TWI611563B - A nano-tube memory structure and the method for preparing the same - Google Patents

A nano-tube memory structure and the method for preparing the same Download PDF

Info

Publication number
TWI611563B
TWI611563B TW106100192A TW106100192A TWI611563B TW I611563 B TWI611563 B TW I611563B TW 106100192 A TW106100192 A TW 106100192A TW 106100192 A TW106100192 A TW 106100192A TW I611563 B TWI611563 B TW I611563B
Authority
TW
Taiwan
Prior art keywords
layer
gate electrode
electrode layer
memory structure
nanometer tube
Prior art date
Application number
TW106100192A
Other languages
Chinese (zh)
Other versions
TW201810622A (en
Inventor
肖德元
Original Assignee
上海新昇半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新昇半導體科技有限公司 filed Critical 上海新昇半導體科技有限公司
Application granted granted Critical
Publication of TWI611563B publication Critical patent/TWI611563B/en
Publication of TW201810622A publication Critical patent/TW201810622A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

本發明提供一種奈米管記憶體結構及其製造方法,該結構包括:表面具有重摻雜磊晶層的半導體基板;位於半導體基板之上的第一隔離介電層、地選擇閘電極層、字線閘電極層、串選擇閘電極層、介於地選擇閘電極層、字線閘電極層和串選擇閘電極層之間的多層第二隔離介電層;貫穿地選擇閘電極層、字線閘電極層和串選擇閘電極層的半導體通道;包裹在半導體通道側壁上的閘極介電層,所述半導體通道為在所述重摻雜磊晶層上的半導體奈米管。本發明的記憶體結構採用在重摻雜磊晶層上磊晶生長的半導體奈米管作為垂直通道,相對于現有的垂直通道型NAND結構,元件結構得到了進一步簡化,製造製程易於控制,產品良率高。 The invention provides a nanometer tube memory structure and a manufacturing method thereof. The structure includes: a semiconductor substrate having a heavily doped epitaxial layer on a surface; a first isolation dielectric layer on the semiconductor substrate; a ground selection gate electrode layer; Word line gate electrode layer, string selection gate electrode layer, multilayer second isolation dielectric layer between ground selection gate electrode layer, word line gate electrode layer and string selection gate electrode layer; select gate electrode layer, word The gate electrode layer and the semiconductor channel of the string selection gate electrode layer; the gate dielectric layer wrapped on the side wall of the semiconductor channel, and the semiconductor channel is a semiconductor nanotube on the heavily doped epitaxial layer. The memory structure of the present invention uses a semiconductor nano tube epitaxially grown on a heavily doped epitaxial layer as a vertical channel. Compared with the existing vertical channel NAND structure, the element structure is further simplified, the manufacturing process is easy to control, and the product The yield is high.

Description

一種奈米管記憶體結構及其製造方法 Nano tube memory structure and manufacturing method thereof

本發明涉及積體電路技術領域,特別是涉及一種奈米管記憶體結構及其製造方法。 The invention relates to the technical field of integrated circuit, in particular to a nano tube memory structure and a manufacturing method thereof.

對於不同架構的NAND記憶體來說,按照記憶層的材料可以劃分為三維浮動閘極記憶體和三維電荷捕捉記憶體。對於前者三維浮動閘極記憶體由於採用多晶矽浮動閘極作為記憶層,記憶單元面積更大,在實現更多層記憶單元層疊時製程難度較大,因此主要是通過把週邊電路置於記憶陣列下面來實現面積的縮減。對於後者三維電荷捕捉記憶體,又可以劃分為垂直閘型和垂直通道型。基於垂直閘結構的三維電荷捕捉快閃記憶體結構,製程上要難於垂直通道型,一直未見其宣告量產。垂直通道型三維電荷捕捉記憶體是最早實現大規模量產的快閃記憶體產品,2013年8月,三星電子推出了第一代24層的三維垂直通道型電荷捕捉三維記憶體,2014年7月推出了第二代32層128Gb產品,2015年推出了48層256Gb的產品。 For different architectures of NAND memory, the material of the memory layer can be divided into three-dimensional floating gate memory and three-dimensional charge trapping memory. For the former three-dimensional floating gate memory, because the polycrystalline silicon floating gate is used as the memory layer, the memory cell area is larger, and the process is more difficult when more layers of memory cells are stacked. Therefore, the peripheral circuit is mainly placed under the memory array. To achieve area reduction. For the latter three-dimensional charge trapping memory, it can be divided into vertical gate type and vertical channel type. The three-dimensional charge trapping flash memory structure based on the vertical gate structure is difficult to manufacture in the vertical channel type, and its mass production has not been announced. Vertical channel 3D charge trapping memory is the earliest flash memory product to achieve mass production. In August 2013, Samsung Electronics introduced the first 24-layer 3D vertical channel charge trapping 3D memory. July 2014 The second generation of 32-layer 128Gb products was launched in January, and 48-layer 256Gb products were launched in 2015.

三星電子推出的垂直通道型三維電荷捕捉快閃記憶體以垂直的多晶矽圓柱體作為通道,多層閘極環繞在該多晶矽圓柱體周圍,每層閘極作為一層字線,這樣字線就成了水平層,位線連接在垂直的多晶矽圓柱體的頂部。公共源極線通過在基板製作重摻雜區域再逐個引出。閘極採 用電荷捕捉的方式記憶,在多晶矽通道和閘極金屬之間設有隧穿層、電荷捕捉層和阻擋層。具體的元件結構描述可參考專利公開號為CN104425511A的專利文獻。 The vertical channel type three-dimensional charge trapping flash memory introduced by Samsung Electronics uses vertical polycrystalline silicon cylinders as channels, and multiple layers of gates surround the polycrystalline silicon cylinders. Each layer of gates serves as a word line, so that the word line becomes horizontal. Layer, the bit line is connected on top of the vertical polycrystalline silicon cylinder. The common source lines are drawn out one by one by making heavily doped regions on the substrate. Gate mining A charge trapping method is used for memory. A tunneling layer, a charge trapping layer, and a blocking layer are provided between the polycrystalline silicon channel and the gate metal. For a detailed description of the element structure, please refer to the patent document with patent publication number CN104425511A.

這種垂直通道型三維電荷捕捉快閃記憶體的關鍵技術是超深孔蝕刻和高品質薄膜製程。32層的超深孔深寬比接近30:1,上下孔的直徑差異要求小於10-20nm。閘介電多層薄膜不僅要求頂層和底層的厚度基本一致,對組份均勻性也提出了很高的要求。通道材料一般為多晶矽薄膜,要求具有很好的結晶度和較大的晶粒,同時還需要與閘介電之間有低缺陷密度的介面。作為一種電荷捕捉記憶體,記憶單元之間幾乎沒有耦合效應。程式設計和擦除操作分別使用了電子和空穴的FN隧穿。為了提高擦除速度,隧穿層通常會使用基於氧化矽和氮氧化矽材料的疊層結構。記憶層則一般是氮化矽為主的高陷阱密度材料。為了降低閘反向注入,阻擋層則會使用氧化矽或氧化鋁等材料。 The key technologies of this vertical channel type 3D charge trapping flash memory are ultra deep hole etching and high quality thin film process. The 32-layer ultra-deep hole has an aspect ratio close to 30: 1, and the diameter difference between the upper and lower holes must be less than 10-20nm. The gate dielectric multilayer film not only requires the thickness of the top layer and the bottom layer to be substantially the same, but also puts forward high requirements for the uniformity of the components. The channel material is generally a polycrystalline silicon thin film, which requires good crystallinity and large crystal grains, and also needs a low defect density interface with the gate dielectric. As a kind of charge trapping memory, there is almost no coupling effect between memory cells. Programming and erase operations use FN tunneling of electrons and holes, respectively. In order to increase the erasing speed, the tunneling layer usually uses a stacked structure based on silicon oxide and silicon oxynitride materials. The memory layer is generally a high trap density material based on silicon nitride. In order to reduce the gate reverse injection, the barrier layer uses materials such as silicon oxide or aluminum oxide.

然而,現有的垂直通道型三維電荷捕捉記憶體,元件通道材料採用多晶矽薄膜,要求具有很好的結晶度和較大的晶粒,同時又要求多晶矽薄膜通道的厚度要儘量薄,製程很難兼顧,影響產品良率。 However, in the existing vertical channel type three-dimensional charge trapping memory, the material of the channel of the device is polycrystalline silicon film, which requires good crystallinity and large crystal grains. At the same time, the thickness of the channel of the polycrystalline silicon film must be as thin as possible, and it is difficult to balance the manufacturing process. , Affecting product yield.

鑒於以上所述現有技術,本發明的目的在於提供一種奈米管記憶體結構及其製造方法,用於解決現有技術中的種種問題。 In view of the foregoing prior art, an object of the present invention is to provide a nano tube memory structure and a manufacturing method thereof, which are used to solve various problems in the prior art.

為實現上述目的及其他相關目的,本發明提供一種奈米管記憶體結構,包括:半導體基板,所述半導體基板表面具有重摻雜磊晶層; 第一隔離介電層,位於所述半導體基板之上;地選擇閘電極層,位於所述第一隔離介電層之上;字線閘電極層,位於所述地選擇閘電極層之上;串選擇閘電極層,位於所述字線閘電極層之上;多層第二隔離介電層,介於所述地選擇閘電極層、字線閘電極層和串選擇閘電極層之間;半導體通道,與所述重摻雜磊晶層接觸並貫穿所述地選擇閘電極層、字線閘電極層和串選擇閘電極層;閘極介電層,包裹在所述半導體通道的側壁上,介於所述半導體通道與所述串選擇閘電極層、字線閘電極層和地選擇閘電極層之間,在由所述半導體通道中心向外的方向上依次包括隧道層、電荷捕捉層和阻擋層;其中,所述半導體通道為半導體奈米管。 In order to achieve the above object and other related objects, the present invention provides a nano tube memory structure including: a semiconductor substrate, the surface of the semiconductor substrate having a heavily doped epitaxial layer; A first isolation dielectric layer on the semiconductor substrate; a ground selection gate electrode layer on the first isolation dielectric layer; a word line gate electrode layer on the ground selection gate electrode layer; The string selection gate electrode layer is located above the word line gate electrode layer; the multilayer second isolation dielectric layer is interposed between the ground selection gate electrode layer, the word line gate electrode layer, and the string selection gate electrode layer; a semiconductor A channel in contact with the heavily doped epitaxial layer and penetrating through the ground selection gate electrode layer, the word line gate electrode layer, and the string selection gate electrode layer; a gate dielectric layer wrapped on a sidewall of the semiconductor channel, Between the semiconductor channel and the string selection gate electrode layer, the word line gate electrode layer, and the ground selection gate electrode layer, a tunnel layer, a charge trapping layer, and A barrier layer; wherein the semiconductor channel is a semiconductor nano tube.

可選地,所述半導體通道為III-V族單晶半導體奈米管。 Optionally, the semiconductor channel is a III-V single crystal semiconductor nano tube.

可選地,所述半導體通道為奈米碳管。 Optionally, the semiconductor channel is a nano carbon tube.

可選地,所述半導體基板包括具有第二導電類型的摻雜基板和生長於所述摻雜基板表面的第一導電類型的所述重摻雜磊晶層。 Optionally, the semiconductor substrate includes a doped substrate having a second conductivity type and the heavily doped epitaxial layer of a first conductivity type grown on a surface of the doped substrate.

可選地,所述重摻雜磊晶層的摻雜濃度為1018-5×1019/cm3Optionally, the doping concentration of the heavily doped epitaxial layer is 10 18 -5 × 10 19 / cm 3 .

可選地,所述重摻雜磊晶層的厚度為1-5μm。 Optionally, the thickness of the heavily doped epitaxial layer is 1-5 μm.

可選地,所述半導體通道與所述重摻雜磊晶層的導電類型相同。 Optionally, the semiconductor channel has the same conductivity type as the heavily doped epitaxial layer.

可選地,所述半導體通道的平行於所述半導體基板的橫截面的最大寬度為2-50nm。 Optionally, a maximum width of a cross section of the semiconductor channel parallel to the semiconductor substrate is 2-50 nm.

可選地,在所述半導體通道的頂部設有位線接觸和與所述位線接觸連接的位線電極層。 Optionally, a bit line contact and a bit line electrode layer connected to the bit line contact are provided on the top of the semiconductor channel.

進一步可選地,所述奈米管記憶體結構包括第三隔離介電層,所述第三隔離介電層位於所述位線電極層與所述串選擇閘電極層之間,並將所述半導體通道的頂部包裹,所述位線接觸穿過所述第三隔離介電層與所述半導體通道的頂部接觸。 Further optionally, the nanometer tube memory structure includes a third isolation dielectric layer, the third isolation dielectric layer is located between the bit line electrode layer and the string selection gate electrode layer, and The top of the semiconductor channel is wrapped, and the bit line contact passes through the third isolation dielectric layer and contacts the top of the semiconductor channel.

進一步可選地,所述位線接觸的材料包括Ti、Al、Ni、Au中的一種或多種。 Further optionally, the material of the bit line contact includes one or more of Ti, Al, Ni, and Au.

可選地,所述記憶體結構包括多層所述字線閘電極層,多層所述字線閘電極層之間設有所述第二隔離介電層。 Optionally, the memory structure includes a plurality of the word line gate electrode layers, and the second isolation dielectric layer is provided between the plurality of word line gate electrode layers.

可選地,在所述閘極介電層中,所述隧道層的材料為矽氧化物,所述電荷捕捉層的材料為矽氮化物,所述阻擋層的材料為矽氧化物。 Optionally, in the gate dielectric layer, a material of the tunnel layer is silicon oxide, a material of the charge trapping layer is silicon nitride, and a material of the barrier layer is silicon oxide.

可選地,所述閘極介電層的厚度為2-50nm。 Optionally, the thickness of the gate dielectric layer is 2-50 nm.

為實現上述目的及其他相關目的,本發明還提供一種奈米管記憶體結構,包括:作為公共源極線的重摻雜磊晶層;依次設置在所述重摻雜磊晶層上的地選擇線、多層字線和串選擇線;以及多個與所述重摻雜磊晶層接觸並貫穿所述地選擇線、多層字線和串選擇線的半導體通道,每個所述半導體通道上設有對應的位線接觸,和與對應的所述位線接觸連接的位線,其中,所述半導體通道為半導體奈米管。 In order to achieve the above object and other related objects, the present invention also provides a nanometer tube memory structure including: a heavily doped epitaxial layer as a common source line; and a ground disposed on the heavily doped epitaxial layer in order. A selection line, a multilayer word line, and a string selection line; and a plurality of semiconductor channels in contact with the heavily doped epitaxial layer and penetrating through the ground selection line, the multilayer word line, and the string selection line, each on the semiconductor channel A corresponding bit line contact and a bit line connected to the corresponding bit line contact are provided, wherein the semiconductor channel is a semiconductor nano tube.

可選地,所述半導體通道為III-V族單晶半導體奈米管。 Optionally, the semiconductor channel is a III-V single crystal semiconductor nano tube.

可選地,所述半導體通道為奈米碳管。 Optionally, the semiconductor channel is a nano carbon tube.

為實現上述目的及其他相關目的,本發明還提供一種奈米管 記憶體結構的製造方法,包括如下步驟:提供表面具有重摻雜磊晶層的半導體基板;在所述重摻雜磊晶層上形成第一隔離介電層,在所述第一隔離介電層上形成地選擇閘電極層、字線閘電極層、串選擇閘電極層以及介於所述地選擇閘電極層、字線閘電極層、串選擇閘電極層之間的第二隔離介電層;通過微影和蝕刻形成通孔,所述通孔向下貫穿所述串選擇閘電極層、字線閘電極層、地選擇閘電極層、介於所述地選擇閘電極層、字線閘電極層、串選擇閘電極層之間的第二隔離介電層、以及第一隔離介電層,並使所述重摻雜磊晶層露出;在所述通孔中形成閘極介電層,使所述閘極介電層覆蓋所述通孔的底面和側面,所述閘極介電層在由所述通孔中心向外的方向上依次包括隧道層、電荷捕捉層和阻擋層;蝕刻所述閘極介電層在所述通孔底部形成開口露出所述重摻雜磊晶層;在由所述開口露出的所述重摻雜磊晶層表面生長半導體奈米管作為填充所述通孔的半導體通道。 In order to achieve the above object and other related objects, the present invention also provides a nano tube A method for manufacturing a memory structure includes the steps of: providing a semiconductor substrate having a heavily doped epitaxial layer on a surface; forming a first isolation dielectric layer on the heavily doped epitaxial layer; A ground selection gate electrode layer, a word line gate electrode layer, a string selection gate electrode layer, and a second isolation dielectric interposed between the ground selection gate electrode layer, the word line gate electrode layer, and the string selection gate electrode layer are formed on the layers. A through hole formed by lithography and etching, the through hole penetrating downward through the string selection gate electrode layer, word line gate electrode layer, ground selection gate electrode layer, interposed between the ground selection gate electrode layer, word line A gate electrode layer, a second isolation dielectric layer between the gate electrode layers, and a first isolation dielectric layer, and exposing the heavily doped epitaxial layer; forming a gate dielectric in the via hole Layer, so that the gate dielectric layer covers the bottom surface and sides of the through hole, and the gate dielectric layer includes a tunnel layer, a charge trapping layer, and a barrier layer in a direction from the center of the through hole outward. ; Etching the gate dielectric layer to form an opening at the bottom of the through hole to expose the A heavily doped epitaxial layer; in the opening is exposed by the surface of a heavily doped semiconductor epitaxial layer is grown as a semiconductor nanotube channel filling the through hole.

可選地,生長半導體奈米管包括以下步驟:在由所述開口露出的所述重摻雜磊晶層表面沉積催化劑,然後在所述催化劑輔助下磊晶生長III-V族單晶半導體奈米管。 Optionally, growing a semiconductor nano tube includes the following steps: depositing a catalyst on the surface of the heavily doped epitaxial layer exposed through the opening, and then epitaxially growing a group III-V single crystal semiconductor nano with the aid of the catalyst. Meter tube.

進一步可選地,所述催化劑的材料選自Au、Fe、Pt、Fe-Ni、Co-Ni、FeSi、NiB中的一種或多種。 Further optionally, the material of the catalyst is selected from one or more of Au, Fe, Pt, Fe-Ni, Co-Ni, FeSi, NiB.

進一步可選地,磊晶生長所述III-V族單晶半導體奈米管的方 法為金屬有機化合物化學氣相沉積或分子束磊晶。 Further optionally, the method of epitaxially growing the III-V single crystal semiconductor nanometer tube The method is chemical vapor deposition of metal organic compounds or molecular beam epitaxy.

進一步可選地,完成磊晶生長後,所述催化劑保留在所述III-V族單晶半導體奈米管的頂部作為所述半導體通道的一部分。 Further optionally, after the epitaxial growth is completed, the catalyst remains on the top of the III-V single crystal semiconductor nano tube as a part of the semiconductor channel.

可選地,生長半導體奈米管包括以下步驟:在由所述開口露出的所述重摻雜磊晶層表面沉積催化粒子,然後在所述催化粒子輔助下磊晶生長奈米碳管。 Optionally, growing the semiconductor nano tube includes the following steps: depositing catalytic particles on the surface of the heavily doped epitaxial layer exposed through the opening, and then epitaxially growing the nano carbon tube with the assistance of the catalytic particles.

進一步可選地,所述催化粒子的材料選自Fe、Co、Ni、Cu、Au、Ag、Pt、Pd中的一種或多種。 Further optionally, the material of the catalytic particles is selected from one or more of Fe, Co, Ni, Cu, Au, Ag, Pt, and Pd.

進一步可選地,磊晶生長奈米碳管的方法為化學氣相沉積。 Further optionally, the method for epitaxially growing the carbon nanotubes is chemical vapor deposition.

進一步可選地,完成磊晶生長後,所述催化粒子保留在所述奈米碳管的頂部作為所述半導體通道的一部分。 Further optionally, after the epitaxial growth is completed, the catalytic particles remain on the top of the nano carbon tube as a part of the semiconductor channel.

可選地,提供表面具有重摻雜磊晶層的半導體基板包括以下步驟:提供具有第二導電類型的摻雜基板;在所述第二導電類型的摻雜基板上磊晶生長形成第一導電類型的重摻雜磊晶層。 Optionally, providing a semiconductor substrate having a heavily doped epitaxial layer on the surface includes the following steps: providing a doped substrate having a second conductivity type; and epitaxially growing on the doped substrate of the second conductivity type to form a first conductivity Type of heavily doped epitaxial layer.

可選地,形成多層所述字線閘電極層,多層所述字線閘電極層之間形成所述第二隔離介電層。 Optionally, a plurality of word line gate electrode layers are formed, and the second isolation dielectric layer is formed between the plurality of word line gate electrode layers.

可選地,形成所述第一隔離介電層、地選擇閘電極層、字線閘電極層、串選擇閘電極層、第二隔離介電層的方法選自化學氣相沉積、物理氣相沉積、金屬有機化合物化學氣相沉積、原子層沉積中的一種或多種。 Optionally, the method for forming the first isolation dielectric layer, the ground selection gate electrode layer, the word line gate electrode layer, the string selection gate electrode layer, and the second isolation dielectric layer is selected from the group consisting of chemical vapor deposition and physical vapor phase. One or more of deposition, chemical vapor deposition of metal organic compounds, atomic layer deposition.

可選地,所述通孔開口的最大寬度為2-50nm。 Optionally, the maximum width of the through-hole opening is 2-50 nm.

可選地,形成所述閘極介電層的方法選自化學氣相沉積、金 屬有機化合物化學氣相沉積、原子層沉積、分子束磊晶中的一種或多種。 Optionally, the method for forming the gate dielectric layer is selected from the group consisting of chemical vapor deposition, gold It belongs to one or more of chemical vapor deposition, atomic layer deposition, and molecular beam epitaxy of organic compounds.

可選地,蝕刻所述閘極介電層在所述通孔底部形成開口的方法為乾式蝕刻或原子層沉積。 Optionally, the method for etching the gate dielectric layer to form an opening at the bottom of the via is dry etching or atomic layer deposition.

可選地,該製造方法還包括以下步驟:形成覆蓋在所述半導體通道頂部的第三隔離介電層,在所述第三隔離介電層中形成接觸通孔露出所述半導體通道的頂部,在所述接觸通孔中形成位線接觸,在形成有所述位線接觸的第三隔離介電層上形成位線電極層,使所述位線電極層通過所述位線接觸與所述半導體通道實現電連接。 Optionally, the manufacturing method further includes the steps of: forming a third isolation dielectric layer covering the top of the semiconductor channel, forming a contact via in the third isolation dielectric layer to expose the top of the semiconductor channel, A bit line contact is formed in the contact via, a bit line electrode layer is formed on the third isolation dielectric layer where the bit line contact is formed, and the bit line electrode layer is in contact with the bit line contact through the bit line contact. The semiconductor channel is electrically connected.

進一步可選地,形成所述第三隔離介電層的方法選自化學氣相沉積、物理氣相沉積、金屬有機化合物化學氣相沉積、原子層沉積中的一種或多種。 Further optionally, the method for forming the third isolation dielectric layer is selected from one or more of chemical vapor deposition, physical vapor deposition, chemical vapor deposition of metal organic compounds, and atomic layer deposition.

如上所述,本發明的奈米管記憶體結構及其製造方法,具有以下有益效果:本發明的技術方案以重摻雜磊晶層作為公共源極線,並在其上設置地選擇線、多層字線和串選擇線,貫穿地選擇線、多層字線和串選擇線的垂直通道採用在所述重摻雜磊晶層上生長的半導體奈米管,記憶單元採用閘極電荷捕捉的方式記憶,相對于現有的垂直通道型NAND結構,元件結構得到了進一步簡化,製造製程易於控制,產品良率高。 As described above, the nanometer tube memory structure of the present invention and the manufacturing method thereof have the following beneficial effects: The technical solution of the present invention uses a heavily doped epitaxial layer as a common source line, and a ground selection line, Multi-layer word lines and string selection lines, vertical channels running through ground selection lines, multi-layer word lines and string selection lines use semiconductor nano tubes grown on the heavily doped epitaxial layer, and memory cells use gate charge trapping Memory, compared with the existing vertical channel NAND structure, the component structure has been further simplified, the manufacturing process is easy to control, and the product yield is high.

100‧‧‧半導體基板 100‧‧‧ semiconductor substrate

101‧‧‧重摻雜磊晶層 101‧‧‧ heavily doped epitaxial layer

102‧‧‧摻雜基板 102‧‧‧ doped substrate

201‧‧‧第一隔離介電層 201‧‧‧The first isolation dielectric layer

202‧‧‧第二隔離介電層 202‧‧‧Second isolation dielectric layer

203‧‧‧第三隔離介電層 203‧‧‧Third isolation dielectric layer

301‧‧‧地選擇閘電極層 301‧‧‧ground selection gate electrode layer

401‧‧‧字線閘電極層 401‧‧‧Word line gate electrode layer

501‧‧‧串選擇閘電極層 501‧‧‧string selection gate electrode layer

600‧‧‧閘極介電層 600‧‧‧Gate dielectric layer

601‧‧‧隧道層 601‧‧‧ Tunnel layer

602‧‧‧電荷捕捉層 602‧‧‧ charge trapping layer

603‧‧‧阻擋層 603‧‧‧ barrier

701‧‧‧半導體奈米管 701‧‧‧Semiconductor Nanotube

702‧‧‧催化劑 702‧‧‧ catalyst

801‧‧‧位線電極層 801‧‧‧bit line electrode layer

802‧‧‧位線接觸 802‧‧‧bit line contact

第1圖顯示為本發明實施例提供的奈米管記憶體結構的示意圖。 FIG. 1 is a schematic diagram of a nanometer tube memory structure according to an embodiment of the present invention.

第2a圖-2g圖顯示為本發明實施例提供的奈米管記憶體結構的製造流程示意圖。 Figures 2a-2g are schematic diagrams illustrating a manufacturing process of a nanometer tube memory structure according to an embodiment of the present invention.

以下通過特定的具體實例說明本發明的實施方式,本領域技術人員可由本說明書所揭露的內容輕易地瞭解本發明的其他優點與功效。本發明還可以通過另外不同的具體實施方式加以實施或應用,本說明書中的各項細節也可以基於不同觀點與應用,在沒有背離本發明的精神下進行各種修飾或改變。需說明的是,在不衝突的情況下,以下實施例及實施例中的特徵可以相互組合。 The following describes the embodiments of the present invention through specific specific examples. Those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through different specific implementations, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that, in the case of no conflict, the following embodiments and features in the embodiments can be combined with each other.

需要說明的是,以下實施例中所提供的圖示僅以示意方式說明本發明的基本構想,遂圖式中僅顯示與本發明中有關的組件而非按照實際實施時的元件數目、形狀及尺寸繪製,其實際實施時各元件的型態、數量及比例可為一種隨意的改變,且其元件佈局型態也可能更為複雜。 It should be noted that the illustrations provided in the following embodiments are only a schematic illustration of the basic idea of the present invention, and the drawings only show the components related to the present invention and not the number, shape and For size drawing, the type, quantity, and proportion of each component can be changed at will in actual implementation, and the component layout type may be more complicated.

本實施例提供一種可以應用於垂直通道型三維電荷捕捉NAND記憶體中的記憶單元串的結構及製造方法。多個記憶單元串可以組成記憶陣列。記憶單元串採用多個閘極無接面型開關電晶體共用垂直通道的形式,多個閘極無接面型開關電晶體,即閘極連接入地選擇線(GSL)的地選擇電晶體,閘極分別連接入多條字線(WL)的多個閘極控制的電荷捕捉記憶單元,以及閘極連接入串選擇線(SSL)的串選擇電晶體。 This embodiment provides a structure and a manufacturing method of a memory cell string that can be applied to a vertical channel type three-dimensional charge trapping NAND memory. Multiple memory cell strings can form a memory array. The memory cell string adopts a form in which a plurality of gateless contactless switching transistors share a vertical channel, and a plurality of gateless contactless switching transistors, that is, a ground selection transistor whose gate is connected to a ground selection line (GSL), The gates are respectively connected to a plurality of gate-controlled charge trapping memory cells of a plurality of word lines (WL), and the string selection transistors are connected to a string selection line (SSL).

請參閱第1圖,本實施例提供一種奈米管記憶體結構可作為記憶單元串,其包括:半導體基板100,所述半導體基板100表面具有重摻雜磊晶層 101;第一隔離介電層201,位於所述半導體基板100之上;地選擇閘電極層301,位於所述第一隔離介電層201之上;字線閘電極層401,位於所述地選擇閘電極層301之上;串選擇閘電極層501,位於所述字線閘電極層401之上;多層第二隔離介電層202,介於所述地選擇閘電極層301、字線閘電極層401和串選擇閘電極層501之間;半導體通道,與所述重摻雜磊晶層101接觸並貫穿所述地選擇閘電極層301、字線閘電極層401和串選擇閘電極層501;閘極介電層600,包裹在所述半導體通道(未於圖中標出)的側壁上,介於所述半導體通道與所述串選擇閘電極層501、字線閘電極層401和地選擇閘電極層301之間,在由所述半導體通道中心向外的方向上依次包括隧道層601、電荷捕捉層602和阻擋層603。其中,所述半導體通道為半導體奈米管701,例如III-V族單晶半導體奈米管或奈米碳管。用以形成半導體奈米管701的催化劑702可以保留在所述半導體奈米管701的頂部作為所述半導體通道的一部分。 Please refer to FIG. 1. This embodiment provides a nano tube memory structure that can be used as a memory cell string, which includes a semiconductor substrate 100 having a heavily doped epitaxial layer on the surface. 101; a first isolation dielectric layer 201 on the semiconductor substrate 100; a ground selection gate electrode layer 301 on the first isolation dielectric layer 201; a word line gate electrode layer 401 on the ground Select gate electrode layer 301; string select gate electrode layer 501 above the word line gate electrode layer 401; a plurality of second isolation dielectric layers 202 interposed between the ground select gate electrode layer 301 and the word line gate Between the electrode layer 401 and the string selection gate electrode layer 501; a semiconductor channel in contact with the heavily doped epitaxial layer 101 and penetrating the ground selection gate electrode layer 301, the word line gate electrode layer 401, and the string selection gate electrode layer 501; a gate dielectric layer 600 is wrapped on a sidewall of the semiconductor channel (not shown in the figure), interposed between the semiconductor channel and the string selection gate electrode layer 501, a word line gate electrode layer 401, and The ground selection gate electrode layer 301 includes a tunnel layer 601, a charge trapping layer 602, and a blocking layer 603 in this order in a direction outward from the center of the semiconductor channel. The semiconductor channel is a semiconductor nano tube 701, such as a III-V single crystal semiconductor nano tube or a nano carbon tube. The catalyst 702 used to form the semiconductor nano tube 701 may remain on top of the semiconductor nano tube 701 as part of the semiconductor channel.

在本實施例中,所述半導體基板100可以是雙層材料結構、多層材料結構或其他適合的結構,優選地,所述半導體基板100可以包括具有第二導電類型的摻雜基板102和生長於所述摻雜基板102表面的第一導電類型的所述重摻雜磊晶層101。摻雜基板102可以是矽基板、鍺基板、矽-鍺基板、絕緣體上矽(SOI)基板或其他適合表面生長磊晶層的基板。所述半導體通道與所述重摻雜磊晶層101的導電類型相同,也為第一導電類型。第一導電類型與第二導電類型相反。例如,第一導電類型為N型,第二導電類型為P型。所述重摻雜磊晶層101的摻雜濃度可以為1018-5×1019/cm3。所述重摻雜磊晶層101的厚度可以為1-5μm。 In this embodiment, the semiconductor substrate 100 may have a double-layer material structure, a multilayer material structure, or other suitable structures. Preferably, the semiconductor substrate 100 may include a doped substrate 102 having a second conductivity type and grown on The heavily doped epitaxial layer 101 of the first conductivity type on the surface of the doped substrate 102. The doped substrate 102 may be a silicon substrate, a germanium substrate, a silicon-germanium substrate, a silicon-on-insulator (SOI) substrate, or other substrates suitable for growing epitaxial layers on the surface. The semiconductor channel has the same conductivity type as the heavily doped epitaxial layer 101 and is also a first conductivity type. The first conductivity type is opposite to the second conductivity type. For example, the first conductivity type is N-type and the second conductivity type is P-type. The doping concentration of the heavily doped epitaxial layer 101 may be 10 18 -5 × 10 19 / cm 3 . The thickness of the heavily doped epitaxial layer 101 may be 1-5 μm.

本實施例中,所述記憶單元串結構可以包括多層所述字線閘 電極層401,多層所述字線閘電極層401之間設有所述第二隔離介電層202實現隔離。本發明對字線閘電極層401的層數沒有限制,例如,可以是24層、32層、48層或更多層。 In this embodiment, the memory cell string structure may include multiple layers of the word line gate. The electrode layer 401 is provided with the second isolation dielectric layer 202 between the multiple word line gate electrode layers 401 to achieve isolation. The present invention does not limit the number of layers of the word line gate electrode layer 401, and for example, it may be 24 layers, 32 layers, 48 layers or more.

本實施例中,所述半導體通道的平行於所述半導體基板100的橫截面的最大寬度為2-50nm。 In this embodiment, a maximum width of a cross section of the semiconductor channel parallel to the semiconductor substrate 100 is 2-50 nm.

在所述半導體通道的頂部可以設置位線接觸802和與所述位線接觸802連接的位線電極層801。位線電極層801可以是圖形化的位元線。在所述位線電極層801與所述串選擇閘電極層501之間可以設置第三隔離介電層203進行隔離,第三隔離介電層203可以將所述半導體通道的頂部包裹,所述位線接觸802穿過所述第三隔離介電層203與所述半導體通道的頂部接觸。 A bit line contact 802 and a bit line electrode layer 801 connected to the bit line contact 802 may be provided on the top of the semiconductor channel. The bit line electrode layer 801 may be a patterned bit line. A third isolation dielectric layer 203 may be provided between the bit line electrode layer 801 and the string selection gate electrode layer 501 for isolation. The third isolation dielectric layer 203 may wrap the top of the semiconductor channel. A bit line contact 802 contacts the top of the semiconductor channel through the third isolation dielectric layer 203.

具體地,第一隔離介電層201、第二隔離介電層202和第三隔離介電層203的材料可以是諸如矽氧化物、矽氮化物或矽氮氧化物等絕緣材料。第一隔離介電層201、第二隔離介電層202和第三隔離介電層203的厚度可以各不相同。 Specifically, a material of the first isolation dielectric layer 201, the second isolation dielectric layer 202, and the third isolation dielectric layer 203 may be an insulating material such as silicon oxide, silicon nitride, or silicon oxynitride. The thicknesses of the first isolation dielectric layer 201, the second isolation dielectric layer 202, and the third isolation dielectric layer 203 may be different.

具體地,地選擇閘電極層301可以包括導電材料諸如金屬或金屬矽化物。例如,地選擇閘電極層301可以包括鈦、鉭、鎢、鈷、鈦氮化物、鉭氮化物、鈦矽化物、鉭矽化物、鎢矽化物、鈷矽化物、鎳矽化物、或類似物。字線閘電極層401可以包括金屬矽化物材料。例如,字線閘電極層401可以包括鈦矽化物、鉭矽化物、鎢矽化物、鈷矽化物、鎳矽化物、或類似物。串選擇閘電極層501可以包括導電材料諸如金屬或金屬矽化物。例如,串選擇閘電極層501可以包括鈦、鉭、鎢、鈷、鈦氮化物、鉭氮化物、 鈦矽化物、鉭矽化物、鎢矽化物、鈷矽化物、鎳矽化物或類似物。位線電極層801可以包括導電材料,例如可以包括Ti、Al、Ni、Au、Cu等。位線接觸802可以包括Ti、Al、Ni、Au中的一種或多種材料,或為其他適合的金屬接觸材料和結構。 Specifically, the ground selection gate electrode layer 301 may include a conductive material such as a metal or a metal silicide. For example, the ground selection gate electrode layer 301 may include titanium, tantalum, tungsten, cobalt, titanium nitride, tantalum nitride, titanium silicide, tantalum silicide, tungsten silicide, cobalt silicide, nickel silicide, or the like. The word line gate electrode layer 401 may include a metal silicide material. For example, the word line gate electrode layer 401 may include titanium silicide, tantalum silicide, tungsten silicide, cobalt silicide, nickel silicide, or the like. The string selection gate electrode layer 501 may include a conductive material such as a metal or a metal silicide. For example, the string selection gate electrode layer 501 may include titanium, tantalum, tungsten, cobalt, titanium nitride, tantalum nitride, Titanium silicide, tantalum silicide, tungsten silicide, cobalt silicide, nickel silicide, or the like. The bit line electrode layer 801 may include a conductive material, such as Ti, Al, Ni, Au, Cu, and the like. The bit line contact 802 may include one or more materials of Ti, Al, Ni, Au, or other suitable metal contact materials and structures.

具體地,閘極介電層600為絕緣材料,例如可以是ONO介電材料,即矽氧化物、矽氮化物、矽氧化物。隧道層601可以包括矽氧化物,電荷捕捉層602可以包括矽氮化物,阻擋層603可以包括矽氧化物或者具有高介電常數的高k介電材料。閘極介電層600的厚度可以為2-50nm。 Specifically, the gate dielectric layer 600 is an insulating material, for example, it may be an ONO dielectric material, that is, silicon oxide, silicon nitride, and silicon oxide. The tunnel layer 601 may include silicon oxide, the charge trapping layer 602 may include silicon nitride, and the blocking layer 603 may include silicon oxide or a high-k dielectric material having a high dielectric constant. The thickness of the gate dielectric layer 600 may be 2-50 nm.

上述結構中,重摻雜磊晶層101可作為記憶體的公共源極線(CSL),地選擇閘電極層301可作為地選擇線(GSL)、多層字線閘電極層401可作為多條字線(WL),串選擇閘電極層501可作為串選擇線(SSL)。這樣公共源極線、地選擇線和多層字線均為水平層,設置多個垂直的半導體通道陣列排布的穿插在這些水平層中,在這些半導體通道的頂部連接位線(BL),即可組成三維記憶陣列。 In the above structure, the heavily doped epitaxial layer 101 can be used as the common source line (CSL) of the memory, the ground selection gate electrode layer 301 can be used as the ground selection line (GSL), and the multilayer word line gate electrode layer 401 can be used as multiple The word line (WL) and the string selection gate electrode layer 501 can serve as a string selection line (SSL). In this way, the common source lines, ground selection lines, and multilayer word lines are all horizontal layers. A plurality of vertical semiconductor channel arrays are arranged and interspersed in these horizontal layers. Bit lines (BL) are connected at the top of these semiconductor channels, that is, Can form a three-dimensional memory array.

本實施例還提供一種奈米管記憶體結構,可作為基於上述記憶單元串的記憶陣列,包括:作為公共源極線的重摻雜磊晶層,依次設置在所述重摻雜磊晶層上的地選擇線、多層字線和串選擇線,以及與所述重摻雜磊晶層接觸並貫穿所述地選擇線、多層字線和串選擇線的半導體通道,其中,所述半導體通道為半導體奈米管,如III-V族單晶半導體奈米管或奈米碳管。所述奈米管記憶體結構可以包括多個所述半導體通道,每個半導體通道上設有對應的位線接觸,和與對應的所述位線接觸連接的位線。 This embodiment also provides a nano tube memory structure, which can be used as a memory array based on the above-mentioned memory cell string, including: a heavily doped epitaxial layer as a common source line, and sequentially disposed on the heavily doped epitaxial layer. Ground selection lines, multilayer word lines, and string selection lines thereon, and semiconductor channels that are in contact with the heavily doped epitaxial layer and pass through the ground selection lines, multilayer word lines, and string selection lines, wherein the semiconductor channels It is a semiconductor nano tube, such as a III-V single crystal semiconductor nano tube or a carbon nano tube. The nanometer tube memory structure may include a plurality of the semiconductor channels, and each semiconductor channel is provided with a corresponding bit line contact and a bit line connected to the corresponding bit line contact.

本實施例提供的奈米管記憶體結構與現有技術中的垂直通 道型NAND結構的不同之處主要在於,本實施例記憶體結構的公共源極線是位於半導體通道下的重摻雜磊晶層,而現有技術的公共源極線通常需要在基板上形成多個摻雜區再額外引出;另外本實施例記憶體結構的半導體通道採用半導體奈米管,而現有技術的垂直通道結構採用多晶矽薄膜,結構也較為複雜,通常包括多層薄膜,在通道結構中間還可能設有絕緣埋層等。垂直通道採用多晶矽薄膜,要求具有很好的結晶度和較大的晶粒,同時又要求多晶矽薄膜通道的厚度要儘量薄,製程很難兼顧。因此,相較于現有的垂直通道型NAND,本實施例提供的記憶單元串和記憶陣列具有更加簡單的結構,對應製作製程也相對簡單,易於控制。 The structure of the nanometer tube memory provided in this embodiment is similar to the vertical communication in the prior art. The difference between the channel NAND structure is mainly that the common source line of the memory structure of this embodiment is a heavily doped epitaxial layer located under the semiconductor channel, and the common source line of the prior art usually needs to be formed on the substrate. In addition, the semiconductor channel of the memory structure of this embodiment uses a semiconductor nano tube, and the vertical channel structure of the prior art uses a polycrystalline silicon film, and the structure is also more complicated, usually including a multilayer film. There may be buried insulation layers and so on. The vertical channel uses a polycrystalline silicon thin film, which requires good crystallinity and large crystal grains. At the same time, the thickness of the polycrystalline silicon thin film channel must be as thin as possible, which is difficult to take into account. Therefore, compared with the existing vertical channel NAND, the memory cell string and the memory array provided in this embodiment have a simpler structure, and the corresponding manufacturing process is relatively simple and easy to control.

下面結合附圖進一步詳細說明本實施例提供的奈米管記憶體結構的製造方法。 The method for manufacturing the nano tube memory structure provided in this embodiment is further described in detail below with reference to the accompanying drawings.

請參閱第2a-2g圖,本實施例提供一種奈米管記憶體結構的製造方法,包括如下步驟:首先,如第2a圖所示,提供表面具有重摻雜磊晶層101的半導體基板100。具體地,可以先提供具有第二導電類型的摻雜基板102;然後在所述第二導電類型的摻雜基板102上磊晶生長形成第一導電類型的重摻雜磊晶層101。其中,重摻雜磊晶層101的厚度可以為1-5μm,摻雜濃度可以為1018-5×1019/cm3Referring to FIGS. 2a-2g, this embodiment provides a method for manufacturing a nanometer tube memory structure, including the following steps: First, as shown in FIG. 2a, a semiconductor substrate 100 having a heavily doped epitaxial layer 101 on a surface is provided. . Specifically, a doped substrate 102 having a second conductivity type may be provided first; then epitaxial growth is performed on the doped substrate 102 of the second conductivity type to form a heavily doped epitaxial layer 101 of a first conductivity type. The thickness of the heavily doped epitaxial layer 101 may be 1-5 μm, and the doping concentration may be 10 18 -5 × 10 19 / cm 3 .

如第2b圖所示,在所述重摻雜磊晶層101上形成第一隔離介電層201,在所述第一隔離介電層201上形成地選擇閘電極層301、字線閘電極層401、串選擇閘電極層501以及介於所述地選擇閘電極層301、字線閘電極層401、串選擇閘電極層501之間的第二隔離介電層202。本實施例優選地, 可以在地選擇閘電極層301和串選擇閘電極層501之間形成多層字線閘電極層401,多層字線閘電極層401之間形成第二隔離介電層202作為隔離。具體地,形成所述第一隔離介電層201、地選擇閘電極層301、字線閘電極層401、串選擇閘電極層501、第二隔離介電層202的方法可以選自化學氣相沉積(CVD)、物理氣相沉積(PVD)、金屬有機化合物化學氣相沉積(MOCVD)、原子層沉積(ALD)中的一種或多種,或其他適合的製程。 As shown in FIG. 2b, a first isolation dielectric layer 201 is formed on the heavily doped epitaxial layer 101, and a ground selection gate electrode layer 301 and a word line gate electrode are formed on the first isolation dielectric layer 201. Layer 401, string selection gate electrode layer 501, and a second isolation dielectric layer 202 interposed between the ground selection gate electrode layer 301, word line gate electrode layer 401, and string selection gate electrode layer 501. In this embodiment, preferably, A multi-layer word line gate electrode layer 401 may be formed between the ground selection gate electrode layer 301 and a string selection gate electrode layer 501, and a second isolation dielectric layer 202 is formed between the multi-layer word line gate electrode layers 401 as isolation. Specifically, the method of forming the first isolation dielectric layer 201, the ground selection gate electrode layer 301, the word line gate electrode layer 401, the string selection gate electrode layer 501, and the second isolation dielectric layer 202 may be selected from a chemical vapor phase. One or more of deposition (CVD), physical vapor deposition (PVD), metal organic compound chemical vapor deposition (MOCVD), atomic layer deposition (ALD), or other suitable processes.

如第2c圖所示,通過微影和蝕刻形成通孔,所述通孔向下貫穿所述串選擇閘電極層501、字線閘電極層401、地選擇閘電極層301、介於所述地選擇閘電極層301、字線閘電極層401、串選擇閘電極層501之間的第二隔離介電層202、以及第一隔離介電層201,並使所述重摻雜磊晶層101露出。具體地,所述通孔開口的最大寬度可以為2-50nm。 As shown in FIG. 2c, a through hole is formed through lithography and etching, and the through hole penetrates the string selection gate electrode layer 501, the word line gate electrode layer 401, the ground selection gate electrode layer 301, and The ground selection gate electrode layer 301, the word line gate electrode layer 401, the second isolation dielectric layer 202 and the first isolation dielectric layer 201 between the string selection gate electrode layers 501, and the heavily doped epitaxial layer are made. 101 is exposed. Specifically, the maximum width of the through-hole opening may be 2-50 nm.

如第2d圖所示,在所述通孔中形成閘極介電層600,使所述閘極介電層600覆蓋所述通孔的底面和側面,所述閘極介電層600在由所述通孔中心向外的方向上依次包括隧道層601、電荷捕捉層602和阻擋層603。具體地,隧道層601可以為矽氧化物,電荷捕捉層602可以為矽氮化物,阻擋層603可以為矽氧化物。形成所述閘極介電層600的方法可以選自CVD、MOCVD、ALD、分子束磊晶(MBE)中的一種或多種,或其他適合的製程。形成的閘極介電層600的厚度可以為2-50nm。 As shown in FIG. 2d, a gate dielectric layer 600 is formed in the via hole, so that the gate dielectric layer 600 covers the bottom surface and the side surface of the via hole. The gate dielectric layer 600 is formed by The through hole center includes a tunnel layer 601, a charge trapping layer 602, and a blocking layer 603 in the outward direction. Specifically, the tunnel layer 601 may be silicon oxide, the charge trapping layer 602 may be silicon nitride, and the blocking layer 603 may be silicon oxide. The method for forming the gate dielectric layer 600 may be selected from one or more of CVD, MOCVD, ALD, molecular beam epitaxy (MBE), or other suitable processes. The thickness of the formed gate dielectric layer 600 may be 2-50 nm.

如第2e圖所示,蝕刻所述閘極介電層600在所述通孔底部形成開口露出所述重摻雜磊晶層101。具體地,蝕刻所述閘極介電層600在所述通孔底部形成開口的方法可以為乾式蝕刻或原子層蝕刻(ALE)。 As shown in FIG. 2e, the gate dielectric layer 600 is etched to form an opening at the bottom of the through hole to expose the heavily doped epitaxial layer 101. Specifically, a method of etching the gate dielectric layer 600 to form an opening at the bottom of the through hole may be dry etching or atomic layer etching (ALE).

然後,在由所述開口露出的所述重摻雜磊晶層101表面生長 半導體奈米管701作為填充所述通孔的半導體通道。 Then, the surface of the heavily doped epitaxial layer 101 exposed through the opening is grown. The semiconductor nano tube 701 serves as a semiconductor channel filling the through hole.

本實施例中,生長半導體奈米管701採用催化劑輔助磊晶生長的方法。 In this embodiment, the semiconductor nanotube 701 is grown using a catalyst-assisted epitaxial growth method.

作為本實施例的一個優選方案,生長III-V族單晶半導體奈米管作為半導體奈米管701。如圖2f所示,可以先在由所述開口露出的所述重摻雜磊晶層101表面沉積催化劑702。催化劑702可以為顆粒狀或其他適合的形狀,材料可以選自Au、Fe、Pt、Fe-Ni、Co-Ni、FeSi、NiB中的一種或多種。然後,在催化劑702的輔助下,垂直向上磊晶生長III-V族單晶半導體奈米管。本實施例中生長的III-V族單晶半導體奈米管為InAs單晶奈米管。磊晶生長所述III-V族單晶半導體奈米管的方法為MOCVD、MBE或其他適合的製程。磊晶生長時,所述催化劑702會被垂直向上生長的材料慢慢往上頂,最終完成生長後,所述催化劑702可以保留在半導體奈米管701的頂部作為所述半導體通道的一部分,如圖2g所示。 As a preferred solution of this embodiment, a III-V group single crystal semiconductor nano tube is grown as the semiconductor nano tube 701. As shown in FIG. 2f, a catalyst 702 may be deposited on the surface of the heavily doped epitaxial layer 101 exposed through the opening. The catalyst 702 may be granular or other suitable shapes, and the material may be selected from one or more of Au, Fe, Pt, Fe-Ni, Co-Ni, FeSi, and NiB. Then, with the assistance of the catalyst 702, a III-V single crystal semiconductor nano tube is epitaxially grown vertically upward. The III-V single crystal semiconductor nano tube grown in this embodiment is an InAs single crystal nano tube. The method for epitaxially growing the III-V single crystal semiconductor nano tube is MOCVD, MBE, or other suitable processes. During epitaxial growth, the catalyst 702 will be slowly topped by the material that grows vertically upwards. After the growth is finally completed, the catalyst 702 can remain on the top of the semiconductor nanotube 701 as a part of the semiconductor channel, such as Figure 2g.

作為本實施例的另一個優選方案,還可以生長碳奈米管作為半導體奈米管701。可以先在由所述開口露出的所述重摻雜磊晶層101表面沉積催化粒子作為催化劑702,所述催化粒子的材料可以選自Fe、Co、Ni、Cu、Au、Ag、Pt、Pd中的一種或多種。然後,在催化粒子的輔助下,垂直向上磊晶生長碳奈米管。磊晶生長所述碳奈米管的方法為CVD或其他適合的製程。磊晶生長時,所述催化粒子會被垂直向上生長的材料慢慢往上頂,最終完成生長後,所述催化粒子可以保留在碳奈米管的頂部作為所述半導體通道的一部分。 As another preferred solution of this embodiment, a carbon nanotube can also be grown as the semiconductor nanotube 701. A catalyst particle 702 may be deposited on the surface of the heavily doped epitaxial layer 101 exposed through the opening as a catalyst 702. The material of the catalyst particle may be selected from Fe, Co, Ni, Cu, Au, Ag, Pt, and Pd. One or more of them. Then, carbon nanotubes were epitaxially grown vertically with the aid of catalytic particles. The method for epitaxially growing the carbon nanotube is CVD or other suitable processes. During epitaxial growth, the catalytic particles are slowly topped by a material that grows vertically upwards. After the growth is finally completed, the catalytic particles can remain on the top of the carbon nanotube as a part of the semiconductor channel.

可選地,如第1圖所示,在形成所述半導體通道之後還包括: 形成覆蓋在所述半導體通道頂部的第三隔離介電層203,在所述第三隔離介電層203中形成接觸通孔露出所述半導體通道的頂部,在所述接觸通孔中形成位線接觸802,在形成有所述位線接觸802的第三隔離介電層203上形成位線電極層801,使所述位線電極層801通過所述位線接觸與所述半導體通道實現電連接。位元線電極層801可以圖形化形成位元線。形成所述第三隔離介電層203的方法可以選自化學氣相沉積、物理氣相沉積、金屬有機化合物化學氣相沉積、原子層沉積中的一種或多種或其他適合的製程。 Optionally, as shown in FIG. 1, after forming the semiconductor channel, the method further includes: Forming a third isolation dielectric layer 203 covering the top of the semiconductor channel, forming a contact via in the third isolation dielectric layer 203 to expose the top of the semiconductor channel, and forming a bit line in the contact via A contact 802, a bit line electrode layer 801 is formed on the third isolation dielectric layer 203 on which the bit line contact 802 is formed, so that the bit line electrode layer 801 is electrically connected to the semiconductor channel through the bit line contact . The bit line electrode layer 801 may be patterned to form a bit line. The method for forming the third isolation dielectric layer 203 may be selected from one or more of chemical vapor deposition, physical vapor deposition, metal organic compound chemical vapor deposition, atomic layer deposition, or other suitable processes.

此外,還可以利用上述方法同時形成多個通孔,在多個所述通孔中生長多個半導體通道和包裹其側壁的閘極介電層600,從而可形成記憶陣列。 In addition, a plurality of through holes can be formed simultaneously by using the above method, and a plurality of semiconductor channels and a gate dielectric layer 600 surrounding a sidewall thereof can be grown in the plurality of through holes, thereby forming a memory array.

綜上所述,本發明的奈米管記憶體結構以重摻雜磊晶層作為公共源極線,並在其上設置地選擇線、多層字線和串選擇線,貫穿地選擇線、多層字線和串選擇線的垂直通道採用在所述重摻雜磊晶層上生長的I半導體奈米管,記憶單元採用閘極電荷捕捉的方式記憶,相對于現有的垂直通道型NAND結構,元件結構得到了進一步簡化,製造製程易於控制,產品良率高。所以,本發明有效克服了現有技術中的種種缺點而具高度產業利用價值。 In summary, the nanometer tube memory structure of the present invention uses a heavily doped epitaxial layer as a common source line, and a ground selection line, a multilayer word line, and a string selection line are provided thereon, and the ground selection line and the multilayer The vertical channels of the word line and the string selection line use I semiconductor nano tubes grown on the heavily doped epitaxial layer. The memory cells are memorized by gate charge capture. Compared with the existing vertical channel NAND structure, the elements The structure is further simplified, the manufacturing process is easy to control, and the product yield is high. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

上述實施例僅例示性說明本發明的原理及其功效,而非用於限制本發明。任何熟悉此技術的人士皆可在不違背本發明的精神及範疇下,對上述實施例進行修飾或改變。因此,舉凡所屬技術領域中具有通常知識者在未脫離本發明所揭示的精神與技術思想下所完成的一切等效修飾或改變,仍應由本發明的權利要求所涵蓋。 The above-mentioned embodiments merely illustrate the principle of the present invention and its effects, but are not intended to limit the present invention. Anyone familiar with this technology can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field to which they belong without departing from the spirit and technical ideas disclosed by the present invention should still be covered by the claims of the present invention.

100‧‧‧半導體基板 100‧‧‧ semiconductor substrate

101‧‧‧重摻雜磊晶層 101‧‧‧ heavily doped epitaxial layer

102‧‧‧摻雜基板 102‧‧‧ doped substrate

201‧‧‧第一隔離介電層 201‧‧‧The first isolation dielectric layer

202‧‧‧第二隔離介電層 202‧‧‧Second isolation dielectric layer

301‧‧‧地選擇閘電極層 301‧‧‧ground selection gate electrode layer

401‧‧‧字線閘電極層 401‧‧‧Word line gate electrode layer

501‧‧‧串選擇閘電極層 501‧‧‧string selection gate electrode layer

600‧‧‧閘極介電層 600‧‧‧Gate dielectric layer

601‧‧‧隧道層 601‧‧‧ Tunnel layer

602‧‧‧電荷捕捉層 602‧‧‧ charge trapping layer

603‧‧‧阻擋層 603‧‧‧ barrier

701‧‧‧半導體奈米管 701‧‧‧Semiconductor Nanotube

702‧‧‧催化劑 702‧‧‧ catalyst

801‧‧‧位線電極層 801‧‧‧bit line electrode layer

802‧‧‧位線接觸 802‧‧‧bit line contact

Claims (33)

一種奈米管記憶體結構,包括:半導體基板,所述半導體基板表面具有重摻雜磊晶層;第一隔離介電層,位於所述半導體基板之上;地選擇閘電極層,位於所述第一隔離介電層之上;字線閘電極層,位於所述地選擇閘電極層之上;串選擇閘電極層,位於所述字線閘電極層之上;多層第二隔離介電層,介於所述地選擇閘電極層、字線閘電極層和串選擇閘電極層之間;半導體通道,與所述重摻雜磊晶層接觸並貫穿所述地選擇閘電極層、字線閘電極層和串選擇閘電極層;閘極介電層,包裹在所述半導體通道的側壁上,介於所述半導體通道與所述串選擇閘電極層、字線閘電極層和地選擇閘電極層之間,在由所述半導體通道中心向外的方向上依次包括隧道層、電荷捕捉層和阻擋層;其中,所述半導體通道為半導體奈米管以及所述半導體基板包括具有第二導電類型的摻雜基板和生長於所述摻雜基板表面的第一導電類型的所述重摻雜磊晶層。 A nanometer tube memory structure includes: a semiconductor substrate having a heavily doped epitaxial layer on the surface of the semiconductor substrate; a first isolation dielectric layer on the semiconductor substrate; and a ground selection gate electrode layer on the semiconductor substrate. Above a first isolation dielectric layer; a word line gate electrode layer located above the ground selection gate electrode layer; a string selection gate electrode layer located above the word line gate electrode layer; a multilayer second isolation dielectric layer Between the ground selection gate electrode layer, the word line gate electrode layer, and the string selection gate electrode layer; a semiconductor channel in contact with the heavily doped epitaxial layer and passing through the ground selection gate electrode layer and word line A gate electrode layer and a string selection gate electrode layer; a gate dielectric layer is wrapped on a side wall of the semiconductor channel, interposed between the semiconductor channel and the string selection gate electrode layer, a word line gate electrode layer, and a ground selection gate Between the electrode layers, a tunnel layer, a charge trapping layer, and a blocking layer are sequentially included in a direction outward from the center of the semiconductor channel; wherein the semiconductor channel is a semiconductor nano tube and the semiconductor substrate includes a second conductive layer The type doped substrate and grown on the doped surface of the substrate of the first conductivity type heavily doped epitaxial layer. 根據權利要求1所述的奈米管記憶體結構,其中所述半導體通道為III-V族單晶半導體奈米管。 The nanometer tube memory structure according to claim 1, wherein the semiconductor channel is a III-V single crystal semiconductor nanometer tube. 根據權利要求1所述的奈米管記憶體結構,其中所述半導體通道為奈米碳管。 The nanometer tube memory structure according to claim 1, wherein the semiconductor channel is a nanometer carbon tube. 根據權利要求1所述的奈米管記憶體結構,其中所述重摻雜磊晶層的摻雜濃度為1018-5×1019/cm3The nanometer tube memory structure according to claim 1, wherein a doping concentration of the heavily doped epitaxial layer is 10 18 -5 × 10 19 / cm 3 . 根據權利要求1所述的奈米管記憶體結構,其中所述重摻雜磊晶層的厚度為1-5μm。 The nanometer tube memory structure according to claim 1, wherein a thickness of the heavily doped epitaxial layer is 1-5 μm. 根據權利要求1所述的奈米管記憶體結構,其中所述半導體通道與所述重摻雜磊晶層的導電類型相同。 The nanometer tube memory structure according to claim 1, wherein the semiconductor channel has the same conductivity type as the heavily doped epitaxial layer. 根據權利要求1所述的奈米管記憶體結構,其中所述半導體通道的平行於所述半導體基板的橫截面的最大寬度為2-50nm。 The nanometer tube memory structure according to claim 1, wherein a maximum width of a cross section of the semiconductor channel parallel to the semiconductor substrate is 2-50 nm. 根據權利要求1所述的奈米管記憶體結構,其中在所述半導體通道的頂部設有位線接觸和與所述位線接觸連接的位線電極層。 The nanometer tube memory structure according to claim 1, wherein a bit line contact layer and a bit line electrode layer connected to the bit line contact are provided on top of the semiconductor channel. 根據權利要求8所述的奈米管記憶體結構,更包括第三隔離介電層,所述第三隔離介電層位於所述位線電極層與所述串選擇閘電極層之間,並將所述半導體通道的頂部包裹,所述位線接觸穿過所述第三隔離介電層與所述半導體通道的頂部接觸。 The nanometer tube memory structure according to claim 8, further comprising a third isolation dielectric layer, the third isolation dielectric layer being located between the bit line electrode layer and the string selection gate electrode layer, and The top of the semiconductor channel is wrapped, and the bit line contact passes through the third isolation dielectric layer and contacts the top of the semiconductor channel. 根據權利要求8所述的奈米管記憶體結構,其中所述位線接觸的材料包括Ti、Al、Ni、Au中的一種或多種。 The nanometer tube memory structure according to claim 8, wherein the material in contact with the bit line comprises one or more of Ti, Al, Ni, and Au. 根據權利要求1所述的奈米管記憶體結構,其中所述記憶體結構包括多層所述字線閘電極層,多層所述字線閘電極層之間設有所述第二隔離介電層。 The nanometer tube memory structure according to claim 1, wherein the memory structure includes a plurality of the word line gate electrode layers, and the second isolation dielectric layer is provided between the plurality of word line gate electrode layers. . 根據權利要求1所述的奈米管記憶體結構,其中在所述閘極介電層中,所述隧道層的材料為矽氧化物,所述電荷捕捉層的材料為矽氮化物, 所述阻擋層的材料為矽氧化物。 The nanometer tube memory structure according to claim 1, wherein in the gate dielectric layer, a material of the tunnel layer is silicon oxide, and a material of the charge trapping layer is silicon nitride, The material of the barrier layer is silicon oxide. 根據權利要求1所述的奈米管記憶體結構,其中所述閘極介電層的厚度為2-50nm。 The nanometer tube memory structure according to claim 1, wherein a thickness of the gate dielectric layer is 2-50 nm. 一種奈米管記憶體結構,其特徵在於,包括:作為公共源極線的重摻雜磊晶層;依次設置在所述重摻雜磊晶層上的地選擇線、多層字線和串選擇線;以及多個與所述重摻雜磊晶層接觸並貫穿所述地選擇線、多層字線和串選擇線的半導體通道,每個所述半導體通道上設有對應的位線接觸,和與對應的所述位線接觸連接的位線,其中,所述半導體通道為半導體奈米管。 A nanometer tube memory structure, comprising: a heavily doped epitaxial layer as a common source line; a ground selection line, a multi-layer word line, and a string selection disposed on the heavily doped epitaxial layer in order. A plurality of semiconductor channels in contact with the heavily doped epitaxial layer and penetrating the ground selection line, the multilayer word line, and the string selection line, each of which has a corresponding bit line contact, and A bit line connected in contact with the corresponding bit line, wherein the semiconductor channel is a semiconductor nano tube. 根據權利要求14所述的奈米管記憶體結構,其中所述半導體通道為III-V族單晶半導體奈米管。 The nanometer tube memory structure according to claim 14, wherein the semiconductor channel is a III-V single crystal semiconductor nanometer tube. 根據權利要求14所述的奈米管記憶體結構,其中所述半導體通道為納米碳管。 The nanometer tube memory structure according to claim 14, wherein the semiconductor channel is a carbon nanotube. 一種奈米管記憶體結構的製造方法,包括以下步驟:提供表面具有重摻雜磊晶層的半導體基板;在所述重摻雜磊晶層上形成第一隔離介電層,在所述第一隔離介電層上形成地選擇閘電極層、字線閘電極層、串選擇閘電極層以及介於所述地選擇閘電極層、字線閘電極層、串選擇閘電極層之間的第二隔離介電層;通過微影和蝕刻形成通孔,所述通孔向下貫穿所述串選擇閘電極層、字線閘電極層、地選擇閘電極層、介於所述地選擇閘電極層、字線 閘電極層、串選擇閘電極層之間的第二隔離介電層、以及第一隔離介電層,並使所述重摻雜磊晶層露出;在所述通孔中形成閘極介電層,使所述閘極介電層覆蓋所述通孔的底面和側面,所述閘極介電層在由所述通孔中心向外的方向上依次包括隧道層、電荷捕捉層和阻擋層;蝕刻所述閘極介電層在所述通孔底部形成開口露出所述重摻雜磊晶層;在由所述開口露出的所述重摻雜磊晶層表面生長半導體奈米管作為填充所述通孔的半導體通道。 A method for manufacturing a nanometer tube memory structure includes the steps of: providing a semiconductor substrate having a heavily doped epitaxial layer on a surface; forming a first isolation dielectric layer on the heavily doped epitaxial layer; An isolation dielectric layer is formed with a ground selection gate electrode layer, a word line gate electrode layer, a string selection gate electrode layer, and a first interposed between the ground selection gate electrode layer, the word line gate electrode layer, and the string selection gate electrode layer. Two isolation dielectric layers; through holes are formed by lithography and etching, the through holes penetrating downward through the string selection gate electrode layer, the word line gate electrode layer, the ground selection gate electrode layer, and the ground selection gate electrode Layer, word line A gate electrode layer, a second isolation dielectric layer between the gate electrode layers, and a first isolation dielectric layer, and exposing the heavily doped epitaxial layer; forming a gate dielectric in the via hole Layer, so that the gate dielectric layer covers the bottom surface and sides of the through hole, and the gate dielectric layer includes a tunnel layer, a charge trapping layer, and a barrier layer in a direction from the center of the through hole outward. ; Etching the gate dielectric layer to form an opening at the bottom of the through hole to expose the heavily doped epitaxial layer; growing a semiconductor nano tube as a fill on the surface of the heavily doped epitaxial layer exposed through the opening; A semiconductor channel of the through hole. 根據權利要求17所述的奈米管記憶體結構的製造方法,其中生長半導體奈米管包括步驟:在由所述開口露出的所述重摻雜磊晶層表面沉積催化劑,然後在所述催化劑輔助下磊晶生長III-V族單晶半導體奈米管。 The method for manufacturing a nanometer tube memory structure according to claim 17, wherein growing a semiconductor nanometer tube comprises the step of: depositing a catalyst on the surface of the heavily doped epitaxial layer exposed through the opening, and then depositing the catalyst on the catalyst Assisted epitaxial growth of III-V single crystal semiconductor nanotubes. 根據權利要求18所述的奈米管記憶體結構的製造方法,其中所述催化劑催化劑的材料選自Au、Fe、Pt、Fe-Ni、Co-Ni、FeSi、NiB中的一種或多種。 The method for manufacturing a nanometer tube memory structure according to claim 18, wherein a material of the catalyst is selected from one or more of Au, Fe, Pt, Fe-Ni, Co-Ni, FeSi, and NiB. 根據權利要求18所述的奈米管記憶體結構的製造方法,其中磊晶生長所述III-V族單晶半導體奈米管的方法為金屬有機化合物化學氣相沉積或分子束磊晶。 The method for manufacturing a nanometer tube memory structure according to claim 18, wherein a method of epitaxially growing the III-V single crystal semiconductor nanometer tube is metal organic compound chemical vapor deposition or molecular beam epitaxy. 根據權利要求18所述的奈米管記憶體結構的製造方法,其中完成磊晶生長後,所述催化劑保留在所述III-V族單晶半導體奈米管的頂部作為所述半導體通道的一部分。 The method for manufacturing a nanometer tube memory structure according to claim 18, wherein after the epitaxial growth is completed, the catalyst remains on the top of the III-V single crystal semiconductor nanometer tube as a part of the semiconductor channel . 根據權利要求17所述的奈米管記憶體結構的製備方法,其中生長半 導體奈米管包括步驟:在由所述開口露出的所述重摻雜磊晶層表面沉積催化粒子,然後在所述催化粒子輔助下磊晶生長奈米碳管。 The method for preparing a nanometer tube memory structure according to claim 17, wherein the growth half The conductive nano tube includes the steps of: depositing catalytic particles on the surface of the heavily doped epitaxial layer exposed through the opening, and then epitaxially growing a nano carbon tube with the assistance of the catalytic particles. 根據權利要求22所述的奈米管記憶體結構的製備方法,其中所述催化粒子的材料選自Fe、Co、Ni、Cu、Au、Ag、Pt、Pd中的一種或多種。 The method for preparing a nanometer tube memory structure according to claim 22, wherein a material of the catalytic particles is selected from one or more of Fe, Co, Ni, Cu, Au, Ag, Pt, and Pd. 根據權利要求22所述的奈米管記憶體結構的製備方法,其中磊晶生長奈米碳管的方法為化學氣相沉積。 The method for preparing a nanometer tube memory structure according to claim 22, wherein the method of epitaxially growing the nanometer carbon tube is chemical vapor deposition. 根據權利要求22所述的奈米管記憶體結構的製備方法,其中完成磊晶生長後,所述催化粒子保留在所述碳奈米管的頂部作為所述半導體溝道的一部分。 The method of claim 22, wherein after the epitaxial growth is completed, the catalytic particles remain on top of the carbon nanotube as a part of the semiconductor channel. 根據權利要求17所述的奈米管記憶體結構的製造方法,其中提供表面具有重摻雜磊晶層的半導體基板包括以下步驟:提供具有第二導電類型的摻雜基板;在所述第二導電類型的摻雜基板上磊晶生長形成第一導電類型的重摻雜磊晶層。 The method for manufacturing a nanometer tube memory structure according to claim 17, wherein providing a semiconductor substrate having a heavily doped epitaxial layer on a surface comprises the steps of: providing a doped substrate having a second conductivity type; A heavily doped epitaxial layer of a first conductivity type is formed by epitaxial growth on a conductive type doped substrate. 根據權利要求17所述的奈米管記憶體結構的製造方法,其中形成多層所述字線閘電極層,多層所述字線閘電極層之間形成所述第二隔離介電層。 The method for manufacturing a nanometer tube memory structure according to claim 17, wherein a plurality of the word line gate electrode layers are formed, and the second isolation dielectric layer is formed between the plurality of word line gate electrode layers. 根據權利要求17所述的奈米管記憶體結構的製造方法,其中形成所述第一隔離介電層、地選擇閘電極層、字線閘電極層、串選擇閘電極層、第二隔離介電層的方法選自化學氣相沉積、物理氣相沉積、金屬有機化合物化學氣相沉積、原子層沉積中的一種或多種。 The method for manufacturing a nanometer tube memory structure according to claim 17, wherein the first isolation dielectric layer, a ground selection gate electrode layer, a word line gate electrode layer, a string selection gate electrode layer, and a second isolation dielectric are formed. The method of the electrical layer is selected from one or more of chemical vapor deposition, physical vapor deposition, metal organic compound chemical vapor deposition, and atomic layer deposition. 根據權利要求17所述的奈米管記憶體結構的製造方法,其中所述通孔開口的最大寬度為2-50nm。 The method for manufacturing a nanometer tube memory structure according to claim 17, wherein a maximum width of the through hole opening is 2-50 nm. 根據權利要求17所述的奈米管記憶體結構的製造方法,其中形成所述閘極介電層的方法選自化學氣相沉積、金屬有機化合物化學氣相沉積、原子層沉積、分子束磊晶中的一種或多種。 The method of claim 17, wherein the method for forming the gate dielectric layer is selected from the group consisting of chemical vapor deposition, metal organic compound chemical vapor deposition, atomic layer deposition, and molecular beam deposition. One or more of the crystals. 根據權利要求17所述的奈米管記憶體結構的製造方法,其中蝕刻所述閘極介電層在所述通孔底部形成開口的方法為乾式蝕刻或原子層沉積。 The method for manufacturing a nanometer tube memory structure according to claim 17, wherein a method of etching the gate dielectric layer to form an opening at the bottom of the through hole is dry etching or atomic layer deposition. 根據權利要求17所述的奈米管記憶體結構的製造方法,在形成所述半導體通道之後還包括以下步驟:形成覆蓋在所述半導體通道頂部的第三隔離介電層,在所述第三隔離介電層中形成接觸通孔露出所述半導體通道的頂部,在所述接觸通孔中形成位線接觸,在形成有所述位線接觸的第三隔離介電層上形成位線電極層,使所述位線電極層通過所述位線接觸與所述半導體通道實現電連接。 The method for manufacturing a nanometer tube memory structure according to claim 17, after forming the semiconductor channel, further comprising the steps of: forming a third isolation dielectric layer covering the top of the semiconductor channel; A contact via is formed in the isolation dielectric layer to expose the top of the semiconductor channel, a bit line contact is formed in the contact via, and a bit line electrode layer is formed on the third isolation dielectric layer where the bit line contact is formed. , Enabling the bit line electrode layer to be electrically connected to the semiconductor channel through the bit line contact. 根據權利要求27所述的奈米管記憶體結構的製造方法,其中形成所述第三隔離介電層的方法選自化學氣相沉積、物理氣相沉積、金屬有機化合物化學氣相沉積、原子層沉積中的一種或多種。 The method for manufacturing a nanometer tube memory structure according to claim 27, wherein the method for forming the third isolation dielectric layer is selected from the group consisting of chemical vapor deposition, physical vapor deposition, metal organic compound chemical vapor deposition, atom One or more of the layer depositions.
TW106100192A 2016-08-17 2017-01-04 A nano-tube memory structure and the method for preparing the same TWI611563B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201610681644.0 2016-08-17
CN201610681644.0A CN107768381B (en) 2016-08-17 2016-08-17 Nanotube memory structure and preparation method thereof

Publications (2)

Publication Number Publication Date
TWI611563B true TWI611563B (en) 2018-01-11
TW201810622A TW201810622A (en) 2018-03-16

Family

ID=61260253

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106100192A TWI611563B (en) 2016-08-17 2017-01-04 A nano-tube memory structure and the method for preparing the same

Country Status (2)

Country Link
CN (1) CN107768381B (en)
TW (1) TWI611563B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611809B1 (en) * 2018-09-13 2023-12-07 양쯔 메모리 테크놀로지스 씨오., 엘티디. New 3D NAND memory device and method of forming it
EP3853902B1 (en) * 2019-01-08 2024-03-06 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device and manufacturing method thereof
CN110379768B (en) * 2019-07-23 2021-08-17 合肥工业大学 TSV manufacturing method based on graphene slurry filling
US11527553B2 (en) 2020-07-30 2022-12-13 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110075467A1 (en) * 2009-09-25 2011-03-31 Samsung Electronics Co., Ltd. Ferroelectric memory devices and operating methods thereof
US20120112264A1 (en) * 2010-11-05 2012-05-10 Lee Changhyun Three-dimensional semiconductor devices and methods of fabricating the same
US20150060977A1 (en) * 2013-08-29 2015-03-05 Chang-Hyun Lee Semiconductor devices with vertical channel structures
US20150249093A1 (en) * 2014-03-03 2015-09-03 Jeonggil Lee Semiconductor devices
US20150262826A1 (en) * 2010-10-11 2015-09-17 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory device and related method of manufacture
US20150372005A1 (en) * 2014-06-23 2015-12-24 Gukhyon Yon Three-dimensional semiconductor memory device and method of fabricating the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110075467A1 (en) * 2009-09-25 2011-03-31 Samsung Electronics Co., Ltd. Ferroelectric memory devices and operating methods thereof
US20150262826A1 (en) * 2010-10-11 2015-09-17 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory device and related method of manufacture
US20120112264A1 (en) * 2010-11-05 2012-05-10 Lee Changhyun Three-dimensional semiconductor devices and methods of fabricating the same
US20150060977A1 (en) * 2013-08-29 2015-03-05 Chang-Hyun Lee Semiconductor devices with vertical channel structures
US20150249093A1 (en) * 2014-03-03 2015-09-03 Jeonggil Lee Semiconductor devices
US20150372005A1 (en) * 2014-06-23 2015-12-24 Gukhyon Yon Three-dimensional semiconductor memory device and method of fabricating the same

Also Published As

Publication number Publication date
CN107768381A (en) 2018-03-06
TW201810622A (en) 2018-03-16
CN107768381B (en) 2021-11-09

Similar Documents

Publication Publication Date Title
TWI587488B (en) A nano-wire memory structure and the method for preparing the same
US10950629B2 (en) Three-dimensional flat NAND memory device having high mobility channels and methods of making the same
US9331094B2 (en) Method of selective filling of memory openings
TWI611563B (en) A nano-tube memory structure and the method for preparing the same
US10840259B2 (en) Three-dimensional memory device including liner free molybdenum word lines and methods of making the same
US9768270B2 (en) Method of selectively depositing floating gate material in a memory device
CN104241294B (en) Nonvolatile three-dimensional semiconductor memory and manufacturing method thereof
US20170103997A1 (en) Semiconductor device and method of fabricating the same
US20160181272A1 (en) Fabricating 3D NAND Memory Having Monolithic Crystalline Silicon Vertical NAND Channel
WO2017065869A1 (en) Multilevel memory stack structure with joint electrode having a collar portion and methods for manufacturing the same
US9685454B2 (en) Method of forming 3D vertical NAND with III-V channel
WO2015196515A1 (en) Three-dimensional semiconductor device and manufacturing method therefor
WO2014089795A1 (en) Vertical channel-type three-dimensional semiconductor memory device and preparation method therefor
CN108475682A (en) Word line switch is integrated with word line contact through-hole structure
KR20170026101A (en) Memory device with multi-layer channel and charge trapping layer
US9761604B2 (en) 3D vertical NAND with III-V channel
KR20110005797A (en) Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element, and methods of forming the same
US10804291B1 (en) Three-dimensional memory device using epitaxial semiconductor channels and a buried source line and method of making the same
CN103872055A (en) Vertical channel type three dimensional semiconductor memory device and preparation method thereof
TWI630706B (en) Memory structure and method for making the same
US8835256B1 (en) Memory array with self-aligned epitaxially grown memory elements and annular FET
CN108305877B (en) Back gate non-junction NAND flash memory and manufacturing method thereof
CN113130389A (en) Memory devices, electronic systems, and related apparatus and methods
TWI638447B (en) Junctionless gate array memory and the method for preparing the same
TW202137514A (en) 3d memory device and manufacturing method thereof