TWI660464B - Memory device and method for manufacturing the same - Google Patents

Memory device and method for manufacturing the same Download PDF

Info

Publication number
TWI660464B
TWI660464B TW106138605A TW106138605A TWI660464B TW I660464 B TWI660464 B TW I660464B TW 106138605 A TW106138605 A TW 106138605A TW 106138605 A TW106138605 A TW 106138605A TW I660464 B TWI660464 B TW I660464B
Authority
TW
Taiwan
Prior art keywords
insulating layer
width
contact member
memory device
layer
Prior art date
Application number
TW106138605A
Other languages
Chinese (zh)
Other versions
TW201919153A (en
Inventor
李書銘
歐陽自明
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW106138605A priority Critical patent/TWI660464B/en
Publication of TW201919153A publication Critical patent/TW201919153A/en
Application granted granted Critical
Publication of TWI660464B publication Critical patent/TWI660464B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

一種記憶體裝置及其製造方法被提供。此記憶體裝置包括兩個第一閘極結構及多層絕緣結構。多層絕緣結構由下而上依序包括第一絕緣層、第二絕緣層、第三絕緣層及第四絕緣層。第二絕緣層的寬度相同於第三絕緣層的寬度,並且小於第一絕緣層的寬度。第四絕緣層的底表面的寬度大於第三絕緣層的頂表面的寬度。此記憶體裝置亦包括形成於第一閘極結構之間的電容接觸插塞。電容接觸插塞包括第一接觸部件、緩衝層及第二接觸部件。第二接觸部件的頂表面寬於其底表面。 A memory device and a method of manufacturing the same are provided. The memory device includes two first gate structures and a multilayer insulation structure. The multilayer insulation structure includes a first insulation layer, a second insulation layer, a third insulation layer, and a fourth insulation layer in order from bottom to top. The width of the second insulating layer is the same as that of the third insulating layer, and is smaller than the width of the first insulating layer. The width of the bottom surface of the fourth insulating layer is greater than the width of the top surface of the third insulating layer. The memory device also includes a capacitive contact plug formed between the first gate structures. The capacitive contact plug includes a first contact member, a buffer layer, and a second contact member. The top surface of the second contact member is wider than the bottom surface thereof.

Description

記憶體裝置及其製造方法 Memory device and manufacturing method thereof

本發明係有關於一種記憶體裝置,且特別係有關於一種具有自對準接觸結構的記憶體裝置及其製造方法。 The invention relates to a memory device, and more particularly, to a memory device with a self-aligned contact structure and a manufacturing method thereof.

隨著可攜式電子產品日漸普及,對於記憶體裝置之需求也與日俱增。所有可攜式電子產品(例如,數位相機、筆記型電腦、行動電話等)皆需要可輕巧靠的記憶體裝置,以利於資料的儲存及傳輸。 With the increasing popularity of portable electronic products, the demand for memory devices is also increasing. All portable electronic products (for example, digital cameras, notebook computers, mobile phones, etc.) require lightweight and reliable memory devices to facilitate data storage and transmission.

動態隨機存取記憶體(dynamic random access memory,DRAM)具有體積小、記憶容量大、讀寫速度快及產品壽命長等優點,因而廣泛地使用在各式各樣的電子產品中。 Dynamic random access memory (DRAM) has the advantages of small size, large memory capacity, fast read / write speed, and long product life. Therefore, it is widely used in various electronic products.

隨著電子產品日漸小型化之趨勢,對於記憶體裝置亦有逐漸小型化的需求。然而,隨著記憶體裝置的小型化,提高產品的良率變得更為困難。因此,對於且具有高良率的記憶體裝置及其製造方法仍有所需求。 With the trend of miniaturization of electronic products, there is also a demand for miniaturization of memory devices. However, with the miniaturization of memory devices, it has become more difficult to improve the yield of products. Therefore, there is still a need for a memory device and a manufacturing method thereof with a high yield.

本發明之一實施例係揭示一種記憶體裝置,包括:基板,其中基板包括陣列區及周邊區;兩個第一閘極結構,形成於陣列區中;多層絕緣結構,形成於第一閘極結構上,其中多層絕緣結構包括:第一絕緣層,形成於第一閘極結構上, 且覆蓋第一閘極結構;第二絕緣層,形成於第一絕緣層上,其中第二絕緣層的寬度小於第一絕緣層的寬度;第三絕緣層,形成於第二絕緣層上,其中第三絕緣層的寬度相同於第二絕緣層的寬度;以及第四絕緣層,形成於第三絕緣層上,其中第四絕緣層的底表面的寬度大於第三絕緣層的頂表面的寬度;以及電容接觸插塞,形成於第一閘極結構之間,其中電容接觸插塞包括:第一接觸部件,形成於基板上;第二接觸部件,形成於第一接觸部件上,其中第二接觸部件的頂表面的寬度大於第二接觸部件的底表面的寬度;以及緩衝層,形成於第一接觸部件與第二接觸部件之間。 An embodiment of the present invention discloses a memory device including: a substrate, wherein the substrate includes an array region and a peripheral region; two first gate structures formed in the array region; and a multilayer insulation structure formed in the first gate Structurally, the multilayer insulation structure includes: a first insulation layer formed on the first gate structure, And covers the first gate structure; the second insulating layer is formed on the first insulating layer, wherein the width of the second insulating layer is smaller than the width of the first insulating layer; the third insulating layer is formed on the second insulating layer, wherein The width of the third insulating layer is the same as the width of the second insulating layer; and the fourth insulating layer is formed on the third insulating layer, wherein the width of the bottom surface of the fourth insulating layer is greater than the width of the top surface of the third insulating layer; And a capacitive contact plug formed between the first gate structures, wherein the capacitive contact plug includes: a first contact member formed on the substrate; a second contact member formed on the first contact member, wherein the second contact The width of the top surface of the component is greater than the width of the bottom surface of the second contact component; and a buffer layer is formed between the first contact component and the second contact component.

本發明之另一實施例係揭示一種記憶體裝置的製造方法,包括:提供基板,其中基板包括陣列區及周邊區;形成兩個第一閘極結構於陣列區中;形成多層絕緣結構於第一閘極結構上,其中多層絕緣結構包括:第一絕緣層,形成於第一閘極結構上,且覆蓋等第一閘極結構;第二絕緣層,形成於第一絕緣層上,其中第二絕緣層的寬度小於第一絕緣層的寬度;第三絕緣層,形成於第二絕緣層上,其中第三絕緣層的寬度相同於第二絕緣層的寬度;以及第四絕緣層,形成於第三絕緣層上,其中第四絕緣層的底表面的寬度大於第三絕緣層的頂表面的寬度;以及形成電容接觸插塞於第一閘極結構之間,其中電容接觸插塞包括:第一接觸部件,形成於基板上;第二接觸部件,形成於第一接觸部件上,其中第二接觸部件的頂表面的寬度大於第二接觸部件的底表面的寬度;以及緩衝層,形成於第一接觸部件與第二接觸部件之間。 Another embodiment of the present invention discloses a method for manufacturing a memory device, including: providing a substrate, wherein the substrate includes an array region and a peripheral region; forming two first gate structures in the array region; and forming a multi-layer insulation structure in the first region. On a gate structure, the multilayer insulation structure includes: a first insulation layer formed on the first gate structure and covering the first gate structure; a second insulation layer formed on the first insulation layer, wherein the first The width of the two insulating layers is smaller than the width of the first insulating layer; the third insulating layer is formed on the second insulating layer, wherein the width of the third insulating layer is the same as the width of the second insulating layer; and the fourth insulating layer is formed on On the third insulation layer, a width of a bottom surface of the fourth insulation layer is greater than a width of a top surface of the third insulation layer; and a capacitor contact plug is formed between the first gate structures, wherein the capacitor contact plug includes: A contact member is formed on the substrate; a second contact member is formed on the first contact member, wherein a width of a top surface of the second contact member is greater than a width of a bottom surface of the second contact member; ; And a buffer layer formed between the first contact member and the second contact member.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,作詳細說明如下: In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the preferred embodiments are exemplified below and described in detail as follows:

10‧‧‧陣列區 10‧‧‧Array area

20‧‧‧周邊區 20‧‧‧Peripheral area

100‧‧‧記憶體裝置 100‧‧‧Memory device

102‧‧‧基板 102‧‧‧ substrate

104‧‧‧多晶矽閘極 104‧‧‧Polycrystalline silicon gate

106‧‧‧金屬閘極 106‧‧‧ metal gate

108‧‧‧第一絕緣層 108‧‧‧The first insulation layer

110‧‧‧保護層 110‧‧‧ protective layer

112‧‧‧第二絕緣層 112‧‧‧Second insulation layer

114‧‧‧第三絕緣層 114‧‧‧third insulating layer

111、115、123、127、129、131‧‧‧開口 111, 115, 123, 127, 129, 131‧‧‧ opening

116‧‧‧第一罩幕層 116‧‧‧The first curtain layer

118‧‧‧第二罩幕層 118‧‧‧ second curtain layer

120‧‧‧光阻層 120‧‧‧Photoresistive layer

121‧‧‧第二導電材料 121‧‧‧Second conductive material

122、222、322、422‧‧‧第四絕緣層 122, 222, 322, 422‧‧‧ Fourth insulation layer

122S、222S、322S、422S‧‧‧側壁 122S, 222S, 322S, 422S‧‧‧ sidewall

122B、222B、322B、422B‧‧‧底表面 122B, 222B, 322B, 422B ‧‧‧ bottom surface

122T、222T、322T、422T‧‧‧頂表面 122T, 222T, 322T, 422T‧‧‧Top surface

124‧‧‧第五絕緣層 124‧‧‧Fifth insulation layer

125‧‧‧自對準接觸孔 125‧‧‧ self-aligned contact hole

130‧‧‧緩衝層 130‧‧‧ buffer layer

133‧‧‧源極/汲極接觸孔 133‧‧‧Source / drain contact hole

135‧‧‧閘極接觸孔 135‧‧‧Gate contact hole

140‧‧‧第二接觸部件 140‧‧‧Second contact part

142‧‧‧閘極接觸插塞 142‧‧‧Gate contact plug

144‧‧‧源極/汲極接觸插塞 144‧‧‧Source / Drain Contact Plug

145‧‧‧孔洞 145‧‧‧hole

150‧‧‧第一接觸部件 150‧‧‧First contact part

160‧‧‧電容結構 160‧‧‧Capacitor structure

T1‧‧‧最大厚度 T1‧‧‧Maximum thickness

W1、W2、W3、W4、W5、W6、W7、W8‧‧‧寬度 W1, W2, W3, W4, W5, W6, W7, W8‧‧‧Width

θ‧‧‧夾角 θ‧‧‧ angle

第1A圖至第1L圖為本發明一些實施例之記憶體裝置的製程剖面示意圖。 FIG. 1A to FIG. 1L are schematic cross-sectional views of a manufacturing process of a memory device according to some embodiments of the present invention.

第2圖為第1K圖中區域R的放大剖面示意圖。 FIG. 2 is a schematic enlarged sectional view of a region R in FIG. 1K.

第3圖為本發明一些實施例之第四絕緣層的剖面示意圖。 FIG. 3 is a schematic cross-sectional view of a fourth insulating layer according to some embodiments of the present invention.

為使本發明之上述和其他目的、特徵、優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。然而,為了使說明更加清晰,可任意增減各種特徵結構的相對尺寸比例或數量。再者,本揭露的不同範例中可能使用重複的參考符號及/或用字。這些重複符號或用字係為了簡化與清晰的目的,並非用以限定各個實施例及/或所述外觀結構之間的關係。 In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the preferred embodiments are exemplified below and described in detail with the accompanying drawings. However, in order to make the description clearer, the relative size ratio or number of various characteristic structures can be arbitrarily increased or decreased. Furthermore, repeated reference signs and / or words may be used in different examples of this disclosure. These repeated symbols or words are for the purpose of simplicity and clarity, and are not intended to limit the relationship between the various embodiments and / or the appearance structure.

本發明之一些實施例提供一種記憶體裝置及其製造方法,第1A圖至第1L圖為本發明一些實施例之記憶體裝置100的製程剖面示意圖。 Some embodiments of the present invention provide a memory device and a method for manufacturing the same. FIG. 1A to FIG. 1L are schematic cross-sectional views illustrating a manufacturing process of the memory device 100 according to some embodiments of the present invention.

請參照第1A圖,記憶體裝置100包括一基板102,且基板102包括一陣列區10以及一周邊區20。陣列區10的基板102上形成多個第一閘極結構,第一閘極結構包括多晶矽閘極104以及堆疊於多晶矽閘極104上的金屬閘極106。再者,周邊區20的基板102上形成多個第二閘極結構,第二閘極結構包括 多晶矽閘極104以及堆疊於多晶矽閘極104上的金屬閘極106。 Referring to FIG. 1A, the memory device 100 includes a substrate 102, and the substrate 102 includes an array region 10 and a peripheral region 20. A plurality of first gate structures are formed on the substrate 102 of the array region 10. The first gate structure includes a polycrystalline silicon gate 104 and a metal gate 106 stacked on the polycrystalline silicon gate 104. Furthermore, a plurality of second gate structures are formed on the substrate 102 in the peripheral region 20, and the second gate structures include The polysilicon gate 104 and the metal gate 106 stacked on the polysilicon gate 104.

基板102的材料可包括矽、含矽半導體、絕緣層上覆矽(silicon on insulator,SOI)、其他合適之材料或上述材料之組合。金屬閘極106的材料可為,例如,鎢、鋁、銅、金、銀、鉭、鉿、鋯、上述之合金或其他合適的金屬材料。 The material of the substrate 102 may include silicon, a silicon-containing semiconductor, silicon on insulator (SOI), other suitable materials, or a combination of the foregoing materials. The material of the metal gate 106 may be, for example, tungsten, aluminum, copper, gold, silver, tantalum, hafnium, zirconium, the alloy described above, or other suitable metal materials.

在形成第一閘極結構與第二閘極結構之後,形成一第一絕緣層108於第一閘極結構與第二閘極結構上,並且第一絕緣層108覆蓋第一閘極結構與第二閘極結構。接著,將第一絕緣層108圖案化,以分別形成開口115於第一閘極結構之間以及第二閘極結構之間,如第1A圖所示。可經由任何習知的技術形成並圖案化第一絕緣層108,在此不再詳述。 After forming the first and second gate structures, a first insulating layer 108 is formed on the first and second gate structures, and the first insulating layer 108 covers the first and second gate structures. Two gate structure. Next, the first insulating layer 108 is patterned to form openings 115 between the first gate structure and the second gate structure, respectively, as shown in FIG. 1A. The first insulating layer 108 may be formed and patterned by any conventional technique, which is not described in detail here.

接著,在陣列區10中,沉積第一導電材料於第一閘極結構之間的開口115中,以形成第一接觸部件150。第一導電材料可為非金屬的導電材料,例如,包括但不限於:經摻雜或未經摻雜的單晶矽、多晶矽或非晶矽。可經由任何習知的技術沉積第一導電材料,在此不再詳述。 Next, in the array region 10, a first conductive material is deposited in the openings 115 between the first gate structures to form a first contact member 150. The first conductive material may be a non-metallic conductive material, for example, including, but not limited to, doped or undoped single crystal silicon, polycrystalline silicon, or amorphous silicon. The first conductive material may be deposited by any conventional technique, which is not described in detail here.

在形成第一接觸部件150之前,可在周邊區20形成保護層110,其覆蓋第一絕緣層108與第二閘極結構,並填滿第一閘極結構之間的開口115,以避免第一導電材料沉積於周邊區20上。在形成第一接觸部件150之後,可利用平坦化製程或蝕刻製程,移除周邊區20上的保護層110的一部分,以暴露出第一絕緣層108。如此一來,即可得到如第1A圖所示的結構。 Before forming the first contact member 150, a protective layer 110 may be formed in the peripheral region 20, which covers the first insulating layer 108 and the second gate structure and fills the opening 115 between the first gate structure to avoid the first A conductive material is deposited on the peripheral region 20. After the first contact member 150 is formed, a part of the protective layer 110 on the peripheral region 20 may be removed by a planarization process or an etching process to expose the first insulating layer 108. In this way, the structure shown in FIG. 1A can be obtained.

請參照第1B圖,形成第二絕緣層112於第一絕緣層108上,且第二絕緣層112填入於陣列區的開口中。接著,可視 需要進行平坦化製程。第二絕緣層112在陣列區10與周邊區20具有實質上等高的頂表面。換言之,第二絕緣層112具有實質上平坦的頂表面。之後,形成第三絕緣層114於第二絕緣層112之上,第三絕緣層114在陣列區10與周邊區20具有實質上等高的頂表面。換言之,第三絕緣層114在陣列區10與周邊區20具有實質上相同的厚度。 Referring to FIG. 1B, a second insulating layer 112 is formed on the first insulating layer 108, and the second insulating layer 112 is filled in the opening in the array region. Then, visual A planarization process is required. The second insulating layer 112 has a top surface having substantially the same height in the array region 10 and the peripheral region 20. In other words, the second insulating layer 112 has a substantially flat top surface. Thereafter, a third insulating layer 114 is formed on the second insulating layer 112, and the third insulating layer 114 has a top surface having substantially the same height in the array region 10 and the peripheral region 20. In other words, the third insulating layer 114 has substantially the same thickness in the array region 10 and the peripheral region 20.

請參照第1C圖,形成第一罩幕層116、第二罩幕層118及光阻層120於第三絕緣層114上。在本實施例中,使用第一罩幕層116與第二罩幕層118作為蝕刻製程的罩幕。然而,並不以此為限,可視需要而使用單一層或多層的罩幕層。第一罩幕層116與第二罩幕層118可各自獨立包括碳化物、氮化物、碳氮化物、氮氧化物或其他合適之材料。 Referring to FIG. 1C, a first cover curtain layer 116, a second cover curtain layer 118, and a photoresist layer 120 are formed on the third insulating layer 114. In this embodiment, the first mask layer 116 and the second mask layer 118 are used as a mask in the etching process. However, it is not limited to this, and a single layer or a plurality of mask layers may be used as required. The first cover layer 116 and the second cover layer 118 may each independently include carbides, nitrides, carbonitrides, oxynitrides, or other suitable materials.

接著,圖案化光阻層120,以在陣列區10中形成多個開口111,並在周邊區20中形成多個開口123。如第1C圖所示,開口111位於開口115上,且其位置對應於開口115的位置。再者,開口111的寬度比開口115的寬度寬。此外,開口123的位置對應於第二閘極結構的兩側。 Next, the photoresist layer 120 is patterned to form a plurality of openings 111 in the array region 10 and a plurality of openings 123 in the peripheral region 20. As shown in FIG. 1C, the opening 111 is located on the opening 115, and its position corresponds to the position of the opening 115. The width of the opening 111 is wider than the width of the opening 115. In addition, the positions of the openings 123 correspond to both sides of the second gate structure.

請參照第1C圖及第1D圖,進行第一蝕刻製程,分別蝕刻位於開口111與開口123下方的各層,以將第三絕緣層114圖案化。為了有效地移除第三絕緣層114,第一蝕刻製程對第三絕緣層114的蝕刻速率以較高為佳。第一蝕刻製程可為乾式蝕刻、濕式蝕刻或上述之組合。 Referring to FIG. 1C and FIG. 1D, a first etching process is performed, and each layer under the opening 111 and the opening 123 is etched to pattern the third insulating layer 114. In order to effectively remove the third insulating layer 114, the etching rate of the third insulating layer 114 by the first etching process is preferably higher. The first etching process may be dry etching, wet etching, or a combination thereof.

接著,以圖案化後的第三絕緣層114為罩幕,進行第二蝕刻製程,以移除部分的第二絕緣層112與第一絕緣層 108,並形成自對準接觸孔125於第一閘極結構之間,並形成開口127於第二閘極結構的兩側。 Next, a second etching process is performed using the patterned third insulating layer 114 as a mask to remove part of the second insulating layer 112 and the first insulating layer. 108, and a self-aligned contact hole 125 is formed between the first gate structure, and openings 127 are formed on both sides of the second gate structure.

為了使用第三絕緣層114作為蝕刻罩幕,第二蝕刻製程對於第二絕緣層112與第三絕緣層114具有高蝕刻選擇性。換言之,第二蝕刻製程對第二絕緣層112的蝕刻速率R1大於對第三絕緣層114的蝕刻速率R2。此外,為了形成如第1D圖所示的自對準接觸孔125,第二蝕刻製程對於第二絕緣層112與第一絕緣層108具有高蝕刻選擇性。換言之,第二蝕刻製程對第二絕緣層112的蝕刻速率R1大於對第一絕緣層108的蝕刻速率R3。 In order to use the third insulating layer 114 as an etching mask, the second etching process has a high etching selectivity for the second insulating layer 112 and the third insulating layer 114. In other words, the etching rate R1 of the second etching process for the second insulating layer 112 is greater than the etching rate R2 of the third insulating layer 114. In addition, in order to form the self-aligned contact hole 125 as shown in FIG. 1D, the second etching process has a high etching selectivity for the second insulating layer 112 and the first insulating layer 108. In other words, the etching rate R1 of the second etching process for the second insulating layer 112 is greater than the etching rate R3 of the first insulating layer 108.

第二蝕刻製程可為乾式蝕刻、濕式蝕刻或上述之組合。在第二蝕刻製程的期間,由於第二蝕刻製程對於第二絕緣層112與第三絕緣層114具有高蝕刻選擇性,因此,可在自對準接觸孔125的上部分形成實質上垂直的側壁。當蝕刻深度到達第一絕緣層108的頂表面時,由於第二蝕刻製程對於第二絕緣層112與第一絕緣層108具有高蝕刻選擇性,第一絕緣層108僅被移除很少的部分。換言之,第二蝕刻製程能夠在維持第一絕緣層108的形狀的前提下,而完全移除位於自對準接觸孔125下部分的第二絕緣層112。 The second etching process may be dry etching, wet etching, or a combination thereof. During the second etching process, since the second etching process has high etching selectivity for the second insulating layer 112 and the third insulating layer 114, substantially vertical sidewalls can be formed on the upper portion of the self-aligned contact hole 125. . When the etching depth reaches the top surface of the first insulating layer 108, only a small part of the first insulating layer 108 is removed because the second etching process has a high etching selectivity for the second insulating layer 112 and the first insulating layer 108. . In other words, the second etching process can completely remove the second insulating layer 112 located under the self-aligned contact hole 125 while maintaining the shape of the first insulating layer 108.

在一些實施例中,在第二蝕刻製程的期間,第二絕緣層112的蝕刻速率R1對第三絕緣層114的蝕刻速率R2之比率R1/R2為5-40。在一些實施例中,R1/R2為10-40。在另一些實施例中,R1/R2為20-30。在一些實施例中,在第二蝕刻製程的期間,第二絕緣層112的蝕刻速率R1對第一絕緣層108的蝕刻 速率R3之比率R1/R3為10-50。在一些實施例中,R1/R3為10-40。在另一些實施例中,R1/R3為20-30。 In some embodiments, during the second etching process, the ratio R1 / R2 of the etching rate R1 of the second insulating layer 112 to the etching rate R2 of the third insulating layer 114 is 5-40. In some embodiments, R1 / R2 is 10-40. In other embodiments, R1 / R2 is 20-30. In some embodiments, during the second etching process, the first insulating layer 108 is etched by the etching rate R1 of the second insulating layer 112. The ratio R1 / R3 of the rate R3 is 10-50. In some embodiments, R1 / R3 is 10-40. In other embodiments, R1 / R3 is 20-30.

第一絕緣層108、第二絕緣層112與第三絕緣層114可各自獨立為氧化物、氮化物、氮氧化物、金屬氧化物、上述之組合或其他合適的絕緣材料。可藉由選擇合適的材料形成第一絕緣層108、第二絕緣層112與第三絕緣層114,而將各個絕緣層在第二蝕刻製程的蝕刻速率調整到所需的範圍。 Each of the first insulating layer 108, the second insulating layer 112, and the third insulating layer 114 may be an oxide, a nitride, an oxynitride, a metal oxide, a combination of the foregoing, or other suitable insulating materials. By selecting appropriate materials to form the first insulating layer 108, the second insulating layer 112, and the third insulating layer 114, the etching rate of each insulating layer in the second etching process can be adjusted to a desired range.

在一些實施例中,第一絕緣層108與第三絕緣層114可為氮化物(例如,氮化矽),且第二絕緣層112可為氧化物(例如,氧化矽)。在其他實施例中,第一絕緣層108與第三絕緣層114可為不同的材料,只要R1/R2與R1/R3分別為5-40與5-50即可。 In some embodiments, the first insulating layer 108 and the third insulating layer 114 may be nitride (for example, silicon nitride), and the second insulating layer 112 may be an oxide (for example, silicon oxide). In other embodiments, the first insulating layer 108 and the third insulating layer 114 may be different materials, as long as R1 / R2 and R1 / R3 are 5-40 and 5-50, respectively.

為了使R1/R2與R1/R3分別為5-40與5-50,也可選擇適當的蝕刻製程及/或蝕刻參數。在一些實施例中,第二蝕刻製程為乾式蝕刻,且可用以調整蝕刻選擇性的參數包括但不限於,例如,蝕刻氣體的組成、蝕刻氣體的流量、蝕刻溫度或蝕刻功率。 In order to make R1 / R2 and R1 / R3 be 5-40 and 5-50, respectively, an appropriate etching process and / or etching parameters may be selected. In some embodiments, the second etching process is dry etching, and parameters that can be used to adjust the etching selectivity include, but are not limited to, for example, the composition of the etching gas, the flow rate of the etching gas, the etching temperature, or the etching power.

在第二蝕刻製程之後,第三絕緣層114的寬度與第二絕緣層112的寬度實質上相同,且第三絕緣層114的寬度小於位於其下方的第一絕緣層108的寬度,如第1D圖所示。換言之,所形成的自對準接觸孔125之剖面輪廓具有較寬的上部分及較窄的下部分。如此的自對準接觸孔125可有助於改善記憶體裝置的良率與臨界尺寸的平衡,此部分將於下文中詳細討論。 After the second etching process, the width of the third insulating layer 114 is substantially the same as the width of the second insulating layer 112, and the width of the third insulating layer 114 is smaller than the width of the first insulating layer 108 below it, as in the first 1D As shown. In other words, the cross-sectional profile of the formed self-aligned contact hole 125 has a wider upper portion and a narrower lower portion. Such self-aligned contact holes 125 can help improve the balance between the yield and the critical size of the memory device, which will be discussed in detail later.

請參照第1E圖,在陣列區10與周邊區20中形成第 一罩幕層116、第二罩幕層118及光阻層120。接著,圖案化周邊區20的光阻層120,以在周邊區20中形成多個開口129與開口131。開口131位於開口127上,且其位置對應於開口127的位置。再者,開口131的寬度比開口127的寬度寬。此外,開口129位於第二閘極結構上,且其位置對應於第二閘極結構的位置。 Referring to FIG. 1E, a first region is formed in the array region 10 and the peripheral region 20. A cover layer 116, a second cover layer 118, and a photoresist layer 120. Next, the photoresist layer 120 in the peripheral region 20 is patterned to form a plurality of openings 129 and 131 in the peripheral region 20. The opening 131 is located on the opening 127, and its position corresponds to the position of the opening 127. The width of the opening 131 is wider than the width of the opening 127. In addition, the opening 129 is located on the second gate structure, and its position corresponds to the position of the second gate structure.

請參照第1E圖及第1F圖,進行第三蝕刻製程,分別蝕刻位於開口129與開口131下方的各層,以形成閘極接觸孔135於第二閘極結構上,並形成源極/汲極接觸孔133於第二閘極結構的兩側。此外,在第三蝕刻製程後,位於陣列區10的自對準接觸孔125被暴露出來。第三蝕刻製程可與第一蝕刻製程及/或第二蝕刻製程相同或相似,在此不再詳述。 Referring to FIG. 1E and FIG. 1F, a third etching process is performed, and each layer below the opening 129 and the opening 131 is etched to form a gate contact hole 135 on the second gate structure and form a source / drain The contact holes 133 are on both sides of the second gate structure. In addition, after the third etching process, the self-aligned contact holes 125 in the array region 10 are exposed. The third etching process may be the same as or similar to the first etching process and / or the second etching process, and details are not described herein again.

請參照第1G圖,進行金屬矽化反應,以在自對準接觸孔125、閘極接觸孔135及源極/汲極接觸孔133的底部形成緩衝層130。可使用任何合適的製程形成緩衝層130。舉例而言,可先沉積金屬(例如,鈷或鎢)於矽的表面,接著,在特定的高溫下退火,以使金屬與矽進行反應,而形成金屬矽化物。此金屬矽化物即為構成緩衝層130的材料。 Referring to FIG. 1G, a metal silicidation reaction is performed to form a buffer layer 130 at the bottom of the self-aligned contact hole 125, the gate contact hole 135, and the source / drain contact hole 133. The buffer layer 130 may be formed using any suitable process. For example, a metal (eg, cobalt or tungsten) can be deposited on the surface of silicon, and then annealed at a specific high temperature to react the metal with silicon to form a metal silicide. The metal silicide is a material constituting the buffer layer 130.

請參照第1H圖,沉積第二導電材料121於自對準接觸孔125、閘極接觸孔135及源極/汲極接觸孔133中。第二導電材料121可包括金屬,例如,鎢、鋁、銅、金、銀、上述之合金或其他合適的金屬材料。 Referring to FIG. 1H, a second conductive material 121 is deposited in the self-aligned contact hole 125, the gate contact hole 135, and the source / drain contact hole 133. The second conductive material 121 may include a metal, for example, tungsten, aluminum, copper, gold, silver, the alloy described above, or other suitable metal materials.

第一導電材料為非金屬的導電材料,第二導電材料121為金屬材料,兩者之間的黏合力不佳,且兩者的導電性亦有明顯差異。藉由形成緩衝層130,可改善第一導電材料與 第二導電材料121之間的黏合力,且可避免電阻值的急遽變化。 The first conductive material is a non-metallic conductive material, and the second conductive material 121 is a metallic material. The adhesion between the two is not good, and the conductivity of the two is also significantly different. By forming the buffer layer 130, the first conductive material and the The adhesive force between the second conductive materials 121 can avoid a sudden change in the resistance value.

請參照第1I圖,進行平坦化製程,移除部分的第二導電材料121,以形成第二接觸部件140於自對準接觸孔125中,並分別形成閘極接觸插塞142及源極/汲極接觸插塞144於閘極接觸孔135及源極/汲極接觸孔133中。 Referring to FIG. 1I, a planarization process is performed, and a part of the second conductive material 121 is removed to form a second contact member 140 in the self-aligned contact hole 125, and a gate contact plug 142 and a source / The drain contact plug 144 is in the gate contact hole 135 and the source / drain contact hole 133.

如第1I圖所示,第二接觸部件140的底表面高於第一閘極結構的頂表面。第二接觸部件140與金屬閘極106均包括導電性良好的金屬材料。因此,若第二接觸部件140與第一閘極結構的距離太近,則兩者在操作時容易發生電性干擾。 As shown in FIG. 11, the bottom surface of the second contact member 140 is higher than the top surface of the first gate structure. Both the second contact member 140 and the metal gate 106 include a metal material with good conductivity. Therefore, if the distance between the second contact member 140 and the first gate structure is too close, electrical interference is likely to occur during operation of the two.

請參照第1J圖,在陣列區10與周邊區20中形成第四絕緣層122。在一些實施例中,第四絕緣層122可使用與第三絕緣層114相同的材料。在本實施例中,第四絕緣層122為氮化物(例如,氮化矽)。 Referring to FIG. 1J, a fourth insulating layer 122 is formed in the array region 10 and the peripheral region 20. In some embodiments, the fourth insulating layer 122 may use the same material as the third insulating layer 114. In this embodiment, the fourth insulating layer 122 is a nitride (for example, silicon nitride).

請參照第1K圖,形成第五絕緣層124於第四絕緣層122之上。在一些實施例中,第五絕緣層124可使用與第二絕緣層112相同的材料。在本實施例中,第五絕緣層124為氧化物(例如,氧化矽)。 Referring to FIG. 1K, a fifth insulating layer 124 is formed on the fourth insulating layer 122. In some embodiments, the fifth insulating layer 124 may use the same material as the second insulating layer 112. In this embodiment, the fifth insulating layer 124 is an oxide (for example, silicon oxide).

接著,形成圖案化罩幕層(未繪示於圖中)於陣列區10的第五絕緣層124上,並進行第四蝕刻製程,以移除部分的第五絕緣層124及部分的第四絕緣層122,並在第五絕緣層124中形成多個孔洞145於第二接觸部件140的頂表面上。每一個孔洞145位於一個第二接觸部件140上,且每一個孔洞145皆暴露出一個第二接觸部件140的一部分頂表面,並使第四絕緣層122具有向上逐漸縮窄的剖面輪廓,如第1K圖所示。 Next, a patterned mask layer (not shown in the figure) is formed on the fifth insulating layer 124 of the array region 10, and a fourth etching process is performed to remove part of the fifth insulating layer 124 and part of the fourth insulating layer 124. The insulating layer 122 and a plurality of holes 145 are formed in the fifth insulating layer 124 on the top surface of the second contact member 140. Each hole 145 is located on a second contact member 140, and each hole 145 exposes a part of the top surface of a second contact member 140, and the fourth insulating layer 122 has a gradually narrowing cross-sectional profile as shown in the first section. 1K picture.

在進行第四蝕刻製程之前,可在周邊區20形成保護層(未繪示於圖中),以避免第四蝕刻製程對周邊區20的第五絕緣層124造成損傷。在進行第四蝕刻製程之後,可移除周邊區20上的保護層,以暴露出第五絕緣層124。如此一來,即可得到如第1K圖所示的結構。 Before the fourth etching process is performed, a protective layer (not shown in the figure) may be formed on the peripheral region 20 to avoid damage to the fifth insulating layer 124 of the peripheral region 20 by the fourth etching process. After the fourth etching process is performed, the protective layer on the peripheral region 20 may be removed to expose the fifth insulating layer 124. In this way, the structure shown in FIG. 1K can be obtained.

第四蝕刻製程可為乾式蝕刻、濕式蝕刻或上述之組合。第四蝕刻製程對於第五絕緣層124與第四絕緣層122可具有合適的蝕刻選擇性,因此可在孔洞145中保留部分的第四絕緣層122。換言之,可使位於孔洞145底部的第四絕緣層122具有朝向孔洞145內延伸的凸出部分。 The fourth etching process may be dry etching, wet etching, or a combination thereof. The fourth etching process may have a suitable etching selectivity for the fifth insulating layer 124 and the fourth insulating layer 122, so a portion of the fourth insulating layer 122 may be retained in the hole 145. In other words, the fourth insulating layer 122 located at the bottom of the hole 145 may be provided with a protruding portion extending toward the inside of the hole 145.

在一些實施例中,在第四蝕刻製程的期間,第五絕緣層124的蝕刻速率R4對第四絕緣層122的蝕刻速率R5之比率R4/R5為2-30。在一些實施例中,R4/R5為5-20。在另一些實施例中,R4/R5為10-15。 In some embodiments, during the fourth etching process, the ratio R4 / R5 of the etching rate R4 of the fifth insulating layer 124 to the etching rate R5 of the fourth insulating layer 122 is 2-30. In some embodiments, R4 / R5 is 5-20. In other embodiments, R4 / R5 is 10-15.

在一些實施例中,第四蝕刻製程為濕式蝕刻製程,且第四絕緣層122具有向上逐漸縮窄的剖面輪廓,如第1K圖所示。如此的第四絕緣層122可有助於大幅改善記憶體裝置的良率,此部分將於下文中詳細討論。 In some embodiments, the fourth etching process is a wet etching process, and the fourth insulating layer 122 has a cross-sectional profile that gradually narrows upward, as shown in FIG. 1K. Such a fourth insulating layer 122 can help to greatly improve the yield of the memory device, which will be discussed in detail later.

請參照第1L圖,形成電容結構160於孔洞145中,其中電容結構160的底表面直接接觸第二接觸部件140的頂表面,以使電容結構160與第二接觸部件140形成電性連接。電容結構160可利用習知的方法形成,在此不再詳述。 Referring to FIG. 1L, a capacitor structure 160 is formed in the hole 145, wherein the bottom surface of the capacitor structure 160 directly contacts the top surface of the second contact member 140, so that the capacitor structure 160 and the second contact member 140 are electrically connected. The capacitor structure 160 may be formed by a conventional method, which is not described in detail here.

第2圖為第1K圖中區域R的放大剖面示意圖。請同時參照第1K圖與第2圖,第二接觸部件140可包括第一部分、第 二部分及第三部分。第一部分(即,上部分)自第四絕緣層122的底表面122B向下延伸。第二部分(即,下部分),自緩衝層130的頂表面向上延伸。第三部分(即,中段部分)位於第一部分與第二部分之間,並且鄰接於第一部分與第二部分,其中第三部分朝向第二部分逐漸縮窄。 FIG. 2 is a schematic enlarged sectional view of a region R in FIG. 1K. Please refer to FIG. 1K and FIG. 2 at the same time. The second contact member 140 may include a first part, a first Part two and part three. The first portion (ie, the upper portion) extends downward from the bottom surface 122B of the fourth insulating layer 122. The second part (ie, the lower part) extends upward from the top surface of the buffer layer 130. The third section (ie, the middle section) is located between the first section and the second section and is adjacent to the first section and the second section, wherein the third section gradually narrows toward the second section.

第二接觸部件140的第二部分位於兩個第一閘極結構之間。若第二部分的寬度太寬,則第二接觸部件140與第一閘極結構的距離太近,容易導致操作的錯誤。為了避免這樣的操作錯誤,可增厚位於第二接觸部件140下部分與金屬閘極106之間的第一絕緣層108。然而,由於第一絕緣層108變得較厚,將導致兩個第一閘極結構之間的距離變大。換言之,若第二部分的寬度太寬,則無法縮小第一閘極結構之間的距離。如此一來,將無法降低臨界尺寸,而不利於記憶體裝置的小型化。 A second portion of the second contact member 140 is located between the two first gate structures. If the width of the second portion is too wide, the distance between the second contact member 140 and the first gate structure is too close, which may easily lead to an operation error. In order to avoid such an operation error, the first insulating layer 108 between the lower portion of the second contact member 140 and the metal gate 106 may be thickened. However, as the first insulating layer 108 becomes thicker, the distance between the two first gate structures becomes larger. In other words, if the width of the second portion is too wide, the distance between the first gate structures cannot be reduced. As a result, the critical size cannot be reduced, which is not conducive to miniaturization of the memory device.

另一方面,在形成孔洞145的第四蝕刻製程中,第二接觸部件140可作為蝕刻停止層,而保護第二絕緣層112及第三絕緣層114不會被第四蝕刻製程移除。然而,由於孔洞145的寬度與第二接觸部件140的寬度相近。若進行第四蝕刻製程時第二接觸部件140的位置與孔洞145的位置未對準,則第四蝕刻製程可能會移除位於第二接觸部件140兩側的第二絕緣層112及第三絕緣層114。接著,當用以形成電容結構的導電材料填入孔洞145時,這些導電材料會填入第二絕緣層112及第三絕緣層114中。如此一來,將造成記憶體裝置的操作錯誤,進而導致最終產品的良率下降。這樣的問題,在臨界尺寸縮小時,會更為嚴重。此外,若要非常精準地對準第二接觸部件140的位 置與孔洞145的位置,其製程難度非常高且可能耗費額外的時間與成本。 On the other hand, in the fourth etching process for forming the holes 145, the second contact member 140 can serve as an etching stop layer, and the second insulating layer 112 and the third insulating layer 114 are protected from being removed by the fourth etching process. However, since the width of the hole 145 is similar to the width of the second contact member 140. If the position of the second contact member 140 and the position of the hole 145 are not aligned during the fourth etching process, the fourth etching process may remove the second insulation layer 112 and the third insulation located on both sides of the second contact member 140. Layer 114. Then, when the conductive material used to form the capacitor structure is filled into the hole 145, these conductive materials are filled into the second insulating layer 112 and the third insulating layer 114. As a result, the operation of the memory device will be wrong, and the yield of the final product will be reduced. Such a problem is more serious when the critical size is reduced. In addition, to align the position of the second contact member 140 very accurately The location of the hole 145 is very difficult to manufacture and may consume extra time and cost.

因應前述問題,本發明的第二接觸部件140具有寬度較窄的第二部分,因此,可有利於降低臨界尺寸與記憶體裝置的小型化。另一方面,由於第二接觸部件140具有寬度較寬的第一部分,可使第二接觸部件140與孔洞145的對準變得較為容易(亦即,操作視窗(process window)較大),進而改善最終產品的良率。因此,能夠有助於改善記憶體裝置的良率與臨界尺寸的平衡。 In response to the foregoing problems, the second contact member 140 of the present invention has a second portion having a relatively narrow width. Therefore, the second contact member 140 can reduce the critical size and the miniaturization of the memory device. On the other hand, since the second contact member 140 has a wider first portion, the alignment of the second contact member 140 and the hole 145 can be easier (that is, the process window is larger), and further, Improve the yield of the final product. Therefore, it is possible to help improve the balance between the yield and the critical size of the memory device.

請同時參照第1C圖與第2圖,在第一蝕刻製程後,第三絕緣層114的寬度為W3。在第二蝕刻製程後,第二絕緣層112的寬度W2實質上相等於第三絕緣層114的寬度W3。另一方面,由於第二蝕刻製程幾乎不會減少第一絕緣層108的寬度,因此,第一絕緣層108的寬度W1大於第二絕緣層112的寬度W2。如此一來,對第二蝕刻製程所形成的自對準接觸孔125而言,下部分的寬度W6小於上部分的寬度W7。 Please refer to FIG. 1C and FIG. 2 at the same time. After the first etching process, the width of the third insulating layer 114 is W3. After the second etching process, the width W2 of the second insulation layer 112 is substantially equal to the width W3 of the third insulation layer 114. On the other hand, since the second etching process hardly reduces the width of the first insulating layer 108, the width W1 of the first insulating layer 108 is greater than the width W2 of the second insulating layer 112. As such, for the self-aligned contact hole 125 formed in the second etching process, the width W6 of the lower portion is smaller than the width W7 of the upper portion.

第二接觸部件140的形狀是對應且相同於自對準接觸孔125的形狀。因此,藉由控制第二蝕刻製程的參數條件,即可輕易調整自對準接觸孔125(或第二接觸部件140)的形狀。如此一來,可減少光罩的使用及微影製程的實施次數,進而簡化製程並且降低生產成本。 The shape of the second contact member 140 is corresponding to and the same as the shape of the self-aligned contact hole 125. Therefore, by controlling parameter conditions of the second etching process, the shape of the self-aligned contact hole 125 (or the second contact member 140) can be easily adjusted. In this way, the use of the photomask and the number of lithographic processes can be reduced, thereby simplifying the process and reducing production costs.

換言之,如第2圖所示,第二接觸部件140的頂表面的寬度W7對第二接觸部件140的底表面的寬度W6具有一比率W7/W6,可藉由將W7/W6調整至特定的範圍,而改善記憶體 裝置的良率與臨界尺寸的平衡。在一些實施例中,W7/W6為1.1-1.5。在一些實施例中,W7/W6為1.2-1.4。在另一些實施例中,W7/W6為1.3。 In other words, as shown in FIG. 2, the width W7 of the top surface of the second contact member 140 has a ratio W7 / W6 to the width W6 of the bottom surface of the second contact member 140, and W7 / W6 can be adjusted to a specific value. Range while improving memory The balance between the yield of the device and the critical size. In some embodiments, W7 / W6 is 1.1-1.5. In some embodiments, W7 / W6 is 1.2-1.4. In other embodiments, W7 / W6 is 1.3.

在一些實施例中,第四蝕刻製程為濕式蝕刻製程,蝕刻溶液有可能穿過第二接觸部件140與第三絕緣層114之間的界面而到達第二絕緣層112。因此,將導致部分的第二絕緣層112被移除,並且產生空洞於第二絕緣層112中。在形成電容結構160時,導電材料可能會填入此空洞中,因而降低第二絕緣層112的絕緣性。如此一來,造成記憶體裝置的操作錯誤,進而導致最終產品的良率下降。 In some embodiments, the fourth etching process is a wet etching process, and the etching solution may pass through the interface between the second contact member 140 and the third insulating layer 114 to reach the second insulating layer 112. Therefore, a part of the second insulating layer 112 will be removed, and voids will be generated in the second insulating layer 112. When the capacitor structure 160 is formed, a conductive material may fill the cavity, thereby reducing the insulation of the second insulating layer 112. As a result, operation errors of the memory device are caused, and the yield of the final product is reduced.

請參照第2圖,第四絕緣層122的底表面的寬度W4大於第三絕緣層114的頂表面的寬度W3。換言之,第四絕緣層122覆蓋於第二接觸部件140與第三絕緣層114之間的界面上。再者,第四絕緣層122的底表面與第二接觸部件140的頂表面齊平且直接接觸,如第2圖所示。由於第四蝕刻製程對第四絕緣層122的蝕刻速率較慢,因此,具有此特定形狀的第四絕緣層122可減少甚至完全避免蝕刻溶液穿過界面而到達第二絕緣層112。如此一來,可大幅改善上述記憶體裝置操作錯誤的問題。 Referring to FIG. 2, the width W4 of the bottom surface of the fourth insulating layer 122 is greater than the width W3 of the top surface of the third insulating layer 114. In other words, the fourth insulating layer 122 covers the interface between the second contact member 140 and the third insulating layer 114. Furthermore, the bottom surface of the fourth insulating layer 122 is flush with the top surface of the second contact member 140 and is in direct contact, as shown in FIG. 2. Because the fourth etching process has a slower etching rate for the fourth insulating layer 122, the fourth insulating layer 122 having this specific shape can reduce or even completely prevent the etching solution from reaching the second insulating layer 112 through the interface. In this way, the problem of incorrect operation of the memory device can be greatly improved.

再者,第四絕緣層122具有向上逐漸縮窄的剖面輪廓,如第2圖所示。由於孔洞145底部的形狀對應於第四絕緣層122的形狀,因此,孔洞145的底部具有向下逐漸縮窄的剖面輪廓。換言之,孔洞145底部的寬度小於上部分的寬度。 Furthermore, the fourth insulating layer 122 has a cross-sectional profile that gradually narrows upward, as shown in FIG. 2. Since the shape of the bottom of the hole 145 corresponds to the shape of the fourth insulating layer 122, the bottom of the hole 145 has a cross-sectional profile that gradually narrows downward. In other words, the width of the bottom of the hole 145 is smaller than the width of the upper portion.

若孔洞145具有從頂部至底部均一的寬度,則難以取得記憶體裝置的良率與臨界尺寸的平衡。更具體而言,若孔 洞145的寬度太大,則第二接觸部件140與孔洞145的對準變得非常困難,且無法降低臨界尺寸,而不利於記憶體裝置的小型化。另一方面,若孔洞145的寬度太小,則孔洞145的深寬比太高,難以將形成電容結構160的材料良好地填入孔洞145,進而導致最終產品的良率下降。 If the holes 145 have a uniform width from the top to the bottom, it is difficult to balance the yield and the critical size of the memory device. More specifically, if When the width of the hole 145 is too large, the alignment of the second contact member 140 and the hole 145 becomes very difficult, and the critical size cannot be reduced, which is not conducive to miniaturization of the memory device. On the other hand, if the width of the hole 145 is too small, the depth-to-width ratio of the hole 145 is too high, and it is difficult to fill the hole structure 145 with the material forming the capacitor structure 160 well, which leads to a decrease in the yield of the final product.

由於孔洞145具有寬度較窄的下部分,因此,可有利於第二接觸部件140與孔洞145的對準、臨界尺寸的降低與記憶體裝置的小型化。另一方面,由於孔洞145具有寬度較寬的上部分,可使電容結構160的形成(即,孔洞145的填充)變得較為容易,進而改善最終產品的良率。因此,能夠有助於改善記憶體裝置的良率與臨界尺寸的平衡。 Since the hole 145 has a lower portion with a narrower width, the alignment of the second contact member 140 and the hole 145, the reduction in the critical size, and the miniaturization of the memory device can be facilitated. On the other hand, since the hole 145 has a wide upper portion, the formation of the capacitor structure 160 (ie, the filling of the hole 145) can be easier, and the yield of the final product can be improved. Therefore, it is possible to help improve the balance between the yield and the critical size of the memory device.

第四絕緣層122的底表面122B的寬度W4對第四絕緣層122的頂表面122T的寬度W5的比率為W4/W5,如第2圖所示。換言之,藉由將W4/W5調整至特定的範圍,可進一步改善記憶體裝置的良率與臨界尺寸的平衡。在一些實施例中,W4/W5為1.1-3.0。在一些實施例中,W4/W5為1.3-2.5。在另一些實施例中,W4/W5為1.5-2.0。 The ratio of the width W4 of the bottom surface 122B of the fourth insulating layer 122 to the width W5 of the top surface 122T of the fourth insulating layer 122 is W4 / W5, as shown in FIG. 2. In other words, by adjusting W4 / W5 to a specific range, the balance between the yield of the memory device and the critical size can be further improved. In some embodiments, W4 / W5 is 1.1-3.0. In some embodiments, W4 / W5 is 1.3-2.5. In other embodiments, W4 / W5 is 1.5-2.0.

在第2圖所繪示的結構中,第四絕緣層122的厚度與剖面輪廓也是影響記憶體裝置100的良率的重要參數。 In the structure shown in FIG. 2, the thickness and cross-sectional profile of the fourth insulating layer 122 are also important parameters that affect the yield of the memory device 100.

請參照第2圖,第四絕緣層122具有最大厚度T1。若T1太小,則位於孔洞145底部之第四絕緣層122的凸出部分會太薄,而無法有效地阻擋蝕刻溶液與保護第二絕緣層112。反之,若T1太大,則難以藉由第四蝕刻製程移除足夠的第四絕緣層122,而形成暴露第二接觸部件140的開口。因此,為了改善 良率,可將第四絕緣層122的最大厚度T1控制在特定的範圍內。在一些實施例中,第四絕緣層的最大厚度T1為10-60nm。在一些實施例中,T1為20-50nm。在另一些實施例中,T1為30-40nm。 Referring to FIG. 2, the fourth insulating layer 122 has a maximum thickness T1. If T1 is too small, the protruding portion of the fourth insulating layer 122 at the bottom of the hole 145 will be too thin to effectively block the etching solution and protect the second insulating layer 112. Conversely, if T1 is too large, it is difficult to remove enough fourth insulating layer 122 through the fourth etching process to form an opening exposing the second contact member 140. So to improve The yield rate can control the maximum thickness T1 of the fourth insulating layer 122 within a specific range. In some embodiments, the maximum thickness T1 of the fourth insulating layer is 10-60 nm. In some embodiments, T1 is 20-50 nm. In other embodiments, T1 is 30-40 nm.

請參照第2圖,第四絕緣層122的側壁122S與第四絕緣層122的底表面122B具有一夾角θ,且夾角θ可用以描述第四絕緣層122的剖面輪廓。 Referring to FIG. 2, the sidewall 122S of the fourth insulating layer 122 and the bottom surface 122B of the fourth insulating layer 122 have an included angle θ, and the included angle θ can be used to describe the cross-sectional profile of the fourth insulating layer 122.

若夾角θ太小,則表示第四絕緣層122是和緩地縮窄。因此,第四絕緣層122的凸出部分較薄,無法有效地阻擋蝕刻溶液與保護第二絕緣層112。再者,在第四絕緣層122的最大厚度T1相同的條件下,夾角θ較小代表孔洞145所暴露出的第二接觸部件140的面積較小(亦即,寬度W8較小),因此,電容結構160與第二接觸部件140之間的電阻值會隨之提升,不利於記憶體裝置100的操作。反之,若夾角θ太大,則表示第四絕緣層122是急遽地縮窄。因此,在第四絕緣層122的最大厚度T1相同的條件下,夾角θ較大代表第四絕緣層122的凸出部分較短(或是較窄),無法有效地阻擋蝕刻溶液與保護第二絕緣層112及第三絕緣層114。再者,夾角θ較大代表孔洞145所暴露出的第二接觸部件140的面積較大(亦即,寬度W8較大),第二接觸部件140與孔洞145的對準變得困難,不利於改善最終產品的良率。因此,為了改善良率,可將夾角θ控制在特定的範圍內。在一些實施例中,夾角θ為20-60度。在另一些實施例中,θ為30-50度。 If the included angle θ is too small, it means that the fourth insulating layer 122 is gradually narrowed. Therefore, the protruding portion of the fourth insulating layer 122 is relatively thin, which cannot effectively block the etching solution and protect the second insulating layer 112. In addition, under the condition that the maximum thickness T1 of the fourth insulating layer 122 is the same, a smaller included angle θ indicates that the area of the second contact member 140 exposed by the hole 145 is smaller (that is, the width W8 is smaller). Therefore, The resistance value between the capacitor structure 160 and the second contact member 140 is increased accordingly, which is not beneficial to the operation of the memory device 100. Conversely, if the included angle θ is too large, it means that the fourth insulating layer 122 is sharply narrowed. Therefore, under the condition that the maximum thickness T1 of the fourth insulating layer 122 is the same, a larger included angle θ indicates that the protruding portion of the fourth insulating layer 122 is shorter (or narrower), which cannot effectively block the etching solution and protect the second The insulating layer 112 and the third insulating layer 114. Furthermore, a larger included angle θ indicates that the area of the second contact member 140 exposed by the hole 145 is larger (that is, the width W8 is larger), and the alignment of the second contact member 140 and the hole 145 becomes difficult, which is not favorable. Improve the yield of the final product. Therefore, in order to improve the yield, the included angle θ can be controlled within a specific range. In some embodiments, the included angle θ is 20-60 degrees. In other embodiments, θ is 30-50 degrees.

此外,在一些實施例中,是先藉由第二蝕刻製程 形成寬度較小的開口127後,再藉由第三蝕刻製程增加開口127的上部分寬度,以形成源極/汲極接觸孔133。由於源極/汲極接觸孔133的下部分的寬度較小,可減少佔用基板102的可用面積,有利於記憶體裝置的小型化。另一方面,源極/汲極接觸孔133的上部分的寬度較大,可使第二導電材料121的填充變得較為容易,並且可減少在源極/汲極接觸插塞144中形成空洞。有利於降低源極/汲極接觸插塞144的電阻值。在本案中,藉由第二蝕刻製程與第三蝕刻製程,可簡單地形成具有上述剖面輪廓的源極/汲極接觸插塞144。相較於習知技術,可簡化製程的步驟並降低生產成本。 In addition, in some embodiments, the second etching process is performed first. After the opening 127 having a smaller width is formed, the width of the upper portion of the opening 127 is increased by a third etching process to form a source / drain contact hole 133. Since the width of the lower portion of the source / drain contact hole 133 is small, the available area of the substrate 102 can be reduced, which is beneficial to miniaturization of the memory device. On the other hand, the width of the upper portion of the source / drain contact hole 133 is large, which makes it easier to fill the second conductive material 121, and reduces the formation of holes in the source / drain contact plug 144 . It is beneficial to reduce the resistance value of the source / drain contact plug 144. In this case, by the second etching process and the third etching process, the source / drain contact plug 144 having the above-mentioned cross-sectional profile can be simply formed. Compared with the conventional technology, it can simplify the process steps and reduce the production cost.

本發明之一些實施例提供一種記憶體裝置,請參照第1L圖,本發明之記憶體裝置100可包括基板102,其具有陣列區10及周邊區20。在陣列區10中,多個第一閘極結構形成於基板102上,以及多層絕緣結構,形成於這些第一閘極結構上。此多層絕緣結構由下而上依序包括第一絕緣層108、第二絕緣層112、第三絕緣層114及第四絕緣層122。第一絕緣層108形成於第一閘極結構上且覆蓋第一閘極結構。 Some embodiments of the present invention provide a memory device. Referring to FIG. 1L, the memory device 100 of the present invention may include a substrate 102 having an array region 10 and a peripheral region 20. In the array region 10, a plurality of first gate structures are formed on the substrate 102, and a multilayer insulation structure is formed on the first gate structures. The multilayer insulation structure includes a first insulation layer 108, a second insulation layer 112, a third insulation layer 114, and a fourth insulation layer 122 in this order from bottom to top. The first insulating layer 108 is formed on the first gate structure and covers the first gate structure.

請參照第2圖,第二絕緣層112的寬度W2小於第一絕緣層108的寬度W1。第三絕緣層114的寬度W3相同於第二絕緣層112的寬度W2。第四絕緣層122之底表面的寬度W4大於第三絕緣層112之頂表面的寬度W3。第四絕緣層122之底表面W4的寬度大於第四絕緣層122之頂表面的寬度W5。可藉由選擇合適的材料及控制第二蝕刻製程的參數條件而調整第一絕緣層108、第二絕緣層112、第三絕緣層114及第四絕緣層122等各層 之厚度的相對關係。 Referring to FIG. 2, the width W2 of the second insulating layer 112 is smaller than the width W1 of the first insulating layer 108. The width W3 of the third insulating layer 114 is the same as the width W2 of the second insulating layer 112. A width W4 of a bottom surface of the fourth insulating layer 122 is larger than a width W3 of a top surface of the third insulating layer 112. The width of the bottom surface W4 of the fourth insulating layer 122 is greater than the width W5 of the top surface of the fourth insulating layer 122. The first insulating layer 108, the second insulating layer 112, the third insulating layer 114, and the fourth insulating layer 122 can be adjusted by selecting appropriate materials and controlling the parameter conditions of the second etching process. Relative thickness.

在陣列區10中有多個電容接觸插塞,每一個電容接觸插塞形成於相鄰的兩個第一閘極結構之間。電容接觸插塞由下而上依序包括第一接觸部件150、緩衝層130及第二接觸部件140。第二接觸部件140包括自第四絕緣層之底表面向下延伸的第一部分、自緩衝層130之頂表面向上延伸的第二部分;以及,形成於第一部分與第二部分之間的第三部分。第三部分鄰接於第一部分與第二部分,並且朝向第二部分逐漸縮窄。第二接觸部件140之頂表面的寬度W7大於第二接觸部件140之底表面的寬度W6,如第2圖所示。 There are a plurality of capacitive contact plugs in the array region 10, and each capacitive contact plug is formed between two adjacent first gate structures. The capacitive contact plug includes a first contact member 150, a buffer layer 130, and a second contact member 140 in this order from bottom to top. The second contact member 140 includes a first portion extending downward from a bottom surface of the fourth insulating layer, a second portion extending upward from a top surface of the buffer layer 130, and a third portion formed between the first portion and the second portion. section. The third portion is adjacent to the first portion and the second portion, and gradually narrows toward the second portion. The width W7 of the top surface of the second contact member 140 is larger than the width W6 of the bottom surface of the second contact member 140, as shown in FIG. 2.

請參照第1L圖,在陣列區10中形成有第五絕緣層124,在第五絕緣層124間形成有多個電容結構160。每一個電容結構160形成於一個電容接觸插塞之上,且其位置對應於電容接觸插塞的位置。請參照第2圖,第五絕緣層124的寬度相等於第四絕緣層122之頂表面的寬度W5。電容結構160之底部寬度W8小於第二接觸部件140之頂表面的寬度W7。 Referring to FIG. 1L, a fifth insulating layer 124 is formed in the array region 10, and a plurality of capacitor structures 160 are formed between the fifth insulating layers 124. Each capacitor structure 160 is formed on a capacitor contact plug, and its position corresponds to the position of the capacitor contact plug. Referring to FIG. 2, the width of the fifth insulating layer 124 is equal to the width W5 of the top surface of the fourth insulating layer 122. The width W8 of the bottom of the capacitor structure 160 is smaller than the width W7 of the top surface of the second contact member 140.

仍請參照第1L圖,在周邊區20中形成有多個第二閘極結構。閘極接觸插塞142形成在第二閘極結構上,且其位置對應於第二閘極結構的位置。兩個源極/汲極接觸插塞144分別形成在第二閘極結構的兩側。源極/汲極接觸插塞144包括上部分及下部分,且上部分的底表面的寬度大於下部分的頂表面的寬度。 Still referring to FIG. 1L, a plurality of second gate structures are formed in the peripheral region 20. The gate contact plug 142 is formed on the second gate structure, and its position corresponds to the position of the second gate structure. Two source / drain contact plugs 144 are formed on both sides of the second gate structure, respectively. The source / drain contact plug 144 includes an upper portion and a lower portion, and a width of a bottom surface of the upper portion is greater than a width of a top surface of the lower portion.

如上文所述,在一些實施例中,藉由控制第二接觸部件140與第四絕緣層122的剖面輪廓,可大幅改善記憶體裝 置的良率與臨界尺寸的平衡。 As described above, in some embodiments, by controlling the cross-sectional profiles of the second contact member 140 and the fourth insulating layer 122, the memory device can be greatly improved. The yield of the device is balanced with the critical size.

請參照第2圖,在一些實施例中,第四絕緣層122具有頂表面122T、底表面122B及側壁122S。側壁122S為直線狀,且側壁122S與底表面122B具有一夾角θ。然而,第四絕緣層122的剖面輪廓並不以此為限。 Referring to FIG. 2, in some embodiments, the fourth insulating layer 122 has a top surface 122T, a bottom surface 122B, and a sidewall 122S. The sidewall 122S is linear, and the sidewall 122S and the bottom surface 122B have an included angle θ. However, the cross-sectional profile of the fourth insulating layer 122 is not limited thereto.

第3圖為本發明一些實施例之第四絕緣層的剖面示意圖。第3圖的第四絕緣層222具有頂表面222T、底表面222B及側壁222S,且側壁222S與底表面222B具有一夾角θ。請同時參照第2圖及第3圖,第3圖的第四絕緣層222與第2圖的第四絕緣層122相似,差別在於第3圖的側壁222S為向內凹的曲線狀。再者,第3圖的第四絕緣層322的側壁322S為向外凸的曲線狀。此外,第3圖的第四絕緣層422的側壁422S為不規則的鋸齒狀。第2圖及第3圖所繪示的第四絕緣層之剖面輪廓僅用於說明,並非用以限定本發明。因此,第四絕緣層的側壁的剖面輪廓可為直線狀、曲線狀、鋸齒狀、不規則狀或上述之組合。 FIG. 3 is a schematic cross-sectional view of a fourth insulating layer according to some embodiments of the present invention. The fourth insulating layer 222 in FIG. 3 has a top surface 222T, a bottom surface 222B, and a side wall 222S, and the side wall 222S and the bottom surface 222B have an included angle θ. Please refer to FIG. 2 and FIG. 3 at the same time. The fourth insulating layer 222 of FIG. 3 is similar to the fourth insulating layer 122 of FIG. 2 except that the sidewall 222S of FIG. In addition, the sidewall 322S of the fourth insulating layer 322 in FIG. 3 is convexly curved. In addition, the side wall 422S of the fourth insulating layer 422 in FIG. 3 has an irregular zigzag shape. The cross-sectional profile of the fourth insulating layer shown in FIG. 2 and FIG. 3 is for illustration only, and is not intended to limit the present invention. Therefore, the cross-sectional profile of the sidewall of the fourth insulating layer may be linear, curved, sawtoothed, irregular, or a combination thereof.

綜上所述,本發明之一些實施例提供一種可改善良率與臨界尺寸的記憶體裝置。再者,本發明之一些實施例提供一種低成本及高效率的製造方法,可用以形成良率與臨界尺寸均獲得改善的記憶體裝置。 In summary, some embodiments of the present invention provide a memory device with improved yield and critical size. Furthermore, some embodiments of the present invention provide a low-cost and high-efficiency manufacturing method that can be used to form a memory device with improved yield and critical size.

具體而言,本發明實施例所提供之記憶體裝置及其製造方法的優點至少包括: Specifically, the advantages of the memory device and the manufacturing method thereof provided by the embodiments of the present invention include at least:

(1)第二接觸部件包括寬度較小的下部分,可降低臨界尺寸,而有利於記憶體裝置的小型化。 (1) The second contact member includes a lower portion with a smaller width, which can reduce the critical size and is beneficial to miniaturization of the memory device.

(2)第二接觸部件包括寬度較大的上部分,可使第二接觸部 件與電容結構的對準較為容易(增加操作視窗),進而改善最終產品的良率。 (2) The second contact member includes an upper portion having a larger width, which enables the second contact portion The alignment of the component and the capacitor structure is relatively easy (increasing the operating window), thereby improving the yield of the final product.

(3)電容結構包括向下逐漸縮窄的下部分,可更進一步增加操作視窗,進而改善最終產品的良率。 (3) The capacitor structure includes a lower portion that gradually narrows downward, which can further increase the operating window, thereby improving the yield of the final product.

(4)第四絕緣層覆蓋於第三絕緣層與第二接觸部件的界面上,且第四絕緣層之底表面的寬度大於第三絕緣層之頂表面的寬度,可有效地阻擋蝕刻溶液與保護第二絕緣層,更進一步改善最終產品的良率。 (4) The fourth insulating layer covers the interface between the third insulating layer and the second contact member, and the width of the bottom surface of the fourth insulating layer is greater than the width of the top surface of the third insulating layer, which can effectively block the etching solution and the Protect the second insulation layer and further improve the yield of the final product.

(5)第四絕緣層具有向上逐漸縮窄的剖面輪廓,可有效地阻擋蝕刻溶液與保護第二絕緣層112,並且可使第二接觸部件與電容結構的對準較為容易,可大幅改善最終產品的良率。 (5) The fourth insulating layer has a gradually narrowing upward profile, which can effectively block the etching solution and protect the second insulating layer 112, and can make the alignment of the second contact member and the capacitor structure easier, which can greatly improve the final Product yield.

(6)藉由選擇合適的材料及控制第二蝕刻製程的參數條件,即可調整第一絕緣層、第二絕緣層、第三絕緣層及第四絕緣層等各層之厚度的相對關係。因此,不需要複雜的製程步驟,即可形成具有不同寬度的絕緣層。如此一來,可降低生產所耗費的時間與成本。 (6) The relative relationship between the thicknesses of the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer can be adjusted by selecting appropriate materials and controlling the parameter conditions of the second etching process. Therefore, no complicated process steps are needed to form insulating layers with different widths. In this way, the time and cost of production can be reduced.

(7)本發明實施例所提供之記憶體裝置的製造方法可輕易地整合至既有的記憶體裝置製程中,而不需額外更換或修改生產設備。可在降低製程複雜度及生產成本的前提下,有效地改善記憶體裝置的良率與臨界尺寸。 (7) The manufacturing method of the memory device provided by the embodiment of the present invention can be easily integrated into the existing memory device manufacturing process without additional replacement or modification of production equipment. Under the premise of reducing process complexity and production cost, the yield and critical size of the memory device can be effectively improved.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為 準。 Although the present invention has been disclosed above with several preferred embodiments, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make any changes without departing from the spirit and scope of the present invention. And retouching, therefore, the scope of protection of the present invention shall be defined as quasi.

Claims (18)

一種記憶體裝置,包括:一基板,其中該基板包括一陣列區及一周邊區;兩個第一閘極結構,形成於該陣列區中;一多層絕緣結構,形成於該等第一閘極結構上,其中該多層絕緣結構包括:一第一絕緣層,形成於該等第一閘極結構上,且覆蓋該等第一閘極結構;一第二絕緣層,形成於該第一絕緣層上,其中該第二絕緣層的寬度小於該第一絕緣層的寬度;一第三絕緣層,形成於該第二絕緣層上,其中該第三絕緣層的寬度相同於該第二絕緣層的寬度;以及一第四絕緣層,形成於該第三絕緣層上,其中該第四絕緣層的一底表面的寬度大於該第三絕緣層的一頂表面的寬度;以及一電容接觸插塞,形成於該等第一閘極結構之間,其中該電容接觸插塞包括:一第一接觸部件,形成於該基板上;一第二接觸部件,形成於該第一接觸部件上,其中該第二接觸部件的一頂表面的寬度大於該第二接觸部件的一底表面的寬度;以及一緩衝層,形成於該第一接觸部件與該第二接觸部件之間。A memory device includes: a substrate, wherein the substrate includes an array region and a peripheral region; two first gate structures are formed in the array region; and a multi-layer insulation structure is formed on the first gates. Structurally, the multilayer insulating structure includes: a first insulating layer formed on the first gate structures and covering the first gate structures; a second insulating layer formed on the first insulating layer The width of the second insulation layer is smaller than the width of the first insulation layer; a third insulation layer is formed on the second insulation layer; and the width of the third insulation layer is the same as that of the second insulation layer. A width; and a fourth insulating layer formed on the third insulating layer, wherein a width of a bottom surface of the fourth insulating layer is greater than a width of a top surface of the third insulating layer; and a capacitor contact plug, Formed between the first gate structures, wherein the capacitive contact plug includes: a first contact member formed on the substrate; a second contact member formed on the first contact member, wherein the first Two contact parts It is greater than the width of the top surface of the second contact member is a bottom surface; and a buffer layer formed between the first contact member and the second contact member. 如申請專利範圍第1項所述之記憶體裝置,其中該第四絕緣層的該底表面與該第二接觸部件的該頂表面齊平且直接接觸。The memory device according to item 1 of the scope of patent application, wherein the bottom surface of the fourth insulation layer is flush with and directly contacts the top surface of the second contact member. 如申請專利範圍第1項所述之記憶體裝置,其中該第四絕緣層具有向上逐漸縮窄的剖面輪廓。The memory device according to item 1 of the application, wherein the fourth insulating layer has a cross-sectional profile that gradually narrows upward. 如申請專利範圍第1項所述之記憶體裝置,其中該第四絕緣層的該底表面的寬度對該第四絕緣層的該頂表面的寬度的比率為1.1-3.0。The memory device according to item 1 of the application, wherein the ratio of the width of the bottom surface of the fourth insulating layer to the width of the top surface of the fourth insulating layer is 1.1-3.0. 如申請專利範圍第1項所述之記憶體裝置,其中該第四絕緣層的一側壁與該第四絕緣層的該底表面具有一夾角為20-60度。The memory device according to item 1 of the scope of the patent application, wherein an angle between a sidewall of the fourth insulation layer and the bottom surface of the fourth insulation layer is 20-60 degrees. 如申請專利範圍第5項所述之記憶體裝置,其中該第四絕緣層的該側壁為直線狀、曲線狀、鋸齒狀或不規則狀。The memory device according to item 5 of the scope of patent application, wherein the sidewall of the fourth insulating layer is linear, curved, jagged, or irregular. 如申請專利範圍第1項所述之記憶體裝置,其中該第四絕緣層的最大厚度為10-60nm。The memory device according to item 1 of the scope of patent application, wherein the maximum thickness of the fourth insulating layer is 10-60 nm. 如申請專利範圍第1項所述之記憶體裝置,其中該第二接觸部件包括:一第一部分,自該第四絕緣層的該底表面向下延伸;一第二部分,自該緩衝層的一頂表面向上延伸;以及一第三部分,形成於該第一部分與該第二部分之間,並且鄰接於該第一部分與該第二部分,其中該第三部分朝向該第二部分逐漸縮窄。The memory device according to item 1 of the patent application scope, wherein the second contact member includes: a first portion extending downward from the bottom surface of the fourth insulating layer; and a second portion extending from the buffer layer. A top surface extends upward; and a third portion is formed between the first portion and the second portion and is adjacent to the first portion and the second portion, wherein the third portion gradually narrows toward the second portion. . 如申請專利範圍第5項所述之記憶體裝置,其中該第二接觸部件的該頂表面的寬度對該第二接觸部件的該底表面的寬度的比率為1.1-1.5。The memory device according to item 5 of the application, wherein a ratio of a width of the top surface of the second contact member to a width of the bottom surface of the second contact member is 1.1 to 1.5. 如申請專利範圍第1項所述之記憶體裝置,其中該第二接觸部件的該底表面高於該第一閘極結構的一頂表面。According to the memory device of claim 1, wherein the bottom surface of the second contact member is higher than a top surface of the first gate structure. 如申請專利範圍第1項所述之記憶體裝置,其中該第二絕緣層的材料不同於該第一絕緣層的材料,且該第二絕緣層的材料不同於該第三絕緣層的材料。The memory device according to item 1 of the application, wherein the material of the second insulating layer is different from the material of the first insulating layer, and the material of the second insulating layer is different from the material of the third insulating layer. 如申請專利範圍第11項所述之記憶體裝置,其中該第一絕緣層為氮化物,該第二絕緣層為氧化物,該第三絕緣層為氮化物,且該第四絕緣層為氮化物。The memory device according to item 11 of the scope of patent application, wherein the first insulating layer is a nitride, the second insulating layer is an oxide, the third insulating layer is a nitride, and the fourth insulating layer is nitrogen Compound. 如申請專利範圍第1項所述之記憶體裝置,更包括:一第五絕緣層,形成於該第四絕緣層上,其中該第五絕緣層的材料不同於該第四絕緣層的材料;以及一電容結構,形成於該電容接觸插塞上。The memory device according to item 1 of the scope of patent application, further comprising: a fifth insulating layer formed on the fourth insulating layer, wherein a material of the fifth insulating layer is different from a material of the fourth insulating layer; And a capacitor structure formed on the capacitor contact plug. 如申請專利範圍第1項所述之記憶體裝置,更包括:一第二閘極結構,形成於該周邊區中;一閘極接觸插塞,形成於該第二閘極結構上;一源極/汲極接觸插塞,形成於該基板上,其中該源極/汲極接觸插塞包括一上部分及一下部分,且該上部分的一底表面的寬度大於該下部分的一頂表面的寬度。The memory device according to item 1 of the patent application scope further includes: a second gate structure formed in the peripheral region; a gate contact plug formed on the second gate structure; a source A pole / drain contact plug is formed on the substrate, wherein the source / drain contact plug includes an upper portion and a lower portion, and a bottom surface of the upper portion is wider than a top surface of the lower portion. The width. 一種記憶體裝置的製造方法,包括:提供一基板,其中該基板包括一陣列區及一周邊區;形成兩個第一閘極結構於該陣列區中;形成一多層絕緣結構於該等第一閘極結構上,其中該多層絕緣結構包括:一第一絕緣層,形成於該等第一閘極結構上,且覆蓋該等第一閘極結構;一第二絕緣層,形成於該第一絕緣層上,其中該第二絕緣層的寬度小於該第一絕緣層的寬度;一第三絕緣層,形成於該第二絕緣層上,其中該第三絕緣層的寬度相同於該第二絕緣層的寬度;以及一第四絕緣層,形成於該第三絕緣層上,其中該第四絕緣層的一底表面的寬度大於該第三絕緣層的一頂表面的寬度;以及形成一電容接觸插塞於該等第一閘極結構之間,其中該電容接觸插塞包括:一第一接觸部件,形成於該基板上;一第二接觸部件,形成於該第一接觸部件上,其中該第二接觸部件的一頂表面的寬度大於該第二接觸部件的一底表面的寬度;以及一緩衝層,形成於該第一接觸部件與該第二接觸部件之間。A method for manufacturing a memory device includes: providing a substrate, wherein the substrate includes an array region and a peripheral region; forming two first gate structures in the array region; and forming a multi-layer insulation structure on the first regions On the gate structure, the multilayer insulation structure includes: a first insulating layer formed on the first gate structures and covering the first gate structures; a second insulating layer formed on the first On the insulating layer, the width of the second insulating layer is smaller than the width of the first insulating layer; a third insulating layer is formed on the second insulating layer, and the third insulating layer has the same width as the second insulating layer A width of the layer; and a fourth insulating layer formed on the third insulating layer, wherein a width of a bottom surface of the fourth insulating layer is greater than a width of a top surface of the third insulating layer; and forming a capacitive contact A plug is between the first gate structures, wherein the capacitive contact plug includes: a first contact member formed on the substrate; a second contact member formed on the first contact member, wherein the Second pick Width of a top surface of the second member is larger than a bottom surface of the contact member; and a buffer layer formed between the first contact member and the second contact member. 如申請專利範圍第15項所述之記憶體裝置的製造方法,其中形成該多層絕緣結構包括:在該陣列區中形成該第二絕緣層,以覆蓋該等第一閘極結構及該第一絕緣層,其中該第二絕緣層具有一平坦的頂表面;形成該第三絕緣層於該第二絕緣層上,其中該第三絕緣層在該陣列區中具有均一的厚度;進行一第一蝕刻製程,以將該第三絕緣層圖案化,其中圖案化後的該第三絕緣層的寬度小於其下方的該第一絕緣層的寬度;以圖案化後的該第三絕緣層為罩幕,進行一第二蝕刻製程,以移除部分的該第二絕緣層,並形成一開口於該等第一閘極結構之間;填入一導電材料於該開口中,以形成該第二接觸部件;形成該第四絕緣層於該第三絕緣層及該第二接觸部件上;以及進行一第三蝕刻製程,以移除部分的該第四絕緣層,並暴露出部分的該第二接觸部件的該頂表面。The method for manufacturing a memory device according to item 15 of the scope of patent application, wherein forming the multilayer insulation structure includes: forming the second insulation layer in the array region to cover the first gate structures and the first An insulating layer, wherein the second insulating layer has a flat top surface; forming the third insulating layer on the second insulating layer, wherein the third insulating layer has a uniform thickness in the array region; performing a first An etching process is used to pattern the third insulating layer, wherein the width of the patterned third insulating layer is smaller than the width of the first insulating layer below it; the patterned third insulating layer is used as a mask Performing a second etching process to remove a portion of the second insulating layer and form an opening between the first gate structures; and filling a conductive material into the opening to form the second contact A component; forming the fourth insulating layer on the third insulating layer and the second contact member; and performing a third etching process to remove a portion of the fourth insulating layer and exposing a portion of the second contact The top surface of the component 如申請專利範圍第16項所述之記憶體裝置的製造方法,其中在該第二蝕刻製程中,該第二絕緣層的蝕刻速率對該第一絕緣層的蝕刻速率之比率為5-50。The method for manufacturing a memory device according to item 16 of the scope of the patent application, wherein in the second etching process, a ratio of an etching rate of the second insulating layer to an etching rate of the first insulating layer is 5-50. 如申請專利範圍第16項所述之記憶體裝置的製造方法,在形成該第四絕緣層之後,更包括:形成一第五絕緣層於該第四絕緣層上;進行該第三蝕刻製程,以移除部分的該第四絕緣層及第五絕緣層,並在該第五絕緣層中形成一孔洞於該第二接觸部件的該頂表面上;以及形成一電容結構於該孔洞中,其中該電容結構的底表面直接接觸該第二接觸部件的該頂表面。According to the method for manufacturing a memory device described in item 16 of the scope of patent application, after forming the fourth insulating layer, the method further includes: forming a fifth insulating layer on the fourth insulating layer; and performing the third etching process, Removing a portion of the fourth insulating layer and the fifth insulating layer, and forming a hole in the fifth insulating layer on the top surface of the second contact member; and forming a capacitor structure in the hole, wherein The bottom surface of the capacitor structure directly contacts the top surface of the second contact member.
TW106138605A 2017-11-08 2017-11-08 Memory device and method for manufacturing the same TWI660464B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106138605A TWI660464B (en) 2017-11-08 2017-11-08 Memory device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106138605A TWI660464B (en) 2017-11-08 2017-11-08 Memory device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201919153A TW201919153A (en) 2019-05-16
TWI660464B true TWI660464B (en) 2019-05-21

Family

ID=67347587

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106138605A TWI660464B (en) 2017-11-08 2017-11-08 Memory device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI660464B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021116448A1 (en) * 2020-09-23 2022-03-24 Samsung Electronics Co., Ltd. Semiconductor device and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040094793A1 (en) * 2002-11-15 2004-05-20 Mitsuhiro Noguchi Semiconductor memory device
TW200723520A (en) * 2005-12-05 2007-06-16 Macronix Int Co Ltd Manufacturing method for phase change RAM with electrode layer process
TW201505129A (en) * 2013-07-25 2015-02-01 Winbond Electronics Corp Embedded memory device and method of fabricating the same
US20150228662A1 (en) * 2007-12-14 2015-08-13 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device provided with charge storage layer in memory cell
TW201714254A (en) * 2015-10-14 2017-04-16 華邦電子股份有限公司 Memory device and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040094793A1 (en) * 2002-11-15 2004-05-20 Mitsuhiro Noguchi Semiconductor memory device
TW200723520A (en) * 2005-12-05 2007-06-16 Macronix Int Co Ltd Manufacturing method for phase change RAM with electrode layer process
US20150228662A1 (en) * 2007-12-14 2015-08-13 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device provided with charge storage layer in memory cell
TW201505129A (en) * 2013-07-25 2015-02-01 Winbond Electronics Corp Embedded memory device and method of fabricating the same
TW201714254A (en) * 2015-10-14 2017-04-16 華邦電子股份有限公司 Memory device and method of manufacturing the same

Also Published As

Publication number Publication date
TW201919153A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
KR101731060B1 (en) A vertical type semiconductor device and method of manufacturing the same
CN107275283B (en) Semiconductor device and method for manufacturing the same
KR101660262B1 (en) Method of manufacturing a vertical type semiconductor device
CN109216359B (en) Memory device and method of manufacturing the same
US9087844B2 (en) Semiconductor device and fabricating method thereof
US7459383B2 (en) Fabricating method of gate structure
TW202030885A (en) Devices and electronic systems including vertical transistors, and related methods
US10593676B2 (en) Memory device and method for manufacturing the same
TWI708390B (en) Semiconductor structure and method of forming the same
TW202143395A (en) Dynamic random access memory and method for manufacturing the same
TWI677954B (en) Interconnected structure and manufacturing method thereof, and electronic equipment including interconnected structure
KR20120048791A (en) Method of manufacturing a vertical type semiconductor device
US20140322911A1 (en) Semiconductor devices and methods of forming the same
US7341913B2 (en) Method of manufacturing non-volatile memory
TWI660464B (en) Memory device and method for manufacturing the same
US8129239B2 (en) Semiconductor device having an expanded storage node contact and method for fabricating the same
KR20120096209A (en) Semiconductor device and method of manufacturing the same
WO2014115790A1 (en) Semiconductor device and method for manufacturing same
TWI658575B (en) Contact structure, method for foroming contact structure, and memory device
CN110610922B (en) Contact structure and forming method thereof
JP3958002B2 (en) How to prevent short circuit between contact hole and metal wiring
US20080057694A1 (en) Method for manufacturing semiconductor device
US20040147076A1 (en) Method for fabrication a flash memory device self-aligned contact
CN109427649A (en) Semiconductor structure and forming method thereof
WO2023134331A1 (en) Method for preparing semiconductor structure, and semiconductor structure