TWI655839B - Integrated circuit and driving signal generation circuit - Google Patents
Integrated circuit and driving signal generation circuit Download PDFInfo
- Publication number
- TWI655839B TWI655839B TW107111412A TW107111412A TWI655839B TW I655839 B TWI655839 B TW I655839B TW 107111412 A TW107111412 A TW 107111412A TW 107111412 A TW107111412 A TW 107111412A TW I655839 B TWI655839 B TW I655839B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- circuit
- transition point
- driving
- compensation
- Prior art date
Links
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 title description 4
- 230000007704 transition Effects 0.000 claims abstract description 100
- 230000000630 rising effect Effects 0.000 claims description 21
- 230000001934 delay Effects 0.000 claims description 17
- 238000005070 sampling Methods 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 7
- 239000008186 active pharmaceutical agent Substances 0.000 description 40
- 239000000872 buffer Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 101150087322 DCPS gene Proteins 0.000 description 5
- 101100386725 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) DCS1 gene Proteins 0.000 description 5
- 101100116191 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) DCS2 gene Proteins 0.000 description 5
- 102100033718 m7GpppX diphosphatase Human genes 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Landscapes
- Pulse Circuits (AREA)
- Electronic Switches (AREA)
Abstract
本發明提供一種積體電路以及一種驅動信號產生電路。積體電路包括驅動信號產生電路。驅動信號產生電路包括信號處理電路、輸出驅動電路以及補償信號產生電路。信號處理電路對第一控制信號進行信號處理以產生第二控制信號。輸出驅動電路接收第二控制信號以及補償信號,並依據補償信號以產生驅動信號。驅動信號例如用以驅動轉子。補償信號產生電路依據第一控制信號的第一轉態點、第二轉態點以及驅動信號的第三轉態點以及第四轉態點來產生補償信號。The present invention provides an integrated circuit and a drive signal generating circuit. The integrated circuit includes a drive signal generating circuit. The drive signal generating circuit includes a signal processing circuit, an output drive circuit, and a compensation signal generating circuit. The signal processing circuit performs signal processing on the first control signal to generate a second control signal. The output driving circuit receives the second control signal and the compensation signal, and generates a driving signal according to the compensation signal. The drive signal is used, for example, to drive the rotor. The compensation signal generating circuit generates a compensation signal according to the first transition point of the first control signal, the second transition point, and the third transition point of the driving signal and the fourth transition point.
Description
本發明是有關於一種積體電路以及其驅動信號產生電路,且特別是有關於一種可避免驅動信號失真的積體電路以及其驅動信號產生電路。 The present invention relates to an integrated circuit and a drive signal generating circuit thereof, and more particularly to an integrated circuit capable of avoiding distortion of a drive signal and a drive signal generating circuit therefor.
一般而言,驅動電路在接收控制信號後會對控制信號進行信號處理後再輸出以驅動下一級的裝置。然而,當環境溫度或者是濕度發生變化時,又或者是因為控制信號的轉換,例如是抬升/降低電壓準位等等,都有可能造成控制信號的導通波形發生變化,從而造成控制信號的失真。 Generally, after receiving the control signal, the drive circuit performs signal processing on the control signal and then outputs it to drive the device of the next stage. However, when the ambient temperature or humidity changes, or because of the conversion of the control signal, such as raising/lowering the voltage level, etc., it is possible to cause the conduction waveform of the control signal to change, thereby causing distortion of the control signal. .
本發明提供一種積體電路以及驅動信號產生電路,積體電路的驅動信號產生電路可避免驅動信號失真,藉以穩定地驅動轉子。 The present invention provides an integrated circuit and a drive signal generating circuit. The drive signal generating circuit of the integrated circuit can avoid distortion of the drive signal, thereby stably driving the rotor.
本發明的驅動信號產生電路包括信號處理電路、輸出驅 動電路以及補償信號產生電路。信號處理電路接收第一控制信號,並且對第一控制信號進行信號處理以產生第二控制信號。輸出驅動電路耦接至信號處理電路。輸出驅動電路接收第二控制信號以及補償信號,並依據補償信號以產生驅動信號。補償信號產生電路耦接至信號處理電路以及輸出驅動電路。補償信號產生電路在偵測時間區間中偵測第一控制信號相鄰第一轉態點以及第二轉態點,並且偵測驅動信號的相鄰的第三轉態點以及第四轉態點。補償信號產生電路依據第一轉態點、第二轉態點、第三轉態點以及第四轉態點來產生補償信號。 The driving signal generating circuit of the present invention comprises a signal processing circuit and an output driver The dynamic circuit and the compensation signal generating circuit. The signal processing circuit receives the first control signal and performs signal processing on the first control signal to generate a second control signal. The output drive circuit is coupled to the signal processing circuit. The output driving circuit receives the second control signal and the compensation signal, and generates a driving signal according to the compensation signal. The compensation signal generating circuit is coupled to the signal processing circuit and the output driving circuit. The compensation signal generating circuit detects the adjacent first transition point and the second transition point of the first control signal in the detection time interval, and detects the adjacent third transition point and the fourth transition point of the driving signal . The compensation signal generating circuit generates a compensation signal according to the first transition point, the second transition point, the third transition point, and the fourth transition point.
本發明的積體電路包括上述的驅動信號產生電路。驅動信號產生電路用以產生驅動信號,驅動信號用以驅動轉子。 The integrated circuit of the present invention includes the above-described drive signal generating circuit. The drive signal generating circuit is configured to generate a drive signal for driving the rotor.
基於上述,本發明驅動信號產生電路接收第一控制信號,對第一控制信號進行信號處理以產生第二控制信號,並依據補償信號以調整第二控制信號的相位以產生驅動信號。並且驅動信號產生電路是依據第一控制信號以及偵測驅動信號的多個轉態點來產生補償信號。如此一來,積體電路具有自我補償機制的功能,藉以使驅動信號產生電路的驅動信號能夠自動地調整回維持於穩定的導通波形以避免驅動信號失真。 Based on the above, the driving signal generating circuit of the present invention receives the first control signal, performs signal processing on the first control signal to generate a second control signal, and adjusts the phase of the second control signal according to the compensation signal to generate a driving signal. And the driving signal generating circuit generates the compensation signal according to the first control signal and detecting a plurality of transition points of the driving signal. In this way, the integrated circuit has the function of a self-compensation mechanism, so that the driving signal of the driving signal generating circuit can be automatically adjusted back to maintain a stable conducting waveform to avoid distortion of the driving signal.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
100‧‧‧驅動信號產生電路 100‧‧‧Drive signal generation circuit
120‧‧‧信號處理電路 120‧‧‧Signal Processing Circuit
140、240、340‧‧‧輸出驅動電路 140, 240, 340‧‧‧ output drive circuit
160‧‧‧補償信號產生電路 160‧‧‧Compensation signal generation circuit
142、242、342‧‧‧輸出級電路 142, 242, 342‧‧‧ output stage circuits
144‧‧‧延遲電路 144‧‧‧Delay circuit
1422‧‧‧第一驅動開關 1422‧‧‧First drive switch
1424‧‧‧第二驅動開關 1424‧‧‧Second drive switch
244、344‧‧‧上升電流源 244, 344‧‧‧ rising current source
246、346‧‧‧下降電流源 246, 346‧‧‧ falling current source
3422、3424‧‧‧緩衝器 3422, 3424‧‧‧ buffer
AS‧‧‧補償信號 AS‧‧‧compensation signal
EG1~EG4‧‧‧轉態點 EG1~EG4‧‧‧Transition point
TA1、TA3‧‧‧第一時間 TA1, TA3‧‧‧ first time
TA2、TA4‧‧‧第二時間 TA2, TA4‧‧‧ second time
x1、x2、y1~y3、y’3、z4、z’4‧‧‧時間 X1, x2, y1~y3, y’3, z4, z’4‧‧‧ time
T1、T2、T3‧‧‧時間區間 T1, T2, T3‧‧ ‧ time interval
CS1‧‧‧第一控制信號 CS1‧‧‧First control signal
CS2‧‧‧第二控制信號 CS2‧‧‧second control signal
DS‧‧‧驅動信號 DS‧‧‧ drive signal
Rtr‧‧‧轉子 Rtr‧‧‧ rotor
RGT‧‧‧積體電路 RGT‧‧‧ integrated circuit
VB‧‧‧參考電壓 VB‧‧‧reference voltage
VS‧‧‧接地電壓 VS‧‧‧ grounding voltage
DCS‧‧‧延遲控制信號 DCS‧‧‧ Delay Control Signal
DCS1‧‧‧第一延遲控制信號 DCS1‧‧‧First Delay Control Signal
DCS2‧‧‧第二延遲控制信號 DCS2‧‧‧second delay control signal
D1(1)~D1(m)‧‧‧第一延遲器 D1(1)~D1(m)‧‧‧First retarder
D2(1)~D2(n)‧‧‧第二延遲器 D2(1)~D2(n)‧‧‧second retarder
SW1(0)~SW1(m)‧‧‧第一開關 SW1(0)~SW1(m)‧‧‧ first switch
SW2(0)~SW2(n)‧‧‧第二開關 SW2(0)~SW2(n)‧‧‧second switch
圖1是依據本發明一實施例所繪示的積體電路的電路示意圖。 FIG. 1 is a circuit diagram of an integrated circuit according to an embodiment of the invention.
圖2A~2C是依據本發明的實施例所繪示的控制信號以及驅動信號的波形示意圖。 2A-2C are waveform diagrams of control signals and driving signals according to an embodiment of the invention.
圖3A是依據本發明第一實施例所繪示的輸出驅動電路的示意圖。 FIG. 3A is a schematic diagram of an output driving circuit according to a first embodiment of the present invention.
圖3B是依據圖3A的實施例所繪示的輸出驅動電路的示意圖。 FIG. 3B is a schematic diagram of an output driving circuit according to the embodiment of FIG. 3A.
圖4A是依據本發明第二實施例所繪示的輸出驅動電路的示意圖。 4A is a schematic diagram of an output driving circuit according to a second embodiment of the present invention.
圖4B是依據本發明第三實施例所繪示的輸出驅動電路的示意圖。 4B is a schematic diagram of an output driving circuit according to a third embodiment of the present invention.
請參考圖1,圖1是依據本發明一實施例所繪示的積體電路的電路示意圖。在本實施例中,積體電路RGT包括驅動信號產生電路100。驅動信號產生電路100用以產生驅動信號DS。驅動信號產生電路100包括信號處理電路120、輸出驅動電路140以及補償信號產生電路160。信號處理電路120用以接收第一控制信號CS1,並且信號處理電路120對第一控制信號CS1進行信號處理來產生第二控制信號CS2。在本實施例中,信號處理電路120可 針對第一控制信號CS1進行信號處理,並執行突波消除操作以及短路保護操作中的至少其中之一。輸出驅動電路140耦接至信號處理電路120。輸出驅動電路140接收第二控制信號CS2以及補償信號AS。輸出驅動電路140可依據補償信號AS,透過調整第二控制信號CS2的相位,藉以產生驅動信號DS。在本實施例中,積體電路RGT可例如是車用調節器,並產生驅動信號DS來驅動電感型態的負載(例如轉子Rtr)。 Please refer to FIG. 1. FIG. 1 is a schematic circuit diagram of an integrated circuit according to an embodiment of the invention. In the present embodiment, the integrated circuit RGT includes a drive signal generating circuit 100. The drive signal generating circuit 100 is configured to generate the drive signal DS. The drive signal generating circuit 100 includes a signal processing circuit 120, an output drive circuit 140, and a compensation signal generating circuit 160. The signal processing circuit 120 is configured to receive the first control signal CS1, and the signal processing circuit 120 performs signal processing on the first control signal CS1 to generate the second control signal CS2. In this embodiment, the signal processing circuit 120 can Signal processing is performed for the first control signal CS1, and at least one of a surge cancellation operation and a short circuit protection operation is performed. The output driving circuit 140 is coupled to the signal processing circuit 120. The output drive circuit 140 receives the second control signal CS2 and the compensation signal AS. The output driving circuit 140 can generate the driving signal DS by adjusting the phase of the second control signal CS2 according to the compensation signal AS. In the present embodiment, the integrated circuit RGT may be, for example, a vehicle regulator, and generates a drive signal DS to drive an inductive load (for example, a rotor Rtr).
在本實施例中,補償信號產生電路160耦接至信號處理電路120以及輸出驅動電路140。補償信號產生電路160偵測第一控制信號CS1並且偵測驅動信號DS來產生補償信號AS。其中,補償信號產生電路160可在偵測時間區間中,偵測出第一控制信號CS1中相鄰的第一轉態點以及第二轉態點,並在偵測時間區間中,偵測出驅動信號DS中相鄰的第三轉態點以及第四轉態點。上述的第一轉態點與第三轉態點可以為相同類型的轉態點,例如由低電壓準位轉態至高電壓準位的上升緣的轉態點。上述的第二轉態點與第四轉態點可以為相同類型的轉態點,例如由高電壓準位轉態至低電壓準位的下降緣的轉態點。 In the present embodiment, the compensation signal generating circuit 160 is coupled to the signal processing circuit 120 and the output driving circuit 140. The compensation signal generating circuit 160 detects the first control signal CS1 and detects the driving signal DS to generate the compensation signal AS. The compensation signal generating circuit 160 can detect the adjacent first transition point and the second transition point in the first control signal CS1 in the detection time interval, and detect in the detection time interval. The adjacent third transition point and the fourth transition point in the drive signal DS. The first transition point and the third transition point may be the same type of transition point, for example, a transition point from a low voltage level to a rising edge of the high voltage level. The second transition point and the fourth transition point may be the same type of transition point, for example, a transition point from a high voltage level to a falling edge of the low voltage level.
補償信號產生電路160並可依據計算這些轉態點間的時間長短,來產生補償信號AS。例如,補償信號產生電路160可依據第一轉態點以及第二轉態點間的時間長短,以及第三轉態點以及第四轉態點間的時間長短,來產生補償信號AS。或者,補償信號產生電路160也可依據第一轉態點以及第三轉態點間的時間長 短,以及第二轉態點以及第四轉態點間的時間長短,來產生補償信號AS。 The compensation signal generating circuit 160 can generate the compensation signal AS according to calculating the length of time between the transition points. For example, the compensation signal generating circuit 160 may generate the compensation signal AS according to the length of time between the first transition point and the second transition point, and the length of time between the third transition point and the fourth transition point. Alternatively, the compensation signal generating circuit 160 may also be based on the length of time between the first transition point and the third transition point. The short, and the length of time between the second transition point and the fourth transition point, produces a compensation signal AS.
進一步來說明,請同時參考圖1以及圖2A,圖2A是依據本發明的實施例所繪示的控制信號以及驅動信號的波形示意圖。在本實施例中,補償信號產生電路160可在偵測時間區間中,偵測出第一控制信號CS1中的第一轉態點EG1以及相鄰於第一轉態點EG1的第二轉態點EG2。並且補償信號產生電路160依據發生第一轉態點EG1的時間x1以及發生第二轉態點EG2的時間x2間的時間長度計算出第一時間TA1=x2-x1,其中第一時間TA1等於第一控制信號CS1的正脈寬長度。補償信號產生電路160另偵測出驅動信號DS的第三轉態點EG3以及相鄰於第三轉態點EG3的第四轉態點EG4。補償信號產生電路160並依據發生第三轉態點EG3的時間y1以及發生第四轉態點EG4的時間y2間的時間長度計算出第二時間TA2=y2-y1,其中第二時間TA2等於驅動信號DS的正脈寬長度。 For further explanation, please refer to FIG. 1 and FIG. 2A simultaneously. FIG. 2A is a schematic diagram of waveforms of a control signal and a driving signal according to an embodiment of the invention. In this embodiment, the compensation signal generating circuit 160 can detect the first transition point EG1 in the first control signal CS1 and the second transition state adjacent to the first transition point EG1 in the detection time interval. Point EG2. And the compensation signal generating circuit 160 calculates the first time TA1=x2-x1 according to the time length between the time x1 at which the first transition point EG1 occurs and the time x2 at which the second transition point EG2 occurs, wherein the first time TA1 is equal to the first time The positive pulse width of a control signal CS1. The compensation signal generating circuit 160 further detects the third transition point EG3 of the driving signal DS and the fourth transition point EG4 adjacent to the third transition point EG3. The compensation signal generating circuit 160 calculates a second time TA2=y2-y1 according to the time length between the time y1 at which the third transition point EG3 occurs and the time y2 at which the fourth transition point EG4 occurs, wherein the second time TA2 is equal to the drive The positive pulse width of the signal DS.
在本實施例中,補償信號產生電路160可透過一取樣時脈來在第一控制信號CS1的第一轉態點EG1以及第二轉態點EG2間進行取樣動作,並產生對應第一時間TA1的第一計數值CA1。並且,補償信號產生電路160可透過取樣時脈來在驅動信號DS的第三轉態點EG3以及第四轉態點EG4間進行取樣動作,並產生對應第二時間TA2的第二計數值CA2。 In this embodiment, the compensation signal generating circuit 160 can perform a sampling operation between the first transition point EG1 and the second transition point EG2 of the first control signal CS1 through a sampling clock, and generate a corresponding first time TA1. The first count value CA1. Moreover, the compensation signal generating circuit 160 can perform a sampling operation between the third transition point EG3 and the fourth transition point EG4 of the driving signal DS through the sampling clock, and generate a second count value CA2 corresponding to the second time TA2.
承續上述的說明,補償信號產生電路160可針對第一計 數值CA1以及第二計數值CA2進行算術運算,並依據算術運算的結果來產生補償信號AS。具體來說明,補償信號產生電路160可使第一計數值CA1以及第二計數值CA2進行減法運算,並透過減法運算所獲得的差值,來得知第一控制信號CS1以及驅動信號DS間,正脈衝的長度間的差異。如此一來,補償信號產生電路160可依據第一控制信號CS1以及驅動信號DS的正脈衝的長度間的差異,來針對第二控制信號CS2的轉態點進行延遲或提前的調整動作,並藉以產生補償信號AS。 In accordance with the above description, the compensation signal generating circuit 160 can be used for the first meter. The numerical value CA1 and the second count value CA2 perform an arithmetic operation, and generate a compensation signal AS in accordance with the result of the arithmetic operation. Specifically, the compensation signal generation circuit 160 can perform the subtraction operation on the first count value CA1 and the second count value CA2, and learn the difference between the first control signal CS1 and the drive signal DS by the difference obtained by the subtraction operation. The difference between the lengths of the pulses. In this way, the compensation signal generating circuit 160 can perform a delay or advance adjustment operation on the transition point of the second control signal CS2 according to the difference between the lengths of the positive pulses of the first control signal CS1 and the driving signal DS, and thereby A compensation signal AS is generated.
在本發明另一實施例中,補償信號產生電路160計算第一控制信號CS1中,發生第一轉態點EG1的時間x1以及驅動信號DS中,發生第三轉態點EG3的時間y1間的時間長度,並藉以計算出第一時間TA3=y1-x1。並且,補償信號產生電路160計算第一控制信號CS1中,發生第二轉態點EG2的時間x2以及驅動信號DS中,發生第四轉態點的時間y2間的時間長度,並藉以計算出第二時間TA4=y2-x2。並且,補償信號產生電路160可透過計算針對第一時間TA3以及第二時間TA4的差值,來獲知第一控制信號CS1以及驅動信號DS間的正脈衝償度的差異。如此,補償信號產生電路160可依據第一時間TA3以及第二時間TA4的差值,來針對第二控制信號CS2進行調整,並藉以產生補償信號AS。 In another embodiment of the present invention, the compensation signal generating circuit 160 calculates a time x1 in which the first transition point EG1 occurs in the first control signal CS1 and a time y1 in the drive signal DS where the third transition point EG3 occurs. The length of time, and by which the first time TA3 = y1 - x1 is calculated. Further, the compensation signal generating circuit 160 calculates the time length between the time x2 at which the second transition point EG2 occurs in the first control signal CS1 and the time y2 at which the fourth transition point occurs in the drive signal DS, and thereby calculates the Two times TA4=y2-x2. Moreover, the compensation signal generating circuit 160 can obtain the difference of the positive pulse recompensation between the first control signal CS1 and the driving signal DS by calculating the difference between the first time TA3 and the second time TA4. In this way, the compensation signal generating circuit 160 can adjust the second control signal CS2 according to the difference between the first time TA3 and the second time TA4, and thereby generate the compensation signal AS.
在本發明實施例中,補償信號產生電路160可依據取樣時脈來在第一控制信號CS1的第一轉態點EG1及驅動信號DS的第三轉態點EG3間進行取樣,並藉以獲得對應第一時間TA3的第 一計數值CA3,並依據取樣時脈在第一控制信號CS1的第二轉態點EG2及驅動信號DS的第四轉態點EG4間進行取樣以獲得對應第二時間TA4的第二計數值CA4。如此,透過計算第一計數值CA3以及第二計數值CA4間的差值,補償信號產生電路160可獲知第一控制信號CS1與驅動信號DS的正脈衝寬度間的差值,也因此,補償信號產生電路160可依據第一計數值CA3以及第二計數值CA4間的差值,透過調整第二控制信號CS2的轉態點,來產生補償信號AS。 In the embodiment of the present invention, the compensation signal generating circuit 160 may sample between the first transition point EG1 of the first control signal CS1 and the third transition point EG3 of the driving signal DS according to the sampling clock, and obtain a corresponding correspondence. The first time TA3 a count value CA3, and sampling between the second transition point EG2 of the first control signal CS1 and the fourth transition point EG4 of the drive signal DS according to the sampling clock to obtain a second count value CA4 corresponding to the second time TA4. . Thus, by calculating the difference between the first count value CA3 and the second count value CA4, the compensation signal generating circuit 160 can know the difference between the positive pulse width of the first control signal CS1 and the driving signal DS, and thus, the compensation signal The generating circuit 160 can generate the compensation signal AS by adjusting the transition point of the second control signal CS2 according to the difference between the first count value CA3 and the second count value CA4.
在另一方面,當補償信號產生電路160判斷出第一控制信號CS1與驅動信號DS的正脈寬長度相同時,補償信號產生電路160可直接依據第二控制信號CS2來產生補償信號AS,並不針對第二控制信號CS2的相位進行調整動作。也就是說,在第二時間的時間長度等於第一時間的時間長度的情況下,補償信號AS實質上與第二控制信號CS2為相同的信號。 On the other hand, when the compensation signal generating circuit 160 determines that the first pulse width of the first control signal CS1 and the driving signal DS are the same, the compensation signal generating circuit 160 can directly generate the compensation signal AS according to the second control signal CS2, and The adjustment operation is not performed for the phase of the second control signal CS2. That is to say, in the case where the length of time of the second time is equal to the length of time of the first time, the compensation signal AS is substantially the same signal as the second control signal CS2.
關於上述的取樣動作,其中,所設定的取樣時脈的頻率值與驅動信號產生電路100的調整精度具有相關性。舉例來說,若取樣時脈的頻率是5MHz,而第一控制信號CS1的正時脈寬度是4毫秒,則驅動信號產生電路100的調整精度可以達到第一控制信號CS1的第一時間的0.005%。值得注意的,取樣時脈的頻率值可以依據時間長度計算的精度的需求來選擇,沒有特別的限制。 Regarding the sampling operation described above, the frequency value of the set sampling clock has a correlation with the adjustment accuracy of the driving signal generating circuit 100. For example, if the sampling clock frequency is 5 MHz and the positive clock width of the first control signal CS1 is 4 milliseconds, the adjustment precision of the driving signal generating circuit 100 can reach the first time of the first control signal CS1. 0.005%. It is worth noting that the frequency value of the sampling clock can be selected according to the requirement of the accuracy of the time length calculation, and there is no particular limitation.
請同時參考圖1、圖2B以及圖2C,圖2B以及圖2C是依據本發明不同實施例所繪示的控制信號以及驅動信號的波形示 意圖。在圖2B中,補償信號產生電路160在偵測時間區間T1判斷出第一控制信號CS1的正脈波長度小於驅動信號DS的正脈波長度時,透過延遲控制時間區間T2的信號處理過程,補償信號產生電路160可依據上述的判斷結果來產生補償信號AS。並在補償時間區間T3中,透過調整驅動信號DS的上升緣的轉態點(如圖2A所示的第三轉態點EG3)的時間,由原來的時間y3調整至時間y’3,並藉此縮減驅動信號DS的正脈波長度。並使驅動信號DS的正脈波長度可與第一控制信號CS1的正脈波長度實質上相同。 Please refer to FIG. 1 , FIG. 2B and FIG. 2C simultaneously. FIG. 2B and FIG. 2C are waveform diagrams of control signals and driving signals according to different embodiments of the present invention. intention. In FIG. 2B, the compensation signal generating circuit 160 determines the signal processing process of the delay control time interval T2 when the detection pulse time interval T1 determines that the positive pulse wave length of the first control signal CS1 is smaller than the positive pulse wave length of the drive signal DS. The compensation signal generating circuit 160 can generate the compensation signal AS based on the above-described determination result. And in the compensation time interval T3, the time of the transition point of the rising edge of the driving signal DS (the third transition point EG3 shown in FIG. 2A) is adjusted, and the time y3 is adjusted from the original time y3, and Thereby, the positive pulse length of the drive signal DS is reduced. The positive pulse length of the drive signal DS can be made substantially the same as the positive pulse length of the first control signal CS1.
在圖2C中,補償信號產生電路160在偵測時間區間T1判斷出第一控制信號CS1的正脈波長度大於驅動信號DS的正脈波長度時,透過延遲控制時間區間T2的信號處理過程,補償信號產生電路160可依據上述的判斷結果來產生補償信號AS。並在補償時間區間T3中,透過調整驅動信號DS的下降緣的轉態點(如圖2A所示的第四轉態點EG4)的時間,由原來的時間z4調整至時間z’4,並藉此增加驅動信號DS的正脈波長度。並使驅動信號DS的正脈波長度可與第一控制信號CS1的正脈波長度實質上相同。 In FIG. 2C, the compensation signal generating circuit 160 determines the signal processing process of the delay control time interval T2 when the detection pulse time interval T1 determines that the positive pulse wave length of the first control signal CS1 is greater than the positive pulse wave length of the drive signal DS. The compensation signal generating circuit 160 can generate the compensation signal AS based on the above-described determination result. And in the compensation time interval T3, the time of the transition point of the falling edge of the driving signal DS (the fourth transition point EG4 shown in FIG. 2A) is adjusted, and the time z4 is adjusted from the original time z4, and Thereby, the positive pulse length of the drive signal DS is increased. The positive pulse length of the drive signal DS can be made substantially the same as the positive pulse length of the first control signal CS1.
以下請參考圖3A,圖3A是依據本發明一實施例所繪示的輸出驅動電路的示意圖。在本實施例中,輸出驅動電路140包括輸出級電路142以及延遲電路144。延遲電路144接收第二控制信號CS2,並依據補償信號AS調整第二控制信號CS2的相位以產生延遲控制信號DCS。延遲電路144並將延遲控制信號DCS傳 送到輸出級電路142。輸出級電路142接收延遲控制信號DCS並依據延遲控制信號DCS以產生驅動信號DS。 Please refer to FIG. 3A. FIG. 3A is a schematic diagram of an output driving circuit according to an embodiment of the invention. In the present embodiment, the output drive circuit 140 includes an output stage circuit 142 and a delay circuit 144. The delay circuit 144 receives the second control signal CS2 and adjusts the phase of the second control signal CS2 in accordance with the compensation signal AS to generate the delay control signal DCS. Delay circuit 144 and pass delay control signal DCS It is sent to the output stage circuit 142. The output stage circuit 142 receives the delay control signal DCS and generates a drive signal DS in accordance with the delay control signal DCS.
關於輸出驅動電路140的操作細節,請參考圖3B,圖3B是依據圖3A的實施例所繪示的輸出驅動電路140的示意圖。輸出級電路142包括第一驅動開關1422以及第二驅動開關1424。延遲電路144耦接於輸出級電路142與圖1的信號處理電路120之間。第一驅動開關1422的第一端耦接至參考電壓VB。第一驅動開關1422的第二端耦接至第二驅動開關1424的第一端。第二驅動開關1424的第二端耦接至接地電壓VS。 For details of the operation of the output driving circuit 140, please refer to FIG. 3B, which is a schematic diagram of the output driving circuit 140 according to the embodiment of FIG. 3A. The output stage circuit 142 includes a first drive switch 1422 and a second drive switch 1424. The delay circuit 144 is coupled between the output stage circuit 142 and the signal processing circuit 120 of FIG. The first end of the first driving switch 1422 is coupled to the reference voltage VB. The second end of the first driving switch 1422 is coupled to the first end of the second driving switch 1424. The second end of the second driving switch 1424 is coupled to the ground voltage VS.
在本實施例中,第一驅動開關1422以及第二驅動開關1424分別用以決定驅動信號DS的上升緣的轉態點(如圖2A所示的第三轉態點EG3)以及下降緣的轉態點(如圖2A所示的第四轉態點EG4)的發生時間。因此,透過調整第一延遲控制信號DCS1以及第二延遲控制信號DCS2的致能時間,可進行驅動信號DS的相位調整動作。 In this embodiment, the first driving switch 1422 and the second driving switch 1424 are respectively used to determine the turning point of the rising edge of the driving signal DS (the third turning point EG3 shown in FIG. 2A) and the turning of the falling edge. The occurrence time of the state point (the fourth transition point EG4 as shown in Fig. 2A). Therefore, the phase adjustment operation of the drive signal DS can be performed by adjusting the enable times of the first delay control signal DCS1 and the second delay control signal DCS2.
此外,延遲電路144包括第一延遲器D1(1)~D1(m)、第二延遲器D2(1)~D2(n)、第一開關SW1(0)~SW1(m)以及第二開關SW2(0)~SW2(n)。第一延遲器D1(1)~D1(m)依序串聯耦接,並耦接在輸出級電路142與信號處理電路120之間。第一延遲器D1(1)的輸入端耦接至延遲電路144的輸入端,並接收第二控制信號CS2。第一延遲器D1(m)的輸出端耦接至第一驅動開關1422的控制端,並用以輸出第一延遲控制信號DCS1。第二延遲器 D2(1)~D2(n)依序串聯耦接,並耦接在輸出級電路142與信號處理電路120之間。第二延遲器D2(1)的輸入端耦接至延遲電路144的輸入端,並接收第二控制信號CS2。第二延遲器D2(n)的輸出端耦接至第二驅動開關1424的控制端,並用以輸出第二延遲控制信號DCS2。 In addition, the delay circuit 144 includes first delays D1(1) to D1(m), second delays D2(1) to D2(n), first switches SW1(0) to SW1(m), and a second switch. SW2(0)~SW2(n). The first delays D1(1) to D1(m) are coupled in series and coupled between the output stage circuit 142 and the signal processing circuit 120. The input end of the first delay D1(1) is coupled to the input of the delay circuit 144 and receives the second control signal CS2. The output end of the first delay D1 (m) is coupled to the control end of the first driving switch 1422 and is used to output a first delay control signal DCS1. Second retarder D2(1)~D2(n) are coupled in series and coupled between the output stage circuit 142 and the signal processing circuit 120. The input end of the second delay D2 (1) is coupled to the input of the delay circuit 144 and receives the second control signal CS2. The output of the second delay D2(n) is coupled to the control end of the second drive switch 1424 and is used to output a second delay control signal DCS2.
在另一方面,第一開關SW1(0)耦接在第一延遲器D1(1)的輸入端以及第一驅動開關1422的控制端間,而第一開關SW1(1)~SW1(m)則分別串接在第一延遲器D1(1)~D1(m)的輸入端以及第一驅動開關1422的控制端間。第二開關SW2(0)耦接在第二延遲器D2(1)的輸入端以及第二驅動開關1424的控制端間,而第二開關SW2(1)~SW2(n)則分別串接在第二延遲器D2(1)~D2(n)的輸入端以及第二驅動開關1424的控制端間。第一開關SW1(0)~SW1(m)以及第二開關SW2(0)~SW2(n)依據補償信號AS以被導通或斷開。 On the other hand, the first switch SW1(0) is coupled between the input end of the first delay D1(1) and the control end of the first drive switch 1422, and the first switch SW1(1)~SW1(m) Then, they are connected in series between the input ends of the first delay devices D1(1) to D1(m) and the control terminals of the first driving switch 1422. The second switch SW2(0) is coupled between the input end of the second delay D2(1) and the control end of the second drive switch 1424, and the second switches SW2(1)~SW2(n) are respectively connected in series The input ends of the second retarders D2(1) to D2(n) and the control terminals of the second drive switches 1424. The first switches SW1(0) to SW1(m) and the second switches SW2(0) to SW2(n) are turned on or off according to the compensation signal AS.
在本實施例中,第一延遲器D1(1)~D1(m)與第二延遲器D2(1)~D2(n)的數量可以相同或不相同,第一開關SW1(0)~SW1(m)以及第二開關SW2(0)~SW2(n)的數量也可以相同或不相同。另外,各個第一延遲器D1(1)~D1(m)與第二延遲器D2(1)~D2(n)可提供相同的時間延遲。 In this embodiment, the number of the first delays D1(1) to D1(m) and the second delays D2(1) to D2(n) may be the same or different, and the first switches SW1(0)~SW1 The number of (m) and the second switches SW2(0) to SW2(n) may be the same or different. In addition, each of the first retarders D1(1) to D1(m) and the second retarders D2(1) to D2(n) can provide the same time delay.
關於輸出驅動電路140的動作細節,若要針對驅動信號DS的上升緣的轉態點(如圖2A所示的第三轉態點EG3)進行調整,可依據補償信號AS來選擇第一開關SW1(1)~SW1(m)中的其 中之一(以選中第一開關SW1(1)為範例)以導通,並使未被選中的第一開關SW1(0)、SW1(2)~SW1(m)被斷開。如此一來,輸出驅動電路140可透過第一延遲器D1(1)以延遲第二控制信號CS2一個時間延遲來產生第一延遲控制信號DCS1。在此,若選擇第一開關SW1(3)以導通,輸出驅動電路140則可透過第一延遲器D1(1)~D1(3)以延遲第二控制信號CS2三個時間延遲來產生第一延遲控制信號DCS1。 Regarding the operation details of the output driving circuit 140, if the transition point of the rising edge of the driving signal DS (the third transition point EG3 shown in FIG. 2A) is to be adjusted, the first switch SW1 may be selected according to the compensation signal AS. (1)~SW1(m) One of them (taking the first switch SW1(1) as an example) is turned on, and the unselected first switches SW1(0), SW1(2)~SW1(m) are turned off. In this way, the output driving circuit 140 can generate the first delay control signal DCS1 through the first delay D1(1) to delay the second control signal CS2 by a time delay. Here, if the first switch SW1 (3) is selected to be turned on, the output driving circuit 140 can generate the first time by delaying the three delays of the second control signal CS2 through the first delays D1(1) to D1(3). Delay control signal DCS1.
此外,若不需要針對驅動信號DS的上升緣的轉態點(如圖2A所示的第三轉態點EG3)進行調整,則可選擇導通第一開關SW1(0)。 Further, if adjustment is not required for the transition point of the rising edge of the drive signal DS (the third transition point EG3 as shown in FIG. 2A), the first switch SW1(0) may be selectively turned on.
在另一方面,若要針對驅動信號DS的下降緣的轉態點(如圖2A所示的第四轉態點EG4)進行調整,可依據補償信號AS來選擇第二開關SW2(1)~SW2(n)中的其中之一(以選中第二開關SW2(1)為範例)以導通,並使未被選中的第二開關SW2(0)、SW2(2)~SW2(n)被斷開。如此一來,輸出驅動電路140可透過第二延遲器D2(1)以延遲第二控制信號CS2一個時間延遲來產生第二延遲控制信號DCS2。在此,若選擇第二開關SW2(3)以導通,輸出驅動電路140則可透過第二延遲器D2(1)~D2(3)以延遲第二控制信號CS2三個時間延遲來產生第二延遲控制信號DCS2。 On the other hand, if the transition point of the falling edge of the driving signal DS (the fourth transition point EG4 shown in FIG. 2A) is to be adjusted, the second switch SW2(1) can be selected according to the compensation signal AS~ One of SW2(n) (taking the second switch SW2(1) as an example) to turn on, and the second switch SW2(0), SW2(2)~SW2(n) that are not selected Was disconnected. In this way, the output driving circuit 140 can generate the second delay control signal DCS2 through the second delay D2 (1) to delay the second control signal CS2 by a time delay. Here, if the second switch SW2 (3) is selected to be turned on, the output driving circuit 140 can generate the second by delaying the three delays of the second control signal CS2 through the second delays D2(1) to D2(3). Delay control signal DCS2.
此外,若不需要針對驅動信號DS的下降緣的轉態點(如圖2A所示的第四轉態點EG4)進行調整,則可選擇導通第二開關SW2(0)。 Further, if adjustment is not required for the transition point of the falling edge of the drive signal DS (the fourth transition point EG4 as shown in FIG. 2A), the second switch SW2(0) may be selectively turned on.
以下請參考圖4A以及圖4B,圖4A及圖4B是依據本發明實施例所繪示的輸出驅動電路的不同實施方式的示意圖。在圖4A中,輸出驅動電路240包括輸出級電路242以及電流源(包括上升電流源244以及下降電流源246)。輸出級電路242用以產生驅動信號DS。本實施例的輸出級電路242可以是由一個或多個相互串聯耦接的緩衝器來建構,其中的緩衝器也可以是反相器。上升電流源244以及下降電流源246可以透過本領域具通常知識者所熟知的電流源電路來建構。上升電流源244耦接於輸出級電路242與參考電壓VB之間。下降電流源246耦接於輸出級電路242與接地電壓VS之間。上升電流源244及下降電流源246接收補償信號AS,用以依據補償信號AS來控制驅動信號DS的相位。舉例來說,上升電流源244可依據補償信號AS來提高或降低上升電流源244的電流值,藉以進一步調整驅動信號DS上升緣的轉態點(如圖2A所示的第三轉態點EG3)的時間。另舉例來說,下降電流源246可依據補償信號AS來提高或降低下降電流源246的電流值,藉以縮短驅動信號DS下降緣的轉態點(如圖2A所示的第四轉態點EG4)的時間。 4A and FIG. 4B are schematic diagrams showing different embodiments of an output driving circuit according to an embodiment of the invention. In FIG. 4A, output drive circuit 240 includes an output stage circuit 242 and a current source (including rising current source 244 and falling current source 246). The output stage circuit 242 is used to generate the drive signal DS. The output stage circuit 242 of this embodiment may be constructed by one or more buffers coupled in series with each other, wherein the buffer may also be an inverter. The rising current source 244 and the falling current source 246 can be constructed by current source circuits well known to those of ordinary skill in the art. The rising current source 244 is coupled between the output stage circuit 242 and the reference voltage VB. The falling current source 246 is coupled between the output stage circuit 242 and the ground voltage VS. The rising current source 244 and the falling current source 246 receive the compensation signal AS for controlling the phase of the driving signal DS according to the compensation signal AS. For example, the rising current source 244 can increase or decrease the current value of the rising current source 244 according to the compensation signal AS, thereby further adjusting the transition point of the rising edge of the driving signal DS (the third transition point EG3 as shown in FIG. 2A). )time. For another example, the falling current source 246 can increase or decrease the current value of the falling current source 246 according to the compensation signal AS, thereby shortening the transition point of the falling edge of the driving signal DS (the fourth transition point EG4 shown in FIG. 2A). )time.
此外,在圖4B中,與圖4A不同的是,本實施方式的輸出驅動電路340的輸出級電路342包括緩衝器3422、3424。緩衝器3422接收第二控制信號CS2。緩衝器3422的輸出端耦接至緩衝器3424的輸入端。上升電流源344耦接於緩衝器3422與參考電壓VB之間。下降電流源346耦接於緩衝器3424與接地電壓VS 之間。緩衝器3424則用以產生驅動信號DS。舉例來說,上升電流源344可依據補償信號AS來調整上升電流源344的電流值,藉以調整緩衝器3422所輸出的驅動信號DS的上升緣的轉態點(如圖2A所示的第三轉態點EG3)的時間。接著,下降電流源346可依據補償信號AS來調整下降電流源346的電流值,藉以調整緩衝器3424所輸出的驅動信號DS的下降緣的轉態點(如圖2A所示的第四轉態點EG4)的時間。 Further, in FIG. 4B, unlike FIG. 4A, the output stage circuit 342 of the output drive circuit 340 of the present embodiment includes buffers 3422, 3424. The buffer 3422 receives the second control signal CS2. The output of the buffer 3422 is coupled to the input of the buffer 3424. The rising current source 344 is coupled between the buffer 3422 and the reference voltage VB. The falling current source 346 is coupled to the buffer 3424 and the ground voltage VS between. The buffer 3424 is used to generate the drive signal DS. For example, the rising current source 344 can adjust the current value of the rising current source 344 according to the compensation signal AS, thereby adjusting the transition point of the rising edge of the driving signal DS output by the buffer 3422 (third in FIG. 2A). The time of the transition point EG3). Then, the falling current source 346 can adjust the current value of the falling current source 346 according to the compensation signal AS, thereby adjusting the transition point of the falling edge of the driving signal DS output by the buffer 3424 (the fourth transition state as shown in FIG. 2A). Point EG4) time.
綜上所述,本發明的驅動信號產生電路是藉由偵測所接收的第一控制信號以及所輸出的驅動信號的脈波寬度差異,並據以對驅動信號進行補償。如此一來,積體電路具有自我補償機制的功能,藉以使驅動信號產生電路的驅動信號能夠自動地被調整回穩定的波形,避免驅動信號失真。 In summary, the driving signal generating circuit of the present invention compensates the driving signal by detecting the difference between the pulse width of the received first control signal and the output driving signal. In this way, the integrated circuit has the function of a self-compensation mechanism, so that the driving signal of the driving signal generating circuit can be automatically adjusted back to a stable waveform to avoid distortion of the driving signal.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107111412A TWI655839B (en) | 2018-03-30 | 2018-03-30 | Integrated circuit and driving signal generation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107111412A TWI655839B (en) | 2018-03-30 | 2018-03-30 | Integrated circuit and driving signal generation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI655839B true TWI655839B (en) | 2019-04-01 |
TW201943199A TW201943199A (en) | 2019-11-01 |
Family
ID=66995915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107111412A TWI655839B (en) | 2018-03-30 | 2018-03-30 | Integrated circuit and driving signal generation circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI655839B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100039048A1 (en) * | 2008-08-18 | 2010-02-18 | O2Micro, Inc. | Inverter controller and system |
TW201448438A (en) * | 2013-05-28 | 2014-12-16 | Monolithic Power Systems Inc | Buck-boost converter and its controller, and control method thereof |
JP2016226263A (en) * | 2015-05-27 | 2016-12-28 | ローム株式会社 | Motor drive device, motor drive circuit, motor drive ic, cooling device employing the same, and electronic apparatus |
TW201729526A (en) * | 2016-02-01 | 2017-08-16 | 立錡科技股份有限公司 | Switching regulator with ripple-based constant ON-time (RBCOT) and control circuit and control method thereof |
-
2018
- 2018-03-30 TW TW107111412A patent/TWI655839B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100039048A1 (en) * | 2008-08-18 | 2010-02-18 | O2Micro, Inc. | Inverter controller and system |
TW201010507A (en) * | 2008-08-18 | 2010-03-01 | O2Micro Inc | Driving circuit for driving a plurality of loads, and inverter controller for controlling power to load |
TW201448438A (en) * | 2013-05-28 | 2014-12-16 | Monolithic Power Systems Inc | Buck-boost converter and its controller, and control method thereof |
JP2016226263A (en) * | 2015-05-27 | 2016-12-28 | ローム株式会社 | Motor drive device, motor drive circuit, motor drive ic, cooling device employing the same, and electronic apparatus |
TW201729526A (en) * | 2016-02-01 | 2017-08-16 | 立錡科技股份有限公司 | Switching regulator with ripple-based constant ON-time (RBCOT) and control circuit and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201943199A (en) | 2019-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8847896B2 (en) | Adaptive high dynamic range surface capacitive touchscreen controller | |
US9784632B2 (en) | Sensor signal detection device | |
JP4939429B2 (en) | Test apparatus and test method | |
US7342407B2 (en) | Temperature compensation circuit and testing apparatus | |
US7791382B2 (en) | Semiconductor integrated circuit | |
WO2007069102A2 (en) | Current measurement circuit and method | |
US20210119435A1 (en) | Over/under voltage detection circuit | |
TWI655839B (en) | Integrated circuit and driving signal generation circuit | |
JP3801112B2 (en) | Image reading signal processing apparatus | |
JPH0815339A (en) | Voltage/frequency conversion circuit | |
US7960996B2 (en) | Variable delay circuit, timing generator and semiconductor testing apparatus | |
US7120839B2 (en) | High-accuracy continuous duty-cycle correction circuit | |
CN115864867A (en) | Synchronous rectification circuit | |
JP2671516B2 (en) | Skew correction circuit | |
US11750182B2 (en) | Integrated circuit | |
JP2003008419A (en) | Output impedance matching system for semiconductor ic | |
KR100253398B1 (en) | Slew rate control circuit | |
JPH03107212A (en) | Pulse circuit | |
JP4730611B2 (en) | Delay time measuring method and delay time measuring apparatus using the same | |
US20240063807A1 (en) | Calibration of a Digital-to-Analog Converter | |
JP2009049681A (en) | Skew adjustment circuit | |
EP1322969B1 (en) | Rf power measurement | |
JP2008042708A (en) | Delay adjusting circuit and its control method | |
CN110365315A (en) | Integrated circuit and its drive signal generation circuit | |
JP3001465B2 (en) | Clock generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |