TWI662106B - Rare earth element light emitting diode structure with barrier layer - Google Patents

Rare earth element light emitting diode structure with barrier layer Download PDF

Info

Publication number
TWI662106B
TWI662106B TW107143189A TW107143189A TWI662106B TW I662106 B TWI662106 B TW I662106B TW 107143189 A TW107143189 A TW 107143189A TW 107143189 A TW107143189 A TW 107143189A TW I662106 B TWI662106 B TW I662106B
Authority
TW
Taiwan
Prior art keywords
light
type material
earth element
emitting diode
layer
Prior art date
Application number
TW107143189A
Other languages
Chinese (zh)
Other versions
TW202020117A (en
Inventor
陳志典
張國仁
藍文厚
陳正龍
林家慶
Original Assignee
國家中山科學研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國家中山科學研究院 filed Critical 國家中山科學研究院
Priority to TW107143189A priority Critical patent/TWI662106B/en
Application granted granted Critical
Publication of TWI662106B publication Critical patent/TWI662106B/en
Publication of TW202020117A publication Critical patent/TW202020117A/en

Links

Abstract

本發明係為一種以介面障礙層方式提升於逆偏壓下操作之稀土元素發光二極體結構。主要在稀土元素發光層之側邊介面上製作一能階高於發光層材料的障礙層。藉由不同偏壓的操作,此障礙層可控制載子進入發光層的情況。與無障礙層的稀土元素發光二極體相比,此具障礙層的稀土元素發光二極體可抑制未達臨界電壓時之暗電流,以及提升在超過臨界電壓後的二極體發光強度。 The invention is a rare-earth element light-emitting diode structure which is promoted to operate under reverse bias by means of an interface barrier layer. A barrier layer with an energy level higher than that of the material of the light-emitting layer is mainly formed on a side interface of the rare-earth element light-emitting layer. Through the operation of different bias voltages, this barrier layer can control the situation of carriers entering the light emitting layer. Compared with the rare-earth element light-emitting diode without barrier layer, the rare-earth element light-emitting diode with barrier layer can suppress the dark current when the threshold voltage is not reached, and increase the light-emitting intensity of the diode after the threshold voltage is exceeded.

Description

一種具障礙層的稀土元素發光二極體結構 Rare earth element light emitting diode structure with barrier layer

本發明係有關於一種在電激發之稀土元素發光二極體結構中,利用介面障礙層方式來提升此發光二極體光度的結構。 The invention relates to a structure for improving the luminosity of the light-emitting diode by using an interface barrier layer method in an electrically excited rare earth element light-emitting diode structure.

電激發稀土元素發光二極體,為一種在二極體結構中以含稀土元素之材料為發光層,利用電激發下載子於這些稀土元素能態的躍遷,而發出對應於稀土元素能態波長的一種發光二極體。與傳統二極體於順向偏壓下操作不同,此種發光二極體結構能於逆向偏壓下因電子與或電洞對稀土元素的撞擊游離複合造成其能態躍遷而發光。 An electrically excited rare earth element light-emitting diode is a light-emitting layer containing a rare earth element-containing material in a diode structure, and uses an electrically excited downloader to transition from the energy state of these rare earth elements to emit a wavelength corresponding to the energy state of the rare earth element. A light-emitting diode. Unlike conventional diodes that operate under forward bias, this light-emitting diode structure can emit light due to the energy-state transition of the rare earth element due to the impact of electrons and or holes on the rare earth element under reverse bias.

參照論文研究[G.Franzo et al,Appl.Phys.Lett.64(17),pp2235-2237(1994)],為將Er元素以離子佈植方式植入PN二極體結構中,經由後續620℃高溫熱處理,以達到電激發光的做法。 Referring to the research [G.Franzo et al, Appl. Phys. Lett. 64 (17), pp2235-2237 (1994)], in order to implant the Er element into the PN diode structure by ion implantation, the subsequent 620 High temperature heat treatment at ℃ to achieve electrical excitation.

參照美國專利公告號第US6846509號,其揭示了一種於低溫下以濺鍍法沉積氧化鉺(Er2O3),利用後續高過600℃以上高溫的熱處理,以增進其光激發光強度的做法。 With reference to US Patent Publication No. US6846509, it discloses a method of depositing thorium oxide (Er 2 O 3 ) by sputtering at low temperature, and using subsequent heat treatment at a temperature higher than 600 ° C. to increase the intensity of its light-excitation light. .

參照論文研究[S.Iwan et al,Physica B 407, pp2721-2724(2012)],為將醋酸鉺與醋酸鋅混合,於450℃下進行氧化鋅摻鉺薄膜,而完成鉺摻雜發光二極體元件的做法。此方式不必經由後續高溫熱處理,可直接電激發光。 Reference paper research [S. Iwan et al, Physica B 407, pp2721-2724 (2012)], in order to mix ytterbium acetate with zinc acetate, perform a erbium-doped zinc oxide thin film at 450 ° C, and complete the practice of erbium-doped light-emitting diode elements. This method does not need to go through the subsequent high temperature heat treatment, and can directly excite the light.

參照論文研究[T.H.Lin et al,Sensors and Materials,30,pp939-946(2018)],為在發光層上增加一歐姆接觸層。此結構可降低此種發光二極體的電阻,提升元件品質。 Refer to the paper research [T.H. Lin et al, Sensors and Materials, 30, pp939-946 (2018)], in order to add an ohmic contact layer on the light emitting layer. This structure can reduce the resistance of the light-emitting diode and improve the quality of the device.

職是之故,申請人乃進行試驗與研究,提出一種能增進此種具稀土元素發光二極體品質的結構,特別係具有障礙層的異質結構。於發光層旁引入一障礙層,使得元件特性達到操作電壓低於臨界電壓時的電流抑制,與高於臨界電壓時的光亮度提升,提升此種發光二極體品質的功效。 For this reason, the applicant has conducted experiments and researches to propose a structure that can enhance the quality of this kind of rare-earth light-emitting diode, especially a heterostructure with a barrier layer. An obstacle layer is introduced next to the light-emitting layer, so that the characteristics of the device reach the current suppression when the operating voltage is lower than the critical voltage, and the brightness is increased when the operating voltage is higher than the critical voltage, thereby improving the efficacy of the quality of the light-emitting diode.

緣是,發明人有鑑於此,秉持多年該相關行業之豐富設計開發及實際製作經驗,針對現有之技術及缺失予以研究改良,提供一種具障礙層的稀土元素發光二極體結構,以期達到更佳實用價值性之目的者。 The reason is that the inventors have taken this into consideration, and based on many years of rich design and development and practical manufacturing experience in the relevant industry, research and improve the existing technology and defects, and provide a rare earth element light-emitting diode structure with a barrier layer in order to achieve more For the purpose of good practical value.

鑒於上述習知技術,本發明之主要目的在於提出一種能增進具稀土元素發光二極體品質的結構,於發光層旁引入一障礙層(高導電帶能階材料),使得元件特性達到操作電壓低於臨界電壓時的電流抑制,與高於臨界電壓時的光亮度提升,提升此種發光二極體品質的功效。 In view of the above-mentioned conventional technologies, the main object of the present invention is to propose a structure capable of improving the quality of a rare-earth light-emitting diode. A barrier layer (highly conductive band-level material) is introduced next to the light-emitting layer, so that the characteristics of the device reach the operating voltage. The current suppression below the critical voltage and the increase in light brightness above the critical voltage improve the efficacy of the quality of such light-emitting diodes.

為達到上述目的,本發明提出一種能增進稀土元素發光二極體品質的結構包含:一基板金屬接觸層;一p型材料,係形成於該基板金屬接觸層上;一摻雜稀土元素發光層,係形成於該p型材料上;一n型材料,係形成於該摻雜稀土元素發光層上;以及一上方金屬接觸層,係形成於該n型材料上;其中該p型材料於靠近該摻雜稀土元素發光層之材料端,形成一高導電帶能階材料以與該摻雜稀土元素發光層結合;或該n型材料於靠近該摻雜稀土元素發光層之材料端,形成該高導電帶能階材料以與該摻雜稀土元素發光層結合;或該p型材料及該n型材料於靠近該摻雜稀土元素發光層之材料端皆形成該高導電帶能階材料以與該摻雜稀土元素發光層結合。 In order to achieve the above object, the present invention proposes a structure capable of improving the quality of a rare earth element light emitting diode including: a substrate metal contact layer; a p-type material formed on the substrate metal contact layer; a doped rare earth element light emitting layer Is formed on the p-type material; an n-type material is formed on the doped rare earth element light-emitting layer; and an upper metal contact layer is formed on the n-type material; wherein the p-type material is near The material end of the doped rare earth element light emitting layer forms a highly conductive band-level material to be combined with the doped rare earth element light emitting layer; or the n-type material is formed near the material end of the doped rare earth element light emitting layer to form the The highly conductive band-level material is combined with the doped rare earth element light-emitting layer; or the p-type material and the n-type material are formed near the material end of the doped rare-earth element light-emitting layer to form the highly conductive band-level material with The doped rare earth element light emitting layer is combined.

較佳地,該p型材料及該n型材料係可選自半導體材料、高分子材料或上述之組合。 Preferably, the p-type material and the n-type material are selected from a semiconductor material, a polymer material, or a combination thereof.

較佳地,該p型材料及該n型材料係可選自氧化鋅、氧化鎂、二氧化矽、稀土元素或上述之組合。 Preferably, the p-type material and the n-type material are selected from zinc oxide, magnesium oxide, silicon dioxide, rare earth elements, or a combination thereof.

較佳地,該基板金屬接觸層及該上方金屬接觸層係可選自銦、金、鎳、氧化鎳、氧化銦錫或上述之組合。 Preferably, the substrate metal contact layer and the upper metal contact layer may be selected from indium, gold, nickel, nickel oxide, indium tin oxide, or a combination thereof.

較佳地,該p型材料、該n型材料與摻雜製作方式係可選自噴霧塗佈、熱蒸鍍、電子束蒸鍍、濺鍍、氣相沉積、液相沉積或上述之組合。 Preferably, the p-type material, the n-type material and the doping method are selected from spray coating, thermal evaporation, electron beam evaporation, sputtering, vapor deposition, liquid deposition, or a combination thereof.

本發明於具稀土元素發光二極體結構中,含稀土元素發光層之旁,製作一材料,此材料之能階高於發光層:在 p型摻雜一端,製作一高導電帶之障礙層材料;在n型摻雜一端,製作一高導電帶之障礙層材料;或二者之組成,以提升此種發光二極體品質的功效。 In the invention, a material is prepared beside a rare earth element-containing light emitting layer in a light emitting diode structure with a rare earth element, and the energy level of this material is higher than that of the light emitting layer: p-type doped end to make a barrier layer material with high conductivity; n-type doped end to make a barrier layer material with high conductivity; or a combination of both to improve the quality of this type of light emitting diode .

以上之概述與接下來的詳細說明及附圖,皆是為了能進一步說明本創作達到預定目的所採取的方式、手段及功效。而有關本創作的其他目的及優點,將在後續的說明及圖式中加以闡述。 The above summary and the following detailed description and drawings are to further explain the methods, means and effects adopted by this creation to achieve the intended purpose. The other purposes and advantages of this creation will be explained in the subsequent description and drawings.

101‧‧‧基板金屬接觸層 101‧‧‧ Substrate metal contact layer

201‧‧‧p型材料 201‧‧‧p-type material

301‧‧‧發光層 301‧‧‧luminescent layer

401‧‧‧n型材料 401‧‧‧n type material

501‧‧‧上方金屬接觸層 501‧‧‧ over metal contact layer

202、402‧‧‧高導電帶能階材料 202, 402‧‧‧ Highly Conductive Band Energy Level Materials

(a)‧‧‧改善前 (a) ‧‧‧ Before improvement

(b)‧‧‧改善後 (b) ‧‧‧ After improvement

V‧‧‧逆偏壓 V‧‧‧ reverse bias

I‧‧‧電流 I‧‧‧ current

L‧‧‧亮度 L‧‧‧ Brightness

λ‧‧‧波長 λ‧‧‧wavelength

第1圖係為具稀土元素發光二極體結構示意圖;第2圖係為改良之具稀土元素發光二極體結構示意圖;第3圖係為導電能帶示意圖;第4圖係為改善前(a),不具二氧化矽層,與改善後(b),具二氧化矽層的鉺摻雜氧化鋅鎂發光二極體的逆偏壓V與電流I關係;第5圖係為改善前(a),不具二氧化矽層,與改善後(b),具二氧化矽層的鉺摻雜氧化鋅鎂發光二極體的亮度L與電流I關係;第6圖係為改善前(a),不具二氧化矽層,與改善後(b),具二氧化矽層的鉺摻雜氧化鋅鎂發光二極體的 光譜圖;第7圖係於發光層上方改良型稀土元素發光二極體結構示意圖;第8圖係於發光層上方改良型稀土元素發光二極體結構示意圖。 Figure 1 is a schematic diagram of the structure of a light-emitting diode with a rare earth element; Figure 2 is a schematic diagram of a modified structure of a light-emitting diode with a rare earth element; Figure 3 is a schematic diagram of a conductive energy band; and Figure 4 is a diagram before improvement ( a), without the silicon dioxide layer, and after improvement (b), the relationship between the reverse bias voltage V and the current I of the erbium-doped zinc-magnesium oxide light-emitting diode with the silicon dioxide layer; a), without the silicon dioxide layer, and after improvement (b), the relationship between the brightness L and the current I of the erbium-doped zinc-magnesium oxide light-emitting diode with the silicon dioxide layer; Figure 6 shows the before improvement (a) , Without silicon dioxide layer, and after improvement (b), erbium-doped zinc-magnesium oxide light-emitting diodes with silicon dioxide layer Spectrogram; Figure 7 is a schematic diagram of the structure of an improved rare earth element light emitting diode above the light emitting layer; Figure 8 is a schematic diagram of the structure of an improved rare earth element light emitting diode above the light emitting layer.

以下係藉由特定的具體實例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容瞭解本發明之其他優點與功效。 The following is a description of specific embodiments of the present invention. Those skilled in the art can understand other advantages and effects of the present invention from the content disclosed in this specification.

請參考第1圖,為傳統之於具稀土元素發光二極體結構示意圖。如圖所示,其結構係包括一基板金屬接觸層101,p型材料201,其後於該p型材料201之上利用蒸鍍,濺鍍,化學氣相,噴霧,浸泡等製程,或是其組合方式完成含有稀土元素之發光層301,以及n型材料401,上方金屬接觸層501,其中p型材料201及n型材料401係可選自半導體材料、高分子材料或上述之組合,例如氧化鋅、氧化鎂、二氧化矽、稀土元素或上述之組合,基板金屬接觸層101及上方金屬接觸層501係可選自銦、金、鎳、氧化鎳、氧化銦錫或上述之組合。在本實施例中,基板金屬接觸層101為銦金屬,p型材料201為濃度 1x1019cm-3的p型矽基板。發光層301為厚度400nm,濃度3x1017cm-3的鉺摻雜氧化鋅鎂(Mg0.04Zn0.96O:Er),n型材料401為厚度200nm,濃度1x1018cm-3的n型銦摻雜氧化鋅(ZnO:In)。上方金屬接觸層501為以濺鍍法製作厚度300nm的黃金(Au)金屬。發光層301與n型材料401的製作方式為以醋酸鎂、醋酸鋅以及醋酸鉺水溶液為前驅物,在450℃下依序以噴霧熱解法製作而成。 Please refer to Figure 1, which is a schematic diagram of the traditional structure of a light emitting diode with a rare earth element. As shown in the figure, the structure includes a substrate metal contact layer 101 and a p-type material 201, and then a process such as evaporation, sputtering, chemical vapor phase, spraying, immersion, etc. is performed on the p-type material 201, or The combination method completes a light-emitting layer 301 containing a rare earth element, an n-type material 401, and an upper metal contact layer 501. The p-type material 201 and the n-type material 401 can be selected from semiconductor materials, polymer materials, or a combination of the above, for example Zinc oxide, magnesium oxide, silicon dioxide, rare earth elements, or a combination thereof. The substrate metal contact layer 101 and the upper metal contact layer 501 may be selected from indium, gold, nickel, nickel oxide, indium tin oxide, or a combination thereof. In this embodiment, the substrate metal contact layer 101 is indium metal, and the p-type material 201 is a p-type silicon substrate having a concentration of 1 × 10 19 cm −3 . The light-emitting layer 301 is erbium-doped zinc-magnesium oxide (Mg 0.04 Zn 0.96 O: Er) with a thickness of 400 nm and a concentration of 3x10 17 cm -3 , and the n-type material 401 is an n-type indium doped with a thickness of 200 nm and a concentration of 1x10 18 cm -3 Zinc oxide (ZnO: In). The upper metal contact layer 501 is made of gold (Au) metal with a thickness of 300 nm by a sputtering method. The light-emitting layer 301 and the n-type material 401 are manufactured by using magnesium acetate, zinc acetate, and an aqueous solution of osmium acetate as precursors, and sequentially by spray pyrolysis at 450 ° C.

在第1圖結構中於逆偏壓操作時,其電子乃於p型材料201區域產生,而電洞於n型材料401區域產生,於逆偏壓下進入鉺摻雜氧化鋅鎂發光層301。由於載子隨著逆偏壓增加而持續進入此區域,因此在逆偏壓未達產生撞擊游離發光的臨界電壓之前乃有持續的電流進入。而這些電流並無法引發撞擊游離機制而發光,對發光機制而言,乃為無效電流。大的無效電流除了需要有較高功率的電源供應以驅動元件外,其產生的熱也間接影響了元件的使用特性。 In the structure of FIG. 1, during the reverse bias operation, electrons are generated in the region 201 of the p-type material, while holes are generated in the region 401 of the n-type material, and enter the erbium-doped zinc oxide magnesium light-emitting layer 301 under the reverse bias. . Since the carrier continues to enter this region with the increase of the reverse bias voltage, a continuous current enters before the reverse bias voltage reaches the threshold voltage that produces the impact free emission. These currents do not cause light to strike the dissociation mechanism, which is an ineffective current for the light-emitting mechanism. In addition to the large reactive current that requires a higher power supply to drive the component, the heat it generates also indirectly affects the characteristics of the component.

為改善上述缺點,在逆偏壓未達臨界電壓之前抑制電流,以及在超過臨界電壓後能形成高電場並順利引入電流,我們在結構中引入一高能階材料。請配合參考第2圖改良後之具稀土元素發光二極體結構示意圖。其中高導電帶能階材料202為一高能階材料,其餘結構與做法與第1圖相同。在實施例中,高導電帶能階材料202為二氧化矽(SiO2)。製作方式為將p型材料201置於含水氣的高溫爐,於450℃以上的溫度10 分鐘以形成二氧化矽以與摻雜稀土元素發光層301結合。 In order to improve the above disadvantages, to suppress the current before the reverse bias voltage reaches the critical voltage, and to form a high electric field and smoothly introduce the current after the critical voltage is exceeded, we introduce a high-level material into the structure. Please refer to Figure 2 for a schematic diagram of the improved structure of a light emitting diode with a rare earth element. The high-conductivity-band energy-level material 202 is a high-energy-level material, and the remaining structures and methods are the same as those in FIG. 1. In an embodiment, the high-conductivity band-level material 202 is silicon dioxide (SiO 2 ). The manufacturing method is that the p-type material 201 is placed in a high-temperature furnace containing water gas, and the silicon dioxide is formed at a temperature of 450 ° C. or higher for 10 minutes to be combined with the doped rare earth element light-emitting layer 301.

第3圖為改善後的導電能帶示意圖,包括p型材料201,高導電帶能階材料202與鉺摻雜氧化鋅鎂發光層301之導電能帶示意圖。圖中之改善前(a)為外加偏壓低於臨界電壓之導電能帶圖,改善後(b)為外加偏壓高於臨界電壓之導電能帶圖。在未加偏壓或是外加偏壓未達臨界電壓值時,此時由p型材料201層產生的電子受到障礙層之高導電帶能階材料202的阻擋,而無法進入發光層301層,重而抑制此時的電流。當外加偏壓高於臨界電壓值時,由圖3的改善後(b)可以看到在高導電帶能階材料202區域的能帶彎曲較大,此時電子可利用Fowler-Nordheim穿隧方式進入發光層301,此時之高電場產生之撞擊游離效果較佳,從而提升元件的亮度。 FIG. 3 is a schematic diagram of the improved conductive energy band, including the conductive band of the p-type material 201, the high conductive band energy step material 202, and the erbium-doped zinc magnesium oxide light-emitting layer 301. Before the improvement (a) in the figure, the conductive energy band diagram with the applied bias voltage lower than the critical voltage is shown, and after the improvement (b) is the conductive energy band diagram with the applied bias voltage higher than the critical voltage. When the bias voltage is not applied or the applied bias voltage does not reach the threshold voltage value, the electrons generated by the p-type material 201 layer are blocked by the high-conductivity band-level material 202 of the barrier layer and cannot enter the light-emitting layer 301 layer. In this way, the current at this time is suppressed. When the applied bias voltage is higher than the threshold voltage, it can be seen from the improved figure (b) in FIG. 3 that the energy band bending in the region 202 of the high-conductivity band energy-level material is large. At this time, electrons can use the Fowler-Nordheim tunneling method. Entering the light-emitting layer 301, the impact ionization effect generated by the high electric field at this time is better, thereby improving the brightness of the element.

第4圖為改善前(a),不具二氧化矽層,與改善後(b),具二氧化矽層的鉺摻雜氧化鋅鎂發光二極體的逆偏壓V與電流I關係。由此圖可以看到在相同偏壓下,具二氧化矽障礙層的元件,如圖中改善後(b)所示,有較低的元件電流值。 Figure 4 shows the relationship between the reverse bias voltage V and the current I of the erbium-doped zinc-magnesium oxide light-emitting diode with a silicon dioxide layer before the improvement (a) and without the silicon dioxide layer (b). From this figure, it can be seen that under the same bias, the device with a silicon dioxide barrier layer has a lower device current value as shown in (b) after the improvement.

第5圖為改善前(a)的不具二氧化矽層,與改善後(b)具二氧化矽層的鉺摻雜氧化鋅鎂發光二極體亮度L與電流I關係。由此圖可以看到改善前(a)的氧化鋅鎂發光二極體,其電流需達20mA後才有明顯的光輸出。改善後(b)的發光二極體,在電流10mA時即有有明顯的光輸出。在相同電流下,具二氧化矽障礙層的元件有較高之亮度。 Figure 5 shows the relationship between the brightness L and the current I of the erbium-doped zinc-magnesium oxide light-emitting diode with a silicon dioxide layer (b) before the improvement and (b) the silicon dioxide layer after the improvement. From this figure, we can see that before the improvement (a), the zinc-magnesium oxide light-emitting diode needs a current of 20 mA to have a significant light output. The improved light-emitting diode (b) has a significant light output at a current of 10 mA. At the same current, a device with a silicon dioxide barrier layer has a higher brightness.

第6圖為改善前(a),不具二氧化矽層,與改善後(b),具二氧化矽層的鉺摻雜氧化鋅鎂發光二極體於60mA操作時的光譜圖。其中觀察到波長λ 537nm與558nm的綠光與660nm的紅光產生,為對應於載子於Er3+4 S 3/24 I 15/24 H 11/24 I 15/24 F 9/24 I 15/2能階躍遷。在改善前後,各波段光譜分布相同,僅亮度L強度不同。 Fig. 6 is a spectrum diagram of the erbium-doped zinc-magnesium oxide light-emitting diode with a silicon dioxide layer before the improvement (a) and without the silicon dioxide layer (b) after the improvement at 60 mA. Wherein the observed wavelength λ 537nm 558nm green and 660nm to generate red, corresponding to the carrier in Er 3+ 4 S 3/2 → 4 I 15/2, 4 H 11/2 → 4 I 15 / 2 and 4 F 9/24 I 15/2 energy step transitions. Before and after the improvement, the spectral distribution of each band is the same, and only the intensity of the brightness L is different.

上述之實施例僅為例示性說明本發明之特點及其功效,而非用於限制本發明之實質技術內容的範圍。據本發明之精神,亦可於發光層301上方,施以高能階材料為之:如第7圖所示。其高導電帶能階材料402為阻礙電洞進入發光層301的高能階材料,而造成與第2圖相似之效果。或是如第8圖所示p型材料201及n型材料401於靠近摻雜稀土元素發光層301之材料端皆形成高導電帶能階材料202、402以與摻雜稀土元素發光層301結合。任何熟習此技藝之人士均可在不違背本發明之精神及範疇下,對上述實施例進行修飾與變化。因此,本發明之權利保護範圍,應如後述之申請專利範圍所列。 The above-mentioned embodiments are merely illustrative for describing the features and effects of the present invention, and are not intended to limit the scope of the essential technical content of the present invention. According to the spirit of the present invention, a high-energy-level material can also be applied on the light-emitting layer 301 as shown in FIG. 7. The high conductive band energy step material 402 is a high energy step material that prevents holes from entering the light emitting layer 301, and has a similar effect to that shown in FIG. 2. Or, as shown in FIG. 8, the p-type material 201 and the n-type material 401 are formed near the material end of the doped rare-earth element light-emitting layer 301 with highly conductive band-level materials 202 and 402 to be combined with the doped rare-earth element light-emitting layer 301 . Anyone skilled in the art can modify and change the above embodiments without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the rights of the present invention should be listed in the scope of patent application described later.

本發明之p型材料201、n型材料401與摻雜製作方式係可選自噴霧塗佈、熱蒸鍍、電子束蒸鍍、濺鍍、氣相沉積、液相沉積或上述之組合。 The p-type material 201, the n-type material 401 and the doping method of the present invention can be selected from spray coating, thermal evaporation, electron beam evaporation, sputtering, vapor deposition, liquid deposition, or a combination thereof.

綜上所述,本發明利用於發光層301旁引入一障礙層(高導電帶能階材料202、402),使得元件特性達到操作電壓低於臨界電壓時的電流抑制,與高於臨界電壓時的光亮度 提升,提升此種發光二極體品質的功效。 In summary, the present invention utilizes the introduction of a barrier layer (highly conductive band-level materials 202, 402) beside the light-emitting layer 301, so that the device characteristics reach the current suppression when the operating voltage is lower than the critical voltage, and when the operating voltage is higher than the critical voltage. Brightness Enhance, enhance the efficacy of the quality of this light-emitting diode.

上述之實施例僅為例示性說明本發明之特點及其功效,而非用於限制本發明之實質技術內容的範圍。任何熟習此技藝之人士均可在不違背本發明之精神及範疇下,對上述實施例進行修飾與變化。因此,本發明之權利保護範圍,應如後述之申請專利範圍所列。 The above-mentioned embodiments are merely illustrative for describing the features and effects of the present invention, and are not intended to limit the scope of the essential technical content of the present invention. Anyone skilled in the art can modify and change the above embodiments without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the rights of the present invention should be listed in the scope of patent application described later.

Claims (5)

一種具障礙層的稀土元素發光二極體結構,係包括:一基板金屬接觸層;一p型材料,係形成於該基板金屬接觸層上;一發光層,其摻雜稀土元素,係形成於該p型材料上;一n型材料,係形成於該摻雜稀土元素發光層上;以及一上方金屬接觸層,係形成於該n型材料上;其中該p型材料於靠近該摻雜稀土元素發光層之材料端,形成一高導電帶能階材料以與該摻雜稀土元素發光層結合;或該n型材料於靠近該摻雜稀土元素發光層之材料端,形成該高導電帶能階材料以與該摻雜稀土元素發光層結合;或該p型材料及該n型材料於靠近該摻雜稀土元素發光層之材料端皆形成該高導電帶能階材料以與該摻雜稀土元素發光層結合,其中該高導電帶能階材料為二氧化矽。A rare earth element light-emitting diode structure with a barrier layer includes: a substrate metal contact layer; a p-type material formed on the substrate metal contact layer; a light emitting layer doped with a rare earth element; On the p-type material; an n-type material is formed on the doped rare earth element light-emitting layer; and an upper metal contact layer is formed on the n-type material; wherein the p-type material is near the doped rare earth The material end of the element light-emitting layer forms a highly conductive band-level material to be combined with the doped rare-earth element light-emitting layer; or the n-type material forms the high-conduction band energy near the material end of the doped rare-earth element light-emitting layer. Materials are combined with the doped rare-earth element light-emitting layer; or the p-type material and the n-type material form the high-conductivity band-energy-level material at the material end near the doped rare-earth element light-emitting layer to interact with the doped rare-earth element. The element light emitting layer is combined, wherein the high-conductivity band-level material is silicon dioxide. 如申請專利範圍第1項所述之發光二極體結構,其中該p型材料及該n型材料係選自半導體材料、高分子材料或上述之組合。The light-emitting diode structure according to item 1 of the scope of the patent application, wherein the p-type material and the n-type material are selected from a semiconductor material, a polymer material, or a combination thereof. 如申請專利範圍第1項所述之發光二極體結構,其中該p型材料及該n型材料係選自氧化鋅、氧化鎂、二氧化矽、稀土元素或上述之組合。The light-emitting diode structure according to item 1 of the scope of the patent application, wherein the p-type material and the n-type material are selected from the group consisting of zinc oxide, magnesium oxide, silicon dioxide, rare earth elements, or a combination thereof. 如申請專利範圍第1項所述之發光二極體結構,其中該基板金屬接觸層及該上方金屬接觸層係選自銦、金、鎳、氧化鎳、氧化銦錫或上述之組合。The light-emitting diode structure according to item 1 of the scope of the patent application, wherein the substrate metal contact layer and the upper metal contact layer are selected from indium, gold, nickel, nickel oxide, indium tin oxide, or a combination thereof. 如申請專利範圍第1項所述之發光二極體結構,其中該p型材料、該n型材料與摻雜製作方式係選自噴霧塗佈、熱蒸鍍、電子束蒸鍍、濺鍍、氣相沉積、液相沉積或上述之組合。The light-emitting diode structure according to item 1 of the scope of patent application, wherein the p-type material, the n-type material, and the doping method are selected from the group consisting of spray coating, thermal evaporation, electron beam evaporation, sputtering, Vapor deposition, liquid deposition or a combination thereof.
TW107143189A 2018-11-29 2018-11-29 Rare earth element light emitting diode structure with barrier layer TWI662106B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107143189A TWI662106B (en) 2018-11-29 2018-11-29 Rare earth element light emitting diode structure with barrier layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107143189A TWI662106B (en) 2018-11-29 2018-11-29 Rare earth element light emitting diode structure with barrier layer

Publications (2)

Publication Number Publication Date
TWI662106B true TWI662106B (en) 2019-06-11
TW202020117A TW202020117A (en) 2020-06-01

Family

ID=67764114

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107143189A TWI662106B (en) 2018-11-29 2018-11-29 Rare earth element light emitting diode structure with barrier layer

Country Status (1)

Country Link
TW (1) TWI662106B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846509B2 (en) * 2000-11-22 2005-01-25 Massachusetts Institute Of Technology Room temperature luminescent Erbium Oxide thin films for photonics
US7037806B1 (en) * 2005-02-09 2006-05-02 Translucent Inc. Method of fabricating silicon-on-insulator semiconductor substrate using rare earth oxide or rare earth nitride
TWI496872B (en) * 2011-11-07 2015-08-21 Nat Inst For Materials Science Phosphor, manufacture thereof, light-emitting device, and image display device
TWI515917B (en) * 2009-07-07 2016-01-01 佛羅里達大學研究基金公司 Stable and all solution processable quantum dot light-emitting diodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846509B2 (en) * 2000-11-22 2005-01-25 Massachusetts Institute Of Technology Room temperature luminescent Erbium Oxide thin films for photonics
US7037806B1 (en) * 2005-02-09 2006-05-02 Translucent Inc. Method of fabricating silicon-on-insulator semiconductor substrate using rare earth oxide or rare earth nitride
TWI515917B (en) * 2009-07-07 2016-01-01 佛羅里達大學研究基金公司 Stable and all solution processable quantum dot light-emitting diodes
TWI496872B (en) * 2011-11-07 2015-08-21 Nat Inst For Materials Science Phosphor, manufacture thereof, light-emitting device, and image display device

Also Published As

Publication number Publication date
TW202020117A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
KR102349719B1 (en) Electroluminescent device
US7132692B2 (en) Nanosilicon light-emitting element and manufacturing method thereof
Kim et al. Localized surface plasmon-enhanced green quantum dot light-emitting diodes using gold nanoparticles
JP5624723B2 (en) Pixel structure for solid state light emitting devices
Yang et al. Enhanced near-UV electroluminescence from p-GaN/i-Al 2 O 3/n-ZnO heterojunction LEDs by optimizing the insulator thickness and introducing surface plasmons of Ag nanowires
JP6235580B2 (en) II-VI based light emitting semiconductor devices
Lin et al. Microwatt MOSLED Using ${\hbox {SiO}} _ {\rm x} $ With Buried Si Nanocrystals on Si Nano-Pillar Array
Bian et al. Room temperature electroluminescence from the n-ZnMgO/ZnO/p-ZnMgO heterojunction device grown by ultrasonic spray pyrolysis
Lin et al. Improved blue-green electroluminescence of metal-oxide-semiconductor diode fabricated on multirecipe Si-implanted and annealed SiO 2/Si substrate
Kulakci et al. Electroluminescence generated by a metal oxide semiconductor light emitting diode (MOS-LED) with Si nanocrystals embedded in SiO2 layers by ion implantation
TWI662106B (en) Rare earth element light emitting diode structure with barrier layer
CN104124317B (en) A kind of inorganic electroluminescence infrared light-emitting device of neodymium-doped and preparation method thereof
KR20100130990A (en) Optoelectronic light emitting structure
KR20120135818A (en) Light emitting device and manufacturing method of the same
JP2007043016A (en) Crystal silicon element, and manufacturing method thereof
Cabañas-Tay et al. Luminescent devices based on silicon-rich dielectric materials
Masui et al. Equivalent-circuit analysis for the electroluminescence-efficiency problem of InGaN/GaN light-emitting diodes
CN101894893A (en) Electroluminescent device based on double-layer MgZnO film heterojunctions
Lin et al. White-Light Emission SSI-LED Made of Sputter Deposited TiOx Thin Film on Si Wafer
KR100855340B1 (en) Manufacturing method for light emitting diode device
Acharya et al. Improving the Performance of a Hybrid Inorganic–Organic Light-Emitting Diode Through Structure Optimization
KR100862366B1 (en) Manufacturing method for light emitting diode device
JP2010140720A (en) Light-emitting element, operation method of light-emitting element and method of manufacturing light-emitting element
JP2016039277A (en) Thin film semiconductor light-emitting device
Liu et al. Silicate conductive filament assisted broadband light emission of HfO 2 high-k solid state incandescent devices