TWI651836B - Gate array contactless semiconductor channel memory structure and preparation method thereof - Google Patents

Gate array contactless semiconductor channel memory structure and preparation method thereof Download PDF

Info

Publication number
TWI651836B
TWI651836B TW106118146A TW106118146A TWI651836B TW I651836 B TWI651836 B TW I651836B TW 106118146 A TW106118146 A TW 106118146A TW 106118146 A TW106118146 A TW 106118146A TW I651836 B TWI651836 B TW I651836B
Authority
TW
Taiwan
Prior art keywords
gate
semiconductor channel
gate array
nano carbon
semiconductor
Prior art date
Application number
TW106118146A
Other languages
Chinese (zh)
Other versions
TW201838155A (en
Inventor
肖德元
Original Assignee
上海新昇半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新昇半導體科技有限公司 filed Critical 上海新昇半導體科技有限公司
Publication of TW201838155A publication Critical patent/TW201838155A/en
Application granted granted Critical
Publication of TWI651836B publication Critical patent/TWI651836B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND

Abstract

本發明提供一種閘陣列無接面半導體通道記憶體結構及其製備方法,該結構包括:半導體基板;位於所述半導體基板之上的絕緣層;位於所述絕緣層上採用二維半導體材料的半導體通道;位於所述半導體通道上的閘電荷捕捉結構;位於所述閘電荷捕捉結構之上的奈米碳管閘陣列;以及分別位於所述奈米碳管閘陣列兩端,並分別與所述半導體通道連接的源接觸電極和汲接觸電極。本發明的記憶體結構以二維半導體材料通道代替傳統的矽摻雜通道,並採用了金屬奈米碳管閘陣列,改善了閘極電荷捕捉性能,簡化了元件結構,可進一步提高記憶陣列密度。 The invention provides a gate array non-contact semiconductor channel memory structure and a preparation method thereof. The structure includes: a semiconductor substrate; an insulating layer on the semiconductor substrate; and a semiconductor using a two-dimensional semiconductor material on the insulating layer. A channel; a gate charge trapping structure on the semiconductor channel; a nano carbon tube gate array above the gate charge trapping structure; and two ends of the nano carbon tube gate array, respectively, and A source contact electrode and a drain contact electrode connected to the semiconductor channel. The memory structure of the present invention uses two-dimensional semiconductor material channels instead of traditional silicon-doped channels, and uses a metal nano-carbon tube gate array, which improves gate charge trapping performance, simplifies element structure, and further increases memory array density. .

Description

一種閘陣列無接面半導體通道記憶體結構及其製 備方法    Gate array non-contact semiconductor channel memory structure and preparation method thereof   

本發明涉及積體電路技術領域,特別是涉及一種閘陣列無接面半導體通道記憶體結構及其製備方法。 The invention relates to the technical field of integrated circuits, in particular to a gate array non-contact semiconductor channel memory structure and a preparation method thereof.

對於不同架構的NAND記憶體來說,按照記憶層的材料可以劃分為三維浮動閘極記憶體和三維電荷捕捉記憶體。對於前者三維浮動閘極記憶體由於採用多晶矽浮動閘極作為記憶層,記憶單元面積更大,在實現更多層記憶單元層疊時製程難度較大,因此主要是通過把週邊電路置於記憶陣列下面來實現面積的縮減。對於後者三維電荷捕捉記憶體,又可以劃分為垂直閘極型和垂直通道型。基於垂直閘極結構的三維電荷捕捉快閃記憶體結構,製程上要難於垂直通道型,一直未見其宣告量產。垂直通道型三維電荷捕捉記憶體是最早實現大規模量產的快閃記憶體產品,2013年8月,三星電子推出了第一代24層的三維垂直通道型電荷捕捉三維記憶體,2014年7月推出了第二代32層128Gb產品,2015年推出了48層256Gb的產品。 For different architectures of NAND memory, the material of the memory layer can be divided into three-dimensional floating gate memory and three-dimensional charge trapping memory. For the former three-dimensional floating gate memory, because the polycrystalline silicon floating gate is used as the memory layer, the memory cell area is larger, and the process is more difficult when more layers of memory cells are stacked. Therefore, the peripheral circuit is mainly placed under the memory array. To achieve area reduction. For the latter three-dimensional charge trapping memory, it can be divided into vertical gate type and vertical channel type. The three-dimensional charge trapping flash memory structure based on the vertical gate structure is difficult to process in the vertical channel type, and its mass production has not been announced. Vertical channel 3D charge trapping memory is the earliest flash memory product to achieve mass production. In August 2013, Samsung Electronics introduced the first 24-layer 3D vertical channel charge trapping 3D memory. July 2014 The second generation of 32-layer 128Gb products was launched in January, and 48-layer 256Gb products were launched in 2015.

三星電子推出的垂直通道型三維電荷捕捉快閃記憶體以垂直的多晶矽圓柱體作為通道,多層閘極環繞在該多晶矽圓柱體周圍,每層閘極作為一層字線,這樣字線就成了水平層,位線連接在垂直的多晶矽圓 柱體的頂部。公共源極線通過在基板製作重摻雜區域再逐個引出。閘極採用電荷捕捉的方式記憶,在多晶矽通道和閘極金屬之間設有隧穿層、電荷捕捉層和阻擋層。具體的元件結構描述可參考專利公開號為CN104425511A的專利文獻。 The vertical channel type three-dimensional charge trapping flash memory introduced by Samsung Electronics uses vertical polycrystalline silicon cylinders as channels, and multiple layers of gates surround the polycrystalline silicon cylinders. Each layer of gates serves as a word line, so that the word line becomes horizontal. Layer, bit line connected to vertical polycrystalline silicon circle The top of the cylinder. The common source lines are drawn out one by one by making heavily doped regions on the substrate. The gate is memorized by a charge trapping method, and a tunneling layer, a charge trapping layer, and a blocking layer are provided between the polycrystalline silicon channel and the gate metal. For a detailed description of the element structure, please refer to the patent document with patent publication number CN104425511A.

這種垂直通道型三維電荷捕捉快閃記憶體的關鍵技術是超深孔蝕刻和高品質薄膜製程。32層的超深孔深寬比接近30:1,上下孔的直徑差異要求小於10-20nm。閘介電多層薄膜不僅要求頂層和底層的厚度基本一致,對材料均勻性也提出了很高的要求。通道材料一般為多晶矽薄膜,要求具有很好的結晶度和較大的晶粒,同時還需要與閘介電層之間有低缺陷密度的介面。作為一種電荷捕捉記憶體,記憶單元之間幾乎沒有耦合效應。程式設計和擦除操作分別使用了電子和電洞的Fowler-Nordheim(FN)隧穿。為了提高擦除速度,隧穿層通常會使用基於氧化矽和氮氧化矽材料的疊層結構。記憶層則一般是氮化矽為主的高陷阱密度材料。為了降低閘反向注入,阻擋層則會使用氧化矽或氧化鋁等材料。 The key technologies of this vertical channel type 3D charge trapping flash memory are ultra deep hole etching and high quality thin film process. The 32-layer ultra-deep hole has an aspect ratio close to 30: 1, and the diameter difference between the upper and lower holes must be less than 10-20nm. The gate dielectric multilayer film not only requires the thickness of the top layer and the bottom layer to be substantially the same, but also places high requirements on the uniformity of the material. The channel material is generally a polycrystalline silicon thin film, which requires good crystallinity and large grains, and also needs a low defect density interface with the gate dielectric layer. As a kind of charge trapping memory, there is almost no coupling effect between memory cells. The programming and erase operations use Fowler-Nordheim (FN) tunneling of electrons and holes, respectively. In order to increase the erasing speed, the tunneling layer usually uses a stacked structure based on silicon oxide and silicon oxynitride materials. The memory layer is generally a high trap density material based on silicon nitride. In order to reduce the gate reverse injection, the barrier layer uses materials such as silicon oxide or aluminum oxide.

然而,現有的垂直通道型三維電荷捕捉記憶體,元件通道材料採用多晶矽薄膜,要求具有很好的結晶度和較大的晶粒,同時又要求多晶矽薄膜通道的厚度要儘量薄,製程很難兼顧,影響產品良率。 However, in the existing vertical channel type three-dimensional charge trapping memory, the material of the channel of the device is polycrystalline silicon film, which requires good crystallinity and large crystal grains. At the same time, the thickness of the channel of the polycrystalline silicon film must be as thin as possible, and it is difficult to balance the manufacturing process. , Affecting product yield.

鑒於以上所述現有技術,本發明的目的在於提供一種閘陣列無接面半導體通道記憶體結構及其製備方法,用於解決現有技術中的種種問題。 In view of the foregoing prior art, an object of the present invention is to provide a gate array non-contact semiconductor channel memory structure and a preparation method thereof, which are used to solve various problems in the prior art.

為實現上述目的及其他相關目的,本發明提供一種閘陣列無接面半導體通道記憶體結構,包括:半導體基板;絕緣層,位於所述半導體基板之上;半導體通道,位於所述絕緣層上,採用二維半導體材料;閘電荷捕捉結構,位於所述半導體通道上,由下至上依次包括隧道層、電荷捕捉層和阻擋層;奈米碳管閘陣列,位於所述閘電荷捕捉結構之上,包括多個奈米碳管以及分別引出所述多個奈米碳管的多個閘接觸電極;源接觸電極和汲接觸電極,分別位於所述奈米碳管閘陣列兩端,並分別與所述半導體通道連接。 In order to achieve the above object and other related objects, the present invention provides a gate array non-contact semiconductor channel memory structure including: a semiconductor substrate; an insulating layer on the semiconductor substrate; a semiconductor channel on the insulating layer, Using a two-dimensional semiconductor material; a gate charge trapping structure located on the semiconductor channel, which includes a tunnel layer, a charge trapping layer, and a barrier layer in order from bottom to top; a nano-carbon tube gate array located above the gate charge trapping structure, It includes a plurality of nano carbon tubes and a plurality of gate contact electrodes respectively leading out of the plurality of nano carbon tubes; a source contact electrode and a drain contact electrode are respectively located at two ends of the nano carbon tube gate array, and are respectively connected with all the carbon nanotube gate arrays. Said semiconductor channel connection.

可選地,所述半導體基板為矽基板。 Optionally, the semiconductor substrate is a silicon substrate.

可選地,所述絕緣層為氧化矽。 Optionally, the insulating layer is silicon oxide.

可選地,所述半導體通道採用的二維半導體材料為MoS2、WS2、ReS2或SnO。 Optionally, the two-dimensional semiconductor material used for the semiconductor channel is MoS 2 , WS 2 , ReS 2 or SnO.

可選地,所述閘電荷捕捉結構中,所述隧道層的材料為矽氧化物,所述電荷捕捉層的材料為矽氮化物,所述阻擋層的材料為矽氧化物。 Optionally, in the gate charge trapping structure, a material of the tunnel layer is silicon oxide, a material of the charge trapping layer is silicon nitride, and a material of the barrier layer is silicon oxide.

可選地,所述奈米碳管閘陣列採用金屬性奈米碳管,每個奈米碳管的管徑為0.75~3nm,長度為100nm~50μm。 Optionally, the nano carbon tube gate array adopts a metallic nano carbon tube, and each nano carbon tube has a diameter of 0.75 to 3 nm and a length of 100 nm to 50 μm.

可選地,所述奈米碳管閘陣列的多個奈米碳管表面覆蓋有鈍化層。 Optionally, a surface of a plurality of nano carbon tubes of the nano carbon tube gate array is covered with a passivation layer.

可選地,所述閘陣列無接面半導體通道記憶體結構包括多個 所述半導體通道,每個所述半導體通道對應一組記憶單元串;所述奈米碳管閘陣列包括分別對應多組記憶單元串的多組奈米碳管;每組記憶單元串的奈米碳管排列於對應的半導體通道之上,包括多個字線閘極奈米碳管、串選擇閘極奈米碳管以及地選擇閘極奈米碳管,其中所述串選擇閘極奈米碳管和地選擇閘極奈米碳管分別位於多個字線閘極奈米碳管的兩端。 Optionally, the gate array contactless semiconductor channel memory structure includes a plurality of The semiconductor channel, each of the semiconductor channels corresponds to a set of memory cell strings; the nano carbon tube gate array includes a plurality of sets of nano carbon tubes respectively corresponding to a plurality of sets of memory cell strings; a nano of each set of memory cell strings The carbon tube is arranged on the corresponding semiconductor channel, and includes a plurality of word line gate nano carbon tubes, a string selection gate nano carbon tube, and a ground selection gate nano carbon tube. The carbon tube and the ground selection gate nano carbon tube are respectively located at two ends of a plurality of word line gate nano carbon tubes.

為實現上述目的及其他相關目的,本發明還提供一種閘陣列無接面半導體通道記憶體結構的製備方法,包括如下步驟:提供半導體基板;在所述半導體基板上形成絕緣層;在所述絕緣層上採用二維半導體材料形成半導體通道;在所述半導體通道上形成閘電荷捕捉結構,所述閘電荷捕捉結構由下至上依次包括隧道層、電荷捕捉層和阻擋層;在所述閘電荷捕捉結構上形成奈米碳管閘陣列的多個奈米碳管;在所述多個奈米碳管上覆蓋鈍化層;形成分別引出所述多個奈米碳管的多個閘接觸電極,以及分別位於所述奈米碳管閘陣列兩端與所述半導體通道連接的源接觸電極和汲接觸電極。 In order to achieve the above object and other related objects, the present invention also provides a method for preparing a gate array non-contact semiconductor channel memory structure, including the following steps: providing a semiconductor substrate; forming an insulating layer on the semiconductor substrate; and insulating the insulation A two-dimensional semiconductor material is used to form a semiconductor channel on the layer; a gate charge trap structure is formed on the semiconductor channel, and the gate charge trap structure includes a tunnel layer, a charge trap layer, and a barrier layer in order from bottom to top; Forming a plurality of nano carbon tube gate arrays on the structure; covering the plurality of nano carbon tubes with a passivation layer; forming a plurality of gate contact electrodes respectively leading out of the plurality of nano carbon tubes, and A source contact electrode and a drain contact electrode which are respectively located at two ends of the nano carbon tube gate array and are connected to the semiconductor channel.

可選地,在所述絕緣層上採用二維半導體材料形成半導體通道時,同時形成多個半導體通道。 Optionally, when a two-dimensional semiconductor material is used to form a semiconductor channel on the insulating layer, a plurality of semiconductor channels are simultaneously formed.

進一步可選地,在所述閘電荷捕捉結構上形成奈米碳管閘陣列的多個奈米碳管時,根據所述多個半導體通道的位置排布多組奈米碳管,使每組奈米碳管位於對應的半導體通道之上。 Further optionally, when a plurality of nano carbon tubes of a nano carbon tube gate array are formed on the gate charge trapping structure, a plurality of groups of nano carbon tubes are arranged according to the positions of the plurality of semiconductor channels, so that each group Nano carbon tubes are located above the corresponding semiconductor channels.

可選地,形成多個閘接觸電極的方法包括步驟:蝕刻所述鈍化層形成多個通孔以分別露出所述多個奈米碳管,然後在所述通孔中填充導電材料,形成多個閘接觸電極。 Optionally, the method for forming a plurality of gate contact electrodes includes the steps of: etching the passivation layer to form a plurality of through holes to respectively expose the plurality of nano carbon tubes, and then filling the through holes with a conductive material to form a plurality of through holes. The brake contacts the electrodes.

可選地,形成所述源接觸電極和汲接觸電極的方法包括步驟:在所述奈米碳管閘陣列兩端蝕刻開口,露出所述半導體通道的頂部,然後在所述開口中填充導電材料,形成源接觸電極和汲接觸電極。 Optionally, the method of forming the source contact electrode and the drain contact electrode includes the steps of: etching openings at both ends of the nano carbon tube gate array to expose the top of the semiconductor channel, and then filling the opening with a conductive material , Forming a source contact electrode and a drain contact electrode.

如上所述,本發明的閘陣列無接面半導體通道記憶體結構及其製備方法,具有以下有益效果:本發明的閘陣列無接面半導體通道記憶體結構,記憶單元採用閘極電荷捕捉的方式,以二維半導體材料通道代替傳統的矽摻雜通道,使電荷更易控制,改善了閘極電荷捕捉性能,採用金屬奈米碳管閘陣列,顯著減小了閘極尺寸,相對于現有的垂直通道型NAND結構,本發明使元件性能得到了進一步提升,元件結構得到了進一步簡化,記憶陣列密度得以增加。 As described above, the gate array non-contact semiconductor channel memory structure of the present invention and the preparation method thereof have the following beneficial effects: The gate array non-contact semiconductor channel memory structure of the present invention uses a gate charge trapping method for the memory unit By replacing the traditional silicon-doped channels with two-dimensional semiconductor material channels, the charge is easier to control, and the gate charge capture performance is improved. The metal nano-carbon tube gate array is used to significantly reduce the gate size, compared to the existing vertical In the channel-type NAND structure, the device performance is further improved, the device structure is further simplified, and the memory array density is increased.

100‧‧‧半導體基板 100‧‧‧ semiconductor substrate

200‧‧‧絕緣層 200‧‧‧ Insulation

300‧‧‧半導體通道 300‧‧‧Semiconductor Channel

400‧‧‧閘電荷捕捉結構 400‧‧‧ Gate charge trapping structure

401‧‧‧隧道層 401‧‧‧ tunnel floor

402‧‧‧電荷捕捉層 402‧‧‧ charge trapping layer

403‧‧‧阻擋層 403‧‧‧ barrier

500‧‧‧奈米碳管閘陣列 500‧‧‧nanometer carbon tube gate array

501‧‧‧奈米碳管 501‧‧‧nanometer carbon tube

502‧‧‧閘接觸電極 502‧‧‧Brake contact electrode

503‧‧‧鈍化層 503‧‧‧ passivation layer

600‧‧‧源接觸電極 600‧‧‧ source contact electrode

700‧‧‧汲接觸電極 700‧‧‧ Drain contact electrode

第1圖顯示為本發明實施例提供的閘陣列無接面半導體通道記憶體結構的示意圖。 FIG. 1 is a schematic diagram of a gate array non-contact semiconductor channel memory structure according to an embodiment of the present invention.

第2a-2g圖顯示為本發明實施例提供的閘陣列無接面半導體通道記憶體結構的製備流程示意圖。 Figures 2a-2g are schematic diagrams showing the fabrication process of a gate array non-contact semiconductor channel memory structure according to an embodiment of the present invention.

以下通過特定的具體實例說明本發明的實施方式,本領域技 術人員可由本說明書所揭露的內容輕易地瞭解本發明的其他優點與功效。本發明還可以通過另外不同的具體實施方式加以實施或應用,本說明書中的各項細節也可以基於不同觀點與應用,在沒有背離本發明的精神下進行各種修飾或改變。需說明的是,在不衝突的情況下,以下實施例及實施例中的特徵可以相互組合。 The following describes the embodiments of the present invention through specific specific examples. Those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through different specific implementations, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that, in the case of no conflict, the following embodiments and features in the embodiments can be combined with each other.

需要說明的是,以下實施例中所提供的圖示僅以示意方式說明本發明的基本構想,遂圖式中僅顯示與本發明中有關的組件而非按照實際實施時的元件數目、形狀及尺寸繪製,其實際實施時各元件的型態、數量及比例可為一種隨意的改變,且其元件佈局型態也可能更為複雜。 It should be noted that the illustrations provided in the following embodiments are only a schematic illustration of the basic idea of the present invention, and the drawings only show the components related to the present invention and not the number, shape and For size drawing, the type, quantity, and proportion of each component can be changed at will in actual implementation, and the component layout type may be more complicated.

本實施例將提供一種可以應用於NAND快閃記憶體記憶體中的記憶結構及製備方法。NAND記憶體的記憶結構包括記憶陣列,記憶陣列可以由多組記憶單元串組成。本實施例的每組記憶單元串採用多個閘極無接面型開關電晶體共用水平通道的形式,多個閘極無接面型開關電晶體,即閘極連接入地選擇線(GSL)的地選擇電晶體,閘極分別連接入多條字線(WL)的多個閘極控制的電荷捕捉記憶單元,以及閘極連接入串選擇線(SSL)的串選擇電晶體。這些閘極無接面型開關電晶體的閘電極採用金屬奈米碳管,在水平方向排布成閘電極陣列,閘介電層採用介電的電荷捕捉結構,共用的水平通道採用二維半導體材料代替傳統的矽摻雜材料,從而改善了閘極電荷捕捉性能,並簡化了元件結構。 This embodiment provides a memory structure and a preparation method that can be applied to a NAND flash memory. The memory structure of a NAND memory includes a memory array, and the memory array may be composed of multiple sets of memory cell strings. Each group of memory cell strings in this embodiment adopts a form in which a plurality of gate non-contact type switching transistors share a horizontal channel, and a plurality of gate non-contact type switching transistors, that is, the gates are connected to the ground selection line (GSL) Ground selection transistors, the gates are respectively connected to a plurality of gate-controlled charge trapping memory cells of a plurality of word lines (WL), and the string selection transistors are connected to a string selection line (SSL). The gate electrodes of these gateless contactless switching transistors are made of metal carbon nanotubes, which are arranged in a horizontal direction as an array of gate electrodes. The gate dielectric layer uses a dielectric charge-trapping structure. The shared horizontal channel uses a two-dimensional semiconductor. Materials replace traditional silicon-doped materials, which improves gate charge trapping performance and simplifies device structure.

請參閱第1圖,本實施例提供的一種閘陣列無接面半導體通道記憶體結構,具體包括:半導體基板100; 絕緣層200,位於所述半導體基板100之上;採用二維半導體材料的半導體通道300,位於所述絕緣層200上;閘電荷捕捉結構400,位於所述半導體通道300上,由下至上依次包括隧道層401、電荷捕捉層402和阻擋層403;奈米碳管閘陣列500,位於所述閘電荷捕捉結構400之上,包括多個奈米碳管501以及分別引出所述多個奈米碳管501的多個閘接觸電極502;源接觸電極600和汲接觸電極700,分別位於所述奈米碳管閘陣列500兩端,並分別與所述半導體通道300連接。 Referring to FIG. 1, a gate array non-contact semiconductor channel memory structure provided in this embodiment specifically includes: a semiconductor substrate 100; An insulating layer 200 is located on the semiconductor substrate 100; a semiconductor channel 300 using a two-dimensional semiconductor material is located on the insulating layer 200; a gate charge trapping structure 400 is located on the semiconductor channel 300, and includes from bottom to top The tunnel layer 401, the charge trapping layer 402, and the barrier layer 403; the nano carbon tube gate array 500, which is located on the gate charge trapping structure 400, includes a plurality of nano carbon tubes 501 and each of the plurality of nano carbons is led out. A plurality of gate contact electrodes 502; a source contact electrode 600 and a drain contact electrode 700 of the tube 501 are respectively located at two ends of the nano carbon tube gate array 500 and are respectively connected to the semiconductor channel 300.

本實施例中,所述半導體基板100可以為矽基板或其他適合的半導體材料基板。所述絕緣層200可以為氧化矽或其他適合的絕緣材料。 In this embodiment, the semiconductor substrate 100 may be a silicon substrate or other suitable semiconductor material substrate. The insulating layer 200 may be silicon oxide or other suitable insulating materials.

本實施例中,所述半導體通道300採用的二維半導體材料可以是MoS2、WS2、ReS2、SnO等材料。 In this embodiment, the two-dimensional semiconductor material used for the semiconductor channel 300 may be materials such as MoS 2 , WS 2 , ReS 2 , and SnO.

本實施例中,所述閘電荷捕捉結構400採用絕緣材料,例如可以是ONO介電材料,即矽氧化物、矽氮化物、矽氧化物。其中,所述隧道層401的材料可以為矽氧化物,所述電荷捕捉層402的材料可以為矽氮化物,所述阻擋層403的材料可以為矽氧化物或者具有高介電常數的高k介電材料。具體地,閘電荷捕捉結構400的厚度可以為2-50nm。 In this embodiment, the gate charge trapping structure 400 is made of an insulating material, for example, it may be an ONO dielectric material, that is, silicon oxide, silicon nitride, or silicon oxide. The material of the tunnel layer 401 may be silicon oxide, the material of the charge trapping layer 402 may be silicon nitride, and the material of the barrier layer 403 may be silicon oxide or high-k with high dielectric constant. Dielectric material. Specifically, the thickness of the gate charge trapping structure 400 may be 2-50 nm.

本實施例中,所述奈米碳管閘陣列500可以採用金屬性奈米碳管。其中,每個奈米碳管501的管徑可以是0.75~3nm,長度可以是100nm~50μm。 In this embodiment, the nano carbon tube gate array 500 may be a metallic nano carbon tube. The diameter of each nano carbon tube 501 may be 0.75 to 3 nm, and the length may be 100 nm to 50 μm.

本實施例中,所述奈米碳管閘陣列500的多個奈米碳管501表面覆蓋有鈍化層503。具體地,鈍化層503的材料可以是諸如矽氧化物、矽 氮化物或矽氮氧化物等絕緣材料。鈍化層503的厚度可以根據實際需要設計,應當將奈米碳管501表面完全包裹覆蓋,以實現奈米碳管501與周圍環境的隔離。 In this embodiment, the surface of the plurality of nano carbon tubes 501 of the nano carbon tube gate array 500 is covered with a passivation layer 503. Specifically, the material of the passivation layer 503 may be, for example, silicon oxide, silicon Insulating materials such as nitride or silicon oxynitride. The thickness of the passivation layer 503 can be designed according to actual needs, and the surface of the nano carbon tube 501 should be completely wrapped to cover the nano carbon tube 501 from the surrounding environment.

本實施例中,為了構成記憶陣列,所述半導體通道300可以為多個,每個半導體通道300對應一組記憶單元串;所述奈米碳管閘陣列500可以包括分別對應多組記憶單元串的多組奈米碳管501;每組記憶單元串的奈米碳管501排列於對應的半導體通道300之上,包括多個字線閘極奈米碳管、串選擇閘極奈米碳管以及地選擇閘極奈米碳管,其中所述串選擇閘極奈米碳管和地選擇閘極奈米碳管分別位於多個字線閘極奈米碳管的兩端。每個半導體通道300的寬度可以為2-50nm。多個半導體通道300之間可以填充介電材料實現隔離。每組記憶單元串的奈米碳管501數量可以根據實際需要進行設計,例如,1個串選擇閘極奈米碳管和1個地選擇閘極奈米碳管,而字線閘極奈米碳管的數量可以是24個、32個、48個、甚至更多。 In this embodiment, in order to form a memory array, there may be a plurality of semiconductor channels 300, and each semiconductor channel 300 corresponds to a group of memory cell strings; the carbon nanotube array 500 may include a plurality of memory cell strings respectively. Nano tube 501 of each group of memory cell strings are arranged on the corresponding semiconductor channel 300, including a plurality of word line gate carbon nanotubes, string selection gate carbon nanotubes And a ground selection gate nanometer carbon tube, wherein the string selection gate nanometer carbon tube and the ground selection gate nanometer carbon tube are respectively located at two ends of a plurality of word line gate nanometer carbon tubes. The width of each semiconductor channel 300 may be 2-50 nm. The plurality of semiconductor channels 300 may be filled with a dielectric material to achieve isolation. The number of nanometer carbon tubes 501 of each group of memory cell strings can be designed according to actual needs. For example, one string selects the gate nanometer carbon tube and one ground selects the gate nanometer carbon tube, and the word line gate nanometer. The number of carbon tubes can be 24, 32, 48, or even more.

本實施例提供的閘陣列無接面半導體通道記憶體結構與現有技術中的垂直通道型NAND結構的不同之處主要在於,本實施例記憶體結構採用水平通道,閘電荷捕捉結構同時作為閘極介電層位於水平通道上方,閘電極水平方向排布成陣列,這樣的元件結構更為簡單;由於記憶單元採用閘極電荷捕捉的方式,為了提升元件的閘極電荷捕捉性能,採用了二維半導體材料代替傳統矽摻雜的材質作為通道,並以奈米碳管作為閘電極陣列,這樣通道的導電性更易控制,從而可減小閘極尺寸,增加記憶陣列密度,使記憶體件性能得到進一步的提升。而現有技術採用垂直通道結構,通道結構也較為複雜,通常包括多層薄膜,在通道結構中間還可能設 有絕緣埋層等。垂直通道通常採用多晶矽薄膜,要求具有很好的結晶度和較大的晶粒,同時又要求多晶矽薄膜通道的厚度要儘量薄,製程很難兼顧。因此,相較于現有的垂直通道型NAND,本實施例提供的閘陣列無接面半導體通道記憶體結構具有更加簡單的結構,在元件性能方面也有明顯提升。 The difference between the gate array non-contact semiconductor channel memory structure provided in this embodiment and the vertical channel NAND structure in the prior art is mainly that the memory structure in this embodiment uses horizontal channels, and the gate charge capture structure also serves as the gate. The dielectric layer is located above the horizontal channel, and the gate electrodes are arranged in an array in the horizontal direction. This element structure is simpler. Because the memory cell uses the gate charge capture method, in order to improve the gate charge capture performance of the component, a two-dimensional The semiconductor material replaces the traditional silicon-doped material as the channel, and the nano-carbon tube is used as the gate electrode array, so that the conductivity of the channel is easier to control, so that the gate size can be reduced, the memory array density can be increased, and the performance of the memory device can be obtained. Further improvement. In the prior art, the vertical channel structure is used, and the channel structure is also relatively complicated. Usually, it includes multiple layers of films. There are buried insulation layers. Polycrystalline silicon thin films are usually used for vertical channels, which require good crystallinity and large crystal grains. At the same time, the thickness of polycrystalline silicon thin film channels must be as thin as possible, making it difficult to take into account the manufacturing process. Therefore, compared with the existing vertical channel type NAND, the gate array non-contact semiconductor channel memory structure provided in this embodiment has a simpler structure, and the component performance is also significantly improved.

下面結合附圖進一步詳細說明本實施例提供的閘陣列無接面半導體通道記憶體結構的製備方法。 The method for preparing the gate array non-contact semiconductor channel memory structure provided in this embodiment is further described in detail below with reference to the accompanying drawings.

請參閱第2a-2g圖,本實施例提供一種閘陣列無接面半導體通道記憶體結構的製備方法,包括如下步驟:首先,如第2a圖所示,提供半導體基板100。所述半導體基板100可以是任何適合的半導體材料,例如可採用矽基板。 Referring to FIGS. 2a-2g, this embodiment provides a method for preparing a gate array non-contact semiconductor channel memory structure, including the following steps: First, as shown in FIG. 2a, a semiconductor substrate 100 is provided. The semiconductor substrate 100 may be any suitable semiconductor material, such as a silicon substrate.

如第2b圖所示,在所述半導體基板100上形成絕緣層200。所述絕緣層200可以是氧化矽或其他適合的絕緣材料,例如,可採用在矽基板上生長氧化層的方式形成絕緣層200。 As shown in FIG. 2B, an insulating layer 200 is formed on the semiconductor substrate 100. The insulating layer 200 may be silicon oxide or other suitable insulating materials. For example, the insulating layer 200 may be formed by growing an oxide layer on a silicon substrate.

如第2c圖所示,在所述絕緣層200上採用二維半導體材料形成半導體通道300。所述半導體通道300採用的二維半導體材料可以是MoS2、WS2、ReS2、SnO等材料。形成所述半導體通道300的方法可以是化學氣相沉積(CVD)、物理氣相沉積(PVD)、金屬有機化合物化學氣相沉積(MOCVD)、原子層沉積(ALD)等沉積方法,或其他適合的製程。 As shown in FIG. 2c, a semiconductor channel 300 is formed on the insulating layer 200 by using a two-dimensional semiconductor material. The two-dimensional semiconductor material used in the semiconductor channel 300 may be materials such as MoS 2 , WS 2 , ReS 2 , and SnO. The method for forming the semiconductor channel 300 may be a deposition method such as chemical vapor deposition (CVD), physical vapor deposition (PVD), metal organic compound chemical vapor deposition (MOCVD), atomic layer deposition (ALD), or other suitable methods. Process.

如第2d圖所示,在所述半導體通道300上形成閘電荷捕捉結構400,所述閘電荷捕捉結構400由下至上依次包括隧道層401、電荷捕捉層402和阻擋層403。本實施例中,隧道層401可以為矽氧化物,電荷捕捉層402可以為矽氮化物,阻擋層403可以為矽氧化物。形成所述閘電荷捕捉結構400 的方法可以選自CVD、MOCVD、ALD、分子束磊晶(MBE)中的一種或多種,或其他適合的製程。形成的閘電荷捕捉結構400的厚度可以為2-50nm。 As shown in FIG. 2d, a gate charge trapping structure 400 is formed on the semiconductor channel 300. The gate charge trapping structure 400 includes a tunnel layer 401, a charge trapping layer 402, and a blocking layer 403 in this order from bottom to top. In this embodiment, the tunnel layer 401 may be silicon oxide, the charge trapping layer 402 may be silicon nitride, and the barrier layer 403 may be silicon oxide. Forming the gate charge trapping structure 400 The method may be selected from one or more of CVD, MOCVD, ALD, molecular beam epitaxy (MBE), or other suitable processes. The thickness of the gate charge trapping structure 400 may be 2-50 nm.

如第2e圖所示,在所述閘電荷捕捉結構400上形成奈米碳管閘陣列500的多個奈米碳管501。每個奈米碳管501的管徑範圍可以是0.75~3nm,長度範圍可以是100nm~50μm。優選地,採用金屬性的奈米碳管。形成多個奈米碳管501的方法可以是電弧法、鐳射蒸發法、化學氣相沉積法、熱解聚合法等。 As shown in FIG. 2e, a plurality of nano carbon tubes 501 of a nano carbon tube gate array 500 are formed on the gate charge trapping structure 400. A diameter range of each nano carbon tube 501 may be 0.75 to 3 nm, and a length range may be 100 nm to 50 μm. Preferably, a metallic carbon nanotube is used. The method for forming the plurality of nano carbon tubes 501 may be an arc method, a laser evaporation method, a chemical vapor deposition method, a pyrolysis polymerization method, or the like.

然後,如第2f圖所示,在所述多個奈米碳管501上覆蓋鈍化層503。具體地,鈍化層503的材料可以是諸如矽氧化物、矽氮化物或矽氮氧化物等介電材料。鈍化層503的厚度可以根據實際需要設計。鈍化層503應當將每個奈米碳管501的表面完全包裹覆蓋,以實現奈米碳管501與周圍環境的隔離。形成所述鈍化層503的方法可以選自化學氣相沉積、物理氣相沉積、金屬有機化合物化學氣相沉積、原子層沉積中的一種或多種或其他適合的製程。 Then, as shown in FIG. 2f, a passivation layer 503 is covered on the plurality of nano carbon tubes 501. Specifically, the material of the passivation layer 503 may be a dielectric material such as silicon oxide, silicon nitride, or silicon oxynitride. The thickness of the passivation layer 503 can be designed according to actual needs. The passivation layer 503 should completely cover and cover the surface of each of the carbon nanotubes 501 to achieve isolation of the carbon nanotubes 501 from the surrounding environment. The method for forming the passivation layer 503 may be selected from one or more of chemical vapor deposition, physical vapor deposition, metal organic compound chemical vapor deposition, atomic layer deposition, or other suitable processes.

最後,如第2g圖所示,形成分別引出所述多個奈米碳管501的多個閘接觸電極502,以及分別位於所述奈米碳管閘陣列500兩端與所述半導體通道300連接的源接觸電極600和汲接觸電極700。 Finally, as shown in FIG. 2g, a plurality of gate contact electrodes 502 respectively leading to the plurality of nano carbon tubes 501 are formed, and the two ends of the nano carbon tube gate array 500 are respectively connected to the semiconductor channel 300. The source contact electrode 600 and the drain contact electrode 700.

具體地,形成多個閘接觸電極502的方法可以包括步驟:蝕刻所述鈍化層503形成多個通孔以分別露出所述多個奈米碳管501,然後在所述通孔中填充導電材料,形成多個閘接觸電極502。形成所述源接觸電極600和汲接觸電極700的方法可以包括步驟:在所述奈米碳管閘陣列500兩端蝕刻開口,露出所述半導體通道300的頂部,然後在所述開口中填充導電材料, 形成源接觸電極600和汲接觸電極700。其中蝕刻通孔或開口的方法可以為乾式蝕刻、原子層蝕刻(ALE)或其他適合的方法。閘接觸電極502、源接觸電極600和汲接觸電極700可以採用Ti、Al、Ni、Au等導電材料,或其他適合的金屬接觸材料和結構。 Specifically, the method for forming a plurality of gate contact electrodes 502 may include the steps of etching the passivation layer 503 to form a plurality of through holes to expose the plurality of nano carbon tubes 501 respectively, and then filling the through holes with a conductive material. A plurality of gate contact electrodes 502 are formed. The method of forming the source contact electrode 600 and the drain contact electrode 700 may include the steps of: etching openings at both ends of the nano carbon tube gate array 500 to expose the top of the semiconductor channel 300, and then filling the openings with conductive material, A source contact electrode 600 and a drain contact electrode 700 are formed. The method for etching through holes or openings may be dry etching, atomic layer etching (ALE), or other suitable methods. The gate contact electrode 502, the source contact electrode 600, and the drain contact electrode 700 may be made of conductive materials such as Ti, Al, Ni, Au, or other suitable metal contact materials and structures.

本實施例中,在所述絕緣層200上採用二維半導體材料形成半導體通道300時,可以同時形成多個半導體通道300。多個半導體通道300可以陣列排布。每個半導體通道300的寬度可以為2-50nm。多個半導體通道300之間可以填充介電材料實現隔離。在所述閘電荷捕捉結構400上形成奈米碳管閘陣列500的多個奈米碳管501時,根據所述多條半導體通道300的位置排布多組奈米碳管,使每組記憶單元串的奈米碳管501排列於對應的半導體通道300之上。每組記憶單元串的奈米碳管501數量可以根據實際需要進行設計,例如,1個串選擇閘極奈米碳管和1個地選擇閘極奈米碳管,而字線閘極奈米碳管的數量可以是24個、32個、48個或更多。 In this embodiment, when a two-dimensional semiconductor material is used to form the semiconductor channel 300 on the insulating layer 200, a plurality of semiconductor channels 300 may be formed at the same time. The plurality of semiconductor channels 300 may be arranged in an array. The width of each semiconductor channel 300 may be 2-50 nm. The plurality of semiconductor channels 300 may be filled with a dielectric material to achieve isolation. When a plurality of nano carbon tubes 501 of a nano carbon tube gate array 500 are formed on the gate charge trapping structure 400, a plurality of groups of nano carbon tubes are arranged according to the positions of the plurality of semiconductor channels 300, so that each group is memorized. The carbon nanotubes 501 of the cell string are arranged on the corresponding semiconductor channel 300. The number of nanometer carbon tubes 501 of each group of memory cell strings can be designed according to actual needs. For example, one string selects the gate nanometer carbon tube and one ground selects the gate nanometer carbon tube, and the word line gate nanometer. The number of carbon tubes can be 24, 32, 48 or more.

綜上所述,本發明的閘陣列無接面半導體通道記憶體結構,記憶單元採用閘極電荷捕捉的方式,以二維半導體材料通道代替傳統的矽摻雜通道,使電荷更易控制,改善了閘極電荷捕捉性能,採用金屬奈米碳管閘陣列,顯著減小了閘極尺寸,相對于現有的垂直通道型NAND結構,本發明使元件性能得到了進一步提升,元件結構得到了進一步簡化,記憶陣列密度得以增加。所以,本發明有效克服了現有技術中的種種缺點而具高度產業利用價值。 In summary, the gate array non-contact semiconductor channel memory structure of the present invention uses a gate charge trapping method to replace the traditional silicon-doped channel with a two-dimensional semiconductor material channel, which makes the charge easier to control and improves. The gate charge capture performance adopts a metal nano carbon tube gate array, which significantly reduces the gate size. Compared with the existing vertical channel NAND structure, the present invention further improves the element performance and the element structure is further simplified. Memory array density is increased. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

上述實施例僅例示性說明本發明的原理及其功效,而非用於限制本發明。任何熟悉此技術的人士皆可在不違背本發明的精神及範疇 下,對上述實施例進行修飾或改變。因此,舉凡所屬技術領域中具有通常知識者在未脫離本發明所揭示的精神與技術思想下所完成的一切等效修飾或改變,仍應由本發明的權利要求所涵蓋。 The above-mentioned embodiments merely illustrate the principle of the present invention and its effects, but are not intended to limit the present invention. Anyone familiar with this technology can work without departing from the spirit and scope of the present invention. Next, the above embodiments are modified or changed. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field to which they belong without departing from the spirit and technical ideas disclosed by the present invention should still be covered by the claims of the present invention.

Claims (12)

一種閘陣列無接面半導體通道記憶體結構,包括:半導體基板;絕緣層,位於所述半導體基板之上;半導體通道,位於所述絕緣層上,採用二維半導體材料;閘電荷捕捉結構,位於所述半導體通道上,由下至上依次包括隧道層、電荷捕捉層和阻擋層;奈米碳管閘陣列,位於所述閘電荷捕捉結構之上,包括多個奈米碳管以及分別引出所述多個奈米碳管的多個閘接觸電極;源接觸電極和汲接觸電極,分別位於所述奈米碳管閘陣列兩端,並分別與所述半導體通道連接,其中所述閘電荷捕捉結構中,所述隧道層的材料為矽氧化物,所述電荷捕捉層的材料為矽氮化物,所述阻擋層的材料為矽氧化物。A gate array non-contact semiconductor channel memory structure includes: a semiconductor substrate; an insulating layer on the semiconductor substrate; a semiconductor channel on the insulating layer using a two-dimensional semiconductor material; a gate charge trapping structure located in The semiconductor channel includes a tunnel layer, a charge trapping layer, and a barrier layer in order from bottom to top; a nano carbon tube gate array, which is located above the gate charge trapping structure, includes a plurality of nano carbon tubes, and each of which leads to the Multiple gate contact electrodes of multiple carbon nanotubes; source contact electrodes and drain contact electrodes are respectively located at both ends of the nano carbon tube gate array and are respectively connected to the semiconductor channel, wherein the gate charge trapping structure The material of the tunnel layer is silicon oxide, the material of the charge trapping layer is silicon nitride, and the material of the barrier layer is silicon oxide. 根據請求項1所述的閘陣列無接面半導體通道記憶體結構,其中所述半導體基板為矽基板。The gate array non-contact semiconductor channel memory structure according to claim 1, wherein the semiconductor substrate is a silicon substrate. 根據請求項1所述的閘陣列無接面半導體通道記憶體結構,其中所述絕緣層為氧化矽。The gate array non-contact semiconductor channel memory structure according to claim 1, wherein the insulating layer is silicon oxide. 根據請求項1所述的閘陣列無接面半導體通道記憶體結構,其中所述半導體通道採用的二維半導體材料為MoS2、WS2、ReS2或SnO。The gate array non-contact semiconductor channel memory structure according to claim 1, wherein the two-dimensional semiconductor material used for the semiconductor channel is MoS 2 , WS 2 , ReS 2 or SnO. 根據請求項1所述的閘陣列無接面半導體通道記憶體結構,其中所述奈米碳管閘陣列採用金屬性奈米碳管,每個奈米碳管的管徑為0.75~3nm,長度為100nm~50μm。The gate array non-contact semiconductor channel memory structure according to claim 1, wherein the nano carbon tube gate array adopts a metallic nano carbon tube, and each of the nano carbon tubes has a diameter of 0.75 to 3 nm and a length It is 100 nm to 50 μm. 根據請求項1所述的閘陣列無接面半導體通道記憶體結構,其中所述奈米碳管閘陣列的多個奈米碳管表面覆蓋有鈍化層。The gate array non-contact semiconductor channel memory structure according to claim 1, wherein a surface of a plurality of nano carbon tubes of the nano carbon tube gate array is covered with a passivation layer. 根據請求項1所述的閘陣列無接面半導體通道記憶體結構,其中所述閘陣列無接面半導體通道記憶體結構包括多個所述半導體通道,每個所述半導體通道對應一組記憶單元串;所述奈米碳管閘陣列包括分別對應多組記憶單元串的多組奈米碳管;每組記憶單元串的奈米碳管排列於對應的半導體通道之上,包括多個字線閘極奈米碳管、串選擇閘極奈米碳管以及地選擇閘極奈米碳管,其中所述串選擇閘極奈米碳管和地選擇閘極奈米碳管分別位於多個字線閘極奈米碳管的兩端。The gate array non-contact semiconductor channel memory structure according to claim 1, wherein the gate array non-contact semiconductor channel memory structure includes a plurality of the semiconductor channels, and each of the semiconductor channels corresponds to a group of memory cells. The nano carbon tube gate array includes a plurality of sets of nano carbon tubes respectively corresponding to a plurality of sets of memory cell strings; the nano carbon tubes of each set of memory cell strings are arranged on a corresponding semiconductor channel and include a plurality of word lines The gate nanometer carbon tube, the string selection gate nanometer carbon tube, and the ground selection gate nanometer carbon tube, wherein the string selection gate nanometer carbon tube and the ground selection gate nanometer carbon tube are respectively located in multiple characters. Wire gate ends of carbon nanotubes. 一種閘陣列無接面半導體通道記憶體結構的製備方法,包括以下步驟:提供半導體基板;在所述半導體基板上形成絕緣層;在所述絕緣層上採用二維半導體材料形成半導體通道;在所述半導體通道上形成閘電荷捕捉結構,所述閘電荷捕捉結構由下至上依次包括隧道層、電荷捕捉層和阻擋層;在所述閘電荷捕捉結構上形成奈米碳管閘陣列的多個奈米碳管;在所述多個奈米碳管上覆蓋鈍化層;形成分別引出所述多個奈米碳管的多個閘接觸電極,以及分別位於所述奈米碳管閘陣列兩端與所述半導體通道連接的源接觸電極和汲接觸電極。A method for preparing a gate array non-contact semiconductor channel memory structure includes the following steps: providing a semiconductor substrate; forming an insulating layer on the semiconductor substrate; forming a semiconductor channel using a two-dimensional semiconductor material on the insulating layer; A gate charge trapping structure is formed on the semiconductor channel, and the gate charge trapping structure includes a tunnel layer, a charge trapping layer, and a barrier layer in order from bottom to top; a plurality of nanometer carbon nanotube gate arrays are formed on the gate charge trapping structure. Carbon nanotubes; covering the plurality of nano carbon tubes with a passivation layer; forming a plurality of gate contact electrodes respectively leading out of the plurality of nano carbon tubes; and being respectively located at both ends of the nano carbon tube gate array and A source contact electrode and a drain contact electrode connected to the semiconductor channel. 根據請求項8所述的閘陣列無接面半導體通道記憶體結構的製備方法,其中在所述絕緣層上採用二維半導體材料形成半導體通道時,同時形成多個半導體通道。According to the method for manufacturing a gate array non-contact semiconductor channel memory structure according to claim 8, when a two-dimensional semiconductor material is used to form a semiconductor channel on the insulating layer, a plurality of semiconductor channels are simultaneously formed. 根據請求項9所述的閘陣列無接面半導體通道記憶體結構的製備方法,其中在所述閘電荷捕捉結構上形成奈米碳管閘陣列的多個奈米碳管時,根據所述多個半導體通道的位置排布多組奈米碳管,使每組奈米碳管位於對應的半導體通道之上。The method for preparing a gate array non-contact semiconductor channel memory structure according to claim 9, wherein when a plurality of nano carbon tubes of a nano carbon tube gate array are formed on the gate charge trapping structure, Multiple sets of nano carbon tubes are arranged at the positions of each semiconductor channel, so that each group of nano carbon tubes is located above the corresponding semiconductor channel. 根據請求項8所述的閘陣列無接面半導體通道記憶體結構的製備方法,其中所述形成多個閘接觸電極的方法包括步驟:蝕刻所述鈍化層形成多個通孔以分別露出所述多個奈米碳管,然後在所述通孔中填充導電材料,形成多個閘接觸電極。The method for preparing a gate array non-contact semiconductor channel memory structure according to claim 8, wherein the method for forming a plurality of gate contact electrodes includes the step of: etching the passivation layer to form a plurality of through holes to expose the respectively A plurality of nano carbon tubes are then filled with a conductive material in the through holes to form a plurality of gate contact electrodes. 根據請求項8所述的閘陣列無接面半導體通道記憶體結構的製備方法,其中所述形成所述源接觸電極和汲接觸電極的方法包括步驟:在所述奈米碳管閘陣列兩端蝕刻開口,露出所述半導體通道的頂部,然後在所述開口中填充導電材料,形成源接觸電極和汲接觸電極。The method for preparing a gate array non-contact semiconductor channel memory structure according to claim 8, wherein the method of forming the source contact electrode and the drain contact electrode includes the steps of: at both ends of the nano carbon tube gate array The opening is etched to expose the top of the semiconductor channel, and then a conductive material is filled in the opening to form a source contact electrode and a drain contact electrode.
TW106118146A 2016-12-28 2017-06-01 Gate array contactless semiconductor channel memory structure and preparation method thereof TWI651836B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611236887.XA CN108257961A (en) 2016-12-28 2016-12-28 A kind of grid array is without pn junction p n channel transistor structure structure and preparation method thereof
??201611236887.X 2016-12-28

Publications (2)

Publication Number Publication Date
TW201838155A TW201838155A (en) 2018-10-16
TWI651836B true TWI651836B (en) 2019-02-21

Family

ID=62719563

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106118146A TWI651836B (en) 2016-12-28 2017-06-01 Gate array contactless semiconductor channel memory structure and preparation method thereof

Country Status (2)

Country Link
CN (1) CN108257961A (en)
TW (1) TWI651836B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714210B (en) * 2019-02-26 2020-12-21 日商東芝記憶體股份有限公司 Semiconductor memory device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230101604A1 (en) * 2021-09-24 2023-03-30 Intel Corporation Three-dimensional memory devices with transition metal dichalcogenide (tmd) channels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090101962A1 (en) * 2007-10-18 2009-04-23 Samsung Electronics Co., Ltd. Semiconductor devices and methods of manufacturing and operating same
US20100090265A1 (en) * 2006-10-19 2010-04-15 Micron Technology, Inc. High density nanodot nonvolatile memory
US20100276747A1 (en) * 2009-04-30 2010-11-04 Jang-Sik Lee Charge trapping layer, method of forming the charge trapping layer, non-volatile memory device using the same and method of fabricating the non-volatile memory device
US20140131716A1 (en) * 2012-11-12 2014-05-15 National Applied Research Laboratories Memory device and method for fabricating the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395942B2 (en) * 2010-05-17 2013-03-12 Sandisk Technologies Inc. Junctionless TFT NAND flash memory
CN102354668B (en) * 2011-10-12 2013-03-06 北京大学 Preparation method of carbon-based nanometer material transistor
CN105810750B (en) * 2014-12-29 2019-02-01 中芯国际集成电路制造(上海)有限公司 A kind of carbon nanotube neuron chip and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100090265A1 (en) * 2006-10-19 2010-04-15 Micron Technology, Inc. High density nanodot nonvolatile memory
US20090101962A1 (en) * 2007-10-18 2009-04-23 Samsung Electronics Co., Ltd. Semiconductor devices and methods of manufacturing and operating same
US20100276747A1 (en) * 2009-04-30 2010-11-04 Jang-Sik Lee Charge trapping layer, method of forming the charge trapping layer, non-volatile memory device using the same and method of fabricating the non-volatile memory device
US20140131716A1 (en) * 2012-11-12 2014-05-15 National Applied Research Laboratories Memory device and method for fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714210B (en) * 2019-02-26 2020-12-21 日商東芝記憶體股份有限公司 Semiconductor memory device

Also Published As

Publication number Publication date
TW201838155A (en) 2018-10-16
CN108257961A (en) 2018-07-06

Similar Documents

Publication Publication Date Title
US11737262B2 (en) Nonvolatile semiconductor memory device and method for manufacturing same
US10014317B2 (en) Three-dimensional non-volatile NOR-type flash memory
US8461003B2 (en) Method for fabricating 3D-nonvolatile memory device
CN109148461B (en) 3D memory device and method of manufacturing the same
US20170069650A1 (en) Semiconductor memory device and method for manufacturing same
CN109256392B (en) Three-dimensional memory and forming method thereof
US20170287928A1 (en) Semiconductor memory devices
TW201913975A (en) Three-dimensional anti-data unit structure of tunneling field effect transistor and its forming method
US9754961B2 (en) Semiconductor memory device and method for manufacturing same
US10249641B2 (en) Semiconductor memory device and method for manufacturing same
TWI587488B (en) A nano-wire memory structure and the method for preparing the same
WO2014089795A1 (en) Vertical channel-type three-dimensional semiconductor memory device and preparation method therefor
TWI638447B (en) Junctionless gate array memory and the method for preparing the same
US8648409B2 (en) Non-volatile memory device and method for fabricating the same
CN109742080B (en) Three-dimensional memory and preparation method thereof
KR101515673B1 (en) 3-D Flash Memory of using Fringing Effect and Method of manufacturing the same
US9960174B2 (en) Semiconductor device and method for manufacturing the same
US20130234332A1 (en) Semiconductor device and method for manufacturing the same
TWI611563B (en) A nano-tube memory structure and the method for preparing the same
US8637919B2 (en) Nonvolatile memory device
TWI656628B (en) Back gate without junction and gate flash memory and manufacturing method thereof
US20160126251A1 (en) Semiconductor memory device and method for manufacturing same
TWI651836B (en) Gate array contactless semiconductor channel memory structure and preparation method thereof
TWI630706B (en) Memory structure and method for making the same
TW202205626A (en) Memory device and method for making same