in a single memory die, a memory die stack vertically connected to a through silicon via (TSV), or the like. In one embodiment, each of the memory cells 120 may be formed from a semiconductor die and configured in a single device package (not shown) along with other memory unit die. In other embodiments, one or more of the memory units 120 may be co-located on a single die and / or distributed across multiple device packages. The memory device 102 and / or the individual memory unit 120 may also include means for accessing and / or programming (e.g., writing) data and other functions (such as for processing information and / or communicating with the controller 106). Other circuit components (not shown), such as multiplexers, decoders, buffers, read / write drivers, address registers, data output / data input registers, etc.

記憶體單元120之各者包含各儲存資料之記憶體胞122之一陣列。記憶體胞122可包含例如經組態以永久性地或半永久性地儲存資料之浮動閘極、電荷陷阱、相變、鐵電、磁阻及/或其他適合儲存元件。記憶體胞122可為可經程式化至一目標狀態以表示資訊之單電晶體記憶體胞。例如,可將電荷置於記憶體胞122之電荷儲存結構(例如,電荷陷阱或浮動閘極)上或自記憶體胞122之電荷儲存結構(例如,電荷陷阱或浮動閘極)移除以將該胞程式化至一特定資料狀態。記憶體胞122之電荷儲存結構上之所儲存電荷可指示該胞之一臨限電壓(Vt)。例如,可將單階胞(SLC)程式化至可由二進位單位1或0表示之兩種不同資料狀態之一目標狀態。Each of the memory units 120 includes an array of memory cells 122 that store data. The memory cell 122 may include, for example, floating gates, charge traps, phase changes, ferroelectrics, magnetoresistance, and / or other suitable storage elements configured to store data permanently or semi-permanently. The memory cell 122 may be a single crystal memory cell that can be programmed to a target state to represent information. For example, a charge may be placed on or removed from a charge storage structure (eg, a charge trap or floating gate) of the memory cell 122 to remove The cell is programmed to a specific data state. The stored charge on the charge storage structure of the memory cell 122 may indicate a threshold voltage (Vt) of the cell. For example, a single-order cell (SLC) can be programmed to a target state that is one of two different data states that can be represented by a binary unit of 1 or 0.

可將一些快閃記憶體胞程式化至兩種以上資料狀態之一目標狀態。例如,可程式化至四種狀態(例如,由二進位00、01、10、11表示)之任一者之一快閃記憶體胞可用來儲存2位元資料,且可稱為多階胞(MLC)。可將又其他快閃記憶體胞程式化至八個資料狀態(例如,000、001、010、011、100、101、110、111)之任一者,從而允許將3位元資料儲存於單個胞中。此等胞可稱為三階胞(TLC)。甚至更高數目個資料狀態係可能的,諸如在四階胞(QLC)中發現之彼等資料狀態,其等可經程式化至16個資料狀態(例如,0000、0001、0010、0011、0100、0101、0110、0111、1000、1001、1010、1011、1100、1101、1110、1111)之任一者以用於儲存4位元資料。能夠儲存更高數目個資料狀態之記憶體胞122可提供更高密度記憶體而不增加記憶體胞之數目,此係因為各胞可表示一個以上數字(例如,一個以上位元)。Some flash memory cells can be programmed to one of two or more data states. For example, a flash memory cell that can be programmed to one of four states (e.g., represented by binary 00, 01, 10, 11) can be used to store 2-bit data and can be referred to as a multilevel cell (MLC). Can program other flash memory cells to any of eight data states (for example, 000, 001, 010, 011, 100, 101, 110, 111), allowing 3-bit data to be stored in a single Cell. These cells can be referred to as third-order cells (TLC). Even higher numbers of data states are possible, such as their data states found in a fourth-order cell (QLC), which can be programmed to 16 data states (e.g., 0000, 0001, 0010, 0011, 0100) , 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111) for storing 4-bit data. A memory cell 122 capable of storing a higher number of data states can provide higher density memory without increasing the number of memory cells because each cell can represent more than one number (eg, more than one bit).

可將記憶體胞122配置成列(例如,各對應於一字線143)及行(例如,各對應於一位元線)。各字線143可包含一或多個記憶體頁124,此取決於彼字線143之記憶體胞122經組態以儲存之資料狀態之數目。例如,各經組態以儲存兩個資料狀態之一者之記憶體胞122 (例如,經組態以各儲存一個位元之SLC記憶體胞)之單個字線可包含單個記憶體頁124。替代地,各經組態以儲存四個資料狀態之一者之記憶體胞122 (例如,經組態以各儲存兩個位元之MLC記憶體胞)之單個字線143可包含兩個記憶體頁124。此外,在字線143內,頁124可經交錯使得各經組態以儲存兩個資料狀態之一者之記憶體胞122 (例如,SLC記憶體胞)之字線143可包含呈一「偶-奇位元線架構」之兩個頁(例如,其中將單個字線143之奇數行中之所有記憶體胞122分組為一第一頁,且將同一字線143之偶數行中之所有記憶體胞122分組為一第二頁)。當在各經組態以儲存更大數目個資料狀態之記憶體胞122 (例如,經組態為MLC、TLC、QLC等之記憶體胞)之字線143中利用偶-奇位元線架構時,每個字線143之頁數目可甚至更高(例如,4、6、8等)。各行可包含耦合至一共同源極之一串串聯耦合之記憶體胞122。各串之記憶體胞122可串聯連接於一源極選擇電晶體(例如,一場效應電晶體)與一汲極選擇電晶體(例如,一場效應電晶體)之間。源極選擇電晶體可共同耦合至一源極選擇線,且汲極選擇電晶體可共同耦合至一汲極選擇線。The memory cells 122 may be arranged in columns (for example, each corresponding to a word line 143) and rows (for example, each corresponding to a bit line). Each word line 143 may include one or more memory pages 124, depending on the number of data states that the memory cells 122 of that word line 143 are configured to store. For example, a single word line of each memory cell 122 (eg, an SLC memory cell configured to store one bit each) configured to store one of two data states may include a single memory page 124. Alternatively, a single word line 143 of each memory cell 122 (e.g., an MLC memory cell configured to store two bits each) configured to store one of the four data states may contain two memories Body Page 124. In addition, within word line 143, pages 124 may be interleaved such that word lines 143 each configured to store one of two data states (e.g., an SLC memory cell) may include word lines 143 -Odd Bit Line Architecture "(for example, where all memory cells 122 in odd rows of a single word line 143 are grouped into a first page, and all memories in even rows of the same word line 143 are grouped Body cells 122 are grouped into a second page). When using even-odd bit line architectures in word lines 143 of memory cells 122 (e.g., memory cells configured as MLC, TLC, QLC, etc.) each configured to store a larger number of data states The number of pages per word line 143 may be even higher (for example, 4, 6, 8, etc.). Each row may include a series-coupled memory cell 122 coupled to a common source. Each string of memory cells 122 may be connected in series between a source selection transistor (eg, a field effect transistor) and a drain selection transistor (eg, a field effect transistor). The source selection transistor may be commonly coupled to a source selection line, and the drain selection transistor may be commonly coupled to a drain selection line.

記憶體裝置102可使用記憶體胞122之不同分組處理資料。例如,可將記憶體胞122之記憶體頁124分組成記憶體區塊126。在操作中,可關於記憶體裝置102之各種記憶體區(諸如藉由寫入至頁124及/或記憶體區塊126之群組)寫入或以其他方式程式化(例如,擦除)資料。在基於NAND之記憶體中,一寫入操作通常包含使用特定資料值(例如,具有邏輯0或邏輯1之一值之一串資料位元)程式化選定記憶體頁124中之記憶體胞122。一擦除操作類似於一寫入操作,惟該擦除操作將整個記憶體區塊126或多個記憶體區塊126重新程式化至相同資料狀態(例如,邏輯0)除外。The memory device 102 may process data using different groups of the memory cells 122. For example, the memory pages 124 of the memory cell 122 may be grouped into a memory block 126. In operation, various memory regions of the memory device 102 (such as by writing to groups of pages 124 and / or memory blocks 126) may be written or otherwise programmed (e.g., erased) data. In NAND-based memory, a write operation typically involves programming a memory cell 122 in a selected memory page 124 using a specific data value (e.g., a string of data bits having a value of logic 0 or logic 1) . An erase operation is similar to a write operation, except that the erase operation reprograms the entire memory block 126 or multiple memory blocks 126 to the same data state (eg, logic 0).

在其他實施例中,可將記憶體胞122配置成不同於所闡釋實施例中展示之類型之群組及/或階層。此外,雖然出於闡釋目的而在具有特定數目個記憶體胞、列、行、區塊及記憶體單元之所闡釋實施例中展示,但在其他實施例中,記憶體胞、列、行、區塊及記憶體單元之數目可變化,且規模可大於或小於所闡釋實例中展示之規模。例如,在一些實施例中,記憶體裝置100可包含僅一個記憶體單元120。替代地,記憶體裝置100可包含2個、3個、4個、8個、10個或更多個(例如,16個、32個、64個或更多個)記憶體單元120。雖然記憶體單元120在圖1中被展示為各包含兩個記憶體區塊126,但在其他實施例中,各記憶體單元120可包含1個、3個、4個、8個或更多個(例如,16個、32個、64個、100個、128個、256個或更多個)記憶體區塊。在一些實施例中,各記憶體區塊123可包含例如215個記憶體頁,且一區塊內之各記憶體頁可包含例如212個記憶體胞122(例如,一「4k」頁)。In other embodiments, the memory cells 122 may be configured in groups and / or hierarchies different from the types shown in the illustrated embodiments. In addition, although illustrated in illustrated embodiments having a specific number of memory cells, columns, rows, blocks, and memory cells for illustrative purposes, in other embodiments, the memory cells, columns, rows, The number of blocks and memory units can vary, and the scale can be larger or smaller than that shown in the illustrated examples. For example, in some embodiments, the memory device 100 may include only one memory unit 120. Alternatively, the memory device 100 may include two, three, four, eight, ten, or more (e.g., 16, 32, 64, or more) memory cells 120. Although the memory unit 120 is shown in FIG. 1 as including two memory blocks 126 each, in other embodiments, each memory unit 120 may include one, three, four, eight, or more (Eg, 16, 32, 64, 100, 128, 256, or more) memory blocks. In some embodiments, each memory block 123 may include, for example, 215 memory pages, and each memory page within a block may include, for example, 212 memory cells 122 (eg, a "4k" page).

控制器106可為一微控制器、專用邏輯電路(例如,一場可程式化閘陣列(FPGA)、一特定應用積體電路(ASIC)等)或其他適合處理器。控制器106可包含一處理器130,該處理器130經組態以執行儲存於記憶體中之指令。在所闡釋實例中,控制器106之記憶體包含一嵌入式記憶體132,該嵌入式記憶體132經組態以執行用於控制記憶體系統100之操作(包含管理記憶體裝置102及處置記憶體裝置102與主機裝置108之間的通信)之各種程序、邏輯流程及常式。在一些實施例中,嵌入式記憶體132可包含儲存例如記憶體指標、所提取資料等之記憶體暫存器。嵌入式記憶體132亦可包含用於儲存微程式碼之唯讀記憶體(ROM)。雖然已將圖1中所繪示之實例性記憶體裝置102繪示為包含控制器106,但在本發明之另一實施例中,一記憶體裝置可不包含一控制器,且可替代地依賴於外部控制(例如,由一外部主機提供,或由與記憶體裝置分離之一處理器或控制器提供)。The controller 106 may be a microcontroller, a dedicated logic circuit (for example, a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), etc.) or other suitable processors. The controller 106 may include a processor 130 configured to execute instructions stored in memory. In the illustrated example, the memory of the controller 106 includes an embedded memory 132 that is configured to perform operations for controlling the memory system 100 (including managing the memory device 102 and processing memory). Communication between the body device 102 and the host device 108), various programs, logic flows, and routines. In some embodiments, the embedded memory 132 may include a memory register that stores, for example, memory indicators, extracted data, and the like. The embedded memory 132 may also include read-only memory (ROM) for storing microcode. Although the exemplary memory device 102 shown in FIG. 1 has been illustrated as including a controller 106, in another embodiment of the present invention, a memory device may not include a controller and may instead rely on External control (for example, provided by an external host, or provided by a processor or controller separate from the memory device).

在所闡釋實例中,記憶體陣列104之進一步組織或細節係用一頁映射142表示。頁映射142可表示記憶體區塊126之各者之記憶體頁124之分組、位址、類型或其等組合。例如,記憶體區塊126之各者可包含對應於一字線群組144之記憶體頁124。亦例如,記憶體頁124可進一步對應於一邏輯頁類型146,諸如一下頁(LP) 148、一上頁(UP) 150或一額外頁(EP) 152。In the illustrated example, further organization or details of the memory array 104 are represented by a page map 142. The page map 142 may represent a grouping, address, type, or combination of memory pages 124 of each of the memory blocks 126. For example, each of the memory blocks 126 may include a memory page 124 corresponding to a word line group 144. As another example, the memory page 124 may further correspond to a logical page type 146, such as a next page (LP) 148, a previous page (UP) 150, or an extra page (EP) 152.

字線群組144可包含對應於用來實施處理功能(諸如資料讀取或寫入)之一或多個字線143之記憶體頁124之一分組。字線群組144可為用於或連接至字線143之記憶體頁124之一分組。字線143可對應於記憶體胞122之實體佈局或架構。The word line group 144 may include a group corresponding to one of the memory pages 124 of one or more word lines 143 used to perform processing functions such as data reading or writing. The word line group 144 may be a group of one of the memory pages 124 for or connected to the word line 143. The word line 143 may correspond to the physical layout or structure of the memory cell 122.

頁類型146 (諸如上頁150、下頁148及額外頁152)可以一特定次序表示用於記憶體頁124之位元之一分組。頁之類型可對應於記憶體胞122之一邏輯佈局、架構或值。例如,下頁148可表示儲存於記憶體頁124或其中之記憶體胞122中之一第一資訊位元。下頁148可用於SLC類型之胞、MLC類型之胞、TLC類型之胞或其等組合。亦例如,上頁150可對應於或表示儲存於記憶體頁124或其中之記憶體胞122中之一第二資訊位元。上頁150可用於TLC或MLC類型之記憶體胞122。亦例如,額外頁152可表示儲存於記憶體頁124或其中之記憶體胞122中之一第三資訊位元,諸如最高有效位元或最低有效位元。額外頁152可用於TLC類型之記憶體胞122。Page type 146 (such as previous page 150, next page 148, and extra page 152) may represent a grouping of bits for memory page 124 in a particular order. The type of page may correspond to one of the logical layouts, structures, or values of the memory cell 122. For example, the next page 148 may represent one of the first information bits stored in the memory page 124 or the memory cell 122 therein. The next page 148 can be used for SLC type cells, MLC type cells, TLC type cells, or combinations thereof. For another example, the previous page 150 may correspond to or represent one of the second information bits stored in the memory page 124 or the memory cell 122 therein. The previous page 150 can be used for TLC or MLC type memory cells 122. For another example, the extra page 152 may represent one of the third information bits stored in the memory page 124 or the memory cell 122 therein, such as the most significant bit or the least significant bit. The extra page 152 can be used for TLC-type memory cells 122.

記憶體裝置102可使用處理位準154來儲存或存取資料。處理位準154可包含電壓或電流之臨限值或操作位準。處理位準154可包含一臨限電壓156、一讀取位準電壓158、一程式化位準電壓160、一程式化步階162或其等組合。臨限電壓156可為施加於控制閘極之電壓,在該電壓下,用於記憶體胞122之電路變為導電的且可量測一電流。可藉由控制記憶體胞122之一浮動閘極或電荷陷阱中保持之一電荷量而影響及控制臨限電壓156。記憶體裝置102可基於程式化位準電壓160將一電荷量儲存至記憶體胞122中以表示一對應資料值。記憶體裝置102將程式化位準電壓160施加於控制閘極或字線以對浮動閘極或電荷陷阱充電。浮動閘極或電荷陷阱可經電隔離,此可使記憶體胞能夠儲存且保持電荷。The memory device 102 may use the processing level 154 to store or access data. The processing level 154 may include a threshold or operating level of voltage or current. The processing level 154 may include a threshold voltage 156, a read level voltage 158, a stylized level voltage 160, a stylized step 162, or a combination thereof. The threshold voltage 156 may be a voltage applied to the control gate, under which the circuit for the memory cell 122 becomes conductive and a current can be measured. The threshold voltage 156 can be affected and controlled by controlling the amount of charge held in a floating gate or charge trap of the memory cell 122. The memory device 102 may store a charge amount into the memory cell 122 based on the programmed level voltage 160 to represent a corresponding data value. The memory device 102 applies a programmed level voltage 160 to a control gate or word line to charge a floating gate or charge trap. Floating gates or charge traps can be electrically isolated, which enables the memory cells to store and retain charge.

記憶體裝置102可使用所儲存電荷來表示資料。例如,將電荷儲存於浮動閘極或電荷陷阱上可用於針對SLC類型胞儲存位元值0。位元值1可對應於浮動閘極或電荷陷阱,而不針對SLC儲存電荷。在其他類型(諸如MLC、TLC或QLC)之胞中,記憶體裝置102可將特定量之電荷儲存於浮動閘極或電荷陷阱上以表示不同位元值。MLC類型之胞可具有4個不同電荷狀態,TLC可具有8個不同電荷狀態,且QLC可具有16個不同電荷狀態。如上文所論述,該等電荷狀態之各者可對應於一唯一二進位值。The memory device 102 may use stored charges to represent data. For example, storing charge on a floating gate or charge trap can be used to store a bit value of 0 for an SLC type cell. A bit value of 1 may correspond to a floating gate or a charge trap without storing charge for the SLC. In other types of cells, such as MLC, TLC, or QLC, the memory device 102 may store a specific amount of charge on a floating gate or charge trap to represent different bit values. Cells of the MLC type can have 4 different charge states, TLC can have 8 different charge states, and QLC can have 16 different charge states. As discussed above, each of these charge states may correspond to a unique binary value.

記憶體裝置102可使用對應於資料值之讀取位準電壓158讀取或判定儲存於記憶體胞122中之資料值。記憶體裝置102可將讀取位準電壓158施加於控制閘極且量測跨記憶體胞之電流或電壓以讀取儲存於胞中之資料。儲存於浮動閘極或電荷陷阱中之電荷可屏蔽或抵消置於控制閘上以用於讀取或存取所儲存資料之電荷量。因而,在施加讀取位準電壓158之情況下,所量測之跨記憶體胞之電流或電壓將對應於儲存於浮動閘極或電荷陷阱中之電荷量。The memory device 102 can read or determine the data value stored in the memory cell 122 using the read level voltage 158 corresponding to the data value. The memory device 102 can apply a read level voltage 158 to the control gate and measure the current or voltage across the memory cell to read the data stored in the cell. The charge stored in the floating gate or charge trap can shield or offset the amount of charge placed on the control gate for reading or accessing the stored data. Therefore, when the read level voltage 158 is applied, the measured current or voltage across the memory cell will correspond to the amount of charge stored in the floating gate or charge trap.

在記憶體裝置102之操作期間,裝置之電特性(即,電荷保留能力)可歸因於重複資料寫入、擦除及/或讀取而改變。重複資料操作可導致電隔離浮動閘極或電荷陷阱(例如,氧化物層)之結構之擊穿或磨損。考量改變記憶體胞122之電特性,記憶體裝置102可移位或校準讀取位準電壓158。During operation of the memory device 102, the electrical characteristics (i.e., charge retention ability) of the device can be changed due to repeated data writing, erasing, and / or reading. Repeated data operations can cause breakdown or wear of structures that electrically isolate floating gates or charge traps (eg, oxide layers). In consideration of changing the electrical characteristics of the memory cell 122, the memory device 102 can shift or calibrate the read level voltage 158.

程式化位準電壓160與讀取位準電壓158及臨限電壓156相關聯。程式化位準電壓160、讀取位準電壓158、臨限電壓156或其等組合可對應於儲存於記憶體胞122中之位元之數目、儲存於記憶體胞122中之資料之特定內容值或其等組合。The programmed level voltage 160 is associated with a read level voltage 158 and a threshold voltage 156. The stylized level voltage 160, read level voltage 158, threshold voltage 156, or a combination thereof may correspond to the number of bits stored in the memory cell 122, the specific content of the data stored in the memory cell 122, Value or a combination thereof.

例如,經組態以將電荷儲存於兩個可能狀態之一者中之記憶體胞122 (例如,SLC記憶體胞)可具有不同於結合經組態以將電荷儲存於四個可能狀態之一者中之記憶體胞122 (例如,MLC記憶體胞)或經組態以將電荷儲存於八個可能狀態之一者中之記憶體胞122 (例如,TLC記憶體胞)所使用之相關聯程式化位準、讀取位準及臨限電壓。針對各種類型之記憶體胞(例如,SLC、MLC、TLC、QLC等),程式化位準電壓160、讀取位準電壓158、臨限電壓156或其等組合之一特定值可與可能資料值之各者相關聯。For example, a memory cell 122 (e.g., an SLC memory cell) configured to store charge in one of two possible states may have a different configuration than a combination configured to store charge in one of four possible states Memory cell 122 (e.g., MLC memory cell) or memory cell 122 (e.g., TLC memory cell) configured to store charge in one of eight possible states Program level, read level and threshold voltage. For various types of memory cells (e.g., SLC, MLC, TLC, QLC, etc.), one of the programmed level voltage 160, read level voltage 158, threshold voltage 156, or a combination thereof can be combined with possible data Each of the values is associated.

記憶體裝置102可將電荷反覆地儲存於記憶體胞122中以用於寫入或程式化操作,諸如增量階躍脈衝程式化(ISPP)。程式化步階162可包含用於在各反覆中增加所儲存電荷之一增量或一電壓值。記憶體裝置102可藉由遞增地儲存或增加對應於程式化步階162之電荷量而達到程式化位準電壓160。The memory device 102 may repeatedly store charges in the memory cell 122 for writing or programming operations, such as incremental step pulse programming (ISPP). The stylized step 162 may include an increment or a voltage value for increasing the stored charge in each iteration. The memory device 102 may reach the programmed level voltage 160 by incrementally storing or increasing the amount of charge corresponding to the programmed step 162.

例如,圖2繪示在一個此增量程式化操作之各種狀態下儲存於一記憶體胞之電荷儲存結構上之電荷。當增量程式化操作開始時,在時間210儲存於記憶體胞上之電荷211低於一所期望目標狀態250。為將記憶體胞程式化至所期望目標狀態250,可在時間220、230及240之各者使用一系列程式化步階162來分別將儲存於該胞之電荷儲存結構上之電荷增加為電荷222、232及242。在各程式化步階162之後,可驗證儲存於電荷儲存結構上之電荷以判定其是否已達到所期望目標狀態250。在時間240,隨著電荷241已增加至所期望目標狀態250,程式化操作完成。For example, FIG. 2 illustrates the charges stored on the charge storage structure of a memory cell under various states of this incremental programming operation. When the incremental programming operation starts, the charge 211 stored on the memory cell at time 210 is lower than a desired target state 250. To program the memory cell to the desired target state 250, a series of programmed steps 162 can be used at each of times 220, 230, and 240 to increase the charge stored on the charge storage structure of the cell as a charge, respectively. 222, 232 and 242. After each stylized step 162, the charge stored on the charge storage structure can be verified to determine whether it has reached the desired target state 250. At time 240, as the charge 241 has increased to the desired target state 250, the stylized operation is complete.

為將較高有效位元程式化至已用較低有效位元程式化之一胞,在一程式化操作中使用之程式化步階162 (及驗證步階)之數目可較大(例如,歸因於用各程式化脈衝添加一較小電荷增量),使得將較高有效位元程式化至一胞可比程式化較低有效位元需要更多時間及能量。To program higher significant bits to a cell that has been programmed with lower significant bits, the number of stylized steps 162 (and verification steps) used in a stylized operation may be larger (e.g., Due to the addition of a smaller charge increment with each stylized pulse), programming more significant bits to a cell can require more time and energy than programming less significant bits.

可將處理位準154儲存於記憶體裝置102、主機裝置108或其等組合中。例如,記憶體裝置102可包含控制器106上之一或多個位準暫存器164、記憶體陣列104、記憶體裝置102之另一記憶體位置或其等組合以用於儲存處理位準154。位準暫存器164可儲存臨限電壓156、讀取位準電壓158、程式化位準電壓160、程式化步階162或其等組合。記憶體系統100、控制器106及/或主機108可存取位準暫存器164,寫入或調整位準暫存器164中之值或其等組合。類似地,可將處理位準154儲存於控制器106之嵌入式記憶體、記憶體陣列104、記憶體裝置102之另一記憶體位置或其等組合中。The processing level 154 may be stored in the memory device 102, the host device 108, or a combination thereof. For example, the memory device 102 may include one or more level registers 164 on the controller 106, a memory array 104, another memory location of the memory device 102, or a combination thereof for storing processing levels. 154. The level register 164 may store a threshold voltage 156, a read level voltage 158, a stylized level voltage 160, a stylized step 162, or a combination thereof. The memory system 100, the controller 106, and / or the host 108 may access the level register 164, write or adjust the values in the level register 164, or a combination thereof. Similarly, the processing level 154 may be stored in the embedded memory of the controller 106, the memory array 104, another memory location of the memory device 102, or a combination thereof.

記憶體裝置102可進一步處理與資料的儲存或存取相關聯之錯誤。錯誤可對應於可在擦除、程式化或寫入、或讀取操作期間引入之一位元或一位元單元,諸如一碼字、一頁或一區塊。除資料處理外,資料保留亦可進一步引入保留錯誤。其他錯誤源可包含程序變動、缺陷、電耦合或寄生電容耦合、電路或其中組件之特性或能力之改變、或其等組合。The memory device 102 may further process errors associated with the storage or access of data. An error may correspond to a bit or unit of bits, such as a codeword, page, or block, that may be introduced during an erase, stylization or write, or read operation. In addition to data processing, data retention can further introduce retention errors. Other sources of error may include program variations, defects, electrical or parasitic capacitive coupling, changes in the characteristics or capabilities of the circuit or its components, or combinations thereof.

記憶體裝置102可追蹤一錯誤量度166。錯誤量度166可表示描述錯誤之一程度、一頻率、一量或量值、一大小或數目、錯誤之一處理推導或其等組合。例如,錯誤量度166可包含一錯誤計數168、一錯誤率170或其等組合。錯誤計數168可表示描述錯誤之一量或量值、一程度、一大小或數目、或其等組合。例如,錯誤計數168可為一位元錯誤計數(BEC)。錯誤率170可表示錯誤發生之一頻率或概率、錯誤之一比例量或一百分比、或其等組合。例如,錯誤率170可包含一位元錯誤率(BER)。錯誤量度166可對應於記憶體陣列104內之一或多個單元或分組。例如,錯誤量度166可針對記憶體頁124、記憶體胞122、字線群組144、一晶粒或其等組合之一或多者。亦例如,錯誤量度166可對應於頁類型146,諸如下頁148、上頁150或額外頁152。可由主機裝置108、控制器106或其等組合計算或追蹤錯誤量度166。可將錯誤量度166儲存於主機裝置108、控制器106之嵌入式記憶體、記憶體陣列104、記憶體裝置102之另一記憶體位置或其等組合中。The memory device 102 may track an error metric 166. The error metric 166 may represent a degree describing the error, a frequency, a magnitude or magnitude, a size or number, a processing derivation of the error, or a combination thereof. For example, the error metric 166 may include an error count 168, an error rate 170, or a combination thereof. The error count 168 may represent a quantity or magnitude, a degree, a size or number, or a combination thereof that describes the error. For example, the error count 168 may be a one-bit error count (BEC). The error rate 170 may represent a frequency or probability of an error occurrence, a proportional amount or a percentage of the error, or a combination thereof. For example, the error rate 170 may include a one-bit error rate (BER). The error metric 166 may correspond to one or more cells or groups within the memory array 104. For example, the error metric 166 may be directed to one or more of a memory page 124, a memory cell 122, a word line group 144, a die, or a combination thereof. Also for example, the error metric 166 may correspond to a page type 146, such as the next page 148, the previous page 150, or the extra page 152. The error metric 166 may be calculated or tracked by the host device 108, the controller 106, or a combination thereof. The error metric 166 may be stored in the host device 108, the embedded memory of the controller 106, the memory array 104, another memory location of the memory device 102, or a combination thereof.

記憶體系統100可利用一錯誤復原機構172來偵測及/或校正錯誤。記憶體系統100可使用主機裝置108、控制器106、記憶體陣列104或其等組合實施錯誤復原機構172。錯誤復原機構172可包含用於偵測所儲存或所存取資料中之錯誤且進一步用於校正錯誤並復原原始所欲資料之一程序、函數、電路或其等組合。諸如基於或用於一或多個碼字之在線校正及總體資料復原可為錯誤復原機構172之實例。亦例如,錯誤復原機構172可利用碼字(諸如漢明碼、低密度同位校驗(LDPC)碼或Bose-Chauduri-Hocquenghem (BCH)碼)之一錯誤校正碼(ECC)來偵測及/或校正錯誤。The memory system 100 may utilize an error recovery mechanism 172 to detect and / or correct errors. The memory system 100 may implement the error recovery mechanism 172 using the host device 108, the controller 106, the memory array 104, or a combination thereof. The error recovery mechanism 172 may include a procedure, function, circuit, or a combination thereof for detecting errors in stored or accessed data and further for correcting errors and recovering the original desired data. Online corrections such as based on or used for one or more codewords and overall data recovery may be examples of error recovery mechanisms 172. For another example, the error recovery mechanism 172 may detect and / or utilize an error correction code (ECC) of a codeword (such as a Hamming code, a Low Density Parity Check (LDPC) code, or a Bose-Chauduri-Hocquenghem (BCH) code). Correct the error.

記憶體系統100可進一步產生且維持背景記錄174。背景記錄174可包含描述記憶體裝置102之一歷史之資訊。例如,背景記錄174可追蹤錯誤、錯誤率170、錯誤復原機構172之使用或實施、對應描述或上下文資料、一處理結果或其表示、或其等組合。亦例如,背景記錄174可追蹤與記憶體裝置102之各種不同態樣或操作之動態校準相關聯之處理結果,諸如資料、位準、結果、統計表示、或其等組合。可使用控制器106、主機裝置108或其等組合追蹤背景記錄174。可將背景記錄174儲存於記憶體陣列104、控制器106之嵌入式記憶體、記憶體裝置102之另一記憶體位置、主機裝置108或其等組合中。The memory system 100 may further generate and maintain a background record 174. The background record 174 may include information describing a history of the memory device 102. For example, the background record 174 may track errors, error rates 170, use or implementation of the error recovery mechanism 172, corresponding description or contextual information, a processing result or its representation, or a combination thereof. Also for example, the background record 174 may track processing results, such as data, levels, results, statistical representations, or combinations thereof, associated with dynamic calibration of various aspects or operations of the memory device 102. The background record 174 may be tracked using the controller 106, the host device 108, or a combination thereof. The background record 174 may be stored in the memory array 104, the embedded memory of the controller 106, another memory location of the memory device 102, the host device 108, or a combination thereof.

記憶體系統100可基於回饋資訊動態地計算或調整處理位準154。例如,記憶體系統100可使用一處理位準校準機構176連續地更新讀取位準電壓158。亦例如,記憶體系統100可使用一步階校準機構180動態地更新或調整程式化步階162。此外,記憶體系統100可動態地產生或調整表示直方圖之分佈目標,該直方圖展示具有對應於特定邏輯值之特定量測值(例如,一臨限電壓位準)之記憶體胞之數目。量測值可歸因於氧化物層之擊穿而移位。記憶體系統100可使用一目標校準機構178基於回饋資料動態地調整分佈目標以調整量測值之移位。處理位準校準機構176、目標校準機構178及步階校準機構180可各為用於實施上述校準之一唯一程序、方法、函數、電路、組態或其等組合。下文論述關於處理位準校準機構176、目標校準機構178及步階校準機構180之細節。The memory system 100 may dynamically calculate or adjust the processing level 154 based on the feedback information. For example, the memory system 100 may continuously update the read level voltage 158 using a processing level calibration mechanism 176. For another example, the memory system 100 may use the one-step calibration mechanism 180 to dynamically update or adjust the stylized steps 162. In addition, the memory system 100 may dynamically generate or adjust a distribution target representing a histogram that displays the number of memory cells having a specific measurement value (for example, a threshold voltage level) corresponding to a specific logic value . The measured value can be shifted due to breakdown of the oxide layer. The memory system 100 may use a target calibration mechanism 178 to dynamically adjust the distribution target based on the feedback data to adjust the shift of the measured value. The processing level calibration mechanism 176, the target calibration mechanism 178, and the step calibration mechanism 180 may each be a unique program, method, function, circuit, configuration, or a combination thereof for performing the above-mentioned calibration. Details regarding the processing level calibration mechanism 176, the target calibration mechanism 178, and the step calibration mechanism 180 are discussed below.

圖3A、圖3B及圖3C展示使一記憶體頁之錯誤計數(沿Y軸展示)與用來自胞讀取資料之讀取電壓(沿X軸展示)相關之圖表。圖3A、圖3B及圖3C展示處理位準校準機構176 (圖1)之一進程。處理位準校準機構176可調整讀取位準電壓158以減少錯誤計數168,如圖3A至圖3C中所繪示。雖然該等圖繪示其中校準機構使用一經量測錯誤計數來校準一讀取位準電壓之一實施例,但在其他實施例中,本發明可用來鑑於其他量測特性(位元錯誤率等)類似地校準其他處理位準(例如,程式化電壓、臨限位準等)。3A, 3B, and 3C show graphs relating error counts (shown along the Y-axis) of a memory page to reading voltages (shown along the X-axis) from data read from a cell. 3A, 3B and 3C show a process of processing the level calibration mechanism 176 (FIG. 1). The processing level calibration mechanism 176 can adjust the read level voltage 158 to reduce the error count 168, as shown in FIGS. 3A to 3C. Although the drawings show an embodiment in which the calibration mechanism uses a measured error count to calibrate a read level voltage, in other embodiments, the present invention can be used to consider other measurement characteristics (bit error rate, etc. ) Similarly calibrate other processing levels (eg, stylized voltage, threshold levels, etc.).

出於闡釋目的,下文使用讀取位準電壓158描述處理位準校準機構176。然而,應理解,可針對臨限電壓156 (圖1)、程式化位準電壓160 (圖1)、程式化步階162 (圖1)或其等組合實施處理位準校準機構176。For illustrative purposes, the processing level calibration mechanism 176 is described below using the read level voltage 158. However, it should be understood that the processing level calibration mechanism 176 may be implemented for the threshold voltage 156 (FIG. 1), the stylized level voltage 160 (FIG. 1), the stylized step 162 (FIG. 1), or a combination thereof.

圖3A至圖3C繪示當實施處理位準校準機構176時讀取位準電壓158以及對應樣本及結果的循序改變、調整或校準。記憶體系統100 (圖1)可實施處理位準校準機構176,包含讀取位準電壓158之反覆改變、調整或校準。記憶體系統100可在一持續時間內進一步實施處理位準校準機構176多次以反覆地調整讀取位準電壓158。FIG. 3A to FIG. 3C show the read level voltage 158 and the sequential changes, adjustments or calibrations of the corresponding samples and results when the processing level calibration mechanism 176 is implemented. The memory system 100 (FIG. 1) may implement a processing level calibration mechanism 176, including repeated changes, adjustments or calibrations of the read level voltage 158. The memory system 100 may further implement the processing level calibration mechanism 176 multiple times within a duration to repeatedly adjust the reading level voltage 158.

圖3A展示在實施處理位準校準機構176之前或在缺失實施處理位準校準機構176之情況下之一實例性行為。在起始或實施處理位準校準機構176時,記憶體系統100可使用其中組件之一或多者來取樣資料且產生或更新一測試量測集。測試量測集可包含一中心結果304、一第一偏移結果306、一第二偏移結果308、其他結果或其等組合。記憶體系統100可基於使用讀取位準電壓158或使用來自讀取位準電壓158之一電壓偏移判定對應於一組讀取操作之結果而產生或更新測試量測集。FIG. 3A shows an exemplary behavior before the processing level calibration mechanism 176 is implemented or in the absence of the processing level calibration mechanism 176. When the process level calibration mechanism 176 is initiated or implemented, the memory system 100 may use one or more of these components to sample data and generate or update a test measurement set. The test measurement set may include a central result 304, a first offset result 306, a second offset result 308, other results, or a combination thereof. The memory system 100 may generate or update the test measurement set based on using the read level voltage 158 or using a voltage offset from the read level voltage 158 to determine a result corresponding to a set of read operations.

例如,記憶體系統100可基於判定對應於使用針對記憶體頁124 (圖1)之一例項之一特定頁類型之讀取位準電壓158讀取或存取之資料之錯誤計數168而判定中心結果304。對應於讀取位準電壓158之原始、未調整或未校準例項之中心結果304在圖3A中被表示為「O」。For example, the memory system 100 may determine the center based on determining an error count 168 corresponding to data read or accessed using a read level voltage 158 for a particular page type of one of the examples of the memory page 124 (FIG. 1). Results 304. The center result 304 of the original, unadjusted, or uncalibrated instance corresponding to the read level voltage 158 is represented as "O" in FIG. 3A.

記憶體系統100可基於判定對應於使用一第一偏移位準316讀取或存取之資料之錯誤計數168而類似地判定第一偏移結果306。記憶體系統100可基於判定對應於使用一第二偏移位準318讀取或存取之資料之錯誤計數168而類似地判定第二偏移結果308。第一偏移位準316係由自x軸向上通往圖表之垂直虛線指示。圖表之對應位置被展示為定位至圖3A中之中心結果304右邊及上方之一三角形。第二偏移位準318係由自x軸通往圖表之垂直虛線指示,其中圖表上之對應位置經定位至圖3A中之中心結果304左邊及下方。The memory system 100 may similarly determine the first offset result 306 based on determining an error count 168 corresponding to data read or accessed using a first offset level 316. The memory system 100 may similarly determine the second offset result 308 based on determining an error count 168 corresponding to data read or accessed using a second offset level 318. The first offset level 316 is indicated by a vertical dashed line leading from the x-axis to the graph. The corresponding position of the graph is shown as a triangle positioned to the right and above the center result 304 in FIG. 3A. The second offset level 318 is indicated by a vertical dotted line leading from the x-axis to the graph, where the corresponding position on the graph is positioned to the left and below the center result 304 in FIG. 3A.

第一偏移位準316及第二偏移位準318可各為用於讀取或存取儲存於記憶體胞122 (圖1)之對應例項中之資料之一電壓位準。第一偏移位準316及第二偏移位準318可為彼此不同且不同於讀取位準電壓158之值。例如,第一偏移位準316可大於讀取位準電壓158。亦例如,第二偏移位準318可小於讀取位準電壓158。The first offset level 316 and the second offset level 318 may each be a voltage level for reading or accessing data stored in a corresponding instance of the memory cell 122 (FIG. 1). The first offset level 316 and the second offset level 318 may be different from each other and different from the read level voltage 158. For example, the first offset level 316 may be greater than the read level voltage 158. For another example, the second offset level 318 may be smaller than the read level voltage 158.

亦例如,第一偏移位準316、第二偏移位準318或其等組合可自讀取位準電壓158偏移達一偏移量度320。偏移量度320可表示偏移位準之一或多者與讀取位準電壓158之一離距或一偏移量。偏移量度320可進一步表示離距或偏移之一方向或一符號、一程度或一量值、或其等組合。For another example, the first offset level 316, the second offset level 318, or a combination thereof may be offset from the read level voltage 158 by an offset measure 320. The offset metric 320 may represent one or more offset levels or an offset from one of the read level voltages 158. The offset metric 320 may further represent a direction or a symbol, a degree or a magnitude, or a combination thereof, from a distance or an offset.

實施處理位準校準機構176之記憶體系統100可選擇一晶粒、一記憶體區塊、一記憶體頁、對應於該頁之一頁類型之一修整或讀取位準電壓158、或其等組合。選擇可為隨機的。此外,選擇可作為一反覆程序之部分而發生。下文論述關於選擇之細節。在選擇之後,記憶體系統100可至少針對測試量測集取樣中心結果304、第一偏移結果306及第二偏移結果308。記憶體系統100可使用沿相反方向自讀取位準電壓158偏移達偏移量度320之第一偏移位準316及第二偏移位準318兩者。記憶體系統100可使用中心結果304、第一偏移結果306及第二偏移結果308來調整或校準讀取位準電壓158。The memory system 100 implementing the level calibration mechanism 176 may select a die, a memory block, a memory page, a trimming or reading level voltage 158 corresponding to a page type of the page, or And other combinations. The selection can be random. In addition, selection can occur as part of an iterative process. The details on selection are discussed below. After the selection, the memory system 100 may at least target the test measurement set sampling center result 304, the first offset result 306, and the second offset result 308. The memory system 100 may use both the first offset level 316 and the second offset level 318 that are offset from the read level voltage 158 in the opposite direction by an offset measure 320. The memory system 100 may use the center result 304, the first offset result 306, and the second offset result 308 to adjust or calibrate the read level voltage 158.

記憶體系統100可基於比較或平衡各種結果而調整、更新或校準讀取位準電壓158。記憶體系統100可基於調整或更新偏移量度320而進一步校準讀取位準電壓158。記憶體系統100可動態地進一步校準讀取位準電壓158。記憶體系統100可另外在記憶體裝置102 (圖1)之製造、組態或設置期間或作為記憶體裝置102 (圖1)之製造、組態或設置之部分、在記憶體裝置102 (圖1)之所欲部署或使用之前,使用處理位準校準機構176校準讀取位準電壓158。下文論述關於處理位準校準機構176之細節。The memory system 100 may adjust, update or calibrate the read level voltage 158 based on comparing or balancing various results. The memory system 100 may further calibrate the read level voltage 158 based on adjusting or updating the offset metric 320. The memory system 100 can dynamically further calibrate the read level voltage 158. The memory system 100 may additionally be used during the manufacture, configuration, or setup of the memory device 102 (FIG. 1) or as part of the manufacture, configuration, or setup of the memory device 102 (FIG. 1). 1) Before the desired deployment or use, the reading level voltage 158 is calibrated using the processing level calibration mechanism 176. Details regarding the processing level calibration mechanism 176 are discussed below.

圖3B繪示與圖3A中所繪示之讀取位準電壓158相較已調整或校準之讀取位準電壓158。圖3B可表示在處理位準校準機構176的實施期間之一反覆或在讀取位準電壓158已沿圖表安定或居中之前的處理位準校準機構176之一實施。讀取位準電壓158在圖3B中被繪示為比圖3A中更低或更靠左。然而,應理解,讀取位準電壓158可沿任何方向調整及調整達任何增量或值。處理位準校準機構176可諸如根據記憶體胞122之當前狀況或特性調整讀取位準電壓158以減小對應記憶體胞122之錯誤率或計數。FIG. 3B shows the read level voltage 158 adjusted or calibrated compared to the read level voltage 158 shown in FIG. 3A. FIG. 3B may represent one of the processing level calibration mechanisms 176 implemented repeatedly during one of the implementations of the processing level calibration mechanism 176 or before the read level voltage 158 has settled or centered along the graph. The read level voltage 158 is shown in FIG. 3B as being lower or further to the left than in FIG. 3A. It should be understood, however, that the read level voltage 158 can be adjusted in any direction and adjusted to any increment or value. The processing level calibration mechanism 176 may, for example, adjust the read level voltage 158 according to the current conditions or characteristics of the memory cell 122 to reduce the error rate or count of the corresponding memory cell 122.

可以各種方式校準讀取位準電壓158。例如,讀取位準電壓158可基於比較或平衡各種結果而遞增或移位達一預定量或增量。亦例如,讀取位準電壓158可被指派對應於取樣程序之一或多個結果之一預定值。亦例如,讀取位準電壓158可基於該等結果之一或多者而由第一偏移位準316或第二偏移位準318替換。下文論述關於讀取位準電壓158之校準之細節。The read level voltage 158 can be calibrated in various ways. For example, the read level voltage 158 may be incremented or shifted by a predetermined amount or increment based on comparing or balancing various results. As another example, the read level voltage 158 may be assigned a predetermined value corresponding to one or more results of the sampling procedure. Also for example, the read level voltage 158 may be replaced by the first offset level 316 or the second offset level 318 based on one or more of these results. Details of the calibration of the read level voltage 158 are discussed below.

一旦已校準讀取位準電壓158,記憶體系統100便可重複該程序。例如,記憶體系統100可使用讀取位準電壓158之經更新、經調整或經校準例項來計算新偏移位準或其等組合以用於處理位準校準機構176之後繼或後續反覆或實施。結果可經處理,且讀取位準電壓158可據此進一步校準。該程序可重複,直至讀取位準電壓158及對應結果滿足一停止或一中斷條件。例如,當讀取位準電壓158對應於錯誤計數168之估計最小例項,從而對應於沿使錯誤計數與讀取位準相關之一圖表(如圖3A至圖3C中所繪示)之一最小值點或一中心點時,該程序可停止。Once the read level voltage 158 has been calibrated, the memory system 100 can repeat the process. For example, the memory system 100 may use the updated, adjusted, or calibrated instance of the read level voltage 158 to calculate a new offset level or a combination thereof for processing subsequent or subsequent iterations of the level calibration mechanism 176 Or implementation. The results can be processed and the read level voltage 158 can be further calibrated accordingly. This procedure can be repeated until the read level voltage 158 and the corresponding result satisfy a stop or an interrupt condition. For example, when the read level voltage 158 corresponds to the estimated minimum instance of the error count 168, it corresponds to one of a graph (as shown in FIGS. 3A to 3C) that correlates the error count with the read level The program can be stopped at a minimum point or a center point.

圖3C可繪示在處理位準校準機構176之實施之後或針對處理位準校準機構176之後續或後繼實施之實例性行為。如所繪示,處理位準校準機構176之實施可調整或校準讀取位準電壓158以定位於使錯誤計數與讀取位準相關之圖表之一底部或最小值相隔一臨限距離處或內。處理位準校準機構176利用對應於讀取位準電壓158之中心結果304及對應於各自結果之一或多個偏移結果提供減少由讀取引入之錯誤之益處。處理位準校準機構176可基於反覆地測試讀取位準電壓158之不同可能值且比較對應錯誤計數而找到減少讀取錯誤之讀取位準電壓158。FIG. 3C may illustrate exemplary behaviors after the implementation of the processing level calibration mechanism 176 or for subsequent or subsequent implementations of the processing level calibration mechanism 176. As shown, the implementation of the processing level calibration mechanism 176 may adjust or calibrate the read level voltage 158 to be located at a threshold distance or a bottom or minimum of one of the graphs that correlate the error count to the read level or Inside. The processing level calibration mechanism 176 utilizes the central result 304 corresponding to the read level voltage 158 and one or more offset results corresponding to the respective results to provide the benefit of reducing errors introduced by the read. The processing level calibration mechanism 176 can find different reading level voltages 158 to reduce reading errors based on repeatedly testing different possible values of the reading level voltage 158 and comparing corresponding error counts.

記憶體系統100可進一步計算一錯誤差量度322。錯誤差量度322係中心結果304與偏移結果之一或多者之間的一比較。錯誤差量度322可為包含中心結果304、第一偏移結果306及第二偏移結果308之結果之一組合之間的錯誤計數168之一離距或一差。例如,記憶體系統100可計算錯誤差量度322作為中心結果304與第一偏移結果306及第二偏移結果308之一平均值之間的一差。亦例如,記憶體系統100可基於中心結果304與第一偏移結果306之間的一差量度、中心結果304與第二偏移結果308之間的一差量度或其等組合計算錯誤差量度322。錯誤差量度322可為用於一或多個機構之一回饋量度。例如,一位準校準回饋量度302 (即,進一步用作用於校準處理位準154之一或多者之輸入之一值、一結果、一度量或其等組合)可包含錯誤差量度322。亦例如,錯誤差量度322可為用於實施目標校準機構178 (圖1)、步階校準機構180 (圖1)或其等組合之回饋量度。下文論述關於錯誤差量度322之細節。The memory system 100 may further calculate an error difference metric 322. The error difference measure 322 is a comparison between the center result 304 and one or more of the offset results. The error difference metric 322 may be a distance or a difference between the error counts 168 including a combination of the results of the center result 304, the first offset result 306, and the second offset result 308. For example, the memory system 100 may calculate an error difference measure 322 as a difference between the central result 304 and an average of the first offset result 306 and the second offset result 308. For another example, the memory system 100 may calculate an error difference metric based on a difference metric between the center result 304 and the first offset result 306, a difference metric between the center result 304 and the second offset result 308, or a combination thereof. 322. The error difference metric 322 may be a feedback metric for one of one or more institutions. For example, a one-bit quasi-calibration feedback metric 302 (ie, a value, a result, a metric, or a combination thereof that is further used as an input for one or more of the calibration processing levels 154) may include an error difference metric 322. For another example, the error difference metric 322 may be a feedback metric for implementing the target calibration mechanism 178 (FIG. 1), the step calibration mechanism 180 (FIG. 1), or a combination thereof. Details on the error difference measure 322 are discussed below.

圖4A、圖4B及圖4C展示目標校準機構178 (圖1)之一進程。目標校準機構178可根據記憶體胞之當前行為調整程式驗證位準之一所期望分佈。圖4A、圖4B及圖4C對應於包含或對應於下頁148、上頁150及額外頁152 (皆在圖1中展示)之一TLC頁。實例性插圖表示沿一垂直方向或軸之一特定修整位準之發生次數。實例性插圖展示沿一水平方向或軸之電壓位準。4A, 4B and 4C show a process of the target calibration mechanism 178 (FIG. 1). The target calibration mechanism 178 may adjust a desired distribution of one of the program verification levels according to the current behavior of the memory cells. 4A, 4B, and 4C correspond to one TLC page including or corresponding to the next page 148, the previous page 150, and the additional page 152 (all shown in FIG. 1). Example illustrations show the number of occurrences of a particular trim level along a vertical direction or axis. Example illustrations show voltage levels along a horizontal direction or axis.

圖4A展示記憶體系統100 (圖1)之一目標量變曲線402之一實例。針對一組給定記憶體胞122 (圖1)(諸如一頁、一邏輯或儲存值、一字線群組、一字線、一晶粒或其等組合),目標量變曲線402係處理位準154 (諸如臨限電壓156或讀取位準電壓158)(皆在圖1中)之發生次數之一標的或所期望結果。例如,目標量變曲線402可包含程式驗證(PV)目標、一所期望格雷碼分佈、一所期望寫入分佈或其等組合。FIG. 4A shows an example of a target quantity curve 402 of the memory system 100 (FIG. 1). For a given set of memory cells 122 (Figure 1) (such as a page, a logical or stored value, a word line group, a word line, a die, or a combination thereof), the target quantity change curve 402 is a processing bit The target 154 (such as the threshold voltage 156 or the read level voltage 158) (both in FIG. 1) is one of the target or expected results. For example, the target quantity variation curve 402 may include a program verification (PV) target, a desired Gray code distribution, a desired write distribution, or a combination thereof.

記憶體系統100可利用目標量變曲線402來控制記憶體裝置102 (圖1)之行為、操作或程序。目標量變曲線402可指定對應於電壓位準、頁類型146 (圖1)或其等組合之處理位準154 (圖1)之一所期望或目標量或數量。記憶體系統100可使用目標校準機構178 (圖1)進一步調整或校準目標量變曲線402。目標量變曲線402可包含各邏輯值或對應電壓位準之一分佈目標404。分佈目標404可與對應於一特定內容值、頁類型146或其等組合之處理位準154之一組所期望數量或發生對應。分佈目標404之各例項可對應於可能內容值之一個唯一例項。對應於分佈目標404之電壓位準可表示對應資料值之處理位準154之一令人滿意或所期望範圍。The memory system 100 may use the target quantity variation curve 402 to control the behavior, operation, or procedure of the memory device 102 (FIG. 1). The target quantity variation curve 402 may specify a desired or target quantity or quantity corresponding to one of the processing levels 154 (Figure 1) of the voltage level, page type 146 (Figure 1), or a combination thereof. The memory system 100 may further use the target calibration mechanism 178 (FIG. 1) to further adjust or calibrate the target quantity variation curve 402. The target quantity change curve 402 may include a distribution target 404 of each logical value or one of corresponding voltage levels. The distribution target 404 may correspond to a desired number or occurrence of a set of processing levels 154 corresponding to a particular content value, page type 146, or a combination thereof. Each instance of the distribution target 404 may correspond to a unique instance of a possible content value. The voltage level corresponding to the distribution target 404 may represent a satisfactory or desired range of one of the processing levels 154 of the corresponding data value.

針對諸如圖4A至圖4C中所例示之TLC頁,記憶體胞122之各者可儲存三個位元。三個位元之儲存可等於八個可能內容值0至7或位元值「000」、「001」、「010」、「011」、「100」、「101」、「110」及「111」。可能內容值之各者係用位準識別來識別,諸如圖4A至圖4C中之L0至L1。可由記憶體系統100、一開發者或製造商、一標准或一模板、或其等組合預定位元值至特定電壓範圍的指派。目標量變曲線402可進一步包含或表示一分佈谷值(valley) 406。分佈谷值406係相鄰分佈目標之間的一關係之一表示。分佈谷值406可表示兩個相鄰分佈目標之間的一交叉、一離距、一重疊或其等組合。分佈谷值406可各在分佈目標404之兩個相鄰例項之間,在分佈目標404之兩個相鄰例項之邊界處或其等組合。分佈谷值406可在分佈目標404之一或多者越過一臨限位準或數量之處,在多個目標位準相遇或重疊之處或其等組合。For a TLC page such as illustrated in FIGS. 4A-4C, each of the memory cells 122 can store three bits. Three bit storage can be equal to eight possible content values 0 to 7 or bit values "000", "001", "010", "011", "100", "101", "110" and "111" ". Each of the possible content values is identified using level recognition, such as L0 to L1 in FIGS. 4A to 4C. Assignment of a predetermined bit value to a specific voltage range may be performed by the memory system 100, a developer or manufacturer, a standard or a template, or a combination thereof. The target quantity variation curve 402 may further include or represent a distribution valley 406. The distribution valley 406 is one of a relationship between adjacent distribution targets. The distribution trough 406 may represent a cross, a distance, an overlap, or a combination thereof between two adjacent distribution targets. The distribution valley 406 may be between two adjacent instances of the distribution target 404, at the boundary of the two adjacent instances of the distribution target 404, or a combination thereof. The distribution trough 406 may be where one or more of the distribution targets 404 cross a threshold level or number, where multiple target levels meet or overlap, or a combination thereof.

針對諸如圖4A至圖4C中所例示之TLC頁,可存在8個谷值。分佈谷值406之各者係用谷值識別來識別,諸如圖4A至圖4B (圖4C中未展示)中之v1至v7。各谷值可對應於針對下頁148、上頁150及額外頁152之一唯一劃分或臨限值,其可用來判定儲存於對應胞中之內容。分佈谷值406之各者可用於判定下頁148、上頁150、額外頁152、對應位置處之位元值或其等組合。分佈谷值406與唯一值及/或頁類型146之間的指派或相關性可基於各種位元值指派之一預定次序、序列、配置或其等組合。For a TLC page such as illustrated in Figures 4A to 4C, there may be 8 valley values. Each of the distribution troughs 406 is identified using trough recognition, such as v1 to v7 in FIGS. 4A to 4B (not shown in FIG. 4C). Each valley value may correspond to a unique division or threshold for one of the next page 148, the previous page 150, and the extra page 152, which may be used to determine the content stored in the corresponding cell. Each of the distribution valley values 406 can be used to determine the next page 148, the previous page 150, the extra page 152, the bit value at the corresponding position, or a combination thereof. The assignment or correlation between the distribution trough 406 and the unique value and / or page type 146 may be based on one of a predetermined order, sequence, configuration, or combination of various bit value assignments.

記憶體系統100可使用邊緣目標408作為參考點且動態地調整中間目標409。邊緣目標408表示對應於最低及最高電壓位準之分佈目標404之例項。中間目標409包含邊緣目標408之間的分佈目標404之例項。記憶體系統100可實施目標校準機構178以調整或平衡中間目標409或對應分佈谷值406。The memory system 100 may use the edge target 408 as a reference point and dynamically adjust the intermediate target 409. The edge target 408 represents an example of a distribution target 404 corresponding to the lowest and highest voltage levels. The intermediate target 409 includes an example of a distributed target 404 between the edge targets 408. The memory system 100 may implement a target calibration mechanism 178 to adjust or balance the intermediate target 409 or the corresponding distribution valley 406.

圖4B展示一位準分佈曲線410。位準分佈曲線410可為展示具有一特定經量測值(例如,圖1之臨限電壓156)之數個記憶體胞122之一直方圖。位準分佈曲線410可表示記憶體胞122之一實際計數或一當前狀態。目標量變曲線402可用於控制或調整程序或位準以控制或管理位準分佈曲線410。例如,位準分佈曲線410可包含實際程式驗證狀態、實際格雷碼分佈、實際寫入分佈或其等組合。記憶體系統100可判定且追蹤位準分佈曲線410之各種資訊。位準分佈曲線410可隨時間推移及因使用而改變。歸因於改變、處理位準154之對應更新或改變、或其等組合,位準分佈曲線410可進一步偏離目標量變曲線402。記憶體系統100可據此使用目標校準機構178調整或校準目標量變曲線402。FIG. 4B shows a one-bit quasi-distribution curve 410. The level distribution curve 410 may be a histogram showing a plurality of memory cells 122 having a specific measured value (for example, the threshold voltage 156 in FIG. 1). The level distribution curve 410 may represent an actual count of one of the memory cells 122 or a current state. The target quantity change curve 402 can be used to control or adjust a program or level to control or manage the level distribution curve 410. For example, the level distribution curve 410 may include an actual program verification status, an actual Gray code distribution, an actual write distribution, or a combination thereof. The memory system 100 can determine and track various information of the level distribution curve 410. The level distribution curve 410 may change over time and due to use. Due to a change, a corresponding update or change of the processing level 154, or a combination thereof, the level distribution curve 410 may further deviate from the target quantity change curve 402. The memory system 100 may use the target calibration mechanism 178 to adjust or calibrate the target quantity variation curve 402 accordingly.

圖4C繪示目標量變曲線402之調整、更新或校準。實施目標校準機構178之記憶體系統100可產生用於替換先前目標之一或多個經調整目標420。在圖4C中,諸如最初在圖4A中所繪示之先前目標係使用虛線展示,且經調整目標420係使用虛線展示。記憶體系統100可基於在電壓位準中將一或多個先前目標移位或移動為更高或更低(諸如如圖4A至圖4C中所繪示般左或右)而產生經調整目標420。記憶體系統100可基於目標調整值422產生經調整目標420。目標調整值422可表示對應分佈目標404之電壓位準之改變之一方向、一量或量值、或其等組合。目標調整值422可進一步對應於對應分佈谷值406之深度、量值、程度或量、或其等組合之改變。記憶體系統100可實施目標校準機構178且調整目標量變曲線402以跨各種位元值平衡分佈目標404、分佈谷值406或其等組合。下文論述關於錯誤差量度322及目標校準機構178之細節。FIG. 4C illustrates the adjustment, update or calibration of the target quantity variation curve 402. The memory system 100 implementing the target calibration mechanism 178 may generate an adjusted target 420 for replacing one or more of the previous targets. In FIG. 4C, a previous target, such as originally depicted in FIG. 4A, is shown using dashed lines, and the adjusted target 420 is shown using dashed lines. The memory system 100 may generate an adjusted target based on shifting or moving one or more previous targets higher or lower in the voltage level (such as left or right as shown in FIGS. 4A to 4C). 420. The memory system 100 may generate an adjusted target 420 based on the target adjustment value 422. The target adjustment value 422 may represent a direction, a magnitude or a magnitude, or a combination thereof, corresponding to a change in the voltage level of the distribution target 404. The target adjustment value 422 may further correspond to a change in the depth, magnitude, degree or amount of the corresponding distribution valley 406, or a combination thereof. The memory system 100 may implement a target calibration mechanism 178 and adjust the target quantity variation curve 402 to balance the distribution target 404, the distribution valley 406, or a combination thereof across various bit values. Details regarding the error difference measurement 322 and the target calibration mechanism 178 are discussed below.

錯誤差量度322提供分佈谷值406之一深度或一量值及對應RWB之一量化表示。目標校準機構178利用錯誤差量度322作為一回饋量度來調整或平衡分佈目標404之一或多個例項提供記憶體裝置102之均勻使用及磨損從而延長記憶體胞122之壽命之益處。The error difference measure 322 provides a depth or a magnitude of the distribution valley 406 and a quantified representation of the corresponding RWB. The target calibration mechanism 178 uses the error difference metric 322 as a feedback metric to adjust or balance one or more instances of the distribution target 404 to provide the benefits of uniform use and wear of the memory device 102 to extend the life of the memory cell 122.

圖5A及圖5B係步階校準機構180 (圖1)之進程之實例性插圖。實例性插圖沿一垂直方向或軸表示儲存於記憶體胞中之一電荷量。實例性插圖沿一水平方向或軸展示時間。5A and 5B are exemplary illustrations of the process of the step calibration mechanism 180 (FIG. 1). Exemplary illustrations represent the amount of charge stored in a memory cell along a vertical direction or axis. Example illustrations show time along a horizontal direction or axis.

圖5A繪示在實施步階校準機構180 (圖1)之前之一記憶體胞之一程式化操作。記憶體系統100 (圖1)可藉由將一目標電荷量儲存於記憶體胞中來程式化或寫入,其中目標量值或位準表示特定內容或位元值。記憶體系統100可藉由儲存一電荷量來程式化或寫入程式化位準電壓160 (圖1)。記憶體系統100可藉由在(諸如針對ISPP之)一反覆程序中將增量電荷量儲存於記憶體胞中來程式化或寫入。例如,記憶體系統100可反覆地施加多個脈衝以用於增加儲存於記憶體胞中之電荷。記憶體系統100可使用程式化步階162來遞增地增加所儲存電荷,直至所儲存量值或位準匹配程式化位準電壓160。記憶體系統100可針對各脈衝或反覆進行程式化及驗證。反覆針對圖5A被繪示為「I1」、「I2」及「I3」。FIG. 5A illustrates a programmed operation of a memory cell before the step calibration mechanism 180 (FIG. 1) is implemented. The memory system 100 (FIG. 1) can be programmed or written by storing a target charge quantity in a memory cell, where the target quantity value or level represents a specific content or bit value. The memory system 100 can be programmed or written to the programmed level voltage 160 by storing an amount of charge (FIG. 1). The memory system 100 may be programmed or written by storing incremental charge amounts in the memory cells in an iterative process (such as for ISPP). For example, the memory system 100 may repeatedly apply multiple pulses for increasing the charge stored in the memory cells. The memory system 100 may use the stylized step 162 to incrementally increase the stored charge until the stored amount or level matches the stylized level voltage 160. The memory system 100 can be programmed and verified for each pulse or repeatedly. 5A is repeatedly shown as "I1", "I2", and "I3".

一程式化時間502係與達到程式化位準電壓160相關聯之一持續時間。程式化時間502可與達到程式化位準電壓160所需之反覆次數、用於各反覆之程式化步階162或其等組合相關聯。記憶體系統100可實施步階校準機構180以動態地調整或校準程式化步階162。記憶體系統100可動態地增大或減小程式化步階162,此將對應地增加或減少程式化時間502。下文論述關於步階校準機構180之細節。A stylized time 502 is a duration associated with reaching the stylized level voltage 160. The programmed time 502 may be associated with the number of iterations required to reach the programmed level voltage 160, a programmed step 162 for each iteration, or a combination thereof. The memory system 100 may implement a step calibration mechanism 180 to dynamically adjust or calibrate the stylized steps 162. The memory system 100 may dynamically increase or decrease the programming step 162, which will correspondingly increase or decrease the programming time 502. Details regarding the step calibration mechanism 180 are discussed below.

圖5B繪示在實施步階校準機構180 (圖1)之後的程式化操作。為比較,諸如圖5A中之先前位準及步階係用虛線繪示。步階校準機構180可產生一經調整步階504。經調整步階504係用於替換程式化步階162之程式化步階162之一經校準或經改變例項。經調整步階504可大於或小於程式化步階162。FIG. 5B illustrates a stylized operation after the step calibration mechanism 180 (FIG. 1) is implemented. For comparison, previous levels and steps such as in FIG. 5A are shown with dashed lines. The step calibration mechanism 180 can generate an adjusted step 504. Adjusted step 504 is a calibrated or changed instance of one of stylized steps 162 used to replace stylized step 162. The adjusted step 504 may be larger or smaller than the stylized step 162.

動態地產生經調整步階504以增大程式化步階162提供減少程式化時間502之益處。程式化步階162之增大可減小達到程式化位準電壓160所需之脈衝或反覆之數目,從而減少對應時間量。因此,程式化步階162之動態校準及調整改良記憶體系統100之總體效率。Dynamically generating the adjusted step 504 to increase the stylized step 162 provides the benefit of reducing the stylized time 502. The increase of the stylized step 162 can reduce the number of pulses or iterations required to reach the stylized level voltage 160, thereby reducing the amount of corresponding time. Therefore, the dynamic calibration and adjustment of the stylized steps 162 improves the overall efficiency of the memory system 100.

此外,可基於表示錯誤復原機構172 (圖1)之一觸發或一實施之一回饋量度或其處理結果產生經調整步階504。在產生經調整步階504時觸發錯誤復原機構172之考量提供程式化時間502之減少而不增大錯誤量度166 (圖1)。下文論述關於步階校準機構180之細節。In addition, the adjusted step 504 may be generated based on a trigger measure or an implementation measure or a processing result representing the error recovery mechanism 172 (FIG. 1). Considerations that trigger the error recovery mechanism 172 when generating the adjusted step 504 provide a reduction in the stylized time 502 without increasing the error metric 166 (Figure 1). Details regarding the step calibration mechanism 180 are discussed below.

圖6係繪示根據本發明之實施例之記憶體系統100 (圖1)之操作之一實例性方法600之一流程圖。方法600可包含處理位準校準機構176 (圖1)的實施。可例如由用於記憶體裝置102或主機裝置108之一處理電路(諸如控制器106、記憶體陣列104、用於主機裝置108之處理器、其中部分或其等組合(皆在圖1中))執行或實施處理位準校準機構176。處理位準校準機構176可包含控制器106、記憶體陣列104、主機裝置108或其等組合之組態。處理位準校準機構176可進一步包含儲存於控制器106、記憶體陣列104、主機裝置108或其等組合內或使用控制器106、記憶體陣列104、主機裝置108或其等組合存取之一或多個方法、程序、步驟或指令、資訊或其等組合。FIG. 6 is a flowchart illustrating an exemplary method 600 of operation of the memory system 100 (FIG. 1) according to an embodiment of the present invention. The method 600 may include implementation of a processing level calibration mechanism 176 (FIG. 1). It may be, for example, a processing circuit for one of the memory device 102 or the host device 108 (such as the controller 106, the memory array 104, the processor for the host device 108, some of it, or a combination thereof (all in FIG. 1) ) Perform or implement a process level calibration mechanism 176. The processing level calibration mechanism 176 may include a configuration of the controller 106, the memory array 104, the host device 108, or a combination thereof. The processing level calibration mechanism 176 may further include stored in the controller 106, the memory array 104, the host device 108, or a combination thereof, or accessed using one of the controller 106, the memory array 104, the host device 108, or a combination thereof. Or multiple methods, procedures, steps or instructions, information, or combinations thereof.

可利用或實施處理位準校準機構176以調整處理位準154 (圖1),諸如讀取位準電壓158 (圖1)。處理位準校準機構176可基於判定或識別一取樣觸發620而開始。取樣觸發620可表示用來提示或開始處理位準校準機構176之一狀態、一信號、一組態或一結果。例如,取樣觸發620可包含來自主機裝置108 (圖1)之一信號或一命令,諸如一中斷服務常式。亦例如,取樣觸發620可包含記憶體裝置102、記憶體系統100或其等組合之一特定狀態,諸如通電或斷電。亦例如,取樣觸發620可包含操作或程序之一特定數目、一天中之一時間或其等組合。The processing level calibration mechanism 176 may be utilized or implemented to adjust the processing level 154 (FIG. 1), such as a read level voltage 158 (FIG. 1). The processing level calibration mechanism 176 may begin based on determining or identifying a sampling trigger 620. The sampling trigger 620 may indicate a state, a signal, a configuration, or a result used to prompt or start processing the level calibration mechanism 176. For example, the sampling trigger 620 may include a signal or a command from the host device 108 (FIG. 1), such as an interrupt service routine. For another example, the sampling trigger 620 may include a specific state of the memory device 102, the memory system 100, or a combination thereof, such as power on or power off. Also for example, the sampling trigger 620 may include a specific number of operations or procedures, a time of day, or a combination thereof.

在方塊602處,處理位準校準機構176可選擇用於對記憶體胞122 (圖1)分組以供處理之記憶體頁124 (圖1)之一完全程式化記憶體頁。選定頁可對應於基於胞類型(諸如SLC、MLC及TLC)之一或多個頁類型。選定頁可進一步對應於字線群組144之一者及一字線。可隨機地、反覆地選擇或其等組合。總體而言,基於針對各外反覆隨機地選擇各晶粒內之記憶體區塊126 (圖1)之一者,頁選擇可為隨機的。此外,記憶體系統100可選擇記憶體區塊126之經完全程式化之一者。可以各種方式完成記憶體胞122之分組之選擇。At block 602, the processing level calibration mechanism 176 may select one of the memory pages 124 (FIG. 1), a fully-programmed memory page for grouping the memory cells 122 (FIG. 1) for processing. The selected page may correspond to one or more page types based on cell types, such as SLC, MLC, and TLC. The selected page may further correspond to one of the word line groups 144 and a word line. It can be selected randomly, repeatedly, or a combination thereof. In general, page selection can be random based on one of the memory blocks 126 (FIG. 1) within each die being randomly selected for each outer iteration. In addition, the memory system 100 may select one of the fully programmed memory blocks 126. The selection of the grouping of the memory cells 122 can be accomplished in various ways.

例如,記憶體系統100可基於隨機地選擇包含記憶體頁之記憶體區塊126之一者而隨機地選擇記憶體頁124之一者。記憶體系統100可使用對應於下頁148 (圖1)、上頁150 (圖1)、額外頁152 (圖1)或其等組合之可用於對應字線群組之讀取位準電壓158反覆地取樣選定頁124。因此記憶體系統100可選擇使得可針對相同頁取樣各字線群組之所有頁類型之所有修整或處理位準154。亦例如,記憶體系統100可隨機地選擇一頁,其係基於隨機地選擇包含該選定頁之記憶體區塊126之一者。一旦選擇該區塊,可針對各取樣程序隨機地選擇該頁。換言之,處理位準校準機構176可選擇使得可針對隨機頁取樣各字線群組之不同頁類型之修整。For example, the memory system 100 may randomly select one of the memory pages 124 based on randomly selecting one of the memory blocks 126 containing the memory page. The memory system 100 may use a read level voltage 158 corresponding to the next word line group corresponding to the next page 148 (Figure 1), the previous page 150 (Figure 1), the extra page 152 (Figure 1), or a combination thereof. Selected pages 124 are repeatedly sampled. Therefore, the memory system 100 may select all trimming or processing levels 154 of all page types of each word line group for the same page. For another example, the memory system 100 may randomly select a page based on randomly selecting one of the memory blocks 126 containing the selected page. Once the block is selected, the page can be selected randomly for each sampling procedure. In other words, the processing level calibration mechanism 176 can choose to make the trimming of different page types of each word line group for random pages sampled.

在方塊604處,處理位準校準機構176可獲得修整或判定對應於記憶體頁124之處理位準154之一或多者。例如,控制器106、主機裝置108或其等組合可存取位準暫存器164 (圖1)以獲得修整或判定處理位準154之一或多者。作為一更特定實例,控制器106可判定對應於下頁148、上頁150、額外頁152或其等組合之讀取位準電壓158以用於根據選定頁存取所儲存資訊。At block 604, the processing level calibration mechanism 176 may obtain one or more of the processing levels 154 that are trimmed or determined to correspond to the memory page 124. For example, the controller 106, the host device 108, or a combination thereof may access the level register 164 (FIG. 1) to obtain one or more of the trimming or decision processing levels 154. As a more specific example, the controller 106 may determine a read level voltage 158 corresponding to the next page 148, the previous page 150, the extra page 152, or a combination thereof for accessing the stored information according to the selected page.

在方塊606處,處理位準校準機構176可提供一或多個偏移處理值。例如,控制器106、主機裝置108或其等組合可基於讀取位準電壓158及偏移量度320 (圖3)計算第一偏移位準316 (圖3)、第二偏移位準318 (圖3)或其等組合。作為一更特定實例,控制器106可存取儲存於其中之嵌入式記憶體中、自主機接收、儲存於記憶體陣列104上或其等組合之偏移量度320。控制器106可基於將偏移量度320與讀取位準電壓158相加或基於根據偏移量度320沿一個方向自讀取位準電壓158移位而計算第一偏移位準316。控制器106可基於將偏移量度320與讀取位準電壓158相減或基於根據偏移量度320沿相反方向自讀取位準電壓158移位而進一步計算第二偏移位準318。At block 606, the processing level calibration mechanism 176 may provide one or more offset processing values. For example, the controller 106, the host device 108, or a combination thereof may calculate the first offset level 316 (FIG. 3) and the second offset level 318 based on the read level voltage 158 and the offset measure 320 (FIG. 3). (Figure 3) or a combination thereof. As a more specific example, the controller 106 may access offset metrics 320 stored in embedded memory therein, received from the host, stored on the memory array 104, or a combination thereof. The controller 106 may calculate the first offset level 316 based on adding the offset measure 320 to the read level voltage 158 or based on shifting from the read level voltage 158 in one direction according to the offset measure 320. The controller 106 may further calculate the second offset level 318 based on subtracting the offset measure 320 from the read level voltage 158 or based on shifting from the read level voltage 158 in the opposite direction according to the offset measure 320.

在方塊608處,處理位準校準機構176可根據一或多個位準取樣。例如,控制器106、主機裝置108或其等組合可判定對應於處理位準154之一或多者或其(等)偏移之一或多個結果,諸如讀取位準電壓158連同第一偏移位準316、第二偏移位準318或其等組合。At block 608, the processing level calibration mechanism 176 may sample according to one or more levels. For example, the controller 106, the host device 108, or a combination thereof may determine that one or more results corresponding to one or more of the processing levels 154 or their (or) offsets, such as a read level voltage 158 together with Offset level 316, second offset level 318, or a combination thereof.

作為一更特定實例,控制器106、主機裝置108或其等組合可使用讀取位準電壓158判定中心結果304 (圖3)以用於處理對應於選定頁之記憶體胞122之資料。記憶體系統100可使用中心結果304讀取所儲存資料。記憶體系統100可使用ECC對所存取資料實施一錯誤校正/偵測機構以處理對應於讀取位準電壓158之任何錯誤。記憶體系統100可判定對應於讀取位準電壓158之錯誤計數168 (圖1)以判定中心結果304。As a more specific example, the controller 106, the host device 108, or a combination thereof may use the read level voltage 158 to determine the center result 304 (FIG. 3) for processing the data of the memory cell 122 corresponding to the selected page. The memory system 100 can use the central result 304 to read the stored data. The memory system 100 may use ECC to implement an error correction / detection mechanism on the accessed data to handle any errors corresponding to the read level voltage 158. The memory system 100 may determine an error count 168 (FIG. 1) corresponding to the read level voltage 158 to determine the central result 304.

繼續該實例,記憶體系統100可類似地計算對應於第一偏移位準316、第二偏移位準318或其等組合之錯誤計數168。記憶體系統100可判定第一偏移結果306 (圖3)為起因於使用第一偏移位準316存取之資料之錯誤計數168。記憶體系統100可判定第二偏移結果308 (圖3)為起因於使用第二偏移位準318存取之資料之錯誤計數168。記憶體系統100可自相同讀取臨限谷值或相同MLBi修整暫存器執行4次讀取。Continuing the example, the memory system 100 may similarly calculate an error count 168 corresponding to the first offset level 316, the second offset level 318, or a combination thereof. The memory system 100 may determine that the first offset result 306 (FIG. 3) is an error count 168 due to data accessed using the first offset level 316. The memory system 100 may determine that the second offset result 308 (FIG. 3) is an error count 168 due to data accessed using the second offset level 318. The memory system 100 can perform four reads from the same read threshold or the same MLBi trim register.

記憶體系統100可儲存一或多個錯誤計數或結果、對應位準、或其等組合。記憶體系統100可將中心結果304、第一偏移結果306、第二偏移結果308、對應處理位準或其等組合儲存於控制器106之嵌入式記憶體、記憶體陣列104、主機裝置108或其等組合中。The memory system 100 may store one or more error counts or results, corresponding levels, or combinations thereof. The memory system 100 may store the central result 304, the first offset result 306, the second offset result 308, the corresponding processing level, or a combination thereof in the embedded memory of the controller 106, the memory array 104, and the host device. 108 or a combination thereof.

在方塊610處,處理位準校準機構176可評估調整或校準處理位準154之結果。例如,記憶體系統100可藉由基於中心結果304、第一偏移結果306、第二偏移結果308或其等組合計算位準校準回饋量度302 (圖3)來評估結果。記憶體系統100可計算包含一位準調整量度622、錯誤差量度322 (圖3)或其等組合之位準校準回饋量度302。位準校準回饋量度302可表示第一偏移結果306與第二偏移結果308之間的一較大值、第一偏移結果306與第二偏移結果308相對於中心結果304之差值之間的一較大值或其等組合。At block 610, the processing level calibration mechanism 176 may evaluate the result of adjusting or calibrating the processing level 154. For example, the memory system 100 may evaluate the results by calculating a level calibration feedback metric 302 (FIG. 3) based on the center result 304, the first offset result 306, the second offset result 308, or a combination thereof. The memory system 100 may calculate a level calibration feedback measure 302 including a one-level adjustment measure 622, an error difference measure 322 (FIG. 3), or a combination thereof. The level calibration feedback metric 302 may indicate a larger value between the first offset result 306 and the second offset result 308, and the difference between the first offset result 306 and the second offset result 308 relative to the center result 304. A larger value or a combination thereof.

作為一更特定實例,記憶體系統100可基於比較中心結果304、第一偏移結果306、第二偏移結果308或其等組合判定位準調整量度622為一指示或一結果。作為一進一步特定實例,記憶體系統100可判定位準調整量度622為第一偏移結果306與第二偏移量結果308之間的一差,或為第一偏移量結果306及第二偏移量結果308之哪一者更大之一指示。As a more specific example, the memory system 100 may determine the level adjustment measure 622 as an indication or a result based on the comparison center result 304, the first offset result 306, the second offset result 308, or a combination thereof. As a further specific example, the memory system 100 may determine that the level adjustment measure 622 is a difference between the first offset result 306 and the second offset result 308, or the first offset result 306 and the second offset result 306. The larger one of the offset results 308 indicates.

作為一更特定實例,記憶體系統100可基於組合中心結果304、第一偏移結果306及第二偏移結果308之兩者或更多者而計算錯誤差量度322。作為一進一步特定實例,記憶體系統100可計算錯誤差量度322作為第一偏移結果306與中心結果之間的一差、第二偏移結果308與中心結果304之間的一差或其等組合。As a more specific example, the memory system 100 may calculate an error difference metric 322 based on two or more of the combined center result 304, the first offset result 306, and the second offset result 308. As a further specific example, the memory system 100 may calculate an error difference measure 322 as a difference between the first offset result 306 and the center result, a difference between the second offset result 308 and the center result 304, or the like combination.

繼續該實例,記憶體系統100亦可計算錯誤差量度322作為中心結果304與第一偏移結果306及第二偏移結果308之一組合(諸如其數學推導、其邏輯組合、或其統計表示或平均值)之間的一差。處理位準校準機構176可包含經組態以根據起因於方塊608中所表示之取樣步驟之錯誤計數計算錯誤差量度322之一方法、一方程式、一程序、一電路或其等組合。Continuing the example, the memory system 100 may also calculate the error difference measure 322 as a combination of the central result 304 and one of the first offset result 306 and the second offset result 308 (such as its mathematical derivation, its logical combination, or its statistical representation). Or average). The processing level calibration mechanism 176 may include a method, a formula, a program, a circuit, or a combination thereof that is configured to calculate an error difference metric 322 based on the error count resulting from the sampling steps represented in block 608.

在方塊612處,處理位準校準機構176可判定處理位準154之一更新。記憶體系統100可基於各種結果產生一經更新位準624。經更新位準624係讀取位準電壓158之一新的經調整或經校準值。經更新位準624可替換讀取位準電壓158之先前使用例項。記憶體系統100可以各種方式產生經更新位準624。例如,控制器106、主機裝置108或其等組合可基於各種結果產生經更新位準624。作為一更特定實例,記憶體系統100可產生經更新位準624作為對應於錯誤計數168之最低例項之讀取位準電壓158、第一偏移位準316或第二偏移位準318。亦作為一更特定實例,記憶體系統100可產生經更新位準624作為讀取位準電壓158、第一偏移位準316及第二偏移位準318之一加權平均值之一結果。各加權平均值係基於錯誤計數168或結果之對應例項。At block 612, the processing level calibration mechanism 176 may determine that one of the processing levels 154 is updated. The memory system 100 may generate an updated level 624 based on various results. The updated level 624 reads a new adjusted or calibrated value of one of the level voltages 158. The updated level 624 can replace the previous use case of the read level voltage 158. The memory system 100 may generate the updated level 624 in various ways. For example, the controller 106, the host device 108, or a combination thereof may generate an updated level 624 based on various results. As a more specific example, the memory system 100 may generate the updated level 624 as the read level voltage 158, the first offset level 316, or the second offset level 318 corresponding to the lowest instance of the error count 168. . As a more specific example, the memory system 100 may generate the updated level 624 as a result of a weighted average of one of the read level voltage 158, the first offset level 316, and the second offset level 318. Each weighted average is based on the error count 168 or the corresponding instance of the result.

亦例如,當一個以上測試位準導致相同位元錯誤率時,記憶體系統100可選擇較低臨限值作為經更新位準624。作為一更特定實例,若讀取位準電壓158及較低偏移位準兩者對應於相同錯誤率,則記憶體系統100可選擇較低偏移位準為經更新位準624。For another example, when more than one test level results in the same bit error rate, the memory system 100 may select a lower threshold value as the updated level 624. As a more specific example, if both the read level voltage 158 and the lower offset level correspond to the same error rate, the memory system 100 may select the lower offset level as the updated level 624.

亦例如,控制器106、主機裝置108或其等組合可基於根據各種結果調整處理位準154而產生經更新位準624。記憶體系統100可基於用來產生樣本之位準調整量度622及讀取位準電壓158 (諸如藉由根據位準調整量度622移位或遞增讀取位準電壓158)而產生經更新位準624。Also for example, the controller 106, the host device 108, or a combination thereof may generate the updated level 624 based on adjusting the processing level 154 according to various results. The memory system 100 may generate updated levels based on the level adjustment metric 622 and read level voltage 158 used to generate the samples (such as by shifting or incrementing the read level voltage 158 based on the level adjustment metric 622). 624.

亦例如,控制器106、主機裝置108或其等組合可基於錯誤差量度322(諸如藉由基於各種讀取位準及對應錯誤計數、各種讀取位準及對應錯誤計數之歷史或先前例項、或其等組合計算經更新位準624作為對應於最低估計錯誤計數之一位準之一預測或一估計)產生經更新位準624。作為一更特定實例,記憶體系統100可利用曲線擬合或估計函數、斜率計算或其等組合來估計對應於最小錯誤計數之位準。Also for example, the controller 106, the host device 108, or a combination thereof may be based on the error difference measure 322 (such as by based on a history or previous instance of various read levels and corresponding error counts, various read levels and corresponding error counts) , Or a combination thereof, calculates the updated level 624 as a prediction or an estimate corresponding to one of the lowest estimated error counts) to generate the updated level 624. As a more specific example, the memory system 100 may utilize a curve fitting or estimation function, a slope calculation, or a combination thereof to estimate the level corresponding to the minimum error count.

記憶體系統100可產生經更新位準624以用於隨後處理記憶體頁124之資料。記憶體系統100可進一步產生經更新位準624以用於平衡第一偏移結果306及第二偏移結果308。記憶體系統100可產生經更新位準624,以尋求將讀取位準電壓158居中於如圖4B中所繪示之最小錯誤計數,從而使第一偏移結果306及第二偏移結果308之對應例項在量值上類似或在彼此之一臨限值範圍內。The memory system 100 may generate updated levels 624 for subsequent processing of the data of the memory page 124. The memory system 100 may further generate updated levels 624 for balancing the first offset result 306 and the second offset result 308. The memory system 100 may generate an updated level 624 to seek to center the read level voltage 158 at the minimum error count as shown in FIG. 4B, so that the first offset result 306 and the second offset result 308 The corresponding instances are similar in magnitude or within one of the thresholds of each other.

記憶體系統100可判定用於取樣程序之處理位準154是否居中。例如,記憶體系統100可基於讀取位準電壓158之一趨勢、一型樣或一行為產生一居中狀態626。居中狀態626係指示讀取位準電壓158或讀取位準電壓158之一調整或一更新處於或接近如圖3C中所繪示之最小錯誤計數之一判定或一結果。The memory system 100 may determine whether the processing level 154 for the sampling procedure is centered. For example, the memory system 100 may generate a centered state 626 based on a trend, pattern, or behavior of the read level voltage 158. The centered state 626 indicates a judgment or a result that indicates that one of the read level voltage 158 or the adjustment of the read level voltage 158 is at or near the minimum error count as shown in FIG. 3C.

記憶體系統100可以各種方式產生居中狀態626。例如,若經更新位準624相同於讀取位準電壓158或在其臨限量內,則居中狀態626可指示所用讀取位準電壓158居中。亦例如,居中狀態626可基於比較當前反覆及之前或先前反覆之錯誤計數或結果而指示當前反覆之前的讀取位準電壓158係最低的。居中狀態626指示讀取位準電壓158、經更新位準624或其等組合處於處理位準154之一目標或所期望例項。The memory system 100 may generate the centered state 626 in various ways. For example, if the updated level 624 is the same as or within the threshold level of the read level voltage 158, the centered state 626 may indicate that the read level voltage 158 used is centered. For another example, the centered state 626 may indicate that the read level voltage 158 before the current iteration is the lowest based on comparing the current count and previous or previous error counts or results. The centered state 626 indicates that the read level voltage 158, the updated level 624, or a combination thereof is at one of the targets or desired instances of the processing level 154.

亦例如,記憶體系統100可基於一先前改變方向628及一當前改變方向630產生居中狀態626。先前改變方向628係用於讀取位準電壓158之先前例項之一型樣、一趨勢、一行為或其等組合。先前改變方向628可包含用於在當前反覆之前的讀取位準電壓158之一或多個例項之一斜率或其之一符號。記憶體系統100可基於處理位準154之至少一個先前例項及處理位準154之當前例項計算先前改變方向628。For another example, the memory system 100 may generate a centered state 626 based on a previously changed direction 628 and a currently changed direction 630. The previous change direction 628 is used to read a pattern, a trend, a behavior, or a combination thereof of one of the previous examples of the level voltage 158. The previously changed direction 628 may include one of the slopes of one or more instances of the read level voltage 158 before the current iteration or one of its symbols. The memory system 100 may calculate the previous change direction 628 based on at least one previous instance of the processing level 154 and the current instance of the processing level 154.

當前改變方向630係用於讀取位準電壓158、經更新位準624或其等組合之當前例項之一型樣、一趨勢、一行為或其等組合。先前改變方向628可包含用於讀取位準電壓158相對於讀取位準電壓158之一先前例項或在讀取位準電壓158與經更新位準624之間的一斜率或一符號。記憶體系統100可基於當前讀取位準電壓158及經更新位準624計算當前改變方向630。The current change direction 630 is a pattern, a trend, a behavior, or a combination thereof for reading a current instance of the level voltage 158, the updated level 624, or a combination thereof. The previous change of direction 628 may include a previous instance of the read level voltage 158 relative to the read level voltage 158 or a slope or a sign between the read level voltage 158 and the updated level 624. The memory system 100 may calculate a current change direction 630 based on the current read level voltage 158 and the updated level 624.

記憶體系統100可基於比較當前改變方向630與先前改變方向628而產生居中狀態626。在當前改變方向630及先前改變方向628指示錯誤計數168跨反覆之一型樣或行為改變時,記憶體系統100可產生居中狀態626。例如,在當前改變方向630及先前改變方向628不同時,例如當取樣結果在如圖3C中所繪示之最小值點附近或經過該最小值點時抖動時,記憶體系統100可產生居中狀態626。The memory system 100 may generate a centered state 626 based on comparing the current direction of change 630 with the previous direction of change 628. The memory system 100 may generate a centered state 626 when the current direction of change 630 and the previous direction of change 628 indicate an error count 168 across one of repeated patterns or behavior changes. For example, when the current change direction 630 and the previous change direction 628 are different, for example, when the sampling result is shaken near the minimum point shown in FIG. 3C or when the minimum point is passed, the memory system 100 may generate a centered state 626.

記憶體系統100可進一步利用其他參數來產生居中狀態626。例如,記憶體系統100可基於中心結果304與第一結果306之間、中心結果304與第二結果308之間、第一結果306與第二結果308之間的一或多個斜率或其等組合產生居中狀態626。亦例如,記憶體系統100可基於隨時間推移對應於調整或校準之各種斜率或結果之一型樣或趨勢產生居中狀態626。記憶體系統100可使用居中狀態626作為一旗標以中斷偏移計算、取樣、評估及更新步驟。相反,記憶體系統100可將最終經更新位準624儲存至對應於所評估記憶體頁124之位準暫存器164中。The memory system 100 may further utilize other parameters to generate the centered state 626. For example, the memory system 100 may be based on one or more slopes between the central result 304 and the first result 306, between the central result 304 and the second result 308, between the first result 306 and the second result 308, or the like The combination produces a centered state 626. For another example, the memory system 100 may generate a centered state 626 based on a pattern or trend of various slopes or results corresponding to adjustment or calibration over time. The memory system 100 may use the centered state 626 as a flag to interrupt the offset calculation, sampling, evaluation, and update steps. Instead, the memory system 100 may store the final updated level 624 in a level register 164 corresponding to the evaluated memory page 124.

針對處理位準校準機構176之後續實施,記憶體系統100可基於最初比較讀取位準電壓158與經更新位準624而移除居中狀態626。當讀取位準電壓158及經更新位準624相同或在一預定臨限值內時,記憶體系統100維持居中狀態626。當讀取位準電壓158及經更新位準624不同或進一步分離超過預定臨限值時,記憶體系統100可取消或移除居中狀態626。For subsequent implementations of the processing level calibration mechanism 176, the memory system 100 may remove the centered state 626 based on the initial comparison of the read level voltage 158 and the updated level 624. When the read level voltage 158 and the updated level 624 are the same or within a predetermined threshold, the memory system 100 maintains the centered state 626. When the read level voltage 158 and the updated level 624 are different or further separated beyond a predetermined threshold, the memory system 100 may cancel or remove the centered state 626.

記憶體系統100可使用經更新位準624、居中狀態626或其等組合來保持處理位準154或臨限值之各者居中。經更新位準624提供用於在記憶體系統100之操作期間最小化位元錯誤率之改良效能之益處。經更新位準624及處理位準校準機構176可動態地更新讀取位準電壓158以針對在記憶體裝置102之製造、初始組態及部署之後的所欲使用期間之任何改變或磨損進行調整及校準。The memory system 100 may use the updated level 624, the centered state 626, or a combination thereof to keep each of the processing levels 154 or thresholds centered. The updated level 624 provides the benefit of improved performance for minimizing the bit error rate during operation of the memory system 100. The updated level 624 and the processing level calibration mechanism 176 can dynamically update the read level voltage 158 to adjust for any changes or wear during the desired use period after the manufacture, initial configuration and deployment of the memory device 102 And calibration.

在方塊614處,處理位準校準機構176可計算一增益控制632。增益控制632係經組態以動態地調整表示讀取位準電壓158與第一偏移位準316之間的一離距、讀取位準電壓158與第二偏移位準318之間的一離距或其等組合之偏移量度320之一參數。可由處理位準校準機構176使用增益控制632以藉由控制偏移量度320來有效地加寬或縮窄中心樣本與低/高樣本之間的一間隔或離距。與設定為非最佳電壓之讀取位準電壓158之偏差或偏移可增加錯誤計數168。因此,可基於復原極限634計算增益控制632,使得第一偏移結果306及第二偏移結果308將保持低於復原極限634。At block 614, the processing level calibration mechanism 176 may calculate a gain control 632. The gain control 632 is configured to dynamically adjust a distance between the read level voltage 158 and the first offset level 316, and the gain between the read level voltage 158 and the second offset level 318. A parameter of an offset measure 320 from a distance or a combination thereof. The gain control 632 may be used by the processing level calibration mechanism 176 to effectively widen or narrow an interval or distance between the center sample and the low / high sample by controlling the offset measure 320. A deviation or offset from the read level voltage 158 set to a non-optimal voltage may increase the error count 168. Therefore, the gain control 632 may be calculated based on the restoration limit 634 so that the first offset result 306 and the second offset result 308 will remain below the restoration limit 634.

控制器106、主機裝置108或其等組合可基於回饋量度302 (諸如錯誤差量度322)計算增益控制632。記憶體系統100可以各種方式計算增益控制632。例如,記憶體系統100可基於每次反覆基於比較錯誤差量度322與一預定臨限值或範圍而遞增地增加或減少一個增量而計算增益控制632。亦例如,記憶體系統100可基於根據包含根據錯誤差量度322之對應值之增益控制632之各種可能值之一預定清單或表而指派一值而計算增益控制632。亦例如,記憶體系統100可利用使用錯誤差量度322作為一輸入之一預定方程式來計算增益控制632。The controller 106, the host device 108, or a combination thereof may calculate the gain control 632 based on the feedback metric 302, such as the error difference metric 322. The memory system 100 may calculate the gain control 632 in various ways. For example, the memory system 100 may calculate the gain control 632 based on iteratively increasing or decreasing by one increment based on the comparison error difference measure 322 and a predetermined threshold or range. As another example, the memory system 100 may calculate the gain control 632 based on a predetermined list or table including one of various possible values of the gain control 632 according to the corresponding value of the error difference measure 322. For another example, the memory system 100 may calculate the gain control 632 using a predetermined equation using the error difference measure 322 as an input.

作為一更特定實例,記憶體系統100可判定其中錯誤差量度322超過或滿足一預定臨限值之讀取次數。記憶體系統100可諸如基於晶粒之錯誤差量度322之一數學組合、一統計組合或一邏輯組合而組合或加總晶粒之錯誤差量度322。經組合或經加總量度可用作預定臨限值、清單或表、或方程式之輸入以計算增益控制632。As a more specific example, the memory system 100 may determine the number of reads in which the error difference measure 322 exceeds or meets a predetermined threshold. The memory system 100 may combine or aggregate the error difference measure 322 based on one of a mathematical combination, a statistical combination, or a logical combination based on the error difference measure 322 of the die. The combined or aggregated metrics can be used as inputs to a predetermined threshold, list or table, or equation to calculate gain control 632.

可根據目標量變曲線402 (圖4)計算增益控制632。可以一反覆方式進一步計算增益控制632。可根據如由預定方程式、表、清單、臨限值或範圍、機構、或其等組合表示之增益控制632與位準分佈曲線410 (圖4)之間的一關係計算增益控制632。可計算增益控制632以根據如由預定方程式、表、清單、臨限值或範圍、機構、或其等組合表示之其與所取樣資料之一關係而影響分佈谷值406 (圖4)。可計算增益控制632以具有錯誤差量度322之一最小值與一最大值之間的樣本。此外,可基於一復原極限634計算增益控制632。復原極限634係對錯誤復原機構172 (圖1)之資料之可復原性之一約束。復原極限634可基於ECC。復原極限634可描述記憶體系統100可處置或校正之錯誤之一數目。The gain control 632 can be calculated based on the target quantity change curve 402 (FIG. 4). The gain control 632 may be further calculated in an iterative manner. The gain control 632 may be calculated according to a relationship between the gain control 632 and the level distribution curve 410 (FIG. 4) as represented by a predetermined equation, table, list, threshold or range, mechanism, or a combination thereof. The gain control 632 may be calculated to affect the distribution valley 406 (FIG. 4) based on its relationship to one of the sampled data as represented by a predetermined equation, table, list, threshold, or range, mechanism, or a combination thereof. The gain control 632 may be calculated to have samples between one of the minimum and a maximum of the error difference metric 322. In addition, the gain control 632 may be calculated based on a restoration limit 634. The recovery limit 634 is a constraint on the recoverability of the data of the error recovery mechanism 172 (Figure 1). The recovery limit 634 may be based on ECC. The recovery limit 634 may describe one of the number of errors that the memory system 100 can handle or correct.

記憶體系統100可基於增益控制632計算偏移量度320。記憶體系統100可基於組合偏移量度320與增益控制632或根據增益控制632調整偏移量度320而調整或更新偏移量度320。例如,記憶體系統100可使用增益控制632作為一偏移量或一因子。亦例如,記憶體系統100可根據由增益控制632指定之增量數目或方向增大或減小偏移量度320。亦例如,記憶體系統100可使用增益控制量632作為一預定表或方程式之一輸入來計算偏移量度320。The memory system 100 may calculate an offset metric 320 based on the gain control 632. The memory system 100 may adjust or update the offset metric 320 based on combining the offset metric 320 and the gain control 632 or adjusting the offset metric 320 according to the gain control 632. For example, the memory system 100 may use the gain control 632 as an offset or a factor. For another example, the memory system 100 may increase or decrease the offset measure 320 according to the number of increments or direction specified by the gain control 632. For another example, the memory system 100 may use the gain control amount 632 as an input to a predetermined table or equation to calculate the offset measure 320.

偏移量度320、增益控制632或其等組合之計算、調整或更新可基於居中狀態626。偏移量度320、增益控制632或其等組合之計算、調整或更新可在校準一晶粒中之所有修整時、在已採取最小或臨限數目個樣本時或其等組合發生。可將取樣結果、經更新位準624、居中狀態626、增益控制632、位準校準回饋量度302、其處理或統計結果、或其等組合儲存於記憶體裝置102、主機裝置108或其等組合中。可跨處理位準校準機構176之反覆或實施存取所儲存資訊。The calculation, adjustment, or update of the offset metric 320, the gain control 632, or a combination thereof may be based on the centered state 626. The calculation, adjustment, or update of the offset measure 320, gain control 632, or a combination thereof may occur when calibrating all trimmings in a die, when a minimum or threshold number of samples have been taken, or a combination thereof. The sampling result, updated level 624, centered state 626, gain control 632, level calibration feedback measure 302, its processing or statistical results, or a combination thereof may be stored in the memory device 102, the host device 108, or the combination thereof in. The stored information can be repeatedly or implemented across the processing level calibration mechanism 176.

例如,處理位準校準機構176可利用一或多個迴路。作為一更特定實例,一反覆可對應於與處理位準校準機構176相關聯之所有晶粒之所有讀取位準修整之一個樣本。讀取位準電壓158之更新或調整可基於一反覆計數達到一預定臨限值而發生。各修整可在其已被取樣預定次數之後獲得一更新。反覆可根據各晶粒或整組記憶體陣列104進一步重複。For example, the processing level calibration mechanism 176 may utilize one or more circuits. As a more specific example, one iteration may correspond to one sample trimming all read levels of all the die associated with the processing level calibration mechanism 176. The update or adjustment of the read level voltage 158 may occur based on an iteration count reaching a predetermined threshold. Each trim can get an update after it has been sampled a predetermined number of times. The iteration may be further repeated according to each die or the entire group of memory arrays 104.

圖6例如展示一外迴路及一內迴路。記憶體系統100可針對外迴路選擇一晶粒或一記憶體頁。內迴路可針對一選定修整或頁類型取樣、評估結果且判定讀取位準電壓158之更新。外迴路可在一持續時間內自多個不同區塊對來自內迴路之結果分級。一旦已完成足夠內迴路量測,外迴路便可調整或校準讀取位準電壓158。內迴路、外迴路或兩者一起工作可反覆地調整讀取位準電壓158,直至一選定頁或晶粒上之頁類型146之各者之居中狀態626。FIG. 6 shows, for example, an outer circuit and an inner circuit. The memory system 100 may select a die or a memory page for the external circuit. The inner loop can sample, evaluate the results and determine the update of the read level voltage 158 for a selected trim or page type. The outer loop can grade the results from the inner loop from multiple different blocks over a duration. Once enough internal loop measurements have been made, the external loop can adjust or calibrate the read level voltage 158. The inner loop, outer loop, or both work together to repeatedly adjust the read level voltage 158 until the centered state 626 of each of the page types 146 on a selected page or die.

亦例如,可在一持續時間內實施處理位準校準機構176多次。處理位準校準機構176之各實施可為具有或不具有任何單獨內部反覆程序之一反覆。記憶體系統100可儲存用於或起因於處理位準校準機構176之各實施之資訊。For another example, the processing level calibration mechanism 176 may be implemented multiple times within a duration. Each implementation of the process level calibration mechanism 176 may be iterative with or without any separate internal iterative process. The memory system 100 may store information for or resulting from implementations of the processing level calibration mechanism 176.

記憶體系統100可跨反覆儲存各種資訊或儲存各種資訊以供其他機構(諸如目標校準機構178 (圖1)、步階校準機構180 (圖1)或其等組合)存取。例如,記憶體系統100可在取樣階段期間、在居中狀態626之後或其等組合儲存各字線群組144之各頁類型146之錯誤計數168、或處理結果或表示。亦例如,記憶體系統100可儲存增益控制632、錯誤差量度322或其等組合。記憶體系統100可在實施處理位準校準機構176或其部分或反覆之後、或基於實施處理位準校準機構176或其部分或反覆,實施目標校準機構178、步階校準機構180或其等組合。The memory system 100 may store various kinds of information repeatedly or store various kinds of information for access by other organizations such as the target calibration mechanism 178 (FIG. 1), the step calibration mechanism 180 (FIG. 1), or a combination thereof. For example, the memory system 100 may store an error count 168 for each page type 146 of each word line group 144 during the sampling phase, after the centered state 626, or a combination thereof, or process results or representations. For another example, the memory system 100 may store a gain control 632, an error difference measure 322, or a combination thereof. The memory system 100 may implement the target calibration mechanism 178, the step calibration mechanism 180, or a combination thereof after the processing level calibration mechanism 176 or a part or iteration thereof is implemented, or based on the implementation of the processing level calibration mechanism 176 or a part or iteration thereof. .

記憶體系統100可使用處理位準校準機構176來初始化處理位準154,動態地校準處理位準154或其等組合。記憶體系統100可在記憶體裝置102之部署或所欲使用之前實施處理位準校準機構176作為記憶體裝置102之製造或組態之部分。記憶體系統100可在記憶體裝置102之部署或所欲使用期間且在記憶體裝置102之製造或組態之後,進一步動態地實施處理位準校準機構176且動態地更新處理位準154。The memory system 100 may use the processing level calibration mechanism 176 to initialize the processing level 154, dynamically calibrate the processing level 154, or a combination thereof. The memory system 100 may implement a processing level calibration mechanism 176 as part of the manufacture or configuration of the memory device 102 prior to the deployment or intended use of the memory device 102. The memory system 100 may further dynamically implement the processing level calibration mechanism 176 and dynamically update the processing level 154 during the deployment or intended use of the memory device 102 and after the manufacturing or configuration of the memory device 102.

例如,記憶體系統100可初始化且調整超過一製造位準640之讀取位準電壓158。製造位準640可為最初經提供或經組態以用於製造記憶體裝置102之處理位準154之一例項,諸如讀取位準電壓158。製造位準640可為考量記憶體胞122之一理想或一估計行為或特性而非實際行為或特性之一出廠預設值或一組態預設值。For example, the memory system 100 may initialize and adjust a read level voltage 158 that exceeds a manufacturing level 640. The manufacturing level 640 may be an example of a processing level 154 that is initially provided or configured for manufacturing the memory device 102, such as a read level voltage 158. The manufacturing level 640 may be a factory preset value or a configuration preset value considering an ideal or an estimated behavior or characteristic of the memory cell 122 instead of an actual behavior or characteristic.

記憶體系統100可利用方法600來針對記憶體裝置102之各例項將製造位準640調整為最佳讀取位準電壓158。記憶體系統100可自製造位準640開始選擇、獲得修整、計算與修整相關聯之互補位準、取樣、評估結果、且判定更新,如上文所描述。對應於居中狀態626之位準可為讀取位準電壓158之一經初始化例項以用於部署、銷售、出貨或所欲使用。The memory system 100 may use the method 600 to adjust the manufacturing level 640 to the optimal reading level voltage 158 for each instance of the memory device 102. The memory system 100 can select, obtain trimming, calculate complementary levels associated with trimming, sample, evaluate results, and determine updates from the manufacturing level 640, as described above. The level corresponding to the centered state 626 may be one of the initialized instances of the read level voltage 158 for deployment, sale, shipment, or intended use.

對於初始化,記憶體系統100可識別用於表示最初在記憶體陣列104的製造期間判定之處理位準154之製造位準640。記憶體系統100可使用製造位準640之識別作為取樣觸發620來實施上文所描述之步驟。For initialization, the memory system 100 may identify a manufacturing level 640 that represents a processing level 154 that was originally determined during the manufacturing of the memory array 104. The memory system 100 may use the identification of the manufacturing level 640 as the sampling trigger 620 to perform the steps described above.

記憶體系統100最初可在記憶體陣列104之使用或部署之前且在動態地產生經更新位準624之前校準處理位準154。記憶體系統100最初可使用選定記憶體胞122之製造位準640判定中心結果304。記憶體系統100最初可使用不同於製造位準640之偏移位準判定偏移結果。記憶體系統100可基於根據中心結果304及偏移結果調整製造位準640而產生處理位準154,且替換製造位準640以用於記憶體陣列104之部署或所欲使用。記憶體系統100可基於以快於經設計以用於部署後實施之一速率之一加速速率實施上文所描述之操作而初始化。The memory system 100 may initially calibrate the processing level 154 before use or deployment of the memory array 104 and before dynamically generating the updated level 624. The memory system 100 may initially determine the central result 304 using the manufacturing level 640 of the selected memory cell 122. The memory system 100 may initially determine an offset result using an offset level different from the manufacturing level 640. The memory system 100 may generate a processing level 154 based on adjusting the manufacturing level 640 according to the central result 304 and the offset result, and replace the manufacturing level 640 for the deployment or intended use of the memory array 104. The memory system 100 may be initialized based on performing the operations described above at an acceleration rate that is faster than one rate that is designed for post-deployment implementation.

在初始化及部署之後且在所欲使用期間,記憶體系統100可進一步實施處理位準校準機構176以動態地校準且最佳化處理位準154。記憶體系統100可繼續追蹤與記憶體裝置102、處理位準校準機構176或其等組合之使用相關聯之各種資料及統計資料。記憶體系統100可使用追蹤資料來連續地校準處理位準154。After initialization and deployment, and during desired use, the memory system 100 may further implement a processing level calibration mechanism 176 to dynamically calibrate and optimize the processing level 154. The memory system 100 may continue to track various data and statistical data associated with the use of the memory device 102, the processing level calibration mechanism 176, or a combination thereof. The memory system 100 may use the tracking data to continuously calibrate the processing level 154.

讀取位準電壓158之動態校準提供改良記憶體裝置102之總體BER之益處。由處理位準校準機構176起始之各樣本可返回一特定晶粒及一特定頁類型臨限值之資料。在諸多此等操作內,可將所返回資訊加總且回饋於一閉合迴路系統中。The dynamic calibration of the read level voltage 158 provides the benefit of improving the overall BER of the memory device 102. Each sample initiated by the processing level calibration mechanism 176 can return data for a specific die and a specific page type threshold. In many of these operations, the information returned can be aggregated and fed back into a closed loop system.

讀取位準電壓158之動態校準提供減少大量晶粒之週期性讀取位準校準或修整之益處。預計此消除或減少校準時記憶體裝置102之效能的突然或急劇下降。The dynamic calibration of the read level voltage 158 provides the benefit of reducing the periodic read level calibration or trimming of a large number of die. This is expected to eliminate or reduce the sudden or sharp drop in the performance of the memory device 102 during calibration.

讀取位準電壓158的動態校準及將讀取位準電壓158維持於一居中值提供在其中可使用線內硬體之正常ECC無法以其他方式校正資料之情況下減少錯誤復原機構172之觸發事件之益處。觸發事件之減少可進一步總體上改良記憶體裝置102之效能。Dynamic calibration of the read level voltage 158 and maintaining the read level voltage 158 at a median value provides a reduction in triggering of the error recovery mechanism 172 in cases where normal ECC of the in-line hardware can be used and data cannot be corrected in other ways The benefits of the event. The reduction in trigger events can further improve the performance of the memory device 102 as a whole.

增益控制632提供使讀取位準電壓158居中時之進一步準確度。可利用增益控制632來準確地設定偏移量度320,此可導致改良偏移位準與讀取位準電壓158之間的間隔。改良間隔可改良錯誤計數之追蹤,同時保持於復原極限634內。The gain control 632 provides further accuracy when centering the read level voltage 158. Gain control 632 can be used to accurately set the offset metric 320, which can result in improving the interval between the offset level and the read level voltage 158. The improved interval improves the tracking of the error count while remaining within the recovery limit 634.

出於闡釋目的,已結合上文所例示之一序列及程序描述圖6中所展示之流程圖。然而,應理解,方法600可不同。例如,如方塊614所表示之增益控制之計算可為一反覆程序。亦例如,可在如方塊610中所表示之評估結果之前或作為如方塊610中所表示之評估結果之部分而計算增益控制。亦例如,方法600可進一步包含用於在方塊612中觸發處理位準更新、用於在方塊614中計算增益控制或其等組合之一投票系統。For illustrative purposes, the flowchart shown in FIG. 6 has been described in conjunction with one of the sequences and procedures illustrated above. However, it should be understood that the method 600 may be different. For example, the calculation of gain control as represented by block 614 may be an iterative process. Also for example, the gain control may be calculated before the evaluation result as represented in block 610 or as part of the evaluation result as represented in block 610. As another example, the method 600 may further include one of a voting system for triggering a processing level update in block 612, for calculating a gain control in block 614, or a combination thereof.

圖7係繪示根據本發明之實施例之記憶體系統100 (圖1)之操作之一進一步實例性方法700之一流程圖。方法700可包含目標校準機構178 (圖1)的實施。目標校準機構178可連續地修改程式驗證(PV)目標位置。FIG. 7 is a flowchart illustrating a further exemplary method 700 of operation of the memory system 100 (FIG. 1) according to an embodiment of the present invention. The method 700 may include an implementation of a target calibration mechanism 178 (FIG. 1). The target calibration mechanism 178 may continuously modify a program verification (PV) target position.

可例如由用於記憶體裝置102或主機裝置108之一處理電路(諸如控制器106、記憶體陣列104 (例如,一晶粒或胞)、用於主機裝置108之處理器或其等組合(皆在圖1中))執行或實施目標校準機構178。目標校準機構178可包含控制器106、記憶體陣列104、主機裝置108或其等組合之組態。目標校準機構178可進一步包含儲存於控制器106、記憶體陣列104、主機裝置108或其等組合內或使用控制器106、記憶體陣列104、主機裝置108或其等組合存取之一或多個方法、程序、步驟或指令、資訊或其等組合。It may be, for example, a processing circuit (such as the controller 106, a memory array 104 (e.g., a die or cell)) for one of the memory device 102 or the host device 108, a processor for the host device 108, or a combination thereof ( (Both in FIG. 1)) perform or implement the target calibration mechanism 178. The target calibration mechanism 178 may include a configuration of the controller 106, the memory array 104, the host device 108, or a combination thereof. The target calibration mechanism 178 may further include stored in the controller 106, the memory array 104, the host device 108, or a combination thereof, or accessed using one or more of the controller 106, the memory array 104, the host device 108, or a combination thereof. Methods, procedures, steps or instructions, information, or combinations thereof.

可利用或實施目標校準機構178以調整諸如分佈目標404之一或多者、分佈谷值406之一或多者或其等組合(皆在圖4中)之目標量變曲線402。可基於一目標處理週期712觸發或起始目標校準機構178或其部分。目標處理週期712係經設定以用於實施目標校準機構178或其反覆或部分之一持續時間或一特定時間。目標處理週期712可基於記憶體裝置102之一狀態、一信號、一組態、或一處理值或結果。例如,目標處理週期712可包含或基於一驅動填充間隔。The target calibration mechanism 178 may be utilized or implemented to adjust a target quantity curve 402 such as one or more of the distribution targets 404, one or more of the distribution valleys 406, or a combination thereof (all in FIG. 4). Target calibration mechanism 178 or a portion thereof may be triggered or initiated based on a target processing cycle 712. The target processing cycle 712 is set for the duration or a specific time of the target calibration mechanism 178 or one of its iterations or parts. The target processing cycle 712 may be based on a state, a signal, a configuration, or a processing value or result of the memory device 102. For example, the target processing cycle 712 may include or be based on a drive fill interval.

可基於如方塊702中所表示之處理位準校準機構176 (圖1)或方法600 (圖6)觸發或起始目標校準機構178或其部分。可基於實施或完成處理位準校準機構176或其一或多個反覆或者在實施或完成處理位準校準機構176或其一或多個反覆之後,實施目標校準機構178。例如,目標校準機構178或其部分可基於起因於處理位準校準機構176之居中狀態626 (圖6)而開始。目標校準機構178可使用連續地校準處理位準154 (圖1)或其等處理結果之處理位準校準機構176之結果或副產物(諸如位準校準回饋量度302 (圖3)或錯誤量度166 (圖1))作為一回饋度量。Target calibration mechanism 178 or a portion thereof may be triggered or initiated based on processing level calibration mechanism 176 (FIG. 1) or method 600 (FIG. 6) as represented in block 702. The target calibration mechanism 178 may be implemented based on the implementation or completion of the process level calibration mechanism 176 or one or more iterations or after the implementation or completion of the process level calibration mechanism 176 or one or more iterations. For example, the target calibration mechanism 178 or a portion thereof may begin based on the centered state 626 (FIG. 6) resulting from the processing level calibration mechanism 176. The target calibration mechanism 178 may use the results or by-products (such as level calibration feedback measure 302 (Figure 3) or error measure 166) of the processing level calibration mechanism 176 to continuously calibrate the processing level 154 (Figure 1) or its processing results. (Figure 1)) as a feedback metric.

此外,目標校準機構178或其部分之實施或完成可重新觸發或起始處理位準校準機構176。目標校準機構178可動態地更新可用來重新校準處理位準154 (圖1)之目標量變曲線402。例如,記憶體系統100可基於實施目標校準機構178而重設、清除或移除居中狀態626。亦例如,無論是否自目標校準機構178進行任何初始化或在未自目標校準機構178進行任何初始化的情況下,可實施處理位準校準機構176。In addition, the implementation or completion of the target calibration mechanism 178 or portions thereof may re-trigger or initiate processing of the level calibration mechanism 176. The target calibration mechanism 178 can dynamically update the target quantity curve 402 that can be used to recalibrate the processing level 154 (FIG. 1). For example, the memory system 100 may reset, clear, or remove the centered state 626 based on the implementation of the target calibration mechanism 178. For another example, the process level calibration mechanism 176 may be implemented regardless of whether or not any initialization is performed from the target calibration mechanism 178 or without any initialization from the target calibration mechanism 178.

在方塊702處,目標校準機構178可獲得用於記憶體胞122 (圖1)之一分組之目標量變曲線402。例如,可針對目標校準機構178以各種方式選擇記憶體胞122。在一項實施例中,記憶體系統100可選擇對應於一晶粒之記憶體胞122。亦例如,目標校準機構178可在晶粒中或由晶粒實施。亦例如,無論頁映射142 (圖1)如何,可在字線群組144 (圖1)之各者內獨立實施目標校準機構178。At block 702, the target calibration mechanism 178 can obtain a target quantity curve 402 for one of the groups of the memory cells 122 (FIG. 1). For example, the memory cell 122 may be selected in various ways for the target calibration mechanism 178. In one embodiment, the memory system 100 may select a memory cell 122 corresponding to a die. Also for example, the target calibration mechanism 178 may be implemented in or by the die. For another example, regardless of the page map 142 (FIG. 1), the target calibration mechanism 178 may be independently implemented within each of the word line groups 144 (FIG. 1).

針對記憶體胞122之選定分組,記憶體系統100可諸如藉由存取或讀取來判定儲存於控制器106之嵌入式記憶體、記憶體陣列104、主機裝置108或其等組合中之目標量變曲線402之一當前對應例項。記憶體系統100可基於含有必需資訊之背景記錄174 (圖1)進一步判定。For a selected grouping of memory cells 122, the memory system 100 may determine, for example, by accessing or reading, the target stored in the embedded memory of the controller 106, the memory array 104, the host device 108, or a combination thereof One of the current corresponding instances of the quantitative change curve 402. The memory system 100 can further determine based on the background record 174 (FIG. 1) containing the necessary information.

記憶體系統100可判定包含表示與記憶體胞122之處理位準154相關聯之一行為或一狀態之分佈目標404之目標量變曲線402,諸如中間目標409 (圖4)及邊緣目標408 (圖4)、分佈谷值406或其等組合。分佈目標404可各對應於記憶體胞122之頁類型146 (圖1)之一特定例項、一特定內容或位元值、或其等組合。The memory system 100 may determine a target quantity variation curve 402 including a distribution target 404 representing a behavior or a state associated with the processing level 154 of the memory cell 122, such as an intermediate target 409 (Figure 4) and an edge target 408 (Figure 4), the distribution trough 406 or a combination thereof. The distribution targets 404 may each correspond to a specific instance of the page type 146 (FIG. 1) of the memory cell 122, a specific content or bit value, or a combination thereof.

分佈谷值406可表示分佈目標404之相鄰例項之間的一離距。分佈谷值406可進一步表示頁類型146之相鄰例項、特定內容或位元值之相鄰例項、或其等組合之間的處理位準154之離距。The distribution valley value 406 may represent a distance between adjacent instances of the distribution target 404. The distribution trough 406 may further represent the distance between processing levels 154 between neighboring instances of page type 146, neighboring instances of specific content or bit values, or combinations thereof.

在方塊704處,目標校準機構178可基於一回饋度量處理分佈目標404。例如,記憶體系統100可根據回饋度量對分佈目標404或其等表示分類。在一項實施例中,記憶體系統100可諸如藉由存取或讀取來判定對應於記憶體胞122之回饋參數。記憶體系統100可判定起因於使用處理位準154或實施處理位準校準機構176或者基於使用處理位準154或實施處理位準校準機構176計算之回饋參數。例如,記憶體系統100可基於居中狀態626反映處理位準154之穩定性或最佳化而判定回饋參數且實施目標校準機構178,如上文所論述。At block 704, the target calibration mechanism 178 may process the distribution target 404 based on a feedback metric. For example, the memory system 100 may classify the distribution target 404 or its equivalent based on the feedback metric. In one embodiment, the memory system 100 may determine a feedback parameter corresponding to the memory cell 122, such as by accessing or reading. The memory system 100 may determine a feedback parameter resulting from the use of the processing level 154 or the implementation of the processing level calibration mechanism 176 or based on the calculation of the use of the processing level 154 or the implementation of the processing level calibration mechanism 176. For example, the memory system 100 may determine the feedback parameters and implement the target calibration mechanism 178 based on the centered state 626 reflecting the stability or optimization of the processing level 154, as discussed above.

在另一實施例中,記憶體系統100可判定與動態地校準記憶體胞122之處理位準154相關聯之回饋參數,諸如錯誤量度166、位準校準回饋量度302或其等組合。例如,記憶體系統100可讀取或存取錯誤計數168 (圖1)、中心結果304 (圖3)、錯誤差量度322 (圖3)、位準分佈曲線410 (圖4)或其等組合。In another embodiment, the memory system 100 may determine feedback parameters associated with the processing level 154 of dynamically calibrating the memory cell 122, such as an error metric 166, a level calibration feedback metric 302, or a combination thereof. For example, the memory system 100 can read or access the error count 168 (Figure 1), the central result 304 (Figure 3), the error difference measure 322 (Figure 3), the level distribution curve 410 (Figure 4), or a combination thereof .

亦例如,記憶體系統100可判定回饋參數,包含基於對應於記憶體胞122之處理位準154之錯誤量度166 (諸如基於實施處理位準校準機構176或其修改)計算之錯誤差量度322。記憶體系統100可讀取或存取基於相關聯於偏移樣本之中心與一平均值之間的錯誤量度166之一差、跨頁或胞之一平均值或其等組合計算之錯誤差量度322。記憶體系統100可判定對應於分佈目標404之各者之錯誤差量度322或其平均值。For another example, the memory system 100 may determine feedback parameters including an error difference measure 322 calculated based on an error measure 166 corresponding to the processing level 154 of the memory cell 122 (such as based on the implementation of the processing level calibration mechanism 176 or a modification thereof). The memory system 100 can read or access error difference measures calculated based on one of the error measures 166 associated with the center of the offset sample and an average value, the average value across pages or cells, or a combination thereof 322. The memory system 100 may determine an error difference measure 322 or an average value thereof corresponding to each of the distribution targets 404.

錯誤差量度322可對應於分佈谷值406或分佈谷值406的特性、RWB或其等組合。記憶體系統100可判定錯誤差量度322或其導數作為一谷值深度714之一表示。谷值深度714表示與分佈谷值406之各者相關聯之一量值或一程度。谷值深度714可定量地表示分佈目標404之間的離距之一量值或一程度。谷值深度714可進一步表示或對應於處理位準154或分佈目標404之各者之RWB。The error difference metric 322 may correspond to the distribution valley 406 or the characteristics of the distribution valley 406, RWB, or a combination thereof. The memory system 100 may determine the error difference measure 322 or its derivative as one of a trough depth 714. The trough depth 714 represents a magnitude or a degree associated with each of the distribution troughs 406. The trough depth 714 may quantitatively represent a magnitude or a degree of the distance between the distribution targets 404. The trough depth 714 may further represent or correspond to the RWB of each of the processing level 154 or the distribution target 404.

記憶體系統100可進一步處理目標量變曲線402。在一項實施例中,記憶體系統100基於位準校準回饋量度302 (諸如基於錯誤差量度322、錯誤量度166或中心結果304、或其等組合)處理目標量變曲線402。The memory system 100 may further process the target quantity change curve 402. In one embodiment, the memory system 100 processes the target quantity variation curve 402 based on the level calibration feedback measure 302 (such as based on the error difference measure 322, the error measure 166 or the central result 304, or a combination thereof).

記憶體系統100可判定表示分佈目標404、分佈谷值406或其等組合之一相關特性或描述之一目標效能曲線716。例如,記憶體系統100可根據位準校準回饋量度302判定目標效能曲線716為分佈目標404、分佈谷值406或其等組合之一排序或一分類清單。The memory system 100 may determine a target performance curve 716 representing a related characteristic or description of one of the distribution targets 404, the distribution valley 406, or a combination thereof. For example, the memory system 100 may determine that the target performance curve 716 is one of the distribution target 404, the distribution valley 406, or a combination thereof according to the level calibration feedback measure 302 or a sorted list.

在方塊706處,目標校準機構178可識別用於調整分佈目標404之特定頁。記憶體系統100可識別一高效能頁718及一低效能頁720。記憶體系統100可基於目標效能曲線716識別高效能頁718及低效能頁720。記憶體系統100可基於比較對應於諸如目標效能曲線716之分佈目標404、分佈谷值406或其等組合之錯誤差量度322、錯誤量度166或其等組合,替代地識別高效能頁718及低效能頁720。記憶體系統100可識別高效能頁718及低效能頁720各為對應於位準校準回饋量度302之最高或最低例項之頁類型146之特定例項、一特定位元或內容值、分佈目標404或中間目標409之一特定例項、或其等組合。At block 706, the target calibration mechanism 178 may identify a particular page for adjusting the distribution target 404. The memory system 100 can identify a high performance page 718 and a low performance page 720. The memory system 100 may identify the high performance page 718 and the low performance page 720 based on the target performance curve 716. The memory system 100 may alternatively identify high performance pages 718 and low based on a comparison of the error difference measure 322, the error measure 166, or a combination thereof corresponding to a distribution target 404, a distribution trough 406, or a combination thereof such as a target performance curve 716 Performance page 720. The memory system 100 can identify a high-performance page 718 and a low-performance page 720 each as a specific instance of a page type 146 corresponding to the highest or lowest instance of the level calibration feedback metric 302, a specific bit or content value, and a distribution target 404 or a specific instance of intermediate target 409, or a combination thereof.

在一特定實例中,高效能頁718可包含對應於錯誤差量度322之最低值、錯誤計數168之最低值或中心結果304、或其等組合之分佈目標404之一或多者。低效能頁720可為對應於錯誤差量度322之最高值、錯誤計數168之最高值或中心結果304、或其等組合之分佈目標404。In a particular example, the high performance page 718 may include one or more of the distribution targets 404 corresponding to the lowest value of the error difference measure 322, the lowest value of the error count 168, or the central result 304, or a combination thereof. The low performance page 720 may be a distribution target 404 corresponding to the highest value of the error difference measure 322, the highest value of the error count 168, or the central result 304, or a combination thereof.

高效能頁718可表示「較低需求」之一特定邏輯頁,且低效能頁720可表示「較高需求」之一特定邏輯頁。高效能頁718及低效能頁720可基於字線群組144內之相同頁類型之分佈谷值406之相關RWB。一頁類型之最高需求谷值可為主導錯誤計數168或引起比任何其他谷值更大BER損失之谷值。記憶體系統100可使用錯誤差量度322來判定較高需求谷值及較低需求谷值、一需求次序,如由目標效能曲線716所表示。High performance page 718 may represent a specific logical page of "lower demand", and low performance page 720 may represent a specific logical page of "higher demand". The high-performance page 718 and the low-performance page 720 may be based on the associated RWB of the distribution valley 406 of the same page type within the word line group 144. The highest demand trough for a page type may be the trough that dominates the error count 168 or causes a greater BER loss than any other trough. The memory system 100 may use the error difference metric 322 to determine a higher demand trough and a lower demand trough, a demand sequence, as represented by the target performance curve 716.

使用位準校準回饋量度302識別之高效能頁718及低效能頁720提供改良跨不同頁類型平衡BER之準確度之益處。錯誤差量度322之量值可靠地特性化分佈谷值406之寬度或谷值深度714,且因此可靠地特性化RWB。例如,錯誤差量度322之較高值對應於較窄谷值及較小RWB。The high performance page 718 and the low performance page 720 identified using the level calibration feedback metric 302 provide the benefit of improving the accuracy of balancing the BER across different page types. The magnitude of the error difference measure 322 reliably characterizes the width of the distribution trough 406 or the trough depth 714, and therefore reliably characterizes the RWB. For example, a higher value of the error difference measure 322 corresponds to a narrower valley value and a smaller RWB.

使用基於起因於動態校準讀取位準之三個樣本計算且使用增益控制632 (圖6)控制之錯誤差量度322提供改良跨不同頁類型平衡BER之準確度之益處。增益控制632可有效地校準錯誤差量度322,使得淺谷值與深谷值之間的量度變得更容易區分。增益控制632可維持中心樣本與低及高樣本之間的距離以用於改良解析度。增益控制632可藉由防止一樣本差值過低,使得差難以區分且藉由防止該樣本差值過高使得錯誤復原機構172 (圖1)之總體例項被觸發且使回饋值無意義來提供錯誤差量度322之有效值。Using an error difference metric calculated based on three samples resulting from the dynamic calibration read level and controlled using gain control 632 (Figure 6) provides the benefit of improving the accuracy of balancing BER across different page types. The gain control 632 can effectively calibrate the error difference metric 322, making it easier to distinguish between a shallow valley value and a deep valley value. The gain control 632 can maintain the distance between the center samples and the low and high samples for improved resolution. The gain control 632 can prevent the difference in the sample value from being too low, making the difference difficult to distinguish, and prevent the overall instance of the error recovery mechanism 172 (Figure 1) from being triggered by making the sample difference too high, and make the feedback value meaningless. Provide a valid value for the error difference measure 322.

在方塊708處,目標校準機構178可調整由目標量變曲線402表示之PV目標。記憶體系統100可藉由調整分佈目標404之一或多者、分佈谷值406之一或多者或其等組合來調整或校準目標量變曲線402。At block 708, the target calibration mechanism 178 may adjust the PV target represented by the target quantity variation curve 402. The memory system 100 may adjust or calibrate the target quantity variation curve 402 by adjusting one or more of the distribution targets 404, one or more of the distribution valley values 406, or a combination thereof.

記憶體系統100可產生用於替換分佈目標404之一或多者且有效地移位分佈目標404之一或多個經調整目標420。經調整目標420係與頁類型、位元、或內容值或其等組合相關聯之該組所期望數量或發生,其中電壓位準不同於對應分佈目標404。經調整目標420可包含具有經改變或經調整分佈量或形狀、對應電壓位準或其等組合之分佈目標404之例項。The memory system 100 may generate an adjusted target 420 for replacing one or more of the distribution targets 404 and effectively shifting one or more of the distribution targets 404. The adjusted target 420 is the desired amount or occurrence of the group associated with the page type, bit, or content value, or a combination thereof, where the voltage level is different from the corresponding distribution target 404. The adjusted target 420 may include an instance of a distribution target 404 having a changed or adjusted distribution amount or shape, a corresponding voltage level, or a combination thereof.

記憶體系統100可基於實施處理位準校準機構176以動態地產生經更新位準624 (圖6)且動態地校準處理位準154而產生經調整目標420 (圖4C)。記憶體系統100可基於或根據錯誤差量度322產生經調整目標420。The memory system 100 may generate the adjusted target 420 (FIG. 4C) based on the implementation of the processing level calibration mechanism 176 to dynamically generate the updated level 624 (FIG. 6) and dynamically calibrate the processing level 154. The memory system 100 may generate an adjusted target 420 based on or based on the error difference metric 322.

記憶體系統100可基於根據錯誤差量度322改變或移位分佈目標404、分佈谷值406或其等組合之一或多個例項而產生經調整目標420。例如,記憶體系統100可產生對應於或用於替換高效能頁718、低效能頁720或其等組合之目標之經調整目標420。亦例如,記憶體系統100可產生用於控制或平衡對應於高效能頁718、低效能頁720或其等組合之分佈谷值406、谷值深度714或其等組合之經調整目標420。The memory system 100 may generate the adjusted target 420 based on changing or shifting one or more instances of the distribution target 404, the distribution valley 406, or a combination thereof according to the error difference metric 322. For example, the memory system 100 may generate an adjusted target 420 corresponding to or used to replace the target of the high performance page 718, the low performance page 720, or a combination thereof. Also for example, the memory system 100 may generate an adjusted target 420 for controlling or balancing the distribution valley 406, valley depth 714, or a combination thereof corresponding to the high-performance page 718, the low-performance page 720, or a combination thereof.

記憶體系統100可產生用於如上文所論述般選擇之記憶體胞122之經調整目標420。無論頁映射142如何,記憶體系統100可在晶粒內、在字線群組144內或其等組合產生經調整目標420。The memory system 100 may generate an adjusted target 420 for a memory cell 122 selected as discussed above. Regardless of the page map 142, the memory system 100 may generate the adjusted target 420 within the die, within the word line group 144, or a combination thereof.

記憶體系統100可以各種方式產生經調整目標420。記憶體系統100可使用邊緣目標408作為參考點且調整中間目標409而不調整邊緣目標408。The memory system 100 may generate the adjusted target 420 in various ways. The memory system 100 may use the edge target 408 as a reference point and adjust the intermediate target 409 without adjusting the edge target 408.

記憶體系統100亦可基於一無效帶區(dead-band zone) 722產生經調整目標420。無效帶區722可表示對應於分佈目標404之處理位準154之錯誤量度166之一臨限值範圍。記憶體系統100可基於比較無效帶區722與錯誤量度166而產生經調整目標420。The memory system 100 may also generate an adjusted target 420 based on a dead-band zone 722. The invalid band 722 may represent a threshold range of the error measure 166 corresponding to the processing level 154 of the distribution target 404. The memory system 100 may generate the adjusted target 420 based on comparing the invalid band 722 and the error metric 166.

例如,記憶體系統100可產生對應於或用於校準中間目標409、高效能頁718、低效能頁720或其等組合之經調整目標420。亦作為一更特定實例,當對應分佈目標404含有無效帶區722外之BER時,記憶體系統100可產生經調整目標420。For example, the memory system 100 may generate an adjusted target 420 corresponding to or used to calibrate the intermediate target 409, the high performance page 718, the low performance page 720, or a combination thereof. As a more specific example, when the corresponding distribution target 404 contains a BER outside the invalid band 722, the memory system 100 may generate an adjusted target 420.

記憶體系統100亦可基於跨記憶體胞122之頁類型146平衡錯誤量度166而產生經調整目標420。記憶體系統100可產生將跨記憶體胞122之頁類型146平衡且達成類似位準之BER、錯誤計數、谷值深度714或其等組合之經調整目標420。The memory system 100 may also generate an adjusted target 420 based on a page type 146 balance error measure 166 across the memory cells 122. The memory system 100 may generate an adjusted target 420 that balances the page types 146 across the memory cells 122 and achieves similar levels of BER, error count, trough depth 714, or combinations thereof.

記憶體系統100亦可基於根據目標調整值422 (圖4)移位或移動分佈目標404而產生經調整目標420。作為一更特定實例,記憶體系統100可藉由增大或減小對應電壓位準及其等臨限值達目標調整值422來移位高效能頁718及低效能頁720。The memory system 100 may also generate the adjusted target 420 based on shifting or moving the distribution target 404 according to the target adjustment value 422 (FIG. 4). As a more specific example, the memory system 100 may shift the high performance page 718 and the low performance page 720 by increasing or decreasing the corresponding voltage level and its threshold value to reach the target adjustment value 422.

記憶體系統100可基於預定增量或粒度計算目標調整值422。記憶體系統100可基於判定對應於高效能頁718與低效能頁720之間的谷值深度714之一組合之一電壓量值或量而進一步計算目標調整值422。記憶體系統100可計算目標調整值422作為經估計以平衡高效能頁718與低效能頁720之間的谷值深度714或RWB之調整量。The memory system 100 may calculate the target adjustment value 422 based on a predetermined increment or granularity. The memory system 100 may further calculate the target adjustment value 422 based on determining a voltage magnitude or amount corresponding to one of a combination of the valley depth 714 between the high performance page 718 and the low performance page 720. The memory system 100 may calculate the target adjustment value 422 as an adjustment amount estimated to balance the valley depth 714 or the RWB between the high performance page 718 and the low performance page 720.

記憶體系統100可進一步計算目標量變曲線402之目標調整值422為淨零和。高效能頁718及低效能頁720之目標調整值422可為互補的,其中該等值之和係零。例如,目標調整值422可表示自高效能頁718減小或取得且給予或添加至低效能頁720之一離距量或量值。對應於高效能頁718之谷值及其相關聯RWB可減小,且相同減小可用來增大對應於低效能頁720之谷值及其相關聯RWB。The memory system 100 may further calculate the target adjustment value 422 of the target quantity change curve 402 as a net zero sum. The target adjustment values 422 of the high performance page 718 and the low performance page 720 may be complementary, where the sum of these values is zero. For example, the target adjustment value 422 may represent a distance or magnitude that is reduced or obtained from the high performance page 718 and given or added to one of the low performance pages 720. The valley value corresponding to the high performance page 718 and its associated RWB can be reduced, and the same decrease can be used to increase the valley value corresponding to the low performance page 720 and its associated RWB.

因而,記憶體系統100可產生對應於用於跨記憶體胞122之不同頁類型146平衡錯誤量度166、谷值深度714或其等組合之目標調整值422之經調整目標420。針對TLC,記憶體系統100可產生對應於用於平衡及均等LP 148 (圖1)、UP 150 (圖1)與EP 152 (圖1)之間的BER之目標調整值422之經調整目標420。Thus, the memory system 100 may generate an adjusted target 420 corresponding to the target adjustment value 422 for different page types 146 balance error measure 166, trough depth 714, or combinations thereof, across the memory cells 122. For TLC, the memory system 100 may generate an adjusted target 420 corresponding to a target adjustment value 422 of the BER for balancing and equalizing LP 148 (Figure 1), UP 150 (Figure 1), and EP 152 (Figure 1). .

記憶體系統100可基於錯誤計數168並且基於匹配RWB而產生經調整目標420以進一步執行BER調平。記憶體系統100可基於跨分佈目標404匹配中心樣本(諸如中心結果304)之錯誤計數168而產生經調整目標420。記憶體系統100可基於跨分佈目標404匹配錯誤差量度322而進一步產生經調整目標420。The memory system 100 may generate an adjusted target 420 to further perform BER leveling based on the error count 168 and based on the matching RWB. The memory system 100 may generate an adjusted target 420 based on an error count 168 that matches a central sample (such as the central result 304) across the distributed target 404. The memory system 100 may further generate an adjusted target 420 based on matching the error difference measure 322 across the distributed targets 404.

作為一闡釋性實例,中心樣本可用作回饋度量以藉由相應地移動PV目標來等化LP/UP/XP錯誤率。此外,除中心樣本外,可針對各頁類型匹配谷值深度。記憶體系統100實施目標校準機構178可等化RWB之讀取臨限位準且平衡BER之頁類型。As an illustrative example, the central sample can be used as a feedback metric to equalize the LP / UP / XP error rate by moving the PV target accordingly. In addition, in addition to the central sample, the valley depth can be matched for each page type. The memory system 100 implements the target calibration mechanism 178 to equalize the read threshold level of the RWB and balance the page type of the BER.

記憶體系統100可維持一恆定RWB,但管理用於改良BER及頁類型BER匹配之調整。記憶體系統100可使邊緣目標408之PV標作為固定目標,諸如圖4A中被標記為L1及L7 PV目標之目標。可管理對中間目標409之PV目標(諸如圖4A中被標記為L2至L6之目標)之調整,使得連續地匹配頁類型BER。The memory system 100 can maintain a constant RWB, but manages adjustments to improve BER and page type BER matching. The memory system 100 may use the PV target of the edge target 408 as a fixed target, such as the targets labeled as L1 and L7 PV targets in FIG. 4A. Adjustments to PV targets of the intermediate target 409, such as the targets labeled L2 to L6 in FIG. 4A, can be managed such that the page type BER is continuously matched.

繼續該闡釋性實例,記憶體系統100可設定一參考頁類型724且反覆地匹配其他頁類型。使用TLC作為一實例,參考頁類型724可為LP 148、UP 150或EP 152之一者。Continuing the illustrative example, the memory system 100 may set a reference page type 724 and iteratively match other page types. Using TLC as an example, the reference page type 724 may be one of LP 148, UP 150, or EP 152.

針對目標處理週期712之一個例項,記憶體系統100可匹配參考頁類型724與一第一頁類型726,第一頁類型726不同於參考頁類型724。因此,記憶體系統100可產生對應於參考頁類型724及第一頁類型726之經調整目標420。For an example of the target processing cycle 712, the memory system 100 can match the reference page type 724 and a first page type 726. The first page type 726 is different from the reference page type 724. Accordingly, the memory system 100 may generate an adjusted target 420 corresponding to the reference page type 724 and the first page type 726.

針對目標處理週期712之另一例項,記憶體系統100可匹配參考頁類型724與一第二頁類型728,一第二頁類型728不同於參考頁類型724及第一頁類型726兩者。因此,記憶體系統100可產生對應於參考頁類型724及第二頁類型728之經調整目標420。For another example of the target processing cycle 712, the memory system 100 can match the reference page type 724 and a second page type 728. A second page type 728 is different from both the reference page type 724 and the first page type 726. Accordingly, the memory system 100 may generate an adjusted target 420 corresponding to the reference page type 724 and the second page type 728.

作為闡釋性實例,記憶體系統100可基於判定對應於最差情況BER之低效能頁720之頁類型146而產生經調整目標420。當最壞情況BER位於無效帶區722外時,記憶體系統100可產生用於實施淨零PV目標改變之經調整目標420。As an illustrative example, the memory system 100 may generate the adjusted target 420 based on the page type 146 of the low performance page 720 determined to correspond to the worst case BER. When the worst case BER is outside the invalid band 722, the memory system 100 may generate an adjusted target 420 for implementing a net-zero PV target change.

當參考頁類型724對應於低於第一頁類型726之錯誤計數168時,參考頁類型724或其相關聯谷值可藉由目標調整值422放棄或減小PV容限。第一頁類型726之低效能頁720或其相關聯谷值可藉由目標調整值422接收或增大PV容限。目標調整值422可為預定增量之一或多者、或動態地計算以用於平均化兩個頁類型之間的PV容限之一值。When the reference page type 724 corresponds to an error count 168 that is lower than the first page type 726, the reference page type 724 or its associated valley value can be discarded or reduced by the target adjustment value 422. The low performance page 720 of the first page type 726 or its associated valley value may receive or increase the PV margin by the target adjustment value 422. The target adjustment value 422 may be one or more of predetermined increments, or one value dynamically calculated for averaging the PV tolerance between two page types.

在一項實施例中,記憶體系統100可產生用於替換對應於如圖4A中所繪示之L3/L4之參考頁類型724之分佈目標404之經調整目標420。經調整目標420可基於將L3/L4之分佈目標404之PV容限減小達一個步階或增量,從而減小對應谷值v4。經調整目標420可進一步用於替換對應於如圖4A中所繪示之L1/L2或L5/L6之第一頁類型726之分佈目標404。經調整目標420可基於將L1/L2或L5/L6之分佈目標404之PV容限增大達一個步階或增量,從而增加對應谷值v2或v6。In one embodiment, the memory system 100 may generate an adjusted target 420 for replacing the distribution target 404 corresponding to the reference page type 724 of L3 / L4 as illustrated in FIG. 4A. The adjusted target 420 may be based on reducing the PV margin of the distribution target 404 of L3 / L4 by one step or increment, thereby reducing the corresponding valley value v4. The adjusted target 420 may be further used to replace the distribution target 404 corresponding to the first page type 726 of L1 / L2 or L5 / L6 as shown in FIG. 4A. The adjusted target 420 may be based on increasing the PV tolerance of the distribution target 404 of L1 / L2 or L5 / L6 by one step or increment, thereby increasing the corresponding valley value v2 or v6.

當L3/L4給予L1/L2時,L2及L3之分佈目標404可增大值且相對於圖4A至圖4C中之插圖右移。當L3/L4給予L5/L6時,L4及L5之分佈目標404可減小值且相對於圖4A至圖4C中之插圖左移。When L3 / L4 is given to L1 / L2, the distribution targets 404 of L2 and L3 can increase in value and shift rightward relative to the illustrations in FIGS. 4A to 4C. When L3 / L4 is given to L5 / L6, the distribution targets 404 of L4 and L5 can decrease in value and shift left relative to the illustrations in FIGS. 4A to 4C.

當參考頁類型724對應於高於第一頁類型726之錯誤計數168時,參考頁類型724或其相關聯谷值可藉由目標調整值422增加或增大PV容限。第一頁類型726之高效能頁718或其相關聯谷值可藉由目標調整值422放棄或減小PV容限。When the reference page type 724 corresponds to an error count 168 higher than the first page type 726, the reference page type 724 or its associated valley value can be increased or increased by the PV margin by the target adjustment value 422. The high-performance page 718 of the first page type 726 or its associated trough value may abandon or reduce the PV margin by the target adjustment value 422.

在一項實施例中,記憶體系統100可基於將L3/L4之分佈目標404之PV容限增大達一個步階或增量而產生經調整目標420,從而增大對應谷值v4。經調整目標420可進一步基於將L1/L2或L5/L6之分佈目標404之PV容限減小達一個步階或增量,從而減小對應谷值v2或v6。In one embodiment, the memory system 100 may generate an adjusted target 420 based on increasing the PV tolerance of the distribution target 404 of L3 / L4 by one step or increment, thereby increasing the corresponding valley value v4. The adjusted target 420 may be further based on reducing the PV tolerance of the distribution target 404 of L1 / L2 or L5 / L6 by a step or increment, thereby reducing the corresponding valley value v2 or v6.

當L3/L4取自L1/L2時,L2及L3之分佈目標404可減小值且相對於圖4A至圖4C中之插圖左移。當L3/L4取自L5/L6時,L4及L5之分佈目標404可增大值且相對於圖4A至圖4C中之插圖右移。When L3 / L4 is taken from L1 / L2, the distribution targets 404 of L2 and L3 can decrease in value and shift to the left relative to the illustrations in FIGS. 4A to 4C. When L3 / L4 is taken from L5 / L6, the distribution targets 404 of L4 and L5 can increase in value and shift rightward relative to the illustrations in FIGS. 4A to 4C.

在一項實施例中,記憶體系統100可基於判定對應於最差情況BER之低效能頁720之頁類型146而類似地產生經調整目標420。當最壞情況BER在無效帶區722外時,記憶體系統100可產生用於實施中間目標409之淨零PV目標改變之經調整目標420。記憶體系統100可進一步基於基於錯誤差量度322之一平均值之目標效能曲線716產生經調整目標420。In one embodiment, the memory system 100 may similarly generate the adjusted target 420 based on the page type 146 of the low performance page 720 determined to correspond to the worst case BER. When the worst case BER is outside the invalid band 722, the memory system 100 may generate an adjusted target 420 for implementing a net-zero PV target change for the intermediate target 409. The memory system 100 may further generate an adjusted target 420 based on the target performance curve 716 based on an average of one of the error difference measures 322.

當參考頁類型724對應於低於第二頁類型728之錯誤計數168或錯誤差量度322時,參考頁類型724或其相關聯谷值可藉由目標調整值422放棄或減小PV容限。第二頁類型728之低效能頁720或其相關聯谷值可藉由目標調整值422接收或增大PV容限。When the reference page type 724 corresponds to an error count 168 or error difference metric 322 that is lower than the second page type 728, the reference page type 724 or its associated trough value may abandon or reduce the PV tolerance by the target adjustment value 422. The low performance page 720 of the second page type 728 or its associated valley value may receive or increase the PV margin by the target adjustment value 422.

在一項實施例中,記憶體系統100可產生用於替換對應於L3/L4之參考頁類型724之分佈目標404之經調整目標420。經調整目標420可基於將L3/L4之分佈目標404之PV容限減小達一個步階或增量,從而減小對應谷值v4。經調整目標420可進一步用於替換對應於L2/L3、L4/L5或L6/L7之第二頁類型728之分佈目標404。經調整目標420可基於將L2/L3、L4/L5或L6/L7之分佈目標404之PV容限增大達一個步階或增量,從而增大對應谷值v3、v5或v7。In one embodiment, the memory system 100 may generate an adjusted target 420 for replacing the distribution target 404 corresponding to the reference page type 724 of L3 / L4. The adjusted target 420 may be based on reducing the PV margin of the distribution target 404 of L3 / L4 by one step or increment, thereby reducing the corresponding valley value v4. The adjusted target 420 may be further used to replace the distribution target 404 corresponding to the second page type 728 of L2 / L3, L4 / L5, or L6 / L7. The adjusted target 420 may be based on increasing the PV tolerance of the distribution target 404 of L2 / L3, L4 / L5, or L6 / L7 by a step or increment, thereby increasing the corresponding valley value v3, v5, or v7.

當L3/L4給予L2/L3時,L3之分佈目標404可增大值且相對於圖4A至圖4C中之插圖右移。當L3/L4給予L4/L5時,L4之分佈目標404可減小值且左移。當L3/L4給予L6/L7時,L4、L5及L6之分佈目標404可減小值且左移。When L3 / L4 is administered to L2 / L3, the distribution target 404 of L3 may increase in value and shift rightward relative to the illustrations in FIGS. 4A to 4C. When L3 / L4 is given to L4 / L5, the distribution target 404 of L4 can decrease in value and shift to the left. When L3 / L4 is administered to L6 / L7, the distribution targets 404 of L4, L5, and L6 can decrease in value and shift to the left.

當參考頁類型724對應於高於第二頁類型728之錯誤計數168或錯誤差量度322時,參考頁類型724或其相關聯谷值可藉由目標調整值422增加或增大PV容限。第二頁類型728之高效能頁718或其相關聯谷值可藉由目標調整值422放棄或減小PV容限諸如達一或多個增量或經計算以用於對兩個頁類型之間的PV容限求平均值之一值。When the reference page type 724 corresponds to an error count 168 or error difference metric 322 that is higher than the second page type 728, the reference page type 724 or its associated valley value may increase or increase the PV margin by the target adjustment value 422. The high-performance page 718 of the second page type 728 or its associated trough value can be waived or reduced by a target adjustment value 422 such as by one or more increments or calculated for use on two page types. The PV tolerance between the two is averaged.

在一項實施例中,記憶體系統100可基於將L3/L4之分佈目標404之PV容限增大達一個步階或增量從而增大對應谷值v4而產生經調整目標420。經調整目標420可進一步基於將L2/L3、L4/L5或L6/L7之分佈目標404之PV容限減小達一個步階或增量,從而增大對應谷值v3、v5或v7。In one embodiment, the memory system 100 may generate the adjusted target 420 based on increasing the PV margin of the distribution target 404 of L3 / L4 by one step or increment to increase the corresponding valley value v4. The adjusted target 420 may be further based on reducing the PV tolerance of the distribution target 404 of L2 / L3, L4 / L5, or L6 / L7 by a step or increment, thereby increasing the corresponding valley value v3, v5, or v7.

當L3/L4取自L2/L3時,L3之分佈目標404可減小值且相對於圖4A至圖4C中之插圖左移。當L3/L4取自L4/L5時,L4之分佈目標404可增大值且右移。當L3/L4取自L6/L7時,L4、L5及L6之分佈目標404可增大值且右移。When L3 / L4 is taken from L2 / L3, the distribution target 404 of L3 can decrease in value and shift to the left relative to the illustrations in FIGS. 4A to 4C. When L3 / L4 is taken from L4 / L5, the distribution target 404 of L4 can increase in value and shift to the right. When L3 / L4 is taken from L6 / L7, the distribution targets 404 of L4, L5, and L6 can increase in value and shift to the right.

記憶體系統100可使用目標校準機構178來初始化目標量變曲線402,動態地校準目標量變曲線402或其等組合。記憶體系統100可在記憶體裝置102之部署或所欲使用之前實施目標校準機構178作為記憶體裝置102之製造或組態之部分。記憶體系統100可在記憶體裝置102之部署或所欲使用期間且在記憶體裝置102之製造或組態之後,進一步動態地實施目標校準機構178且動態地產生經調整目標420且動態地更新目標量變曲線402。The memory system 100 may use the target calibration mechanism 178 to initialize the target quantity change curve 402, and dynamically calibrate the target quantity change curve 402 or a combination thereof. The memory system 100 may implement the target calibration mechanism 178 as part of the manufacture or configuration of the memory device 102 prior to the deployment or intended use of the memory device 102. The memory system 100 may further dynamically implement the target calibration mechanism 178 and dynamically generate the adjusted target 420 during the deployment or desired use of the memory device 102 and after the manufacture or configuration of the memory device 102 and dynamically update Target quantity change curve 402.

例如,記憶體系統100可自各PV目標處於如由NAND出廠設定或製造目標730定義之預設狀態開始。製造目標730可為最初經提供或經組態以用於製造記憶體裝置102之目標量變曲線402之一例項。製造目標730可為考量記憶體胞122之一理想或一估計行為或特性而非實際行為或特性之一出廠預設值或一組態預設值。出廠目標針對字線群組144之各例項可不同。For example, the memory system 100 may start with each PV target in a preset state as defined by a NAND factory setting or a manufacturing target 730. The manufacturing target 730 may be an example of a target quantity curve 402 originally provided or configured for manufacturing the memory device 102. The manufacturing target 730 may be a factory preset value or a configuration preset value considering an ideal or an estimated behavior or characteristic of the memory cell 122 instead of an actual behavior or characteristic. The factory target may be different for each instance of the word line group 144.

記憶體系統100可利用方法700來將製造目標730調整為對於記憶體裝置102之各例項最佳之目標量變曲線402。記憶體系統100可自製造目標730開始獲得目標,處理目標,識別相關頁或谷值,且調整目標,如上文所描述。最初實施目標校準機構178結束時之目標可為用於部署、銷售、出貨或所欲使用之目標量變曲線402之一初始化例項。此後,記憶體系統100可進一步繼續動態地實施目標校準機構178。The memory system 100 may use the method 700 to adjust the manufacturing target 730 to a target quantity variation curve 402 that is optimal for each instance of the memory device 102. The memory system 100 may obtain the target from the manufacturing target 730, process the target, identify related pages or valley values, and adjust the target, as described above. The target at the end of the initial implementation of the target calibration mechanism 178 may be one of the initialization instances of the target quantity variation curve 402 for deployment, sales, shipment, or desired use. Thereafter, the memory system 100 may further continue to dynamically implement the target calibration mechanism 178.

對於初始化,記憶體系統100可識別用於表示最初在製造記憶體陣列104期間判定之目標量變曲線402之製造目標730。記憶體系統100可使用製造目標730之識別作為一觸發來實施上文所描述之步驟。For initialization, the memory system 100 may identify a manufacturing target 730 that represents a target quantity variation curve 402 that was originally determined during the manufacturing of the memory array 104. The memory system 100 may use the identification of the manufacturing target 730 as a trigger to implement the steps described above.

記憶體系統100最初可在使用或部署記憶體陣列104之前且在動態地產生經調整目標420之前,校準目標量變曲線402。記憶體系統100最初可根據中心結果304及偏移結果(諸如藉由實施處理位準校準機構176)調整讀取位準電壓158。記憶體系統100最初可基於在初始調整之後實施讀取位準電壓158而判定位準校準回饋量度302。記憶體系統100可基於根據如上文所論述之回饋量度改變製造目標730之分佈目標404而產生目標量變曲線402。The memory system 100 may initially calibrate the target quantity curve 402 before using or deploying the memory array 104 and before dynamically generating the adjusted target 420. The memory system 100 can initially adjust the read level voltage 158 based on the central result 304 and the offset result (such as by implementing a processing level calibration mechanism 176). The memory system 100 may initially determine the level calibration feedback metric 302 based on implementing the read level voltage 158 after the initial adjustment. The memory system 100 may generate a target quantity variation curve 402 based on changing the distribution target 404 of the manufacturing target 730 according to the feedback metric as discussed above.

記憶體系統100可基於以快於經設計以用於部署後實施之一速率之一加速速率實施上文所描述之操作而初始化。記憶體系統100可在工廠中之一短時間週期內以一加速速率實施處理位準校準機構176、目標校準機構178、步階校準機構180 (圖1)或其等組合,使得各字線群組144將在運行客戶韌體之前具有經改良及加總讀取臨限值。The memory system 100 may be initialized based on performing the operations described above at an acceleration rate that is faster than one rate that is designed for post-deployment implementation. The memory system 100 can implement the processing level calibration mechanism 176, the target calibration mechanism 178, the step calibration mechanism 180 (FIG. 1), or a combination thereof at an accelerated rate within a short period of time in the factory, so that each word line group Group 144 will have improved and aggregated read thresholds before running customer firmware.

目標量變曲線402之經調整或經校準例項(其中經調整目標420已替換對應分佈目標404)可用來進一步觸發處理位準校準機構176。例如,目標校準機構178可用作一外迴路,且處理位準校準機構176可用作一內迴路。處理位準校準機構176可根據或回應於目標量變曲線402之動態更新或校準而進一步更新處理位準154。The adjusted or calibrated instance of the target quantity change curve 402 (where the adjusted target 420 has replaced the corresponding distribution target 404) can be used to further trigger the processing level calibration mechanism 176. For example, the target calibration mechanism 178 may be used as an external circuit, and the processing level calibration mechanism 176 may be used as an internal circuit. The processing level calibration mechanism 176 may further update the processing level 154 according to or in response to a dynamic update or calibration of the target quantity change curve 402.

允許使用目標校準機構178之一PV目標改變可需要用相同PV目標程式化一晶粒中之大多數區塊。因而,可需要區塊程式化的幾乎完全刷新。記憶體系統100可據此維持兩個不同PV目標程式化區塊群組之一最小集。記憶體系統100可進一步使用用於處理位準校準機構176之讀取臨限值之單個集來恰當地操作,從而最小化BER多樣性。Allowing one of the PV target changes using the target calibration mechanism 178 may require stylizing most of the blocks in a die with the same PV target. Thus, an almost complete refresh of block stylization may be required. The memory system 100 can maintain a minimum set of one of two different PV target stylized block groups accordingly. The memory system 100 may further operate appropriately using a single set of processing thresholds for reading the threshold calibration mechanism 176 to minimize BER diversity.

記憶體系統100可跨反覆儲存各種資訊或儲存各種資訊以供其他機構(諸如處理位準校準機構176、步階校準機構180 (圖1)或其等組合)存取。例如,記憶體系統100可儲存各字線群組144之各頁類型146之目標量變曲線402或其臨限值。亦例如,記憶體系統100可儲存目標效能曲線716。The memory system 100 may store various types of information repeatedly or store various types of information for access by other organizations, such as the processing level calibration mechanism 176, the step calibration mechanism 180 (FIG. 1), or a combination thereof. For example, the memory system 100 may store a target quantity variation curve 402 or a threshold value of each page type 146 of each word line group 144. For another example, the memory system 100 may store a target performance curve 716.

基於實施目標校準機構178,記憶體系統100可實施步階校準機構180。例如,記憶體系統100可利用跨頁類型之RWB及BER等化來動態地調整程式化記憶體胞122時之程式化步階162 (圖1)。下文論述關於步階校準機構180之細節。Based on the implementation of the target calibration mechanism 178, the memory system 100 may implement the step calibration mechanism 180. For example, the memory system 100 may use the RWB and BER equalization of the cross-page type to dynamically adjust the stylized step 162 (FIG. 1) of the stylized memory cell 122. Details regarding the step calibration mechanism 180 are discussed below.

產生用於基於錯誤量度166、錯誤差量度322或其等組合動態地校準目標量變曲線402之經調整目標420提供增加一系統產品中之各NAND晶粒之耐用性(更多總體程式化/擦除循環)之益處。動態平衡可確保任一頁類型將不主導壽命終結準則,此被證明係過度觸發速率尾部行為。各頁類型之BER可在一系統產品之整個壽命內維持近似相同,且進一步最小化BER標準差。Generate an adjusted target 420 for dynamically calibrating the target quantity variation curve 402 based on the error measure 166, error difference measure 322, or a combination thereof to provide increased durability of each NAND die in a system product (more overall stylization / erasing (Except cycle). Dynamic balancing ensures that any page type will not dominate the end-of-life criterion, which proved to be an excessive trigger on rate tail behavior. The BER of each page type can be maintained approximately the same throughout the life of a system product, and the BER standard deviation is further minimized.

基於與錯誤量度166相關聯之一回饋度量產生用於動態地更新目標量變曲線402之經調整目標420提供平衡頁類型BER之益處。記憶體系統100可利用起因於處理位準校準機構176之錯誤量度166作為回饋量度,該回饋量度可用作用於動態地平衡BER之一處理度量。此外,來自處理位準校準機構176之處理結果之再用可使目標校準機構178能夠以非常適量之額外韌體額外負擔來實施。An adjusted target 420 for dynamically updating the target quantity variation curve 402 based on one of the feedback metrics associated with the error metric 166 provides the benefit of providing a balanced page type BER. The memory system 100 may utilize the error metric 166 due to the processing level calibration mechanism 176 as a feedback metric, which may be used as a processing metric for dynamically balancing the BER. In addition, the reuse of the processing results from the processing level calibration mechanism 176 enables the target calibration mechanism 178 to be implemented with a very modest amount of additional firmware and additional burden.

出於闡釋目的,已結合上文所例示之一序列及程序描述流程圖。然而,應理解,方法700可不同。例如,方塊702至708可為具有自方塊708至方塊702之一回饋迴路之一反覆程序。亦例如,方法700可包含針對一個驅動填充匹配參考頁類型724與第一頁類型726且針對一後續驅動填充匹配參考頁類型724與第二頁類型728之一對互補程序。For illustrative purposes, the flowchart has been described in conjunction with one of the sequences and procedures illustrated above. It should be understood, however, that the method 700 may be different. For example, blocks 702 to 708 may be an iterative process having a feedback loop from blocks 708 to 702. For another example, the method 700 may include filling a pair of complementary page matching one of the reference page type 724 and the first page type 726 for one drive and one of the pair of matching reference page type 724 and the second page type 728 for a subsequent drive fill.

圖8係繪示根據本發明之實施例之記憶體系統100 (圖1)之操作之另一實例性方法800之一流程圖。方法800可包含步階校準機構180 (圖1)之實施。步階校準機構180可基於與記憶體裝置102 (圖1)之操作相關聯之一回饋度量連續地修改程式化步階162 (圖1)。步階校準機構180可在記憶體裝置102之整個壽命內連續地調整或校準NAND頁程式化時間502 (圖5)。FIG. 8 is a flowchart illustrating another exemplary method 800 for operating the memory system 100 (FIG. 1) according to an embodiment of the present invention. The method 800 may include implementation of a step calibration mechanism 180 (FIG. 1). The step calibration mechanism 180 may continuously modify the stylized step 162 (FIG. 1) based on a feedback metric associated with the operation of the memory device 102 (FIG. 1). The step calibration mechanism 180 can continuously adjust or calibrate the NAND page programming time 502 throughout the life of the memory device 102 (FIG. 5).

例如,可由用於記憶體裝置102或主機裝置108之一處理電路(諸如控制器106、記憶體陣列104(諸如一晶粒或胞)、用於主機裝置108之處理器、其中部分或其等組合(皆在圖1中))執行或實施步階校準機構180。步階校準機構180可包含控制器106、記憶體陣列104、主機裝置108或其等組合之組態。步階校準機構180可進一步包含儲存於控制器106、記憶體陣列104、主機裝置108或其等組合內或使用控制器106、記憶體陣列104、主機裝置108或其等組合存取之一或多個方法、程序、步驟或指令、資訊或其等組合。可利用或實施步階校準機構180以調整諸如用於基於ISPP程式化記憶體胞122 (圖1)之程式化步階162。記憶體系統100可判定且利用步階校準機構180之背景記錄174 (圖1)。記憶體系統100實施步階校準機構180可基於背景記錄174 (諸如針對背景掃描資料或其推導)校準程式化步階162作為回饋度量。For example, a processing circuit (such as a controller 106, a memory array 104 (such as a die or cell)) for one of the memory device 102 or the host device 108, a processor for the host device 108, a portion thereof, or the like The combination (both in FIG. 1)) performs or implements the step calibration mechanism 180. The step calibration mechanism 180 may include a configuration of the controller 106, the memory array 104, the host device 108, or a combination thereof. The step calibration mechanism 180 may further include stored in the controller 106, the memory array 104, the host device 108, or a combination thereof, or accessed using one of the controller 106, the memory array 104, the host device 108, or a combination thereof, or Multiple methods, procedures, steps or instructions, information, or combinations thereof. A step calibration mechanism 180 may be utilized or implemented to adjust a programmed step 162, such as for an ISPP-based programmed memory cell 122 (FIG. 1). The memory system 100 can determine and use the background record 174 (FIG. 1) of the step calibration mechanism 180. The memory system 100 implements a step calibration mechanism 180 that can calibrate the stylized step 162 as a feedback metric based on a background record 174, such as for background scan data or its derivation.

記憶體系統100可在記憶體裝置102之操作期間判定背景記錄174,諸如方塊802中所表示。記憶體系統100可以各種方式判定背景記錄174。例如,記憶體系統100可在記憶體裝置102之操作期間基於儲存或追蹤與資料處理相關聯之資訊、效能或狀態而判定背景記錄174。記憶體系統100可儲存或追蹤相關聯於或起因於在記憶體陣列104之操作期間使用程式化步階162之錯誤量度166 (圖1),諸如錯誤計數168 (圖1)或錯誤率170 (圖1)或其處理結果。The memory system 100 may determine a background record 174 during operation of the memory device 102, such as represented by block 802. The memory system 100 can determine the background record 174 in various ways. For example, the memory system 100 may determine the background record 174 during the operation of the memory device 102 based on storing or tracking information, performance, or status associated with data processing. The memory system 100 may store or track error metrics 166 (Figure 1) associated with or resulting from the use of stylized steps 162 during operation of the memory array 104, such as an error count 168 (Figure 1) or an error rate 170 ( Figure 1) or its processing results.

記憶體系統100可追蹤與一或多個碼字820相關聯之錯誤量度166,程式化步階162用來寫入資料。程式化步階162之增大可導致增大的BER。背景掃描可在其搜尋「不良資料」時讀取碼字820。可判定且追蹤錯誤量度166,諸如位元錯誤之一數目。記憶體系統100亦可使用不同數目個錯誤之分級追蹤錯誤量度166。亦作為一更特定實例,記憶體系統100可使用一直方圖類型之格式追蹤錯誤量度166。The memory system 100 may track error metrics 166 associated with one or more codewords 820, and the stylized steps 162 are used to write data. An increase in stylized step 162 may result in an increased BER. The background scan can read the codeword 820 while searching for "bad data". Error metrics 166 may be determined and tracked, such as one of the number of bit errors. The memory system 100 may also use a hierarchical tracking error metric 166 for different numbers of errors. As a more specific example, the memory system 100 may track error metrics 166 using a histogram type format.

記憶體系統100可藉由各晶粒之記憶體胞122、按照各晶粒之記憶體胞122或在各晶粒之記憶體胞122內實施步階校準機構180。例如,記憶體系統100可使用控制各晶粒或各晶粒內之處理電路來實施步階校準機構180。亦例如,記憶體系統100可進一步實施步階校準機構180而不限於、而不藉由或根據字線群組144 (圖1)進行調整。相比於目標校準機構178 (圖1),步階校準機構180可藉由晶粒程式化步階大小調整來執行,而不藉由字線群組144進行調整。The memory system 100 may implement a step calibration mechanism 180 by using the memory cells 122 of each die, according to the memory cells 122 of each die, or within the memory cells 122 of each die. For example, the memory system 100 may implement the step calibration mechanism 180 using a control circuit that controls each die or within each die. For another example, the memory system 100 may further implement the step calibration mechanism 180 without being limited to, and not adjusted by or according to the word line group 144 (FIG. 1). Compared with the target calibration mechanism 178 (FIG. 1), the step calibration mechanism 180 can be performed by the die stylized step size adjustment instead of the word line group 144.

可基於一步階處理週期822觸發或起始步階校準機構180或其部分。記憶體系統100實施目標校準機構178可在步階處理週期822期間或針對步階處理週期822調整程式化步階162。步階處理期間822係經設定以用於實施步階校準機構180或其反覆或部分之一持續時間或一特定時間。步階處理週期822可基於記憶體裝置102之一狀態、一信號、一組態、或一處理值或結果。例如,步階處理週期822可包含或基於一驅動填充間隔。亦例如,相比於目標處理週期712 (圖7),步階處理週期822可為與其相同之類型、與其同時或交錯、或其等組合。The step calibration mechanism 180 or a portion thereof may be triggered or initiated based on the step processing cycle 822. The memory system 100 implements the target calibration mechanism 178 to adjust the stylized step 162 during or for the step processing cycle 822. The step processing period 822 is set to be used to implement the step calibration mechanism 180 or one of its iterations or a duration or a specific time. The step processing cycle 822 may be based on a state, a signal, a configuration, or a processing value or result of the memory device 102. For example, the step processing cycle 822 may include or be based on a drive fill interval. For another example, compared to the target processing cycle 712 (FIG. 7), the step processing cycle 822 may be the same type, simultaneous or interleaved therewith, or a combination thereof.

可基於如方塊804中所表示用於連續處理位準校準之處理位準校準機構176 (圖1)或方法600 (圖6)、如方塊806中所表示用於連續PV目標驗證之目標校準機構178 (圖1)或方法700 (圖7)、或其等組合而進一步觸發或起始步階校準機構180或其部分。例如,可基於實施處理位準校準機構176以動態地校準包含讀取位準電壓158 (圖1)之處理位準154 (圖1)而實施步階校準機構180。可基於讀取位準電壓158之居中狀態626(圖6)實施步階校準機構180。The target calibration mechanism for continuous PV target verification as indicated in block 806 may be based on a processing level calibration mechanism 176 (Figure 1) or method 600 (Figure 6) for continuous process level calibration as indicated in block 804 178 (FIG. 1) or method 700 (FIG. 7), or a combination thereof to further trigger or initiate the step calibration mechanism 180 or a portion thereof. For example, step calibration mechanism 180 may be implemented based on implementing processing level calibration mechanism 176 to dynamically calibrate processing level 154 (FIG. 1) including read level voltage 158 (FIG. 1). The step calibration mechanism 180 may be implemented based on the centered state 626 (FIG. 6) of the read level voltage 158.

例如,亦可基於實施目標校準機構178以動態地校準目標量變曲線402 (圖4)而實施步階校準機構180。當所有相關修整如晶粒之讀取位準電壓158之居中狀態626或其等組合所指示般居中時,可基於實施目標校準機構178多於預定臨限次數而實施步階校準機構180。For example, the step calibration mechanism 180 may be implemented based on the implementation of the target calibration mechanism 178 to dynamically calibrate the target quantity variation curve 402 (FIG. 4). When all relevant trimmings are centered as indicated by the centered state 626 of the read level voltage 158 of the die or a combination thereof, the step calibration mechanism 180 may be implemented based on the target calibration mechanism 178 being implemented more than a predetermined threshold number.

此外,步階校準機構180可比目標校準機構178更不頻繁地實施。步階校準機構180之延遲率或實施可確保處理位準154在其他情況下係穩定的,且進一步確保在動態地校準讀取位準電壓158、PV目標或其等組合之後已收集背景記錄174之足夠資料點。Further, the step calibration mechanism 180 may be implemented less frequently than the target calibration mechanism 178. The delay rate or implementation of the step calibration mechanism 180 can ensure that the processing level 154 is stable in other situations, and further ensure that background records have been collected 174 after the dynamic calibration of the read level voltage 158, PV target, or a combination thereof Sufficient data points.

在方塊808處,步階校準機構180可處理背景記錄174以用於校準程式化步階162。記憶體系統100可處理背景記錄174,諸如在結構上操縱資料、在邏輯上操縱資料、在數學上操縱資料或其等組合。例如,記憶體系統100可基於處理背景記錄174而產生一累積分佈函數(CDF) 824。CDF 824可表示與錯誤量度166相關聯之一統計概率。CDF 824可表示錯誤量度166小於或等於一特定值之概率。可基於或針對正則化背景記錄174而產生CDF 824。At block 808, the step calibration mechanism 180 may process the background record 174 for use in calibrating the stylized step 162. The memory system 100 may process background records 174, such as structurally manipulating data, logically manipulating data, mathematically manipulating data, or a combination thereof. For example, the memory system 100 may generate a cumulative distribution function (CDF) 824 based on processing the background record 174. The CDF 824 may represent one of the statistical probabilities associated with the error metric 166. The CDF 824 may represent the probability that the error measure 166 is less than or equal to a certain value. The CDF 824 may be generated based on or against a regularized background record 174.

記憶體系統100可以各種方式產生CDF 824。例如,記憶體系統100可反覆地更新CDF 824且永久性地維持CDF 824。隨著連續地判定背景記錄174,記憶體系統100可更新CDF 824。亦例如,記憶體系統100可針對步階校準機構180之各反覆或實施產生CDF 824以校準程式化步階162而非反覆地更新CDF 824且非永久性地維持CDF 824。The memory system 100 may generate the CDF 824 in various ways. For example, the memory system 100 may repeatedly update the CDF 824 and maintain the CDF 824 permanently. As background records 174 are continuously determined, the memory system 100 may update the CDF 824. For another example, the memory system 100 may generate a CDF 824 for each iteration or implementation of the step calibration mechanism 180 to calibrate the stylized steps 162 instead of repeatedly updating the CDF 824 and maintaining the CDF 824 non-permanently.

亦例如,記憶體系統100可基於進一步處理CDF 824而進一步產生一經調整函數結果828。經調整函數結果828可表示來自進一步操縱或處理CDF 824或背景記錄174之一處理結果,諸如藉由移位、邏輯或數學運算、重構或格式化CDF 824或背景記錄174。For another example, the memory system 100 may further generate an adjusted function result 828 based on the further processing of the CDF 824. The adjusted function result 828 may represent a processing result from further manipulation or processing of one of the CDF 824 or the background record 174, such as by shifting, logical or mathematical operations, reconstructing or formatting the CDF 824 or the background record 174.

經調整函數結果828可包含CDF 824或背景記錄174之一瀑布組織或格式。再者,經調整函數結果828可包含與CDF 824或背景記錄174組合之一或多個預定值,諸如一乘法因子或一加法偏移。The adjusted function result 828 may include a waterfall organization or format of one of the CDF 824 or the background record 174. Furthermore, the adjusted function result 828 may include one or more predetermined values in combination with the CDF 824 or the background record 174, such as a multiplication factor or an addition offset.

在方塊810處,步階校準機構180可計算用於更新或校準程式化步階162之一觸發。記憶體系統100可基於處理回饋資料(諸如針對背景掃描資料)導出觸發。記憶體系統100可基於計算一觸發量度830而導出觸發。At block 810, the step calibration mechanism 180 may calculate a trigger for updating or calibrating one of the stylized steps 162. The memory system 100 may derive triggers based on processing feedback data, such as for background scan data. The memory system 100 may derive a trigger based on calculating a trigger metric 830.

觸發量度830係記憶體胞122相對於錯誤復原機構172 (圖1)及程式化步階162之一當前操作狀態之一表示。觸發量度830可估計錯誤復原機構172 (諸如針對其可能性或其頻率)之實施。觸發量度830可進一步表示用於實施錯誤復原機構172之額外負擔或一離距。可基於背景記錄174或其處理結果(諸如CDF 824或經調整函數結果828)計算觸發量度830。The trigger measure 830 is a representation of one of the current operating states of the memory cell 122 relative to one of the error recovery mechanism 172 (FIG. 1) and the stylized step 162. The trigger metric 830 may estimate the implementation of the error recovery mechanism 172, such as for its likelihood or its frequency. The trigger metric 830 may further represent an additional burden or distance from implementing the error recovery mechanism 172. The trigger metric 830 may be calculated based on the background record 174 or its processing result, such as the CDF 824 or the adjusted function result 828.

記憶體系統100可以各種方式計算觸發量度830。例如,觸發量度830可包含一觸發速率832、一觸發容限834或其等組合。The memory system 100 may calculate the trigger metric 830 in various ways. For example, the trigger metric 830 may include a trigger rate 832, a trigger tolerance 834, or a combination thereof.

觸發速率832係實施錯誤復原機構172之一頻率或一可能性之一估計。觸發速率832可針對各種狀況或情況(諸如基於改變程式化步階162)進一步估計錯誤量度166之一預測。觸發速率832可表示BER之一預測。例如,觸發速率832可與不可校正位元錯誤率(UBER)相關聯。亦例如,觸發速率832可基於與錯誤復原機構172相關聯之錯誤之ECC位元、碼字820之一速率或一量度、或其等組合。The trigger rate 832 is an estimate of the frequency or probability of implementing the error recovery mechanism 172. The trigger rate 832 may further estimate one of the error metrics 166 for various conditions or situations, such as based on changing the stylized step 162. The trigger rate 832 may represent one of the BER predictions. For example, the trigger rate 832 may be associated with an uncorrectable bit error rate (UBER). Also for example, the trigger rate 832 may be based on the error ECC bits associated with the error recovery mechanism 172, a rate or a metric of the codeword 820, or a combination thereof.

記憶體系統100可使用一估計機構836計算觸發速率832。估計機構836可包含用於基於一給定資料集預測進一步行為或型樣之一程序、一方法、一電路、一組態、一函數或其等組合。例如,估計機構836可包含用於實施一線擬合演算法(諸如線性或對數型樣、一統計可能性計算或其等組合)之一程序、一方法、一電路、一組態、一函數或其等組合。The memory system 100 may use an estimation mechanism 836 to calculate the trigger rate 832. The estimation mechanism 836 may include a program, a method, a circuit, a configuration, a function, or a combination thereof for predicting further behavior or pattern based on a given data set. For example, the estimation mechanism 836 may include a program, a method, a circuit, a configuration, a function, or a program for implementing a line-fitting algorithm such as a linear or logarithmic pattern, a statistical possibility calculation, or a combination thereof. And other combinations.

記憶體系統100可基於使用背景記錄174或其推導(諸如CDF 824或經調整函數結果828)作為估計機構836之輸入而計算觸發速率832。記憶體系統100可根據背景記錄174之一型樣或一趨勢預測或估計實施錯誤復原機構172之一頻率或一可能性、錯誤計數168之一預測或其等組合。The memory system 100 may calculate the trigger rate 832 based on using the background record 174 or its derivation (such as CDF 824 or adjusted function result 828) as input to the estimation mechanism 836. The memory system 100 may predict or estimate a frequency or a probability of performing the error recovery mechanism 172, a prediction of the error count 168, or a combination thereof based on a pattern or a trend prediction of the background record 174.

觸發容限834係錯誤復原機構172之實施與對應於程式化步階162之錯誤量度166之間的一關係之表示。例如,觸發容限834可表示用於實施錯誤復原機構172之一系統觸發條件838與錯誤計數168之間的一離距。系統觸發條件838可包含用於起始錯誤復原機構172之一預定條件,諸如碼字820之錯誤位元之一數目或不良或不正確例項之一數目。與程式化時間502相關聯之改良效能可由觸發容限834約束,其可為系統產品ECC復原率之一量度。The trigger tolerance 834 is a representation of a relationship between the implementation of the error recovery mechanism 172 and the error metric 166 corresponding to the stylized step 162. For example, the trigger tolerance 834 may represent a distance between the system trigger condition 838 and the error count 168 for implementing one of the error recovery mechanisms 172. The system trigger condition 838 may include a predetermined condition for initiating the error recovery mechanism 172, such as one of the number of error bits or one of the bad or incorrect instances of the codeword 820. The improved performance associated with the stylized time 502 may be constrained by a trigger margin 834, which may be a measure of the system product ECC recovery rate.

記憶體系統100可基於系統觸發條件838及錯誤量度166計算觸發容限834。例如,記憶體系統100可基於系統觸發條件838與錯誤計數168之間的一關係或一離距(諸如值之間的一比或一差)計算觸發容限834。錯誤計數168可表示用於起始程式化步階162之一改變之一預定臨限值下之位元錯誤之一數目。亦例如,記憶體系統100可基於系統觸發條件838及錯誤計數168之一對數表示計算觸發容限834。The memory system 100 may calculate a trigger margin 834 based on the system trigger condition 838 and the error metric 166. For example, the memory system 100 may calculate a trigger margin 834 based on a relationship or a distance (such as a ratio or a difference between values) between the system trigger condition 838 and the error count 168. The error count 168 may represent a number of bit errors below a predetermined threshold used to initiate a change in one of the stylized steps 162. For another example, the memory system 100 may calculate the trigger margin 834 based on a logarithmic representation of the system trigger condition 838 and the error count 168.

記憶體系統100可直接自錯誤計數168計算觸發量度830。針對觸發量度830,記憶體系統100可使用可用資料而非執行一線擬合及預測諸如相較於觸發速率832超出已收集之資料量。The memory system 100 may calculate a trigger metric 830 directly from the error count 168. For the trigger metric 830, the memory system 100 may use available data instead of performing a one-line fit and predict such as exceeding the amount of data collected compared to the trigger rate 832.

在方塊812處,步階校準機構180可判定用於評估觸發量度830之一或多個臨限值。記憶體系統100可基於判定觸發控制曲線840而判定臨限值。At block 812, the step calibration mechanism 180 may determine one or more threshold values for evaluating the trigger metric 830. The memory system 100 may determine a threshold based on the determination trigger control curve 840.

觸發控制曲線840係用於評估觸發量度830及更新或改變程式化步階162以便校準之一預定臨限值或範圍。觸發控制曲線840可包含觸發速率832、觸發容限834或其等組合之一極限、一臨限值或一範圍。例如,觸發控制曲線840可包含用於起始程式化步階162之更新之一概率、一錯誤率或一錯誤量值、或其等組合。The trigger control curve 840 is used to evaluate the trigger metric 830 and update or change the stylized step 162 to calibrate a predetermined threshold or range. The trigger control curve 840 may include a limit, a threshold, or a range of a trigger rate 832, a trigger tolerance 834, or a combination thereof. For example, the trigger control curve 840 may include a probability, an error rate or an error magnitude, or a combination thereof, used to initiate the update of the stylized step 162.

記憶體系統100可基於比較觸發量度830與觸發控制曲線840而改變程式化步階162之值。一開發者或一設計者、一製造商、一使用者、記憶體系統100或其等組合可在步階處理週期822外預定觸發控制曲線840。The memory system 100 may change the value of the stylized step 162 based on comparing the trigger measurement 830 and the trigger control curve 840. A developer or a designer, a manufacturer, a user, the memory system 100 or a combination thereof may predetermined trigger the control curve 840 outside the step processing cycle 822.

記憶體系統100可藉由存取儲存於主機裝置108或記憶體裝置102中之觸發控制曲線840來判定觸發控制曲線840。記憶體系統100可基於根據一滯後參數842調整觸發控制曲線840之值而進一步判定觸發控制曲線840。滯後參數842係用於在更新程式化步階162時控制重複型樣之一參數。滯後參數842可經組態以最小化沿相反方向連續地改變程式化步階162之抖動。當條件為分界線或接近極限時,滯後參數842可用來維持程式化步階162。滯後參數842可產生其中不進行更新之一無效帶。遲滯參數842可為與觸發控制曲線840相關聯之一值,諸如基於使用與觸發控制曲線840相關聯之一因子、一偏移或其等組合之一數學導數。類似於觸發控制曲線840,可在步階處理週期822外預定滯後參數842。The memory system 100 can determine the trigger control curve 840 by accessing the trigger control curve 840 stored in the host device 108 or the memory device 102. The memory system 100 may further determine the trigger control curve 840 based on adjusting the value of the trigger control curve 840 according to a lag parameter 842. The hysteresis parameter 842 is a parameter used to control the repeated pattern when the stylized step 162 is updated. The hysteresis parameter 842 can be configured to minimize jitter that continuously changes the stylized step 162 in the opposite direction. The hysteresis parameter 842 can be used to maintain the stylized step 162 when the condition is a dividing line or near a limit. The hysteresis parameter 842 may generate an invalid band in which no updates are made. The hysteresis parameter 842 may be a value associated with the trigger control curve 840, such as based on using a mathematical derivative of a factor, an offset, or a combination thereof associated with the trigger control curve 840. Similar to the trigger control curve 840, the hysteresis parameter 842 may be predetermined outside the step processing period 822.

記憶體系統100可基於滯後參數842調整觸發控制曲線840。例如,記憶體系統100可組合觸發控制曲線840之預定值與滯後參數842以調整或進一步判定觸發控制曲線840。觸發控制曲線840之預定值可為一臨限值。當設定或存在滯後參數842時,觸發控制曲線840可為以初始臨限值為中心之一範圍,其中範圍大小係基於滯後參數842。該範圍可基於根據滯後參數842增大及減小初始臨限值(諸如藉由將滯後參數842或其處理導數與初始臨限值相乘/相除或相加/相減)而計算。The memory system 100 may adjust the trigger control curve 840 based on the hysteresis parameter 842. For example, the memory system 100 may combine a predetermined value of the trigger control curve 840 with a hysteresis parameter 842 to adjust or further determine the trigger control curve 840. The predetermined value of the trigger control curve 840 may be a threshold value. When the hysteresis parameter 842 is set or exists, the trigger control curve 840 may be a range centered on the initial threshold, where the range size is based on the hysteresis parameter 842. This range may be calculated based on increasing and decreasing the initial threshold value according to the lag parameter 842 (such as by multiplying / dividing or adding / subtracting the lag parameter 842 or its processing derivative with the initial threshold).

在方塊814處,步階校準機構180可校準程式化步階162。記憶體系統100可基於產生一經調整步階844作為程式化步階162之一新值或例項以替換其既有值而校準程式化步階162。經調整步階844可用於提供程式化步階162之一經校準值。記憶體系統100可基於觸發控制曲線840及觸發量度830 (諸如針對觸發速率832或觸發容限834)校準程式化步階162。記憶體系統100可基於比較觸發控制曲線840與觸發量度830而產生用於校準程式化步階162之經調整步階844。例如,記憶體系統100可產生用於在觸發速率832小於觸發控制曲線840時增大程式化步階162之經調整步階844。記憶體系統100可產生用於在觸發速率832大於觸發控制曲線840時減小程式化步階162之經調整步階844。當觸發速率832等於觸發控制曲線840或在基於滯後參數842之觸發控制曲線840之範圍之間時,記憶體系統100可維持程式化步階162。At block 814, the step calibration mechanism 180 may calibrate the stylized steps 162. The memory system 100 may calibrate the stylized step 162 based on generating a new value or instance of the adjusted step 844 as a stylized step 162 to replace its existing value. The adjusted step 844 may be used to provide a calibrated value of one of the stylized steps 162. The memory system 100 may calibrate the stylized steps 162 based on the trigger control curve 840 and trigger metrics 830, such as for a trigger rate 832 or a trigger tolerance 834. The memory system 100 may generate an adjusted step 844 for calibrating the stylized step 162 based on comparing the trigger control curve 840 and the trigger metric 830. For example, the memory system 100 may generate an adjusted step 844 for increasing the stylized step 162 when the trigger rate 832 is less than the trigger control curve 840. The memory system 100 may generate an adjusted step 844 for reducing the stylized step 162 when the trigger rate 832 is greater than the trigger control curve 840. When the trigger rate 832 is equal to the trigger control curve 840 or within a range of the trigger control curve 840 based on the hysteresis parameter 842, the memory system 100 may maintain the stylized step 162.

亦例如,記憶體系統100可產生用於在觸發容限834大於觸發控制曲線840時增大程式化步階162之經調整步階844。記憶體系統100可產生用於在觸發容限834小於觸發控制曲線840時減小程式化步階162之經調整步階844。當觸發速率832等於觸發控制曲線840或在基於滯後參數842之觸發控制曲線840之範圍之間時,記憶體系統100可維持程式化步階162。As another example, the memory system 100 may generate an adjusted step 844 for increasing the stylized step 162 when the trigger tolerance 834 is greater than the trigger control curve 840. The memory system 100 may generate an adjusted step 844 for reducing the stylized step 162 when the trigger tolerance 834 is less than the trigger control curve 840. When the trigger rate 832 is equal to the trigger control curve 840 or within a range of the trigger control curve 840 based on the hysteresis parameter 842, the memory system 100 may maintain the stylized step 162.

記憶體系統100可產生經調整步階844作為用於調整程式化步階162之一或多個預定增量之一正值或一負值。記憶體系統100可基於觸發控制曲線840及觸發量度830之組合(諸如根據一差、一比或一平均值)進一步產生經調整步階844。記憶體系統100可進一步產生用於增加或減少與程式化步階162相關聯之程式化時間502之經調整步階844。記憶體系統100可藉由增大程式化步階162來減少程式化時間502,且藉由減小程式化步階162來增加程式化時間502。此外,記憶體系統100可進一步產生用於增大或減小與程式化步階162相關聯之錯誤量度166之經調整步階844。記憶體系統100可減小程式化步階162以減小錯誤量度166,且以增大錯誤量度166為代價而增大程式化步階162。The memory system 100 may generate the adjusted step 844 as a positive value or a negative value for adjusting one or more predetermined increments of the stylized step 162. The memory system 100 may further generate an adjusted step 844 based on a combination of the trigger control curve 840 and the trigger metric 830 (such as based on a difference, a ratio, or an average). The memory system 100 may further generate an adjusted step 844 for increasing or decreasing the stylized time 502 associated with the stylized step 162. The memory system 100 may reduce the programming time 502 by increasing the programming step 162 and increase the programming time 502 by reducing the programming step 162. In addition, the memory system 100 may further generate an adjusted step 844 for increasing or decreasing the error metric 166 associated with the stylized step 162. The memory system 100 may reduce the stylized step 162 to reduce the error measure 166, and increase the stylized step 162 at the cost of increasing the error measure 166.

記憶體系統100可產生用於平衡與將資料程式化至記憶體陣列104中相關聯之程式化時間502及錯誤量度166之經調整步階844。記憶體系統100可產生用以改良程式化時間502同時維持如由觸發控制曲線840表示之可接受錯誤位準之經調整步階844。記憶體系統100可產生用於改良程式化時間502同時在記憶體陣列104之操作或使用內維持觸發量度830 (諸如以由觸發控制曲線840表示之一固定錯誤率或一固定錯誤容限)之經調整步階844。The memory system 100 may generate an adjusted step 844 for balancing the programmed time 502 and error metrics 166 associated with the programming of data into the memory array 104. The memory system 100 may generate an adjusted step 844 to improve the stylized time 502 while maintaining an acceptable error level as represented by the trigger control curve 840. The memory system 100 may generate a time 502 for improving the stylized time 502 while maintaining trigger metrics 830 (such as a fixed error rate or a fixed error tolerance represented by the trigger control curve 840) during operation or use of the memory array 104. Adjusted step 844.

記憶體系統100可使用步階校準機構180來初始化程式化步階162,動態地校準程式化步階162或其等組合。記憶體系統100可在記憶體裝置102之部署或所欲使用之前實施步階校準機構180作為記憶體裝置102之製造或組態之部分。記憶體系統100可在記憶體裝置102之部署或所欲使用期間且在記憶體裝置102之製造或組態之後,進一步動態地實施步階校準機構180且動態地產生經調整步階844且動態地更新程式化步階162。The memory system 100 may use the step calibration mechanism 180 to initialize the stylized steps 162, dynamically calibrate the stylized steps 162, or a combination thereof. The memory system 100 may implement the step calibration mechanism 180 as part of the manufacture or configuration of the memory device 102 before the memory device 102 is deployed or intended for use. The memory system 100 may further dynamically implement the step calibration mechanism 180 and dynamically generate an adjusted step 844 and dynamically during the deployment or intended use of the memory device 102 and after the manufacture or configuration of the memory device 102. Update stylized step 162.

例如,記憶體系統100可自各程式化步階處於如由NAND出廠設定或製造步階846定義之一預設狀態開始。製造步階846可為最初經提供或經組態以用於製造記憶體裝置102之程式化步階162之一例項。製造步階846可為考量記憶體胞122之一理想或一估計行為或特性而非實際行為或特性之一出廠預設值或一組態預設值。For example, the memory system 100 may begin when each stylized step is in a preset state as defined by a NAND factory setting or a manufacturing step 846. The manufacturing step 846 may be an example of a stylized step 162 originally provided or configured for manufacturing the memory device 102. The manufacturing step 846 may be a factory preset value or a configuration preset value that considers an ideal or an estimated behavior or characteristic of the memory cell 122 instead of an actual behavior or characteristic.

記憶體系統100可利用方法800來將製造步階846調整為程式化步階162,以平衡記憶體裝置102之各例項之錯誤及程式化時間。記憶體系統100可自製造步階846開始實施上文所描述之操作。最初實施步階校準機構180結束時之程式化步階值可為用於部署、銷售、出貨或一所欲使用之程式化步階162之一初始化例項。對於初始化,記憶體系統100可識別用於表示最初在記憶體陣列104之製造期間判定之程式化步階162之製造步階846。記憶體系統100可使用製造步階846之識別作為一觸發來實施上文所描述之步驟。The memory system 100 may use the method 800 to adjust the manufacturing step 846 to the stylized step 162 to balance the errors and the programming time of each instance of the memory device 102. The memory system 100 may perform the operations described above since the manufacturing step 846. The stylized step value at the end of the initial implementation of the step calibration mechanism 180 may be an initialization instance of one of the stylized steps 162 for deployment, sale, shipment, or a desired use. For initialization, the memory system 100 may identify a manufacturing step 846 that represents a stylized step 162 that was originally determined during the manufacturing of the memory array 104. The memory system 100 may use the identification of the manufacturing step 846 as a trigger to implement the steps described above.

記憶體系統100最初可在記憶體陣列104之使用或部署之前且在動態地產生經調整步階844之前校準程式化步階162。記憶體系統100最初可根據中心結果304 (圖3)及偏移結果(諸如藉由實施處理位準校準機構176)而調整讀取位準電壓158。記憶體系統100最初可諸如藉由實施目標校準機構178來進一步調整PV目標。可在使用製造步階846之程序期間將資料載入或寫入至記憶體電路。The memory system 100 may initially calibrate the stylized steps 162 before use or deployment of the memory array 104 and before dynamically generating the adjusted steps 844. The memory system 100 can initially adjust the read level voltage 158 based on the central result 304 (FIG. 3) and the offset result (such as by implementing a processing level calibration mechanism 176). The memory system 100 may initially further adjust the PV target, such as by implementing a target calibration mechanism 178. Data can be loaded or written into the memory circuit during the process using manufacturing step 846.

記憶體系統100初始可判定與製造步階846相關聯之背景記錄174且基於背景記錄174計算觸發量度830。記憶體系統100可根據觸發量度830產生程式化步階162以用於如上文所描述般更新及替換製造步階846。The memory system 100 may initially determine a background record 174 associated with the manufacturing step 846 and calculate a trigger metric 830 based on the background record 174. The memory system 100 may generate a stylized step 162 based on the trigger metric 830 for updating and replacing the manufacturing step 846 as described above.

記憶體系統100可基於以快於經設計以用於部署後實施之一速率之一加速速率實施上文所描述之操作而初始化。記憶體系統100可在工廠中之一短時間週期內以一加速速率實施處理位準校準機構176、目標校準機構178、步階校準機構180 (圖1)或其等組合,使得記憶體胞122將在運行客戶韌體之前具有經改良及加總程式化步階。The memory system 100 may be initialized based on performing the operations described above at an acceleration rate that is faster than one rate that is designed for post-deployment implementation. The memory system 100 may implement the processing level calibration mechanism 176, the target calibration mechanism 178, the step calibration mechanism 180 (FIG. 1), or a combination thereof at an accelerated rate within a short period of time in the factory, so that the memory cell 122 There will be improved and aggregated stylized steps before running customer firmware.

記憶體系統100此後可進一步繼續動態地實施步階校準機構180。記憶體系統100可進一步使用製造步階846作為程式化步階162之一最小臨限值。在記憶體裝置102之製造之後,記憶體系統100最初將可能增大程式化步階162。在記憶體裝置102之整個壽命或使用內,記憶體系統100將可能減小程式化步階162以調整記憶體陣列104之實體磨損或劣化。記憶體系統100可使用製造步階846作為用於動態校準之程式化步階162之一下限或最小例項。記憶體系統100可動態地產生用於維持程式化步階162大於或等於製造步階846之經調整步階844。The memory system 100 can then further dynamically implement the step calibration mechanism 180 thereafter. The memory system 100 may further use the manufacturing step 846 as one of the minimum thresholds of the stylized step 162. After the manufacture of the memory device 102, the memory system 100 will initially likely increase the stylized step 162. Throughout the lifetime or use of the memory device 102, the memory system 100 will likely reduce the stylized steps 162 to adjust the physical wear or degradation of the memory array 104. The memory system 100 may use the manufacturing step 846 as a lower limit or minimum instance of the stylized step 162 for dynamic calibration. The memory system 100 may dynamically generate an adjusted step 844 for maintaining the stylized step 162 greater than or equal to the manufacturing step 846.

程式化步階162之經調整或校準例項(其中經調整步階844替換程式化步階162之先前例項或值)可用來進一步觸發處理位準校準機構176、目標校準機構178或其等組合。例如,記憶體系統100可根據新程式化步階162重新調整讀取位準電壓158。亦例如,記憶體系統100可根據新程式化步階162重新調整目標量變曲線402。記憶體系統100可跨頁進一步利用平衡錯誤率及RWB來校準程式化步階162。Adjusted or calibrated instances of stylized step 162 (where adjusted step 844 replaces previous instances or values of stylized step 162) can be used to further trigger processing of level calibration mechanism 176, target calibration mechanism 178, or the like combination. For example, the memory system 100 may readjust the read level voltage 158 according to the newly programmed step 162. For another example, the memory system 100 may readjust the target quantity variation curve 402 according to the new stylized step 162. The memory system 100 may further utilize the balanced error rate and RWB across pages to calibrate the stylized steps 162.

記憶體系統100可跨反覆儲存各種資訊或儲存各種資訊以供其他機構(諸如處理位準校準機構176、目標校準機構178或其等組合)存取。例如,記憶體系統100可儲存累積分佈函數、觸發量度830、經調整步階844或其等組合。使用經調整函數結果828基於背景記錄174處理之觸發量度830提供動態地校準程式化步階162之能力。在記憶體胞122之整個壽命內動態地且連續地校準程式化步階162與一般技術者當前所知或預期完全不同。程式化步階162之動態及連續校準可藉由取捨錯誤特性之非必需效能或過度效能以增加較短程式化時間502來改良系統效能。The memory system 100 may store various types of information repeatedly or store various types of information for access by other organizations, such as the processing level calibration mechanism 176, the target calibration mechanism 178, or a combination thereof. For example, the memory system 100 may store a cumulative distribution function, a trigger metric 830, an adjusted step 844, or a combination thereof. The use of the adjusted function result 828 based on the trigger measurement 830 processed by the background record 174 provides the ability to dynamically calibrate the stylized steps 162. Dynamically and continuously calibrating the stylized steps 162 throughout the lifetime of the memory cell 122 is completely different from what is currently known or expected by a person of ordinary skill. The dynamic and continuous calibration of the stylized step 162 can improve system performance by increasing the short programming time 502 by trade-off unnecessary performance or excessive performance of error characteristics.

產生用於動態地校準程式化步階162之經調整步階844提供在記憶體陣列104之整個壽命內改良系統產品效能之益處。程式化步階162之調整專門針對記憶體陣列104之即時及實際狀況或狀態改良程式化時間502。使用基於背景記錄174使用經調整函數結果828處理之觸發量度830動態地產生之經調整步階844提供表示記憶體陣列104之即時及實際狀況或狀態之增大準確度之益處。觸發量度830之準確表示可用來更新程式化時間502,同時維持可接受錯誤位準。Generating an adjusted step 844 for dynamically calibrating the stylized step 162 provides the benefit of improving system product performance throughout the lifetime of the memory array 104. The adjustment of the stylized step 162 specifically improves the stylized time 502 for real-time and actual conditions or states of the memory array 104. Using an adjusted step 844 that is dynamically generated using a trigger metric 830 processed using a background-based record 174 using an adjusted function result 828 provides the benefit of increasing accuracy representing the instant and actual condition or state of the memory array 104. An accurate representation of the trigger metric 830 can be used to update the stylized time 502 while maintaining acceptable error levels.

出於闡釋目的,已結合上文所例示之一序列及程序描述流程圖。然而,應理解,方法800可不同。例如,方塊808至814可為具有自方塊814至方塊808之一回饋迴路(未展示)之一反覆程序。亦例如,可將方塊812及814組合成一個步驟。For illustrative purposes, the flowchart has been described in conjunction with one of the sequences and procedures illustrated above. It should be understood, however, that the method 800 may be different. For example, blocks 808 to 814 may be an iterative process having a feedback loop (not shown) from block 814 to block 808. As another example, blocks 812 and 814 can be combined into one step.

圖9係根據本發明之實施例之包含一記憶體裝置之一系統之一示意圖。上文參考圖1至圖7所描述之前述記憶體裝置之任一者可併入至許多更大及/或更複雜系統之任一者中,該等系統之一代表性實例係圖9中示意性地展示之系統980。系統980可包含一記憶體裝置900、一電源982、一驅動器984、一處理器986、及/或其他子系統或組件988。記憶體裝置900可包含大體上類似於上文參考圖1至圖7所描述之彼等記憶體裝置之特徵,且可因此包含用於執行來自一主機裝置之一直接讀取請求之各種特徵。所得系統980可執行各種功能之任一者,諸如記憶體儲存、資料處理及/或其他適合功能。據此,代表性系統980可包含但不限於手持型裝置(例如,行動電話、平板電腦、數位閱讀器及數位音訊播放器)、電腦、車輛、電器及其他產品。系統980之組件可容納於單個單元中或分佈遍及多個互連單元(例如,透過一通信網絡)。系統980之組件亦可包含遠端裝置及各種電腦可讀媒體之任一者。FIG. 9 is a schematic diagram of a system including a memory device according to an embodiment of the present invention. Any of the aforementioned memory devices described above with reference to FIGS. 1 to 7 may be incorporated into any of a number of larger and / or more complex systems, a representative example of which is shown in FIG. 9 A system 980 is shown schematically. The system 980 may include a memory device 900, a power supply 982, a driver 984, a processor 986, and / or other subsystems or components 988. The memory device 900 may include features substantially similar to their memory devices described above with reference to FIGS. 1-7 and may therefore include various features for performing a direct read request from a host device. The resulting system 980 may perform any of a variety of functions, such as memory storage, data processing, and / or other suitable functions. Accordingly, the representative system 980 may include, but is not limited to, handheld devices (eg, mobile phones, tablet computers, digital readers, and digital audio players), computers, vehicles, appliances, and other products. The components of the system 980 may be housed in a single unit or distributed across multiple interconnected units (eg, through a communication network). The components of system 980 may also include remote devices and any of a variety of computer-readable media.

自前述內容,將明白,本文中已出於闡釋目的描述本發明之特定實施例,但可在不偏離本發明之情況下做出各種修改。另外,亦可在其他實施例中組合或消除在特定實施例之上下文中所描述之新技術之特定態樣。此外,儘管已在彼等實施例之上下文中描述與新技術之特定實施例相關聯之優點,但其他實施例亦可展現此等優點且並非所有實施例一定需要展現此等優點以落於本發明之範疇內。據此,本發明及相關技術可涵蓋本文中未明確展示或描述之其他實施例。From the foregoing, it will be understood that specific embodiments of the invention have been described herein for illustrative purposes, but various modifications can be made without departing from the invention. In addition, specific aspects of the new technology described in the context of a particular embodiment may also be combined or eliminated in other embodiments. In addition, although the advantages associated with specific embodiments of the new technology have been described in the context of their embodiments, other embodiments may also exhibit these advantages and not all embodiments need to exhibit these advantages in order to fall into this Within the scope of invention. Accordingly, the invention and related technologies may encompass other embodiments not explicitly shown or described herein.

100‧‧‧記憶體系統100‧‧‧Memory System

102‧‧‧記憶體裝置102‧‧‧Memory device

104‧‧‧記憶體陣列104‧‧‧Memory Array

106‧‧‧控制器106‧‧‧controller

108‧‧‧主機裝置108‧‧‧ host device

120‧‧‧記憶體單元120‧‧‧Memory Unit

122‧‧‧記憶體胞122‧‧‧Memory Cell

124‧‧‧記憶體頁124‧‧‧Memory Page

126‧‧‧記憶體區塊126‧‧‧Memory Block

130‧‧‧處理器130‧‧‧ processor

132‧‧‧嵌入式記憶體132‧‧‧ Embedded Memory

142‧‧‧頁映射142‧‧‧Page Map

143‧‧‧字線143‧‧‧Word line

144‧‧‧字線群組144‧‧‧Word line group

146‧‧‧邏輯頁類型146‧‧‧Logical page type

148‧‧‧下頁(LP)148‧‧‧Next (LP)

150‧‧‧上頁(UP)150‧‧‧Previous (UP)

152‧‧‧額外頁(EP)152‧‧‧extra pages (EP)

154‧‧‧處理位準154‧‧‧Processing level

156‧‧‧臨限電壓156‧‧‧Threshold voltage

158‧‧‧讀取位準電壓158‧‧‧Read level voltage

160‧‧‧程式化位準電壓160‧‧‧ stylized level voltage

162‧‧‧程式化步階162‧‧‧ stylized steps

164‧‧‧位準暫存器164‧‧‧bit quasi-register

166‧‧‧錯誤量度166‧‧‧Incorrect measurement

168‧‧‧錯誤計數168‧‧‧Error count

170‧‧‧錯誤率170‧‧‧ error rate

172‧‧‧錯誤復原機構172‧‧‧Error Recovery Agency

174‧‧‧背景記錄174‧‧‧Background

176‧‧‧處理位準校準機構176‧‧‧ Processing level calibration mechanism

178‧‧‧目標校準機構178‧‧‧Target Calibration Agency

180‧‧‧步階校準機構180‧‧‧step calibration mechanism

210‧‧‧時間210‧‧‧time

211‧‧‧電荷211‧‧‧charge

220‧‧‧時間220‧‧‧time

222‧‧‧電荷222‧‧‧ charge

230‧‧‧時間230‧‧‧time

232‧‧‧電荷232‧‧‧ charge

240‧‧‧時間240‧‧‧time

242‧‧‧電荷242‧‧‧ charge

250‧‧‧所期望目標狀態250‧‧‧ Expected target state

302‧‧‧位準校準回饋量度302‧‧‧level calibration feedback measurement

304‧‧‧中心結果304‧‧‧ Center Results

306‧‧‧第一偏移結果306‧‧‧First offset result

308‧‧‧第二偏移結果308‧‧‧Second offset result

316‧‧‧第一偏移位準316‧‧‧First offset level

318‧‧‧第二偏移位準318‧‧‧second offset level

320‧‧‧偏移量度320‧‧‧offset measure

322‧‧‧錯誤差量度322‧‧‧Error Difference Measurement

402‧‧‧目標量變曲線402‧‧‧Target quantity change curve

404‧‧‧分佈目標404‧‧‧Distribution target

406‧‧‧分佈谷值406‧‧‧Distribution valley

408‧‧‧邊緣目標408‧‧‧Edge target

409‧‧‧中間目標409‧‧‧ intermediate target

410‧‧‧位準分佈曲線410‧‧‧level distribution curve

420‧‧‧經調整目標420‧‧‧ adjusted target

422‧‧‧目標調整值422‧‧‧ target adjustment value

502‧‧‧程式化時間502‧‧‧ stylized time

504‧‧‧經調整步階504‧‧‧Adjusted step

600‧‧‧方法600‧‧‧ Method

602‧‧‧方塊602‧‧‧box

604‧‧‧方塊604‧‧‧box

606‧‧‧方塊606‧‧‧block

608‧‧‧方塊608‧‧‧box

610‧‧‧方塊610‧‧‧block

612‧‧‧方塊612‧‧‧box

614‧‧‧方塊614‧‧‧box

620‧‧‧取樣觸發620‧‧‧Sampling trigger

622‧‧‧位準調整量度622‧‧‧level adjustment measure

624‧‧‧更新位準624‧‧‧ update level

626‧‧‧居中狀態626‧‧‧ centered

628‧‧‧先前改變方向628‧‧‧ Previously changed direction

630‧‧‧當前改變方向630‧‧‧Currently changing direction

632‧‧‧增益控制632‧‧‧Gain Control

634‧‧‧復原極限634‧‧‧ Recovery limit

640‧‧‧製造位準640‧‧‧ manufacturing level

700‧‧‧方法700‧‧‧ Method

702‧‧‧方塊702‧‧‧box

704‧‧‧方塊704‧‧‧box

706‧‧‧方塊706‧‧‧block

708‧‧‧方塊708‧‧‧block

712‧‧‧目標處理週期712‧‧‧ target processing cycle

714‧‧‧谷值深度714‧‧‧valley depth

716‧‧‧目標效能曲線716‧‧‧ target effectiveness curve

718‧‧‧高效能頁718‧‧‧High Performance Page

720‧‧‧低效能頁720‧‧‧ Low Performance Page

722‧‧‧無效帶區722‧‧‧Invalid zone

724‧‧‧參考頁類型724‧‧‧Reference page type

726‧‧‧第一頁類型726‧‧‧First Page Type

728‧‧‧第二頁類型728‧‧‧Second page type

730‧‧‧製造目標730‧‧‧Manufacturing target

800‧‧‧方法800‧‧‧ Method

802‧‧‧方塊802‧‧‧box

804‧‧‧方塊804‧‧‧box

806‧‧‧方塊806‧‧‧block

808‧‧‧方塊808‧‧‧box

810‧‧‧方塊810‧‧‧box

812‧‧‧方塊812‧‧‧box

814‧‧‧方塊814‧‧‧box

820‧‧‧碼字820‧‧‧codeword

822‧‧‧步階處理週期822‧‧‧step processing cycle

824‧‧‧累積分佈函數(CDF)824‧‧‧ Cumulative Distribution Function (CDF)

828‧‧‧經調整函數結果828‧‧‧ adjusted function result

830‧‧‧觸發量度830‧‧‧Trigger measurement

832‧‧‧觸發速率832‧‧‧Trigger rate

834‧‧‧觸發容限834‧‧‧Trigger tolerance

836‧‧‧估計機構836‧‧‧estimation agency

838‧‧‧系統觸發條件838‧‧‧System trigger condition

840‧‧‧觸發控制曲線840‧‧‧Trigger control curve

842‧‧‧滯後參數842‧‧‧lag parameter

844‧‧‧經調整步階844‧‧‧Adjusted step

846‧‧‧製造步階846‧‧‧Manufacturing steps

900‧‧‧記憶體裝置900‧‧‧Memory device

980‧‧‧系統980‧‧‧ system

982‧‧‧電源982‧‧‧Power

984‧‧‧驅動器984‧‧‧Drive

986‧‧‧處理器986‧‧‧ processor

988‧‧‧其他子系統或組件988‧‧‧Other subsystems or components

圖1係根據本發明之一實施例組態之具有一動態程式化校準機構之一記憶體系統之一方塊圖。FIG. 1 is a block diagram of a memory system having a dynamically programmed calibration mechanism configured according to an embodiment of the present invention.

圖2繪示在一增量程式化操作之各種狀態下儲存於一記憶體胞之電荷儲存結構上之電荷。FIG. 2 illustrates the charges stored on the charge storage structure of a memory cell under various states of an incremental programming operation.

圖3A、圖3B及圖3C繪示圖1中之處理位準校準機構之一進程之一實例。3A, 3B, and 3C illustrate an example of a process of the processing level calibration mechanism in FIG. 1.

圖4A、圖4B及圖4C繪示圖1中之目標校準機構之一進程之一實例。4A, 4B, and 4C illustrate an example of a process of the target calibration mechanism in FIG. 1.

圖5A及圖5B繪示圖1中之目標校準機構之一進程之一實例。5A and 5B illustrate an example of a process of the target calibration mechanism in FIG. 1.

圖6係繪示根據本發明之一實施例之操作圖1中之記憶體系統之一實例性方法之一流程圖。FIG. 6 is a flowchart illustrating an exemplary method of operating the memory system in FIG. 1 according to an embodiment of the present invention.

圖7係繪示根據本發明之一實施例之操作圖1中之記憶體系統之一進一步實例性方法之一流程圖。FIG. 7 is a flowchart illustrating a further exemplary method of operating the memory system in FIG. 1 according to an embodiment of the present invention.

圖8係繪示根據本發明之一實施例之操作圖1中之記憶體系統之另一實例性方法之一流程圖。FIG. 8 is a flowchart illustrating another exemplary method of operating the memory system in FIG. 1 according to an embodiment of the present invention.

圖9係根據本發明之一實施例之包含一記憶體裝置之一系統之一示意圖。FIG. 9 is a schematic diagram of a system including a memory device according to an embodiment of the present invention.

Claims (24)

一種記憶體裝置,其包括:一記憶體陣列,其包含複數個記憶體胞;及一控制器,其經耦合至該記憶體陣列,該控制器經組態以:判定包含分佈目標之一目標量變曲線,其中該等分佈目標之各者表示對應於該等記憶體胞之一邏輯值之一程式驗證目標,基於實施用於處理資料之一處理位準而判定一回饋量度,及根據該回饋量度而動態地調整該程式驗證目標。A memory device includes: a memory array including a plurality of memory cells; and a controller coupled to the memory array, the controller configured to: determine a target including a distributed target Quantitative change curve, in which each of the distribution targets represents a program verification target corresponding to a logical value of the memory cells, a feedback metric is determined based on a processing level implemented for processing data, and according to the feedback Measure and dynamically adjust the program verification goals. 如請求項1之記憶體裝置,其中該控制器進一步經組態以基於與一讀取位準電壓相關聯之一錯誤計數判定該回饋量度。As in the memory device of claim 1, wherein the controller is further configured to determine the feedback metric based on an error count associated with a read level voltage. 如請求項1之記憶體裝置,其中該控制器進一步經組態以基於調整相鄰程式驗證目標之間的距離而動態地調整該程式驗證目標。As in the memory device of claim 1, wherein the controller is further configured to dynamically adjust the program verification target based on adjusting a distance between adjacent program verification targets. 如請求項1之記憶體裝置,其中該控制器進一步經組態以動態地調整該程式驗證目標,從而跨該等記憶體胞之多個頁類型平衡一錯誤量度。For example, the memory device of claim 1, wherein the controller is further configured to dynamically adjust the program verification target so as to balance an error metric across multiple page types of the memory cells. 如請求項1之記憶體裝置,其中該控制器進一步經組態以基於該目標量變曲線之一淨零改變且跨該程式驗證目標而動態地調整該程式驗證目標。As in the memory device of claim 1, wherein the controller is further configured to dynamically adjust the program verification target based on a net-zero change of the target quantity variation curve and across the program verification target. 一種記憶體裝置,其包括:一記憶體陣列,其包含配置於記憶體頁中之複數個記憶體胞;及一控制器,其經耦合至該記憶體陣列,該控制器經組態以:判定包含邊緣目標及中間目標之一目標量變曲線,其中該等目標之各者表示對應於該等記憶體胞之一邏輯值之一程式驗證目標,基於對應於一讀取位準電壓之錯誤判定一回饋量度,及基於根據該回饋量度調整該等中間目標之一或多者而動態地調整該目標量變曲線。A memory device includes: a memory array including a plurality of memory cells arranged in a memory page; and a controller coupled to the memory array, the controller configured to: The judgment includes a target quantity change curve of one of the edge target and the intermediate target, wherein each of the targets represents a program verification target corresponding to a logical value of the memory cells, based on an incorrect determination corresponding to a read level voltage A feedback metric, and dynamically adjusting the target quantity curve based on adjusting one or more of the intermediate targets according to the feedback metric. 如請求項6之記憶體裝置,其中該控制器進一步經組態以判定該回饋量度,該回饋量度包含基於對應於該讀取位準電壓及一不同讀取位準電壓之錯誤計數計算之一錯誤差量度。If the memory device of claim 6, wherein the controller is further configured to determine the feedback measure, the feedback measure includes one of the error count calculations based on the read level voltage and a different read level voltage Error difference measure. 如請求項7之記憶體裝置,其中基於一第一錯誤計數及一第二錯誤計數之一差計算該錯誤差量度,其中該第一錯誤計數對應於該讀取位準電壓且該第二錯誤計數對應於自該讀取位準電壓偏移之該不同讀取位準電壓。If the memory device of claim 7, wherein the error difference measure is calculated based on a difference between a first error count and a second error count, wherein the first error count corresponds to the read level voltage and the second error The count corresponds to the different read level voltages offset from the read level voltage. 如請求項6之記憶體裝置,其中該控制器進一步經組態以基於在校準該等記憶體胞之該讀取位準電壓之後判定之該回饋量度動態地調整該目標量變曲線。The memory device of claim 6, wherein the controller is further configured to dynamically adjust the target quantity curve based on the feedback metric determined after calibrating the read level voltage of the memory cells. 如請求項6之記憶體裝置,其中該控制器進一步經組態以基於該經調整目標量變曲線實施一步階校準機構,其中該步階校準機構產生用於動態地調整一程式化步階以程式化該等記憶體胞之一經調整步階。The memory device as claimed in claim 6, wherein the controller is further configured to implement a one-step calibration mechanism based on the adjusted target quantity variation curve, wherein the step calibration mechanism generates a program for dynamically adjusting a stylized step program. One of these memory cells is adjusted in steps. 如請求項6之記憶體裝置,其中該控制器經組態以針對各字線群組獨立地動態地調整該目標量變曲線。The memory device as claimed in claim 6, wherein the controller is configured to dynamically adjust the target quantity curve independently for each word line group. 如請求項6之記憶體裝置,其中該控制器進一步經組態以動態地調整該目標量變曲線,從而跨該等記憶體胞之頁類型平衡錯誤量度及谷值深度,其中該等錯誤量度之各者對應於與該等頁類型之一者相關聯之一特定值之該讀取位準電壓,且其中該等谷值深度特性化相鄰程式驗證目標之間的離距。For example, the memory device of claim 6, wherein the controller is further configured to dynamically adjust the target quantity variation curve so as to balance the error measure and the valley depth across the page types of the memory cells, where the error measures are Each corresponds to a read level voltage of a specific value associated with one of the page types, and wherein the valley depths characterize the distance between adjacent program verification targets. 如請求項6之記憶體裝置,其中該控制器進一步經組態以:判定表示該等記憶體胞之該等頁類型之一者之一參考頁類型;判定一第二頁類型;及針對一目標處理週期,動態地調整對應於該參考頁類型、該第二頁類型或兩者之一或多個該等中間目標。If the memory device of claim 6, wherein the controller is further configured to: determine a reference page type representing one of the page types representing the memory cells; determine a second page type; and The target processing cycle dynamically adjusts one or more of the intermediate targets corresponding to the reference page type, the second page type, or both. 如請求項13之記憶體裝置,其中該控制器進一步經組態以:判定不同於該參考頁類型及該第二頁類型兩者之一第三頁類型;及針對一後續處理週期,產生對應於該參考頁類型、該第三頁類型或兩者之進一步動態地改變一或多個該等中間目標。For example, the memory device of claim 13, wherein the controller is further configured to: determine a third page type different from one of the reference page type and the second page type; and generate a response for a subsequent processing cycle One or more of these intermediate targets are dynamically changed further at the reference page type, the third page type, or both. 如請求項6之記憶體裝置,其中該控制器進一步經組態以:識別在該等頁類型當中具有該等錯誤之發生最低發生率之一高效能頁;識別在該等頁類型當中具有該等錯誤之發生最高發生率之一低效能頁;及動態地改變對應於該高效能頁、該低效能頁或其等組合之一或多個該等中間目標。If the memory device of claim 6, wherein the controller is further configured to: identify one of the high-performance pages having the lowest occurrence rate of the errors among the page types; identify the high-performance page among the page types And one of the intermediate targets corresponding to the high-performance page, the low-performance page, or a combination thereof is dynamically changed. 如請求項6之記憶體裝置,其中該複數個記憶體胞係非揮發性的。The memory device of claim 6, wherein the plurality of memory cell lines are non-volatile. 如請求項1之記憶體裝置,其中:該程式驗證目標控制與該等記憶體胞之該邏輯值相關聯之處理位準之所得分佈;及該控制器經組態以:根據該程式驗證目標判定起因於實施該處理位準之該回饋量度;及根據該經調整程式驗證目標而更新該等處理位準。If the memory device of claim 1, wherein: the program verification target controls the resulting distribution of processing levels associated with the logical value of the memory cells; and the controller is configured to: verify the target according to the program Determine the feedback measure resulting from the implementation of the processing level; and update the processing levels based on the adjusted program verification target. 一種操作包含一控制器及一記憶體陣列之一記憶體裝置之方法,該方法包括:判定包含分佈目標之一目標量變曲線,其中該等分佈目標之各者表示對應於該記憶體陣列內之記憶體胞之一邏輯值之一程式驗證目標;基於實施用於處理資料之一處理位準而判定一回饋量度;及使用該控制器,藉由根據該回饋量度改變該程式驗證目標而動態地調整該目標量變曲線以用於跨該等記憶體胞之多個頁類型平衡一錯誤量度。A method of operating a memory device including a controller and a memory array, the method includes: determining a target quantity variation curve including a distribution target, wherein each of the distribution targets represents a corresponding one in the memory array; A program verification target of a logical value of a memory cell; determining a feedback metric based on a processing level implemented to process data; and using the controller to dynamically change the program verification target based on the feedback metric The target quantity curve is adjusted for balancing an error measure across multiple page types of the memory cells. 如請求項18之方法,其進一步包括實施一步階校準機構,其中該步階校準機構產生用於動態地調整一程式化步階以程式化該等記憶體胞之一經調整步階。The method of claim 18, further comprising implementing a step calibration mechanism, wherein the step calibration mechanism generates an adjusted step for dynamically adjusting a stylized step to program one of the memory cells. 如請求項18之方法,其進一步包括:校準該等記憶體胞之一讀取位準電壓;且其中:在該讀取位準電壓之該校準期間或之後校準該回饋量度。The method of claim 18, further comprising: calibrating a read level voltage of one of the memory cells; and wherein: calibrating the feedback measure during or after the calibration of the read level voltage. 如請求項18之方法,其中:該目標量變曲線包含邊緣目標及中間目標,其中該等邊緣目標係對應於一最高電壓位準及一最低電壓位準之該等分佈目標,且該等中間目標係該等邊緣目標之間的該等分佈目標;該回饋量度對應於與一讀取位準電壓相關聯之錯誤;且動態地調整該目標量變曲線包含根據該回饋量度更新一或多個中間目標。The method of claim 18, wherein the target quantity change curve includes an edge target and an intermediate target, wherein the edge targets correspond to the distribution targets of a highest voltage level and a lowest voltage level, and the intermediate targets Are the distribution targets between the edge targets; the feedback measure corresponds to an error associated with a read level voltage; and dynamically adjusting the target quantity change curve includes updating one or more intermediate targets according to the feedback measure . 如請求項21之方法,其進一步包括判定該回饋量度,該回饋量度包含基於一第一錯誤計數及一第二錯誤計數之一差計算之一錯誤差量度,其中該第一錯誤計數對應於該讀取位準電壓且該第二錯誤計數對應於自該讀取位準電壓偏移之不同讀取位準電壓。The method of claim 21, further comprising determining the feedback metric, the feedback metric including calculating an error difference metric based on a difference between a first error count and a second error count, wherein the first error count corresponds to the The read level voltage and the second error count correspond to different read level voltages offset from the read level voltage. 如請求項21之方法,其中動態地調整該目標量變曲線包含:判定表示該等記憶體胞之該等頁類型之一者之一參考頁類型;判定一第二頁類型;及針對一目標處理週期,基於調整該等程式驗證目標之一或多者而動態地調整對應於該參考頁類型、該第二頁類型或兩者之該目標量變曲線。The method of claim 21, wherein dynamically adjusting the target quantity change curve includes: determining a reference page type that represents one of the page types of the memory cells; determining a second page type; and processing for a target Periodically, the target quantity curve corresponding to the reference page type, the second page type, or both is dynamically adjusted based on adjusting one or more of the program verification targets. 如請求項23之方法,其中動態地調整該目標量變曲線包含:判定不同於該參考頁類型及該第二頁類型兩者之一第三頁類型;及針對一後續處理週期,對應於該參考頁類型、該第三頁類型或兩者之進一步調整該等程式驗證目標之一或多者。The method of claim 23, wherein dynamically adjusting the target quantity change curve includes: determining a third page type different from the reference page type and the second page type; and for a subsequent processing cycle, corresponding to the reference Further adjustments to the page type, the third page type, or both are one or more of the program verification goals.
TW107117813A 2017-05-25 2018-05-24 Memory device with dynamic target calibration TWI666639B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/605,855 US10140040B1 (en) 2017-05-25 2017-05-25 Memory device with dynamic program-verify voltage calibration
US15/605,855 2017-05-25

Publications (2)

Publication Number Publication Date
TW201909183A TW201909183A (en) 2019-03-01
TWI666639B true TWI666639B (en) 2019-07-21

Family

ID=64315455

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107117813A TWI666639B (en) 2017-05-25 2018-05-24 Memory device with dynamic target calibration

Country Status (6)

Country Link
US (4) US10140040B1 (en)
EP (1) EP3631803A4 (en)
KR (1) KR102398957B1 (en)
CN (1) CN110832594A (en)
TW (1) TWI666639B (en)
WO (1) WO2018217740A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10140040B1 (en) * 2017-05-25 2018-11-27 Micron Technology, Inc. Memory device with dynamic program-verify voltage calibration
US10452480B2 (en) 2017-05-25 2019-10-22 Micron Technology, Inc. Memory device with dynamic processing level calibration
US10459785B2 (en) * 2017-09-27 2019-10-29 Western Digital Technologies, Inc. Error detection for training non-volatile memories
US10936205B2 (en) 2017-10-05 2021-03-02 International Business Machines Corporation Techniques for retention and read-disturb aware health binning
US10824352B2 (en) 2017-12-06 2020-11-03 International Business Machines Corporation Reducing unnecessary calibration of a memory unit for which the error count margin has been exceeded
US10453537B1 (en) * 2018-05-10 2019-10-22 International Business Machines Corporation Techniques for reducing read voltage threshold calibration in non-volatile memory
US10664194B2 (en) 2018-05-16 2020-05-26 Micron Technology, Inc. Memory system with dynamic calibration using a variable adjustment mechanism
US10566063B2 (en) 2018-05-16 2020-02-18 Micron Technology, Inc. Memory system with dynamic calibration using a trim management mechanism
US10990466B2 (en) 2018-06-20 2021-04-27 Micron Technology, Inc. Memory sub-system with dynamic calibration using component-based function(s)
US11188416B2 (en) 2018-07-12 2021-11-30 Micron Technology, Inc. Enhanced block management for a memory sub-system
US11113129B2 (en) 2018-07-13 2021-09-07 Micron Technology, Inc. Real time block failure analysis for a memory sub-system
US11037646B2 (en) * 2018-08-07 2021-06-15 Samsung Electronics Co., Ltd. Memory controller, operating method of memory controller and memory system
US10446241B1 (en) * 2018-08-13 2019-10-15 Micron Technology, Inc. Automatic calibration (autocal) error recovery for a memory sub-system
US10699791B2 (en) 2018-08-24 2020-06-30 International Business Machines Corporation Adaptive read voltage threshold calibration in non-volatile memory
US10658066B2 (en) 2018-09-05 2020-05-19 Micron Technology, Inc. First-pass continuous read level calibration
US10629278B2 (en) 2018-09-05 2020-04-21 Micron Technology, Inc. First-pass dynamic program targeting (DPT)
US10936246B2 (en) 2018-10-10 2021-03-02 Micron Technology, Inc. Dynamic background scan optimization in a memory sub-system
US10698636B1 (en) * 2018-12-10 2020-06-30 Micron Technology, Inc. Trigger margin based dynamic program step characteristic adjustment
US11257552B2 (en) * 2019-02-21 2022-02-22 Macronix International Co., Ltd. Programming a memory device
US10748625B1 (en) 2019-03-07 2020-08-18 Micron Technology, Inc. Dynamic programing of valley margins of a memory cell
CN110308876B (en) * 2019-07-01 2024-05-17 合肥兆芯电子有限公司 Memory management method, memory storage device and memory control circuit unit
TWI712886B (en) * 2019-07-05 2020-12-11 大陸商合肥兆芯電子有限公司 Memory management method, memory storage device and memory control circuit unit
US10990475B2 (en) 2019-07-10 2021-04-27 Micron Technology, Inc. Read level edge find operations in a memory sub-system
US11119848B2 (en) 2019-07-10 2021-09-14 Micron Technology, Inc. Logic based read sample offset in a memory sub system
US11061752B2 (en) 2019-07-17 2021-07-13 Micron Technology, Inc. Dynamic programming of page margins
US11264103B2 (en) 2019-08-28 2022-03-01 International Business Machines Corporation Hybrid read voltage calibration in non-volatile random access memory
US11361825B2 (en) 2019-12-18 2022-06-14 Micron Technology, Inc. Dynamic program erase targeting with bit error rate
US11385984B2 (en) * 2020-02-24 2022-07-12 Western Digital Technologies, Inc. Variable read scan for solid-state storage device quality of service
US11200956B2 (en) * 2020-04-23 2021-12-14 Micron Technology, Inc. Read level calibration in memory devices using embedded servo cells
US11880571B2 (en) 2020-05-13 2024-01-23 Micron Technology, Inc. Counter-based methods and systems for accessing memory cells
US11500637B2 (en) 2020-06-15 2022-11-15 Micron Technology, Inc. Software instruction set update of memory die using page buffers
US11488682B2 (en) 2020-06-24 2022-11-01 Sandisk Technologies Llc Calibration for integrated memory assembly
US11495309B2 (en) * 2020-12-16 2022-11-08 Micron Technology, Inc. Initiating media management operation using voltage distribution metrics in memory system
US11367484B1 (en) 2021-01-21 2022-06-21 Micron Technology, Inc. Multi-step pre-read for write operations in memory devices
US11514983B2 (en) * 2021-04-02 2022-11-29 Micron Technology, Inc. Identify the programming mode of memory cells based on cell statistics obtained during reading of the memory cells
US11861177B2 (en) * 2021-08-06 2024-01-02 Micron Technology, Inc. Configurable verify level for a set of data in a memory device
IT202100024374A1 (en) * 2021-09-22 2023-03-22 St Microelectronics Srl NON-VOLATILE STORAGE DEVICE WITH IMPROVED CELL CYCLING AND RELATED METHOD OF OPERATION OF NON-VOLATILE STORAGE DEVICE
KR102491655B1 (en) 2021-10-01 2023-01-27 삼성전자주식회사 Storage controller determining an error count, method of operating the same, and method of operating storage device having the same
JP2023139827A (en) 2022-03-22 2023-10-04 キオクシア株式会社 memory system
JP2023139444A (en) 2022-03-22 2023-10-04 キオクシア株式会社 semiconductor storage device
US12112814B2 (en) 2022-06-10 2024-10-08 SanDisk Technologies, Inc. Open block boundary group programming for non-volatile memory
US11972818B2 (en) 2022-06-15 2024-04-30 Sandisk Technologies, Llc Refresh frequency-dependent system-level trimming of verify level offsets for non-volatile memory
US20230410921A1 (en) * 2022-06-21 2023-12-21 Sandisk Technologies Llc Three-bit-per-cell programming using a four-bit-per-cell programming algorithm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130024743A1 (en) * 2011-07-22 2013-01-24 Sandisk Technologies Inc. Systems and methods of storing data
US20130132652A1 (en) * 2010-01-27 2013-05-23 Fusion-Io, Inc. Managing non-volatile media
US20130227200A1 (en) * 2012-02-23 2013-08-29 Stec, Inc. Determining bias information for offsetting operating variations in memory cells based on wordline address
US20140281767A1 (en) * 2013-03-14 2014-09-18 Lsi Corporation Recovery strategy that reduces errors misidentified as reliable
US20160133334A1 (en) * 2014-11-10 2016-05-12 Sk Hynix Memory Solutions Inc. Read-threshold calibration in a solid state storage system

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7082056B2 (en) 2004-03-12 2006-07-25 Super Talent Electronics, Inc. Flash memory device and architecture with multi level cells
US7047548B2 (en) 2001-04-17 2006-05-16 International Business Machines Corporation Recall of previous program channel
GB2383455B (en) 2001-12-21 2004-02-25 Motorola Inc Non-volatile memory and method for operating a non-volatile memory
US7073103B2 (en) * 2002-12-05 2006-07-04 Sandisk Corporation Smart verify for multi-state memories
EP1654736B1 (en) 2003-07-30 2009-09-16 SanDisk IL Ltd. Method and system for optimizing reliability and performance of programming data in non-volatile memory devices
SG162761A1 (en) 2005-03-08 2010-07-29 Vodafone Plc Function halt information notifying method and mobile communication terminal apparatus
US7496789B2 (en) 2005-06-06 2009-02-24 Oracle International Corporation Handling restart attempts for high availability managed resources
WO2007010829A1 (en) 2005-07-15 2007-01-25 Matsushita Electric Industrial Co., Ltd. Nonvolatile storage device, memory controller, and defective region detection method
US20070025167A1 (en) 2005-07-27 2007-02-01 Marco Ziegelmayer Method for testing a memory device, test unit for testing a memory device and memory device
JP5011818B2 (en) 2006-05-19 2012-08-29 富士通セミコンダクター株式会社 Semiconductor memory device and test method thereof
US7643348B2 (en) 2007-04-10 2010-01-05 Sandisk Corporation Predictive programming in non-volatile memory
US8006166B2 (en) 2007-06-12 2011-08-23 Micron Technology, Inc. Programming error correction code into a solid state memory device with varying bits per cell
US7817467B2 (en) 2007-09-07 2010-10-19 Micron Technology, Inc. Memory controller self-calibration for removing systemic influence
KR20090048130A (en) 2007-11-09 2009-05-13 주식회사 하이닉스반도체 Programming method of non volatile memory devic
KR101423052B1 (en) 2008-06-12 2014-07-25 삼성전자주식회사 Memory device and method of controlling read level
US7889575B2 (en) 2008-09-22 2011-02-15 Sandisk Corporation On-chip bias voltage temperature coefficient self-calibration mechanism
CN105025531B (en) 2009-01-09 2018-12-28 交互数字专利控股公司 WTRU and its method of implementation
US7848175B2 (en) 2009-01-29 2010-12-07 International Business Machines Corporation Calibration of memory driver with offset in a memory controller and memory device interface in a communication bus
US8036044B2 (en) * 2009-07-16 2011-10-11 Sandisk Technologies Inc. Dynamically adjustable erase and program levels for non-volatile memory
JP2011107851A (en) 2009-11-13 2011-06-02 Toshiba Corp Memory system
US8576625B1 (en) 2010-04-20 2013-11-05 Marvell International Ltd. Decoder parameter estimation using multiple memory reads
US8560899B2 (en) 2010-07-30 2013-10-15 Infineon Technologies Ag Safe memory storage by internal operation verification
US8499227B2 (en) 2010-09-23 2013-07-30 Micron Technology, Inc. Memory quality monitor based compensation method and apparatus
US8848438B2 (en) 2010-10-05 2014-09-30 Stec, Inc. Asymmetric log-likelihood ratio for MLC flash channel
US8665650B2 (en) 2011-02-18 2014-03-04 Marvell World Trade Ltd. Reliability metrics management for soft decoding
US8441861B2 (en) 2011-03-16 2013-05-14 Micron Technology, Inc. Self-check calibration of program or erase and verify process using memory cell distribution
US8510636B2 (en) 2011-04-01 2013-08-13 Intel Corporation Dynamic read channel calibration for non-volatile memory devices
US8645773B2 (en) 2011-06-30 2014-02-04 Seagate Technology Llc Estimating temporal degradation of non-volatile solid-state memory
KR20130019082A (en) * 2011-08-16 2013-02-26 삼성전자주식회사 Method of designing nonvolatile memory device
KR20130049543A (en) 2011-11-04 2013-05-14 삼성전자주식회사 Memory system including nonvolatile memory device and controlling method of controlling nonvolatile memory device
US8645752B2 (en) 2011-11-08 2014-02-04 Micron Technology, Inc. Apparatuses and methods for operating a memory device
US9679664B2 (en) 2012-02-11 2017-06-13 Samsung Electronics Co., Ltd. Method and system for providing a smart memory architecture
US9053808B2 (en) 2012-06-21 2015-06-09 Sandisk Technologies Inc. Flash memory with targeted read scrub algorithm
US20140026003A1 (en) 2012-07-23 2014-01-23 Zhengang Chen Flash memory read error rate reduction
US8914696B2 (en) 2012-08-29 2014-12-16 Seagate Technology Llc Flash memory read scrub and channel tracking
KR102038408B1 (en) 2012-10-25 2019-10-30 삼성전자주식회사 Semiconductor memory system using regression alalysis and read method thereof
US9225356B2 (en) 2012-11-12 2015-12-29 Freescale Semiconductor, Inc. Programming a non-volatile memory (NVM) system having error correction code (ECC)
US9081708B2 (en) 2012-11-16 2015-07-14 Freescale Semiconductor, Inc. Dynamic read scheme for high reliability high performance flash memory
KR20140072637A (en) * 2012-12-05 2014-06-13 삼성전자주식회사 method for operating non-volatile memory device and memory controller
US9454420B1 (en) 2012-12-31 2016-09-27 Sandisk Technologies Llc Method and system of reading threshold voltage equalization
US10372551B2 (en) 2013-03-15 2019-08-06 Netlist, Inc. Hybrid memory system with configurable error thresholds and failure analysis capability
US9367391B2 (en) 2013-03-15 2016-06-14 Micron Technology, Inc. Error correction operations in a memory device
US9092350B1 (en) 2013-03-15 2015-07-28 Sandisk Enterprise Ip Llc Detection and handling of unbalanced errors in interleaved codewords
US9728263B2 (en) 2013-05-31 2017-08-08 Sandisk Technologies Llc Method and device for iteratively updating read voltages
US20170148510A1 (en) 2013-05-31 2017-05-25 Sandisk Technologies Llc Updating read voltages
US9697905B2 (en) * 2013-05-31 2017-07-04 Sandisk Technologies Llc Updating read voltages using syndrome weight comparisons
US10475523B2 (en) 2013-05-31 2019-11-12 Western Digital Technologies, Inc. Updating read voltages triggered by the rate of temperature change
US9275740B2 (en) 2013-08-05 2016-03-01 CNEXLABS, Inc. Method and apparatus for improving data integrity using threshold voltage recalibration
US9378083B2 (en) 2013-12-04 2016-06-28 Seagate Technology Llc Adaptive read error recovery for memory devices
US20150378415A1 (en) 2014-02-05 2015-12-31 Christopher George Back-up power supply systems and methods for use with solid state storage devices
US9349472B2 (en) 2014-03-25 2016-05-24 Integrated Silicon Solution, Inc. Flash memory device with sense-amplifier-bypassed trim data read
US9329933B2 (en) 2014-04-25 2016-05-03 Freescale Semiconductor, Inc. Imminent read failure detection based upon changes in error voltage windows for NVM cells
US9396080B2 (en) 2014-08-07 2016-07-19 Sandisk Technologies Llc Storage module and method for analysis and disposition of dynamically tracked read error events
US10255304B2 (en) 2014-09-30 2019-04-09 International Business Machines Corporation Removal of garbage data from a database
KR102242561B1 (en) 2014-10-02 2021-04-20 삼성전자주식회사 Resistive Memory Device, Resistive Memory System and Operating Method thereof
US9583206B2 (en) 2014-10-02 2017-02-28 Sandisk Technologies Llc Data storage device having reflow awareness
US9563373B2 (en) 2014-10-21 2017-02-07 International Business Machines Corporation Detecting error count deviations for non-volatile memory blocks for advanced non-volatile memory block management
US10078546B2 (en) 2014-10-24 2018-09-18 Micron Technology, Inc. Temperature related error management
KR102290974B1 (en) 2014-11-07 2021-08-19 삼성전자주식회사 Operating method for nonvolatile memory device, memory controller, and nonvolatile memory system including them
US9576671B2 (en) 2014-11-20 2017-02-21 Western Digital Technologies, Inc. Calibrating optimal read levels
US9905302B2 (en) 2014-11-20 2018-02-27 Western Digital Technologies, Inc. Read level grouping algorithms for increased flash performance
US9720754B2 (en) 2014-11-20 2017-08-01 Western Digital Technologies, Inc. Read level grouping for increased flash performance
US9558847B2 (en) 2014-11-21 2017-01-31 Sandisk Technologies Llc Defect logging in nonvolatile memory
US20160162185A1 (en) 2014-12-05 2016-06-09 Sandisk Technologies Inc. Data programming for a memory having a three-dimensional memory configuration
US10223028B2 (en) 2014-12-22 2019-03-05 Sandisk Technologies Llc Failed bit count memory analytics
US10339048B2 (en) 2014-12-23 2019-07-02 International Business Machines Corporation Endurance enhancement scheme using memory re-evaluation
US9558064B2 (en) 2015-01-28 2017-01-31 Micron Technology, Inc. Estimating an error rate associated with memory
US9786356B2 (en) 2015-01-30 2017-10-10 Qualcomm Incorporated Memory device with adaptive voltage scaling based on error information
US9535786B2 (en) 2015-02-09 2017-01-03 HGST Netherlands B.V. Adaptive targeting of read levels in storage devices
US9355735B1 (en) 2015-02-20 2016-05-31 Sandisk Technologies Inc. Data recovery in a 3D memory device with a short circuit between word lines
US9946607B2 (en) 2015-03-04 2018-04-17 Sandisk Technologies Llc Systems and methods for storage error management
JP2016170583A (en) 2015-03-12 2016-09-23 株式会社東芝 Memory system and information processing system
GB2537484B (en) 2015-03-20 2019-07-03 HGST Netherlands BV Read level grouping for increased flash performance
US9472298B1 (en) 2015-05-13 2016-10-18 Sandisk Technologies Llc Dynamic read valley search in non-volatile memory
US20170053714A1 (en) 2015-08-19 2017-02-23 Micron Technology, Inc. Read voltage offset
KR102381218B1 (en) 2015-09-25 2022-04-01 에스케이하이닉스 주식회사 Data storage device and operating method thereof
KR20170039795A (en) 2015-10-01 2017-04-12 에스케이하이닉스 주식회사 Data storage device and operating method thereof
US10284232B2 (en) 2015-10-28 2019-05-07 Pure Storage, Inc. Dynamic error processing in a storage device
US10180874B2 (en) 2015-10-28 2019-01-15 Western Digital Technologies, Inc. Storage device operations based on bit error rate (BER) estimate
US20170148525A1 (en) 2015-11-25 2017-05-25 Sandisk Technologies Llc Method and System For Adaptively Adjusting a Verify Voltage to Reduce Storage Raw Bit Error Rate
US9558850B1 (en) 2015-12-01 2017-01-31 International Business Machines Corporation Efficient calibration of a data eye for memory devices
KR20170099157A (en) 2016-02-23 2017-08-31 삼성전자주식회사 Providing temperature information and electronic device supporting the same
US9761308B1 (en) 2016-03-11 2017-09-12 Western Digital Technologies, Inc. Systems and methods for adaptive read level adjustment
US10191799B2 (en) 2016-12-29 2019-01-29 Sandisk Technologies Llc BER model evaluation
AU2018216954B2 (en) 2017-02-02 2022-04-14 Janssen Vaccines & Prevention B.V. Piperazine derivatives for influenza virus inhibition
JP2018163709A (en) 2017-03-24 2018-10-18 東芝メモリ株式会社 Memory system
FR3066308B1 (en) 2017-05-09 2021-07-30 Commissariat Energie Atomique PROCESS FOR MANAGING THE ENDURANCE OF A NON-VOLATILE REWRITING MEMORY AND DEVICE FOR PROGRAMMING SUCH A MEMORY
US10140040B1 (en) 2017-05-25 2018-11-27 Micron Technology, Inc. Memory device with dynamic program-verify voltage calibration
US10402272B2 (en) 2017-05-25 2019-09-03 Micron Technology, Inc. Memory device with dynamic programming calibration
US10452480B2 (en) 2017-05-25 2019-10-22 Micron Technology, Inc. Memory device with dynamic processing level calibration
US10236070B2 (en) 2017-06-27 2019-03-19 Western Digital Technologies, Inc. Read level tracking and optimization
US10236067B2 (en) 2017-08-02 2019-03-19 International Business Machines Corporation State-dependent read voltage threshold adaptation for nonvolatile memory
US10347344B2 (en) 2017-08-29 2019-07-09 Micron Technology, Inc. Read voltage calibration based on host IO operations
US10877827B2 (en) 2017-09-15 2020-12-29 Pure Storage, Inc. Read voltage optimization
US20210191638A1 (en) 2017-09-15 2021-06-24 Pure Storage, Inc. Voltage thresholds in flash devices
US10210926B1 (en) 2017-09-15 2019-02-19 Pure Storage, Inc. Tracking of optimum read voltage thresholds in nand flash devices
US10283205B2 (en) 2017-09-30 2019-05-07 Micron Technology, Inc. Preemptive idle time read scans
US10936205B2 (en) 2017-10-05 2021-03-02 International Business Machines Corporation Techniques for retention and read-disturb aware health binning
US10276233B1 (en) 2017-10-31 2019-04-30 Seagate Technology Llc Adaptive read threshold voltage tracking with charge leakage mitigation using threshold voltage offsets
KR102341261B1 (en) 2017-11-13 2021-12-20 삼성전자주식회사 A memory device including massbit counter and operating method thereof
US10418097B2 (en) 2017-11-27 2019-09-17 Western Digital Technologies, Inc. Non-volatile storage system with read calibration
US10824352B2 (en) 2017-12-06 2020-11-03 International Business Machines Corporation Reducing unnecessary calibration of a memory unit for which the error count margin has been exceeded
US10170195B1 (en) 2017-12-06 2019-01-01 International Business Machines Corporation Threshold voltage shifting at a lower bit error rate by intelligently performing dummy configuration reads
US11126495B2 (en) 2018-03-07 2021-09-21 Micron Technology, Inc. Dynamic error handling in a memory system
US10379739B1 (en) 2018-03-23 2019-08-13 Western Digital Technologies, Inc. Data storage device read threshold adjustment according to environmental parameters
US10566063B2 (en) 2018-05-16 2020-02-18 Micron Technology, Inc. Memory system with dynamic calibration using a trim management mechanism
US10664194B2 (en) 2018-05-16 2020-05-26 Micron Technology, Inc. Memory system with dynamic calibration using a variable adjustment mechanism
US20190354312A1 (en) 2018-05-16 2019-11-21 Micron Technology, Inc. Memory system with a variable sampling rate mechanism
US10990466B2 (en) 2018-06-20 2021-04-27 Micron Technology, Inc. Memory sub-system with dynamic calibration using component-based function(s)
US11188416B2 (en) 2018-07-12 2021-11-30 Micron Technology, Inc. Enhanced block management for a memory sub-system
US11113129B2 (en) 2018-07-13 2021-09-07 Micron Technology, Inc. Real time block failure analysis for a memory sub-system
US10936246B2 (en) 2018-10-10 2021-03-02 Micron Technology, Inc. Dynamic background scan optimization in a memory sub-system
US10811091B2 (en) 2018-10-12 2020-10-20 Western Digital Technologies, Inc. Adaptive processing for read threshold voltage calibration
US11107550B2 (en) 2019-07-12 2021-08-31 Micron Technology, Inc. Self-adaptive read voltage adjustment using boundary error statistics for memories with time-varying error rates
KR102460717B1 (en) 2021-08-17 2022-10-31 삼성전자주식회사 Memory Controller calculating optimal read level, Memory System having the same and Operating Method of Memory Controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130132652A1 (en) * 2010-01-27 2013-05-23 Fusion-Io, Inc. Managing non-volatile media
US20130024743A1 (en) * 2011-07-22 2013-01-24 Sandisk Technologies Inc. Systems and methods of storing data
US20130227200A1 (en) * 2012-02-23 2013-08-29 Stec, Inc. Determining bias information for offsetting operating variations in memory cells based on wordline address
US20140281767A1 (en) * 2013-03-14 2014-09-18 Lsi Corporation Recovery strategy that reduces errors misidentified as reliable
US20160133334A1 (en) * 2014-11-10 2016-05-12 Sk Hynix Memory Solutions Inc. Read-threshold calibration in a solid state storage system

Also Published As

Publication number Publication date
US10140040B1 (en) 2018-11-27
KR102398957B1 (en) 2022-05-17
US10521140B2 (en) 2019-12-31
CN110832594A (en) 2020-02-21
US20180341415A1 (en) 2018-11-29
KR20200003240A (en) 2020-01-08
US11934666B2 (en) 2024-03-19
US20180341416A1 (en) 2018-11-29
EP3631803A1 (en) 2020-04-08
US20200004440A1 (en) 2020-01-02
US20220291847A1 (en) 2022-09-15
US11347405B2 (en) 2022-05-31
EP3631803A4 (en) 2021-04-07
WO2018217740A1 (en) 2018-11-29
TW201909183A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
TWI666639B (en) Memory device with dynamic target calibration
TWI688959B (en) Memory device with dynamic processing level calibration
TWI693605B (en) Memory device with dynamic programming calibration
US9104550B2 (en) Physical levels deterioration based determination of thresholds useful for converting cell physical levels into cell logical values in an array of digital memory cells
US9183945B2 (en) Systems and methods to avoid false verify and false read
US8799563B2 (en) Methods for adaptively programming flash memory devices and flash memory systems incorporating same