TWI665711B - Plasma processing device - Google Patents

Plasma processing device Download PDF

Info

Publication number
TWI665711B
TWI665711B TW104130519A TW104130519A TWI665711B TW I665711 B TWI665711 B TW I665711B TW 104130519 A TW104130519 A TW 104130519A TW 104130519 A TW104130519 A TW 104130519A TW I665711 B TWI665711 B TW I665711B
Authority
TW
Taiwan
Prior art keywords
power
radio frequency
period
pulse wave
plasma
Prior art date
Application number
TW104130519A
Other languages
Chinese (zh)
Other versions
TW201621974A (en
Inventor
平野太一
吉田絢
佐佐木彥一郎
山田哲史
早川欣延
石橋淳治
熊谷史記
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201621974A publication Critical patent/TW201621974A/en
Application granted granted Critical
Publication of TWI665711B publication Critical patent/TWI665711B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本發明提供一種因應調變脈波之工作比,將使用於電漿處理之射頻的功率改善在高位準與低位準之間交互切換之脈波調變方式。此一電漿處理裝置,例如在對電漿產生用之射頻施加高/低的脈波調變之情況,於匹配器內將加權平均的權重變數K設定為0.5<K<1之情況,在電漿產生系統之射頻供電線上,於脈波開啟期間Ton 內反射波仍以一定的功率PRH 產生,另一方面脈波關閉期間Toff 內之反射波的功率PRL 減少。藉由調整K的值,而可任意控制脈波開啟期間Ton 中之反射波功率、與脈波關閉期間Toff 中之反射波功率的平衡。The present invention provides a pulse wave modulation method that changes the power of radio frequency used in plasma processing to switch between high and low levels in response to modulation of the pulse wave working ratio. In this plasma processing device, for example, when high / low pulse wave modulation is applied to a radio frequency used for plasma generation, a weighted average weight variable K is set to 0.5 <K <1 in a matcher. On the RF power supply line of the plasma generation system, during the on period of the pulse wave, the internal reflection wave T on is still generated with a certain power PR H. On the other hand, the reflected wave power PR L during the pulse wave off period T off is reduced. By adjusting the value of K, the balance of the reflected wave power in the pulse wave on period T on and the reflected wave power in the pulse wave off period T off can be arbitrarily controlled.

Description

電漿處理裝置Plasma processing device

本發明係關於對被處理體施行電漿處理之技術,特別是關於將使用在電漿處理之射頻的功率以一定頻率之脈波調變的脈波調變方式之電漿處理裝置。 The present invention relates to a technique for performing plasma treatment on an object to be treated, and more particularly to a plasma treatment device for a pulse wave modulation method that modulates the power of radio frequency used in plasma treatment with a pulse wave of a certain frequency.

一般而言,電漿處理裝置,在可真空排氣的處理容器內製造處理氣體之電漿,藉由電漿所包含之自由基與離子的氣相反應或表面反應,在配置於處理容器內之被處理體上沉積薄膜,或施行切削被處理體表面之材料或薄膜等的微細加工。 Generally speaking, a plasma processing device manufactures a plasma of a processing gas in a processing container capable of being evacuated in a vacuum, and arranges the plasma in the processing container by the gas phase reaction or surface reaction of the radicals and ions contained in the plasma Deposit thin films on the object to be processed, or perform microfabrication such as cutting materials or films on the surface of the object to be processed.

電容耦合型之電漿處理裝置中,於處理容器內平行地配置上部電極與下部電極,在下部電極上方載置被處理體(半導體晶圓、玻璃基板等),對上部電極或下部電極施加適合電漿產生之頻率(一般為13.56MHz以上)的射頻。藉由此一射頻的施加使電子在上部及下部電極間被射頻電場加速,藉由電子與處理氣體碰撞的碰撞電離而產生電漿。此外,如下之RF偏壓法亦多被使用:對載置被處理體之下部電極施加低頻率(一般為13.56MHz以下)的射頻,藉由在下部 電極上產生之負的偏電壓或護層電壓(sheath voltage)將電漿中之離子加速而導入基板。藉由RF偏壓法,自電漿將離子加速而使其碰撞被處理體之表面,而可促進表面反應、非等向性蝕刻或膜的改質等。 In a capacitive coupling type plasma processing apparatus, an upper electrode and a lower electrode are arranged in parallel in a processing container, and an object to be processed (semiconductor wafer, glass substrate, etc.) is placed above the lower electrode. RF produced by plasma (generally above 13.56MHz). As a result of the application of a radio frequency, the electrons are accelerated by the radio frequency electric field between the upper and lower electrodes, and a plasma is generated by the collision ionization of the electrons colliding with the processing gas. In addition, the following RF bias method is also commonly used: a low-frequency (generally 13.56 MHz or lower) radio frequency is applied to the lower electrode of the object to be processed, and The negative bias voltage or sheath voltage generated on the electrodes accelerates the ions in the plasma and introduces them into the substrate. By the RF bias method, the self-plasma accelerates the ions and causes them to collide with the surface of the object to be treated, which can promote surface reactions, anisotropic etching, or film modification.

近年,為了提高乾蝕刻之良率與加工精度,為了防止例如充電損害(charging damage,電荷蓄積所造成之閘極氧化膜的破壞),或抑制微負載效應(基於圖案的幾何學構造或圖案密度的局部性差異之蝕刻速度的不均),而普及將電漿產生用之射頻及/或偏壓用之射頻以一定頻率的脈波調變之技術。 In recent years, in order to improve the yield and processing accuracy of dry etching, to prevent, for example, charging damage (damage of the gate oxide film caused by charge accumulation), or to suppress micro-load effects (pattern-based geometric structure or pattern density) Local difference in etching speed), and the technology of modulating the RF for plasma generation and / or the RF for bias with a certain frequency pulse wave is popular.

一般而言,此種脈波調變,因應調變脈波之工作比,在脈波開啟的期間內使接受調變之射頻的功率為既定位準之開啟狀態,在脈波關閉的期間內使該射頻的功率為零位準之關閉狀態。因此,例如在將電漿產生用之射頻的功率脈波調變之情況,於脈波開啟期間內產生電漿而蝕刻進行,於脈波關閉期間內電漿消失而蝕刻暫時停止。此一情況,設置於電漿產生用射頻之傳輸線上的匹配器,在各週期的脈波開啟期間內測定負載阻抗,可變地控制設置於匹配電路之可變電抗元件的電抗,以使負載阻抗測定值與匹配點(一般為50Ω)一致或近似。 Generally speaking, this kind of pulse wave modulation responds to the working ratio of the modulated pulse wave. During the period when the pulse wave is turned on, the power of the radio frequency receiving the modulation is turned on in a certain position. During the period when the pulse wave is turned off, The power of the radio frequency is turned off at the zero level. Therefore, for example, when the power pulse wave of the radio frequency for plasma generation is modulated, the plasma is generated during the pulse-on period and the etching is performed, and the plasma disappears and the etching is temporarily stopped during the pulse-wave period. In this case, the matcher provided on the transmission line for the plasma generation radio frequency measures the load impedance during each period of the pulse wave on period, and variably controls the reactance of the variable reactance element provided in the matching circuit so that The load impedance measurement value is consistent or similar to the matching point (generally 50Ω).

[習知技術文獻] [Xizhi technical literature]

【專利文獻】 [Patent Literature]

專利文獻1:日本特開2012-9544號公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2012-9544

專利文獻2:日本特開2013-33856號公報 Patent Document 2: Japanese Patent Application Publication No. 2013-33856

作為如上述之電容耦合型電漿處理裝置的的脈波調變之一形態,具有如下方法:因應調變脈波之工作比,於脈波開啟期間內將該射頻的功率控制在一定的位準即高位準,於脈波關閉期間內將該射頻的功率的功率控制在較高位準更低之一定的低位準。此處,將低位準,選擇為較維持電漿產生狀態所必需之最低位準更高的值。 As one form of the pulse wave modulation of the capacitive coupling plasma processing device as described above, there is a method as follows: according to the modulation of the pulse wave working ratio, the power of the radio frequency is controlled to a certain level during the pulse wave on period The standard is the high level, and the power of the power of the radio frequency is controlled to a certain low level lower to a higher level during the period when the pulse wave is off. Here, the low level is selected to be a value higher than the lowest level necessary to maintain the plasma generation state.

此等高(High)/低(Low)的脈波調變方式中,在脈波關閉期間內仍於處理容器內,使電漿之電子及離子甚至自由基未消除而分別存在一定量。利用此一現象,將該射頻的功率之低位準及其他製程參數設定為適當的值,控制對於被處理體表面之電子、離子及/或自由基的化學或物理作用,藉而可期待在某種蝕刻製程中提高既定的蝕刻特性之效果。 In these high / low pulse wave modulation methods, the pulse wave is still in the processing container during the closed period, so that a certain amount of plasma electrons and ions and even free radicals exist respectively. Taking advantage of this phenomenon, the low level of the power of the radio frequency and other process parameters are set to appropriate values to control the chemical or physical effect of electrons, ions and / or free radicals on the surface of the object to be treated. An effect of improving a predetermined etching characteristic in this etching process.

然而,高/低的脈波調變方式中,若將調變脈波之頻率設定為高的值(一般為1kHz以上),則匹配器中之可變電抗元件的可變控制變得無法追蹤調變脈波。因此,成為僅在主要影響電漿處理之高脈波期間得到匹配,必須將次要的低脈波期間從匹配對象排除。如此一來,則在完全未得到匹配的低脈波期間內,於射頻供電線上產生大的反射波。因此,將射頻的功率穩定且正確地保持在預先設定之低位準的控制變得困難,且高/低的脈波調變方式之製程上的期待效果減弱,射頻電源等的負擔亦變大。 However, in the high / low pulse wave modulation method, if the frequency of the modulated pulse wave is set to a high value (generally 1 kHz or more), the variable control of the variable reactance element in the matcher becomes impossible. Track modulation pulses. Therefore, matching is performed only during the high pulse period which mainly affects the plasma processing, and the secondary low pulse period must be excluded from the matching object. As a result, a large reflected wave is generated on the RF power supply line during a period of low pulses that are not matched at all. Therefore, it is difficult to control the power of the radio frequency stably and accurately at a preset low level, and the expected effect of the process of the high / low pulse wave modulation mode is weakened, and the burden of the radio frequency power supply and the like is also increased.

為了解決如上述之習知技術的問題,本發明提供一種電漿處理裝置,可將使用在電漿處理之射頻的功率因應調變脈波之工作比而在高位準與低位準之間交互(特別是高速地)切換的脈波調變方式,效率良好且如期待般地活用。 In order to solve the problems of the conventional technology as described above, the present invention provides a plasma processing device, which can interact between the high level and the low level of the power of the radio frequency used in the plasma processing in response to the modulation of the pulse wave working ratio ( In particular, the pulse modulation method switched at high speed is efficient and utilized as expected.

本發明之電漿處理裝置,在以可使被處理體進出的方式收納被處理體之可真空排氣的處理容器內,製造處理氣體之射頻放電所產生的電漿,在該電漿下方對該處理容器內之該被處理體施行希望的處理,該電漿處理裝置包含:第一射頻電源,輸出第一射頻;第一射頻功率調變部,在以一定的工作比交互重複之第一及第二期間內,以一定頻率的調變脈波調變該第一射頻電源之輸出,以使該第一期間中該第一射頻的功率成為高位準,該第二期間中該第二射頻的功率成為較該高位準更低之低位準;第一射頻供電線,用於將自該第一射頻電源輸出的該第一射頻,傳送至配置於該處理容器中或周圍之第一電極;以及第一匹配器,於該第一射頻供電線上測定自該第一射頻電源可觀察到的負載之阻抗,使藉由希望之權重將該第一期間中之負載阻抗的測定值、與該第二期間中之負載阻抗的測定值加權平均所獲得之加權平均測定值,與該第一射頻電源之輸出阻抗匹配。 The plasma processing apparatus of the present invention manufactures a plasma generated by a radio frequency discharge of a processing gas in a vacuum-exhaustable processing container that stores the processed object in and out so that the processed object can be moved in and out. The object to be processed in the processing container performs desired processing. The plasma processing device includes: a first radio frequency power source, which outputs a first radio frequency; a first radio frequency power modulation unit, which repeatedly repeats a first operation at a certain working ratio. And in the second period, modulating the output of the first radio frequency power supply with a modulation pulse of a certain frequency so that the power of the first radio frequency in the first period becomes a high level, and the second radio frequency in the second period The power becomes a lower level than the high level; a first radio frequency power supply line for transmitting the first radio frequency output from the first radio frequency power source to a first electrode arranged in or around the processing container; And a first matcher, measuring the impedance of the load observable from the first radio frequency power supply on the first radio frequency power supply line, so that the measured value of the load impedance in the first period and the Weighted average of the weighted average value of values measured in the load impedance during obtained, the output impedance of the first RF power.

上述之裝置構成中,藉由調整加權平均之權重變數的值,而可任意控制高脈波期間中之反射波功率與低脈波期間中之反射波功率的平衡。藉此,任意減少低脈波期間中之反射波的功率,可將負載功率設定為提高此一部分之任意值 而回應製程上的要求。此外,自反射波減少用於保護射頻電源之循環器等的負擔、射頻電源本身之反射波耐受量,可於射頻電源周圍達成硬體的小型簡單化、消耗電力的效率化等。 In the above device configuration, the balance of the reflected wave power in the high pulse wave period and the reflected wave power in the low pulse wave period can be arbitrarily controlled by adjusting the value of the weight variable of the weighted average. With this, the power of the reflected wave during the low pulse period is arbitrarily reduced, and the load power can be set to an arbitrary value that increases this part And respond to process requirements. In addition, the self-reflected wave reduces the burden of a circulator and the like for protecting the RF power supply, and the resistance of the reflected power of the RF power supply itself can realize the compactness and simplification of the hardware and the efficiency of the power consumption around the RF power supply.

若依本發明之電漿處理裝置,則藉由如上述之構成及作用,可將使用在電漿處理之射頻的功率因應調變脈波之工作比而在高位準與低位準之間交互(特別是高速地)切換的脈波調變方式,有效率而如期待般地實現。 If the plasma processing device according to the present invention has the structure and function as described above, the power of the radio frequency used in the plasma processing can be changed between the high level and the low level according to the working ratio of the modulated pulse wave ( In particular, the pulse modulation method of high-speed) switching is realized efficiently and as expected.

10‧‧‧腔室 10‧‧‧ chamber

12‧‧‧絕緣板 12‧‧‧ Insulation board

14‧‧‧基座支持台 14‧‧‧ base support desk

16‧‧‧基座(下部電極) 16‧‧‧ base (lower electrode)

18‧‧‧靜電吸盤 18‧‧‧ electrostatic chuck

20‧‧‧電極 20‧‧‧ electrode

22‧‧‧開關 22‧‧‧Switch

24‧‧‧直流電源 24‧‧‧DC Power

26‧‧‧對焦環 26‧‧‧focus ring

28‧‧‧內壁構件 28‧‧‧Inner wall members

30‧‧‧冷媒室 30‧‧‧Refrigerant Room

32a、32b‧‧‧配管 32a, 32b‧‧‧Piping

34‧‧‧氣體供給線 34‧‧‧Gas supply line

36‧‧‧(電漿產生系統)射頻電源 36‧‧‧ (plasma generation system) RF power supply

38‧‧‧(離子導入系統)射頻電源 38‧‧‧ (ion introduction system) RF power

40、42‧‧‧匹配器 40, 42‧‧‧ Matcher

43、45‧‧‧射頻供電線 43, 45‧‧‧ RF power line

44‧‧‧供電棒 44‧‧‧ Power Stick

46‧‧‧上部電極(沖淋頭) 46‧‧‧upper electrode (shower head)

48‧‧‧電極板 48‧‧‧ electrode plate

48a‧‧‧氣體噴出孔 48a‧‧‧gas ejection hole

50‧‧‧電極支持體 50‧‧‧ electrode support

50a‧‧‧通氣孔 50a‧‧‧Air vent

52‧‧‧氣體緩衝室 52‧‧‧Gas buffer room

54‧‧‧氣體供給管 54‧‧‧Gas supply pipe

56‧‧‧處理氣體供給源 56‧‧‧Processing gas supply source

58‧‧‧質量流量控制器(MFC) 58‧‧‧mass flow controller (MFC)

60‧‧‧開閉閥 60‧‧‧Open and close valve

62‧‧‧直流電源部 62‧‧‧DC Power Supply Department

64‧‧‧絕緣體 64‧‧‧ insulator

66、68‧‧‧直流電源 66, 68‧‧‧ DC Power

70‧‧‧開關 70‧‧‧ switch

72‧‧‧主控制部 72‧‧‧Main Control Department

74‧‧‧直流供電線 74‧‧‧DC power supply line

76‧‧‧濾波電路 76‧‧‧Filter circuit

78‧‧‧排氣口 78‧‧‧ exhaust port

80‧‧‧排氣管 80‧‧‧ exhaust pipe

82‧‧‧排氣裝置 82‧‧‧Exhaust

84‧‧‧搬出入口 84‧‧‧ moved out of the entrance

86‧‧‧閘閥 86‧‧‧Gate Valve

90A、90B‧‧‧RF振盪器 90A, 90B‧‧‧RF Oscillator

92、92A、92B‧‧‧功率放大器 92, 92A, 92B‧‧‧ Power Amplifier

94A、94B‧‧‧電源控制部 94A, 94B‧‧‧ Power Control Department

96A、96B‧‧‧RF功率監測器 96A, 96B‧‧‧RF Power Monitor

98A、98B‧‧‧匹配電路 98A, 98B‧‧‧ matching circuit

100A、100B、102A、102B‧‧‧馬達 100A, 100B, 102A, 102B‧‧‧ Motor

104A、104B‧‧‧匹配控制器 104A, 104B‧‧‧Matching Controller

106A、106B‧‧‧阻抗感測器 106A, 106B‧‧‧Impedance sensors

107A、107B‧‧‧Vpp檢測器 107A, 107B‧‧‧V pp detector

110A、110B‧‧‧RF電壓檢測器 110A, 110B‧‧‧RF voltage detector

112A、112B‧‧‧RF電流檢測器 112A, 112B‧‧‧RF current detector

114A、114B‧‧‧負載阻抗瞬間值運算電路 114A, 114B‧‧‧ Load impedance instantaneous value calculation circuit

116A、116B‧‧‧算術平均值運算電路 116A, 116B‧‧‧ Arithmetic average operation circuit

118A、118B‧‧‧加權平均值運算電路 118A, 118B‧‧‧weighted average operation circuit

120A、120B‧‧‧移動平均值運算電路 120A, 120B‧‧‧moving average calculation circuit

122、122A、122B‧‧‧負載功率測定部 122, 122A, 122B‧‧‧Load Power Measurement Department

124A、124B‧‧‧射頻輸出控制部 124A, 124B‧‧‧ RF output control department

126A、126B‧‧‧(脈波開啟期間用)控制指令值產生部 126A, 126B‧‧‧ (for pulse wave on period) control command value generation unit

128A、128B‧‧‧(脈波關閉期間用)控制指令值產生部 128A, 128B‧‧‧ (for pulse wave off period) control command value generation unit

130A、130B‧‧‧比較器 130A, 130B‧‧‧ Comparator

132A、132B‧‧‧放大器控制部 132A, 132B‧‧‧amplifier control unit

134A、134B‧‧‧控制器 134A, 134B‧‧‧ Controller

136A、136B‧‧‧切換電路 136A, 136B‧‧‧switching circuit

140‧‧‧孔 140‧‧‧hole

142‧‧‧蝕刻遮罩 142‧‧‧etch mask

144‧‧‧第一SiO2144‧‧‧First SiO 2 layer

146‧‧‧第一SiN層 146‧‧‧First SiN layer

148‧‧‧第二SiO2148‧‧‧Second SiO 2 layer

150‧‧‧第二SiN層 150‧‧‧Second SiN layer

152‧‧‧第三SiO2152‧‧‧third SiO 2 layer

154‧‧‧第三SiN層 154‧‧‧The third SiN layer

156‧‧‧半導體基板 156‧‧‧Semiconductor substrate

cw‧‧‧冷卻水 cw‧‧‧ cooling water

PA‧‧‧處理空間(電漿產生空間) PA‧‧‧Processing space (plasma generation space)

SHDC‧‧‧高電場區域(DC護層) SH DC ‧‧‧High electric field area (DC sheath)

SHRF‧‧‧電漿護層(離子護層) SH RF ‧‧‧ Plasma Cover (Ion Cover)

SW‧‧‧切換控制訊號 SW‧‧‧Switch control signal

W‧‧‧半導體晶圓 W‧‧‧Semiconductor wafer

XH1、XH2‧‧‧電抗元件 X H1 , X H2 ‧‧‧Reactance element

圖1係顯示本發明之一實施形態中的雙頻疊加方式之電容耦合型電漿處理裝置的構成之剖面圖。 FIG. 1 is a cross-sectional view showing a configuration of a capacitive coupling type plasma processing apparatus of a dual-frequency superimposition method according to an embodiment of the present invention.

圖2係顯示對電漿產生用之射頻施加高/低的脈波調變之情況的各部波形之典型組合的波形圖。 FIG. 2 is a waveform diagram showing a typical combination of waveforms in the case where high / low pulse wave modulation is applied to the RF for plasma generation.

圖3係顯示電漿產生用之射頻電源及匹配器的構成之方塊圖。 Fig. 3 is a block diagram showing the configuration of a radio frequency power supply and a matcher for plasma generation.

圖4A係顯示圖3之匹配器所具備的阻抗感測器之一構成例的方塊圖。 FIG. 4A is a block diagram showing a configuration example of an impedance sensor provided in the matching device of FIG. 3.

圖4B係顯示上述阻抗感測器之其他構成例的方塊圖。 FIG. 4B is a block diagram showing another configuration example of the impedance sensor.

圖5A係顯示將實施形態中加權平均運算之權重變數K選擇為使K=1時的匹配作用之史密斯圖。 FIG. 5A is a Smith chart showing the matching effect when the weighting variable K of the weighted average operation in the embodiment is selected such that K = 1.

圖5B係顯示將加權平均運算之權重變數K選擇為使0.5<K<1時的匹配作用之史密斯圖。 FIG. 5B is a Smith chart showing the matching effect when the weighted variable K of the weighted average operation is selected such that 0.5 <K <1.

圖6A係顯示選擇使K=1時之各部波形的波形圖。 FIG. 6A is a waveform diagram showing the waveforms of each part when K = 1 is selected.

圖6B係顯示選擇使0.5<K<1時之各部波形的波形圖。 FIG. 6B is a waveform diagram showing the waveforms of each part when 0.5 <K <1 is selected.

圖7係顯示圖3之射頻輸出控制部內的構成之方塊圖。 FIG. 7 is a block diagram showing a configuration in the RF output control section of FIG. 3. FIG.

圖8係顯示圖7之RF功率監測器及電源控制部的構成之方塊圖。 FIG. 8 is a block diagram showing the configuration of the RF power monitor and the power control section of FIG. 7.

圖9係用於說明實施例中之HARC製程的剖面圖。 FIG. 9 is a cross-sectional view for explaining the HARC process in the embodiment.

圖10A係顯示以實施例的第1實驗獲得之一製程特性(蝕刻量)的脈波關閉期間相依性之圖表。 FIG. 10A is a graph showing the dependence of the pulse wave off period of one process characteristic (etching amount) obtained in the first experiment of the example.

圖10B係顯示以第1實驗獲得之一製程特性(縮徑(necking)CD)的脈波關閉期間相依性之圖表。 FIG. 10B is a graph showing the dependence of the pulse wave closing period on one of the process characteristics (necking CD) obtained in the first experiment.

圖10C係顯示以第1實驗獲得之一製程特性(中間Ox彎曲(bowing)CD)的脈波關閉期間相依性之圖表。 FIG. 10C is a graph showing the dependence of the pulse wave closing period of one of the process characteristics (middle Ox bowing CD) obtained in the first experiment.

圖10D係顯示以第1實驗獲得之一製程特性(選擇比)的脈波關閉期間相依性之圖表。 FIG. 10D is a graph showing the dependence of the pulse-off period of one of the process characteristics (selection ratio) obtained in the first experiment.

圖10E係顯示以第1實驗獲得之一製程特性(深寬比變化率)的脈波關閉期間相依性之圖表。 FIG. 10E is a graph showing the dependence of the pulse wave closing period on one of the process characteristics (the aspect ratio change rate) obtained in the first experiment.

圖11A係顯示以實施例2的第2實驗獲得之一製程特性(蝕刻量)的上部DC電壓相依性之圖表。 FIG. 11A is a graph showing the upper DC voltage dependency of one process characteristic (etching amount) obtained by the second experiment of Example 2. FIG.

圖11B係顯示以第2實驗獲得之一製程特性(縮徑CD)的上部DC電壓相依性之圖表。 FIG. 11B is a graph showing the upper DC voltage dependency of a process characteristic (reduced diameter CD) obtained by the second experiment.

圖11C係顯示以第2實驗獲得之一製程特性(中間Ox彎曲CD)的上部DC電壓相依性之圖表。 FIG. 11C is a graph showing the upper DC voltage dependency of one of the process characteristics (middle Ox bending CD) obtained in the second experiment.

圖11D係顯示以第2實驗獲得之一製程特性(選擇比)的上部DC電壓相依性之圖表。 FIG. 11D is a graph showing the upper DC voltage dependency of one process characteristic (selection ratio) obtained in the second experiment.

圖11E係顯示以第2實驗獲得之一製程特性(深寬比變化率)的上部DC電壓相依性之圖表。 FIG. 11E is a graph showing the upper DC voltage dependency of one of the process characteristics (aspect ratio change) obtained in the second experiment.

圖12係顯示射頻電源中可設定的負載功率與反射波功率之關係的圖表。 Fig. 12 is a graph showing the relationship between the load power that can be set in the RF power supply and the reflected wave power.

圖13係用於說明在對電漿產生用之射頻及離子導入用之射頻雙方施加開/關的脈波調變之情況,產生上部電極內部的異常放電之機制的圖。 FIG. 13 is a diagram for explaining a mechanism of generating an abnormal discharge inside the upper electrode when pulse wave modulation of on / off is applied to both the RF for plasma generation and the RF for ion introduction.

圖14係用於說明在對電漿產生用之射頻施加高/低的脈波調變,對離子導入用之射頻施加開/關的脈波調變之情況,未產生上部電極內部的異常放電之機制的圖。 FIG. 14 is a diagram for explaining a case where a high / low pulse wave modulation is applied to a radio frequency for plasma generation, and an on / off pulse wave modulation is applied to a radio frequency for ion introduction, and no abnormal discharge inside the upper electrode is generated. Diagram of mechanism.

圖15係顯示在圖1之電漿處理裝置中,產生上部電極內部的異常放電時所獲得之監測資訊的一例之圖。 FIG. 15 is a diagram showing an example of monitoring information obtained when an abnormal discharge inside the upper electrode occurs in the plasma processing apparatus of FIG. 1. FIG.

圖16係顯示在圖1之電漿處理裝置中,未產生上部電極內部的異常放電時所獲得之監測資訊的一例之圖。 16 is a diagram showing an example of monitoring information obtained when the abnormal discharge inside the upper electrode is not generated in the plasma processing apparatus of FIG. 1.

圖17係顯示在圖1之電漿處理裝置中,施行關於上部電極內部的異常放電之發生的有無之一實驗結果的圖。 FIG. 17 is a graph showing an experimental result of the presence or absence of occurrence of abnormal discharge inside the upper electrode in the plasma processing apparatus of FIG. 1.

以下,參考附圖說明本發明之較佳實施形態。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

[電漿處理裝置的構成] [Configuration of Plasma Processing Device]

於圖1,顯示本發明之一實施形態中的電漿處理裝置的構成。此電漿處理裝置,作為下部雙射頻重疊施加方式之電容耦合型(平行平板型)電漿蝕刻裝置而構成,具有例如由表面經氧化鋁膜處理(陽極氧化處理)的鋁所構成之圓筒形的真空腔室(處理容器)10。腔室10接地。 FIG. 1 shows a configuration of a plasma processing apparatus according to an embodiment of the present invention. This plasma processing apparatus is constituted as a capacitive coupling (parallel flat plate) plasma etching apparatus of a lower dual radio frequency overlapping application method, and has, for example, a cylinder made of aluminum whose surface is treated with an aluminum oxide film (anodized). Shaped vacuum chamber (processing container) 10. The chamber 10 is grounded.

於腔室10之底部,隔著陶瓷等之絕緣板12配置圓柱狀的基座支持台14,於此基座支持台14上方設置例如由鋁構成之基座16。基座16(第一電極)構成下部電極,於其上方作為被處理體載置例如半導體晶圓W。 A cylindrical base support table 14 is arranged at the bottom of the chamber 10 through an insulating plate 12 made of ceramics or the like, and a base 16 made of, for example, aluminum is provided above the base support table 14. The susceptor 16 (first electrode) constitutes a lower electrode, and a semiconductor wafer W is mounted on the susceptor 16 as a processing object, for example.

於基座16的頂面設置用於固持半導體晶圓W之靜電吸盤18。此一靜電吸盤18係將由導電膜構成之電極20夾入一對絕緣層或絕緣片間,電極20藉由開關22而與直流電源24電性連接。可藉由來自直流電源24之直流電壓,而以靜電吸附力將半導體晶圓W固持在靜電吸盤18。於靜電吸盤18的周圍在基座16的頂面,配置用於提高蝕刻之均勻性的例如矽構成之對焦環26。於基座16及基座支持台14的側面,貼附例如由石英構成之圓筒狀的內壁構件28。 An electrostatic chuck 18 for holding a semiconductor wafer W is provided on the top surface of the base 16. The electrostatic chuck 18 sandwiches an electrode 20 made of a conductive film between a pair of insulating layers or sheets. The electrode 20 is electrically connected to the DC power source 24 through a switch 22. The semiconductor wafer W can be held on the electrostatic chuck 18 with an electrostatic attraction force by a DC voltage from the DC power source 24. A focusing ring 26 made of, for example, silicon is arranged around the electrostatic chuck 18 on the top surface of the base 16 to improve the uniformity of etching. A cylindrical inner wall member 28 made of, for example, quartz is attached to the sides of the base 16 and the base support 14.

於基座支持台14之內部,設置例如於圓周方向延伸的冷媒室30。於此一冷媒室30,從外接之急冷器單元(未圖示)通過配管32a、32b循環供給既定溫度的冷媒例如冷卻水(cw)。可藉由冷媒的溫度控制基座16上之半導體晶圓W的處理溫度。進一步,將來自熱傳氣體供給機構(未圖示)的熱傳氣體例如He氣體,通過氣體供給線34對靜電吸盤18的頂面與半導體晶圓W的背面之間供給。 A refrigerant chamber 30 extending in the circumferential direction is provided inside the base support table 14, for example. In this refrigerant chamber 30, a refrigerant at a predetermined temperature, such as cooling water (cw), is circulated and supplied from an external quench unit (not shown) through pipes 32a and 32b. The processing temperature of the semiconductor wafer W on the susceptor 16 can be controlled by the temperature of the refrigerant. Further, a heat transfer gas such as He gas from a heat transfer gas supply mechanism (not shown) is supplied between the top surface of the electrostatic chuck 18 and the back surface of the semiconductor wafer W through a gas supply line 34.

於基座16,分別藉由匹配器40、42及共通的供電導體(例如供電棒)44而與射頻電源36、38電性連接。一方之射頻電源36(第一射頻電源),輸出適合產生電漿之一定頻率fHF(例如40MHz)的射頻HF。另一方之射頻電源38(第二射頻電源),輸出適合將離子自電漿往基座16上的半導體晶圓W導入之一定頻率fLF(例如12.88MHz)的射頻LF。 The base 16 is electrically connected to the RF power sources 36 and 38 through the matching devices 40 and 42 and a common power supply conductor (such as a power supply rod) 44 respectively. One radio frequency power source 36 (first radio frequency power source) outputs radio frequency HF of a certain frequency f HF (for example, 40 MHz) suitable for generating plasma. The other radio frequency power source 38 (second radio frequency power source) outputs a radio frequency LF of a certain frequency f LF (for example, 12.88 MHz) suitable for introducing ions from the plasma to the semiconductor wafer W on the base 16.

如此地,匹配器40及供電棒44,構成自射頻電源36將電漿產生用之射頻HF傳送至基座16的射頻供電線(射頻傳送路)43之一部分。另一方面,匹配器42及供電棒44,構成自射頻電源38將離子導入用之射頻LF傳送至基座16的射頻供電線(射頻傳送路)45之一部分。 In this way, the matcher 40 and the power supply rod 44 constitute a part of the RF power supply line (RF transmission line) 43 that transmits the RF HF for plasma generation from the RF power source 36 to the base 16. On the other hand, the matcher 42 and the power supply rod 44 constitute a part of a radio frequency power supply line (radio frequency transmission path) 45 that transmits radio frequency LF for ion introduction from the radio frequency power source 38 to the base 16.

於腔室10之頂棚,與基座16平行而互相面向地設置上部電極46。此一上部電極46係以如下元件構成:電極板48,具有多個氣體噴出孔48a,例如由Si、SiC等含矽材質構成;及電極支持體50,以可任意裝卸的方式支持此電極板48,由導電材料例如表面經氧化鋁膜處理的鋁構成。於此上部電極46與基座16之間形成處理空間或電漿產生空間PA。 On the ceiling of the chamber 10, an upper electrode 46 is provided parallel to the base 16 and facing each other. This upper electrode 46 is composed of an electrode plate 48 having a plurality of gas ejection holes 48a, for example, made of a silicon-containing material such as Si, SiC, and the like, and an electrode support 50 supporting the electrode plate in a detachable manner 48, composed of a conductive material such as aluminum whose surface is treated with an aluminum oxide film. A processing space or a plasma generation space PA is formed between the upper electrode 46 and the base 16.

電極支持體50,於其內部具有氣體緩衝室52,並於其底面具有自氣體緩衝室52起與電極板48之氣體噴出孔48a連通的多個通氣孔50a。於氣體緩衝室52藉由氣體供給管54而與處理氣體供給源56連接。於處理氣體供給源56,設置質量流量控制器(MFC)58及開閉閥60。若將既定的處理氣體(蝕刻氣體)自處理氣體供給源56導入至氣體緩衝室52,則處理氣體自電極板48之氣體噴出孔48a朝向 基座16上之半導體晶圓W往電漿產生空間PA沖淋狀地噴出。如此地,上部電極46(第二電極),兼作用於對電漿產生空間PA供給處理氣體的沖淋頭。 The electrode support 50 has a gas buffer chamber 52 inside, and a plurality of vent holes 50 a communicating with the gas ejection holes 48 a of the electrode plate 48 from the gas buffer chamber 52 on the bottom surface thereof. The gas buffer chamber 52 is connected to a processing gas supply source 56 via a gas supply pipe 54. A process gas supply source 56 is provided with a mass flow controller (MFC) 58 and an on-off valve 60. When a predetermined processing gas (etching gas) is introduced from the processing gas supply source 56 into the gas buffer chamber 52, the processing gas is directed from the gas ejection hole 48a of the electrode plate 48. The semiconductor wafer W on the susceptor 16 is sprayed out in a shower PA toward the plasma generation space PA. In this way, the upper electrode 46 (second electrode) also functions as a shower head that supplies the processing gas to the plasma generation space PA.

此外,於電極支持體50內部亦設置有流通冷媒例如冷卻水之通路(未圖示),以外部之急冷器單元,藉由冷媒將上部電極46全體,特別是電極板48,調節為既定溫度。進一步,為了使對於上部電極46之溫度控制進一步穩定化,亦可為在電極支持體50內部或頂面安裝例如由電阻發熱元件構成之加熱器(未圖示)的構成。 In addition, a passage (not shown) for circulating a refrigerant such as cooling water is also provided inside the electrode support 50, and the entire upper electrode 46, especially the electrode plate 48, is adjusted to a predetermined temperature by an external quencher unit. . Furthermore, in order to further stabilize the temperature control of the upper electrode 46, a configuration may be adopted in which a heater (not shown) made of, for example, a resistance heating element is mounted inside or on the top surface of the electrode support 50.

此一實施形態中,具備用於對上部電極46施加負極性之直流電壓Vdc的直流電源部62。因此,上部電極46於腔室10的上部藉由環狀的絕緣體64而以電性浮接狀態安裝。環狀絕緣體64,例如由氧化鋁(Al2O3)構成,氣密性地封閉上部電極46的外周面與腔室10的側壁之間的間隙,將上部電極46不接地而物理性地支持。 In this embodiment, a DC power supply unit 62 is provided for applying a DC voltage V dc having a negative polarity to the upper electrode 46. Therefore, the upper electrode 46 is mounted on the upper portion of the chamber 10 in an electrically floating state by a ring-shaped insulator 64. The ring-shaped insulator 64 is made of, for example, alumina (Al 2 O 3 ), hermetically closes the gap between the outer peripheral surface of the upper electrode 46 and the side wall of the chamber 10, and physically supports the upper electrode 46 without being grounded. .

直流電源部62,具有輸出電壓(絕對值)不同的2個直流電源66、68,以及對上部電極46選擇性地連接直流電源66、68的開關70。直流電源66輸出絕對值相對大的負極性之直流電壓Vdc1(例如-2000~-1000V),直流電源68輸出絕對值相對小的負極性之直流電壓Vdc2(例如-300~0V)。開關70,接收來自主控制部72的切換控制訊號SW而動作,在將直流電源66與上部電極46連接的第一開關位置、及將直流電源68與上部電極46連接的第二開關位置之間切換。進一步,開關70,亦可具有將上部電極46與直流電源66、68皆隔斷之第三開關位置。 The DC power supply unit 62 includes two DC power supplies 66 and 68 having different output voltages (absolute values), and a switch 70 that selectively connects the DC power supplies 66 and 68 to the upper electrode 46. The DC power source 66 outputs a negative polarity DC voltage V dc1 (eg, -2000 ~ -1000V) with a relatively large absolute value, and the DC power source 68 outputs a negative polarity DC voltage V dc2 (eg, -300 ~ 0V) with a relatively small absolute value. The switch 70 is operated by receiving the switching control signal SW from the main control unit 72, and is between a first switching position where the DC power source 66 is connected to the upper electrode 46 and a second switching position where the DC power source 68 is connected to the upper electrode 46. Switch. Further, the switch 70 may have a third switch position that blocks the upper electrode 46 from the DC power sources 66 and 68.

在開關70與上部電極46之間設置於直流供電線74中途的濾波電路76,構成為使來自直流電源部62之直流電壓Vdc1(Vdc2)維持不變地通過而施加於上部電極46,另一方面使自基座16起通過處理空間PA及上部電極46而進入直流供電線74之射頻,往接地線流通而不流往直流電源部62側。 A filter circuit 76 provided in the middle of the DC power supply line 74 between the switch 70 and the upper electrode 46 is configured to pass the DC voltage V dc1 (V dc2 ) from the DC power supply unit 62 while passing through it, and is applied to the upper electrode 46. On the other hand, the radio frequency that has entered the DC power supply line 74 through the processing space PA and the upper electrode 46 from the base 16 flows to the ground line and does not flow to the DC power supply portion 62 side.

此外,在腔室10內於面向電漿產生空間PA之適當處,安裝例如由Si、SiC等導電性材料構成之DC接地零件(未圖示)。此DC接地零件,藉由接地線(未圖示)而一持保持接地。 In addition, in the chamber 10, a DC grounding member (not shown) made of a conductive material such as Si, SiC and the like is mounted at an appropriate place facing the plasma generation space PA. This DC grounding part is kept grounded by a ground wire (not shown).

形成在基座16及基座支持台14與腔室10的側壁間之環狀空間成為排氣空間,於此排氣空間的底部設置腔室10之排氣口78。於此排氣口78藉由排氣管80而與排氣裝置82連接。排氣裝置82,具有渦輪分子泵等真空泵,可將腔室10之室內,特別是將電漿產生空間PA,減壓至希望的真空度為止。此外,於腔室10的側壁安裝開閉半導體晶圓W之搬出入口84的閘閥86。 An annular space formed between the base 16 and the base support 14 and the side wall of the chamber 10 becomes an exhaust space, and an exhaust port 78 of the chamber 10 is provided at the bottom of the exhaust space. Here, the exhaust port 78 is connected to the exhaust device 82 through an exhaust pipe 80. The exhaust device 82 has a vacuum pump such as a turbo molecular pump, and can decompress the interior of the chamber 10, especially the plasma generation space PA, to a desired vacuum degree. In addition, a gate valve 86 that opens and closes the loading / unloading port 84 of the semiconductor wafer W is mounted on the side wall of the chamber 10.

主控制部72,包含一或多數個微電腦,依據收納於外部記憶體或內部記憶體之軟體(程式)及配方資訊,控制裝置內之各部,特別是射頻電源36與38、匹配器40與42、MFC58、開閉閥60、直流電源部62、排氣裝置82等之個別的動作及裝置全體的動作(程序)。 The main control section 72 includes one or more microcomputers, and controls various sections in the device, especially the RF power sources 36 and 38, and the matchers 40 and 42 according to the software (program) and recipe information stored in the external memory or the internal memory. , MFC58, on-off valve 60, DC power supply unit 62, exhaust device 82, etc., and the entire operation (program) of the device.

此外,主控制部72,亦與包含鍵盤等輸入裝置及液晶顯示器等顯示裝置之人機介面用之操作面板(未圖示)、及收納或儲存各種程式或配方、設定值等各種資料之外部記憶裝置(未圖示)等連接。此一實施形態中,雖將主控制部72顯示為1個控制單元,但亦可採用複數控制單元並列地或階層地分擔主控制部72之功能的形態。 In addition, the main control unit 72 is also connected to an operation panel (not shown) for a human-machine interface including an input device such as a keyboard and a display device such as a liquid crystal display, and an external device for storing or storing various programs, recipes, and setting data A memory device (not shown) and the like. In this embodiment, although the main control unit 72 is shown as one control unit, a form in which a plurality of control units share the functions of the main control unit 72 in parallel or hierarchically may be adopted.

此一電容耦合型電漿蝕刻裝置中之單片式乾蝕刻的基本動作如下述般地施行。首先,使閘閥86為開狀態而將加工對象之半導體晶圓W搬入腔室10內,載置於靜電吸盤18上。接著,自處理氣體供給源56將處理氣體即蝕刻氣體(一般為混合氣體)以既定的流量及流量比導入腔室10內,以排氣裝置82所進行之真空排氣使腔室10內的壓力為設定值。進一步,自射頻電源36、38分別以既定的功率將電漿產生用之射頻HF(40MHz)及離子導入用之射頻LF(12.88MHz)重疊而施加於基座16。此外,自直流電源24將直流電壓施加於靜電吸盤18之電極20,將半導體晶圓W固定在靜電吸盤18上。自上部電極46之沖淋頭噴吐出的蝕刻氣體在兩電極46、16間之射頻電場下方放電,於處理空間PA內產生電漿。藉由此電漿所包含之自由基、離子蝕刻半導體晶圓W的主面之被加工膜。 The basic operation of the monolithic dry etching in this capacitively coupled plasma etching apparatus is performed as follows. First, the gate valve 86 is opened, and the semiconductor wafer W to be processed is carried into the chamber 10 and placed on the electrostatic chuck 18. Next, an etching gas (generally a mixed gas), which is a processing gas, is introduced into the chamber 10 from the processing gas supply source 56 at a predetermined flow rate and flow rate. The pressure is the set value. Further, from the RF power sources 36 and 38, a radio frequency HF (40 MHz) for plasma generation and a radio frequency LF (12.88 MHz) for ion introduction are superimposed on the base 16 at a predetermined power, respectively. In addition, a DC voltage is applied from the DC power source 24 to the electrode 20 of the electrostatic chuck 18, and the semiconductor wafer W is fixed to the electrostatic chuck 18. The etching gas sprayed from the shower head of the upper electrode 46 is discharged under the radio frequency electric field between the two electrodes 46 and 16 to generate a plasma in the processing space PA. The processed film of the main surface of the semiconductor wafer W is ion-etched by the radicals contained in the plasma.

此電漿蝕刻裝置中,以下第一(電漿產生系統)功率調變方式,可使用在既定的蝕刻製程:將從射頻電源36輸出的電漿產生用之射頻HF的功率,以具有在例如1kHz~50kHz的範圍內選擇之一定頻率fS及可變之工作比DS的調變脈波MS予以調變。 In this plasma etching apparatus, the following first (plasma generation system) power modulation method can be used in a predetermined etching process: the power of radio frequency HF used for plasma generation from the radio frequency power source 36 is provided in, for example, The modulation pulse MS with a certain frequency f S and a variable operating ratio D S selected in the range of 1 kHz to 50 kHz is modulated.

於此第一功率調變方式,具有開/關的脈波調變與高/低的脈波調變之兩種模式。此處,開/關的脈波調變為,因應調變脈波MS之工作比,在脈波開啟的期間內使電漿產生用之射頻HF的功率為既定位準之開啟狀態,在脈波關閉的期間內使射頻HF的功率為零位準之關閉狀態。另一方面,高/低的脈波調變為,因應調變脈波MS之工作比,在脈波開啟期間內將射頻HF的功率控制在高位準,在脈波關閉期間內將射頻HF的功率控制在較高位準更低之低位準。低位準,選擇較維持電漿產生狀態所必需之最低位準更高的值。此外,低位準,一般選擇較高位準顯著更低的值(1/2以下)。 In this first power modulation mode, there are two modes of on / off pulse wave modulation and high / low pulse wave modulation. Here, the on / off pulse wave modulation is changed according to the modulation of the pulse wave MS working ratio, so that the power of the radio frequency HF used for plasma generation is set to the on-target state in the pulse pulse on period. During the period when the wave is turned off, the power of the radio frequency HF is turned off at the zero level. On the other hand, the high / low pulse wave modulation becomes, in response to modulating the working ratio of the pulse wave MS, the power of the RF HF is controlled to a high level during the pulse wave on period, and the RF HF is adjusted during the pulse wave off period. The power is controlled at a lower level which is higher and lower. Low level, choose a higher value than the lowest level necessary to maintain the state of plasma generation. In addition, for lower levels, higher levels are generally chosen to have significantly lower values (below 1/2).

此外,此電漿蝕刻裝置中,在既定的蝕刻製程,亦可使用將從射頻電源38輸出的離子導入用之射頻LF的功率以調變脈波MS予以調變之第二(離子導入系統)功率調變方式。與第一功率調變方式同樣地,第二功率調變方式亦具有開/關的脈波調變與高/低的脈波調變之兩種模式。 In addition, in this plasma etching apparatus, in a predetermined etching process, the power of the radio frequency LF for ion introduction output from the radio frequency power source 38 can also be used to modulate the pulse wave MS second (ion introduction system) Power modulation mode. Similar to the first power modulation method, the second power modulation method also has two modes of on / off pulse wave modulation and high / low pulse wave modulation.

圖2,顯示在電漿產生系統及離子導入系統雙方同步而同時施行脈波調變之情況的各部波形之一例。如圖所示,在調變脈波MS的周期TC,脈波開啟期間(第一期間)Ton及脈波關閉期間(第二期間)Toff之間,具有TC=Ton+Toff之關係。若使調變脈波MS之頻率為fS,則TC=1/fS,工作比DS為DS=Ton/(Ton+Toff)。 FIG. 2 shows an example of waveforms of various parts in a case where the plasma generation system and the ion introduction system are synchronized and pulse wave modulation is performed simultaneously. As shown in the figure, between the period T C of the modulation pulse wave MS, the pulse wave on period (the first period) T on and the pulse wave off period (the second period) T off , there is T C = T on + T off relationship. If the frequency of the modulation pulse MS is f S , then T C = 1 / f S and the operating ratio D S is D S = T on / (T on + T off ).

圖示的例子為,對電漿產生用之射頻HF施行高/低的脈波調變,對離子導入用之射頻LF施行開/關的脈波調變之情況。進一步,亦可使自直流電源部62對上部電極46施加之直流電壓Vdc與調變脈波MS同步。圖示之例子中,對上部電 極46,在脈波開啟期間Ton中施加絕對值小的直流電壓Vdc2,在脈波關閉期間Toff中施加絕對值大的直流電壓Vdc1The example shown in the figure shows a case where the RF HF for plasma generation is subjected to high / low pulse wave modulation, and the RF LF for ion introduction is subjected to on / off pulse wave modulation. Furthermore, the DC voltage V dc applied from the DC power supply unit 62 to the upper electrode 46 may be synchronized with the modulation pulse MS. In the example shown in the figure, a DC voltage V dc2 having a small absolute value is applied to the upper electrode 46 during the pulse-on period T on , and a DC voltage V dc1 having a large absolute value is applied to the pulse-off period T off .

[射頻電源及匹配器的構成] [Composition of RF power supply and matching device]

圖3,顯示此一實施形態的電漿產生系統之射頻電源36及匹配器40的構成。 FIG. 3 shows the configuration of the RF power source 36 and the matching device 40 of the plasma generating system according to this embodiment.

射頻電源36,具備:RF振盪器90A,一般為製造適合產生具有正弦波波形之電漿的一定頻率(例如40MHz)之基本射頻;功率放大器92A,將從此一RF振盪器90A輸出之基本射頻的功率以可控制之增益或放大率放大;以及電源控制部94A,依據來自主控制部72的控制訊號而直接控制RF振盪器90A及功率放大器92A。自主控制部72起,不僅將指示RF之輸出模式的控制訊號、調變脈波MS給予電源控制部94A,亦將一般之電源開啟關閉、功率連鎖關係等的控制訊號及功率設定值等資料給予電源控制部94A。對電漿產生用之射頻HF施行脈波調變(特別是高/低的脈波調變)時,在主控制部72的控制下電源控制部94A(第一射頻功率調變部)構成脈波調變部。 The RF power source 36 includes: an RF oscillator 90A, which is generally used to produce a basic radio frequency of a certain frequency (for example, 40 MHz) suitable for generating a plasma with a sine wave waveform; a power amplifier 92A, which is the basic RF output from this RF oscillator 90A The power is amplified with a controllable gain or magnification; and the power supply control section 94A directly controls the RF oscillator 90A and the power amplifier 92A according to a control signal from the main control section 72. Since the autonomous control unit 72, not only the control signal indicating the output mode of RF and the modulation pulse MS are given to the power control unit 94A, but also the control signal and power setting value of the general power on and off, power chain relationship, etc. Power control unit 94A. When pulse wave modulation (especially high / low pulse wave modulation) is performed on the RF HF for plasma generation, the power supply control section 94A (the first RF power modulation section) forms a pulse under the control of the main control section 72. Wave modulation department.

於射頻電源36之單元內,亦具備RF功率監測器96A。此RF功率監測器96A,雖圖示省略,但具有方向性結合器、行進波功率監測器部、及反射波功率監測器部。此處,方向性結合器,取出與在射頻供電線43上往順方向傳播之行進波的功率及往逆方向傳播之反射波的功率分別對應之訊號。行進波功率監測器部,依據藉由方向性結合器取出之行進波功率檢測訊號,產生表示射頻供電線43上的行進波所包含之行進波的功率之行進波功率測定值訊號。此行進波功率 測定值訊號,在功率回授控制用途上給予至射頻電源36內之電源控制部94A,並在顯示器顯示用途上給予至主控制部72。反射波功率監測器部,測定自腔室10內之電漿起返回射頻電源36之反射波的功率。藉由反射波功率監測器部獲得之反射波功率測定值,在顯示器顯示用途上給予至主控制部72,並作為功率放大器保護用之監測值給予至射頻電源36內的電源控制部94A。 An RF power monitor 96A is also provided in the unit of the RF power source 36. Although not shown in the figure, this RF power monitor 96A includes a directional coupler, a traveling wave power monitor section, and a reflected wave power monitor section. Here, the directional coupler takes out signals corresponding to the power of the traveling wave propagating in the forward direction and the power of the reflected wave propagating in the reverse direction on the RF power supply line 43 respectively. The traveling wave power monitor unit generates a traveling wave power measurement value signal representing the power of the traveling wave included in the traveling wave on the radio frequency power supply line 43 based on the traveling wave power detection signal taken out by the directional coupler. Traveling wave power The measured value signal is given to the power control unit 94A in the radio frequency power supply 36 for power feedback control purposes, and is given to the main control unit 72 for display display purposes. The reflected wave power monitor unit measures the power of the reflected wave from the plasma in the chamber 10 and returns to the radio frequency power source 36. The reflected wave power measurement value obtained by the reflected wave power monitor unit is given to the main control unit 72 for display use, and is given to the power source control unit 94A in the radio frequency power supply 36 as a monitor value for power amplifier protection.

匹配器40,具有:匹配電路98A,與射頻供電線43連接,具有多數個例如2個可控制的電抗元件(例如可變電容器或可變電感器)XH1、XH2;匹配控制器104A,藉由致動器例如馬達(M)100A、102A控制電抗元件XH1、XH2的電抗;阻抗感測器106A,於射頻供電線43上測定包含匹配電路98A之阻抗在內的負載之阻抗;Vpp檢測器107A,於匹配電路98A之輸出端子側測定射頻供電線43上之射頻HF的峰對峰值(Peak-to-peak value)Vpp。關於阻抗感測器106A之內部的構成及作用,以及Vpp檢測器107A的作用,於後述詳細說明。 The matcher 40 includes a matching circuit 98A connected to the radio frequency power supply line 43 and has a plurality of, for example, two controllable reactance elements (such as a variable capacitor or a variable inductor) X H1 , X H2 ; a matching controller 104A The reactance of the reactance elements X H1 and X H2 is controlled by an actuator such as a motor (M) 100A and 102A; the impedance sensor 106A measures the impedance of the load including the impedance of the matching circuit 98A on the RF power line 43 ; V pp detector 107A measures the peak-to-peak value V pp of the radio frequency HF on the radio frequency power supply line 43 on the output terminal side of the matching circuit 98A. The internal configuration and function of the impedance sensor 106A and the function of the V pp detector 107A will be described in detail later.

離子導入系統之射頻電源38(圖1),僅射頻LF之頻率與射頻HF之頻率相異,而與上述電漿產生系統之射頻電源36同樣地,具備:RF振盪器90B、功率放大器92B、電源控制部94B及功率監測器96B(以上均未圖示)。此外,匹配器42,亦與電漿產生系統之匹配器40同樣地,具有匹配電路98B、馬達(M)100B與102B、匹配控制器104B、阻抗感測器106B、及Vpp檢測器107B(以上均未圖示)。 The RF power source 38 (Figure 1) of the ion introduction system differs only in the frequency of the RF LF and the RF HF, and is the same as the RF power source 36 of the plasma generation system described above, and includes: an RF oscillator 90B, a power amplifier 92B, The power source control unit 94B and the power monitor 96B (none of which is shown in the figure). In addition, the matching device 42 has a matching circuit 98B, motors (M) 100B and 102B, a matching controller 104B, an impedance sensor 106B, and a V pp detector 107B (the same as the matching device 40 of the plasma generating system). None of the above).

[阻抗感測器的構成] [Composition of the impedance sensor]

圖4A,顯示電漿產生系統之匹配器40所具備的阻抗感測器106A之一構成例。此一阻抗感測器106A,具有RF電壓檢測器110A、RF電流檢測器112A、負載阻抗瞬間值運算電路114A、算術平均值運算電路116A、加權平均值運算電路118A、及移動平均值運算電路120A。 FIG. 4A shows a configuration example of the impedance sensor 106A included in the matching device 40 of the plasma generation system. This impedance sensor 106A includes an RF voltage detector 110A, an RF current detector 112A, a load impedance instantaneous value calculation circuit 114A, an arithmetic average calculation circuit 116A, a weighted average calculation circuit 118A, and a moving average calculation circuit 120A. .

RF電壓檢測器110A及RF電流檢測器112A,於射頻供電線43上分別檢測射頻HF之電壓及電流。負載阻抗瞬間值運算電路114A,依據以RF電壓檢測器110A及RF電流檢測器112A分別獲得之電壓偵測訊號JV及電流偵測訊號JI,而計算射頻供電線43上之負載阻抗Z的瞬間值JZ。負載阻抗瞬間值運算電路114A,雖可為類比電路,但宜以數位電路構成。 The RF voltage detector 110A and the RF current detector 112A respectively detect the voltage and current of the radio frequency HF on the radio frequency power supply line 43. The load impedance instantaneous value calculation circuit 114A calculates the instantaneous value of the load impedance Z on the RF power line 43 based on the voltage detection signal JV and the current detection signal JI obtained by the RF voltage detector 110A and the RF current detector 112A, respectively. JZ. The load impedance instantaneous value calculation circuit 114A may be an analog circuit, but it should be constituted by a digital circuit.

算術平均值運算電路116A,在對電漿產生用之射頻HF施加高/低的脈波調變之情況,於調變脈波MS之各週期中,將在脈波開啟期間Ton內藉由負載阻抗瞬間值運算電路114A獲得之負載阻抗Z的瞬間值JZ以既定取樣頻率fC取樣,計算脈波開啟期間Ton內之負載阻抗Z的算術平均值aZon,並將在脈波關閉期間Toff內藉由負載阻抗瞬間值運算電路114A獲得之負載阻抗Z的瞬間值JZ以上述取樣頻率fC取樣,計算脈波關閉期間Toff內之負載阻抗Z的算術平均值aZoffWhen the arithmetic mean calculation circuit 116A applies high / low pulse wave modulation to the radio frequency HF for plasma generation, in each cycle of the modulation pulse wave MS, the pulse wave ON period T on is determined by The instantaneous value of the load impedance Z obtained by the load impedance instantaneous value calculation circuit 114A is sampled at a predetermined sampling frequency f C , and the arithmetic mean value aZ on of the load impedance Z within the pulse on period T on is calculated, and will be during the pulse off period. T off by the instantaneous value of the load impedance calculating circuit 114A to obtain the instantaneous value of the load impedance Z of the above-described JZ sampling sampling frequency f C, the pulse wave calculating the arithmetic mean of the load impedance in the off period T oFF of the Z aZ off.

在對電漿產生用之射頻HF施加開/關的脈波調變之情況,算術平均值運算電路116A,於調變脈波MS之各週期中,僅在脈波開啟期間Ton內將藉由負載阻抗瞬間值運算電路114A獲得之負載阻抗Z的瞬間值JZ以上述既定取樣頻率fC取樣,計算脈波開啟期間Ton中之負載阻抗Z的算術平均值aZonIn the case where pulse wave modulation is applied to the RF HF for plasma generation, the arithmetic mean calculation circuit 116A, in each period of the modulation pulse wave MS, will borrow only within the pulse on period T on the momentary load impedance value calculation circuits 114A to obtain the instantaneous value of the load impedance Z of JZ to the predetermined sampling sampling frequency f C, the pulse wave calculating the arithmetic mean of the load impedance turned on in the period T is Z aZ on.

主控制部72(圖1),與調變脈波MS同步而將指定取樣時間或監測時間的監測訊號JS、及取樣用的時脈CK1,給予算術平均值運算電路116A。此處,監測訊號JS,在對電漿產生用之射頻HF施加高/低的脈波調變之情況,於脈波開啟期間Ton及脈波關閉期間Toff的雙方分別指定後述之監測時間T1、T2,在對射頻HF施加開/關的脈波調變之情況,僅指定脈波開啟期間Ton用之監測期間T1。算術平均值運算電路116A,與數十MHz的取樣時脈CK1同步而要求高速且大量的訊號處理,故可適宜使用FPGA(Field Programmable Gate Array,現場可程式閘陣列)。 The main control unit 72 (FIG. 1), in synchronization with the modulation pulse MS, supplies the monitoring signal JS specifying the sampling time or monitoring time and the clock CK 1 for sampling to the arithmetic mean calculation circuit 116A. Here, in the case where the monitoring signal JS applies high / low pulse wave modulation to the RF HF for plasma generation, both the pulse wave on period T on and the pulse wave off period T off specify the monitoring time described later, respectively. T 1 , T 2 , in the case of applying pulse wave modulation on / off to the radio frequency HF, only the monitoring period T 1 for the pulse wave on period T on is specified. The arithmetic mean calculation circuit 116A is synchronized with the sampling clock CK 1 of several tens of MHz and requires high-speed and large-scale signal processing. Therefore, FPGA (Field Programmable Gate Array) can be suitably used.

加權平均值運算電路118A,宜以CPU構成,在對電漿產生用之射頻HF施加高/低的脈波調變之情況,將藉由算術平均值運算電路116A獲得的脈波開啟期間Ton中之負載阻抗Z的算術平均值aZon、與脈波關閉期間Toff中之負載阻抗Z的算術平均值aZoff,以希望之權重(權重變數K)加權平均,而求出負載阻抗之一週期的加權平均值bZ。主控制部72,將用於加權平均運算之權重變數K及時脈CK2,給予至加權平均值運算電路118A。 The weighted average calculation circuit 118A is preferably composed of a CPU. When high / low pulse wave modulation is applied to the radio frequency HF for plasma generation, the pulse wave on period T on obtained by the arithmetic average calculation circuit 116A is applied. in the arithmetic mean of the load impedance Z aZ on, T off in arithmetic average of the load impedance Z aZ off during the pulse off, the desired weight to weight (weighting variables K) a weighted average, one obtains the load impedance The weighted average of the period bZ. The main control unit 72 gives the weighted variable K and the clock CK 2 used for the weighted average operation to the weighted average operation circuit 118A.

在對射頻HF施加開/關的脈波調變之情況,加權平均值運算電路118A未運作,而使從算術平均值運算電路116A輸出的脈波開啟期間Ton中之負載阻抗Z的算術平均值aZon,不通過加權平均值運算電路118A而送往後段的移動平均值運算電路120A。 In the case where pulse wave modulation is applied to the RF HF, the weighted average calculation circuit 118A is not operated, and the arithmetic average of the load impedance Z in the pulse on period T on output from the arithmetic average calculation circuit 116A is not operated. The value aZ on is sent to the moving average calculation circuit 120A in the subsequent stage without passing through the weighted average calculation circuit 118A.

移動平均值運算電路120A,宜以CPU構成,在對電漿產生用之射頻HF施加高/低的脈波調變之情況,依據藉由加權平均值運算電路118A獲得之連續多數個負載阻抗Z的一週期加權平均值bZ,而計算負載阻抗Z的移動加權平均值cZ,將此移動加權平均值cZ作為負載阻抗Z的測定值MZ輸出。 The moving average calculation circuit 120A is preferably constituted by a CPU. When high / low pulse wave modulation is applied to the RF HF for plasma generation, based on the continuous majority load impedance Z obtained by the weighted average calculation circuit 118A Weighted average value bZ of one period, and calculate the moving weighted average value cZ of the load impedance Z, and output this moving weighted average value cZ as the measured value MZ of the load impedance Z.

此外,移動平均值運算電路120A,在對射頻HF施加開/關的脈波調變之情況,依據從算術平均值運算電路116A輸出的連續多數個脈波開啟期間Ton中之負載阻抗Z的算術平均值aZon,而計算移動平均值dZ,將此移動平均值dZ作為負載阻抗Z的測定值MZ輸出。主控制部72,將移動區間L及移動間距P的設定值與時脈CK3,給予至移動平均值運算電路120A。 In addition, the moving average calculation circuit 120A, when pulse wave modulation is turned on / off to the radio frequency HF, is based on the load impedance Z in the continuous majority pulse on period T on output from the arithmetic average calculation circuit 116A. arithmetic mean aZ on, dZ calculated moving average, a moving average of this measured value dZ MZ output impedance Z as a load. The main control unit 72 supplies the set values of the moving interval L and the moving pitch P and the clock CK 3 to the moving average calculation circuit 120A.

自移動平均值運算電路120A輸出之負載阻抗的測定值MZ,與時脈CK3同步地更新。一般,在負載側阻抗測定值MZ,含有負載阻抗Z的絕對值及相位的測定值。 MZ from the mobile measurement value of the load impedance of the output average value calculating circuit 120A, CK 3 updated in synchronization with the clock. Generally, the load-side impedance measurement value MZ includes the absolute value and phase measurement value of the load impedance Z.

圖4B,顯示阻抗感測器106A之另一構成例。如圖所示,亦可將加權平均值運算電路118A設置於移動平均值運算電路120A之後段。此一構成例中,在對電漿產生用之射頻HF施加高/低的脈波調變之情況,移動平均值運算電路120A,依據藉由算術平均值運算電路116A獲得之連續多數個(n個)的脈波開啟期間Ton中之負載阻抗Z的算術平均值aZon、及脈波關閉期間Toff中之負載阻抗Z的算術平均值aZoff,而計算脈波開啟期間Ton中之負載阻抗Z的移動平均值eZon、及脈波關閉期間Toff中之負載阻抗Z的移動平均值eZoffFIG. 4B shows another configuration example of the impedance sensor 106A. As shown in the figure, the weighted average calculation circuit 118A may be provided after the moving average calculation circuit 120A. In this configuration example, when high / low pulse wave modulation is applied to the RF HF for plasma generation, the moving average calculation circuit 120A is based on a continuous majority (n during a) pulse wave T on the opening of the arithmetic mean of the load impedance Z aZ on, off, and arithmetic average pulse period T off of the load impedance Z of the aZ off, and turned on during the calculation of pulse in the T on T off the movement of the load impedance Z load impedance Z during the moving average eZ on, and the average value of the pulse wave off eZ off.

加權平均值運算電路118A,將藉由移動平均值運算電路120A獲得的脈波開啟期間Ton中之負載阻抗Z的移動平均值eZon、與脈波關閉期間Toff中之負載阻抗Z的移動平均值eZoff,以上述希望之權重(權重變數K)加權平均,而求出負載阻抗Z的加重移動平均值fZ,將此加重移動平均值fZ作為負載阻抗測定值MZ輸出。 The weighted average calculation circuit 118A shifts the moving average value eZ on of the load impedance Z in the pulse wave on period T on obtained by the moving average calculation circuit 120A and the movement of the load impedance Z in the pulse wave off period T off The average value eZ off is a weighted average with the desired weight (weight variable K), to obtain a weighted moving average fZ of the load impedance Z, and output the weighted moving average fZ as the load impedance measurement value MZ.

在對電漿產生用之射頻HF施加開/關的脈波調變之情況,加權平均值運算電路118A未運作,而將從移動平均值運算電路120A輸出的脈波開啟期間Ton中之負載阻抗Z的移動平均值eZon維持不變地作為負載阻抗測定值MZ輸出。 In the case where pulse wave modulation is applied to the RF HF for plasma generation, the weighted average calculation circuit 118A is not operated, and the load in the pulse on period T on output from the moving average calculation circuit 120A is not operated. The moving average value eZ on of the impedance Z is output as the load impedance measurement value MZ without change.

離子導入系統之匹配器42(圖1),亦與上述電漿產生系統之匹配器40內的阻抗感測器106A同樣地,具備具有如下元件之阻抗感測器106B:RF電壓檢測器110B、RF電流檢測器112B、負載阻抗瞬間值運算電路114B、算術平均值運算電路116B、加權平均值運算電路118B及移動平均值運算電路120B(以上均未圖示)。此一阻抗感測器106B中,亦因應對離子導入用之射頻LF施加的脈波調變之模式(高/低或開/關),而與上述同樣地切換加權平均值運算電路118B及移動平均值運算電路120B內的訊號處理。 The matching device 42 (FIG. 1) of the ion introduction system is the same as the impedance sensor 106A in the matching device 40 of the plasma generation system, and includes an impedance sensor 106B having the following elements: an RF voltage detector 110B, The RF current detector 112B, the load impedance instantaneous value calculation circuit 114B, the arithmetic average calculation circuit 116B, the weighted average calculation circuit 118B, and the moving average calculation circuit 120B (all are not shown above). In this impedance sensor 106B, the mode (high / low or on / off) of the pulse wave modulation applied to the radio frequency LF for ion introduction is switched, and the weighted average calculation circuit 118B and the movement are switched in the same manner as described above. Signal processing in the average calculation circuit 120B.

[匹配器的作用] [The role of the matcher]

此處,說明在對電漿產生用之射頻HF的功率施加高/低的脈波調變之情況的電漿產生系統之匹配器40的作用。另,對離子導入用之射頻LF的功率在同一調變脈波MS下施加開/關的脈波調變。 Here, the function of the matching device 40 of the plasma generation system when high / low pulse wave modulation is applied to the power of the RF HF for plasma generation will be described. In addition, on / off pulse wave modulation is applied to the power of the radio frequency LF for ion introduction under the same modulation pulse wave MS.

此一情況,在電漿產生系統之射頻供電線43上,自射頻電源36起不僅在脈波開啟期間Ton中,在脈波關閉期間Toff中亦朝向腔室10內之電漿負載持續地傳送射頻HF。然而,離子導入系統中與調變脈波MS之工作比同步而開啟關閉射頻LF的功率,故自電漿產生系統之匹配器40可觀察到的電漿負載在脈波開啟期間Ton與脈波關閉期間Toff大幅變化。因此,若將調變脈波MS之頻率設定為高的值(一般為1kHz以上),則在電漿產生系統之匹配器40中,藉由匹配控制器104A之控制通過馬達100A、102A而使電抗元件XH1、XH2的電抗可變的自動匹配動作,變得無法追蹤調變脈波MS。 In this case, on the RF power supply line 43 of the plasma generation system, starting from the RF power source 36, not only during the pulse-on period T on , but also during the pulse-off period T off , the plasma load in the chamber 10 continues. Ground RF HF. However, in the iontophoresis system, the power of the radio frequency LF is turned on and off in synchronization with the modulation of the operating ratio of the pulse wave MS, so the plasma load that can be observed by the matcher 40 of the plasma generation system during the pulse wave turn-on period T on and the pulse T off changes significantly during wave off. Therefore, if the frequency of the modulated pulse wave MS is set to a high value (generally 1 kHz or more), the matching unit 40 of the plasma generating system is controlled by the matching controller 104A through the motors 100A and 102A to make the The reactance of the reactance elements X H1 and X H2 is variable and the automatic matching operation becomes impossible to track the modulation pulse MS.

此一實施形態中,即便調變脈波MS之頻率增高至無法追蹤匹配器40的自動匹配動作之程度,藉由如同後述之阻抗感測器106A內的特殊訊號處理,仍在脈波開啟期間Ton與脈波關閉期間Toff之間調整匹配或錯匹配的程度之平衡,可有效且穩定地運用高/低的脈波調變。 In this embodiment, even if the frequency of the modulated pulse wave MS is increased to such an extent that the automatic matching action of the matcher 40 cannot be tracked, the special signal processing in the impedance sensor 106A described later is still in the pulse wave on period The balance of the degree of matching or mismatch between T on and T off during the pulse wave off period can effectively and stably use high / low pulse wave modulation.

此一情況,主控制部72,對電漿產生系統之射頻電源36,以將因應調變脈波MS之工作比而交互重複預先設定之高位準的功率與預先設定之低位準的功率之射頻HF輸出的方式,給予電源控制部94A既定的控制訊號、設定值、定時訊號。而後,主控制部72,對匹配器40內的阻抗感測器106A,給予高/低的脈波調變所需的監測訊號JS、權重變數K、移動平均值運算用之設定值L與P、及時脈CK1、CK2、CK3In this case, the main control unit 72, for the RF power source 36 of the plasma generation system, alternately repeats the preset high-level power and the preset low-level power radio frequency in response to the modulation of the operating ratio of the pulse wave MS. The HF output method is given a predetermined control signal, set value, and timing signal to the power supply control section 94A. Then, the main control unit 72 gives the monitoring signal JS, the weight variable K, and the setting values L and P for the moving average calculation to the impedance sensor 106A in the matcher 40 for the high / low pulse wave modulation. , and clock CK 1, CK 2, CK 3 .

另一方面,主控制部72,對離子導入系統之射頻電源38,以使射頻LF的功率因應調變脈波MS之工作比而交互重複預先設定的開啟位準(開啟狀態)與零位準(關閉狀態)的方式,給予電源控制部94B既定的控制訊號、設定值、定時訊號。而後,主控制部72,對匹配器42內的阻抗感測器106B,給予開/關的脈波調變所需的監測訊號JS、移動平均值運算用之設定值L與P、及時脈CK1、CK2、CK3。但是,未給予權重變數K。 On the other hand, the main control unit 72 repeats the preset on-level (on-state) and zero-level alternately to the RF power source 38 of the ion introduction system so that the power of the radio-frequency LF responds to the modulation of the operating ratio of the pulse wave MS. (Closed state), a predetermined control signal, a set value, and a timing signal are given to the power control unit 94B. Then, the main control unit 72 gives the monitoring signal JS necessary for the on / off pulse wave modulation to the impedance sensor 106B in the matcher 42, the set values L and P for the moving average calculation, and the time pulse CK. 1 , CK 2 , CK 3 . However, no weight variable K is given.

電漿產生系統之匹配器40中,如圖6A或圖6B所示,於調變脈波MS之各週期中,在脈波開啟期間Ton內及脈波關閉期間Toff內分別設定監測時間T1、T2。較佳態樣為,脈波開啟期間Ton內,在除了射頻供電線43上緊接反射波的功率急遽變化開始後及緊接結束前的過渡時間以外之區間,設定監測時間T1。同樣地,脈波關閉期間Toff內,亦在除了緊接開始後及緊接結束前的過渡時間以外之區間,設定監測時間T2In the matching device 40 of the plasma generating system, as shown in FIG. 6A or FIG. 6B, in each period of the modulation pulse wave MS, the monitoring time is set in the pulse on period T on and the pulse off period T off respectively. T 1 and T 2 . Preferred aspect, for the pulse wave is turned on during T on, in addition to rapid changes immediately after the start of power and the reflected wave other than the transition time interval immediately before the end of the RF power supply line 43, the set monitoring time T 1. Similarly, in the pulse wave off period T off , the monitoring time T 2 is set in a period other than the transition time immediately after the start and immediately before the end.

阻抗感測器106A內的算術平均值運算電路116A,於調變脈波MS之各週期中,在脈波開啟期間Ton將藉由負載阻抗瞬間值運算電路114A獲得之負載阻抗Z的瞬間值JZ以取樣時脈CK1取樣,而計算脈波開啟期間Ton中之負載阻抗Z的算術平均值aZon,在脈波關閉期間Toff內將藉由負載阻抗瞬間值運算電路114A獲得之負載阻抗Z的瞬間值JZ以取樣時脈CK1取樣,而計算脈波關閉期間Toff中之負載阻抗Z的算術平均值aZoffThe arithmetic mean calculation circuit 116A in the impedance sensor 106A adjusts the instantaneous value of the load impedance Z obtained by the load impedance instantaneous value calculation circuit 114A during the pulse wave on period T on during each period of the modulated pulse wave MS. JZ sampling to sampling clock CK 1, calculates the pulse wave period T turned on in the load impedance Z of the arithmetic mean on aZ, in the pulse wave by closing the momentary load impedance value calculation circuit 114A is obtained within the period T off load The instantaneous value JZ of the impedance Z is sampled at the sampling clock CK 1 , and the arithmetic mean value aZ off of the load impedance Z in the pulse wave off period T off is calculated.

加權平均值運算電路118A,將藉由算術平均值運算電路116A獲得的脈波開啟期間Ton中之負載阻抗Z的算術平均值aZon、與脈波關閉期間Toff中之負載阻抗Z的算術平均值aZoff,以希望之權重(權重變數K)加權平均,求出負載阻抗之一週期的加權平均值bZ。此處,權重變數K係在0≦K≦1之範圍選擇任意的值,加權平均值bZ以下式(1)表示。 The weighted average calculation circuit 118A calculates the arithmetic mean value aZ on of the load impedance Z in the pulse-on period T on obtained by the arithmetic average calculation circuit 116A and the calculation of the load impedance Z in the pulse-off period T off The average value aZ off is a weighted average with a desired weight (weight variable K), and a weighted average value bZ of one period of the load impedance is obtained. Here, the weight variable K is an arbitrary value selected in the range of 0 ≦ K ≦ 1, and the weighted average value bZ is expressed by the following formula (1).

bZ=K*aZon+(1-K)*aZoff‧‧‧‧(1) bZ = K * aZ on + (1-K) * aZ off ‧‧‧‧ (1)

移動平均值運算電路120A,在對電漿產生用之射頻HF施加高/低的脈波調變之情況,依據藉由加權平均值運算電路118A獲得之連續多數個(n個)負載阻抗Z的一週期加權平均值bZ,而以預先設定之既定的移動區間L及移動間距P,計算加權平均值bZ的移動加權平均值cZ。例如,調變脈波MS之頻率fS為1000Hz的情況,在將移動區間L設定為10msec,將移動間距P設定為2msec時,於每2msec對連續的10個一週期加權平均值bZ運算1個移動平均值cZ。 The moving average calculation circuit 120A applies high / low pulse wave modulation to the RF HF for plasma generation, based on the continuous majority (n) load impedance Z obtained by the weighted average calculation circuit 118A. A periodic weighted average bZ, and a predetermined moving interval L and a predetermined moving interval P are used to calculate a moving weighted average cZ of the weighted average bZ. For example, when the frequency f S of the modulation pulse MS is 1000 Hz, when the moving interval L is set to 10 msec and the moving pitch P is set to 2 msec, 10 consecutive one-cycle weighted average values bZ are calculated every 2 msec. 1 Moving average cZ.

移動平均值運算電路120A,將移動加權平均值cZ作為負載阻抗測定值MZ輸出。此負載阻抗測定值MZ,與從主控制部72給予加權平均值運算電路118A之權重變數K的值相關,而與調變脈波MS之工作比DS無關。 The moving average calculation circuit 120A outputs the moving weighted average cZ as the load impedance measurement value MZ. This impedance measurement values of the MZ load, relative to the value given from the main control unit 72 of the weight calculating circuit 118A weighted average weight of K variables, regardless of the work becomes the MS pulse modulation ratio D S.

匹配器40的匹配控制器104A,可追蹤而應答自阻抗感測器106A的移動平均值運算電路120A以時脈CK3的周期輸出之負載阻抗測定值MZ,匹配控制器104A驅動控制馬達100A、102A而可變地控制匹配電路98A內之電抗元件XH1、XH2的 電抗,以使負載阻抗測定值MZ之相位成為零(0),絕對值成為50Ω,亦即與匹配點ZS一致或近似。 The matching controller 104A of the matcher 40 can track and respond to the load impedance measurement value MZ output by the moving average calculation circuit 120A from the impedance sensor 106A at a period of the clock CK 3. The matching controller 104A drives and controls the motor 100A, 102A and variably control the reactances of the reactance elements X H1 and X H2 in the matching circuit 98A so that the phase of the load impedance measurement value MZ becomes zero (0) and the absolute value becomes 50Ω, which is the same as the matching point Z S or approximate.

如此地,匹配器40中,施行匹配動作,以使從阻抗感測器106A輸出之負載阻抗測定值MZ與匹配點ZS一致或近似。亦即,負載阻抗測定值MZ成為匹配目標點。因此,脈波開啟期間Ton中之負載阻抗Z的算術平均值aZon、及脈波開啟期間Toff中之負載阻抗Z的算術平均值aZoff,因應加權平均之權重變數K的值而自匹配點ZS起以(1-K):K的比偏置。 In this way, the matching device 40 performs a matching operation so that the load impedance measurement value MZ output from the impedance sensor 106A is consistent with or similar to the matching point Z S. That is, the load impedance measurement value MZ becomes a matching target point. Thus, the pulse wave open arithmetic average load impedance period T on of the Z, aZ arithmetic mean period on, and the pulse wave is turned on T off of the load impedance Z aZ OFF, in response to the value of the weighted average of the weighting variables K, self- The matching points Z S are offset by a ratio of (1-K): K.

此處,若將自主控制部72給予匹配器40的阻抗感測器106A之權重變數K設定為K=1,則在上述加權平均之運算式(1)的右邊中,相對於第1項之aZon的權重K成為最大值“1”,相對於第2項之aZoff的權重(1-K)成為最小值即零“0”。此一情況,如圖5A之史密斯圖所示,脈波開啟期間Ton中之負載阻抗Z的算術平均值aZon,與匹配點ZS一致或近似。另一方面,脈波關閉期間Toff中之負載阻抗Z的算術平均值aZoff,自匹配點ZS起最遠地偏置。 Here, if the weight variable K given to the impedance sensor 106A of the matching unit 40 by the autonomous control unit 72 is set to K = 1, the right side of the above-mentioned weighted average calculation formula (1) is equal to The weight K of aZ on becomes the maximum value “1”, and the weight (1-K) of aZ off with respect to the second term becomes the minimum value, that is, zero “0”. In this case, as shown in the Smith chart of FIG. 5A, the arithmetic average value aZ on of the load impedance Z in the pulse-on period T on is identical or approximate to the matching point Z S. On the other hand, the arithmetic mean pulse off period T off of the load impedance Z of the aZ off, since the matching point furthest from S Z offset.

如此地設定為K=1之情況,電漿產生系統之射頻供電線43上,如圖6A之波形圖所示意,在脈波開啟期間Ton內,略完全地得到匹配,故反射波的功率PRH幾乎為出現,行進波的功率PFH維持不變而成為負載功率PLH,另一方面,在脈波關閉期間Toff內,匹配最大地偏移,故反射波的功率PRL變得非常高,行進波的功率PFL較負載功率PLL大幅變高此一部分。 In the case of setting K = 1 in this way, as shown in the waveform diagram of FIG. 6A on the RF power supply line 43 of the plasma generating system, the pulse wave is turned on during the period T on , and the power is slightly completely matched, so the power of the reflected wave PR H is almost present, and the power PF H of the traveling wave remains unchanged to become the load power PL H. On the other hand, during the pulse off period T off , the matching is shifted the most, so the power PR L of the reflected wave becomes Very high, the power PF L of the traveling wave is significantly higher than the load power PL L by this part.

另,此實施形態之射頻電源36,關於對射頻HF的功率之控制,可選擇性地施行將行進波的功率PF保持為一定之PF控制、及將自行進波PF的功率減去反射波的功率PR之淨投入功率(負載功率)保持為一定的PL控制中之任一控制。而在對射頻HF之功率施加高/低的脈波調變之情況,宜使用至少在脈波關閉期間Toff中可將設定為低的值之低位準的功率穩定確實地投入負載之PL控制。然而,若在K=1之條件下使用PL控制,則與習知技術同樣地,由於脈波關閉期間Toff內完全未得到匹配,故如圖6A所示地反射波的功率PRL顯著變大。 In addition, as for the radio frequency power source 36 of this embodiment, regarding the control of the power of the radio frequency HF, it is possible to selectively implement a PF control that keeps the power PF of the traveling wave to a certain value, and subtract the power of the self-propagating wave PF from the reflected wave The net input power (load power) of the power PR is maintained at any one of a certain PL control. In the case where high / low pulse wave modulation is applied to the power of the radio frequency HF, it is suitable to use a PL control that can set a low level of power that is set to a low value at least during the pulse wave off period T off to the PL control. . However, if the PL control is used under the condition of K = 1, as in the conventional technique, since the pulse wave is not completely matched during the off period T off , the power PR L of the reflected wave changes significantly as shown in FIG. 6A Big.

此一實施形態中,藉由將權重變數K設定為0.5<K<1,而可處理上述問題。亦即,0.5<K<1之情況,在上述加權平均之運算式(1)的右邊中,相對於第1項之aZon的權重K較最大值“1”變得更小,而相對於第2項之aZoff的權重(1-K)較最小值“0”變得更大此一部分。因此,如圖5B之史密斯圖所示,脈波開啟期間Ton中之負載阻抗Z的算術平均值aZon自匹配點ZS偏置,而脈波關閉期間Toff中之負載阻抗Z的算術平均值aZoff往匹配點ZS接近此一偏置的分。 In this embodiment, the above-mentioned problem can be handled by setting the weight variable K to 0.5 <K <1. That is, in the case of 0.5 <K <1, in the right side of the above-mentioned weighted average expression (1), the weight K with respect to aZ on of the first term becomes smaller than the maximum value “1”, and relative to The weight (1-K) of aZ off in the second term becomes larger than the minimum "0" by this part. Thus, the Smith chart shown in FIG. 5B, the arithmetic mean pulse open period T on the load impedance Z of the matching point Z from aZ S on the bias, and pulse off period T off of the load impedance Z of the arithmetic The average value aZ off approaches the offset point towards the matching point Z S.

此處,匹配點ZS,在史密斯圖上位於連結兩期間Ton、Toff中之負載阻抗測定值(算術平均值)aZon、aZoff的直線上(中間點)。此外,K的值越遠離1(或越接近0.5),則脈波開啟期間Ton之負載阻抗測定值aZon越遠離匹配點ZS,脈波關閉期間Toff之負載阻抗測定值aZoff越接近匹配點ZSHere, the matching point Z S is located on a straight line (middle point) connecting the load impedance measurement values (arithmetic mean values) aZ on and aZ off in the two periods T on and T off on the Smith chart. Further, the value of K farther away from one (or closer to 0.5), the pulse load impedance measurement value T on the period of waves open aZ on the farther from the matching point Z S, the pulse wave off the load impedance measured value T off DURING aZ off the Close to the matching point Z S.

如此地將權重變數K設定為0.5<K<1之情況,如圖6B之波形圖所示意,電漿產生系統之射頻供電線43上,在脈波開啟期間Ton內亦以一定的功率PRH產生 反射波,另一方面在脈波關閉期間Toff內之反射波的功率PRL較為K=1之情況更為減少。藉由調整K的值,而可任意控制脈波開啟期間Ton中之反射波功率PRH與脈波關閉期間Toff中之反射波功率PRL的平衡。 In this way, when the weight variable K is set to 0.5 <K <1, as shown in the waveform diagram of FIG. 6B, the RF power supply line 43 of the plasma generation system also uses a certain power PR during the pulse on period T on . H generates a reflected wave. On the other hand, the power PR L of the reflected wave in the off period T off of the pulse wave is more reduced than in the case of K = 1. By adjusting the value of K, the balance of the reflected wave power PR H in the pulse-on period T on and the reflected wave power PRL in the pulse-off period T off can be arbitrarily controlled.

藉此,可任意減少脈波關閉期間Toff中之反射波的功率PRL,將負載功率PLL設定為提高此一部分之任意值而回應製程上的要求。此外,可減輕用於自反射波保護射頻電源36之循環器等之負擔或射頻電源36本身之反射波耐受量,於射頻電源36周圍達成硬體的小型簡易化、消耗電力的效率化等。進一步,藉由減少反射波的功率PRL,而可如同後述地更正確且效率良好地施行用於將投入電漿負載之淨射頻功率(負載功率)PL保持為設定值的PL控制。 Thereby, the power PR L of the reflected wave in the off period T off of the pulse wave can be arbitrarily reduced, and the load power PL L can be set to increase any part of this value in response to the process requirements. In addition, it can reduce the burden of the circulator and the like used to protect the RF power source 36 from self-reflected waves, or the tolerance of the reflected power of the RF power source 36 itself. . Furthermore, by reducing the power PR L of the reflected wave, as described later, the PL control for maintaining the net radio frequency power (load power) PL of the input plasma load to a set value can be performed more accurately and efficiently.

另,權重變數K並未限定於0.5<K≦1之範圍,亦可設定在0≦K≦0.5之範圍內。K=0.5之情況,上述加權平均之運算式(1)的右邊中,相對於第1項之aZon的權重K與相對於第2項之aZoff的權重(1-K)任一皆成為等於0.5,雖圖示省略,但史密斯圖上匹配點ZS位於脈波開啟期間Ton之負載阻抗測定值aZon與脈波關閉期間Toff之負載阻抗測定值aZoff的中點。 In addition, the weight variable K is not limited to a range of 0.5 <K ≦ 1, and may be set within a range of 0 ≦ K ≦ 0.5. In the case of K = 0.5, either of the weight K of aZ on relative to the first term and the weight (1-K) of aZ off relative to the second term in the right side of the above-mentioned weighted average expression (1) become equal to 0.5, although not shown, the matching point on the Smith chart of the pulse wave located Z S open load impedance measurement value T on the measured value of the load impedance during aZ T off and on during the pulse off off on aZ midpoint.

此外,0≦K<0.5時,上述加權平均之運算式(1)的右邊中,相對於第1項之aZon的權重K較相對於第2項之aZoff的權重(1-K)更小,故脈波開啟期間Ton中之負載阻抗測定值aZon離匹配點ZS相對地變遠,脈波關閉期間Toff中之負載阻抗測定值aZoff離匹配點ZS相對地變近。此一情況,脈波關閉期間Toff中之反射波的功率PRL相對地變小,脈波開啟期間Ton中之反射波功率PRH相對地變大。 In addition, when 0 ≦ K <0.5, the weight K of aZ on with respect to the first term in the right side of the above-mentioned weighted average expression (1) is greater than the weight (1-K) with respect to aZ off of the second term. Is small, so the measured load impedance aZ on during the pulse-on period T on is relatively far away from the matching point Z S , and the measured load impedance aZ off during the pulse-off period T off is relatively close to the matching point Z S . In this case, the power PR L of the reflected wave during the pulse-off period T off is relatively small, and the power PR H of the reflected wave during the pulse-on period T on is relatively large.

如此地,此實施形態中,可自調變脈波MS之工作比DS獨立,而任意控制脈波開啟期間Ton內之反射波功率PRH與脈波關閉期間Toff內之反射波功率PRL的平衡(或匹配或非匹配之程度的平衡)。主控制部72,在製程配方中將權重變數K於0≦K≦1之範圍內任意設定,可在每一製程切換權重變數K,或在1次製程中階段性或連續性地切換權重變數K。 In this way, in this embodiment, the duty ratio D S of the pulse wave MS can be adjusted independently, and the reflected wave power PR H in the pulse on period T on and the reflected wave power in the pulse off period T off can be arbitrarily controlled. The balance of PR L (or the degree of matching or non-matching). The main control unit 72 arbitrarily sets the weight variable K in the range of 0 ≦ K ≦ 1 in the process recipe, and can switch the weight variable K in each process, or switch the weight variable stepwise or continuously in one process. K.

另,離子導入系統之匹配器42中,對射頻LF施加開/關的脈波調變,故未如上述地藉由主控制部72對阻抗感測器106B給予權重變數K,加權平均值運算電路118B未運作。移動平均值運算電路120B,於時脈CK1之各週期,依據從算術平均值運算電路116B輸出的連續多數個脈波開啟期間Ton中之阻抗Z的算術平均值aZon而計算移動平均值dZ,將此移動平均值dZ作為負載阻抗Z的測定值MZ輸出。 In addition, in the matcher 42 of the ion introduction system, the on / off pulse wave modulation is applied to the radio frequency LF, so the main control unit 72 does not give the weighted variable K to the impedance sensor 106B as described above, and the weighted average operation is performed. Circuit 118B is not functioning. The moving average calculation circuit 120B calculates the moving average based on the arithmetic mean aZ on of the impedance Z in the continuous majority of pulse-on periods T on output from the arithmetic average calculation circuit 116B in each cycle of the clock CK 1 . dZ, and outputs the moving average dZ as the measured value MZ of the load impedance Z.

匹配器42的匹配控制器104B,可追蹤而應答自阻抗感測器106B的移動平均值運算電路120B以時脈CK3的周期輸出之負載阻抗測定值MZ,匹配控制器104B驅動控制馬達100B、102B而可變地控制匹配電路98B內之電抗元件XL1、XL2的電抗,以使負載阻抗測定值MZ之相位成為零(0),絕對值成為50Ω,亦即與匹配點ZS一致或近似。此一情況,脈波開啟期間Ton中之負載阻抗Z的算術平均值aZon至其移動平均值cZon常時成為匹配目標點。 The matching controller 104B of the matching device 42 can track and respond to the load impedance measurement value MZ outputted by the clock CK 3 with the moving average calculation circuit 120B from the impedance sensor 106B. The matching controller 104B drives and controls the motor 100B, 102B and variably control the reactances of the reactance elements XL1 and XL2 in the matching circuit 98B so that the phase of the load impedance measurement value MZ becomes zero (0) and the absolute value becomes 50Ω, which is the same as or close to the matching point Z S. In this case, the arithmetic average value aZ on to the moving average value cZon of the load impedance Z in the pulse on period T on always becomes the matching target point.

[電源控制部內之要部的構成] [Structure of the main part in the power supply control part]

圖7及圖8,顯示電漿產生系統之射頻電源36中的電源控制部94A內之要部的構成。 FIG. 7 and FIG. 8 show the structure of the main parts in the power source control section 94A of the RF power source 36 of the plasma generating system.

電源控制部94A,如圖7所示,具有負載功率測定部122A與射頻輸出控制部124A。負載功率測定部122A,自藉由RF功率監測器96A獲得之行進波功率偵測訊號SPF、與反射波功率偵測訊號SPR,以運算求出投入負載(主要為電漿)之負載功率PL的測定值MPL(MPL=SPF-SPR)。 As shown in FIG. 7, the power supply control unit 94A includes a load power measurement unit 122A and a radio frequency output control unit 124A. The load power measurement section 122A calculates the load power of the load (mainly plasma) from the traveling wave power detection signal S PF and the reflected wave power detection signal S PR obtained by the RF power monitor 96A. Measured value of PL M PL (M PL = S PF -S PR ).

負載功率測定部122A,亦可具有類比運算電路或數位運算電路之任一形態。亦即,可藉由取類比之行進波功率偵測訊號SPF與類比之反射波功率偵測訊號SPR的差分而產生類比訊號之負載功率測定值MPL,或將行進波功率偵測訊號SPF及反射波功率偵測訊號SPR分別轉換為數位訊號後取兩者的差分,以產生數位訊號之負載功率測定值MPL亦可。 The load power measurement unit 122A may have any of an analog operation circuit and a digital operation circuit. That is, the load power measurement value M PL of the analog signal can be generated by taking the difference between the analog traveling wave power detection signal S PF and the analog reflected wave power detection signal S PR , or the traveling power detection signal S PF and reflected wave power detection signal S PR are respectively converted into digital signals and the difference between the two is taken to generate a digital signal load power measurement value M PL .

射頻輸出控制部124A,如圖8所示,具有:脈波開啟期間(第一期間)用之第一控制指令值產生部126A;脈波關閉期間(第二期間)用之第二控制指令值產生部128A;比較器130A,將來自RF功率監測器96A的行進波功率偵測訊號SPF,與來自第一控制指令值產生部126A的第一控制指令值Con或來自第二控制指令值產生部128A的第二控制指令值Coff比較,產生比較誤差ERon或ERoff;放大器控制部132A,因應來自此比較器130A之比較誤差ERon或ERoff而可變地控制功率放大器92之增益或放大率;以及局部控制器134A,控制射頻輸出控制部124A內之各部。 As shown in FIG. 8, the RF output control unit 124A includes a first control command value generation unit 126A for the pulse wave on period (first period), and a second control command value for the pulse wave off period (second period). The generating unit 128A; the comparator 130A compares the traveling wave power detection signal S PF from the RF power monitor 96A with the first control command value C on or the second control command value from the first control command value generating unit 126A. The second control command value C off of the generating unit 128A is compared to generate a comparison error ER on or ER off . The amplifier control unit 132A variably controls the power amplifier 92 in response to the comparison error ER on or ER off from this comparator 130A. Gain or amplification; and a local controller 134A that controls each of the sections within the RF output control section 124A.

此處,第一控制指令值產生部126A,輸入從載功率測定部122A給予的負載功率測定值MPL、與通過控制器134A從主控制部72給予的負載功率設定值PLH(或PLon),於調變脈波MS之各週期中在脈波開啟期間Ton內產生對行進波的功率PF施加之回授控制所用的第一控制指令值ConHere, the first control command value generation unit 126A inputs the load power measurement value M PL given from the load power measurement unit 122A and the load power set value PL H (or PL on) given from the main control unit 72 by the controller 134A. ), The first control command value C on used for the feedback control of the power PF of the traveling wave is generated in the pulse wave on period T on in each period of the modulated pulse wave MS.

另一方面,第二控制指令值產生部128A,輸入來自負載功率測定部122A的負載功率測定值MPL、與來自控制器134A的負載功率設定值PLL,於調變脈波MS之各週期中在脈波關閉期間Toff內產生對行進波功率PF施加之回授控制所用的第二控制指令值CoffOn the other hand, the second control command value generation unit 128A inputs the load power measurement value M PL from the load power measurement unit 122A and the load power set value PL L from the controller 134A to modulate each cycle of the pulse wave MS. T off during the closing of the pulse generator is applied to the traveling wave power PF feedback control a second control command value used C off.

另,第一控制指令值產生部126A及第二控制指令值產生部128A,宜以數位電路構成。此一情況,藉由在各自之輸出段設置數位-類比(D/A)轉換器,而可將第一控制指令值Con及第二控制指令值Coff以類比訊號之形態輸出。 The first control command value generation unit 126A and the second control command value generation unit 128A are preferably configured by digital circuits. In this case, by setting a digital-to-analog (D / A) converter in each output section, the first control command value C on and the second control command value C off can be output as analog signals.

將從第一控制指令值產生部126A輸出之第一控制指令值Con、與從第二控制指令值產生部128A輸出之第二控制指令值Coff,藉由切換電路136A交互地給予比較器130A。切換電路136A,在控制器134A的控制下動作,於調變脈波MS之各週期中,在脈波開啟期間Ton內選擇來自第一控制指令值產生部126A的第一控制指令值Con而傳遞往比較器130A,在脈波關閉期間Toff內選擇來自第二控制指令值產生部128A的第二控制指令值Coff而傳遞往比較器130A。 The first control instruction value C on output from the first control instruction value generation unit 126A and the second control instruction value C off output from the second control instruction value generation unit 128A are given to the comparator interactively by the switching circuit 136A. 130A. The switching circuit 136A operates under the control of the controller 134A, and selects the first control command value C on from the first control command value generation unit 126A in the pulse wave on period T on in each period of the modulation pulse wave MS. is transmitted to the comparator 130A, a second selection control instruction from the second control command value generating portion 128A is closed during the pulse C off value T off is transmitted to the comparator 130A.

因此,比較器130A,於調變脈波MS之各週期中,在脈波開啟期間Ton內將行進波功率偵測訊號SPF與第一控制指令值Con比較而產生其比較誤差即第1比較誤差ERon(ERon=Con-SPF),在脈波關閉期間Toff內將行進波功率偵測訊號SPF與第二控制指令值Coff比較而產生其比較誤差即第二比較誤差ERoff(ERoff=Coff-SPF)。 Thus, the comparator 130A, to each of the pulse wave period becomes the MS tune, the opening C on the comparison period T is generated on the traveling wave power detection signal S PF and the first control command value which compares the error in the pulse wave ie 1Comparison error ER on (ER on = C on -S PF ), during the pulse wave off period T off , the traveling wave power detection signal S PF is compared with the second control command value C off to generate its comparison error, which is the second Comparison error ER off (ER off = C off -S PF ).

放大器控制部132A,在控制器134A的控制下動作,於調變脈波MS之各週期中,在脈波開啟期間Ton內可變地控制功率放大器92A之增益或放大率而使第1比較誤差ERon接近零,以控制射頻電源36的輸出,在脈波關閉期間Toff中可變地控制功率放大器92A之增益或放大率而使第二比較誤差ERoff接近零,以控制射頻電源36的輸出。 The amplifier control unit 132A operates under the control of the controller 134A, and variably controls the gain or amplification factor of the power amplifier 92A during the pulse on period T on during each period of the pulse wave MS to make the first comparison. The error ER on is close to zero to control the output of the RF power source 36. During the pulse wave off period T off , the gain or amplification of the power amplifier 92A is variably controlled so that the second comparison error ER off is close to zero to control the RF power source 36 Output.

另,於功率放大器92A,適當使用線形放大器(線性放大器)。此外,於比較器130A使用例如差動放大器。比較器130A中,在輸入訊號的差分(Con-SPF)或(Coff-SPF),與輸出訊號的比較誤差ERon或ERoff之間,使一定的比例關係成立即可。 For the power amplifier 92A, a linear amplifier (linear amplifier) is appropriately used. The comparator 130A uses, for example, a differential amplifier. In the comparator 130A, a certain proportional relationship may be established between the difference (C on -S PF ) or (C off -S PF ) of the input signal and the comparison error ER on or ER off of the output signal.

離子導入系統之射頻電源38,亦除了射頻LF之頻率與電漿產生系統之射頻HF之頻率不同的點以外,具備與上述電漿產生系統之射頻電源36中的電源控制部94A分別具有同樣的構成及功能之負載功率測定部122B及射頻輸出控制部124B(均未圖示)。 The RF power source 38 of the iontophoresis system is the same as the RF power source control unit 94A in the RF power source 36 of the plasma generating system except that the frequency of the RF LF and the RF HF of the plasma generating system are different. The structure and function of the load power measurement unit 122B and the RF output control unit 124B (neither of which is shown).

[實施形態中之PL控制的作用] [Effect of PL control in the embodiment]

此實施形態的電漿處理裝置中,在射頻電源36、38之任一,皆在對腔室10內分別供給電漿產生用之射頻HF或離子導入用之射頻LF時,施行用於將投入負載(主要為電漿)之淨射頻功率,即負載功率PL,在脈波開啟期間Ton與脈波關閉期間Toff個別地保持為設定值的PL控制。 In the plasma processing apparatus of this embodiment, when any one of the RF power sources 36 and 38 is supplied with RF HF for plasma generation or RF LF for ion introduction into the chamber 10, it is used to charge The net RF power of the load (mainly plasma), that is, the load power PL, is controlled by the PL control that the pulse-on period T on and the pulse-off period T off are individually maintained at the set values.

以下,關於對電漿產生用之射頻HF的功率施加高/低的脈波調變之情況,說明此實施形態之PL控制的作用。另,對離子導入用之射頻LF的功率在同一調變脈波MS下施加開/關的脈波調變。 In the following, the effect of the PL control in this embodiment will be described with respect to the case where high / low pulse wave modulation is applied to the power of the RF HF for plasma generation. In addition, on / off pulse wave modulation is applied to the power of the radio frequency LF for ion introduction under the same modulation pulse wave MS.

此一情況,主控制部72,對電漿產生系統之射頻電源36的電源控制部94A,給予高/低的脈波調變所必需之控制訊號及負載功率設定值PLH、PLL的資料,並給予調變脈波MS作為脈波調變用之定時訊號。另,PLH,係指定脈波開啟期間Ton中之射頻HF的功率之位準(高位準)的第一負載功率設定值。另一方面,PLL,係指定脈波關閉期間Toff中之射頻HF的功率之位準(低位準)的第二負載功率設定值。射頻電源36,對自此電源36以高/低的脈波調變輸出之射頻HF施行如下之PL控制。 In this case, the main control section 72 gives the power control section 94A of the radio frequency power supply 36 of the plasma generation system to the control signals and load power setting values PL H and PL L necessary for high / low pulse wave modulation. And give the modulation pulse wave MS as the timing signal for pulse wave modulation. In addition, PL H is a first load power setting value that specifies the power level (high level) of the radio frequency HF during the pulse-on period T on . On the other hand, PL L is a second load power setting value that specifies the power level (low level) of the radio frequency HF during the pulse-off period T off . The radio frequency power supply 36 performs the following PL control on the radio frequency HF output from the power supply 36 with high / low pulse wave modulation.

首先,將來自主控制部72的負載功率設定值PLH、PLL,於射頻輸出控制部124A內在控制器134A設定。控制器134A,對第一控制指令值產生部126A及第二控制指令值產生部128A,給予負載功率設定值PLH、PLL及所需的控制訊號、時脈訊號。 First, in the future, the load power setting values PL H and PL L of the autonomous control unit 72 are set in the controller 134A in the radio frequency output control unit 124A. The controller 134A gives load power set values PL H and PL L and required control signals and clock signals to the first control command value generation unit 126A and the second control command value generation unit 128A.

第一控制指令值產生部126A,在調變脈波MS之各週期中,將來自負載功率測定部122A的負載功率測定值MPL僅在脈波開啟期間Ton之間擷取而使用在回授訊號。此處,雖可將負載功率測定值MPL的瞬間值或代表值使用在回授訊號,但一般將負載功率測定值MPL的平均值(宜為移動平均值)使用在回授訊號。 A first control command value generation section 126A, modulation in each cycle of the pulse wave MS, the load power from the load power measuring portion measurement value M PL 122A only capturing between open period T on is used in the pulse wave in the return Grant signal. Here, although the instantaneous value or representative value of the load power measurement value M PL may be used as the feedback signal, the average value (preferably a moving average value) of the load power measurement value M PL is generally used as the feedback signal.

具體而言,對在脈波開啟期間Ton之間自負載功率測定部122A給予的負載功率測定值MPL取得調變脈波MS之複數週期分的移動平均值AMPL,將此移動平均值AMPL與負載功率設定值PLH比較而求出比較誤差或偏差,在次一或後續的週期中以使此偏差以適當速度接近零的方式,決定在脈波開啟期間Ton中施加行進波的功率PF之回授控制的目標值,即第一控制指令值Con。為了決定此第一控制指令值Con,可使用回授控制或前饋控制的技術常用之習知的運算法則。 Specifically, for the load power measurement value M PL given from the load power measurement unit 122A between the pulse wave on period T on , a moving average value AM PL of the complex cycle minutes of the modulation pulse wave MS is obtained, and this moving average value is obtained. AM PL is compared with the load power set value PL H to obtain the comparison error or deviation. In the next or subsequent cycle, it is determined that the deviation approaches zero at a suitable speed, and it is decided to apply a traveling wave during the pulse on period T on The target value of the feedback control of the power PF is the first control command value C on . In order to determine the first control command value C on , a conventional algorithm commonly used in the technology of feedback control or feedforward control can be used.

另一方面,第二控制指令值產生部128A,在調變脈波MS之各週期中,將自負載功率測定部122A給予的負載功率測定值MPL僅在脈波關閉期間Toff之間擷取而使用在回授訊號。然而,雖亦可將負載功率測定值MPL的瞬間值或代表值使用在回授訊號,但一般將負載功率測定值MPL的平均值(宜為移動平均值)使用在回授訊號。 On the other hand, the second control command value generation unit 128A captures the load power measurement value M PL given by the load power measurement unit 122A only during the pulse wave off period T off in each cycle of the modulation pulse wave MS. Use it for feedback signals. However, although an instantaneous value or a representative value of the measured load power value M PL may be used as the feedback signal, an average value (preferably a moving average value) of the measured load power value M PL is generally used as the feedback signal.

具體而言,對在脈波關閉期間Toff之間自負載功率測定部122A給予的負載功率測定值MPL取得之一週期分或複數週期分的移動平均值BMPL,將此移動平均值BMPL與負載功率設定值PLL比較而求出比較誤差或偏差,在次一或後續的週期 中以使此偏差以適當速度接近零的方式,決定在脈波關閉期間Toff中施加行進波的功率PF之回授控制的目標值,即第二控制指令值Coff。為了決定此一第二控制指令值Coff,可使用回授控制或前饋控制常用之習知的運算法則。 Specifically, a moving average value BM PL of one cycle point or a plurality of cycle points is obtained for the load power measurement value M PL given from the load power measurement section 122A between the pulse wave off period T off , and this moving average value BM is obtained. PL is compared with the load power set value PL L to obtain a comparison error or deviation. In the next or subsequent cycle, the deviation of the travelling wave during the off period T off is determined so that the deviation approaches zero at an appropriate speed. The target value of the feedback control of the power PF is the second control command value C off . In order to determine the second control command value C off , a conventional algorithm commonly used in feedback control or feedforward control can be used.

如上述,比較器130A,於調變脈波MS之各週期中,在脈波開啟期間Ton內將行進波功率偵測訊號SPF與來自第一控制指令值產生部126A的第一控制指令值Con比較而產生其比較誤差(第1比較誤差)ERon,在脈波關閉期間Toff內將行進波功率偵測訊號SPF與來自第二控制指令值產生部128A的第二控制指令值Coff比較而產生其比較誤差(第二比較誤差)ERoff。而後,放大器控制部132A,於調變脈波MS之各週期中,在脈波開啟期間Ton內可變地控制功率放大器92A之增益或放大率以使第1比較誤差ERon接近零,在脈波關閉期間Toff內可變地控制功率放大器92A之增益或放大率以使第二比較誤差ERoff接近零。 As described above, the comparator 130A, in each period of the modulated pulse wave MS, transmits the traveling wave power detection signal S PF and the first control command from the first control command value generating section 126A within the pulse on period T on . The value C on is compared to generate its comparison error (the first comparison error) ER on , and the travelling wave power detection signal S PF and the second control command from the second control command value generation unit 128A are generated during the pulse wave off period T off . The value C off is compared to generate its comparison error (second comparison error) ER off . Then, the amplifier control unit 132A variably controls the gain or amplification factor of the power amplifier 92A during the pulse-on period T on during each period of the modulation pulse wave MS so that the first comparison error ER on approaches zero. The gain or amplification of the power amplifier 92A is variably controlled during the pulse wave off period T off so that the second comparison error ER off approaches zero.

如此地,在將射頻HF以高/低的脈波調變輸出之射頻電源36中,對在射頻供電線43上往順方向傳播之行進波的功率PF施加回授控制,以使藉由RF功率監測器96及負載功率測定部122獲得之負載功率PL的測定值MPL,於脈波開啟期間Ton內與第一負載功率設定值PLH一致或近似,於脈波關閉期間Toff內與第二負載功率設定值PLL一致或近似。亦即,對射頻電源36之輸出,施加在脈波開啟期間Ton與脈波關閉期間Toff獨立的回授控制。 In this way, in the radio frequency power source 36 that outputs radio frequency HF with high / low pulse wave modulation, feedback control is applied to the power PF of the traveling wave propagating in the forward direction on the radio frequency power supply line 43 so that The measured value M PL of the load power PL obtained by the power monitor 96 and the load power measurement unit 122 is the same as or similar to the first load power set value PL H within the pulse on period T on and within the pulse off period T off It is the same as or similar to the second load power set value PL L. That is, the output of the RF power source 36 is subjected to independent feedback control during the pulse-on period T on and the pulse-off period T off .

若依此等脈波開啟期間Ton用與脈波關閉期間Toff用之獨立的雙系統之回授控制,則可簡單且準確追蹤與調變脈波MS同步之反射波功率PR至行進波功率PF 的周期性變動,可變得不難追上調變脈波MS的反轉時產生之急遽的負載變動。藉此,即便調變脈波MS之頻率增高,仍可將負載功率PL在脈波開啟期間Ton及脈波關閉期間Toff之任一期間中皆分別穩定地保持為個別的設定值PLH、PLLAccording to the feedback control of the independent two systems based on the pulse on period T on and the pulse off period T off , the reflected wave power PR synchronized with the modulated pulse MS can be simply and accurately tracked to the traveling wave. The periodic variation of the power PF makes it easy to keep up with the rapid load variation that occurs when the modulation pulse MS reverses. Thereby, even if the frequency of the modulated pulse wave MS is increased, the load power PL can still be stably maintained as an individual set value PL H during any of the pulse on period T on and the pulse off period T off . , PL L.

另一方面,在對射頻LF施加開/關的脈波調變之離子導入系統的射頻電源38中,藉由電源控制部94B(第二射頻功率調變部),於調變脈波MS之各週期中僅在脈波開啟期間Ton內對行進波的功率PF施加用於PL控制之回授控制。電源控制部94B內的控制器134B,將脈波關閉期間用之第二控制指令值產生部128B保持在完全休止或非有源的狀態,僅使脈波開啟期間用之第一控制指令值產生部126B動作。此一情況,對第一控制指令值產生部126B,給予指示脈波開啟期間Ton中之射頻HF的功率之位準(開啟位準)的負載功率設定值PLonOn the other hand, in the radio frequency power supply 38 of the ion introduction system that applies pulse wave modulation on / off to the radio frequency LF, the power supply control section 94B (second radio frequency power modulation section) is used to modulate the pulse wave MS. In each cycle, feedback control for PL control is applied to the power PF of the traveling wave only during the pulse-on period T on . The controller 134B in the power supply control section 94B keeps the second control command value generating section 128B used during the pulse wave off period in a completely inactive or non-active state, and generates only the first control command value used during the pulse wave on period. The unit 126B operates. This case, the first control command value generating section 126B, the pulse wave is turned on to give an indication of the RF power level of HF in the period T on (ON level) of the set value of the load power PL on.

比較器130B,於調變脈波MS之各週期中,在脈波開啟期間Ton內將來自RF功率監測器96B的行進波功率偵測訊號SPF與來自第一控制指令值產生部126B的第一控制指令值Con比較而產生其比較誤差(第1比較誤差)ERon,在脈波關閉期間Toff中實質性地休止。此外,放大器控制部132B,於調變脈波MS之各週期中,在脈波開啟期間Ton內可變地控制功率放大器92B之增益或放大率以使第1比較誤差ERoo接近零,在脈波關閉期間Toff中實質性地休止。 The comparator 130B, during each period of the modulation pulse wave MS, transmits the traveling wave power detection signal S PF from the RF power monitor 96B and the first control command value generation unit 126B during the pulse wave on period T on . The first control command value C on is compared to generate its comparison error (first comparison error) ER on , and it is substantially stopped during the pulse wave off period T off . In addition, the amplifier control unit 132B variably controls the gain or amplification factor of the power amplifier 92B during the pulse-on period T on during each period of the modulation pulse wave MS so that the first comparison error ER oo approaches zero. During the pulse wave off period, T off is substantially stopped.

而在施行開/關的脈波調變之射頻電源38中,亦可施行PF控制。此一情況,自控制器134B對比較器130B給予行進波功率設定值(PFS)作為比較基準值即可。 In the RF power source 38 that performs on / off pulse wave modulation, PF control can also be performed. In this case, the controller 134B may give the comparator 130B a traveling wave power set value (PF S ) as a comparison reference value.

[蝕刻製程之實施例] [Example of Etching Process]

本案發明人,藉由圖1之電漿蝕刻裝置施行使用高/低的脈波調變之HARC(High Aspect Ratio Contact,高深寬比接點)製程的實驗,驗證在將脈波關閉期間Ton的長度、脈波關閉期間Ton中之射頻功率(負載功率)PLL、或脈波關閉期間Ton中之上部DC電壓的值作為參數時,給予各種製程特性之作用。 The inventor of this case performed an experiment using a high- / low-pulse-modulated HARC (High Aspect Ratio Contact) process using the plasma etching apparatus of FIG. 1 to verify that T on as the value of the parameter T on the upper portion of the DC voltage of the RF power during the period length T on the pulse wave in the closed (load power) PL L, or pulse off, given the role of the various characteristics of the process.

此一實驗,如圖9的(a)所示地,準備在多層膜構造之表層部藉由第1蝕刻步驟形成微細孔140至中途為止(至到達第三SiO2層152之深度d1為止)的半導體晶圓W作為試樣。而後,在對此一試樣之半導體晶圓W,如圖9的(b)所示地將微細孔140的深度延伸至第三SiO2層152之下部為止(深度d2為止)的第二蝕刻步驟中,施行以下實驗:對電漿產生用之射頻HF施加高/低的脈波調變,對離子導入用之射頻LF施加開/關的脈波調變,使施加於上部電極46之直流電壓(上部DC電壓)Vdc的大小(絕對值)與調變脈波MS同步而可變。圖9中,142為蝕刻遮罩(光阻),144為第一SiO2層,146為第一SiN層,148為第二SiO2層,150為第二SiN層,152為第三SiO2層,154為第三SiN層,及156為半導體基板。 In this experiment, as shown in FIG. 9 (a), it is prepared to form fine holes 140 in the surface layer portion of the multilayer film structure by the first etching step until halfway (until the depth d 1 of the third SiO 2 layer 152 is reached). ) Semiconductor wafer W as a sample. Then, on the semiconductor wafer W of this sample, as shown in FIG. 9 (b), the depth of the fine holes 140 is extended to the second part up to the lower part of the third SiO 2 layer 152 (up to the depth d 2 ). In the etching step, the following experiments were performed: applying high / low pulse wave modulation to the radio frequency HF for plasma generation, and applying on / off pulse wave modulation to the radio frequency LF for ion introduction, so that the The magnitude (absolute value) of the DC voltage (upper DC voltage) V dc is variable in synchronization with the modulation pulse MS. In FIG. 9, 142 is an etching mask (photoresist), 144 is a first SiO 2 layer, 146 is a first SiN layer, 148 is a second SiO 2 layer, 150 is a second SiN layer, and 152 is a third SiO 2 Layers, 154 is a third SiN layer, and 156 is a semiconductor substrate.

此一實驗中選擇為評價對象之製程特性為,〔1〕第二蝕刻步驟中之孔140的深度之增量(d2-d1),即蝕刻量;〔2〕孔140入口附近的縮徑之增量(縮徑CD);〔3〕第二SiO2層148中的彎曲之增量(中間Ox彎曲CD);〔4〕選擇比(孔140的深度之增量d2-d1/遮罩的厚度之減少分dm);及〔5〕深寬比變化量(孔140的深度之增量d2-d1/中間Ox彎曲CD)。 The process characteristics selected as the evaluation object in this experiment are: [1] the increment of the depth of the hole 140 in the second etching step (d 2 -d 1 ), that is, the etching amount; [2] the shrinkage near the entrance of the hole 140 Incremental diameter (reduced diameter CD); [3] incremental increase in bending in the second SiO 2 layer 148 (middle Ox curved CD); [4] selection ratio (increment of depth of hole 140 d 2 -d 1 / The reduction of the thickness of the mask by d m ); and [5] the amount of change in the aspect ratio (the increment of the depth of the hole 140 d 2 -d 1 / the middle Ox bend CD).

第二蝕刻步驟的實驗,更詳而言之,包含在將脈波關閉期間Toff中之射頻HF的功率PLL設定為0W之情況與設定為200W之情況,比較各種製程特性的脈波關閉期間相依性之第1實驗、及比較各種製程特性的上部DC電壓相依性之第2實驗。另,以高/低的脈波調變使脈波關閉期間Toff中之射頻HF的功率PLL為0W之情況,與施加開/關的脈波調變相同。 The experiment of the second etching step, in more detail, includes the case where the RF HF power PL L in the pulse off period T off is set to 0 W and the case where the power is set to 200 W. The pulse off of various process characteristics is compared. The first experiment of period dependency and the second experiment of upper DC voltage dependency comparing various process characteristics. In addition, the case where the power PL L of the radio frequency HF in the pulse wave off period T off is 0 W with high / low pulse wave modulation is the same as the pulse wave modulation applied with on / off.

作為第1實驗及第2實驗共通之主要固定值的蝕刻條件,使蝕刻氣體為C4F6/NF3/Ar/O2=76/10/75/73sccm,腔室壓力為15mTorr,下部電極溫度為60℃,脈波開啟期間Ton為100μs,脈波開啟期間Ton中之離子導入用射頻LF的功率為10000W,脈波開啟期間Ton中之電漿產生用射頻HF的功率為1000W,脈波開啟期間Ton中之上部DC電壓Vdc的絕對值|Vdc|為500V。 As the etching conditions of the main fixed value common to the first experiment and the second experiment, the etching gas was C 4 F 6 / NF 3 / Ar / O 2 = 76/10/75 / 73sccm, the chamber pressure was 15mTorr, and the lower electrode temperature was 60 ℃, pulse duration T on opening of 100μs, introduction of the LF RF pulse duration T on the opening of the plasma power of 10000W, pulse duration T on the opening of the plasma generating power was 1000W RF HF , The absolute value | V dc | of the upper DC voltage V dc in the pulse-on period T on is 500V.

<第1實驗之參數及實驗結果> <Parameters and experimental results of the first experiment>

比較各種製程特性的脈波關閉期間相依性之第1實驗,將脈波關閉期間Toff中之上部DC電壓Vdc的絕對值|Vdc|固定在900V,將脈波關閉期間Toff(調變脈波MS之頻率fS、工作比DS)作為參數,選擇Toff=25μs(fS=8kHz、DS=80%),Toff=100μs(fS=5kHz、DS=50%),Toff=150μs(fS=4kHz、DS=40%),Toff=233μs(fS=3kHz、DS=30%),Toff=400μs(fS=2kHz、DS=20%)之階段性的5個值。 During the pulse off the first experimental dependence of comparing various process characteristics of the pulse wave closes the upper period T off of the DC voltage V dc of the absolute value | V dc | during fixed 900V, the pulse off T off (tune The frequency f S and operating ratio D S of the variable pulse wave MS are selected as parameters, and T off = 25 μs (f S = 8 kHz, D S = 80%), T off = 100 μs (f S = 5 kHz, D S = 50% ), T off = 150μs (f S = 4kHz, D S = 40%), T off = 233μs (f S = 3kHz, D S = 30%), T off = 400μs (f S = 2kHz, D S = 20 %).

於圖10A~圖10E,將第1實驗所獲得之結果以圖表顯示。如圖10A所示,〔1〕孔140的深度之增量(蝕刻量:d2-d1),在射頻HF的功率PLL為0W或200W 之任一的情況,脈波關閉期間Toff於25μs~400μs之範圍皆收束在約700~750nm之範圍,未有如此大的差別。如此地,若以PLL=200W使用高/低的脈波調變,則可獲得與使用開/關的脈波調變之情況同程度的蝕刻量或蝕刻率。 The results obtained in the first experiment are shown in graphs in FIGS. 10A to 10E. As shown in FIG. 10A, [1] The increase in the depth of the hole 140 (etching amount: d 2- d 1 ), when the power PL L of the radio frequency HF is either 0W or 200W, the pulse wave off period T off In the range of 25 μs to 400 μs, all beams are in the range of about 700 to 750 nm, which is not so different. In this way, if high / low pulse wave modulation is used at PL L = 200W, the same amount of etching or etching rate can be obtained as in the case of using on / off pulse wave modulation.

如圖10B所示,〔2〕縮徑CD,若將脈波關閉期間Toff自25μs起階段性地增大至400μs,則相對於射頻HF的功率PLL為0W之情況停止在約22.0~23.0之範圍,頻率HF的功率PLL為200W之情況自約22.0nm起階段性地大幅減少至18.0nm以下。如此地,若以PLL=200W使用高/低的脈波調變(特別是若使fS為3kH以下,使Toff為233μs以上),則相較於使用開/關的脈波調變之情況,縮徑CD大幅提高。 As shown in FIG. 10B, [2] Reducing the diameter CD, if the pulse-off period T off is gradually increased from 25 μs to 400 μs, the power PL L of the RF HF is 0W and stops at about 22.0 ~ In the range of 23.0, when the power PL L of the frequency HF is 200 W, it is gradually reduced to approximately 18.0 nm stepwise from about 22.0 nm. In this way, if high / low pulse wave modulation is used at PL L = 200W (especially if f S is 3 kH or less, and T off is 233 μs or more), compared with on / off pulse wave modulation In this case, the diameter reduction CD is greatly increased.

如圖10C所示,〔3〕中間Ox彎曲CD,若將脈波關閉期間Toff自25μs起階段性地增大至400μs,則相對於射頻HF的功率PLL為0W之情況停止在約36.0~37.0之範圍,頻率HF的功率PLL為200W之情況自約37.0nm起大幅減少至約34.0nm(然而,若Toff成為233μs以上,則變得幾乎不減少)。如此地,若以PLL=200W使用高/低的脈波調變(特別是若使fS為3kHz以下,使Toff為233μs以上),則相較於使用開/關的脈波調變之情況,中間Ox彎曲CD亦大幅提高。 As shown in FIG. 10C, [3] The middle Ox bending CD, if the pulse-off period T off is gradually increased from 25 μs to 400 μs, the power PL L of the RF HF is 0 W and stops at about 36.0. In the range of ~ 37.0, when the power PL L of the frequency HF is 200 W, it is significantly reduced from about 37.0 nm to about 34.0 nm (however, if T off becomes 233 μs or more, it hardly decreases). In this way, if high / low pulse wave modulation is used at PL L = 200W (especially if f S is 3 kHz or less and T off is 233 μs or more), compared with the on / off pulse wave modulation In this case, the middle Ox-bending CD also increased significantly.

如圖10D所示,〔4〕選擇比,若將脈波關閉期間Toff自25μs起階段性地增大至233μs,則在射頻HF的功率PLL為0W之情況及200W任一之情況皆自約2.5起以略相同的變化率增大至約4.2,一旦Toff超過233μs則飽和。如此地,若以PLL= 200W使用高/低的脈波調變,則選擇比與使用開/關的脈波調變之情況同程度地提高。 As shown in FIG. 10D, if [4] the selection ratio, if the pulse-off period T off is gradually increased from 25 μs to 233 μs, the power PL L of the radio frequency HF is 0 W and either the case of 200 W It increases from about 2.5 to about 4.2 at a slightly same rate of change, and becomes saturated once T off exceeds 233 μs. In this way, if the high / low pulse wave modulation is used at PL L = 200W, the selection ratio is increased to the same extent as when the on / off pulse wave modulation is used.

如圖10E所示,〔5〕深寬比變化量,若將脈波關閉期間Toff自25μs起階段性地增大至400μs,則相對於射頻HF的功率PLL為0W之情況停止在約80~85之範圍,頻率HF的功率PLL為200W之情況自約80起大幅增大至約130(然而,一旦Toff超過233μs則飽和)。如此地,若以PLL=200W使用高/低的脈波調變(特別是若使fS為3kH以下,使Toff為233μs以上),則相較於使用開/關的脈波調變之情況,深寬比變化率大幅提高。 As shown in FIG. 10E, if [5] the aspect ratio change amount, if the pulse-off period T off is gradually increased from 25 μs to 400 μs, the power PL L with respect to the RF HF stops at about 0 W. In the range of 80 to 85, when the power PL L of the frequency HF is 200 W, it is greatly increased from about 80 to about 130 (however, once T off exceeds 233 μs, it is saturated). In this way, if high / low pulse wave modulation is used at PL L = 200W (especially if f S is 3 kH or less, and T off is 233 μs or more), compared with on / off pulse wave modulation In this case, the aspect ratio change rate has increased significantly.

<第2實驗之參數及實驗結果> <Parameters and experimental results of the second experiment>

比較各種製程特性的上部DC電壓相依性之第2實驗,將脈波關閉期間Toff(調變脈波MS之頻率fS、工作比DS)固定在Toff=233μs(fS=3kHz、DS=30%),將脈波關閉期間Toff中之上部DC電壓Vdc的絕對值|Vdc|作為參數,選擇|Vdc|=500V、900V、1200V之階段性的3個值。 In the second experiment comparing the upper DC voltage dependency of various process characteristics, the pulse-off period T off (the frequency f S of the pulse wave MS and the operating ratio D S ) were fixed at T off = 233 μs (f S = 3kHz, D S = 30%), the absolute value of the upper DC voltage V dc in the pulse-off period T off | V dc | is used as a parameter, and | V dc | = 500V, 900V, and 1200V are selected in three stages.

於圖11A~圖11E,將第2實驗所獲得之結果以圖表顯示。如圖11A所示,〔1〕孔140的深度之增量(蝕刻量:d2-d1),若將脈波關閉期間Toff中之上部DC電壓Vdc的絕對值|Vdc|階段性地增大為500V、900V、1200V,則射頻HF的功率PLL為0W之情況自約760nm起線性地減少至約680nm,射頻HF的功率PLL為200W之情況為自約700nm起逐漸減少至約680nm。如此地,以PLL=200W使用高/低的脈波調變之情況,即便將脈波關閉期間Toff中之上部DC電壓Vdc的絕對 值|Vdc|增大,孔140的深度之增量(蝕刻量)未必增大,相反地成為減少傾向,但相較於使用開/關的脈波調變之情況未必劣化。 The results obtained in the second experiment are shown in graphs in FIGS. 11A to 11E. As shown in FIG. 11A, the [1] increment of the depth of the hole 140 (etching amount: d 2- d 1 ), if the absolute value of the upper DC voltage V dc during the pulse-off period T off | V dc | stage If the power is increased to 500V, 900V, 1200V, the power PL L of the RF HF will decrease linearly from about 760nm to about 680nm, and the power PL L of the RF HF will decrease gradually from about 700nm when the power is 200W. To about 680nm. In this way, in the case of using high / low pulse wave modulation with PL L = 200W, even if the absolute value of the upper DC voltage V dc in the pulse-off period T off | V dc | increases, the depth of the hole 140 is The increase (etching amount) does not necessarily increase, but instead tends to decrease. However, it does not necessarily deteriorate compared to the case where the on / off pulse wave modulation is used.

如圖11B所示,〔2〕縮徑CD,若將脈波關閉期間Toff中之上部DC電壓Vdc的絕對值|Vdc|階段性地增大為500V、900V、1200V,則相對於射頻HF的功率PLL為0W之情況自約23.0nm起階段性地減少至約20.0nm以下,頻率HF的功率PLL為200W之情況在低位準自約19.6nm起更階段性地減少至約17.8nm。如此地,在使PLL=200W而使用高/低的脈波調變之情況,越將脈波關閉期間Toff中之上部DC電壓Vdc的絕對值|Vdc|增大則越改善縮徑CD,且相較於使用開/關的脈波調變之情況縮徑CD提高。 As shown in FIG. 11B, [2] Reducing the diameter CD, if the absolute value of the upper DC voltage V dc in the pulse-off period T off | V dc | is gradually increased to 500 V, 900 V, and 1200 V, When the power PL L of the radio frequency HF is 0W, it is gradually reduced to about 20.0nm from about 23.0nm, and when the power PL L of the frequency HF is 200W, it is gradually reduced to about 10.0nm from the low level. 17.8nm. In this way, when the pulse wave modulation with high / low pulses is used with PL L = 200W, the absolute value of the upper DC voltage V dc in the pulse-off period T off | V dc | Diameter CD, and the diameter reduction CD is increased compared to the case of using on / off pulse wave modulation.

如圖11C所示,〔3〕中間Ox彎曲CD,若將脈波關閉期間Toff中之上部DC電壓Vdc的絕對值|Vdc|階段性地增大為500V、900V、1200V,則相對於射頻HF的功率PLL為0W之情況自約37.5nm起階段性地減少至約35.5nm,頻率HF的功率PLL為200W之情況在更低的位準自約35.2nm起階段性地減少至約33.5nm(然而,若|Vdc|成為900V以上,則變得幾乎不減少)。如此地,在使PLL=200W而使用高/低的脈波調變之情況,越將脈波關閉期間Toff中之上部DC電壓Vdc的絕對值|Vdc|增大一般越改善中間Ox彎曲CD,且較使用開/關的脈波調變之情況更為改善中間Ox彎曲CD。 As shown in FIG. 11C, [3] The middle Ox bending CD, if the absolute value of the upper DC voltage V dc in the pulse off period T off | V dc | is gradually increased to 500V, 900V, 1200V, the relative When the power PL L of the radio frequency HF is 0W, it is gradually reduced from about 37.5nm to about 35.5nm. When the power PL L of the frequency HF is 200W, it is gradually reduced at a lower level from about 35.2nm. To approximately 33.5 nm (however, if | V dc | becomes 900V or more, it will hardly decrease). As described above, in the case where high / low pulse wave modulation is used with PL L = 200W, the absolute value of the upper DC voltage V dc in the pulse-off period T off | V dc | generally increases as the increase increases. Ox-bent CDs are more improved than those with on / off pulse wave modulation in the middle of Ox-bent CDs.

如圖11D所示,〔4〕選擇比,即便將脈波關閉期間Toff中之上部DC電壓Vdc的絕對值|Vdc|在500V~1200V之範圍改變,在射頻HF的功率PLL為0W之情況 及200W任一之情況仍收束在約4.1~4.5之範圍內。如此地,若以PLL=200W使用高/低的脈波調變,則與使用開/關的脈波調變之情況同程度地改善選擇比。 As shown in FIG. 11D, the [4] selection ratio changes the absolute value of the upper DC voltage V dc in the pulse-off period T off | V dc | in the range of 500V to 1200V, and the power PL L at RF HF is The 0W case and the 200W case are still within the range of about 4.1 ~ 4.5. In this way, if the high / low pulse wave modulation is used with PL L = 200W, the selection ratio is improved to the same extent as when the on / off pulse wave modulation is used.

如圖11E所示,〔5〕深寬比變化量,若將脈波關閉期間Toff中之上部DC電壓Vdc的絕對值|Vdc|階段性地增大為500V、900V、1200V,則相對於射頻HF的功率PLL為0W之情況若|Vdc|成為900V以上則自約80nm起上升至約92nm,射頻HF的功率PLL為200W之情況在較高的位準自約99nm起上升至約132nm(然而,若|Vdc|成為900V以上則飽和)。如此地,若以PLL=200W使用高/低的脈波調變,則相較於使用開/關的脈波調變之情況,深寬比變化率大幅提高。 As shown in FIG. 11E, if [5] the aspect ratio change amount, if the absolute value of the upper DC voltage V dc in the pulse-off period T off | V dc | is gradually increased to 500V, 900V, 1200V, then Relative to the case where the power PL L of the radio frequency HF is 0W, if | V dc | becomes 900V or more, it rises from about 80nm to about 92nm. The case where the power PL L of the radio frequency HF is 200W is at a higher level from about 99nm It rises to about 132 nm (however, if | V dc | becomes 900V or more, it will be saturated). In this way, if high / low pulse wave modulation is used at PL L = 200W, the aspect ratio change rate is greatly increased compared to the case where the pulse wave modulation is turned on / off.

<實驗的評價> <Evaluation of Experiment>

如上述,判斷在如圖9所示之HARC(High Aspect Ratio Contact,高深寬比接點)製程中,對電漿產生用之射頻HF,施加高/低的脈波調變,相較於施加開/關的脈波調變之情況,在各種製程特性中具有優勢,特別是可保證高的選擇比並有效地抑制彎曲。對此點加以考察。 As described above, it is judged that in the HARC (High Aspect Ratio Contact) process shown in FIG. 9, the RF HF for plasma generation is applied with high / low pulse wave modulation, compared with the application. The on / off pulse wave modulation has advantages in various process characteristics, in particular, it can ensure a high selection ratio and effectively suppress bending. Consider this.

脈波調變中,若在調變脈波的各週期,自脈波開啟期間切換為脈波關閉期間,則離子的導入效果薄弱,電漿反應產生物沉積在遮罩上。因此,低速脈波/低工作比(脈波關閉期間長),可說是適合改善遮罩與被蝕刻材或對象膜之選擇比的範圍。然而,脈波關閉期間對蝕刻影響少,故若將脈波關閉期間增長至必要以上則電漿處理之所需時間變長,有招致生產力降低的情形。 In pulse wave modulation, if the pulse wave is switched from the pulse wave on period to the pulse wave off period in each cycle of the modulation pulse wave, the effect of ion introduction is weak, and the plasma reaction product is deposited on the mask. Therefore, the low-speed pulse wave / low operating ratio (the pulse wave off period is long) can be said to be a range suitable for improving the selection ratio of the mask to the material to be etched or the target film. However, the pulse wave off period has little effect on the etching. Therefore, if the pulse wave off period is increased to more than necessary, the time required for plasma processing becomes longer, which may cause a reduction in productivity.

此外,若如同HARC地孔洞蝕刻之深寬比變大,則蝕刻時間變長,故使用開/關的脈波調變之情況,即便確保與遮罩之選擇比,由於往孔洞側壁之長時間的離子入射,彎曲變得更容易發生,故最終難以獲得良好的加工形狀。 In addition, if the depth-to-width ratio of a hole in a HARC ground is increased, the etching time will be longer. Therefore, when the on / off pulse wave modulation is used, even if the selection ratio with the mask is ensured, due to the long time to the side wall of the hole With the incidence of ions, bending becomes more likely to occur, so it is ultimately difficult to obtain a good processed shape.

緊接著自脈波開啟期間切換為脈波關閉期間後,在腔室之處理空間,電子、離子及自由基分別減少的比例不同。相對於電子以10μs,離子以100μs程度之較短的時間消失之情況,自由基經過1ms程度之時間後仍存在。吾人認為藉由存在於此一關閉期間中之自由基與遮罩表層反應,而形成遮罩表面保護膜。 Immediately after switching from the pulse wave on period to the pulse wave off period, in the processing space of the chamber, electrons, ions, and free radicals are reduced in different proportions. Compared with the case where the electron disappears in 10 μs and the ion disappears in a short time of about 100 μs, free radicals still exist after a time of about 1 ms. I think that the mask surface protective film is formed by the free radicals reacting with the surface layer of the mask during this closing period.

在高/低的脈波調變中,脈波關閉期間內電漿產生用之射頻HF仍激發處理氣體,產生離子及自由基。此一情況,相較於離子導入用之射頻LF,給予離子之加速的能量小,故對蝕刻影響之比例少。另一方面,產生相當多的自由基,且下部雙頻重疊施加方式之情況因LF關閉且HF的功率弱,故藉由適中的RF偏壓將自由基吸入而可將離子導入孔洞之底部。此一結果,促進反應產生物往孔洞側壁之沉積,可形成對彎曲的抑制有效之側壁保護膜。 In the high / low pulse wave modulation, the RF HF used in the plasma generation during the pulse wave off period still excites the processing gas, generating ions and free radicals. In this case, compared with the radio frequency LF used for ion introduction, the acceleration energy given to the ions is small, so the proportion of influence on the etching is small. On the other hand, a lot of free radicals are generated, and in the case of the lower dual-frequency overlapping application method, because LF is turned off and HF's power is weak, ions can be introduced into the bottom of the hole by drawing in the radicals with a moderate RF bias. As a result, the deposition of the reaction product on the side wall of the hole is promoted, and a side wall protective film effective for suppressing bending can be formed.

此外,如上述,得知使用高/低之脈波調變時,與調變脈波同步而將上部DC電壓的絕對值在脈波關閉期間較脈波開啟期間更為增高之技法,亦在各種製程特性的改善,特別是在縮徑的改善,中間彎曲CD的改善,垂直形狀的改善上具有效果。 In addition, as described above, when using high / low pulse wave modulation, it is known that the technique of increasing the absolute value of the upper DC voltage during the pulse wave off period is higher than the pulse wave on period in synchronization with the modulation pulse wave. The improvement of various process characteristics, especially the improvement of the diameter reduction, the improvement of the intermediate bending CD, and the improvement of the vertical shape are effective.

亦即,吾人認為藉由在脈波關閉期間內將上部DC電壓的絕對值更為增高,使任意作用運作(例如藉由增大植入被蝕刻材及遮罩之電子的能量),可獲得在孔洞內將側壁保護膜往底部側延展的效果,或抑制遮罩肩部之下降(藉此,減少誘發彎曲的傾斜成分之離子入射的比例)的效果。 That is, I think that by increasing the absolute value of the upper DC voltage during the pulse-off period, any function can be operated (for example, by increasing the energy of the electrons implanted in the material to be etched and the mask). The effect of extending the side wall protective film to the bottom side in the hole, or the effect of suppressing the lowering of the mask shoulder (by this, reducing the incidence of ions from the tilt component that induces bending).

無論如何,HARC製程中,在對電漿產生用之射頻施加高/低的脈波調變之情況,調變脈波之頻率宜為1kHz以上(宜為2kHz~8kHz,更宜為2kHz~3kHz)的區域,脈波關閉期間內之電漿產生用射頻HF的功率PLL宜設定為一定程度射頻的區域(例如100W以上,宜為200W以上)。 In any case, in the case of HARC process, when high / low pulse wave modulation is applied to the radio frequency used for plasma generation, the frequency of the modulated pulse wave should be above 1kHz (preferably 2kHz ~ 8kHz, more preferably 2kHz ~ 3kHz) ), The power PL L of the RF generation HF for the plasma generation during the pulse wave off period should be set to a certain level of RF (for example, 100W or more, preferably 200W or more).

此點,此實施形態之電漿蝕刻裝置中,電漿產生系統之匹配器40(第一匹配器)以如下方式動作:藉由具有如上述之構成及功能的阻抗感測器106A,在射頻供電線43上測定自射頻電源36可觀察到的電漿負載之阻抗,求出將脈波開啟期間Ton中之負載阻抗的測定值、與脈波關閉期間Ton中之負載阻抗的測定值以希望之權重加權平均所獲得之加權平均測定值,將此加權平均測定值與射頻電源36之輸出阻抗匹配。此一情況,藉由調整加權平均之權重變數(K)的值,而可任意控制脈波開啟期間Ton中之反射波功率PRH與脈波關閉期間Toff中之反射波功率PRH的平衡,故可任意減少脈波關閉期間Toff中之反射波的功率PRL,將負載功率PLL設定為提高此一部分之任意值。 At this point, in the plasma etching apparatus of this embodiment, the matching device 40 (first matching device) of the plasma generation system operates as follows: With the impedance sensor 106A having the structure and function described above, the RF The impedance of the plasma load observable from the RF power source 36 is measured on the power supply line 43. The measured value of the load impedance during the pulse on period T on and the measured value of the load impedance during the pulse off period T on are obtained. The weighted average measurement value obtained by weighting the desired weighted average is matched with the output impedance of the RF power source 36. In this case, the value by adjusting the weight weighted average of the weight variable (K), and can control the pulse wave is turned on T off in the period of the reflected wave power period T on of the PR H Close pulse wave reflected power PR H of Balance, so the power PR L of the reflected wave in the off period T off of the pulse wave can be arbitrarily reduced, and the load power PL L can be set to an arbitrary value which increases this part.

作為一例,使用在電漿產生系統之射頻電源36的實際一些機種之射頻電源(反射波功率之容許界限值為1200W)中,如圖12所示,相較於施行脈波開啟 期間Ton中之反射係數Γ為Γ=0.0的習知匹配方法(在脈波開啟期間Ton中取得略完全匹配的方法)之情況,藉由使用成為Γ=0.2、Γ=0.3之實施形態的匹配方法,而可將脈波關閉期間Toff中之負載功率PLL的可設定範圍自約230W(Γ=0.0)起大幅擴大至約300W(Γ=0.2)進一步擴大至約350W(Γ=0.3)。此一現象,意味著若自其他觀察角度來看,則射頻電源36的小尺寸化變得可能。另,反射係數Γ係給予Γ=(PRH/PFH)1/2As an example, as shown in FIG. 12, the radio frequency power supply (the allowable limit value of the reflected wave power is 1200 W) of the radio frequency power supply 36 of the plasma generation system is used, as compared with that during the pulse wave on period T on . In the case of a conventional matching method (a method of obtaining a slight perfect match in the pulse wave on period T on ) with a reflection coefficient Γ of Γ = 0.0, by using a matching method of an implementation form of Γ = 0.2 and Γ = 0.3, And the settable range of the load power PL L in the pulse off period T off can be greatly expanded from about 230W (Γ = 0.0) to about 300W (Γ = 0.2) and further to about 350W (Γ = 0.3). This phenomenon means that the size of the radio frequency power supply 36 becomes possible from another viewpoint. The reflection coefficient Γ is given by Γ = (PR H / PF H ) 1/2 .

[關於上部電極放電對策之實施例] [Example of countermeasures against discharge of upper electrode]

一般而言,在如HARC製程之孔洞蝕刻中,若將深寬比增高,則正離子變得容易積聚於孔洞之底部,孔洞內之離子的直進性降低,變得難以獲得良好的蝕刻形狀。關於此點,圖1之電漿蝕刻裝置,具備直流電源部62,藉由對上部電極46施加負極性之直流電壓,使自上部電極46往電漿產生空間PA放出的電子朝向基座(下部電極)16上之半導體晶圓(被處理體)W加速,將高速地加速之電子往孔洞的內部深處供給,可將積聚在孔洞底部之正離子電性中和,故可避免如上述的孔洞內之離子的直進性降低之問題。 Generally speaking, in a hole etching process such as the HARC process, if the aspect ratio is increased, positive ions will easily accumulate at the bottom of the hole, and the straightness of ions in the hole will decrease, making it difficult to obtain a good etched shape. In this regard, the plasma etching apparatus shown in FIG. 1 includes a DC power supply unit 62. By applying a negative DC voltage to the upper electrode 46, electrons emitted from the upper electrode 46 to the plasma generation space PA are directed toward the base (lower portion). The semiconductor wafer (to-be-processed object) W on the electrode 16 is accelerated, and the electrons accelerated at a high speed are supplied deep inside the hole, and the positive ions accumulated at the bottom of the hole are electrically neutralized, so it can be avoided as described above. The problem that the straightness of ions in the pores is reduced.

然而,藉由對上部電極46施加負極性之直流電壓,在上部電極46中,特別是在氣體噴出孔48a至通氣孔50a內產生氣體的放電(異常放電),有上部電極46損傷之情形。此等上部電極內部的異常放電,在對電漿產生用之射頻HF及離子導入用之射頻LF雙方施加開/關的脈波調變之情況容易發生。 However, by applying a DC voltage of a negative polarity to the upper electrode 46, a discharge (abnormal discharge) of a gas is generated in the upper electrode 46, particularly in the gas ejection hole 48a to the vent hole 50a, and the upper electrode 46 may be damaged. These abnormal discharges inside the upper electrode are likely to cause pulse wave modulation that is on / off for both the RF HF for plasma generation and the LF for ion introduction.

此一情況,如圖13所示,脈波關閉期間Toff內,離子導入用之射頻電源38及電漿產生用之射頻電源36雙方關閉,另一方面,對上部電極46自直流電源部62施加絕對值大的負極性之直流電壓Vdc1。藉此,於上部電極46之表面附近,產生將電子(e)往拋丟方向加速,將離子(+)往吸引方向加速的高電場區域(下稱「DC護層」)SHDC,藉由此一DC護層SHDC加速的電子(e)往基座16上之半導體晶圓W入射,將積聚在孔洞之底部的正電荷中和。此時,電漿產生空間PA內電漿消失,故半導體晶圓W之表面上幾乎未形成電漿護層(離子護層)SHRF。 此一狀態,通過脈波關閉期間Toff而持續。 In this case, as shown in FIG. 13, during the off period T off , both the RF power source 38 for ion introduction and the RF power source 36 for plasma generation are turned off. On the other hand, the upper electrode 46 is removed from the DC power source section 62. A negative DC voltage V dc1 having a large absolute value is applied. In this way, near the surface of the upper electrode 46, a high electric field region (hereinafter referred to as a "DC sheath") SH DC that accelerates electrons (e) in the throwing direction and accelerates ions (+) in the attracting direction is generated. This DC protective layer SH DC accelerated electrons (e) enter the semiconductor wafer W on the susceptor 16 and neutralize the positive charges accumulated at the bottom of the hole. At this time, the plasma disappears in the plasma generation space PA, so that a plasma protective layer (ion protective layer) SH RF is hardly formed on the surface of the semiconductor wafer W. This state continues through the pulse wave off period T off .

而後,若自脈波關閉期間Toff轉變為脈波開啟期間Ton,則使兩射頻電源36、38雙方同時開啟,將兩射頻HF、LF施加於基座16。藉此,於電漿產生空間PA製造處理氣體之電漿,在腔室10內形成電漿護層SHRF以覆蓋半導體晶圓W之表面。此一情況,電漿護層SHRF,從在此之前實質上不存在的狀態突然顯現,朝向上部電極46以急速成長(護層的厚度增大)。此電漿護層SHRF之成長速度,主要取決於頻率相對低的離子導入用之射頻LF的電壓(峰對峰值)Vpp之上升速度至飽和值之大小。 Then, if the pulse wave off period T off is changed to the pulse wave on period T on , the two RF power sources 36 and 38 are turned on at the same time, and the two radio frequency HF and LF are applied to the base 16. Thereby, a plasma for processing gas is manufactured in the plasma generation space PA, and a plasma protective layer SH RF is formed in the chamber 10 to cover the surface of the semiconductor wafer W. In this case, the plasma protective layer SH RF suddenly appears from a state that did not exist substantially before this, and rapidly grows toward the upper electrode 46 (the thickness of the protective layer increases). The growth rate of the plasma protective layer SH RF mainly depends on the increase rate of the voltage (peak-to-peak value) V pp of the radio frequency LF for ion introduction with a relatively low frequency to a saturation value.

另一方面,上部電極46中,自直流電源部62施加之直流電壓的絕對值自在此之前之較大的值|Vdc1|轉變為較小的值|Vdc2|,但仍放出電子(e),朝向半導體晶圓W加速。然而,與脈波關閉期間Toff時相異,此一情況中在半導體晶圓W上電漿護層SHRF往其厚度即電場強度增大的方向急速成長,故從上部電極46側加速的電子(e)因成長中之電漿護層SHRF而強力回彈。而後,被電漿護層SHRF回 彈的電子(e),此次朝向上部電極46彈跳,反抗DC護層SHDC的電場而進入上部電極46之電極板48的氣體噴出孔48a中,有在其內部深處引起放電之情形。 On the other hand, in the upper electrode 46, the absolute value of the DC voltage applied from the DC power supply section 62 has changed from a larger value before | V dc1 | to a smaller value | V dc2 |, but still emits electrons (e ) And accelerate toward the semiconductor wafer W. However, it is different from the time T off when the pulse wave is turned off . In this case, the plasma protective layer SH RF on the semiconductor wafer W grows rapidly in a direction that increases the thickness, that is, the electric field strength. The electron (e) is strongly rebounded by the growing plasma sheath SH RF . Then, the electrons (e) rebounded by the plasma shroud SH RF bounce toward the upper electrode 46 this time, and resist the electric field of the DC shroud SH DC and enter the gas ejection hole 48a of the electrode plate 48 of the upper electrode 46. A situation in which a discharge is caused deep inside.

如此地在上部電極的內部發生異常放電之情況中,在使自上部電極46放出的電子(e)朝向半導體晶圓W側加速時、及使被半導體晶圓W側之電漿護層SHRF回彈的電子(e)減速時,上部電極46側之DC護層SHDC的電場作用在電子(e)之力相同。因此,電子進入上部電極46之氣體噴出孔48a中的頻度與速度,幾乎與DC護層SHDC之大小無關,而係依存於電漿護層SHRF使電子(e)往上部電極46側回彈之強度,即電漿護層SHRF之成長速度。 When an abnormal discharge occurs inside the upper electrode in this way, when the electrons (e) emitted from the upper electrode 46 are accelerated toward the semiconductor wafer W side, and the plasma protective layer SH RF on the semiconductor wafer W side is accelerated When the rebounded electron (e) decelerates, the electric field of the DC protective layer SH DC on the upper electrode 46 side acts on the electron (e) with the same force. Therefore, the frequency and velocity of the electrons entering the gas ejection holes 48a of the upper electrode 46 are almost independent of the size of the DC protective layer SH DC , but rely on the plasma protective layer SH RF to return the electrons (e) to the upper electrode 46 side. The strength of the bullet is the growth rate of the plasma sheath SH RF .

此外,即便在電漿產生空間PA的上部產生之正離子(+),被導入DC護層SHDC的電場而與上部電極46(電極板48)之表面碰撞濺鍍,仍不引起上部電極46內部的異常放電。 In addition, even if the positive ions (+) generated in the upper part of the plasma generation space PA are introduced into the DC protective layer SH DC and splashed against the surface of the upper electrode 46 (electrode plate 48), the upper electrode 46 is not caused. Internal abnormal discharge.

圖1之電漿蝕刻裝置中,如上述之上部電極46內部的異常放電,可藉由將對於電漿產生用之射頻HF的脈波調變自開/關的脈波調變轉變為高/低的脈波調變,而有效地避免。 In the plasma etching apparatus of FIG. 1, as described above, the abnormal discharge inside the upper electrode 46 can be changed from on / off pulse modulation to high / Low pulse wave modulation, which is effectively avoided.

此一情況,如圖14所示,脈波關閉期間Toff中,射頻電源36保持開啟狀態,將電漿產生用之射頻HF以低位準的功率施加於基座16,故在電漿產生空間PA電漿未消失而以低密度殘留,半導體晶圓W之表面覆蓋薄層電漿護層SHRF。此時,自上部電極46側起藉由DC護層SHDC之大電場加速為高速的電子(e),在電漿 護層SHRF受到逆向的電場或力。然而,電漿護層SHRF薄而該逆向的電場弱,故電子(e)穿通電漿護層SHRF而入射至半導體晶圓W。此一狀態,通過脈波關閉期間Toff而持續。 In this case, as shown in FIG. 14, during the off period of the pulse wave T off , the RF power source 36 remains on, and the RF HF for plasma generation is applied to the base 16 at a low level of power, so space is generated in the plasma. The PA plasma does not disappear but remains at a low density, and the surface of the semiconductor wafer W is covered with a thin plasma protective layer SH RF . At this time, electrons (e) accelerated to a high speed by the large electric field of the DC protective layer SH DC from the upper electrode 46 side receive a reverse electric field or force on the plasma protective layer SH RF . However, since the plasma protective layer SH RF is thin and the reverse electric field is weak, electrons (e) pass through the plasma protective layer SH RF and are incident on the semiconductor wafer W. This state continues through the pulse wave off period T off .

此外,若自脈波關閉期間Toff轉變為脈波開啟期間Ton,則使射頻電源38開啟而將離子導入用之射頻LF施加於基座16,且射頻電源36將射頻HF的功率從在此之前的低位準轉變為高位準。藉此,在電漿產生空間PA產生之電漿的密度急遽地變高,且覆蓋半導體晶圓W表面之電漿護層SHRF的厚度更為增大。然而,此一情況,電漿護層SHRF並非自無的狀態突然顯現而急速成長,而僅係從已存在的狀態增大厚度,故其成長速度相當穩定,將自上部電極46側起加速為高速之電子(e)回彈的力未如此大。因此,被電漿護層SHRF回彈的電子(e),其飛濺之初速度低,故無法穿通DC護層SHDC,進入至上部電極46之電極板48的氣體噴出孔48a中。因此,在上部電極46之內部不發生異常放電。 In addition, if the pulse wave off period T off is changed to the pulse wave on period T on , the radio frequency power source 38 is turned on and the radio frequency LF for ion introduction is applied to the base 16, and the radio frequency power source 36 changes the power of the radio frequency HF from Prior to this, the low level changed to a high level. As a result, the density of the plasma generated in the plasma generation space PA is rapidly increased, and the thickness of the plasma protective layer SH RF covering the surface of the semiconductor wafer W is further increased. However, in this case, the plasma protective layer SH RF does not appear suddenly and grows rapidly, but only increases the thickness from the existing state, so its growth rate is quite stable, and it will accelerate from the upper electrode 46 side. The force of the high-speed electron (e) rebound is not so great. Therefore, the electron (e) rebounded by the plasma protective layer SH RF has a low initial velocity of splashing, so it cannot penetrate through the DC protective layer SH DC and enter the gas ejection hole 48 a of the electrode plate 48 of the upper electrode 46. Therefore, no abnormal discharge occurs inside the upper electrode 46.

此外,確認在脈波開啟期間Ton內於上部電極46之內部發生異常放電時,與電漿護層SHRF之成長速度及厚度有關的離子導入用射頻LF之峰對峰值Vpp在射頻供電線45上大幅變動。此實施形態的電漿蝕刻裝置中,於匹配器40、42中分別設置Vpp檢測器107A、107B(圖3)。通過匹配器42內之Vpp檢測器107B,測定射頻供電線45上之離子導入用射頻LF的峰對峰值Vpp,藉由主控制部72或匹配控制器104B內之CPU處理,解析Vpp的測定值,而可取得表示在上部電極46之內部是否發生異常放電的監測資訊(圖15、圖16)。 In addition, it was confirmed that, when an abnormal discharge occurs inside the upper electrode 46 during the pulse on period T on , the peak-to-peak value V pp of the radio frequency LF for ion introduction related to the growth rate and thickness of the plasma protective layer SH RF is supplied at the radio frequency. The electric wire 45 is greatly changed. In the plasma etching apparatus of this embodiment, V pp detectors 107A and 107B are provided in the matching devices 40 and 42 (FIG. 3). V pp detector within the matcher 42 107B, as determined by ion on the RF feed line 45 for introducing LF RF peak-to-peak value V pp, by the CPU within the main control unit 72 or the matching controller 104B, V pp parse The measured information can be used to obtain monitoring information indicating whether an abnormal discharge has occurred inside the upper electrode 46 (FIG. 15, FIG. 16).

此處,圖15之監測資訊,係在上部電極46之內部發生異常放電的情況所獲得之資訊(一例)。如圖所示,得知在設定於監測期間之判定區間中Vpp變動率頻繁且大幅(數%以上)往上跳躍。一般而言,異常放電的發生頻度越多,Vpp變動率有變大的傾向。圖示的圖表之縱軸的Vpp變動率,例如以下式(2)給予。 Here, the monitoring information in FIG. 15 is information obtained when an abnormal discharge occurs inside the upper electrode 46 (an example). As shown in the figure, it is known that the variation rate of V pp frequently and significantly (a few% or more) jumps upward in the determination interval set in the monitoring period. Generally, as the frequency of occurrence of abnormal discharge increases, the rate of change in V pp tends to increase. The rate of change of V pp on the vertical axis of the graph shown is given by, for example, the following formula (2).

Vpp變動率=100×(Vpp-max-Vpp-ave)/Vpp-ave...(2) V pp change rate = 100 × (V pp-max -V pp-ave ) / V pp-ave ... (2)

Vpp-max為設定在判定區間中之一定的取樣期間TS之Vpp的最大值,Vpp-ave為該取樣期間TS中之Vpp的平均值。 V pp-max is set to the average of the maximum value determined during the constant sampling interval T S to the V pp, V pp-ave for the period T S V pp in the sample.

圖16之監測資訊,係在上部電極46之內部未發生異常放電的情況所獲得之資訊(一例)。通過判定區間Vpp而變動率在數%以下(圖示的例子為1%以下)穩定。另,緊接著監測期間開始後與緊接著結束前,為電漿點火與消失之時間點,與異常放電之發生的有無無關而Vpp變動率上升,故自判定區間除外。 The monitoring information in FIG. 16 is information obtained when an abnormal discharge does not occur inside the upper electrode 46 (an example). By the determination interval V pp , the fluctuation rate is stable at several% or less (the example in the figure is 1% or less). In addition, immediately after the start of the monitoring period and immediately before the end, it is the time point of plasma ignition and disappearance, and the V pp change rate increases regardless of the presence or absence of abnormal discharge, so the self-judgment interval is excluded.

本案發明人等,在如上述之HARC製程中,施行將氣體壓力、脈波調變之頻率fS及工作比DS選擇為參數而使其改變的實驗,調查各脈波調變中之上部電極內部的異常放電之發生的有無。此一實驗,與上述實施例同樣地在蝕刻氣體使用氟碳系之氣體,使脈波開啟期間Ton中之電漿產生用射頻HF的功率為2000kW,使離子導入用射頻LF的功率為14000kW,使脈波關閉期間Toff中之射頻HF的功率為100W。此外,作為參數,氣體壓力選擇為10mTorr、15mTorr、20mTorr、25mTorr、30mTorr之5種,脈波調變之頻率fS選擇為4kHz、5kHz、10kHz之3種,工作比DS選擇為20%、30%、40%、50%、60%之5種。 The inventors of this case performed experiments in which the gas pressure, the frequency f S of the pulse wave modulation, and the operating ratio D S were changed as parameters in the HARC process as described above, and the upper and middle portions of each pulse wave modulation were investigated. The presence or absence of abnormal discharge inside the electrode. In this experiment, the fluorocarbon-based gas was used for the etching gas in the same manner as in the above-mentioned embodiment, and the power of the RF HF for plasma generation during the pulse-on period T on was 2000 kW, and the power of the RF LF for ion introduction was 14000 kW. , So that the power of the radio frequency HF in the pulse off period T off is 100W. In addition, as the parameters, five kinds of gas pressures are selected: 10mTorr, 15mTorr, 20mTorr, 25mTorr, and 30mTorr. The frequency of pulse wave modulation f S is selected from 3 kinds of 4kHz, 5kHz, and 10kHz. The operating ratio D S is selected from 20%, 30%, 40%, 50%, 60% of 5 kinds.

於圖17A及圖17B,將此一實驗結果以表形式顯示。表中,○為,上述監測資訊中Vpp變動率收束為2%(容許值)以下之情況,表示「無異常放電」的判定結果。×為,上述監測資訊中Vpp變動率超過2%(容許值)之情況,表示「有異常放電」的判定結果。 17A and 17B, the results of this experiment are shown in a table format. In the table, ○ is the case where the V pp change rate in the above monitoring information is less than 2% (allowable value), and it indicates the determination result of “no abnormal discharge”. × is the case where the variation rate of V pp in the above monitoring information exceeds 2% (allowable value), which indicates the determination result of “abnormal discharge”.

圖17A為,對電漿產生用之射頻HF及雙方施加開/關的脈波調變之情況。此一情況,涵蓋全部參數(氣體壓力、脈波調變頻率fS、工作比DS)之全可變區域而「有異常放電」(×)的結果廣泛分布。 FIG. 17A shows a case where RF HF for plasma generation and pulse wave modulation of on / off are applied to both sides. In this case, all the parameters (gas pressure, pulse wave modulation frequency f S , operating ratio D S ) are fully variable, and the result of “with abnormal discharge” (×) is widely distributed.

圖17B為,對電漿產生用之射頻HF施加高/低的脈波調變,並對離子導入用之射頻LF施加開/關的脈波調變的情況。此一情況,涵蓋(氣體壓力、脈波調變頻率fS、工作比DS)之全可變區域恆常為「無異常放電」(○)。 FIG. 17B shows a case where high / low pulse wave modulation is applied to the radio frequency HF for plasma generation, and on / off pulse wave modulation is applied to the radio frequency LF for ion introduction. In this case, the fully variable region covering (gas pressure, pulse wave modulation frequency f S , operating ratio D S ) is always "no abnormal discharge" (○).

如此地,藉由選擇對電漿產生用之射頻HF施加高/低的脈波調變,並對離子導入用之射頻LF施加開/關的脈波調變之調變模式,而可有效地避免上部電極46之內部的異常放電。然而,此一手法,較佳態樣必須有在脈波關閉期間Toff內可將電漿產生用射頻HF的功率(負載功率)正確且穩定地保持為低功率之最佳設定值的技術。關於此點,如上述,藉由調整匹配器40的阻抗感測器106A中權重係數K的值,而較佳地可使用任意控制脈波開啟期間Ton中之反射波功率PRH與脈波關閉期間Toff中之反射波功率PRL的平衡之技術、及於射頻電源36中對脈波關閉期間Toff中之負載功率PLL施加獨立的回授控制之技術。 In this way, by selecting a modulation mode of applying high / low pulse wave modulation to the radio frequency HF for plasma generation and applying on / off pulse wave modulation to the radio frequency LF for ion introduction, it is possible to effectively Avoid abnormal discharges inside the upper electrode 46. However, for this method, a preferable aspect must have a technology that can accurately and stably maintain the power (load power) of the RF HF for plasma generation to the optimal set value during the pulse-off period T off . In this regard, as described above, by adjusting the value of the weighting coefficient K in the impedance sensor 106A of the matcher 40, it is preferable to use arbitrary control of the reflected wave power PR H and the pulse wave in the pulse on period T on during the off period T off of the reflected power PR L balance of the art, and the RF power source 36 to a pulse wave in the closed T off is applied to the load power PL L separate control of feedback techniques.

[其他實施形態或變形例] [Other embodiments or modifications]

以上雖對本發明之適宜實施形態進行說明,但本發明並未限定於上述實施形態,可在其技術思想之範圍內進行各種變形。 As mentioned above, although the suitable embodiment of this invention was described, this invention is not limited to the said embodiment, Various deformation | transformation can be performed within the range of the technical thought.

本發明中,在組合第一(電漿產生系統)功率調變方式、第二(離子導入系統)功率調變方式及上部DC施加方式時可任意選擇各自的模式。此外,亦可為對離子導入用之射頻LF的功率完全不施加脈波調變而對電漿產生用之射頻HF施加高/低的脈波調變之形態,或相反地對電漿產生用之射頻HF完全不施加脈波調變而對離子導入用之射頻LF的功率施加高/低的脈波調變之形態。進一步,亦可為僅使用第一功率調變方式或第二功率調變方式之一的形態,或不使用上部DC施加方式的形態。 In the present invention, when the first (plasma generation system) power modulation method, the second (ion introduction system) power modulation method, and the upper DC application method are combined, each mode can be arbitrarily selected. In addition, it can also be a form that does not apply pulse wave modulation at all to the power of radio frequency LF for ion introduction, and applies high / low pulse wave modulation to radio frequency HF for plasma generation, or vice versa. The radio frequency HF does not apply pulse wave modulation at all and applies high / low pulse wave modulation to the power of the radio frequency LF for ion introduction. Further, it may be a form using only one of the first power modulation method or the second power modulation method, or a form not using the upper DC application method.

上述實施形態(圖1),將電漿產生用之射頻HF施加於基座(下部電極)16。然而,亦可為將電漿產生用之射頻HF施加於上部電極46的構成。 In the above embodiment (FIG. 1), radio frequency HF for plasma generation is applied to the base (lower electrode) 16. However, a configuration in which radio frequency HF for plasma generation is applied to the upper electrode 46 may be used.

本發明,並未限定為電容耦合型電漿蝕刻裝置,亦可適用於施行電漿CVD、電漿ALD、電漿氧化、電漿氮化、濺鍍等任意電漿處理的電容耦合型電漿處理裝置,進一步亦可適用於在腔室周圍設置射頻電極(天線)的電感耦合型電漿處理裝置。本發明之被處理體不限於半導體晶圓,亦可為平板顯示器、有機EL、太陽電池用之各種基板,或光罩、CD基板、印刷基板等。 The present invention is not limited to a capacitive coupling type plasma etching device, and can also be applied to a capacitive coupling type plasma that performs any plasma treatment such as plasma CVD, plasma ALD, plasma oxidation, plasma nitridation, and sputtering. The processing device is further applicable to an inductively coupled plasma processing device in which a radio frequency electrode (antenna) is provided around the chamber. The object to be processed in the present invention is not limited to semiconductor wafers, and may be various substrates for flat panel displays, organic ELs, solar cells, photomasks, CD substrates, printed substrates, and the like.

Claims (11)

一種電漿處理裝置,在以可使被處理體進出的方式收納被處理體之可真空排氣的處理容器內,製造處理氣體之射頻放電所產生的電漿,在該電漿下方對該處理容器內之該被處理體施行希望的處理,該電漿處理裝置包含:第一射頻電源,輸出第一射頻;第一射頻功率調變部,在以一定的工作比交互重複之第一及第二期間內,以一定頻率的調變脈波調變該第一射頻電源之輸出,以使該第一期間中該第一射頻的功率成為高位準,該第二期間中該第一射頻的功率成為較該高位準更低之低位準;第一射頻供電線,用於將自該第一射頻電源輸出的該第一射頻,傳送至配置於該處理容器中或周圍之第一電極;以及第一匹配器,於該第一射頻供電線上測定自該第一射頻電源可觀察到的負載之阻抗,使藉由希望之權重將該第一期間中之負載阻抗的測定值、與該第二期間中之負載阻抗的測定值加權平均所獲得之加權平均測定值,與該第一射頻電源之輸出阻抗匹配。A plasma processing device for manufacturing a plasma generated by radio frequency discharge of a processing gas in a vacuum-evacuable processing container that stores the processed object in and out of the processed object, and processes the plasma under the plasma. The object to be processed in the container performs desired processing. The plasma processing device includes: a first radio frequency power source that outputs a first radio frequency; a first radio frequency power modulating unit that repeatedly repeats the first and the first at a certain working ratio. In the second period, the output of the first radio frequency power source is modulated with a modulation pulse of a certain frequency so that the power of the first radio frequency becomes high in the first period, and the power of the first radio frequency in the second period A lower level lower than the high level; a first radio frequency power supply line for transmitting the first radio frequency output from the first radio frequency power source to a first electrode disposed in or around the processing container; and A matching device for measuring the impedance of the load observable from the first radio frequency power supply on the first radio frequency power supply line, so that the measured value of the load impedance in the first period and the second period are by a desired weight; A weighted average value of measured values weighted average measurement of the load impedance obtained, the output impedance of the first RF power. 如申請專利範圍第1項中任一項之電漿處理裝置,其中,包含:第二射頻電源,輸出第二射頻;第二射頻供電線,用於將自該第二射頻電源輸出的該第二射頻,傳送至該第一電極;以及第二射頻功率調變部,以該調變脈波調變該第二射頻電源之輸出,以使該第一期間中該第二射頻的功率成為開啟狀態或高位準,該第二期間中該第二射頻的功率成為關閉狀態或較該高位準更低之低位準。The plasma processing device according to any one of the scope of application for a patent, which includes: a second radio frequency power source for outputting a second radio frequency; and a second radio frequency power supply line for outputting the first radio frequency from the second radio frequency power source. Two radio frequencies are transmitted to the first electrode; and a second radio frequency power modulation section modulates the output of the second radio frequency power source with the modulation pulse wave so that the power of the second radio frequency is turned on in the first period State or high level, the power of the second radio frequency in the second period becomes the off state or a lower level lower than the high level. 如申請專利範圍第2項中任一項之電漿處理裝置,其中,該第二射頻,具有適合自該電漿將離子導入該被處理體的頻率。For example, the plasma processing apparatus according to any one of the second patent application scope, wherein the second radio frequency has a frequency suitable for introducing ions from the plasma into the object to be processed. 如申請專利範圍第1~3項中任一項之電漿處理裝置,其中,該第一射頻電源包含:第一RF功率監測器,在該第一射頻供電線上,偵測自該第一射頻電源起朝向該第一電極往順方向傳播之行進波的功率、及自該第一電極起朝向該第一射頻電源往逆方向傳播之反射波的功率,分別產生表示該行進波的功率之行進波功率偵測訊號、及表示該反射波的功率之反射波功率偵測訊號;第一負載功率測定部,自藉由該RF功率監測器獲得之該行進波功率偵測訊號與該反射波功率偵測訊號,求出對包含該電漿的負載供給之負載功率的測定值;以及第一射頻輸出控制部,於該調變脈波的各週期中之該第二期間內,對該行進波的功率施加回授控制,以使藉由該負載功率測定部獲得之該負載功率的測定值與既定的負載功率設定值一致或近似。For example, the plasma processing device according to any one of claims 1 to 3, wherein the first radio frequency power source includes: a first RF power monitor that detects the first radio frequency on the first radio frequency power supply line. The power of a traveling wave propagating in a forward direction from the power source toward the first electrode, and the power of a reflected wave propagating in the reverse direction from the first electrode toward the first radio frequency power source, respectively, generate a travel representing the power of the traveling wave. Wave power detection signal, and reflected wave power detection signal indicating the power of the reflected wave; a first load power measurement unit, the traveling wave power detection signal and the reflected wave power obtained from the RF power monitor Detecting a signal to obtain a measured value of a load power supplied to a load including the plasma; and a first radio frequency output control section, for the second period of each period of the modulation pulse wave, for the traveling wave The feedback power is controlled so that the measured value of the load power obtained by the load power measurement unit is consistent with or similar to a predetermined load power setting value. 如申請專利範圍第1~3項中任一項之電漿處理裝置,其中,該第一射頻電源包含:第一RF功率監測器,在該第一射頻供電線上,偵測自該第一射頻電源起朝向該第一電極往順方向傳播之行進波的功率、及自該第一電極起朝向該第一射頻電源往逆方向傳播之反射波的功率,分別產生表示該行進波的功率之行進波功率偵測訊號、及表示該反射波的功率之反射波功率偵測訊號;第一負載功率測定部,自藉由該RF功率監測器獲得之該行進波功率偵測訊號與該反射波功率偵測訊號,求出對包含該電漿的負載供給之負載功率的測定值;以及第一射頻輸出控制部,於該調變脈波的各週期中之該第一及第二期間內,對該行進波的功率在該第一期間與該第二期間個別地施加回授控制,以使將藉由該負載功率測定部獲得之該負載功率的測定值,與對該第一及第二期間個別地給予之第一及第二負載功率設定值分別一致或近似。For example, the plasma processing device according to any one of claims 1 to 3, wherein the first radio frequency power source includes: a first RF power monitor that detects the first radio frequency on the first radio frequency power supply line. The power of a traveling wave propagating in a forward direction from the power source toward the first electrode, and the power of a reflected wave propagating in the reverse direction from the first electrode toward the first radio frequency power source, respectively, generate a travel representing the power of the traveling wave. Wave power detection signal, and reflected wave power detection signal indicating the power of the reflected wave; a first load power measurement unit, the traveling wave power detection signal and the reflected wave power obtained from the RF power monitor Detecting a signal to obtain a measured value of a load power supplied to a load including the plasma; and a first RF output control section, during the first and second periods in each period of the modulation pulse, The power of the traveling wave is individually subjected to feedback control in the first period and the second period so that the measured value of the load power to be obtained by the load power measurement section and the first and second periods are Individually The given first and second load power settings are identical or similar, respectively. 如申請專利範圍第1~3項中任一項之電漿處理裝置,其中,該第一射頻,包含適合該電漿之產生的頻率。For example, the plasma processing apparatus according to any one of claims 1 to 3, wherein the first radio frequency includes a frequency suitable for the generation of the plasma. 如申請專利範圍第1~3項中任一項之電漿處理裝置,其中,於該第一電極載置該被處理體。For example, the plasma processing apparatus according to any one of claims 1 to 3, wherein the object to be processed is placed on the first electrode. 如申請專利範圍第1~3項中任一項之電漿處理裝置,其中,該第二期間中之該第二射頻的功率,較維持該電漿產生狀態所必需之最小限度的功率更高。For example, the plasma processing device according to any one of claims 1 to 3, wherein the power of the second radio frequency in the second period is higher than the minimum power necessary to maintain the plasma generation state. . 如申請專利範圍第1~3項中任一項之電漿處理裝置,其中,包含直流電源部,其與該調變脈波同步,僅於該第二期間內對第二電極施加負極性之直流電壓。For example, the plasma processing device according to any one of claims 1 to 3, which includes a DC power supply section, which is synchronized with the modulation pulse and applies a negative polarity to the second electrode only during the second period. DC voltage. 如申請專利範圍第1~3項中任一項之電漿處理裝置,其中,包含直流供電部,對在該處理容器內隔著電漿產生空間而與該被處理體相對向的電極施加負極性之直流電壓,與該調變脈波同步,相較於該第一期間內在該第二期間內之中將該直流電壓的絕對值增大。For example, the plasma processing device according to any of claims 1 to 3 includes a DC power supply unit, and applies a negative electrode to an electrode opposed to the object to be processed through a plasma generating space in the processing container. The synchronous DC voltage is synchronized with the modulation pulse, and the absolute value of the DC voltage is increased during the second period compared to the first period. 如申請專利範圍第1~3項中任一項之電漿處理裝置,其中,該調變脈波之頻率為2~8kHz,工作比為20~80%。For example, the plasma processing device according to any one of claims 1 to 3, wherein the frequency of the modulated pulse wave is 2 to 8 kHz, and the operating ratio is 20 to 80%.
TW104130519A 2014-09-17 2015-09-16 Plasma processing device TWI665711B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-188897 2014-09-17
JP2014188897 2014-09-17
JP2015-128277 2015-06-26
JP2015128277A JP6512962B2 (en) 2014-09-17 2015-06-26 Plasma processing system

Publications (2)

Publication Number Publication Date
TW201621974A TW201621974A (en) 2016-06-16
TWI665711B true TWI665711B (en) 2019-07-11

Family

ID=55805801

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104130519A TWI665711B (en) 2014-09-17 2015-09-16 Plasma processing device

Country Status (3)

Country Link
JP (1) JP6512962B2 (en)
KR (1) KR102346940B1 (en)
TW (1) TWI665711B (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11615941B2 (en) 2009-05-01 2023-03-28 Advanced Energy Industries, Inc. System, method, and apparatus for controlling ion energy distribution in plasma processing systems
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9685297B2 (en) 2012-08-28 2017-06-20 Advanced Energy Industries, Inc. Systems and methods for monitoring faults, anomalies, and other characteristics of a switched mode ion energy distribution system
US9336901B2 (en) * 2014-03-17 2016-05-10 Lam Research Corporation Track and hold feedback control of pulsed RF
JP6817889B2 (en) * 2016-05-10 2021-01-20 東京エレクトロン株式会社 Plasma processing equipment and plasma processing method
JP6457432B2 (en) 2016-05-16 2019-01-23 ファナック株式会社 Servo control device, control method and computer program for machine tool for rocking cutting
US10340123B2 (en) * 2016-05-26 2019-07-02 Tokyo Electron Limited Multi-frequency power modulation for etching high aspect ratio features
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
JP6770868B2 (en) * 2016-10-26 2020-10-21 東京エレクトロン株式会社 Method for impedance matching of plasma processing equipment
TWI641293B (en) * 2016-11-03 2018-11-11 呈睿國際股份有限公司 Rf plasma power supply system for variable impedance load, automatic matching device thereof and matching method thereof
US10424467B2 (en) * 2017-03-13 2019-09-24 Applied Materials, Inc. Smart RF pulsing tuning using variable frequency generators
US10020168B1 (en) * 2017-07-20 2018-07-10 Lam Research Corporation Systems and methods for increasing efficiency of delivered power of a megahertz radio frequency generator in the presence of a kilohertz radio frequency generator
JP7045152B2 (en) * 2017-08-18 2022-03-31 東京エレクトロン株式会社 Plasma processing method and plasma processing equipment
JP6858095B2 (en) * 2017-08-18 2021-04-14 東京エレクトロン株式会社 Microwave output device and plasma processing device
JP6883488B2 (en) * 2017-08-18 2021-06-09 東京エレクトロン株式会社 Plasma processing equipment
JP6833657B2 (en) 2017-11-07 2021-02-24 東京エレクトロン株式会社 How to plasma etch the substrate
WO2019099937A1 (en) 2017-11-17 2019-05-23 Advanced Energy Industries, Inc. Improved application of modulating supplies in a plasma processing system
PL3711080T3 (en) 2017-11-17 2023-12-11 Aes Global Holdings, Pte. Ltd. Synchronized pulsing of plasma processing source and substrate bias
KR20200100642A (en) 2017-11-17 2020-08-26 에이이에스 글로벌 홀딩스 피티이 리미티드 Spatial and temporal control of ion bias voltage for plasma processing
JP2019186098A (en) * 2018-04-12 2019-10-24 東京エレクトロン株式会社 Method of generating plasma
JP2019186099A (en) * 2018-04-12 2019-10-24 東京エレクトロン株式会社 Plasma processing machine
JP7061922B2 (en) * 2018-04-27 2022-05-02 東京エレクトロン株式会社 Plasma processing method and plasma processing equipment
JP6910320B2 (en) * 2018-05-01 2021-07-28 東京エレクトロン株式会社 Microwave output device and plasma processing device
CN113345788B (en) * 2018-06-22 2024-06-21 东京毅力科创株式会社 Plasma processing apparatus, plasma processing method, and storage medium
JP6846387B2 (en) * 2018-06-22 2021-03-24 東京エレクトロン株式会社 Plasma processing method and plasma processing equipment
JP6842443B2 (en) * 2018-06-22 2021-03-17 東京エレクトロン株式会社 Plasma processing equipment and method of generating plasma
DE102018116637A1 (en) * 2018-07-10 2020-01-16 TRUMPF Hüttinger GmbH + Co. KG Power supply facility and operating procedures therefor
WO2020026802A1 (en) * 2018-07-30 2020-02-06 東京エレクトロン株式会社 Control method and plasma processing device
JP7306886B2 (en) * 2018-07-30 2023-07-11 東京エレクトロン株式会社 Control method and plasma processing apparatus
US10854427B2 (en) * 2018-08-30 2020-12-01 Applied Materials, Inc. Radio frequency (RF) pulsing impedance tuning with multiplier mode
JP6960421B2 (en) * 2019-01-23 2021-11-05 東京エレクトロン株式会社 Plasma processing equipment and plasma processing method
CN109847807B (en) * 2019-03-21 2022-04-08 青岛大学 Denitration filter material based on plasma treatment and in-situ deposition method and preparation method thereof
CN109847580B (en) * 2019-03-21 2022-04-08 青岛大学 Denitration filter material based on plasma pretreatment and impregnation method and preparation method thereof
CN111916327B (en) * 2019-05-10 2023-04-28 中微半导体设备(上海)股份有限公司 Multi-frequency multi-stage plasma radio frequency output method and device thereof
JP7234036B2 (en) * 2019-05-28 2023-03-07 東京エレクトロン株式会社 Plasma processing method and plasma processing apparatus
KR20220031713A (en) 2019-07-12 2022-03-11 에이이에스 글로벌 홀딩스 피티이 리미티드 Bias supply with single controlled switch
KR102223876B1 (en) * 2019-10-28 2021-03-05 주식회사 뉴파워 프라즈마 Multiple voltage control method and high frequency power device with multiple voltage control function, for resolving mismatching aspect
KR102190925B1 (en) * 2019-10-30 2020-12-14 광운대학교 산학협력단 Chamber to chamber monitoring system for multiple chamber synchronization
US11043387B2 (en) * 2019-10-30 2021-06-22 Applied Materials, Inc. Methods and apparatus for processing a substrate
KR102190926B1 (en) * 2019-10-31 2020-12-14 광운대학교 산학협력단 System for measuring status of substrate and plasma
JP2021108413A (en) * 2019-12-27 2021-07-29 株式会社ダイヘン Impedance adjustment device and impedance adjustment method
JP7336395B2 (en) * 2020-01-29 2023-08-31 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP7382848B2 (en) * 2020-02-20 2023-11-17 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
KR20220157256A (en) * 2021-05-20 2022-11-29 인투코어테크놀로지 주식회사 Frequency generator providing bias power in semiconductor processing
US11670487B1 (en) 2022-01-26 2023-06-06 Advanced Energy Industries, Inc. Bias supply control and data processing
US11942309B2 (en) 2022-01-26 2024-03-26 Advanced Energy Industries, Inc. Bias supply with resonant switching
WO2023189292A1 (en) * 2022-03-31 2023-10-05 東京エレクトロン株式会社 Plasma processing apparatus
US11978613B2 (en) 2022-09-01 2024-05-07 Advanced Energy Industries, Inc. Transition control in a bias supply
CN116759285B (en) * 2023-08-16 2024-01-30 深圳市恒运昌真空技术股份有限公司 Radio frequency power supply, lamination control loop of radio frequency power supply

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523495A (en) * 2008-05-07 2011-08-11 アドバンスト・エナジー・インダストリーズ・インコーポレイテッド Apparatus, system and method for controlling a matching network
TW201320831A (en) * 2011-11-04 2013-05-16 Advanced Micro Fab Equip Inc Single matching network, construction method thereof, and radio frequency power source system of the matching network
US20130277333A1 (en) * 2012-04-24 2013-10-24 Applied Materials, Inc. Plasma processing using rf return path variable impedance controller with two-dimensional tuning space
WO2014089005A1 (en) * 2012-12-04 2014-06-12 Advanced Energy Industries, Inc. Frequency tuning system and method for finding a global optimum
TW201429322A (en) * 2012-10-09 2014-07-16 Novellus Systems Inc Hybrid impedance matching for inductively coupled plasma system
US20150000841A1 (en) * 2011-12-15 2015-01-01 Tokyo Electron Limited Plasma processing apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW335517B (en) * 1996-03-01 1998-07-01 Hitachi Ltd Apparatus and method for processing plasma
KR101124770B1 (en) * 2008-03-31 2012-03-23 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus, plasma processing method and computer readable storage medium
JP2010238881A (en) * 2009-03-31 2010-10-21 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
SG175695A1 (en) * 2009-08-07 2011-12-29 Kyosan Electric Mfg Pulse-modulated high-frequency power control method and pulse-modulated high-frequency power source device
KR101757922B1 (en) * 2009-10-27 2017-07-14 도쿄엘렉트론가부시키가이샤 Plamsa processing apparatus
JP5558224B2 (en) 2010-06-23 2014-07-23 東京エレクトロン株式会社 Substrate processing method
JP5893864B2 (en) 2011-08-02 2016-03-23 東京エレクトロン株式会社 Plasma etching method
JP6312405B2 (en) * 2013-11-05 2018-04-18 東京エレクトロン株式会社 Plasma processing equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523495A (en) * 2008-05-07 2011-08-11 アドバンスト・エナジー・インダストリーズ・インコーポレイテッド Apparatus, system and method for controlling a matching network
TW201320831A (en) * 2011-11-04 2013-05-16 Advanced Micro Fab Equip Inc Single matching network, construction method thereof, and radio frequency power source system of the matching network
US20150000841A1 (en) * 2011-12-15 2015-01-01 Tokyo Electron Limited Plasma processing apparatus
US20130277333A1 (en) * 2012-04-24 2013-10-24 Applied Materials, Inc. Plasma processing using rf return path variable impedance controller with two-dimensional tuning space
TW201429322A (en) * 2012-10-09 2014-07-16 Novellus Systems Inc Hybrid impedance matching for inductively coupled plasma system
WO2014089005A1 (en) * 2012-12-04 2014-06-12 Advanced Energy Industries, Inc. Frequency tuning system and method for finding a global optimum

Also Published As

Publication number Publication date
KR102346940B1 (en) 2022-01-04
JP2016066593A (en) 2016-04-28
TW201621974A (en) 2016-06-16
KR20160033034A (en) 2016-03-25
JP6512962B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
TWI665711B (en) Plasma processing device
TWI614807B (en) Plasma processing device
US10115567B2 (en) Plasma processing apparatus
KR102265228B1 (en) Plasma processing apparatus
JP6374647B2 (en) Plasma processing equipment
KR101993880B1 (en) Plasma-treatment apparatus
US11742183B2 (en) Plasma processing apparatus and control method
KR20140105455A (en) Plasma treatment method and plasma treatment device
TWI603368B (en) Plasma processing apparatus and plasma processing method
WO2018233455A1 (en) Bias modulation method, bias modulation system and plasma processing device
US11721525B2 (en) Sensorless RF impedance matching network
US11328903B2 (en) Plasma processing system, method of controlling plasma in the plasma processing system, and method of manufacturing semiconductor device by using the method of controlling the plasma