TWI653813B - Forced zero voltage switching flyback converter and using method - Google Patents

Forced zero voltage switching flyback converter and using method Download PDF

Info

Publication number
TWI653813B
TWI653813B TW106136302A TW106136302A TWI653813B TW I653813 B TWI653813 B TW I653813B TW 106136302 A TW106136302 A TW 106136302A TW 106136302 A TW106136302 A TW 106136302A TW I653813 B TWI653813 B TW I653813B
Authority
TW
Taiwan
Prior art keywords
primary
primary switch
synchronous rectifier
current
time
Prior art date
Application number
TW106136302A
Other languages
Chinese (zh)
Other versions
TW201918006A (en
Inventor
光銘 張
霖 陳
啟洪 黃
Original Assignee
英屬開曼群島商萬國半導體(開曼)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英屬開曼群島商萬國半導體(開曼)股份有限公司 filed Critical 英屬開曼群島商萬國半導體(開曼)股份有限公司
Priority to TW106136302A priority Critical patent/TWI653813B/en
Application granted granted Critical
Publication of TWI653813B publication Critical patent/TWI653813B/en
Publication of TW201918006A publication Critical patent/TW201918006A/en

Links

Abstract

通過檢測次級繞組的正電流衝程作為同步整流器關斷觸發器,一種返馳變換器配置強迫式零電壓開關(ZVS)時間控制。在開關週期快結束時,接通同步整流器開關,或者延長接通時間,在次級繞組電流上形成電流波紋。返馳變換器的控制電路檢測次級繞組電流上的正電流衝程,以斷開同步整流器,啟動下一個開關周期。此時,初級開關上的電壓放電,初級開關在零汲極至源極電壓下接通。在其他實施例中,通過初級開關耦合電容器或者通過初級繞組耦合電容器,或者兩者兼具,實現初級開關的斷開瞬變下的零電壓開關。 A flyback converter is configured with forced zero voltage switching (ZVS) time control by detecting the positive current stroke of the secondary winding as a synchronous rectifier turn-off trigger. At the end of the switching cycle, the synchronous rectifier switch is turned on, or the on-time is extended to form a current ripple on the secondary winding current. The control circuit of the flyback converter detects a positive current stroke on the secondary winding current to open the synchronous rectifier and initiate the next switching cycle. At this point, the voltage on the primary switch is discharged and the primary switch is turned on at zero drain to source voltage. In other embodiments, zero voltage switching under the off transient of the primary switch is achieved by a primary switch coupling capacitor or by a primary winding coupling capacitor, or both.

Description

強迫式零電壓開關返馳變換器及其運行方法 Forced zero voltage switch flyback converter and operation method thereof

本發明涉及返馳變換器領域。 The invention relates to the field of flyback converters.

返馳變換器是一種絕緣式功率轉換器,常用於輸入和一個或多個輸出之間的電流絕緣的交流至直流和直流至直流之間的轉換。更確切地說,返馳變換器是一個帶有電感分裂的升壓-降壓變換器,構成一個變壓器,使得電壓比例與絕緣的額外優勢相乘。同步整流通常用於代替二極管整流器,以提高效率。圖1表示使用同步整流的返馳變換器的一個示例。如圖1所示,返馳變換器的典型結構包括一個初級開關(SW),耦合到變壓器Lm的初級變壓器繞組,以及一個同步整流器開關(SR),耦合到變壓器Lm的次級變壓器繞組。通過初級繞組和初級開關,提供輸入電壓VIN。控制電壓VGS控制初級開關接通和斷開,傳導初級電流Ipri。初級開關和同步整流器在運行中作為補充,一個開關接通,同時另一個開關斷開。初級開關SW和同步整流器SR的傳導週期不重疊。次級端的電流流動稱為次級電流Isec,為輸出電容器C3充電,提供輸出電壓Vo。在一些情况下,可以在次級端配置有源箝位,當初級開關SW斷開時,嵌制初級開關SW的汲極端處的電壓。 A flyback converter is an isolated power converter that is commonly used for galvanically isolated AC to DC and DC to DC conversion between an input and one or more outputs. More specifically, the flyback converter is a step-up converter with an inductor split that forms a transformer that multiplies the voltage ratio by the additional advantage of the insulation. Synchronous rectification is often used to replace diode rectifiers to increase efficiency. Figure 1 shows an example of a flyback converter using synchronous rectification. As shown in Figure 1, a typical structure of a flyback converter includes a primary switch (SW), a primary transformer winding coupled to transformer Lm, and a synchronous rectifier switch (SR) coupled to the secondary transformer winding of transformer Lm. The input voltage VIN is supplied through the primary winding and the primary switch. The control voltage VGS controls the primary switch to be turned on and off, and conducts the primary current Ipri. The primary switch and the synchronous rectifier are supplemented in operation, one switch is turned on and the other switch is turned off. The conduction periods of the primary switch SW and the synchronous rectifier SR do not overlap. The current flow at the secondary side is referred to as the secondary current Isec, which charges the output capacitor C3 and provides an output voltage Vo. In some cases, an active clamp can be configured at the secondary side, and when the primary switch SW is open, the voltage at the 汲 terminal of the primary switch SW is embedded.

圖2表示在恆定頻率、連續傳導模式(CF CCM)下,運行圖1所示的返馳變換器的示例信號波形。圖3表示在恆定頻率、不連續傳導模式(CF DCM)下,圖1所示的返馳變換器的示例信號波形。圖1所示的返馳變換器、圖2和圖3所示的工作模式在以下論文中進行了詳細介紹:M.T.Zhang,M.M.Jovanovic和F.C.Lee返馳變換器中同步整流的設計考慮和性能評估應用電力電子會議及展覽會,1997,APEC’97會議論文集1997,pp.623-630,卷2。簡而言之,當在CCM運行模式下工作時,在下一個開關周期啟動(初級開關SW接通)之前,次級電流Isec沒有達到零電流值,如圖2所示。另一方面,當在DCM運行模式下工作時,在下一個開關周期啟動之前,次級電流Isec達到零電流值,如圖3所示。 Figure 2 shows an example signal waveform for operating the flyback converter of Figure 1 in a constant frequency, continuous conduction mode (CF CCM). Figure 3 shows the constant frequency, discontinuous conduction mode (CF Example signal waveform of the flyback converter shown in Figure 1 under DCM). The operation mode shown in Figure 1 for the flyback converter, Figure 2 and Figure 3 is described in detail in the following paper: Design Considerations and Performance Evaluation of Synchronous Rectification in MTZhang, MMJovanovic and FCLee Flyback Converters Applied Power Electronics Conference and Exhibition, 1997, APEC '97 Conference Proceedings 1997, pp. 623-630, Volume 2. In short, when operating in the CCM operating mode, the secondary current Isec does not reach the zero current value until the next switching cycle is initiated (primary switch SW is turned on), as shown in FIG. On the other hand, when operating in the DCM mode of operation, the secondary current Isec reaches a zero current value before the next switching cycle is initiated, as shown in FIG.

當開關轉換發生在電源開關的非零電壓時,返馳變換器會發生功率損失。在返馳變換器中配置零電壓開關(ZVS),在零電壓下完成開關,以獲得高效率。提出了不同的配置零電壓開關的技術。例如,Zhang論文中提出了在圖1所示的返馳變換器中可以配置變頻(VF)ZVS DCM操作模式。圖4複製了Zhang論文中的圖5,並且表示在VF ZVS DCM工作模式下,圖1所示的返馳變換器運行的示例信號波形。確切地說,在初級開關獲得ZVS,要延長同步整流器(SR)的傳導週期,或將同步整流器的斷開時間延遲一段時間Tdelay,一直到次級電流Isec已經達到零電流值之後。利用延長的接通時間Tdelay,使得在次級變壓器繞組上建立負次級電流,如圖4中的電流IZVS所示。只要負次級電流IZVS在勵磁電感Lm中存儲的能量,足夠使初級開關寄生電容(如圖1中的Cl所示)放電至零電壓,就可以在返馳變換器中實現ZVS。然而,利用延長的SR傳導時間,返馳變換器的開關頻率作為負載調製的函數可變。不需要變頻操作,尤其是當避免電磁幹擾(EMI)分佈很重要時。 When the switching transition occurs at a non-zero voltage of the power switch, a power loss occurs in the flyback converter. A zero voltage switch (ZVS) is configured in the flyback converter to complete the switch at zero voltage for high efficiency. Different techniques for configuring zero voltage switching have been proposed. For example, the Zhang paper proposes that a variable frequency (VF) ZVS DCM mode of operation can be configured in the flyback converter shown in FIG. Figure 4 replicates Figure 5 of the Zhang paper and shows an example signal waveform for the flyback converter operation shown in Figure 1 in the VF ZVS DCM mode of operation. Specifically, to obtain ZVS at the primary switch, the conduction period of the synchronous rectifier (SR) is extended, or the off-time of the synchronous rectifier is delayed by a period of time Tdelay until the secondary current Isec has reached the zero current value. With the extended on-time Tdelay, a negative secondary current is established on the secondary transformer winding, as shown by the current IZVS in FIG. As long as the energy stored in the magnetizing inductance Lm of the negative secondary current IZVS is sufficient to discharge the primary switching parasitic capacitance (shown as Cl in Figure 1) to zero voltage, ZVS can be implemented in the flyback converter. However, with the extended SR conduction time, the switching frequency of the flyback converter is variable as a function of load modulation. No variable frequency operation is required, especially when avoiding electromagnetic interference (EMI) distribution.

本發明公開了一種運行返馳變換器的方法,該返馳變換器包括一個變壓器,具有接收輸入電壓的初級繞組,以及提供輸出電壓的次級繞組,初級開關耦合到初級繞組,同步整流器耦合到次級繞組,該方法包括:在開關周期開始時,接通初級開關第一持續時間;接通同步整流器第一接通時間;傳感次級繞組中流動的次級電流;根據次級電流達到零電流值,斷開同步整流器;在非連續傳導模式下,監控輸出電壓;根據輸出電壓小於參考電壓,接通同步整流器第二接通時間;在第二接通時間內,傳感次級繞組中流動的次級電流,次級電流包括具有負電流衝程和正電流衝程的電流波紋;以及根據第二接通時間內,具有正電流值的次級電流,斷開同步整流器。 The invention discloses a method for operating a flyback converter, the flyback converter comprising a transformer having a primary winding receiving an input voltage and a secondary winding providing an output voltage, the primary switch being coupled to the primary winding, the synchronous rectifier coupled to a secondary winding, the method comprising: turning on the first duration of the primary switch at the beginning of the switching cycle; turning on the first on-time of the synchronous rectifier; sensing the secondary current flowing in the secondary winding; reaching according to the secondary current Zero current value, disconnecting the synchronous rectifier; monitoring the output voltage in the discontinuous conduction mode; turning on the second on-time of the synchronous rectifier according to the output voltage being less than the reference voltage; sensing the secondary winding during the second on-time The secondary current flowing in the secondary current includes a current ripple having a negative current stroke and a positive current stroke; and the secondary rectifier having a positive current value according to the second on-time, disconnecting the synchronous rectifier.

其中,還包括根據初級開關的斷開時間段截止,通過重複初級開關的接通,啟動下一個開關周期,初級開關在開關的零電壓下接通。 The method further includes: according to the off period of the primary switch, the next switching period is started by repeating the turning on of the primary switch, and the primary switch is turned on at the zero voltage of the switch.

其中,還包括根據同步整流器接通第二接通時間,傳感初級電流;並且根據初級電流超過閾值,通過重複初級開關的接通,啟動下一個開關周期。 The method further includes sensing the primary current according to the second rectifier being turned on according to the synchronous rectifier; and starting the next switching cycle by repeating the turning on of the primary switch according to the primary current exceeding the threshold.

其中,接通同步整流器第一接通時間包括在一個非重疊時間後接通同步整流器。 Wherein, turning on the synchronous rectifier for the first on-time includes turning on the synchronous rectifier after a non-overlapping time.

其中,還包括跨過初級開關,耦合第一電容器;並且根據跨過初級開關,耦合第一電容器,在初級開關零電壓下,斷開初級開關。 The method further includes coupling the first capacitor across the primary switch; and coupling the first capacitor according to crossing the primary switch, and disconnecting the primary switch at the primary switch zero voltage.

其中,還包括跨過變壓器的初級繞組,耦合第二電容器;並且根據跨過初級繞組,耦合第二電容器,在初級開關零電壓下,斷開初級開關。 Therein, the method further includes connecting a second capacitor across the primary winding of the transformer; and coupling the second capacitor according to crossing the primary winding, and disconnecting the primary switch at a primary switch zero voltage.

其中,在開關周期開始時,接通初級開關第一持續時間包括:在開關周期開始時,接通初級開關一個固定的接通時間。 Wherein, at the beginning of the switching cycle, turning on the primary switch for the first duration comprises: turning on the primary switch for a fixed on-time at the beginning of the switching cycle.

本發明還公開了一種運行返馳變換器的方法,該返馳變換器包括一個變壓器,具有接收輸入電壓的初級繞組,以及提供輸出電壓的次級繞組,初級開關耦合到初級繞組,同步整流器耦合到次級繞組,該方法包括:在開關周期開始時,接通初級開關第一持續時間;接通同步整流器第一接通時間;在臨界傳導模式下,傳感次級繞組中流動的次級電流;根據次級電流達到零電流值,延長同步整流器的接通時間第二接通時間;在第二接通時間內,傳感次級繞組中流動的次級電流,次級電流包括具有負電流衝程和正電流衝程的電流波紋;以及根據第二接通時間內,具有正電流值的次級電流,斷開同步整流器。 The invention also discloses a method for operating a flyback converter, the flyback converter comprising a transformer having a primary winding receiving an input voltage and a secondary winding providing an output voltage, the primary switch being coupled to the primary winding, the synchronous rectifier coupling To the secondary winding, the method includes: turning on the first duration of the primary switch at the beginning of the switching cycle; turning on the first on-time of the synchronous rectifier; and sensing the secondary flowing in the secondary winding in the critical conduction mode Current; according to the secondary current reaching a zero current value, extending the on-time of the synchronous rectifier by a second on-time; during the second on-time, sensing the secondary current flowing in the secondary winding, the secondary current including having a negative Current ripple of the current stroke and the positive current stroke; and breaking the synchronous rectifier according to the secondary current having a positive current value according to the second on-time.

其中,還包括根據初級開關的斷開時間截止,通過重複初級開關的接通,啟動下一個開關周期。 The method further includes: starting the next switching cycle by repeating the turning-off of the primary switch according to the off-time of the primary switch.

其中,還包括根據同步整流器接通第二接通時間,傳感初級電流;並且根據初級電流超過閾值,通過重複初級開關的接通,啟動下一個開關周期。 The method further includes sensing the primary current according to the second rectifier being turned on according to the synchronous rectifier; and starting the next switching cycle by repeating the turning on of the primary switch according to the primary current exceeding the threshold.

其中,接通同步整流器第一接通時間,包括在一個非重疊周期後,接通同步整流器。 Wherein, the first on-time of the synchronous rectifier is turned on, including after a non-overlapping period, the synchronous rectifier is turned on.

其中,還包括跨過初級開關,耦合第一電容器;並且根據跨過初級開關,耦合第一電容器,在初級開關的零電壓下,斷開初級開關。 The method further includes coupling the first capacitor across the primary switch; and coupling the first capacitor across the primary switch, and turning off the primary switch at zero voltage of the primary switch.

其中,還包括跨過變壓器的初級繞組,耦合第二電容器;並且根據跨過變壓器的初級繞組,耦合第二電容器,在初級開關的零電壓下斷開初級開關。 Therein, the method further includes connecting a second capacitor across the primary winding of the transformer; and coupling the second capacitor according to the primary winding across the transformer to disconnect the primary switch at zero voltage of the primary switch.

其中,在第一接通時間的開關周期開始時,接通初級開關,包括:在開關周期開始時,接通初級開關一個固定的接通時間。 Wherein, at the beginning of the switching period of the first on-time, the primary switch is turned on, including: turning on the primary switch for a fixed on-time at the beginning of the switching period.

本發明又公開了一種返馳變換器,包括:一個變壓器,具有接收輸入電壓的初級繞組以及提供輸出電壓的次級繞組;一個耦合到初級繞組上的初級開關;一個耦合到次級繞組上的同步整流器;一個跨過次級繞組耦合的輸出電容器;一個耦合產生控制信號的控制器,驅動初級開關和同步整流器;以及一個正電流檢測電路,傳感次級繞組中流動的次級電流,根據檢測到具有正電流值的次級電流,產生檢測信號,其中控制器產生控制信號,在一個開關周期內交替接通和斷開初級開關和同步整流器,同步整流器在開關周期內接通第一接通時間,根據檢測到次級電流達到零電流值,控制器產生控制信號,在開關周期內接通同步整流器第二接通時間,正電流檢測電路在第二接通時間內傳感次級電流,根據檢測到具有正電流值的次級電流,產生檢測信號,並且根據檢測信號,在開關周期內,斷開同步整流器。 The invention further discloses a flyback converter comprising: a transformer having a primary winding receiving an input voltage and a secondary winding providing an output voltage; a primary switch coupled to the primary winding; and a primary coupled to the secondary winding a synchronous rectifier; an output capacitor coupled across the secondary winding; a controller coupled to generate a control signal to drive the primary switch and the synchronous rectifier; and a positive current sensing circuit to sense a secondary current flowing in the secondary winding, A secondary current having a positive current value is detected to generate a detection signal, wherein the controller generates a control signal that alternately turns the primary switch and the synchronous rectifier on and off in one switching cycle, and the synchronous rectifier turns on the first connection during the switching cycle The pass time, according to detecting that the secondary current reaches a zero current value, the controller generates a control signal, turns on the synchronous rectifier second on time during the switching cycle, and the positive current detecting circuit senses the secondary current in the second on time. A detection signal is generated based on the detection of a secondary current having a positive current value, and the root Detection signal, the switching cycle, the synchronous rectifier turned off.

其中,控制器在非連續傳導模式下運行返馳變換器,控制器產生控制信號,根據檢測到次級電流達到零電流值,斷開同步整流器,控制器繼續監控輸出電壓,根據輸出電壓等於或低於參考電壓,控制器產生控制信號,在開關周期內,接通同步整流器第二接通時間。 Wherein, the controller runs the flyback converter in the discontinuous conduction mode, and the controller generates a control signal, according to detecting that the secondary current reaches a zero current value, disconnects the synchronous rectifier, and the controller continues to monitor the output voltage according to the output voltage equal to or Below the reference voltage, the controller generates a control signal that turns on the second on-time of the synchronous rectifier during the switching cycle.

其中,控制器在臨界傳導模式下運行返馳變換器,控制器產生控制信號,根據檢測到次級電流達到零電流值,在開關周期內,延長同步整流器的接通時間第二接通時間。 Wherein, the controller runs the flyback converter in the critical conduction mode, and the controller generates a control signal to extend the second on-time of the on-time of the synchronous rectifier during the switching period according to the detection that the secondary current reaches a zero current value.

其中,根據初級開關的斷開時間截止,通過重複初級開關的接通,啟動下一個開關周期,初級開關在開關的零電壓下接通。 Wherein, according to the off time of the primary switch, the next switching cycle is started by repeating the turning on of the primary switch, and the primary switch is turned on at the zero voltage of the switch.

其中,根據同步整流器接通第二接通時間,控制器傳感初級電流,並且根據初級電流超過閾值,通過重複初級開關的接通,啟動下一個開關 周期。 Wherein, according to the synchronous rectifier turning on the second on-time, the controller senses the primary current, and according to the primary current exceeding the threshold, the next switch is activated by repeating the turning on of the primary switch cycle.

其中,還包括一個跨過初級開關耦合的第一電容器,其中根據跨過初級開關耦合第一電容器,在初級開關的零電壓下斷開初級開關。 Therein, a first capacitor coupled across the primary switch is also included, wherein the primary switch is turned off at zero voltage of the primary switch in accordance with coupling the first capacitor across the primary switch.

其中,還包括一個跨過變壓器的初級繞組耦合的第二電容器,其中根據跨過初級繞組耦合第二電容器,在初級開關的零電壓下斷開初級開關。 Therein, a second capacitor coupled across the primary winding of the transformer is also included, wherein the primary switch is turned off at zero voltage of the primary switch in accordance with coupling the second capacitor across the primary winding.

其中,控制器產生控制信號,使初級開關接通一段固定的接通時間。 Wherein, the controller generates a control signal to cause the primary switch to be turned on for a fixed on-time.

(ZVS)‧‧‧零電壓開關 (ZVS) ‧ ‧ zero voltage switch

(DCM)‧‧‧非連續傳導模式 (DCM) ‧‧‧ discontinuous conduction mode

(CRI)‧‧‧臨界傳導模式 (CRI) ‧‧‧critical conduction mode

(10)‧‧‧返馳變換器 (10)‧‧‧Reciprocating converter

(Q1)‧‧‧初級開關 (Q1)‧‧‧Primary switch

(Q2)‧‧‧同步整流器 (Q2)‧‧‧Synchronous rectifier

(12)‧‧‧電壓節點 (12) ‧‧‧Voltage node

(18)‧‧‧接地節點 (18)‧‧‧ Grounding node

(16)‧‧‧輸出節點 (16)‧‧‧ Output node

(15)‧‧‧節點 (15) ‧‧‧ nodes

(20)‧‧‧驅動負載 (20) ‧‧‧Drive load

(25)‧‧‧有源箝位電路 (25)‧‧‧Active Clamp Circuit

(D1)‧‧‧體二極管 (D1)‧‧‧ body diode

(30)‧‧‧初級端控制器 (30)‧‧‧Primary controller

(40)‧‧‧次級端控制器 (40) ‧‧‧secondary controller

(45)‧‧‧正電流檢測電路 (45) ‧‧‧Positive current detection circuit

以下的詳細說明及附圖提出了本發明的各個實施例。圖1表示使用同步整流的返馳變換器的一個示例。 The following detailed description and the accompanying drawings set forth various embodiments of the invention. Figure 1 shows an example of a flyback converter using synchronous rectification.

圖2表示圖1所示的返馳變換器在固頻、連續傳導模式下(CF CCM),運行的示例信號波形。 2 shows an example signal waveform of the flyback converter of FIG. 1 operating in a fixed frequency, continuous conduction mode (CF CCM).

圖3表示圖1所示的返馳變換器在固頻、非連續傳導模式下(CF DCM),運行的示例信號波形。 Figure 3 shows an example signal waveform for the flyback converter of Figure 1 operating in a fixed frequency, discontinuous conduction mode (CF DCM).

圖4複製了Zhang論文中的圖5,表示圖1所示的返馳變換器在VF ZVS DCM運行模式下的示例信號波形。 Figure 4 replicates Figure 5 of the Zhang paper, showing an example signal waveform of the flyback converter shown in Figure 1 in the VF ZVS DCM mode of operation.

圖5表示在本發明的實施例中,返馳變換器配置强迫式零電壓開關(ZVS)時序控制的示意圖。 Figure 5 shows a schematic diagram of a flyback converter configuration forced zero voltage switching (ZVS) timing control in an embodiment of the invention.

圖6表示在一些示例中,强迫式ZVS運行模式通常運行情况的時序圖。 Figure 6 shows a timing diagram of the normal operation of a forced ZVS mode of operation, in some examples.

圖7表示在本發明的實施例中,強迫式ZVS時序控制中運行的返馳變換器信號波形的時序圖,帶有正電流同步整流關斷觸發器。 Figure 7 is a timing diagram showing the waveform of the flyback converter signal operating in forced ZVS timing control with a positive current synchronous rectification shutdown trigger in an embodiment of the present invention.

圖8(a)至8(c)表示在本發明的可選實施例中,用於初級開關,配有强迫式零 電壓開關(ZVS)時序控制的返馳變換器的示意圖。 Figures 8(a) through 8(c) show an alternative embodiment of the invention for a primary switch with forced zero Schematic diagram of a flyback converter for voltage switch (ZVS) timing control.

圖9表示在本發明的實施例中,用於初級開關斷開瞬變,配有零電壓開關(ZVS)的返馳變換器的示意圖。 Figure 9 shows a schematic diagram of a flyback converter for a primary switch disconnect transient with a zero voltage switch (ZVS) in an embodiment of the invention.

圖10表示在本發明的實施例中,帶有正電流同步整流關斷觸發器的强迫式ZVS時序控制方法的流程圖。 Figure 10 is a flow diagram showing a forced ZVS timing control method with a positive current synchronous rectification shutdown trigger in an embodiment of the invention.

圖11表示在本發明的一個可選實施例中,帶有正電流同步整流關斷觸發器的强迫式ZVS時序控制方法的流程圖。 Figure 11 is a flow diagram showing a forced ZVS timing control method with a positive current synchronous rectification shutdown trigger in an alternate embodiment of the present invention.

圖12表示在本發明的一個可選實施例中,帶有正電流同步整流關斷觸發器的强迫式ZVS時序控制方法的流程圖。 Figure 12 is a flow diagram showing a forced ZVS timing control method with a positive current synchronous rectification shutdown trigger in an alternate embodiment of the present invention.

本發明可以以各種方式實現,包括作為一個工藝;一種裝置;一個系統;和/或一種物質合成物。在本說明書中,這些實現方式或本發明可能採用的任意一種其他方式,都可以稱為技術。一般來說,可以在本發明的範圍內變換所述工藝步驟的順序。 The invention can be embodied in a variety of ways, including as a process; a device; a system; and/or a material composition. In this specification, these implementations or any other manners that may be employed by the present invention may be referred to as techniques. In general, the order of the process steps can be varied within the scope of the invention.

本發明的一個或多個實施例的詳細說明以及附圖解釋了本發明的原理。雖然,本發明與這些實施例一起提出,但是本發明的範圍並不局限於任何實施例。本發明的範圍僅由權利要求書限定,本發明包含多種可選方案、修正以及等效方案。在以下說明中,所提出的各種具體細節用於全面理解本發明。這些細節用於解釋說明,無需這些詳細細節中的部分細節或全部細節,依據權利要求書,就可以實現本發明。為了簡便,本發明相關技術領域中衆所周知的技術材料並沒有詳細說明,以免對本發明產生不必要的混淆。 The detailed description of the one or more embodiments of the invention and the drawings illustrate the principles of the invention. Although the present invention has been proposed together with the embodiments, the scope of the present invention is not limited to any embodiments. The scope of the invention is to be limited only by the scope of the appended claims. In the following description, various specific details are set forth to provide a thorough understanding of the invention. The details are intended to be illustrative, and the invention may be practiced without departing from the Detailed Description. For the sake of brevity, the technical materials well-known in the related art are not described in detail in order to avoid unnecessary confusion to the present invention.

根據本發明的實施例,通過檢測二次繞組電流的正電流衝程,作 為同步整流關斷觸發器,返馳變換器配置強迫式零電壓開關(ZVS)時序控制。返馳變換器可以在非連續傳導模式(DCM)或臨界傳導模式(CRI)下運行。在DCM模式下,已經根據負載規則斷開的同步整流器開關,在開關週期快結束時再次接通,在二次繞組電流上產生電流波紋。在CRI模式下,同步整流器開關的接通時間延長到二次繞組電流零交叉,在二次繞組電流上產生電流波紋。二次繞組電流上的電流波紋包括負電流衝程和正電流衝程。返馳變換器的控制電流探測二次繞組電流波紋上的正電流衝程作為一個觸發器,斷開同步整流器,啟動下一個開關周期。在此時,初級開關上的電壓已經放電,初級開關在零汲極至源極電壓下就能接通,從而避免了開關損耗。 According to an embodiment of the invention, by detecting a positive current stroke of the secondary winding current, For synchronous rectification shutdown triggers, the flyback converter is configured with forced zero voltage switching (ZVS) timing control. The flyback converter can operate in discontinuous conduction mode (DCM) or critical conduction mode (CRI). In DCM mode, the synchronous rectifier switch that has been disconnected according to the load rule is turned on again at the end of the switching cycle, generating current ripple on the secondary winding current. In the CRI mode, the on-time of the synchronous rectifier switch is extended to the secondary winding current zero crossing, and current ripple is generated in the secondary winding current. The current ripple on the secondary winding current includes a negative current stroke and a positive current stroke. The control current of the flyback converter detects the positive current stroke on the secondary winding current ripple as a trigger, breaking the synchronous rectifier and starting the next switching cycle. At this point, the voltage on the primary switch has been discharged and the primary switch can be turned on at zero to the source voltage, thus avoiding switching losses.

本發明所述的強迫式ZVS返馳變換器與傳統的運行體系相比,具有多種優勢。確切地說,利用正次級繞組電流作為同步整流關斷觸發器,返馳變換器可以在固定頻率或固頻非連續傳導模式(CF DCM)下運行,消除了EMI需考慮的問題。在一個示例中,可以調製符合負載規則的同步整流器的接通時間,同時開關頻率保持恆定。另外,通過確保初級開關在零電壓下進行切換,返馳變換器實現了效率的提高。 The forced ZVS flyback converter of the present invention has several advantages over the conventional operating system. Specifically, with the positive secondary winding current as the synchronous rectification shutdown trigger, the flyback converter can operate in either fixed frequency or fixed frequency discontinuous conduction mode (CF DCM), eliminating the need for EMI considerations. In one example, the on-time of a synchronous rectifier that conforms to the load rule can be modulated while the switching frequency remains constant. In addition, the flyback converter achieves an increase in efficiency by ensuring that the primary switch is switched at zero voltage.

圖5表示在本發明的實施例中,配有强迫式零電壓開關(ZVS)時序控制的返馳變換器的示意圖。參見圖5,返馳變換器10包括一個初級開關Q1(SW),耦合到變壓器TR的初級變壓器繞組上,以及一個同步整流器開關Q2(SR)耦合到變壓器TR的次級變壓器繞組上。輸入電壓VIN跨過初級繞組和初級開關耦合,在輸入電壓節點12和接地節點18之間。輸入去耦電容器Cin可以耦合到輸入電壓節點12上。初級開關由控制電壓VGS1控制接通和斷開,以傳導初級電流Ipri,在初級變壓器繞組中流動。同步整流器開關由控制電壓VGS2接通 和斷開,以傳導次級電流Isec,在次級變壓器繞組中流動。在本說明中,“初級電流”一詞是指變壓器TR的初級變壓器繞組中流動的電流,“次級電流”和“次級繞組電流”都用於指代次級變壓器繞組中流動的電流。輸出電容器COUT跨過次級繞組和同步整流器耦合,也就是說在輸出節點16和接地節點18之間。在輸出節點16處產生輸出電壓VOUT,驅動負載20。在一些實施例中,有源箝位電路25可以位於初級端,當初級開關Q1斷開時,箝位初級開關Q1汲極端(節點14)處的電壓。 Figure 5 shows a schematic diagram of a flyback converter with forced zero voltage switching (ZVS) timing control in an embodiment of the invention. Referring to Figure 5, flyback converter 10 includes a primary switch Q1 (SW) coupled to the primary transformer winding of transformer TR and a synchronous rectifier switch Q2 (SR) coupled to the secondary transformer winding of transformer TR. The input voltage VIN is coupled across the primary winding and the primary switch between the input voltage node 12 and the ground node 18. Input decoupling capacitor Cin can be coupled to input voltage node 12. The primary switch is controlled to be turned "on" and "off" by the control voltage VGS1 to conduct the primary current Ipri to flow in the primary transformer winding. The synchronous rectifier switch is switched on by the control voltage VGS2 And disconnected to conduct secondary current Isec to flow in the secondary transformer windings. In the present description, the term "primary current" refers to the current flowing in the primary transformer winding of the transformer TR, and "secondary current" and "secondary winding current" are used to refer to the current flowing in the winding of the secondary transformer. The output capacitor COUT is coupled across the secondary winding and the synchronous rectifier, that is, between the output node 16 and the ground node 18. An output voltage VOUT is generated at the output node 16 to drive the load 20. In some embodiments, the active clamp circuit 25 can be located at the primary side, clamping the voltage at the extreme (node 14) of the primary switch Q1 when the primary switch Q1 is open.

在本發明的實施例中,初級開關Q1和同步整流器Q2都是電源開關,通常是MOSFET器件。在本實施例中,初級開關Q1和同步整流器Q2都使用NMOS晶體管制成。初級開關Q1的NMOS晶體管具有一個耦合到變壓器(節點14)上的汲極端,一個耦合到地(節點18)的源極端以及一個由控制電壓VGS1驅動的閘極端。作為NMOS晶體管,初級開關Q1還具有相關的寄生電容Coss1,跨過晶體管的汲極和源極端。初級開關Q1的NMOS晶體管還具有寄生體二極管D1,跨過晶體管的汲極和源極端。在本說明中,寄生電容Coss1和體二極管D1表示為跨過NMOS開關Q1虛線連接,以說明電容Coss1不是一個附加的電容器元件,耦合到NMOS晶體管上,而是一個寄生電容,作為NMOS晶體管結構的一部分,體二極管D1僅僅是一個寄生二極管,而不是一個附加二極管元件。在次級端,同步整流器開關Q2的NMOS晶體管具有一個耦合到變壓器(節點15)上的汲極端、一個耦合到地(節點18)的源極端以及一個由控制電壓VGS2驅動的閘極端。作為一個NMOS晶體管,同步整流器開關Q2具有相關的寄生電容Coss2和寄生體二極管D2,都跨過晶體管的汲極和源極端。再次,寄生電容Coss2和體二極管D2表示為跨過NMOS開關Q2虛線連接,以說明電容Coss2和二極管D2都是 耦合到NMOS晶體管上的元件,而不是作為NMOS晶體管結構一部分的寄生元件。 In an embodiment of the invention, primary switch Q1 and synchronous rectifier Q2 are both power switches, typically MOSFET devices. In the present embodiment, both the primary switch Q1 and the synchronous rectifier Q2 are made using NMOS transistors. The NMOS transistor of primary switch Q1 has a 汲 terminal coupled to the transformer (node 14), a source terminal coupled to ground (node 18), and a gate terminal driven by control voltage VGS1. As an NMOS transistor, the primary switch Q1 also has an associated parasitic capacitance Coss1 across the drain and source terminals of the transistor. The NMOS transistor of primary switch Q1 also has a parasitic body diode D1 that spans the drain and source terminals of the transistor. In the present description, the parasitic capacitance Coss1 and the body diode D1 are shown as being connected across the dotted line of the NMOS switch Q1 to illustrate that the capacitance Coss1 is not an additional capacitor element, but is coupled to the NMOS transistor, but a parasitic capacitance, as an NMOS transistor structure. In part, body diode D1 is simply a parasitic diode rather than an additional diode component. At the secondary side, the NMOS transistor of synchronous rectifier switch Q2 has a 汲 terminal coupled to the transformer (node 15), a source terminal coupled to ground (node 18), and a gate terminal driven by control voltage VGS2. As an NMOS transistor, the synchronous rectifier switch Q2 has an associated parasitic capacitance Coss2 and a parasitic body diode D2, both across the drain and source terminals of the transistor. Again, the parasitic capacitance Coss2 and the body diode D2 are shown as being connected across the NMOS switch Q2 with a dashed line to illustrate that both the capacitance Coss2 and the diode D2 are An element coupled to an NMOS transistor, rather than a parasitic element that is part of an NMOS transistor structure.

初級開關和同步整流器都由各自的控制電路驅動,控制開關的接通和斷開操作。確切地說,耦合初級端控制器30,驅動初級開關Q1的閘極端,耦合次級端控制器40,驅動同步整流器Q2的閘極端。根據返馳變換器10所需的控制體系,可以用不同的方式製造初級端控制器30和次級端控制器40。換言之,返馳變換器10是功率階段,不同的控制體系可用於控制返馳變換器功率階段。在實際運行中,初級開關的切換同步到同步整流器的切換。在大多數配置中,初級端控制器可以是主控制器,次級端控制器是從屬控制器,或者次級端控制器是主控制器,初級端控制器是從屬控制器。主控制器通常配置成PWM控制器。可用於返馳變換器10的控制體系的示例包括電壓模式控制、峰值電流模式控制和輸入電壓前饋控制。每個控制體系都使用不同的反饋信號,控制穩定的輸出電壓,提供負載調製。返馳變換器10中控制體系的特殊配置,對於本發明的實現並不重要。本領域的技術人員應明確強迫式ZVS時序控制可用於任何控制體系,在初級開關處啟動零電壓開關,以消除開關損耗。在本說明中,提出了初級端控制器和次級端控制器。在其他實施例中,初級端控制器和初級端控制器可以製成一個單獨的控制器或控制電路,產生控制信號,用於初級開關和同步整流器開關。 Both the primary switch and the synchronous rectifier are driven by respective control circuits that control the switching on and off operations of the switch. Specifically, the primary side controller 30 is coupled to drive the gate terminal of the primary switch Q1, coupled to the secondary terminal controller 40, to drive the gate terminal of the synchronous rectifier Q2. The primary side controller 30 and the secondary side controller 40 can be fabricated in different ways depending on the control system required for the flyback converter 10. In other words, the flyback converter 10 is a power phase and different control systems can be used to control the flyback converter power phase. In actual operation, the switching of the primary switch is synchronized to the switching of the synchronous rectifier. In most configurations, the primary side controller can be the primary controller, the secondary side controller is the slave controller, or the secondary side controller is the primary controller, and the primary side controller is the slave controller. The main controller is usually configured as a PWM controller. Examples of control systems that may be used in flyback converter 10 include voltage mode control, peak current mode control, and input voltage feedforward control. Each control system uses a different feedback signal to control the stable output voltage and provide load modulation. The particular configuration of the control system in the flyback converter 10 is not critical to the implementation of the present invention. Those skilled in the art will recognize that forced ZVS timing control can be used in any control system to initiate a zero voltage switch at the primary switch to eliminate switching losses. In this description, a primary side controller and a secondary side controller are proposed. In other embodiments, the primary side controller and the primary side controller can be fabricated as a separate controller or control circuit that produces control signals for the primary switch and the synchronous rectifier switch.

在本發明的實施例中,返馳變換器功率階段在初級端控制器中配置了固定的接通時間(COT)控制體系,次級端作為主控制器。次級端控制器為PWM控制器,用於調製輸出電壓VOUT。在COT控制體系下,初級開關接通一段固定的接通時間。然後,初級開關的斷開時間不固定,而是由傳感到輸出 電壓的次級端控制器控制。在COT控制體系下,返馳變換器可以在非連續模式下運行,帶有可變切換頻率。次級端控制器根據本發明配置了强迫式ZVS時序控制,接通同步整流器很短的時間,在初級開關處放電汲極電壓,當檢測到正次級電流衝程時,斷開同步整流器。在一些實施例中,初級端控制器配置了自動同步,初級控制器檢測初級端的電流信號,表示同步整流器斷開,使用檢測到的電流信號,接通初級開關,啟動下一個開關週期。 In an embodiment of the invention, the flyback converter power stage is configured with a fixed on-time (COT) control system in the primary side controller, with the secondary side acting as the primary controller. The secondary controller is a PWM controller that modulates the output voltage VOUT. Under the COT control system, the primary switch is turned on for a fixed on-time. Then, the opening time of the primary switch is not fixed, but is sensed to output. The secondary side controller of the voltage is controlled. Under the COT control system, the flyback converter can operate in discontinuous mode with variable switching frequency. The secondary side controller is configured with forced ZVS timing control in accordance with the present invention, turning on the synchronous rectifier for a short period of time, discharging the drain voltage at the primary switch, and turning off the synchronous rectifier when a positive secondary current stroke is detected. In some embodiments, the primary side controller is configured for automatic synchronization, the primary controller detects the primary side current signal, indicating that the synchronous rectifier is off, using the detected current signal, turning on the primary switch, and starting the next switching cycle.

在本發明的實施例中,通過監控流經同步整流器Q2的次級電流,次級端控制器40配置了强迫式ZVS時序控制。利用不同的電流傳感技術,產生表示流經同步整流器Q2電流的電流傳感信號VCS_sec,可以傳感次級電流。例如,在節點15處,可以傳感次級電流。例如,利用串聯電阻或通過次級繞組上的輔助繞組,可以傳感次級繞組電流。耦合正電流檢測電路45,接收電流傳感信號VCS_sec,檢測次級電流波紋上的正電流衝程,作為觸發器,斷開同步整流器Q2,這將在下文中詳細介紹。 In an embodiment of the invention, the secondary side controller 40 is configured with forced ZVS timing control by monitoring the secondary current flowing through the synchronous rectifier Q2. Using a different current sensing technique, a current sense signal VCS_sec representing the current flowing through the synchronous rectifier Q2 is generated to sense the secondary current. For example, at node 15, the secondary current can be sensed. For example, the secondary winding current can be sensed using a series resistor or through an auxiliary winding on the secondary winding. The coupled positive current detecting circuit 45 receives the current sensing signal VCS_sec, detects a positive current stroke on the secondary current ripple, and acts as a trigger to turn off the synchronous rectifier Q2, which will be described in detail below.

返馳變換器10的常用工作方式將參照圖6所示的時序圖介紹。參見圖6,可以使用上述不同的控制體系,控制返馳變換器10。無論使用哪種控制體系,初級開關SW和同步整流器SR都在運行過程中互為補充,一個開關接通時,另一個開關斷開(曲綫102)。初級開關SW和同步整流器SR的傳導週期不重疊。當初級開關SW接通時,變壓器TR的初級繞組連接到輸入電壓VIN,初級電流Ipri(曲綫104)隨著變壓器中的磁通量增大,而線性增大。能量儲存在變壓器TR中。此時,次級繞組中產生的電壓VSEC與初級繞組具有相反的極性,導致同步整流器SR的體二極管D2反向偏置。沒有次級電流Isec(曲綫106)流動,儲存在輸出電容器COUT上的電荷提供負載20。隨著初級開關SW接通,初級開 關SW的汲極至源極電壓VDS(SW)(曲綫108),在節點14處,處於或在零伏附近。同時,同步整流器SR(節點15)的次級電壓VSEC(曲綫110),也是同步整流器的汲極至源極電壓VDS(SR),驅動至正電壓,為輸入電壓VIN的比例。 The usual mode of operation of the flyback converter 10 will be described with reference to the timing diagram shown in FIG. Referring to Figure 6, the flyback converter 10 can be controlled using the various control systems described above. Regardless of which control system is used, the primary switch SW and the synchronous rectifier SR complement each other during operation, and when one switch is turned on, the other switch is turned off (curve 102). The conduction periods of the primary switch SW and the synchronous rectifier SR do not overlap. When the primary switch SW is turned on, the primary winding of the transformer TR is connected to the input voltage VIN, and the primary current Ipri (curve 104) linearly increases as the magnetic flux in the transformer increases. The energy is stored in the transformer TR. At this time, the voltage VSEC generated in the secondary winding has an opposite polarity to the primary winding, causing the body diode D2 of the synchronous rectifier SR to be reverse biased. Without the secondary current Isec (curve 106) flowing, the charge stored on the output capacitor COUT provides the load 20. As the primary switch SW is turned on, the primary is turned on. The drain-to-source voltage VDS(SW) of the SW (curve 108), at node 14, is at or near zero volts. At the same time, the secondary voltage VSEC (curve 110) of the synchronous rectifier SR (node 15) is also the drain-to-source voltage VDS(SR) of the synchronous rectifier, driven to a positive voltage, which is the ratio of the input voltage VIN.

初級開關的接通時間過後,初級開關斷開,同步整流器在非重疊時間後接通。當初級開關斷開時,初級電流Ipri降低,磁通量減少。次級繞組上的電壓反向,使得次級電壓在同名端具有正極性,或在同步整流器(節點15)的汲極處具有負極性,從而使同步整流器SR的體二極管D2正向偏置。因此,流經次級繞組的電流作為次級電流Isec。次級電流Isec增大到峰值電流值。非重疊時間後,同步整流器SR接通,傳導次級電流Isec,幫助存儲的能量從變壓器核心轉移到輸出電容器COUT。輸出電容器COUT再次充電,並供給負載20。輸出電容器COUT上的電荷維持輸出電壓VOUT(節點16)。當初級開關SW斷開時,初級開關SW(節點14)的汲極至源極電壓VDS(SW)擺動至高電壓值。在一些示例中,電壓箝位電路(例如有源箝位電路25)用於嵌制初級開關處的汲極電壓至最大的可允許電壓值,以保護初級開關。 After the on-time of the primary switch has elapsed, the primary switch is turned off and the synchronous rectifier is turned on after the non-overlap time. When the primary switch is turned off, the primary current Ipri is lowered and the magnetic flux is reduced. The voltage on the secondary winding is reversed such that the secondary voltage has a positive polarity at the same end, or has a negative polarity at the drain of the synchronous rectifier (node 15), thereby forward biasing the body diode D2 of the synchronous rectifier SR. Therefore, the current flowing through the secondary winding acts as the secondary current Isec. The secondary current Isec is increased to the peak current value. After the non-overlap time, the synchronous rectifier SR is turned on, conducting the secondary current Isec, helping to transfer stored energy from the transformer core to the output capacitor COUT. The output capacitor COUT is charged again and supplied to the load 20. The charge on output capacitor COUT maintains output voltage VOUT (node 16). When the primary switch SW is turned off, the drain-to-source voltage VDS(SW) of the primary switch SW (node 14) swings to a high voltage value. In some examples, a voltage clamping circuit (eg, active clamp circuit 25) is used to embed the gate voltage at the primary switch to a maximum allowable voltage value to protect the primary switch.

返馳變換器中配置的控制體系包括一個反饋控制回路,監控輸出電壓VOUT。所用的控制體系控制同步整流器的接通時間或初級開關的斷開時間,以便在不同的負載情况下,將輸出電壓保持在所需的電壓值。在規定的時間內,返馳變換器的初級端或次級端控制器通過斷開同步整流器並接通初級開關,啟動下一個開關周期。重複上述操作過程。 The control system configured in the flyback converter includes a feedback control loop that monitors the output voltage VOUT. The control system used controls the on-time of the synchronous rectifier or the off-time of the primary switch to maintain the output voltage at the desired voltage value under different load conditions. During the specified time, the primary or secondary controller of the flyback converter initiates the next switching cycle by opening the synchronous rectifier and turning on the primary switch. Repeat the above procedure.

在上述說明中,返馳變換器在DCM模式下運行,次級電流在開關周期內達到零電流值。在其他實施例中,返馳變換器可以在臨界電流模式下 或臨界傳導模式下(CRI)運行。在臨界電流模式下,根據次級電流Isec降至零電流值,同步整流器導通時間停止,如圖6中的曲綫106點劃線所示。在實際運行中,檢測到次級電流Isec的零交叉,利用Isec零交叉檢測,終止同步整流器接通時間。本發明所述的強迫式ZVS時序控制可用於返馳變換器配置非連續傳導模式或臨界傳導模式,這將在下文中詳細介紹。 In the above description, the flyback converter operates in DCM mode and the secondary current reaches a zero current value during the switching cycle. In other embodiments, the flyback converter can be in a critical current mode Or run in critical conduction mode (CRI). In the critical current mode, the synchronous rectifier on-time is stopped according to the secondary current Isec falling to the zero current value, as indicated by the dotted line in FIG. In actual operation, the zero crossing of the secondary current Isec is detected, and the synchronous rectifier on-time is terminated by Isec zero-cross detection. The forced ZVS timing control of the present invention can be used in a flyback converter configuration with a discontinuous conduction mode or a critical conduction mode, as will be described in more detail below.

在每個開關週期開始時,當初級開關接通,初級開關處的汲極電壓處於高電壓值。當帶有高汲極電壓的初級開關接通,返馳變換器受到不必要的功率損耗。因此,返馳變換器中配置的零電壓開關(ZVS),導致在零汲極電壓下開關瞬變,實現高效率。在本領域中還可使用不同的體系實現TVS。圖6表示在返馳變換器10中配置ZVS的結果。確切地說,當配置ZVS時,在初級開關SW接通前,初級開關SW(節點108)的汲極至源極電壓VDS(SW)降至零伏,如圖6中的點劃圓所示。在這種情況下,可以避免開關瞬變時初級開關處的功率損耗。 At the beginning of each switching cycle, when the primary switch is turned on, the drain voltage at the primary switch is at a high voltage value. When the primary switch with high buckling voltage is turned on, the flyback converter is subjected to unnecessary power loss. Therefore, the zero voltage switch (ZVS) configured in the flyback converter results in switching transients at zero bucker voltage for high efficiency. Different systems can also be used to implement TVS in the art. FIG. 6 shows the result of arranging ZVS in the flyback converter 10. Specifically, when ZVS is configured, the drain-to-source voltage VDS(SW) of the primary switch SW (node 108) drops to zero volts before the primary switch SW is turned on, as indicated by the dotted circle in FIG. . In this case, the power loss at the primary switch during switching transients can be avoided.

在本發明的實施例中,通過檢測次級電流的正電流衝程作為同步整流器關斷觸發器,返馳變換器10配置強迫式零電壓開關(ZVS)時序控制。圖7為時序圖,表示在本發明的實施例中,帶有正電流同步整流器關斷觸發器的強迫式ZVS時序控制中返馳變換器的信號波形。參見圖7,返馳變換器10在非連續傳導模式(DCM)下運行,初級開關接通一段指定的接通時間TON,斷開一段指定的斷開時間TOFF。在DCM模式下,可以配置固定頻率的操作。開關頻率可以固定到一段固定的開關時間TSW。可以利用不同的控制體系控制返馳變換器10,以維持輸出電壓和負載調製。無論使用哪種控制體系,初級開關SW和同步整流器SR都可以配置成一個開關接通,同時另一個開關斷開(曲綫102)。初級開關SW和同步整流器SR的傳導週期不重疊。 In an embodiment of the invention, the flyback converter 10 is configured with forced zero voltage switching (ZVS) timing control by detecting a positive current stroke of the secondary current as a synchronous rectifier turn-off trigger. 7 is a timing diagram showing signal waveforms of a flyback converter in forced ZVS timing control with a positive current synchronous rectifier turn-off flip-flop in an embodiment of the present invention. Referring to Figure 7, the flyback converter 10 operates in a discontinuous conduction mode (DCM) with the primary switch being turned "on" for a specified on time TON and a specified off time TOFF. In DCM mode, you can configure a fixed frequency operation. The switching frequency can be fixed to a fixed switching time TSW. The flyback converter 10 can be controlled with different control systems to maintain output voltage and load modulation. Regardless of which control system is used, both the primary switch SW and the synchronous rectifier SR can be configured with one switch turned on while the other switch is turned off (curve 102). The conduction periods of the primary switch SW and the synchronous rectifier SR do not overlap.

開關週期(T1)啟動時,初級開關SW接通一段接通時間TON。初級開關Ipri建立(曲綫104),能量儲存在變壓器TR中。同時,沒有次級電流Isec流動(曲綫106),儲存在輸出電容器COUT上的電荷供給負載20。初級開關SW的汲極至源極電壓VDS(SW)(曲綫108),在節點14處,處於或在零伏附近。同時,同步整流器SR(節點15)的次級電壓VSEC(曲綫110),也是同步整流器的汲極至源極電壓VDS(SR),驅動至與輸入電壓VIN成比例的電壓。 When the switching period (T1) is started, the primary switch SW is turned on for a period of time TON. The primary switch Ipri is established (curve 104) and the energy is stored in the transformer TR. At the same time, there is no secondary current Isec flowing (curve 106) and the charge stored on output capacitor COUT is supplied to load 20. The drain-to-source voltage VDS(SW) of the primary switch SW (curve 108), at node 14, is at or near zero volts. At the same time, the secondary voltage VSEC (curve 110) of the synchronous rectifier SR (node 15), which is also the drain-to-source voltage VDS(SR) of the synchronous rectifier, is driven to a voltage proportional to the input voltage VIN.

初級開關的接通週期TON過後(T2),初級開關SW斷開,一段非重疊時間(T2至T3)之後,同步整流器接通。當初級開關斷開時,初級電流Ipri減小,磁通量下降。次級繞組上的電壓反向,使得次級電壓Vsec在點端具有正極性,或在同步整流器(節點15)的汲極處具有負極性。電壓Vsec的負極性導致同步整流器SR的體二極管D2成為正向偏置,流經次級繞組的電流作為次級電流Isec。次級電流Isec增大到峰值電流值。在非重疊時間(T3)快結束時,同步整流器SR接通,傳導次級電流Isec,幫助存儲的能量從變壓器核心轉移到輸出電容器COUT。輸出電容器COUT再次充電,並供給負載20。輸出電容器COUT上的電荷維持輸出電壓VOUT(節點16)。當初級開關SW斷開時,初級開關SW(節點14)的汲極至源極電壓VDS(SW)擺動至高電壓值,電壓箝位電路嵌制高電壓值,以保護初級開關SW。 After the on-period TON of the primary switch is over (T2), the primary switch SW is turned off, and after a non-overlap time (T2 to T3), the synchronous rectifier is turned on. When the primary switch is turned off, the primary current Ipri decreases and the magnetic flux decreases. The voltage on the secondary winding is reversed such that the secondary voltage Vsec has a positive polarity at the point end or a negative polarity at the drain of the synchronous rectifier (node 15). The negative polarity of the voltage Vsec causes the body diode D2 of the synchronous rectifier SR to be forward biased, and the current flowing through the secondary winding as the secondary current Isec. The secondary current Isec is increased to the peak current value. At the end of the non-overlap time (T3), the synchronous rectifier SR turns "on" and conducts the secondary current Isec, helping to transfer stored energy from the transformer core to the output capacitor COUT. The output capacitor COUT is charged again and supplied to the load 20. The charge on output capacitor COUT maintains output voltage VOUT (node 16). When the primary switch SW is turned off, the drain-to-source voltage VDS(SW) of the primary switch SW (node 14) swings to a high voltage value, and the voltage clamp circuit embeds a high voltage value to protect the primary switch SW.

返馳變換器中配置的控制體系包括一個反饋控制回路,監控輸出電壓VOUT。所用的控制體系控制同步整流器的接通時間或初級開關的斷開時間,以便在不同的負載情况下,將輸出電壓保持在所需的電壓值。在規定的時間內,返馳變換器的初級端或次級端控制器通過斷開同步整流器並接通初級開關,啟動下一個開關周期。確切地說,在DCM運行模式下,在開關周期TSW結 束之前,次級電流Isec降至零(T4)。同步整流器SR斷開(T4),返馳變換器10在初級開關SW和同步整流器SR斷開時(T4至T5)運行。在這期間,初級開關的汲極電壓VDS(SW)波動,同步整流器開關的次級電壓VSEC或汲極電壓VDS(SR)也波動。 The control system configured in the flyback converter includes a feedback control loop that monitors the output voltage VOUT. The control system used controls the on-time of the synchronous rectifier or the off-time of the primary switch to maintain the output voltage at the desired voltage value under different load conditions. During the specified time, the primary or secondary controller of the flyback converter initiates the next switching cycle by opening the synchronous rectifier and turning on the primary switch. Specifically, in the DCM mode of operation, the switching period TSW junction The secondary current Isec drops to zero (T4) before the beam. The synchronous rectifier SR is turned off (T4), and the flyback converter 10 operates when the primary switch SW and the synchronous rectifier SR are turned off (T4 to T5). During this period, the drain voltage VDS(SW) of the primary switch fluctuates, and the secondary voltage VSEC or the drain voltage VDS(SR) of the synchronous rectifier switch also fluctuates.

在本發明的實施例中,配置強迫式ZVS時序控制在開關周期快結束時再次接通同步整流器SR。返馳變換器在固定頻率DCM下運行,每個開關週期的末尾都是確定性的,可以配置強迫式ZVS時序控制,在每個開關周期結束之前,插入同步整流器簡短的接通時間。因此,在T5時,強迫式ZVS時序控制運行,再次接通同步整流器SR一個很短的時間(T5-T6)。同步整流器再次接通(“第二接通時間”),在次級電流中引入負電流波紋。次級電流中的負電流波紋導致諧振能量建立在變壓器TR中,利用該能量向下驅動初級開關上的汲極電壓。 In an embodiment of the invention, the forced ZVS timing control is configured to turn the synchronous rectifier SR back on again at the end of the switching cycle. The flyback converter operates at a fixed frequency DCM, and the end of each switching cycle is deterministic. Forced ZVS timing control can be configured to insert a brief on-time of the synchronous rectifier before the end of each switching cycle. Therefore, at T5, the forced ZVS timing control operates, turning the synchronous rectifier SR back on for a short time (T5-T6). The synchronous rectifier is switched on again ("second on-time"), introducing negative current ripples in the secondary current. The negative current ripple in the secondary current causes the resonant energy to build up in the transformer TR, with which the drain voltage on the primary switch is driven down.

確切地說,當同步整流器再次接通第二接通時間,次級電流達到零電流值時,由於同步整流器和初級開關上的寄生電容,使得次級電流Isec上形成帶有電流波紋的負電流。參見圖5,初級開關Q1上的寄生電容Coss1和同步整流器開關Q2上的寄生電容Coss2並聯。寄生電容Coss1和Coss2的並聯(Coss1∥Coss2)導致次級電流Isec上形成負電流波紋,如圖7中的曲綫106所示。 Specifically, when the synchronous rectifier is turned on again for the second on-time and the secondary current reaches the zero current value, a negative current with current ripple is formed on the secondary current Isec due to the parasitic capacitance on the synchronous rectifier and the primary switch. . Referring to Figure 5, the parasitic capacitance Coss1 on the primary switch Q1 is connected in parallel with the parasitic capacitance Coss2 on the synchronous rectifier switch Q2. The parallel connection of parasitic capacitances Coss1 and Coss2 (Coss1∥Coss2) results in the formation of negative current ripples on the secondary current Isec, as shown by curve 106 in FIG.

當同步整流器SR在第二接通時間內接通時,次級電流Isec變為負,負能量儲存在次級繞組上。變壓器上儲存的負能量轉移到初級繞組,導致電流在初級開關中流動,從而驅動初級開關的汲極至源極電壓達到零電壓。在一些示例中,引入的電流流經初級開關的寄生體二極管,在初級開關處放電總電容,從而將汲極電壓將為零伏。 When the synchronous rectifier SR is turned on during the second on time, the secondary current Isec becomes negative and the negative energy is stored on the secondary winding. The negative energy stored on the transformer is transferred to the primary winding, causing current to flow in the primary switch, thereby driving the primary switch's drain-to-source voltage to zero voltage. In some examples, the incoming current flows through the parasitic body diode of the primary switch, discharging the total capacitance at the primary switch, thereby bringing the drain voltage to zero volts.

在強迫式ZVS時序控制中,保持同步整流器SR接通的時間決定 了ZVS所需的能量。然而,沒有必要保持同步整流器SR的二次接通時間過長,否則會限制返馳變換器的開關頻率。傳統的ZVS方法檢測初級開關汲極電壓,當初級開關汲極電壓等於或低於零電壓時,斷開同步整流器SR。然而,這種方法通常需要使用高電壓元件,傳感初級開關汲極電壓,因此該配置通常成本很高,且不實用。 In forced ZVS timing control, the time to keep the synchronous rectifier SR turned on is determined. The energy required for ZVS. However, it is not necessary to keep the secondary turn-on time of the synchronous rectifier SR too long, otherwise the switching frequency of the flyback converter will be limited. The conventional ZVS method detects the primary switching drain voltage and turns off the synchronous rectifier SR when the primary switching drain voltage is equal to or lower than zero voltage. However, this approach typically requires the use of high voltage components to sense the primary switch drain voltage, so this configuration is typically costly and impractical.

在本發明所述的強迫式ZVS時序控制下,次級電流上產生的負電流波紋運行諧振,直到諧振電流波紋建立在正電流衝程內為止。更確切地說,當同步整流器SR在T5時間接通時,次級電流Isec驅動至負電流值,由虛線圓112表示。負電流值產生的變壓器中的能量用於將初級開關的汲極電壓VDS(SW)降至零電壓。同時,寄生電容Coss1和Coss2產生次級電流Isec諧振,在次級電流上產生電流波紋或震動。電流波紋或震動的幅度非常大,使得次級電流諧振回到正電流值,如圖中虛綫圓114所示。在本發明所述的強迫式ZVS時序控制下,檢測到次級電流的正電流衝程,用於觸發同步整流器SR斷開。同步整流器SR斷開之後,剩餘的次級電流將由同步整流器的體二極管傳導。 Under the forced ZVS timing control of the present invention, the negative current ripple generated on the secondary current operates to resonate until the resonant current ripple is established within the positive current stroke. More specifically, when the synchronous rectifier SR is turned on at time T5, the secondary current Isec is driven to a negative current value, indicated by a dashed circle 112. The energy in the transformer generated by the negative current value is used to reduce the drain voltage VDS(SW) of the primary switch to zero voltage. At the same time, the parasitic capacitances Coss1 and Coss2 generate secondary current Isec resonance, which produces current ripple or vibration on the secondary current. The magnitude of the current ripple or vibration is very large, causing the secondary current to resonate back to a positive current value, as indicated by the dashed circle 114 in the figure. Under the forced ZVS timing control of the present invention, a positive current stroke of the secondary current is detected for triggering the synchronous rectifier SR to open. After the synchronous rectifier SR is turned off, the remaining secondary current will be conducted by the body diode of the synchronous rectifier.

更確切地說,本發明所述的強迫式ZVS時序在開關週期快結束時,持續接通同步整流器第二接通時間。由於初級開關和同步整流器開關的寄生電容Coss1和Coss2,導致次級電流諧振。次級電流建立帶有電流波紋的負電流。次級電流上的電流波紋包括負電流衝程和正電流衝程。利用負電流衝程,提供能量驅動初級開關汲極電壓到零,用於零電壓開關。正電流衝程用作觸發器,斷開同步整流器。同步整流器斷開後,控制電路等待斷開時間TOFF過後,接通初級開關,啟動下一個開關週期,初級開關的汲極至源極電壓處於零伏。重複上述操作過程。 More specifically, the forced ZVS timing of the present invention continuously turns on the second on-time of the synchronous rectifier at the end of the switching cycle. The secondary current resonates due to the parasitic capacitances Coss1 and Coss2 of the primary switch and the synchronous rectifier switch. The secondary current establishes a negative current with current ripple. The current ripple on the secondary current includes a negative current stroke and a positive current stroke. With a negative current stroke, energy is supplied to drive the primary switch drain voltage to zero for zero voltage switching. The positive current stroke acts as a trigger and disconnects the synchronous rectifier. After the synchronous rectifier is turned off, the control circuit waits for the off time TOFF, turns on the primary switch, and starts the next switching cycle. The primary to source voltage of the primary switch is at zero volts. Repeat the above procedure.

在本發明所述的強迫式ZVS時序控制中,同步整流器的第二接通時間不固定,第二接通時間由次級電流上的電流波紋決定,次級電流上的正電流衝程用作觸發器,斷開同步整流器。本發明所述的强迫式時序控制的配置方式,無需高電壓元件即可傳感初級開關處的汲極電壓。反之,次級端控制器傳感次級電流,檢測正電流衝程,觸發同步整流器的第二接通時間結束。在一些實施例中,如圖5所示,返馳變換器10包括一個電流傳感電路,傳感次級電流(圖中沒有表示出),以及一個正電流檢測電路45,用於在第二接通時間內,產生一個表示正電流衝程檢測的信號。正電流檢測電路45所產生的檢測信號可用於次級端控制器40,產生控制信號VGS2,斷開同步整流器。在一些實施例中,正電流檢測電路45可以配置成一個比較器,比較表示傳感次級電流的信號與檢測正電流值的參考信號。例如,傳感次級電流可以轉換成電壓值VCS_sec,與參考電壓相比較,檢測正電流值。 In the forced ZVS timing control of the present invention, the second on-time of the synchronous rectifier is not fixed, the second on-time is determined by the current ripple on the secondary current, and the positive current stroke on the secondary current is used as a trigger. Switch off the synchronous rectifier. The configuration of the forced timing control of the present invention can sense the drain voltage at the primary switch without requiring a high voltage component. Conversely, the secondary side controller senses the secondary current, detects a positive current stroke, and triggers the end of the second on-time of the synchronous rectifier. In some embodiments, as shown in FIG. 5, the flyback converter 10 includes a current sensing circuit that senses a secondary current (not shown) and a positive current detecting circuit 45 for use in the second During the on time, a signal indicative of positive current stroke detection is generated. The detection signal generated by the positive current detecting circuit 45 can be used in the secondary side controller 40 to generate the control signal VGS2 to turn off the synchronous rectifier. In some embodiments, the positive current detection circuit 45 can be configured as a comparator that compares the signal indicative of the sensed secondary current with a reference signal that detects a positive current value. For example, the sense secondary current can be converted to a voltage value VCS_sec, which is compared to the reference voltage to detect a positive current value.

圖7表示為固定頻率非連續傳導模式下運行的返馳變換器配置强迫式ZVS時序控制。如上所述,強迫式ZVS時序控制可以配置在返馳變換器中,返馳變換器在可變頻臨界傳導模式下運行。在臨界傳導模式下,同步整流器斷開時間由次級電流的零交叉檢測決定。當檢測到次級電流交叉零電流值點時,次級端控制器將產生控制信號,斷開同步整流器。然而,當配置了强迫式ZVS時序控制時,同步整流器在次級電流的零電流交叉處並不斷開,而是延長一個很短的時間。延長的接通時間與DCM模式下上述第二接通時間的方式一樣,帶有電流波紋的負電流建立在次級電流上,次級電流上的正電流衝程用作觸發器,斷開同步整流器。在本說明中,臨界傳導模式下延遲到接通時間以及非連續傳導模式下第二接通時間,稱為相同的時間,在該時刻,當次級電流達到零 電流值時,同步整流器接通。 Figure 7 shows forced ZVS timing control for a flyback converter operating in a fixed frequency discontinuous conduction mode. As described above, the forced ZVS timing control can be configured in the flyback converter, and the flyback converter operates in the variable frequency critical conduction mode. In critical conduction mode, the synchronous rectifier turn-off time is determined by the zero-crossing detection of the secondary current. When a secondary current cross zero current value point is detected, the secondary side controller will generate a control signal to turn off the synchronous rectifier. However, when forced ZVS timing control is configured, the synchronous rectifier does not turn off at the zero current crossing of the secondary current, but extends for a short period of time. The extended on-time is the same as the second on-time in DCM mode, the negative current with current ripple is established on the secondary current, the positive current stroke on the secondary current acts as a trigger, and the synchronous rectifier is turned off . In the present description, the delay to the on-time in the critical conduction mode and the second on-time in the discontinuous conduction mode are referred to as the same time, at which time the secondary current reaches zero. At the current value, the synchronous rectifier is turned on.

在上述實施例中,配置強迫式ZVS時序控制,用於初級開關的接通瞬變,也就是說當初級開關接通時,實現初級開關處的零電壓開關。在其他實施例中,可以配置零電壓開關,在初級開關處實現零電壓開關,用於初級開關的斷開瞬變,也就是說當初級開關斷開時。在本發明的實施例中,返馳變換器可以配有零電壓開關,用於初級開關接通瞬變,以及零電壓開關用於初級開關斷開瞬變。圖8(a)至8(c)表示在本發明的可選實施例中,用於初級開關的返馳變換器配置强迫式零電壓開關(ZVS)時序控制的示意圖。圖8(a)-8(c)中除了需要額外的電容器元件配置用於初級開關斷開瞬變的ZVS之外,返馳變換器50a-c的配置方式與圖5所示的返馳變換器10相同。確切地說,返馳變換器50a-c是利用上述強迫式ZVS時序控制,以實現初級零電壓開關,用於初級開關的接通瞬變。圖5和8(a)-(c)中的類似元件將給出參考數字,將不再贅述。首先參見圖8(a),配置零電壓開關,用於返馳變換器50a中初級開關Q1的斷開瞬變,電容器C11與初級開關Q1並聯耦合。也就是說,連接在節點14(開關Q1的汲極)和18(地)之間。當初級開關Q1接通時,初級開關的汲極至源極電壓Vds處於零電壓。當初級開關Q1斷開時,電容器C11防止汲極至源極電壓Vds不會立即變化。電容器C11在斷開時間內保持汲極至源極Vds處於零電壓,使得初級開關Q1在汲極至源極電壓Vds變化之前斷開。在這種情况下,實現了初級開關處的零電壓開關斷開。 In the above embodiment, the forced ZVS timing control is configured for the turn-on transient of the primary switch, that is, when the primary switch is turned on, the zero voltage switch at the primary switch is implemented. In other embodiments, a zero voltage switch can be configured to implement a zero voltage switch at the primary switch for the turn-off transient of the primary switch, that is, when the primary switch is open. In an embodiment of the invention, the flyback converter can be equipped with a zero voltage switch for the primary switch turn-on transient and a zero voltage switch for the primary switch turn-off transient. 8(a) through 8(c) show schematic diagrams of a flyback converter configuration for a primary switch with forced zero voltage switching (ZVS) timing control in an alternative embodiment of the invention. 8(a)-8(c), in addition to the need for additional capacitor elements to configure the ZVS for the primary switch-off transient, the configuration of the flyback converters 50a-c and the flyback transformation shown in FIG. The device 10 is the same. Specifically, the flyback converters 50a-c utilize the forced ZVS timing control described above to implement a primary zero voltage switch for the turn-on transient of the primary switch. Similar elements in Figures 5 and 8(a)-(c) will be given reference numerals and will not be described again. Referring first to Figure 8(a), a zero voltage switch is configured for the turn-off transient of the primary switch Q1 in the flyback converter 50a, and the capacitor C11 is coupled in parallel with the primary switch Q1. That is, it is connected between node 14 (the drain of switch Q1) and 18 (ground). When the primary switch Q1 is turned on, the drain-to-source voltage Vds of the primary switch is at zero voltage. When the primary switch Q1 is turned off, the capacitor C11 prevents the drain-to-source voltage Vds from changing immediately. Capacitor C11 maintains the drain-to-source Vds at zero voltage during the off time such that primary switch Q1 opens before the drain-to-source voltage Vds changes. In this case, the zero voltage switch at the primary switch is turned off.

參見圖8(b),在其他實施例中,返馳變換器50b配有緩衝電容器Csnb,耦合在變壓器TR的初級端,為初級開關Q1的斷開瞬變配置零電壓開關。也就是說,電容器Csnb連接在節點12(輸入電壓Vin)和節點14(初級開關 的汲極端)之間。這樣一來的話,緩衝電容器Csnb用作無損電壓尖峰吸收器,箝位變壓器TR的漏電感產生的電壓。另外,電容器Csnb的作用是確保初級開關Q1處在接通和斷開瞬變時都有零電壓開關。在初級開關接通瞬變時,初級開關接通之前,電容器Csnb中儲存的能量再次循環到輸入電壓節點中。在初級開關斷開瞬變時,電容器Csnb的運行方式與圖8(a)中的電容器C11相同,防止初級開關汲極端(節點14)處的電壓切換過快,從而確保初級開關斷開瞬變時的零電壓開關。 Referring to Figure 8(b), in other embodiments, the flyback converter 50b is provided with a snubber capacitor Csnb coupled to the primary side of the transformer TR to configure a zero voltage switch for the off transient of the primary switch Q1. That is, the capacitor Csnb is connected at node 12 (input voltage Vin) and node 14 (primary switch) Between the extremes). In this case, the snubber capacitor Csnb is used as a non-destructive voltage spike absorber to clamp the voltage generated by the leakage inductance of the transformer TR. In addition, the function of the capacitor Csnb is to ensure that the primary switch Q1 has a zero voltage switch when it is turned on and off. During the primary switch-on transient, the energy stored in capacitor Csnb is again cycled into the input voltage node before the primary switch is turned "on". When the primary switch is turned off, the capacitor Csnb operates in the same manner as capacitor C11 in Figure 8(a), preventing the voltage at the primary switch 汲 terminal (node 14) from switching too fast, thus ensuring the primary switch turn-off transient. Zero voltage switch at the time.

最後,在上述實施例中,返馳變換器50包括電容器C11或電容器Csnb。在其他實施例中,返馳變換器可以使用電容器C11和電容器Csnb一起配置。參見圖8(c),返馳變換器50c是使用電容器C11和電容器Csnb一起製成的。電容器C11和Csnb的運行方式與上述內容相同,以確保至少在初級開關Q1斷開瞬變時的零電壓開關。 Finally, in the above embodiment, the flyback converter 50 includes a capacitor C11 or a capacitor Csnb. In other embodiments, the flyback converter can be configured with capacitor C11 and capacitor Csnb. Referring to Fig. 8(c), the flyback converter 50c is fabricated using a capacitor C11 and a capacitor Csnb. Capacitors C11 and Csnb operate in the same manner as described above to ensure zero voltage switching at least when primary switch Q1 is turned off.

在圖8(a)至8(c)所示的實施例中,配置返馳變換器50a-c是使用初級開關瞬變時零電壓開關的強迫式ZVS時序控制體系,以及初級開關斷開瞬變時零電壓開關的電容器C11或Csnb(或兩者都有)。在本發明的其他實施例中,配置返馳變換器可以使用初級開關接通瞬變的其他任意零電壓開關體系,以及用於初級開關斷開瞬變的零電壓開關的電容器C11或Csnb(或兩者都有)。圖9表示在本發明的實施例中,用於初級開關斷開瞬變的零電壓開關(ZVS)的返馳變換器的示意圖。參見圖9,返馳變換器60的配置方式與圖8(a)-8(c)所示的返馳變換器50a-c的方式相同,但是沒有正電流檢測電路,用於配置上述初級開關接通瞬變的強迫式ZVS時序控制體系。反之,返馳變換器60可以使用目前已知或正要研發的任意其他的零電壓開關體系配置,以實現初級開關接通瞬變 的零電壓開關。例如,返馳變換器60可以配置上述Zhang論文中提到的變頻(VF)ZVS DCM體系,以實現初級開關接通瞬變的零電壓開關。 In the embodiment shown in Figures 8(a) through 8(c), the configuration of the flyback converters 50a-c is a forced ZVS timing control system using zero voltage switching at the primary switching transient, and a primary switch disconnection instant Capacitor C11 or Csnb (or both) for time-varying zero voltage switching. In other embodiments of the invention, the configuration of the flyback converter can use any other zero voltage switching system that turns on the transient with the primary switch, and the capacitor C11 or Csnb for the zero voltage switching of the primary switch disconnect transient (or Both have). Figure 9 shows a schematic diagram of a flyback converter for a zero voltage switch (ZVS) for primary switch disconnect transients in an embodiment of the invention. Referring to Fig. 9, the flyback converter 60 is arranged in the same manner as the flyback converters 50a-c shown in Figs. 8(a)-8(c), but has no positive current detecting circuit for configuring the above primary switch. Turn on the transient forced ZVS timing control system. Conversely, the flyback converter 60 can be configured with any other zero voltage switching system currently known or under development to achieve primary switching turn-on transients. Zero voltage switch. For example, the flyback converter 60 can be configured with the variable frequency (VF) ZVS DCM system mentioned in the above-mentioned Zhang paper to achieve a zero voltage switch of the primary switch-on transient.

同時,製成的返馳變換器60帶有電容器C11,與初級開關Q1耦合並聯。電容器C11在斷開瞬變時將汲極至源極電壓Vds保持在零電壓,允許在汲極至源極電壓Vds變化之前,斷開初級開關Q1。在這種情况下,實現了初級開關處的ZVS斷開。在本實施例中,返馳變換器60還具有緩衝的電容器Csnb,耦合在變壓器TR的初級端。電容器Csnb的作用是確保初級開關Q1在接通和斷開瞬變時的零電壓開關。在初級開關接通瞬變時,在初級開關接通之前,電容器Csnb中儲存的能量循環到輸入電壓節點中。在初級開關斷開瞬變時,電容器Csnb的運行方式與電容器C11的方式相同,防止初級開關汲極端(節點14)處的電壓切換過快,從而確保初級開關斷開瞬變處的零電壓開關。 At the same time, the produced flyback converter 60 is provided with a capacitor C11 coupled in parallel with the primary switch Q1. Capacitor C11 maintains the drain-to-source voltage Vds at zero voltage when the transient is turned off, allowing the primary switch Q1 to be turned off before the drain-to-source voltage Vds changes. In this case, the ZVS disconnection at the primary switch is achieved. In the present embodiment, the flyback converter 60 also has a buffered capacitor Csnb coupled to the primary side of the transformer TR. The function of the capacitor Csnb is to ensure zero voltage switching of the primary switch Q1 when the transient is switched on and off. During the primary switch-on transient, the energy stored in capacitor Csnb is cycled into the input voltage node before the primary switch is turned "on". When the primary switch is turned off, the capacitor Csnb operates in the same manner as capacitor C11, preventing the voltage at the primary switch 汲 terminal (node 14) from switching too fast, thus ensuring zero voltage switching at the primary switch open transient. .

在圖9中,返馳變換器60包括的電容器C11和Csnb。在本發明的其他實施例中,返馳變換器60可以僅使用電容器C11或僅使用電容器Csnb製成,以實現至少對初級開關的斷開瞬變,在初級開關處的零電壓開關。圖9所示的使用電容器C11和電容器Csnb僅用於解釋說明,不用於局限。 In FIG. 9, the flyback converter 60 includes capacitors C11 and Csnb. In other embodiments of the invention, flyback converter 60 may be fabricated using only capacitor C11 or only capacitor Csnb to achieve at least an open transient to the primary switch, a zero voltage switch at the primary switch. The use capacitor C11 and capacitor Csnb shown in Fig. 9 are for illustrative purposes only and are not intended to be limiting.

如上所述,帶有初級開關和同步整流器的返馳變換器,在一個開關週期內交替接通和斷開。控制器產生時間信號,同步初級開關和同步整流器的切換。例如,當同步整流器斷開時,初級端控制器必須接到通知,從而接通初級開關。在傳統的返馳變換器中,使用光電耦合器或隔離變壓器控制時間信號。然而,這些電路元件非常昂貴,而且佔用大量的電路區域。 As described above, the flyback converter with the primary switch and the synchronous rectifier is alternately turned on and off during one switching cycle. The controller generates a time signal that synchronizes the switching of the primary switch and the synchronous rectifier. For example, when the synchronous rectifier is turned off, the primary side controller must be notified to turn on the primary switch. In a conventional flyback converter, a photocoupler or an isolating transformer is used to control the time signal. However, these circuit components are very expensive and take up a large amount of circuit area.

在本發明的實施例中,返馳變換器實現了自動同步方法用於控制時間信號。在強迫式ZVS運行中,同步整流器接通一段第二接通時間,然後斷開。 當同步整流器在第二接通時間斷開時,次級電流轉移到初級變壓器繞組,使得初級電流自由跨過初級開關Q1的體二極管D1。本發明所述的自動同步方法傳感初級電流,在啟動同步整流器的第二接通時間之後,檢測續流電流。在啟動同步整流器的第二接通時間之後,檢測續流電流時,自動同步方法產生一個電流傳感信號,表示同步整流器斷開。初級端控制器可以將電流傳感信號用作控制時間信號,為下一個開關周期接通初級開關。在一些實施例中,通過傳感特定閾值以上的電流值,傳感續流電流。 In an embodiment of the invention, the flyback converter implements an automatic synchronization method for controlling the time signal. In forced ZVS operation, the synchronous rectifier is turned on for a second on-time and then turned off. When the synchronous rectifier is turned off at the second on-time, the secondary current is transferred to the primary transformer winding such that the primary current is free to cross the body diode D1 of the primary switch Q1. The automatic synchronization method of the present invention senses the primary current and detects the freewheeling current after the second on-time of the synchronous rectifier is activated. After detecting the freewheeling current after the second on-time of the synchronous rectifier is initiated, the automatic synchronization method generates a current sensing signal indicating that the synchronous rectifier is off. The primary side controller can use the current sense signal as a control time signal to turn on the primary switch for the next switching cycle. In some embodiments, the freewheeling current is sensed by sensing a current value above a certain threshold.

在本發明的可選實施例中,返馳變換器在變壓器的初級端,配置輸出電壓傳感。確切地說,在強迫式ZVS運行中,同步整流器接通一段第二接通時間,然後斷開。當同步整流器在第二接通時間接通時,初級變壓器上的電壓閉鎖輸出電壓Vout。因此,初級端控制器可以在同步整流器的第二接通時間內對變壓器初級繞組上的電壓進行採樣,作為輸出電壓的指示,並且利用採樣的電壓值,控制初級開關的工作周期。本發明所述的輸出電壓傳感方法對於電壓模式控制極其有用,可以在返馳變換器輸出端保持穩定的輸出電壓。 In an alternative embodiment of the invention, the flyback converter is configured with output voltage sensing at the primary side of the transformer. Specifically, in forced ZVS operation, the synchronous rectifier is turned on for a second on-time and then turned off. When the synchronous rectifier is turned on at the second on time, the voltage on the primary transformer blocks the output voltage Vout. Therefore, the primary side controller can sample the voltage on the primary winding of the transformer during the second on-time of the synchronous rectifier as an indication of the output voltage and control the duty cycle of the primary switch using the sampled voltage value. The output voltage sensing method of the present invention is extremely useful for voltage mode control and maintains a stable output voltage at the output of the flyback converter.

圖10表示在本發明的實施例中,帶有正電流同步整流器關斷觸發器的强迫式ZVS時間控制方法的流程圖。強迫式ZVS方法可以配置在返馳變換器中,例如圖5和8所示的返馳變換器10和50。參見圖10,強迫式ZVS方法200通過接通初級開關(202),啟動開關週期。方法200在接通時間TON(204)之後,斷開初級開關。方法200在非重疊間隙時間(206)之後,接通同步整流器。方法200傳感次級電流,根據次級電流達到零電流值,方法200斷開同步整流器(208)。方法200繼續監控輸出電壓,返馳變換器在非連續傳導模式(210)下運行。方法傳感輸出電壓VOUT,以確定何時輸出電壓VOUT小於參考電壓VREF (212)。當輸出電壓VOUT等於或小於參考電壓VREF時,方法200接通同步整流器第二接通時間,並繼續監控次級電流(214)。當次級電流具有正電流值(216)時,方法200進行檢測。根據次級電流具有正電流值,方法200斷開同步整流器(218)。方法200等待初級開關(220)的斷開時間結束,下一個開關週期重複,方法200在202處重複,接通初級開關。 Figure 10 shows a flow chart of a forced ZVS time control method with a positive current synchronous rectifier turn-off trigger in an embodiment of the invention. The forced ZVS method can be configured in a flyback converter, such as the flyback converters 10 and 50 shown in Figures 5 and 8. Referring to Figure 10, the forced ZVS method 200 initiates a switching cycle by turning on the primary switch (202). The method 200 turns off the primary switch after the turn-on time TON (204). The method 200 turns on the synchronous rectifier after the non-overlapping gap time (206). The method 200 senses the secondary current, and the method 200 turns off the synchronous rectifier (208) based on the secondary current reaching a zero current value. The method 200 continues to monitor the output voltage and the flyback converter operates in a discontinuous conduction mode (210). The method senses the output voltage VOUT to determine when the output voltage VOUT is less than the reference voltage VREF (212). When the output voltage VOUT is equal to or less than the reference voltage VREF, the method 200 turns on the synchronous rectifier second on time and continues to monitor the secondary current (214). Method 200 performs detection when the secondary current has a positive current value (216). Method 200 turns off synchronous rectifier (218) based on the secondary current having a positive current value. The method 200 waits for the turn-off time of the primary switch (220) to end, the next switch cycle repeats, and the method 200 repeats at 202 to turn the primary switch on.

圖11表示在本發明的一個可選實施例中,帶有正電流同步整流器關斷觸發器的强迫式ZVS時間控制方法的流程圖。確切地說,圖11表示在本發明的實施例中,在强迫式ZVS時間控制方法中使用自動同步方法。參見圖11,強迫式ZVS方法250通過接通初級開關(252),啟動開關週期。方法250在接通時間TON(254)之後斷開初級開關。方法250在非重疊間隙時間(256)之後,接通同步整流器。方法250傳感次級電流,根據次級電流達到零電流值,方法250斷開同步整流器(258)。方法250繼續監控輸出電壓,返馳變換器在非連續傳導模式下(260)運行。該方法傳感輸出電壓VOUT,以確定當輸出電壓VOUT小於參考電壓VREF時,方法250接通同步整流器第二接通時間,並繼續監控次級電流(264)。當次級電流具有正電流值(266)時,方法250進行檢測。根據次級電流具有正電流值,方法250斷開同步整流器(268)。方法250傳感初級電流,檢測初級電流值高於指定的閾值,表示同步整流器已經斷開(270)。根據傳感的初級電流高於指定的閾值,方法250在252處重複,為下一個開關週期接通初級開關。 Figure 11 shows a flow chart of a forced ZVS time control method with a positive current synchronous rectifier turn-off trigger in an alternate embodiment of the present invention. Specifically, FIG. 11 shows that in the embodiment of the present invention, the automatic synchronization method is used in the forced ZVS time control method. Referring to Figure 11, the forced ZVS method 250 initiates a switching cycle by turning on the primary switch (252). The method 250 turns off the primary switch after the turn-on time TON (254). The method 250 turns the synchronous rectifier on after the non-overlapping gap time (256). Method 250 senses the secondary current, and based on the secondary current reaching a zero current value, method 250 opens the synchronous rectifier (258). The method 250 continues to monitor the output voltage and the flyback converter operates in a discontinuous conduction mode (260). The method senses the output voltage VOUT to determine that when the output voltage VOUT is less than the reference voltage VREF, the method 250 turns on the synchronous rectifier second on-time and continues to monitor the secondary current (264). Method 250 performs a detection when the secondary current has a positive current value (266). Method 250 turns off synchronous rectifier (268) based on the secondary current having a positive current value. Method 250 senses the primary current and detects that the primary current value is above a specified threshold, indicating that the synchronous rectifier has been turned off (270). Method 250 repeats at 252 based on the sensed primary current being above a specified threshold, turning the primary switch on for the next switching cycle.

圖12表示在本發明的一個可選實施例中,帶有正電流同步整流器關斷觸發器的強迫式ZVS時間控制方法的流程圖。強迫式ZVS方法可以在返馳變換器中配置,例如圖5和8所示的返馳變換器10和50。參見圖12,強迫式ZVS方法 300通過接通初級開關(302),啟動開關週期。方法300在接通時間TON(304)之後,斷開初級開關。方法300在非重疊間隙時間(306)之後,接通同步整流器。方法300檢測次級電流達到零電流值,返馳變換器在臨界傳導模式(308)下運行。方法300保持同步整流器接通第二接通時間,並繼續監控次級電流(310)。當次級電流具有正電流值(312)時,方法300進行檢測。根據次級電流具有正電流值,方法300斷開同步整流器(314)。方法300傳感初級電流,檢測初級電流值高於指定的閾值,表示同步整流器斷開(316)。根據傳感的初級電流高於指定的閾值,方法300在302處重複,為下一個開關週期接通初級開關。 Figure 12 is a flow diagram showing a forced ZVS time control method with a positive current synchronous rectifier turn-off trigger in an alternate embodiment of the present invention. The forced ZVS method can be configured in a flyback converter, such as the flyback converters 10 and 50 shown in Figures 5 and 8. See Figure 12, forced ZVS method The switching cycle is initiated by turning on the primary switch (302). The method 300 turns off the primary switch after the on time TON (304). The method 300 turns on the synchronous rectifier after the non-overlapping gap time (306). Method 300 detects that the secondary current reaches a zero current value and the flyback converter operates in a critical conduction mode (308). The method 300 maintains the synchronous rectifier on for a second on-time and continues to monitor the secondary current (310). Method 300 performs detection when the secondary current has a positive current value (312). Method 300 turns off synchronous rectifier (314) based on the secondary current having a positive current value. Method 300 senses the primary current and detects that the primary current value is above a specified threshold, indicating that the synchronous rectifier is open (316). Based on the sensed primary current being above a specified threshold, method 300 repeats at 302 to turn the primary switch on for the next switching cycle.

在圖12所示的實施例中配置了自動同步。在其他實施例中,強迫式ZVS時間控制方法可用於臨界傳導模式下的返馳變換器,無需使用自動同步方法。 Automatic synchronization is configured in the embodiment shown in FIG. In other embodiments, the forced ZVS time control method can be used for a flyback converter in critical conduction mode without the use of an automatic synchronization method.

雖然為了表述清楚,以上內容對實施例進行了詳細介紹,但是本發明並不局限於上述細節。實施本發明還有許多可選方案。文中的實施例僅用於解釋說明,不用於局限。 Although the embodiments have been described in detail above for the sake of clarity, the present invention is not limited to the details described above. There are many alternatives for implementing the invention. The examples herein are for illustrative purposes only and are not intended to be limiting.

Claims (16)

一種強迫式零電壓開關返馳變換器的運行方法,該返馳變換器包括一個變壓器,具有接收輸入電壓的初級繞組,以及提供輸出電壓的次級繞組,初級開關耦合到初級繞組,同步整流器耦合到次級繞組,該方法,係包括:在開關週期開始時,接通初級開關第一持續時間;接通同步整流器第一接通時間;傳感次級繞組中流動的次級電流;根據次級電流達到零電流值,斷開同步整流器;在非連續傳導模式下,監控輸出電壓;根據輸出電壓小於參考電壓,接通同步整流器第二接通時間;在第二接通時間內,傳感次級繞組中流動的次級電流,次級電流包括具有負電流衝程和正電流衝程的電流波紋;以及根據第二接通時間內,具有正電流值的次級電流,斷開同步整流器;跨過初級開關,耦合第一電容器;第一電容器與初級開關並聯耦合,並且根據跨過初級開關,耦合第一電容器,在初級開關零電壓下,斷開初級開關;跨過變壓器的初級繞組,耦合第二電容器;第二電容器連接在輸入電壓和初級開關的汲極端之間,並且根據跨過初級繞組,耦合第二電容器,在初級開關零電壓下,斷開初級開關。 A method of operating a forced zero voltage switching flyback converter, the converter comprising a transformer having a primary winding receiving an input voltage and a secondary winding providing an output voltage, the primary switch being coupled to the primary winding, the synchronous rectifier coupling To the secondary winding, the method includes: turning on the first duration of the primary switch at the beginning of the switching cycle; turning on the first on-time of the synchronous rectifier; sensing the secondary current flowing in the secondary winding; The current reaches the zero current value, and the synchronous rectifier is turned off; in the discontinuous conduction mode, the output voltage is monitored; according to the output voltage being less than the reference voltage, the synchronous rectifier is turned on for the second on time; and during the second on time, the sensing is performed. a secondary current flowing in the secondary winding, the secondary current comprising a current ripple having a negative current stroke and a positive current stroke; and a secondary current having a positive current value according to the second on-time, disconnecting the synchronous rectifier; crossing a primary switch coupling a first capacitor; a first capacitor coupled in parallel with the primary switch and depending on the primary switch Coupling the first capacitor, disconnecting the primary switch at the primary switch zero voltage; coupling the second capacitor across the primary winding of the transformer; the second capacitor is connected between the input voltage and the 汲 terminal of the primary switch, and according to the primary The winding, coupled to the second capacitor, opens the primary switch at zero voltage of the primary switch. 如請求項第1項所述之方法,更包括:根據初級開關的斷開時間段截止,通過重複初級開關的接通,啟動下一個 開關週期,初級開關在開關的零電壓下接通。 The method of claim 1, further comprising: starting the next switch according to the off period of the primary switch, and starting the next one by repeating the turning on of the primary switch During the switching cycle, the primary switch is turned on at zero voltage of the switch. 如請求項第1項所述之方法,更包括:根據同步整流器接通第二接通時間,傳感初級電流;並且根據初級電流超過閾值,通過重複初級開關的接通,啟動下一個開關週期。 The method of claim 1, further comprising: sensing the primary current according to the synchronous rectifier being turned on for the second on-time; and starting the next switching cycle by repeating the turning on of the primary switch according to the primary current exceeding the threshold . 如請求項第1項所述之方法,其中接通同步整流器第一接通時間包括在一個非重疊時間後接通同步整流器。 The method of claim 1, wherein turning on the synchronous rectifier for the first on-time comprises turning the synchronous rectifier on after a non-overlapping time. 如請求項第1項所述之方法,其中在開關週期開始時,接通初級開關第一持續時間,係包括:在開關週期開始時,接通初級開關一個固定的接通時間。 The method of claim 1, wherein the first duration of the primary switch is turned on at the beginning of the switching cycle, comprising: turning the primary switch on for a fixed on-time at the beginning of the switching cycle. 一種強迫式零電壓開關返馳變換器的運行方法,該返馳變換器包括一個變壓器,具有接收輸入電壓的初級繞組,以及提供輸出電壓的次級繞組,初級開關耦合到初級繞組,同步整流器耦合到次級繞組,該方法,係包括:在開關週期開始時,接通初級開關第一持續時間;接通同步整流器第一接通時間;在臨界傳導模式下,傳感次級繞組中流動的次級電流;根據次級電流達到零電流值,延長同步整流器的接通時間第二接通時間;在第二接通時間內,傳感次級繞組中流動的次級電流,次級電流包括具有負電流衝程和正電流衝程的電流波紋;以及根據第二接通時間內,具有正電流值的次級電流,斷開同步整流器;跨過初級開關,耦合第一電容器;並且根據跨過初級開關,耦合第一電容器,在初級開關的零電壓下,斷開初級開關; 跨過變壓器的初級繞組,耦合第二電容器;並且根據跨過變壓器的初級繞組,耦合第二電容器,在初級開關的零電壓下斷開初級開關。 A method of operating a forced zero voltage switching flyback converter, the converter comprising a transformer having a primary winding receiving an input voltage and a secondary winding providing an output voltage, the primary switch being coupled to the primary winding, the synchronous rectifier coupling To the secondary winding, the method includes: turning on the first duration of the primary switch at the beginning of the switching cycle; turning on the first on-time of the synchronous rectifier; and sensing the flow in the secondary winding in the critical conduction mode Secondary current; according to the secondary current reaching zero current value, extending the on-time of the synchronous rectifier by the second on-time; during the second on-time, sensing the secondary current flowing in the secondary winding, the secondary current includes a current ripple having a negative current stroke and a positive current stroke; and a secondary current having a positive current value according to the second on-time, opening the synchronous rectifier; coupling the first capacitor across the primary switch; and depending on crossing the primary switch a first capacitor is coupled to disconnect the primary switch at zero voltage of the primary switch; A second capacitor is coupled across the primary winding of the transformer; and the second capacitor is coupled according to the primary winding across the transformer, and the primary switch is turned off at zero voltage of the primary switch. 如請求項第6項所述之方法,更包括:根據初級開關的斷開時間截止,通過重複初級開關的接通,啟動下一個開關週期。 The method of claim 6, further comprising: starting the next switching cycle by repeating the turning on of the primary switch according to the off time of the primary switch. 如請求項第6項所述之方法,更包括:根據同步整流器接通第二接通時間,傳感初級電流;並且根據初級電流超過閾值,通過重複初級開關的接通,啟動下一個開關週期。 The method of claim 6, further comprising: sensing the primary current according to the synchronous rectifier being turned on for the second on-time; and starting the next switching cycle by repeating the turning on of the primary switch according to the primary current exceeding the threshold . 如請求項第6項所述之方法,其中接通同步整流器第一接通時間,包括在一個非重疊週期後,接通同步整流器。 The method of claim 6, wherein the first on-time of the synchronous rectifier is turned on, including after a non-overlapping period, the synchronous rectifier is turned on. 如請求項第6項所述之方法,其中在第一接通時間的開關週期開始時,接通初級開關,係包括:在開關週期開始時,接通初級開關一個固定的接通時間。 The method of claim 6, wherein turning on the primary switch at the beginning of the switching period of the first on-time comprises: turning on the primary switch for a fixed on-time at the beginning of the switching cycle. 一種返馳變換器,係包括:一個變壓器,具有接收輸入電壓的初級繞組以及提供輸出電壓的次級繞組;一個耦合到初級繞組上的初級開關;一個耦合到次級繞組上的同步整流器;一個跨過次級繞組和同步整流器耦合的輸出電容器;一個耦合產生控制信號的控制器,驅動初級開關和同步整流器;以及一個正電流檢測電路,傳感次級繞組中流動的次級電流,根據檢測到具有正電流值的次級電流,產生檢測信號, 其中控制器產生控制信號,在一個開關周期內交替接通和斷開初級開關和同步整流器,同步整流器在開關周期內接通第一接通時間,根據檢測到次級電流達到零電流值,控制器產生控制信號,在開關周期內接通同步整流器第二接通時間,正電流檢測電路在第二接通時間內傳感次級電流,根據檢測到具有正電流值的次級電流,產生檢測信號,並且根據檢測信號,在開關周期內,斷開同步整流器,一個跨過初級開關耦合的第一電容器,其中根據跨過初級開關耦合第一電容器,在初級開關的零電壓下斷開初級開關,一個跨過變壓器的初級繞組耦合的第二電容器,其中根據跨過初級繞組耦合第二電容器,在初級開關的零電壓下斷開初級開關。 A flyback converter includes: a transformer having a primary winding receiving an input voltage and a secondary winding providing an output voltage; a primary switch coupled to the primary winding; and a synchronous rectifier coupled to the secondary winding; An output capacitor coupled across the secondary winding and the synchronous rectifier; a controller coupled to generate a control signal to drive the primary switch and the synchronous rectifier; and a positive current sensing circuit to sense secondary current flowing in the secondary winding, according to the detection To a secondary current with a positive current value, generating a detection signal, The controller generates a control signal, alternately turns on and off the primary switch and the synchronous rectifier in one switching cycle, and the synchronous rectifier turns on the first on-time in the switching cycle, and controls the secondary current to reach a zero current value according to the detected The controller generates a control signal, and turns on the second on-time of the synchronous rectifier during the switching period, the positive current detecting circuit senses the secondary current in the second on-time, and generates a detection signal according to the detection of the secondary current having the positive current value. And according to the detection signal, during the switching period, the synchronous rectifier is turned off, a first capacitor coupled across the primary switch, wherein the primary switch is turned off at zero voltage of the primary switch according to coupling the first capacitor across the primary switch, A second capacitor coupled across the primary winding of the transformer, wherein the primary switch is turned off at zero voltage of the primary switch in accordance with coupling the second capacitor across the primary winding. 如請求項第11項所述之返馳變換器,其中控制器在非連續傳導模式下運行返馳變換器,控制器產生控制信號,根據檢測到次級電流達到零電流值,斷開同步整流器,控制器繼續監控輸出電壓,根據輸出電壓等於或低於參考電壓,控制器產生控制信號,在開關周期內,接通同步整流器第二接通時間。 The flyback converter of claim 11, wherein the controller runs the flyback converter in the discontinuous conduction mode, the controller generates a control signal, and disconnects the synchronous rectifier according to the detection that the secondary current reaches a zero current value. The controller continues to monitor the output voltage. According to the output voltage being equal to or lower than the reference voltage, the controller generates a control signal to turn on the second on-time of the synchronous rectifier during the switching period. 如請求項第11項所述之返馳變換器,其中控制器在臨界傳導模式下運行返馳變換器,控制器產生控制信號,根據檢測到次級電流達到零電流值,在開關周期內,延長同步整流器的接通時間第二接通時間。 The flyback converter of claim 11, wherein the controller runs the flyback converter in the critical conduction mode, and the controller generates a control signal, according to detecting that the secondary current reaches a zero current value, during the switching period, Extend the on-time of the synchronous rectifier for the second on-time. 如請求項第11項所述之返馳變換器,其中根據初級開關的斷開時間截止,通過重複初級開關的接通,啟動下一個開關週期,初級開關在開關的零電壓下接通。 The flyback converter of claim 11, wherein the next switching cycle is initiated by repeating the turning-off of the primary switch according to the off time of the primary switch, the primary switch being turned on at the zero voltage of the switch. 如請求項第11項所述之返馳變換器,其中根據同步整流器接通第二接通時間,控制器傳感初級電流,並且根據初級電流超過閾值,通過重複初級 開關的接通,啟動下一個開關周期。 The flyback converter of claim 11, wherein the controller senses the primary current according to the synchronous rectifier being turned on for the second on time, and repeats the primary according to the primary current exceeding the threshold The switch is turned on to start the next switching cycle. 如請求項第11項所述之返馳變換器,其中控制器產生控制信號,使初級開關接通一段固定的接通時間。 The flyback converter of claim 11, wherein the controller generates a control signal to cause the primary switch to be turned on for a fixed on time.
TW106136302A 2017-10-23 2017-10-23 Forced zero voltage switching flyback converter and using method TWI653813B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106136302A TWI653813B (en) 2017-10-23 2017-10-23 Forced zero voltage switching flyback converter and using method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106136302A TWI653813B (en) 2017-10-23 2017-10-23 Forced zero voltage switching flyback converter and using method

Publications (2)

Publication Number Publication Date
TWI653813B true TWI653813B (en) 2019-03-11
TW201918006A TW201918006A (en) 2019-05-01

Family

ID=66590695

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106136302A TWI653813B (en) 2017-10-23 2017-10-23 Forced zero voltage switching flyback converter and using method

Country Status (1)

Country Link
TW (1) TWI653813B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10840817B1 (en) * 2019-10-16 2020-11-17 Semiconductor Components Industries, Llc Systems and methods of synchronous rectification in active clamp flyback power converters
TWI729807B (en) * 2019-11-11 2021-06-01 立錡科技股份有限公司 Flyback power converter and active clamp snubber and overcharging protection circuit thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991172A (en) 1996-06-21 1999-11-23 Delta Electronics, Inc. AC/DC flyback converter with improved power factor and reduced switching loss
TWI358188B (en) 2008-09-17 2012-02-11 Delta Electronics Inc Forward-flyback converter with active-clamp circui
US20150015071A1 (en) 2013-07-10 2015-01-15 Infineon Technologies Austria Ag Post-regulated flyback converter with variable output stage
WO2016054102A1 (en) 2014-10-02 2016-04-07 Navitias Semiconductor, Inc. Zero voltage soft switching scheme for power converters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991172A (en) 1996-06-21 1999-11-23 Delta Electronics, Inc. AC/DC flyback converter with improved power factor and reduced switching loss
TWI358188B (en) 2008-09-17 2012-02-11 Delta Electronics Inc Forward-flyback converter with active-clamp circui
US20150015071A1 (en) 2013-07-10 2015-01-15 Infineon Technologies Austria Ag Post-regulated flyback converter with variable output stage
WO2016054102A1 (en) 2014-10-02 2016-04-07 Navitias Semiconductor, Inc. Zero voltage soft switching scheme for power converters

Also Published As

Publication number Publication date
TW201918006A (en) 2019-05-01

Similar Documents

Publication Publication Date Title
CN107979288B (en) Forced zero-voltage switch flyback converter
CN107979287B (en) Zero-voltage switching inverter for main switch switching
KR101931448B1 (en) System and method for a startup cell circuit
US7738266B2 (en) Forward power converter controllers
US7570497B2 (en) Discontinuous quasi-resonant forward converter
US7385833B2 (en) Snubber circuit for a power converter
EP2421137B1 (en) Switching power supply unit
US6366476B1 (en) Switching power supply apparatus with active clamp circuit
US6469913B2 (en) Switching power supply device having series capacitance
Oruganti et al. Soft-switched DC/DC converter with PWM control
US8749996B2 (en) Switching power supply apparatus
TWI650927B (en) Zero voltage switching flyback converter for primary switch turn-off transitions
JP2001197740A (en) Switching power supply
US20180323713A1 (en) Soft-switching for high-frequency power conversion
WO2005101635A1 (en) Soft-switching power converter having power saving means
JP5012404B2 (en) Synchronous rectification type DC-DC converter
TWI653813B (en) Forced zero voltage switching flyback converter and using method
CN113131745B (en) Control method and control circuit of flyback power supply
CN114568041A (en) Flyback converter and operation method thereof
KR101721321B1 (en) Hybride type LED Power Supply
CN113676052B (en) Flyback converter and control method thereof
GB2456599A (en) Resonant discontinuous forward power converter
Kathiresan et al. Analysis of a ZVS DC-DC full-bridge converter with natural hold-up time
CN114568042A (en) Flyback converter and operation method thereof
KR20180131742A (en) Themoellectric generation system based forward-flyback converter