TWI651783B - Semiconductor device and method of forming embedded wafer level chip scale packages - Google Patents
Semiconductor device and method of forming embedded wafer level chip scale packages Download PDFInfo
- Publication number
- TWI651783B TWI651783B TW103136264A TW103136264A TWI651783B TW I651783 B TWI651783 B TW I651783B TW 103136264 A TW103136264 A TW 103136264A TW 103136264 A TW103136264 A TW 103136264A TW I651783 B TWI651783 B TW I651783B
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor
- semiconductor die
- carrier
- encapsulant
- wafer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/1015—Shape
- H01L2924/10155—Shape being other than a cuboid
- H01L2924/10156—Shape being other than a cuboid at the periphery
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Dicing (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
一種半導體裝置係包含一半導體晶粒以及一種沉積在該半導體晶粒之上及周圍的囊封體。一半導體晶圓係包含複數個半導體晶粒以及一基底半導體材料。一溝槽係形成在該基底半導體材料中。該半導體晶圓係透過該溝槽而被單粒化以分開該些半導體晶粒。該些半導體晶粒係以一介於半導體晶粒之間的500微米(μm)或是更小的距離而被設置在一載體之上。該囊封體係覆蓋該半導體晶粒的一側壁。一扇入互連結構係形成在該半導體晶粒之上,同時該囊封體係維持沒有該扇入互連結構。該囊封體的一部分係從該半導體晶粒的一非主動表面被移除。該裝置係透過該囊封體而被單粒化,同時留下被設置成覆蓋該半導體晶粒的一側壁的囊封體。覆蓋該側壁的囊封體係包含一50μm或是更小的厚度。 A semiconductor device includes a semiconductor die and an encapsulant deposited on and around the semiconductor die. A semiconductor wafer system includes a plurality of semiconductor dies and a base semiconductor material. A trench is formed in the base semiconductor material. The semiconductor wafer is singulated through the trench to separate the semiconductor dies. The semiconductor dies are disposed on a carrier at a distance of 500 micrometers (μm) or less between the semiconductor dies. The encapsulation system covers a sidewall of the semiconductor die. A fan-in interconnect structure is formed over the semiconductor die while the encapsulation system remains free of the fan-in interconnect structure. A portion of the encapsulant is removed from an inactive surface of the semiconductor die. The device is singulated through the encapsulant while leaving an encapsulant disposed to cover a sidewall of the semiconductor die. The encapsulation system covering the sidewalls comprises a thickness of 50 μm or less.
Description
本發明係大致有關於半導體裝置,並且更具體而言係有關於一種形成晶圓級晶片尺寸封裝(WLCSP)的半導體裝置和方法。 The present invention is generally related to semiconductor devices and, more particularly, to a semiconductor device and method for forming a wafer level wafer size package (WLCSP).
國內優先權之主張 Domestic priority claim
本申請案是2013年9月25日申請的美國專利申請案號14/036,525的部分接續案,該美國專利申請案係主張2013年1月3日申請的美國臨時申請案號61/748,742的益處,該等申請案係被納入在此作為參考。 This application is a continuation of the U.S. Patent Application Serial No. 14/ 036, 525 filed on Sep. 25, 2013, the benefit of the benefit of U.S. Provisional Application No. 61/748,742, filed on Jan. 3, 2013. These applications are hereby incorporated by reference.
半導體裝置係常見於現代的電子產品中。半導體裝置係在電氣構件的數目及密度上變化。離散的半導體裝置一般包含一類型的電氣構件,例如,發光二極體(LED)、小信號電晶體、電阻器、電容器、電感器、以及功率金屬氧化物半導體場效電晶體(MOSFET)。集積的半導體裝置通常包含數百到數百萬個電氣構件。集積的半導體裝置的例子係包含微控制器、微處理器、電荷耦合裝置(CCD)、太陽能電池、以及數位微鏡裝置(DMD)。 Semiconductor devices are common in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices typically include a type of electrical component, such as a light emitting diode (LED), a small signal transistor, a resistor, a capacitor, an inductor, and a power metal oxide semiconductor field effect transistor (MOSFET). Semiconductor devices that are concentrated typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charge coupled devices (CCDs), solar cells, and digital micromirror devices (DMDs).
半導體裝置係執行廣範圍的功能,例如,信號處理、高速的計算、傳送及接收電磁信號、控制電子裝置、轉換太陽光成為電力、以及產生用於電視顯示器的視覺影像。半導體裝置係見於娛樂、通訊、電力轉 換、網路、電腦以及消費者產品的領域中。半導體裝置亦見於軍事的應用、航空、汽車、工業用的控制器、以及辦公室設備。 Semiconductor devices perform a wide range of functions, such as signal processing, high speed computing, transmitting and receiving electromagnetic signals, controlling electronics, converting sunlight into electricity, and producing visual images for television displays. Semiconductor devices are found in entertainment, communications, and power In the field of switching, networking, computers and consumer products. Semiconductor devices are also found in military applications, aerospace, automotive, industrial controllers, and office equipment.
半導體裝置係利用半導體材料的電氣特性。半導體材料的結構係容許該材料的導電度能夠藉由一電場或基極電流的施加或是透過摻雜的製程來加以操縱。摻雜係將雜質帶入半導體材料中,以操縱及控制半導體裝置的導電度。 Semiconductor devices utilize the electrical properties of semiconductor materials. The structure of the semiconductor material allows the conductivity of the material to be manipulated by the application of an electric or base current or through a doping process. The doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
一半導體裝置係包含主動及被動的電性結構。包含雙載子及場效電晶體的主動結構係控制電流的流動。藉由改變摻雜的程度以及一電場或基極電流的施加,該電晶體不是提升、就是限制電流的流動。包含電阻器、電容器及電感器的被動結構係在電壓及電流之間產生執行各種電性功能所必要的一種關係。該被動及主動結構係電連接以形成電路,此係使得該半導體裝置能夠執行高速的運算及其它有用的功能。 A semiconductor device includes an active and passive electrical structure. An active structure comprising a bi-carrier and a field effect transistor controls the flow of current. By varying the degree of doping and the application of an electric or base current, the transistor does not lift, or limit, the flow of current. A passive structure comprising resistors, capacitors, and inductors creates a relationship between voltage and current that is necessary to perform various electrical functions. The passive and active structures are electrically connected to form a circuit that enables the semiconductor device to perform high speed operations and other useful functions.
半導體裝置一般是利用兩個複雜的製程,亦即前端製造及後端製造來加以製造,每個製造潛在涉及數百道步驟。前端製造係牽涉到複數個晶粒在一半導體晶圓的表面上的形成。每個半導體晶粒通常是相同的,並且包含藉由電連接主動及被動構件所形成的電路。後端製造係牽涉到從完成的晶圓單粒化(singulating)個別的半導體晶粒並且封裝該晶粒以提供結構的支撐以及環境的隔離。如同在此所用的術語"半導體晶粒"係指該字的單數形與複數形兩者,並且於是可以指稱單一半導體裝置及多個半導體裝置兩者。 Semiconductor devices are typically fabricated using two complex processes, namely front-end manufacturing and back-end manufacturing, each of which potentially involves hundreds of steps. Front-end fabrication involves the formation of a plurality of dies on the surface of a semiconductor wafer. Each semiconductor die is typically identical and includes circuitry formed by electrically connecting active and passive components. Back-end manufacturing involves singulating individual semiconductor dies from completed wafers and packaging the dies to provide structural support and environmental isolation. As used herein, the term "semiconductor die" refers to both the singular and plural forms of the word, and thus can refer to both a single semiconductor device and a plurality of semiconductor devices.
半導體製造的一目標是產出較小的半導體裝置。較小的裝置通常消耗較低的功率,具有較高的效能,並且可以更有效率地加以生產。 此外,較小的半導體裝置具有一較小的覆蓋區,此係較小的終端產品所期望的。較小的半導體晶粒尺寸可藉由在產生具有較小且較高密度的主動及被動構件之半導體晶粒的前端製程中的改良來達成。後端製程可以藉由在電互連及囊封體上的改良來產生具有較小覆蓋區的半導體裝置封裝。 One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume lower power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint that is desirable for smaller end products. Smaller semiconductor grain sizes can be achieved by improvements in the front end process of producing semiconductor dies having smaller and higher density active and passive components. The backend process can produce semiconductor device packages with smaller footprints by improvements in electrical interconnects and encapsulants.
一習知的半導體晶圓通常包含複數個藉由一切割道分開的半導體晶粒。主動及被動電路係形成在每個半導體晶粒的一表面中。一互連結構可被形成在該半導體晶粒的表面上。該半導體晶圓係被單粒化成為個別的半導體晶粒以用於各種電子產品。半導體製造的一重要的特點是高良率以及對應的低成本。 A conventional semiconductor wafer typically includes a plurality of semiconductor dies separated by a scribe line. Active and passive circuits are formed in one surface of each semiconductor die. An interconnect structure can be formed on the surface of the semiconductor die. The semiconductor wafer is singulated into individual semiconductor dies for use in various electronic products. An important feature of semiconductor manufacturing is high yield and corresponding low cost.
半導體晶圓係根據被用來產生該半導體晶圓及半導體晶粒的設備而被製造成具有各種的直徑及半導體晶粒尺寸。半導體處理設備通常是根據每個特定的半導體晶粒尺寸以及進入的半導體晶圓尺寸來加以開發的。例如,一200毫米(mm)晶圓係利用200mm設備來加以處理,並且一300mm晶圓係利用300mm設備來加以處理。從一晶圓單粒化的半導體晶粒係在一載體上加以處理。該載體的尺寸係根據待被處理的半導體晶粒的尺寸而被選擇。例如,10mm乘10mm的半導體晶粒係利用和5mm乘5mm半導體晶粒不同的設備來加以處理。因此,用於封裝半導體裝置的設備係受限於該設備被設計所針對的特定半導體晶粒尺寸或半導體晶圓尺寸之處理能力。當進入的半導體晶粒尺寸及半導體晶圓尺寸改變時,在製造設備上的額外投資是必要的。在用於一特定尺寸的半導體晶粒或半導體晶圓的設備上之投資係對於半導體裝置的製造商產生資本投資風險。當進入的半導體晶圓尺寸改變時,特定晶圓用的設備會變成過時的。類似地,被設計用 於特定尺寸的半導體晶粒之載體及設備可能會變成過時的,因為該些載體係受限於處理不同尺寸的半導體晶粒之能力。不斷的開發及實施不同的設備係增加最終的半導體裝置的成本。 Semiconductor wafers are fabricated to have various diameters and semiconductor grain sizes in accordance with the equipment used to produce the semiconductor wafer and semiconductor die. Semiconductor processing equipment is typically developed based on each particular semiconductor die size and incoming semiconductor wafer size. For example, a 200 mm (mm) wafer is processed using 200 mm equipment, and a 300 mm wafer is processed using 300 mm equipment. The semiconductor grains singulated from a wafer are processed on a carrier. The size of the carrier is selected depending on the size of the semiconductor die to be processed. For example, a 10 mm by 10 mm semiconductor die is processed using a different device than a 5 mm by 5 mm semiconductor die. Thus, the equipment used to package a semiconductor device is limited by the processing power of the particular semiconductor die size or semiconductor wafer size that the device is designed for. Additional investment in manufacturing equipment is necessary as the incoming semiconductor die size and semiconductor wafer size change. The investment in equipment for a particular size of semiconductor die or semiconductor wafer creates a capital investment risk for the manufacturer of the semiconductor device. When the size of the incoming semiconductor wafer changes, the equipment for a particular wafer becomes obsolete. Similarly, designed to be used Carriers and devices for semiconductor dies of a particular size may become obsolete because such carriers are limited in their ability to handle semiconductor dies of different sizes. Continuous development and implementation of different equipment increases the cost of the final semiconductor device.
半導體晶圓係包含各種的直徑,並且通常利用針對於每個特定尺寸的半導體晶粒所設計的製造設備來加以處理。半導體晶粒通常是為了該晶粒的電互連、結構上的支撐、以及環境的保護而被封入在一半導體封裝之內。若該半導體晶粒的一部分被曝露到外部的元素,尤其是當表面安裝該晶粒時,該半導體可能會受到損壞或是劣化。例如,該半導體晶粒在處理及曝光期間可能會受損或是劣化。半導體晶粒在半導體晶圓的單粒化期間以及在個別的半導體封裝的形成期間亦會受到損壞。穿過半導體材料的單粒化可能會造成該半導體晶粒的裂開或是破碎。 Semiconductor wafers are available in a variety of diameters and are typically processed using fabrication equipment designed for each particular size of semiconductor die. Semiconductor dies are typically encapsulated within a semiconductor package for electrical interconnection, structural support, and environmental protection of the die. If a portion of the semiconductor die is exposed to an external element, especially when the die is surface mounted, the semiconductor may be damaged or deteriorated. For example, the semiconductor die may be damaged or deteriorated during processing and exposure. Semiconductor dies are also damaged during singulation of semiconductor wafers and during formation of individual semiconductor packages. Single granulation through the semiconductor material may cause cracking or fragmentation of the semiconductor grains.
在晶圓級晶片尺寸封裝(WLCSP)的製造期間降低對於半導體晶粒的損壞係存在著需求。於是,在一實施例中,本發明是一種製造一半導體裝置之方法,其係包括設置半導體晶粒、在該半導體晶粒之上及周圍沉積一種囊封體(encapsulant)、從該半導體晶粒的一表面移除該囊封體的一部分、以及在該半導體晶粒之上形成一互連結構,同時使得該囊封體不具有該互連結構的步驟。 There is a need to reduce damage to semiconductor dies during fabrication of wafer level wafer size packages (WLCSP). Thus, in one embodiment, the invention is a method of fabricating a semiconductor device comprising: disposing a semiconductor die, depositing an encapsulant on and around the semiconductor die, from the semiconductor die A surface removes a portion of the encapsulant and forms an interconnect structure over the semiconductor die while the encapsulant does not have the interconnect structure.
在另一實施例中,本發明是一種製造一半導體裝置之方法,其係包括設置半導體晶粒、在該半導體晶粒之上及周圍沉積一種囊封體、以及在該半導體晶粒之上形成一互連結構,同時使得該囊封體不具有該互連結構的步驟。 In another embodiment, the invention is a method of fabricating a semiconductor device comprising: disposing a semiconductor die, depositing an encapsulation on and around the semiconductor die, and forming over the semiconductor die An interconnect structure while the envelope is not provided with the interconnect structure.
在另一實施例中,本發明是一種半導體裝置,其係包括一半導體晶粒以及一種沉積在該半導體晶粒周圍的囊封體。一互連結構係形成在該半導體晶粒之上。該囊封體係不具有該互連結構。 In another embodiment, the invention is a semiconductor device comprising a semiconductor die and an encapsulant deposited around the semiconductor die. An interconnect structure is formed over the semiconductor die. The encapsulation system does not have this interconnect structure.
在另一實施例中,本發明是一種半導體裝置,其係包括一半導體晶粒以及一種沉積在該半導體晶粒周圍的囊封體。一扇入互連結構係形成在該半導體晶粒之上。 In another embodiment, the invention is a semiconductor device comprising a semiconductor die and an encapsulant deposited around the semiconductor die. A fan-in interconnect structure is formed over the semiconductor die.
50‧‧‧電子裝置 50‧‧‧Electronic devices
52‧‧‧印刷電路板(PCB) 52‧‧‧Printed circuit board (PCB)
54‧‧‧信號線路 54‧‧‧Signal lines
56‧‧‧接合線封裝 56‧‧‧bonded wire package
58‧‧‧覆晶 58‧‧‧Flip chip
60‧‧‧球格陣列(BGA) 60‧‧‧Pellet Array (BGA)
62‧‧‧凸塊晶片載體(BCC) 62‧‧‧Bump wafer carrier (BCC)
64‧‧‧雙排型封裝(DIP) 64‧‧‧Double-row package (DIP)
66‧‧‧平台柵格陣列(LGA) 66‧‧‧ Platform Grid Array (LGA)
68‧‧‧多晶片模組(MCM) 68‧‧‧Multi-chip module (MCM)
70‧‧‧四邊扁平無引腳封裝(QFN) 70‧‧‧Four-sided flat leadless package (QFN)
72‧‧‧四邊扁平封裝 72‧‧‧Four-sided flat package
74‧‧‧半導體晶粒 74‧‧‧Semiconductor grains
76‧‧‧接觸墊 76‧‧‧Contact pads
78‧‧‧中間的載體 78‧‧‧ intermediate carrier
80‧‧‧導體引線 80‧‧‧Conductor leads
82‧‧‧接合線 82‧‧‧bonding line
84‧‧‧囊封體 84‧‧‧Encapsulation
88‧‧‧半導體晶粒 88‧‧‧Semiconductor grains
90‧‧‧載體 90‧‧‧ Carrier
92‧‧‧黏著材料 92‧‧‧Adhesive materials
94‧‧‧接合線 94‧‧‧bonding line
96‧‧‧接觸墊 96‧‧‧Contact pads
98‧‧‧接觸墊 98‧‧‧Contact pads
100‧‧‧模製化合物(囊封體) 100‧‧‧Molded compounds (encapsulated)
102‧‧‧接觸墊 102‧‧‧Contact pads
104‧‧‧凸塊 104‧‧‧Bumps
106‧‧‧中間的載體 106‧‧‧ intermediate carrier
108‧‧‧主動區域 108‧‧‧Active area
110‧‧‧凸塊 110‧‧‧Bumps
112‧‧‧凸塊 112‧‧‧Bumps
114‧‧‧信號線 114‧‧‧ signal line
116‧‧‧模製化合物(囊封體) 116‧‧‧Molded compound (encapsulated body)
120‧‧‧半導體晶圓 120‧‧‧Semiconductor wafer
122‧‧‧基底基板材料 122‧‧‧Base substrate material
124‧‧‧半導體晶粒(構件) 124‧‧‧Semiconductor grains (components)
126‧‧‧切割道 126‧‧ ‧ cutting road
128‧‧‧半導體晶圓 128‧‧‧Semiconductor wafer
130‧‧‧基底基板材料 130‧‧‧Base substrate material
132‧‧‧半導體晶粒(構件) 132‧‧‧Semiconductor grains (members)
134‧‧‧切割道 134‧‧‧ cutting road
136‧‧‧背面(非主動表面) 136‧‧‧Back (non-active surface)
138‧‧‧主動表面 138‧‧‧Active surface
140‧‧‧導電層(節點)(接觸墊) 140‧‧‧conductive layer (node) (contact pad)
142‧‧‧第一絕緣(保護)層 142‧‧‧First insulation (protection) layer
144‧‧‧邊緣(側壁) 144‧‧‧Edge (sidewall)
145‧‧‧雷射 145‧‧ ‧ laser
146‧‧‧鋸刀(雷射切割工具) 146‧‧‧ saw blade (laser cutting tool)
148‧‧‧側壁(側表面) 148‧‧‧ Sidewall (side surface)
150‧‧‧載體(臨時的基板) 150‧‧‧ Carrier (temporary substrate)
152‧‧‧介面層(雙面帶) 152‧‧‧Interface layer (double-sided tape)
156‧‧‧重組晶圓 156‧‧‧Reconstituted wafer
157‧‧‧間隙 157‧‧‧ gap
158‧‧‧重組晶圓 158‧‧‧Reconstituted wafer
160‧‧‧處理設備 160‧‧‧Processing equipment
162‧‧‧控制系統 162‧‧‧Control system
164‧‧‧模製化合物(囊封體) 164‧‧‧Molded compounds (encapsulated)
166‧‧‧背表面 166‧‧‧Back surface
168‧‧‧表面 168‧‧‧ surface
170‧‧‧導電層 170‧‧‧ Conductive layer
172‧‧‧絕緣(保護)層 172‧‧‧Insulation (protection) layer
174‧‧‧球(凸塊) 174‧‧‧ ball (bump)
176‧‧‧堆積的互連結構 176‧‧‧Stacked interconnect structures
180‧‧‧鋸刀(雷射切割工具) 180‧‧‧ saw blade (laser cutting tool)
182‧‧‧eWLCSP 182‧‧‧eWLCSP
184‧‧‧側表面 184‧‧‧ side surface
190‧‧‧eWLCSP 190‧‧‧eWLCSP
194‧‧‧凸塊底部金屬化(UBM) 194‧‧‧Bump bottom metallization (UBM)
196‧‧‧背面保護層 196‧‧‧Back protective layer
200‧‧‧半導體晶圓 200‧‧‧Semiconductor wafer
202‧‧‧基底基板材料 202‧‧‧Base substrate material
204‧‧‧半導體晶粒(構件) 204‧‧‧Semiconductor die (member)
206‧‧‧切割道 206‧‧‧ cutting road
208‧‧‧邊緣(側壁) 208‧‧‧ edge (sidewall)
210‧‧‧背面(非主動表面) 210‧‧‧Back (non-active surface)
212‧‧‧主動表面 212‧‧‧Active surface
214‧‧‧導電層(節點)(接觸墊) 214‧‧‧ Conductive layer (node) (contact pad)
216‧‧‧第一絕緣(保護)層 216‧‧‧First insulation (protective) layer
218‧‧‧雷射 218‧‧ ‧ laser
220‧‧‧鋸刀(雷射切割工具) 220‧‧‧ saw blade (laser cutting tool)
222‧‧‧側表面 222‧‧‧ side surface
230‧‧‧載體(臨時的基板) 230‧‧‧ Carrier (temporary substrate)
232‧‧‧介面層(雙面帶) 232‧‧‧Interface layer (double-sided tape)
240‧‧‧重組晶圓 240‧‧‧Reconstituted wafer
244‧‧‧模製化合物(囊封體) 244‧‧·Molding compound (encapsulated body)
246‧‧‧背表面 246‧‧‧ Back surface
248‧‧‧表面 248‧‧‧ surface
250‧‧‧導電層 250‧‧‧ Conductive layer
260‧‧‧絕緣(保護層) 260‧‧‧Insulation (protective layer)
262‧‧‧球(凸塊) 262‧‧‧ ball (bump)
264‧‧‧堆積的互連結構 264‧‧‧Stacked interconnect structures
270‧‧‧鋸刀(雷射切割工具) 270‧‧‧ saw blade (laser cutting tool)
272‧‧‧eWLCSP 272‧‧‧eWLCSP
274‧‧‧eWLCSP 274‧‧‧eWLCSP
276‧‧‧背面保護層 276‧‧‧Back protective layer
290‧‧‧半導體晶圓 290‧‧‧Semiconductor wafer
292‧‧‧基底基板材料 292‧‧‧Base substrate material
294‧‧‧半導體晶粒(構件) 294‧‧‧Semiconductor die (member)
296‧‧‧切割道 296‧‧‧ cutting road
300‧‧‧半導體晶圓 300‧‧‧Semiconductor wafer
302‧‧‧基底基板材料 302‧‧‧Base substrate material
304‧‧‧半導體晶粒(構件) 304‧‧‧Semiconductor die (member)
306‧‧‧切割道 306‧‧‧Cut Road
310‧‧‧背面(非主動表面) 310‧‧‧Back (non-active surface)
312‧‧‧主動表面 312‧‧‧Active surface
314‧‧‧導電層(節點)(接觸墊) 314‧‧‧ Conductive layer (node) (contact pad)
316‧‧‧第一絕緣(保護)層 316‧‧‧First insulation (protective) layer
318‧‧‧雷射 318‧‧‧Laser
322‧‧‧鋸刀(雷射切割工具) 322‧‧‧Saw Blade (Laser Cutting Tool)
324‧‧‧側壁(側表面) 324‧‧‧ Sidewall (side surface)
330‧‧‧載體(臨時的基板) 330‧‧‧ Carrier (temporary substrate)
332‧‧‧介面層(雙面帶) 332‧‧‧Interface layer (double-sided tape)
334‧‧‧表面 334‧‧‧ surface
336‧‧‧重組晶圓 336‧‧‧Reconstituted wafer
338‧‧‧重組晶圓 338‧‧‧Reconstituted wafer
340‧‧‧處理設備 340‧‧‧Processing equipment
342‧‧‧控制系統 342‧‧‧Control system
344‧‧‧囊封體(模製化合物) 344‧‧‧Encapsulation (molding compound)
345‧‧‧研磨機 345‧‧‧grinding machine
346‧‧‧背表面 346‧‧‧ Back surface
347‧‧‧背表面 347‧‧‧Back surface
348‧‧‧表面 348‧‧‧ surface
349‧‧‧背面保護層 349‧‧‧Back protective layer
350‧‧‧絕緣(保護)層 350‧‧‧Insulation (protection) layer
352‧‧‧開口 352‧‧‧ openings
354‧‧‧導電層 354‧‧‧ Conductive layer
356‧‧‧絕緣(保護)層 356‧‧‧Insulation (protection) layer
358‧‧‧開口 358‧‧‧ openings
360‧‧‧導電層 360‧‧‧ Conductive layer
362‧‧‧球(凸塊) 362‧‧‧ ball (bump)
366‧‧‧堆積的互連結構 366‧‧‧Stacked interconnect structures
370‧‧‧鋸刀(雷射切割工具) 370‧‧‧Saw Blade (Laser Cutting Tool)
372‧‧‧eWLCSP 372‧‧‧eWLCSP
380‧‧‧eWLCSP 380‧‧‧eWLCSP
384‧‧‧eWLCSP 384‧‧‧eWLCSP
386‧‧‧eWLCSP 386‧‧‧eWLCSP
388‧‧‧eWLCSP 388‧‧‧eWLCSP
410‧‧‧絕緣層 410‧‧‧Insulation
414‧‧‧導電層 414‧‧‧ Conductive layer
416‧‧‧絕緣(保護)層 416‧‧‧Insulation (protection) layer
418‧‧‧開口 418‧‧‧ openings
420‧‧‧鋸刀(雷射切割工具) 420‧‧‧ saw blade (laser cutting tool)
422‧‧‧側表面 422‧‧‧ side surface
430‧‧‧載體 430‧‧‧ Carrier
432‧‧‧介面層 432‧‧‧Interface
436‧‧‧重組晶圓 436‧‧‧Reconstituted wafer
438‧‧‧囊封體(模製化合物) 438‧‧‧Encapsulation (molding compound)
440‧‧‧背表面 440‧‧‧Back surface
442‧‧‧研磨機 442‧‧‧ Grinder
444‧‧‧背表面 444‧‧‧Back surface
448‧‧‧表面 448‧‧‧ surface
460‧‧‧導電層 460‧‧‧ Conductive layer
462‧‧‧球(凸塊) 462‧‧‧ ball (bump)
466‧‧‧堆積的互連結構 466‧‧‧Stacked interconnect structures
470‧‧‧鋸刀(雷射切割工具) 470‧‧‧Saw Blade (Laser Cutting Tool)
472‧‧‧eWLCSP 472‧‧‧eWLCSP
480‧‧‧eWLCSP 480‧‧‧eWLCSP
482‧‧‧eWLCSP 482‧‧‧eWLCSP
484‧‧‧背面保護層 484‧‧‧Back protective layer
486‧‧‧eWLCSP 486‧‧‧eWLCSP
488‧‧‧eWLCSP 488‧‧‧eWLCSP
490‧‧‧eWLCSP 490‧‧‧eWLCSP
500‧‧‧半導體晶圓 500‧‧‧Semiconductor wafer
502‧‧‧基底基板材料 502‧‧‧Base substrate material
504‧‧‧半導體晶粒(構件) 504‧‧‧Semiconductor die (member)
506‧‧‧切割道 506‧‧‧ cutting road
508‧‧‧背面(非主動表面) 508‧‧‧Back (non-active surface)
510‧‧‧主動表面 510‧‧‧Active surface
512‧‧‧導電層(節點)(接觸墊) 512‧‧‧conductive layer (node) (contact pad)
514‧‧‧邊緣(側壁) 514‧‧‧Edge (sidewall)
516‧‧‧第一絕緣(保護)層 516‧‧‧First insulation (protection) layer
520‧‧‧雷射 520‧‧‧Laser
522‧‧‧開口 522‧‧‧ openings
530‧‧‧溝槽(通道) 530‧‧‧Groove (channel)
532‧‧‧鋸刀(雷射切割工具) 532‧‧‧Saw Blade (Laser Cutting Tool)
540‧‧‧鋸刀(雷射切割工具) 540‧‧‧Saw Blade (Laser Cutting Tool)
542‧‧‧側表面(側壁) 542‧‧‧ side surface (sidewall)
544‧‧‧缺口 544‧‧‧ gap
560‧‧‧載體(臨時的基板) 560‧‧‧ Carrier (temporary substrate)
562‧‧‧介面層(雙面帶) 562‧‧‧Interface layer (double-sided tape)
564‧‧‧表面 564‧‧‧ surface
566‧‧‧重組晶圓 566‧‧‧Reconstituted wafer
570‧‧‧囊封體(模製化合物) 570‧‧‧Encapsulation (molding compound)
572‧‧‧表面 572‧‧‧ surface
580‧‧‧絕緣(保護)層 580‧‧‧Insulation (protection) layer
582‧‧‧開口 582‧‧‧ openings
584‧‧‧導電層 584‧‧‧ Conductive layer
590‧‧‧絕緣(保護)層 590‧‧‧Insulation (protection) layer
592‧‧‧球(凸塊) 592‧‧‧ ball (bump)
594‧‧‧扇入堆積的互連結構 594‧‧‧Fan-in-the-shelf interconnect structure
596‧‧‧背面研磨帶 596‧‧‧Back grinding belt
600‧‧‧研磨機 600‧‧‧grinding machine
602‧‧‧背表面 602‧‧‧ Back surface
610‧‧‧切割帶 610‧‧‧Cut tape
620‧‧‧鋸刀(雷射切割工具) 620‧‧‧ saw blade (laser cutting tool)
622‧‧‧eWLCSP 622‧‧‧eWLCSP
630‧‧‧eWLCSP 630‧‧‧eWLCSP
632‧‧‧互連結構 632‧‧‧Interconnect structure
640‧‧‧eWLCSP 640‧‧‧eWLCSP
642‧‧‧導電層 642‧‧‧ Conductive layer
644‧‧‧堆積的互連結構 644‧‧‧Stacked interconnect structures
D‧‧‧距離 D‧‧‧Distance
D1‧‧‧距離 D1‧‧‧ distance
D2‧‧‧距離 D2‧‧‧ distance
D3‧‧‧距離 D3‧‧‧ distance
D4‧‧‧距離 D4‧‧‧ distance
D5‧‧‧距離 D5‧‧‧ distance
D6‧‧‧距離 D6‧‧‧Distance
D7‧‧‧距離 D7‧‧‧ distance
D8‧‧‧距離 D8‧‧‧ distance
D9‧‧‧距離 D9‧‧‧Distance
D10‧‧‧距離 D10‧‧‧Distance
D12‧‧‧距離 D12‧‧‧ distance
D14‧‧‧距離 D14‧‧‧ distance
D15‧‧‧距離 D15‧‧‧Distance
D16‧‧‧距離 D16‧‧‧ distance
D18‧‧‧距離 D18‧‧‧Distance
D20‧‧‧厚度(距離) D20‧‧‧ thickness (distance)
D21‧‧‧厚度 D21‧‧‧ thickness
D22‧‧‧厚度 D22‧‧‧ thickness
D24‧‧‧距離 D24‧‧‧Distance
L1‧‧‧長度 L1‧‧‧ length
L2‧‧‧長度 L2‧‧‧ length
L3‧‧‧長度 L3‧‧‧ length
L4‧‧‧長度 L4‧‧‧ length
W1‧‧‧寬度 W1‧‧‧Width
W2‧‧‧寬度 W2‧‧‧Width
W3‧‧‧寬度 W3‧‧‧Width
W4‧‧‧寬度 W4‧‧‧Width
圖1係描繪一印刷電路板(PCB),其係具有安裝到其表面之不同類型的封裝;圖2a-2c係描繪安裝到該PCB之代表性的半導體封裝的進一步的細節;圖3係描繪具有複數個藉由切割道分開的半導體晶粒之半導體晶圓;圖4a-4m係描繪一種形成一重組或嵌入式晶圓級晶片尺寸封裝(eWLCSP)的製程;圖5係描繪一eWLCSP,其中該半導體晶粒係具有露出的側壁及背表面;圖6係描繪一具有一背面保護層的eWLCSP;圖7a-7i係描繪另一種形成一具有薄的側壁囊封(encapsulation)之eWLCSP的製程;圖8係描繪一具有一背面保護層以及薄的側壁囊封之eWLCSP;圖9a-9p係描繪一種形成一eWLCSP的製程;圖10係描繪一具有在該半導體晶粒的側壁之上的囊封體以及一背面保 護層之eWLCSP;圖11係描繪一具有一背面保護層之eWLCSP;圖12係描繪一具有一種在該半導體晶粒的側壁及背表面之上的囊封體之eWLCSP;圖13係描繪一具有在該半導體晶粒的背表面之上的囊封體之eWLCSP;圖14係描繪一eWLCSP,其中該半導體晶粒係具有露出的側壁及背表面;圖15a-15k係描繪一種形成一eWLCSP之替代的製程;圖16係描繪一具有一種在該半導體晶粒的側壁及背表面之上的囊封體之eWLCSP;圖17係描繪一具有在該半導體晶粒的背表面之上的囊封體之eWLCSP;圖18係描繪一具有在該側壁之上的囊封體以及一背面保護層之eWLCSP;圖19係描繪一具有一背面保護層之eWLCSP;圖20係描繪另一具有在該側壁之上的囊封體以及一背面保護層之eWLCSP;圖21係描繪一eWLCSP,其中一半導體晶粒係具有露出的側壁及背表面圖22a-22m係描繪一種形成一具有在該半導體晶粒的側壁之上的囊封體並且具有一露出的背表面之eWLCSP的製程;圖23係描繪一具有在該半導體晶粒的側壁之上的囊封體並且具有一露出的背表面之eWLCSP;以及 圖24係描繪一具有在該半導體晶粒的側壁之上的囊封體、一露出的背表面以及凸塊底部金屬化(UBM)之eWLCSP。 Figure 1 depicts a printed circuit board (PCB) having different types of packages mounted to its surface; Figures 2a-2c depict further details of a representative semiconductor package mounted to the PCB; Figure 3 depicts a semiconductor wafer having a plurality of semiconductor dies separated by scribe lines; FIGS. 4a-4m depict a process for forming a reconstituted or embedded wafer level wafer size package (eWLCSP); FIG. 5 depicts an eWLCSP, wherein The semiconductor die has exposed sidewalls and a back surface; FIG. 6 depicts an eWLCSP having a back protective layer; and FIGS. 7a-7i depict another process for forming an eWLCSP having a thin sidewall encapsulation; Figure 8 depicts an eWLCSP having a backside protective layer and a thin sidewall encapsulation; Figures 9a-9p depict a process for forming an eWLCSP; and Figure 10 depicts an encapsulation having sidewalls over the semiconductor die. Body and a back cover The protective layer eWLCSP; FIG. 11 depicts an eWLCSP having a back protective layer; FIG. 12 depicts an eWLCSP having an encapsulant over the sidewalls and back surface of the semiconductor die; FIG. 13 depicts The eWLCSP of the encapsulant over the back surface of the semiconductor die; FIG. 14 depicts an eWLCSP wherein the semiconductor die has exposed sidewalls and a back surface; FIGS. 15a-15k depict an alternative to forming an eWLCSP Process; Figure 16 depicts an eWLCSP having an encapsulant over the sidewalls and back surface of the semiconductor die; Figure 17 depicts an encapsulant having a back surface over the semiconductor die eWLCSP; Figure 18 depicts an eWLCSP having an encapsulant over the sidewall and a backside protective layer; Figure 19 depicts an eWLCSP having a backside protective layer; Figure 20 depicts another having an overlying sidewall The encapsulant and a back protective layer of eWLCSP; FIG. 21 depicts an eWLCSP in which a semiconductor die has exposed sidewalls and a back surface. FIGS. 22a-22m depict a formation having a sidewall on the semiconductor die. Encapsulation And a process having an exposed back surface eWLCSP; FIG. 23 depicts an eWLCSP having an encapsulant over the sidewall of the semiconductor die and having an exposed back surface; Figure 24 depicts an eWLCSP having an encapsulant over the sidewalls of the semiconductor die, an exposed back surface, and a bump bottom metallization (UBM).
本發明係在以下參考該些圖式的說明中,以一或多個實施例來加以描述,其中相同的元件符號係代表相同或類似的元件。儘管本發明係以用於達成本發明之目的之最佳模式來加以描述,但熟習此項技術者將會體認到的是,本發明係欲涵蓋可內含在藉由以下的揭露內容及圖式所支持之所附的申請專利範圍及其等同項所界定的本發明的精神與範疇內的替換物、修改以及等同物。 The invention is described in one or more embodiments in the following description of the drawings, wherein the same reference numerals represent the same or similar elements. Although the present invention has been described in terms of the best mode for the purpose of the present invention, it will be appreciated by those skilled in the art that the present invention is intended to be The accompanying claims, and the equivalents, modifications and equivalents
半導體元件一般是利用兩個複雜的製程:前端製造及後端製造來加以製造。前端製造係牽涉到複數個晶粒在一半導體晶圓的表面上的形成。在該晶圓上的每個晶粒係包含電連接以形成功能電路的主動及被動電性構件。例如是電晶體及二極體的主動電性構件係具有控制電流流動的能力。例如是電容器、電感器及電阻器的被動電性構件係產生執行電路功能所必要的電壓及電流之間的一種關係。 Semiconductor components are typically fabricated using two complex processes: front-end manufacturing and back-end manufacturing. Front-end fabrication involves the formation of a plurality of dies on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components that are electrically connected to form a functional circuit. For example, the active electrical components of the transistor and the diode have the ability to control the flow of current. For example, passive electrical components of capacitors, inductors, and resistors produce a relationship between the voltage and current necessary to perform circuit functions.
被動及主動構件係藉由一系列的製程步驟而形成在半導體晶圓的表面之上,該些製程步驟包含摻雜、沉積、微影、蝕刻及平坦化。摻雜係藉由例如是離子植入或熱擴散的技術以將雜質帶入半導體材料中。該摻雜製程係藉由響應於一電場或基極電流來動態地改變該半導體材料的導電度以修改主動元件中的半導體材料的導電度。電晶體係包含具有不同類型及程度的摻雜的區域,該些區域係以使得該電晶體能夠在電場或基極電流的施加時提升或限制電流的流動所必要的來加以配置。 The passive and active components are formed on the surface of the semiconductor wafer by a series of processing steps including doping, deposition, lithography, etching, and planarization. Doping is carried into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process modifies the conductivity of the semiconductor material in the active device by dynamically changing the conductivity of the semiconductor material in response to an electric field or base current. The electro-crystalline system comprises regions of different types and degrees of doping that are configured to enable the transistor to increase or limit the flow of current when an electric field or base current is applied.
主動及被動構件係藉由具有不同電氣特性的材料層來加以形成。該些層可藉由各種沉積技術來形成,該些技術部分是由被沉積的材料類型所決定的。例如,薄膜沉積可能牽涉到化學氣相沉積(CVD)、物理氣相沉積(PVD)、電解的電鍍以及無電的電鍍製程。每個層一般是被圖案化,以形成主動構件、被動構件或是構件間的電連接的部分。 Active and passive components are formed by layers of materials having different electrical properties. The layers can be formed by a variety of deposition techniques, some of which are determined by the type of material being deposited. For example, thin film deposition may involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes. Each layer is typically patterned to form an active member, a passive member, or a portion of an electrical connection between the members.
後端製造係指切割或單粒化完成的晶圓成為個別的半導體晶粒,並且接著為了結構的支撐以及環境的隔離來封裝該半導體晶粒。為了單粒化該半導體晶粒,晶圓係沿著該晶圓的非功能區域(稱為切割道或劃線)來被劃線且截斷。該晶圓係利用一雷射切割工具或鋸刀而被單粒化。在單粒化之後,該個別的半導體晶粒係被安裝到一封裝基板,該封裝基板係包含用於和其它系統構件互連的接腳或接觸墊。形成在半導體晶粒之上的接觸墊係接著連接至該封裝內的接觸墊。該些電連接可以利用焊料凸塊、柱形凸塊、導電膏、或是引線接合來做成。一種囊封體或是其它模製材料係沉積在該封裝之上,以提供實體支撐及電性隔離。該完成的封裝係接著被插入一電氣系統中,並且使得該半導體裝置的功能為可供其它系統構件利用的。 Back end fabrication refers to cutting or singulation of a finished wafer into individual semiconductor dies, and then packaging the semiconductor dies for structural support and environmental isolation. To singulate the semiconductor die, the wafer is scribed and truncated along non-functional areas of the wafer, referred to as scribe lines or scribe lines. The wafer is singulated using a laser cutting tool or a saw blade. After singulation, the individual semiconductor die are mounted to a package substrate that includes pins or contact pads for interconnecting with other system components. A contact pad formed over the semiconductor die is then attached to the contact pads within the package. The electrical connections can be made using solder bumps, stud bumps, conductive paste, or wire bonding. An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation. The completed package is then inserted into an electrical system and the functionality of the semiconductor device is made available to other system components.
圖1係描繪具有晶片載體基板或是印刷電路板(PCB)52之電子裝置50,其中複數個半導體封裝係安裝於其表面之上。視應用而定,電子裝置50可具有一種類型之半導體封裝、或是多種類型之半導體封裝。不同類型之半導體封裝係為了說明之目的而展示於圖1中。 1 depicts an electronic device 50 having a wafer carrier substrate or a printed circuit board (PCB) 52 in which a plurality of semiconductor packages are mounted over its surface. Depending on the application, electronic device 50 can have one type of semiconductor package, or multiple types of semiconductor packages. Different types of semiconductor packages are shown in Figure 1 for purposes of illustration.
電子裝置50可以是一使用該些半導體封裝以執行一或多種電性功能之獨立的系統。或者,電子裝置50可以是一較大系統之子構件。 舉例而言,電子裝置50可以是一行動電話、個人數位助理(PDA)、數位視訊攝影機(DVC)、或是其它電子通訊裝置的部份。或者是,電子裝置50可以是一可插入電腦中之顯示卡、網路介面卡或其它信號處理卡。該半導體封裝可包括微處理器、記憶體、特殊應用積體電路(ASIC)、邏輯電路、類比電路、射頻(RF)電路、離散裝置或其它半導體晶粒或電性構件。小型化及重量減輕是這些產品能夠被市場接受所不可少的。在半導體裝置間的距離可加以縮短,以達到更高的密度。 Electronic device 50 can be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, electronic device 50 can be a sub-component of a larger system. For example, electronic device 50 can be part of a mobile phone, personal digital assistant (PDA), digital video camera (DVC), or other electronic communication device. Alternatively, the electronic device 50 can be a display card, a network interface card or other signal processing card that can be inserted into a computer. The semiconductor package can include a microprocessor, a memory, an application specific integrated circuit (ASIC), a logic circuit, an analog circuit, a radio frequency (RF) circuit, a discrete device, or other semiconductor die or electrical component. Miniaturization and weight reduction are essential for these products to be accepted by the market. The distance between semiconductor devices can be shortened to achieve higher densities.
在圖1中,PCB 52係提供一般的基板以供安裝在該PCB上之半導體封裝的結構支撐及電互連。導電的信號線路54係利用蒸鍍、電解的電鍍、無電的電鍍、網版印刷、或其它適合的金屬沉積製程而被形成在PCB 52的一表面之上或是在層內。信號線路54係提供在半導體封裝、安裝的構件、以及其它外部的系統構件的每一個之間的電性通訊。線路54亦提供電源及接地連接給每一個半導體封裝。 In FIG. 1, PCB 52 provides a general substrate for structural support and electrical interconnection of a semiconductor package mounted on the PCB. The electrically conductive signal lines 54 are formed over a surface of the PCB 52 or within the layers by evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal line 54 provides electrical communication between each of the semiconductor package, the mounted components, and other external system components. Line 54 also provides power and ground connections to each semiconductor package.
在某些實施例中,一半導體裝置係具有兩個封裝層級。第一層級的封裝是一種用於將半導體晶粒機械及電性地附接至一中間的載體的技術。第二層級的封裝係牽涉到將該中間的載體機械及電性地附接至PCB。在其它實施例中,一半導體裝置可以只有該第一層級的封裝,其中晶粒是直接機械及電性地安裝到該PCB。 In some embodiments, a semiconductor device has two package levels. The first level of packaging is a technique for mechanically and electrically attaching a semiconductor die to an intermediate carrier. The second level of packaging involves mechanically and electrically attaching the intermediate carrier to the PCB. In other embodiments, a semiconductor device may have only the package of the first level, wherein the die is directly mechanically and electrically mounted to the PCB.
為了說明之目的,包含接合線封裝56及覆晶58之數種類型的第一層級的封裝係被展示在PCB 52上。此外,包含球格陣列(BGA)60、凸塊晶片載體(BCC)62、雙排型封裝(DIP)64、平台柵格陣列(LGA)66、多晶片模組(MCM)68、四邊扁平無引腳封裝(QFN)70、以及四邊扁平封裝72之數 種類型的第二層級的封裝係被展示安裝在PCB 52上。視系統需求而定,以第一及第二層級的封裝類型的任意組合來配置的半導體封裝及其它電子構件的任意組合都可連接至PCB 52。在某些實施例中,電子裝置50係包含單一附接的半導體封裝,而其它實施例需要多個互連的封裝。藉由在單一基板之上組合一或多個半導體封裝,製造商可將預製的構件納入電子裝置及系統中。由於半導體封裝包括複雜的功能,因此可使用較便宜構件及流線化製程來製造電子裝置。所產生的裝置不太可能發生失效而且製造費用較便宜,從而對於消費者產生較低的成本。 For purposes of illustration, a plurality of types of first level packages including bond wire packages 56 and flip chips 58 are shown on PCB 52. In addition, a ball grid array (BGA) 60, a bump wafer carrier (BCC) 62, a dual row package (DIP) 64, a platform grid array (LGA) 66, a multi-chip module (MCM) 68, and a four-sided flat are included. Pin package (QFN) 70, and the number of quad flat packs 72 Two types of second level packaging are shown mounted on PCB 52. Depending on the needs of the system, any combination of semiconductor packages and other electronic components configured in any combination of package types of the first and second levels can be connected to the PCB 52. In some embodiments, electronic device 50 includes a single attached semiconductor package, while other embodiments require multiple interconnected packages. By combining one or more semiconductor packages on a single substrate, manufacturers can incorporate prefabricated components into electronic devices and systems. Since semiconductor packages include complex functions, electronic devices can be fabricated using less expensive components and streamlined processes. The resulting device is less likely to fail and is less expensive to manufacture, resulting in lower costs for the consumer.
圖2a-2c係展示範例的半導體封裝。圖2a係描繪安裝在PCB 52之上的DIP 64之進一步的細節。半導體晶粒74係包括一包含類比或數位電路的主動區域,該些類比或數位電路係根據該晶粒的電性設計而被實施為形成在該晶粒內並且電互連的主動元件、被動元件、導電層、以及介電層。例如,該電路可包含形成在半導體晶粒74的主動區域內之一或多個電晶體、二極體、電感器、電容器、電阻器、以及其它電路元件。接觸墊76是一或多層的例如是鋁(Al)、銅(Cu)、錫(Sn)、鎳(Ni)、金(Au)或銀(Ag)之導電材料,並且電連接至形成在半導體晶粒74內之電路元件。在DIP 64的組裝期間,半導體晶粒74係利用一金矽共晶層或例如是熱環氧樹脂或環氧樹脂的黏著材料而被安裝到一中間的載體78。該封裝主體係包含一種例如是聚合物或陶瓷的絕緣囊封體。導體引線80及接合線82係提供在半導體晶粒74及PCB 52之間的電互連。囊封體84係沉積在該封裝之上,以用於藉由防止濕氣及微粒進入該封裝而污染半導體晶粒74或接合線82之環境上的保護。 2a-2c show an exemplary semiconductor package. Figure 2a depicts further details of the DIP 64 mounted on the PCB 52. The semiconductor die 74 includes an active region including an analog or digital circuit, the analog or digital circuits being implemented as active components and passively formed within the die and electrically interconnected according to the electrical design of the die. The component, the conductive layer, and the dielectric layer. For example, the circuit can include one or more of a transistor, a diode, an inductor, a capacitor, a resistor, and other circuit elements formed in an active region of the semiconductor die 74. The contact pad 76 is one or more layers of conductive materials such as aluminum (Al), copper (Cu), tin (Sn), nickel (Ni), gold (Au) or silver (Ag), and is electrically connected to the semiconductor. Circuit elements within die 74. During assembly of the DIP 64, the semiconductor die 74 is mounted to an intermediate carrier 78 using a gold eutectic layer or an adhesive material such as a thermal epoxy or epoxy. The package main system comprises an insulating encapsulant such as a polymer or ceramic. Conductor leads 80 and bond wires 82 provide electrical interconnections between semiconductor die 74 and PCB 52. An encapsulant 84 is deposited over the package for contaminating the environmental protection of the semiconductor die 74 or bond wires 82 by preventing moisture and particulates from entering the package.
圖2b係描繪安裝在PCB 52之上的BCC 62之進一步的細節。半導體晶粒88係利用一種底膠填充或是環氧樹脂的黏著材料92而被安裝在載體90之上。接合線94係提供在接觸墊96及98之間的第一層級的封裝互連。模製化合物或囊封體100係沉積在半導體晶粒88及接合線94之上,以提供實體支撐及電性隔離給該裝置。接觸墊102係利用一例如是電解的電鍍或無電的電鍍之適當的金屬沉積製程以形成在PCB 52的一表面之上,以避免氧化。接觸墊102係電連接至一或多個在PCB 52中之導電的信號線路54。凸塊104係形成在BCC 62的接觸墊98以及PCB 52的接觸墊102之間。 Figure 2b depicts further details of the BCC 62 mounted on the PCB 52. The semiconductor die 88 is mounted on the carrier 90 using an underfill or epoxy adhesive material 92. Bond wire 94 provides a first level of package interconnection between contact pads 96 and 98. A molding compound or encapsulant 100 is deposited over the semiconductor die 88 and bonding wires 94 to provide physical support and electrical isolation to the device. The contact pads 102 are formed over a surface of the PCB 52 using a suitable metal deposition process such as electrolytic plating or electroless plating to avoid oxidation. Contact pad 102 is electrically coupled to one or more conductive signal lines 54 in PCB 52. Bumps 104 are formed between contact pads 98 of BCC 62 and contact pads 102 of PCB 52.
在圖2c中,半導體晶粒58係利用一覆晶類型的第一層級的封裝面向下地被安裝到中間的載體106。半導體晶粒58的主動區域108係包含被實施為根據該晶粒的電性設計所形成的主動元件、被動元件、導電層及介電層之類比或數位電路。例如,該電路可包含在主動區域108內之一或多個電晶體、二極體、電感器、電容器、電阻器以及其它電路元件。半導體晶粒58係透過凸塊110而電性及機械式連接至載體106。 In Figure 2c, the semiconductor die 58 is mounted to the intermediate carrier 106 with the package of the first level of a flip chip type facing down. The active region 108 of the semiconductor die 58 includes an analog or digital circuit implemented as an active device, a passive component, a conductive layer, and a dielectric layer formed in accordance with the electrical design of the die. For example, the circuit can include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit components within the active region 108. The semiconductor die 58 is electrically and mechanically coupled to the carrier 106 through the bumps 110.
BGA 60係利用一BGA類型的第二層級的封裝,利用凸塊112而電性及機械式連接至PCB 52。半導體晶粒58係透過凸塊110、信號線114、以及凸塊112而電連接至PCB 52中之導電的信號線路54。一模製化合物或囊封體116係沉積在半導體晶粒58及載體106之上,以提供實體支撐及電性隔離給該裝置。該覆晶半導體裝置係提供從在半導體晶粒58上的主動元件至PCB 52上的導電跡線之一短的導電路徑,以便於縮短信號傳遞距離、降低電容、並且改善整體電路效能。在另一實施例中,該半導體 晶粒58可以在無中間的載體106下,利用覆晶類型的第一層級的封裝來直接機械式及電性連接至PCB 52。 The BGA 60 is electrically and mechanically coupled to the PCB 52 using bumps 112 using a BGA type second level package. The semiconductor die 58 is electrically coupled to the conductive signal line 54 in the PCB 52 through the bumps 110, the signal lines 114, and the bumps 112. A molding compound or encapsulant 116 is deposited over the semiconductor die 58 and the carrier 106 to provide physical support and electrical isolation to the device. The flip chip semiconductor device provides a short conductive path from the active component on the semiconductor die 58 to the conductive traces on the PCB 52 to facilitate signal loss reduction, capacitance reduction, and overall circuit performance. In another embodiment, the semiconductor The die 58 can be directly and mechanically and electrically connected to the PCB 52 using a flip-chip type of first level package under the intermediate carrier 106.
圖3係展示一具有一種例如是矽、鍺、砷化鎵、磷化銦、或矽碳化物的基底基板材料122以用於結構的支撐之半導體晶圓120。如上所述,複數個藉由一非主動的晶粒間的晶圓區域或切割道126分開的半導體晶粒或構件124係形成在晶圓120上。切割道126係提供切割區域以單粒化半導體晶圓120成為個別的半導體晶粒124。在一實施例中,半導體晶圓120在直徑上是200-300毫米(mm)。在另一實施例中,半導體晶圓120在直徑上是100-450mm。在單粒化半導體晶圓成為個別的半導體晶粒124之前,半導體晶圓120可具有任意的直徑。半導體晶粒124可具有任意的尺寸,並且在一實施例中,半導體晶粒124可具有10mm乘10mm的尺寸。 3 shows a semiconductor wafer 120 having a base substrate material 122 such as tantalum, niobium, gallium arsenide, indium phosphide, or tantalum carbide for structural support. As described above, a plurality of semiconductor dies or features 124 separated by a non-active inter-die wafer region or scribe 126 are formed on wafer 120. The scribe line 126 provides a dicing area to singulate the semiconductor wafer 120 into individual semiconductor dies 124. In one embodiment, the semiconductor wafer 120 is 200-300 millimeters (mm) in diameter. In another embodiment, the semiconductor wafer 120 is 100-450 mm in diameter. The semiconductor wafer 120 can have any diameter before the singulated semiconductor wafer becomes the individual semiconductor die 124. The semiconductor die 124 can have any size, and in one embodiment, the semiconductor die 124 can have a size of 10 mm by 10 mm.
半導體晶圓128係類似於半導體晶圓120,而具有一例如是矽、鍺、砷化鎵、磷化銦、或矽碳化物的基底基板材料130以用於結構的支撐。如上所述,複數個藉由一非主動的晶粒間的晶圓區域或切割道134分開的半導體晶粒或構件132係形成在晶圓128上。切割道134係提供切割區域以單粒化半導體晶圓128成為個別的半導體晶粒132。半導體晶圓128可具有與半導體晶圓120相同的直徑或是不同的直徑。在單粒化半導體晶圓成為個別的半導體晶粒132之前,半導體晶圓128可具有任意的直徑。在一實施例中,半導體晶圓128在直徑上是200-300mm。在另一實施例中,半導體晶圓128在直徑上是100-450mm。半導體晶粒132可具有任意的尺寸,並且在一實施例中,半導體晶粒132係小於半導體晶粒124而具有5mm乘5mm的尺寸。 The semiconductor wafer 128 is similar to the semiconductor wafer 120 and has a base substrate material 130 such as tantalum, niobium, gallium arsenide, indium phosphide, or tantalum carbide for structural support. As described above, a plurality of semiconductor dies or features 132 separated by a non-active inter-die wafer region or scribe 134 are formed on wafer 128. The scribe line 134 provides a dicing area to singulate the semiconductor wafer 128 into individual semiconductor dies 132. Semiconductor wafer 128 can have the same diameter or a different diameter than semiconductor wafer 120. The semiconductor wafer 128 can have any diameter before the singulated semiconductor wafer becomes the individual semiconductor die 132. In one embodiment, the semiconductor wafer 128 is 200-300 mm in diameter. In another embodiment, the semiconductor wafer 128 is 100-450 mm in diameter. The semiconductor die 132 can have any size, and in one embodiment, the semiconductor die 132 is smaller than the semiconductor die 124 and has a size of 5 mm by 5 mm.
圖4a-4k係相關於圖1及2a-2c來描繪一種形成一扇入重組或嵌入式晶圓級晶片尺寸封裝(eWLCSP)的製程。圖4a係展示半導體晶圓120的一部分的一橫截面圖。每個半導體晶粒124係具有一背面或非主動表面136以及包含類比或數位電路的主動表面138,該些類比或數位電路係被實施為形成在該晶粒之內並且根據該晶粒的電性設計及功能而電性互連的主動元件、被動元件、導電層、以及介電層。例如,該電路可包含一或多個形成在主動表面138內的電晶體、二極體、以及其它電路元件,以實施例如是DSP、ASIC、記憶體、或是其它信號處理電路的類比電路或數位電路。半導體晶粒124亦可包含例如是電感器、電容器、以及電阻器的IPD,以用於RF信號處理。 4a-4k depict a process for forming a fan-in reconstituted or embedded wafer level wafer size package (eWLCSP) in relation to FIGS. 1 and 2a-2c. 4a is a cross-sectional view showing a portion of a semiconductor wafer 120. Each semiconductor die 124 has a back or non-active surface 136 and an active surface 138 comprising an analog or digital circuit implemented to be formed within the die and based on the die Active components, passive components, conductive layers, and dielectric layers that are functionally and functionally electrically interconnected. For example, the circuit can include one or more transistors, diodes, and other circuit components formed in active surface 138 to implement analog circuits such as DSP, ASIC, memory, or other signal processing circuits or Digital circuit. Semiconductor die 124 may also include IPDs such as inductors, capacitors, and resistors for RF signal processing.
一導電層140係利用PVD、CVD、電解的電鍍、無電的電鍍製程、或是其它適當的金屬沉積製程以形成在主動表面138之上。導電層140可以是一或多層的Al、Cu、Sn、Ni、Au、Ag、或是其它適當的導電材料。導電層140係運作為電連接至在主動表面138上的電路之接觸墊。如同在圖4a中所示,導電層140可被形成為相隔半導體晶粒124的邊緣或側壁144一第一距離而被並排設置的接觸墊。或者是,導電層140可被形成為以多個列偏置的接觸墊,使得一第一列的接觸墊係相隔半導體晶粒124的邊緣144一第一距離而被設置,並且一和該第一列交錯的第二列的接觸墊係相隔半導體晶粒124的邊緣144一第二距離而被設置。 A conductive layer 140 is formed over the active surface 138 by PVD, CVD, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 140 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 140 operates as a contact pad that is electrically connected to circuitry on active surface 138. As shown in FIG. 4a, the conductive layer 140 can be formed as a contact pad that is disposed side by side with a first distance apart from the edge or sidewall 144 of the semiconductor die 124. Alternatively, the conductive layer 140 may be formed as a contact pad biased in a plurality of columns such that a contact pad of a first column is disposed a first distance apart from an edge 144 of the semiconductor die 124, and the first and the first A row of staggered second columns of contact pads are disposed a second distance apart from the edge 144 of the semiconductor die 124.
一第一絕緣或保護層142係利用PVD、CVD、印刷、旋轉塗覆、噴霧塗覆、燒結或是熱氧化以形成在半導體晶粒124以及導電層140之上。絕緣層142係包含一或多層的二氧化矽(SiO2)、矽氮化物(Si3N4)、氮 氧化矽(SiON)、五氧化二鉭(Ta2O5)、鋁氧化物(Al2O3)、鉿氧化物(HfO2)、苯環丁烯(BCB)、聚醯亞胺(PI)、聚苯並噁唑(PBO)、聚合物、或是其它具有類似的結構及絕緣性質的介電材料。在一實施例中,絕緣層142是一種在小於攝氏200度(℃)下固化的具有或是不具有絕緣填充物之低溫固化光敏的介電聚合物。絕緣層142係覆蓋並且提供保護給主動表面138。絕緣層142係保形地被施加在導電層140以及半導體晶粒124的主動表面138之上,而且並不延伸到半導體晶粒124的邊緣或側壁144之上或是超過半導體晶粒124的一覆蓋區。換言之,半導體晶粒124的一相鄰半導體晶粒124的週邊區域並沒有絕緣層142。絕緣層142的一部分係藉由利用雷射145的LDA或是透過一圖案化的光阻層之一蝕刻製程來加以移除,以透過絕緣層142來露出導電層140並且提供用於後續的電互連。 A first insulating or protective layer 142 is formed over the semiconductor die 124 and the conductive layer 140 by PVD, CVD, printing, spin coating, spray coating, sintering, or thermal oxidation. The insulating layer 142 includes one or more layers of cerium oxide (SiO2), cerium nitride (Si3N4), and nitrogen. Cerium oxide (SiON), tantalum pentoxide (Ta2O5), aluminum oxide (Al2O3), cerium oxide (HfO2), benzocyclobutene (BCB), polyimine (PI), polybenzoxazole ( PBO), polymer, or other dielectric material having similar structural and insulating properties. In one embodiment, the insulating layer 142 is a low temperature curing photosensitive dielectric polymer with or without an insulating filler that cures at less than 200 degrees Celsius (° C.). The insulating layer 142 covers and provides protection to the active surface 138. The insulating layer 142 is conformally applied over the conductive layer 140 and the active surface 138 of the semiconductor die 124 and does not extend over the edge or sidewall 144 of the semiconductor die 124 or exceeds one of the semiconductor die 124. Coverage area. In other words, the peripheral region of an adjacent semiconductor die 124 of the semiconductor die 124 does not have the insulating layer 142. A portion of the insulating layer 142 is removed by an LDA using a laser 145 or through an etching process of a patterned photoresist layer to expose the conductive layer 140 through the insulating layer 142 and provide for subsequent electrical interconnection.
半導體晶圓120係進行電性測試及檢查,以作為一品質管制過程的部分。人工的視覺檢查以及自動化的光學系統係被用來在半導體晶圓120上執行檢查。軟體可被利用在半導體晶圓120的自動化的光學分析中。視覺的檢查方法可以利用例如是一掃描電子顯微鏡、高強度或紫外線光、或是金相顯微鏡的設備。半導體晶圓120係被檢查包含翹曲、厚度變化、表面微粒、不規則性、裂縫、脫層以及變色之結構的特徵。 The semiconductor wafer 120 is electrically tested and inspected as part of a quality control process. Manual visual inspection and automated optical systems are used to perform inspections on the semiconductor wafer 120. The software can be utilized in automated optical analysis of the semiconductor wafer 120. The visual inspection method can utilize, for example, a scanning electron microscope, high intensity or ultraviolet light, or a metallographic microscope. The semiconductor wafer 120 is characterized by a structure including warpage, thickness variation, surface particles, irregularities, cracks, delamination, and discoloration.
在半導體晶粒124內之主動及被動構件係在晶圓層級針對於電性效能及電路功能進行測試。每個半導體晶粒124係利用一探針或其它測試裝置來針對功能及電性參數加以測試。一探針係被用來電性接觸到在每個半導體晶粒124上的節點或接觸墊140,並且提供電性刺激至該些接觸墊。半導體晶粒124係響應於該些電性刺激,此係被量測且相較於一預 期的響應,以測試該半導體晶粒的功能。該些電性測試可包含電路功能、引線完整性、電阻率、連續性、可靠度、接面深度、ESD、RF效能、驅動電流、臨界電流、漏電流、以及該構件類型特有的操作參數。半導體晶圓120的檢查及電性測試係使得通過的半導體晶粒124被標明為已知良好的晶粒(KGD)以用於一半導體封裝。 Active and passive components within the semiconductor die 124 are tested at the wafer level for electrical performance and circuit function. Each semiconductor die 124 is tested for functional and electrical parameters using a probe or other test device. A probe system is used to electrically contact the nodes or contact pads 140 on each of the semiconductor dies 124 and provide electrical stimulation to the contact pads. The semiconductor die 124 is responsive to the electrical stimuli, which is measured and compared to a pre- The response of the period to test the function of the semiconductor die. These electrical tests may include circuit function, lead integrity, resistivity, continuity, reliability, junction depth, ESD, RF performance, drive current, critical current, leakage current, and operating parameters specific to the type of component. The inspection and electrical testing of the semiconductor wafer 120 is such that the passed semiconductor die 124 is designated as a well-known die (KGD) for use in a semiconductor package.
在圖4b中,半導體晶圓120係透過切割道126,利用一鋸刀或雷射切割工具146沿著基底基板材料122的側壁或側表面148而被單粒化成為個別的半導體晶粒124。半導體晶圓120係利用一沿著基底基板側表面148之薄的切割,沿著基底基板材料122在切割道區域126之內的一部分而被單粒化,以容許基底基板材料122的一部分能夠維持設置在半導體晶粒124的側壁144上。該薄的切割係稍微比半導體晶粒124大一段介於半導體側壁144以及沿著基底基板側表面148之間的距離D。在半導體晶粒124的側壁144之上的基底基板材料122係藉由減低介電材料裂開,以在重組以及之後的單粒化製程期間強化該裝置。在一實施例中,介於側壁144以及基底基板側表面148之間的距離D是至少10微米(μm)。在另一實施例中,介於側壁144以及基底基板側表面148之間的距離D範圍是從14到36μm。類似地,半導體晶圓128係透過切割道134,利用一鋸刀或雷射切割工具146而被單粒化成為個別的半導體晶粒132。個別的半導體晶粒124及132可被檢查及電性測試以用於單粒化後的KGD之識別。 In FIG. 4b, semiconductor wafer 120 is singulated into individual semiconductor dies 124 through scribe lines 126, along a sidewall or side surface 148 of base substrate material 122 using a saw or laser cutting tool 146. The semiconductor wafer 120 is singulated along a portion of the base substrate material 122 within the dicing region 126 by a thin cut along the base substrate side surface 148 to allow a portion of the base substrate material 122 to remain set. On sidewall 144 of semiconductor die 124. The thin cut is slightly larger than the semiconductor die 124 by a distance D between the semiconductor sidewall 144 and along the base substrate side surface 148. The base substrate material 122 over the sidewall 144 of the semiconductor die 124 is ruptured by reducing the dielectric material to strengthen the device during recombination and subsequent singulation processes. In an embodiment, the distance D between the sidewall 144 and the base substrate side surface 148 is at least 10 microns (μm). In another embodiment, the distance D between the sidewall 144 and the base substrate side surface 148 ranges from 14 to 36 [mu]m. Similarly, semiconductor wafer 128 is singulated into individual semiconductor dies 132 through scribe lines 134 using a saw blade or laser cutting tool 146. Individual semiconductor dies 124 and 132 can be inspected and electrically tested for identification of KGD after singulation.
圖4c係展示一載體或臨時的基板150的一部分的一橫截面圖,其係包含例如是矽、聚合物、鈹氧化物、玻璃、或是其它適當的低成本的剛性材料之犧牲基底材料以用於結構的支撐。一介面層或雙面帶152 係形成在載體150之上,以作為一臨時的黏著接合膜、蝕刻停止層、或是熱釋放層。 4c is a cross-sectional view showing a portion of a carrier or temporary substrate 150 comprising a sacrificial substrate material such as tantalum, polymer, tantalum oxide, glass, or other suitable low cost rigid material. Used for structural support. One or two-sided tape 152 It is formed on the carrier 150 to serve as a temporary adhesive bonding film, an etch stop layer, or a heat release layer.
載體150是一具有多個半導體晶粒的容量之標準化的載體,並且可以容納從具有任意直徑的半導體晶圓被單粒化的多種尺寸之半導體晶粒。例如,載體150可以是一具有305mm或更大的直徑之圓形面板、或者可以是一具有300mm或更大的長度以及300mm或更大的寬度之矩形面板。載體150可具有一比半導體晶圓120或128的表面積大的表面積。在一實施例中,半導體晶圓120係具有一300mm的直徑,並且包含具有一10mm的長度以及一10mm的寬度之半導體晶粒124。在一實施例中,半導體晶圓128係具有一200mm的直徑,並且包含具有一5mm的長度以及一5mm的寬度之半導體晶粒132。載體150可以容納10mm乘10mm的半導體晶粒124以及5mm乘5mm的半導體晶粒132。載體150係載有5mm乘5mm的半導體晶粒132的數量大於10mm乘10mm的半導體晶粒124的數量。在另一實施例中,半導體晶粒124及132係具有相同的尺寸。載體150係在尺寸及形狀上標準化,以容納任何尺寸的半導體晶粒。一較大的載體係降低該半導體封裝的製造成本,因為更多的半導體晶粒可以在該較大的載體上加以處理,藉此降低每單位的成本。 The carrier 150 is a standardized carrier having a capacity of a plurality of semiconductor crystal grains, and can accommodate semiconductor dies of various sizes that are singulated from semiconductor wafers having arbitrary diameters. For example, the carrier 150 may be a circular panel having a diameter of 305 mm or more, or may be a rectangular panel having a length of 300 mm or more and a width of 300 mm or more. Carrier 150 can have a surface area that is greater than the surface area of semiconductor wafer 120 or 128. In one embodiment, semiconductor wafer 120 has a diameter of 300 mm and includes semiconductor die 124 having a length of 10 mm and a width of 10 mm. In one embodiment, semiconductor wafer 128 has a diameter of 200 mm and includes semiconductor die 132 having a length of 5 mm and a width of 5 mm. The carrier 150 can accommodate 10 mm by 10 mm of semiconductor die 124 and 5 mm by 5 mm of semiconductor die 132. The carrier 150 carries the number of semiconductor dies 124 having a number of semiconductor dies 132 of 5 mm by 5 mm greater than 10 mm by 10 mm. In another embodiment, semiconductor dies 124 and 132 are of the same size. Carrier 150 is standardized in size and shape to accommodate semiconductor dies of any size. A larger carrier reduces the manufacturing cost of the semiconductor package because more semiconductor dies can be processed on the larger carrier, thereby reducing the cost per unit.
半導體封裝及處理設備係針對於被處理的半導體晶粒及載體的尺寸加以設計及配置。為了進一步降低製造成本,載體150的尺寸係與半導體晶粒124或132的尺寸無關而且與半導體晶圓120及128的尺寸無關地加以選擇。換言之,載體150係具有一固定或標準化的尺寸,其可以容納從一或多個半導體晶圓120或128被單粒化之各種尺寸的半導體晶粒 124及132。在一實施例中,載體150是具有一330mm的直徑之圓形。在另一實施例中,載體150是具有一560mm的寬度以及600mm的長度之矩形。 Semiconductor packaging and processing equipment is designed and configured for the size of the semiconductor die and carrier being processed. To further reduce manufacturing costs, the size of the carrier 150 is independent of the size of the semiconductor die 124 or 132 and is selected independently of the size of the semiconductor wafers 120 and 128. In other words, the carrier 150 has a fixed or standardized size that can accommodate semiconductor dies of various sizes that are singulated from one or more semiconductor wafers 120 or 128. 124 and 132. In one embodiment, the carrier 150 is circular having a diameter of 330 mm. In another embodiment, the carrier 150 is a rectangle having a width of 560 mm and a length of 600 mm.
該標準化的載體(載體150)的大小及尺寸係在該處理設備的設計期間加以選擇,以便於發展出一對於半導體裝置的所有後端半導體製造而言為一致的製造線。載體150係在尺寸上維持固定的,而不論待被製造的半導體封裝的尺寸及類型為何。例如,半導體晶粒124可具有10mm乘10mm的尺寸,並且被設置在標準化的載體150上。或者是,半導體晶粒124可具有20mm乘20mm的尺寸,並且被設置在相同的標準化的載體150上。於是,標準化的載體150可以處理任何尺寸的半導體晶粒124及132,此係容許後續的半導體處理設備能夠被標準化到一共同的載體,亦即,與晶粒尺寸或是進入的晶圓尺寸無關的。半導體封裝設備可以針對於一標準的載體來加以設計及配置,其係利用一組共同的處理工具、設備、以及材料清單,以處理來自任何進入的晶圓尺寸的任何的半導體晶粒尺寸。該共同或是標準化的載體150係藉由降低或消除對於根據晶粒尺寸或是進入的晶圓尺寸之專用的半導體生產線之需求,來降低製造成本及資本風險。藉由選擇一預設的載體尺寸以使用於來自所有的半導體晶圓之任何尺寸的半導體晶粒,一具有彈性的製造線可加以實施。 The size and size of the standardized carrier (carrier 150) is selected during the design of the processing device to facilitate the development of a manufacturing line that is uniform for all back-end semiconductor fabrication of semiconductor devices. The carrier 150 is dimensionally fixed regardless of the size and type of semiconductor package to be fabricated. For example, the semiconductor die 124 may have a size of 10 mm by 10 mm and be disposed on a standardized carrier 150. Alternatively, the semiconductor die 124 may have a size of 20 mm by 20 mm and be disposed on the same standardized carrier 150. Thus, the standardized carrier 150 can process semiconductor dies 124 and 132 of any size, which allows subsequent semiconductor processing equipment to be standardized to a common carrier, i.e., regardless of die size or incoming wafer size. of. The semiconductor package device can be designed and configured for a standard carrier that utilizes a common set of processing tools, equipment, and bill of materials to process any semiconductor die size from any incoming wafer size. The common or standardized carrier 150 reduces manufacturing costs and capital risk by reducing or eliminating the need for a dedicated semiconductor production line based on die size or incoming wafer size. A flexible manufacturing line can be implemented by selecting a predetermined carrier size for use with semiconductor dies of any size from all semiconductor wafers.
在圖4d中,來自圖4b的半導體晶粒124係在絕緣層142被定向朝向載體150下,利用例如一拾放操作而被安裝到載體150及介面層152。半導體晶粒124係被安裝到載體150的介面層152,以形成重組或是重新配置的晶圓156。在一實施例中,絕緣層142係被嵌入在介面層152之內。例如,半導體晶粒124的主動表面138可以是與介面層152的表面154共平 面的。在另一實施例中,絕緣層142係被安裝在介面層152之上,使得半導體晶粒124的主動表面138係從介面層152加以偏置。 In Figure 4d, the semiconductor die 124 from Figure 4b is oriented with the insulating layer 142 oriented toward the carrier 150 and mounted to the carrier 150 and the interface layer 152 using, for example, a pick and place operation. Semiconductor die 124 is mounted to interface layer 152 of carrier 150 to form reconstituted or reconfigured wafer 156. In an embodiment, the insulating layer 142 is embedded within the interface layer 152. For example, the active surface 138 of the semiconductor die 124 may be flush with the surface 154 of the interface layer 152. Faceted. In another embodiment, the insulating layer 142 is mounted over the interface layer 152 such that the active surface 138 of the semiconductor die 124 is offset from the interface layer 152.
圖4e係展示安裝到載體150的介面層152之半導體晶粒124,以形成重組或是重新配置的晶圓156。重組晶圓156可被處理成為許多類型的半導體封裝,其係包含扇入晶圓級晶片尺寸封裝(WLCSP)、eWLCSP、扇出WLCSP、覆晶封裝、例如是堆疊式封裝的(PoP)的三維(3D)封裝、或是其它半導體封裝。在一實施例中,半導體晶粒124係以一種高密度的配置,亦即相隔300μm或是更小而被設置在載體150上,以用於處理扇入裝置。以一具有介於半導體晶粒124之間的距離D1之間隙157分開的半導體晶粒124係被設置到載體150之上。介於半導體晶粒124之間的距離D1係根據待被處理的半導體封裝的設計及規格來加以選擇。在一實施例中,介於半導體晶粒124之間的距離D1是50μm或是更小。在另一實施例中,介於半導體晶粒124之間的距離D1是100μm或是更小。在載體150上的介於半導體晶粒124之間的距離D1係針對於以最低的單位成本來製造該些半導體封裝而被最佳化。 4e shows the semiconductor die 124 mounted to the interface layer 152 of the carrier 150 to form a reconstituted or reconfigured wafer 156. Reconstituted wafer 156 can be processed into many types of semiconductor packages, including fan-in wafer level wafer size packages (WLCSP), eWLCSP, fan-out WLCSP, flip chip packages, (PoP), for example, stacked packages (PoP) (3D) package, or other semiconductor package. In one embodiment, the semiconductor die 124 is disposed on the carrier 150 in a high density configuration, i.e., 300 [mu]m or less, for processing the fan-in device. A semiconductor die 124 separated by a gap 157 having a distance D1 between the semiconductor dies 124 is disposed over the carrier 150. The distance D1 between the semiconductor dies 124 is selected according to the design and specifications of the semiconductor package to be processed. In one embodiment, the distance D1 between the semiconductor dies 124 is 50 μm or less. In another embodiment, the distance D1 between the semiconductor dies 124 is 100 μm or less. The distance D1 between the semiconductor dies 124 on the carrier 150 is optimized for manufacturing the semiconductor packages at the lowest unit cost.
圖4f係展示重組晶圓156的平面圖,其中半導體晶粒124係被安裝到載體150、或是設置在載體150之上。載體150是一標準化的形狀及尺寸,並且因此構成一標準化的載體。載體150係具有用於各種尺寸及數量的半導體晶粒的容量,該些半導體晶粒係從各種尺寸的半導體晶圓而被單粒化的。在一實施例中,載體150在形狀上是矩形,並且具有一560mm的寬度W1以及一600mm的長度L1。在另一實施例中,載體150在形狀上是矩形,並且具有一330mm的寬度W1以及一330mm的長度L1。在另一 實施例中,載體150在形狀上是圓形,並且具有一330mm的直徑。 4f shows a plan view of a reconstituted wafer 156 in which semiconductor die 124 is mounted to carrier 150 or over carrier 150. The carrier 150 is of a standardized shape and size and thus constitutes a standardized carrier. The carrier 150 has a capacity for semiconductor dies of various sizes and numbers that are singulated from semiconductor wafers of various sizes. In one embodiment, the carrier 150 is rectangular in shape and has a width W1 of 560 mm and a length L1 of 600 mm. In another embodiment, the carrier 150 is rectangular in shape and has a width W1 of 330 mm and a length L1 of 330 mm. In another In the embodiment, the carrier 150 is circular in shape and has a diameter of 330 mm.
設置在載體150之上的半導體晶粒124的數目係依據半導體晶粒124的尺寸以及介於在重組晶圓156的結構內的半導體晶粒124之間的距離D1而定。安裝到載體150的半導體晶粒124的數目可以是大於、小於、或是等於從半導體晶圓120被單粒化的半導體晶粒124的數目。越大表面積的載體150係容納更多的半導體晶粒124並且降低製造成本,因為每一重組晶圓156係處理更多的半導體晶粒124。在一例子中,半導體晶圓120係具有一300mm的直徑,其中一數量約600個個別的10mm乘10mm的半導體晶粒124係形成在半導體晶圓120上。半導體晶粒124係從一或多個半導體晶圓120而被單粒化。載體150例如是被製備成具有一560mm的標準的寬度W1以及一600mm的標準的長度L1。具有一560mm的寬度W1之載體150係被製作尺寸以在橫跨載體150的寬度W1上容納一數量約54個具有10mm乘10mm的尺寸而且間隔開一200μm的距離D1之半導體晶粒124。具有一600mm的長度L1之載體150係被製作尺寸以在橫跨載體150的長度L1上容納一數量約58個具有10mm乘10mm的尺寸而且間隔開一200μm的距離D1的半導體晶粒124。於是,載體150的寬度W1乘上長度L1的表面積係容納一數量約3,000個具有10mm乘10mm的尺寸以及一200μm的介於半導體晶粒124之間的間隙或距離D1之半導體晶粒124。半導體晶粒124可以在一介於半導體晶粒124之間小於200μm的間隙或距離D1下被置放在載體150上,以增加半導體晶粒124在載體150上的密度並且進一步降低處理半導體晶粒124的成本。 The number of semiconductor dies 124 disposed over the carrier 150 is a function of the size of the semiconductor die 124 and the distance D1 between the semiconductor dies 124 within the structure of the reconstituted wafer 156. The number of semiconductor dies 124 mounted to the carrier 150 can be greater than, less than, or equal to the number of semiconductor dies 124 that are singulated from the semiconductor wafer 120. The larger surface area carrier 150 accommodates more semiconductor die 124 and reduces manufacturing costs because each reconstituted wafer 156 processes more semiconductor die 124. In one example, semiconductor wafer 120 has a diameter of 300 mm, and a number of approximately 600 individual 10 mm by 10 mm semiconductor dies 124 are formed on semiconductor wafer 120. The semiconductor die 124 is singulated from one or more semiconductor wafers 120. The carrier 150 is, for example, a length L1 which is prepared to have a standard width W1 of 560 mm and a standard of 600 mm. The carrier 150 having a width W1 of 560 mm is sized to accommodate a quantity of about 54 semiconductor dies 124 having a size of 10 mm by 10 mm and spaced apart by a distance D1 of 200 μm across the width W1 of the carrier 150. The carrier 150 having a length L1 of 600 mm is sized to accommodate a quantity of about 58 semiconductor dies 124 having a size of 10 mm by 10 mm and a distance D1 of 200 μm across the length L1 of the carrier 150. Thus, the width W1 of the carrier 150 multiplied by the length L1 of the surface area accommodates an amount of about 3,000 semiconductor dies 124 having a size of 10 mm by 10 mm and a gap of 200 μm between the semiconductor dies 124 or a distance D1. The semiconductor die 124 can be placed on the carrier 150 at a gap or distance D1 between the semiconductor die 124 of less than 200 μm to increase the density of the semiconductor die 124 on the carrier 150 and further reduce the processing of the semiconductor die 124. the cost of.
自動化的拾放設備係被用來根據半導體晶粒124的數量及 尺寸並且根據載體150的尺寸來製備重組晶圓156。例如,半導體晶粒124係被選擇具有10mm乘10mm的尺寸。載體150係具有例如是560mm的寬度W1以及600mm的長度L1之標準的尺寸。自動化的設備係利用半導體晶粒124及載體150的尺寸而被程式化,以便於處理重組晶圓156。在單粒化半導體晶圓120之後,一第一半導體晶粒124係被該自動化的拾放設備加以選擇。一第一半導體晶粒124係在載體150上的一藉由該可程式化的自動化拾放設備所決定的位置被安裝到載體150。一第二半導體晶粒124係被該自動化的拾放設備加以選擇、置放在載體150上、並且設置在載體150上的一第一列中。介於相鄰的半導體晶粒124之間的距離D1係被程式化到該自動化的拾放設備中,並且根據待被處理的半導體封裝的設計及規格來加以選擇。在一實施例中,介於在載體150上的相鄰半導體晶粒124之間的間隙157或距離D1是200μm。一第三半導體晶粒124係被該自動化的拾放設備加以選擇、置放在載體150上、並且設置在載體150上的該第一列中。該拾放操作係被重複,直到一第一列的約54個半導體晶粒124係橫跨載體150的寬度W1被設置為止。 An automated pick and place device is used depending on the number of semiconductor dies 124 and The reconstituted wafer 156 is sized and sized according to the size of the carrier 150. For example, the semiconductor die 124 is selected to have a size of 10 mm by 10 mm. The carrier 150 has a size of, for example, a width W1 of 560 mm and a length L1 of 600 mm. The automated equipment is programmed with the dimensions of semiconductor die 124 and carrier 150 to facilitate processing of reconstituted wafer 156. After singulating the semiconductor wafer 120, a first semiconductor die 124 is selected by the automated pick and place device. A first semiconductor die 124 is mounted to the carrier 150 at a location determined by the programmable automated pick-and-place device on the carrier 150. A second semiconductor die 124 is selected by the automated pick and place device, placed on the carrier 150, and disposed in a first column on the carrier 150. The distance D1 between adjacent semiconductor dies 124 is programmed into the automated pick and place apparatus and is selected according to the design and specifications of the semiconductor package to be processed. In one embodiment, the gap 157 or distance D1 between adjacent semiconductor dies 124 on the carrier 150 is 200 μm. A third semiconductor die 124 is selected by the automated pick and place device, placed on the carrier 150, and disposed in the first column on the carrier 150. The pick and place operation is repeated until about 54 semiconductor dies 124 of a first column are disposed across the width W1 of the carrier 150.
另一半導體晶粒124係被該自動化的拾放設備加以選擇、置放在載體150上、並且設置在載體150上的一相鄰該第一列的第二列中。介於半導體晶粒124的相鄰列之間的距離D1係被預先選擇並且被程式化到該自動化的拾放設備中。在一實施例中,介於一第一列的半導體晶粒124以及一第二列的半導體晶粒124之間的距離D1是200μm。該拾放操作係被重複,直到大約58列的半導體晶粒124係橫跨載體150的長度L1被設置為止。該標準化的載體(具有560mm的寬度W1以及600mm的長度L1之載體150) 係容納大約54行以及58列的10mm乘10mm的半導體晶粒124,以用於總數約3,000個半導體晶粒124被設置在載體150上。該拾放操作係被重複,直到載體150係部分或是完全填入半導體晶粒124為止。在一例如是載體150之標準化的載體下,該自動化的拾放設備可以在載體150上安裝任何尺寸的半導體晶粒124,以形成重組晶圓156。重組晶圓156接著可以利用針對於載體150而標準化的後端處理設備來加以處理。 Another semiconductor die 124 is selected by the automated pick and place device, placed on the carrier 150, and disposed in a second column of the carrier 150 adjacent the first column. The distance D1 between adjacent columns of semiconductor dies 124 is preselected and programmed into the automated pick and place apparatus. In one embodiment, the distance D1 between the semiconductor die 124 of a first column and the semiconductor die 124 of a second column is 200 μm. The pick and place operation is repeated until approximately 58 columns of semiconductor die 124 are disposed across the length L1 of the carrier 150. The standardized carrier (having a width W1 of 560 mm and a carrier 150 of length L1 of 600 mm) Approximately 10 rows and 58 columns of 10 mm by 10 mm semiconductor die 124 are accommodated for a total of about 3,000 semiconductor die 124 disposed on carrier 150. The pick and place operation is repeated until the carrier 150 is partially or completely filled with the semiconductor die 124. The automated pick and place apparatus can mount semiconductor dies 124 of any size on the carrier 150 to form a reconstituted wafer 156 under a standardized carrier such as carrier 150. The reconstituted wafer 156 can then be processed using a backend processing device that is standardized for the carrier 150.
圖4g係展示重組晶圓158的平面圖,其中半導體晶粒132係被安裝到載體150、或是設置在載體150之上。如同被用來處理重組晶圓156,相同的標準化的載體150、或是一具有和載體150相同的尺寸之標準化的載體係被用來處理重組晶圓158。在一重組晶圓上的任何構形的半導體晶粒都可以藉由載體150來加以支承。設置在載體150之上的半導體晶粒132的數目係依據半導體晶粒132的尺寸以及介於在重組晶圓158的結構內的半導體晶粒132之間的距離D2而定。安裝到載體150的半導體晶粒132的數目可以是大於、小於、或是等於從半導體晶圓128被單粒化的半導體晶粒132的數目。越大表面積的載體150係容納更多的半導體晶粒132並且降低製造成本,因為每一重組晶圓158係處理更多的半導體晶粒132。 4g shows a plan view of a reconstituted wafer 158 in which semiconductor die 132 is mounted to carrier 150 or over carrier 150. As with the reconstituted wafer 156 being used, the same standardized carrier 150, or a standardized carrier having the same dimensions as the carrier 150, is used to process the reconstituted wafer 158. Any configuration of semiconductor grains on a reconstituted wafer can be supported by carrier 150. The number of semiconductor dies 132 disposed over the carrier 150 is a function of the size of the semiconductor die 132 and the distance D2 between the semiconductor dies 132 within the structure of the reconstituted wafer 158. The number of semiconductor dies 132 mounted to the carrier 150 can be greater than, less than, or equal to the number of semiconductor dies 132 that are singulated from the semiconductor wafer 128. The larger surface area carrier 150 accommodates more semiconductor die 132 and reduces manufacturing costs because each reconstituted wafer 158 processes more semiconductor die 132.
在一例子中,半導體晶圓128係具有一200mm的直徑,其中一數量約1,000個個別的5mm乘5mm的半導體晶粒132係形成在半導體晶圓128上。半導體晶粒132係從一或多個半導體晶圓128而被單粒化。載體150例如是被製備成具有一560mm的標準的寬度W1以及一600mm的標準的長度L1。具有一560mm的寬度W1之載體150係被製作尺寸以在橫跨載體150的寬度W1上容納一數量約107個具有5mm乘5mm的尺寸且間隔 開一200μm的距離D2之半導體晶粒132。具有一600mm的長度L1之載體150係被製作尺寸以在橫跨載體150的長度L1上容納一數量約115個具有5mm乘5mm的尺寸且間隔開一200μm的距離D2之半導體晶粒132。於是,載體150的寬度W1乘上長度L1的表面積係容納大約12,000個具有5mm乘5mm的尺寸且間隔開一200μm的距離D2之半導體晶粒132。半導體晶粒132可以在介於半導體晶粒132之間的一小於200μm的間隙或距離D2下被置放在載體150上,以增加半導體晶粒132在載體150上的密度並且進一步降低處理半導體晶粒132的成本。 In one example, semiconductor wafer 128 has a diameter of 200 mm, and an amount of about 1,000 individual 5 mm by 5 mm semiconductor dies 132 are formed on semiconductor wafer 128. Semiconductor die 132 is singulated from one or more semiconductor wafers 128. The carrier 150 is, for example, a length L1 which is prepared to have a standard width W1 of 560 mm and a standard of 600 mm. The carrier 150 having a width W1 of 560 mm is sized to accommodate an amount of about 107 sizes and intervals of 5 mm by 5 mm across the width W1 of the carrier 150. A semiconductor die 132 having a distance D2 of 200 μm is opened. The carrier 150 having a length L1 of 600 mm is sized to accommodate a number of about 115 semiconductor dies 132 having a size of 5 mm by 5 mm and a distance D2 spaced apart by 200 μm across the length L1 of the carrier 150. Thus, the width W1 of the carrier 150 multiplied by the length L1 of the surface area accommodates approximately 12,000 semiconductor dies 132 having a size of 5 mm by 5 mm and spaced apart by a distance D2 of 200 μm. The semiconductor die 132 can be placed on the carrier 150 at a gap of less than 200 μm or a distance D2 between the semiconductor dies 132 to increase the density of the semiconductor die 132 on the carrier 150 and further reduce the processing of the semiconductor crystal. The cost of the pellets 132.
自動化的拾放設備係被用來根據半導體晶粒132的數量及尺寸並且根據載體150的尺寸以製備重組晶圓158。例如,半導體晶粒132係被選擇成具有5mm乘5mm的尺寸。載體150係具有例如是560mm的寬度W1以及600mm的長度L1之標準的尺寸。自動化的設備係利用半導體晶粒132及載體150的尺寸而被程式化,以便於處理重組晶圓158。在單粒化半導體晶圓128之後,一第一半導體晶粒132係被該自動化的拾放設備加以選擇。一第一半導體晶粒132係在載體150上的一藉由該可程式化的自動化拾放設備所決定的位置中被安裝到載體150。一第二半導體晶粒132係被該自動化的拾放設備加以選擇、置放在載體150上、並且設置在載體150上的一第一列中。介於相鄰的半導體晶粒132之間的距離D2係被程式化到該自動化的拾放設備中,並且根據待被處理的半導體封裝的設計及規格來加以選擇。在一實施例中,在載體150上介於相鄰的半導體晶粒132之間的間隙或距離D2是200μm。一第三半導體晶粒132係被該自動化的拾放設備加以選擇、置放在載體150上、並且設置在載體150上的該第一列中。該拾放操 作係被重複,直到一列約107個半導體晶粒132係橫跨載體150的寬度W1被設置為止。 An automated pick and place apparatus is used to prepare the reconstituted wafer 158 according to the number and size of the semiconductor dies 132 and according to the size of the carrier 150. For example, the semiconductor die 132 is selected to have a size of 5 mm by 5 mm. The carrier 150 has a size of, for example, a width W1 of 560 mm and a length L1 of 600 mm. The automated equipment is programmed with the dimensions of semiconductor die 132 and carrier 150 to facilitate processing of reconstituted wafer 158. After singulating the semiconductor wafer 128, a first semiconductor die 132 is selected by the automated pick and place device. A first semiconductor die 132 is mounted to carrier 150 in a position on carrier 150 that is determined by the programmable automated pick-and-place device. A second semiconductor die 132 is selected by the automated pick and place device, placed on the carrier 150, and disposed in a first column on the carrier 150. The distance D2 between adjacent semiconductor dies 132 is programmed into the automated pick and place apparatus and is selected according to the design and specifications of the semiconductor package to be processed. In one embodiment, the gap or distance D2 between adjacent semiconductor dies 132 on the carrier 150 is 200 [mu]m. A third semiconductor die 132 is selected by the automated pick and place device, placed on the carrier 150, and disposed in the first column on the carrier 150. The pick and place operation The system is repeated until a column of about 107 semiconductor dies 132 is disposed across the width W1 of the carrier 150.
另一半導體晶粒132係被該自動化的拾放設備加以選擇、置放在載體150上、並且設置在載體150上的一相鄰該第一列的第二列中。介於半導體晶粒132的相鄰列之間的距離D2係被預先選擇並且被程式化到該自動化的拾放設備中。在一實施例中,介於一第一列的半導體晶粒132以及一第二列的半導體晶粒132之間的距離D2是200μm。該拾放操作係被重複,直到大約115列的半導體晶粒132係橫跨載體150的長度L1被設置為止。該標準化的載體(具有560mm的寬度W1以及600mm的長度L1之載體150)係容納大約107行以及115列的5mm乘5mm的半導體晶粒132,以用於總數約12,000個半導體晶粒132設置在載體150上。該拾放操作係被重複,直到載體150係部分或是完全填入半導體晶粒132為止。在一例如是載體150之標準化的載體下,該自動化的拾放設備可以在載體150上安裝任何尺寸的半導體晶粒,以形成重組晶圓158。重組晶圓158可以利用相同的載體150以及和被用來處理重組晶圓156相同的後端處理設備來加以處理。 Another semiconductor die 132 is selected by the automated pick and place apparatus, placed on the carrier 150, and disposed in a second column of the carrier 150 adjacent the first column. The distance D2 between adjacent columns of semiconductor die 132 is pre-selected and programmed into the automated pick-and-place device. In one embodiment, the distance D2 between the semiconductor die 132 of a first column and the semiconductor die 132 of a second column is 200 μm. The pick and place operation is repeated until approximately 115 columns of semiconductor die 132 are disposed across the length L1 of the carrier 150. The standardized carrier (having a width W1 of 560 mm and a carrier 150 of length L1 of 600 mm) accommodates approximately 107 rows and 115 columns of 5 mm by 5 mm semiconductor die 132 for a total of approximately 12,000 semiconductor die 132 disposed at On the carrier 150. The pick and place operation is repeated until the carrier 150 is partially or completely filled with the semiconductor die 132. The automated pick and place apparatus can mount semiconductor dies of any size on the carrier 150 to form a reconstituted wafer 158 under a standardized carrier such as carrier 150. The reconstituted wafer 158 can be processed using the same carrier 150 and the same backend processing equipment used to process the reconstituted wafer 156.
來自圖4f的重組晶圓156以及來自圖4g的重組晶圓158都使用相同的載體150、或是兩個重組晶圓156及158都使用一具有相同的標準化的尺寸之載體。被設計用於該些重組晶圓的後端處理之處理設備係針對於載體150而被標準化的,因而能夠處理形成在載體150上的任何構形的重組晶圓以及被置放在載體150上的任何尺寸的半導體晶粒。因為重組晶圓156及158都使用相同的標準化的載體150,因此該些重組晶圓可以在相同的製造線上加以處理。於是,該標準化的載體(載體150)之一目的是簡化 製造半導體封裝所需的設備。 Both the reconstituted wafer 156 from Figure 4f and the reconstituted wafer 158 from Figure 4g use the same carrier 150, or both reconstituted wafers 156 and 158 use a carrier of the same standardized size. The processing equipment designed for the back end processing of the reconstituted wafers is standardized for the carrier 150, and is thus capable of processing the reconstituted wafer of any configuration formed on the carrier 150 and placed on the carrier 150 Semiconductor dies of any size. Because the reconstituted wafers 156 and 158 all use the same standardized carrier 150, the reconstituted wafers can be processed on the same manufacturing line. Thus, one of the standardized carriers (carriers 150) is intended to simplify Equipment needed to make semiconductor packages.
在另一例子中,重組晶圓158係包含半導體晶粒124及132,其中每個半導體晶粒124及132係具有相同的尺寸,並且該些半導體晶粒係源自於具有不同直徑的半導體晶圓120及128。半導體晶圓120係具有一450mm的直徑,其中一數量約2,200個個別的8mm乘8mm的半導體晶粒124係形成在半導體晶圓120上。具有8mm乘8mm的尺寸之半導體晶粒124係從一或多個半導體晶圓120而被單粒化。半導體晶圓128係具有一300mm的直徑,其中一數量約900個個別的8mm乘8mm的半導體晶粒132係形成在半導體晶圓128上。半導體晶粒132係從半導體晶圓128而被單粒化。載體150例如是被製備成具有一標準的560mm的寬度W1以及一標準的600mm的長度L1。具有一560mm的寬度W1之載體150係被製作尺寸以在橫跨載體150的寬度W1上容納一數量約69個具有8mm乘8mm的尺寸而間隔開一100μm的距離D1或D2之半導體晶粒124或132。具有一560mm的長度L1之載體150係被製作尺寸以在橫跨載體150的長度L1上容納一數量約74個具有8mm乘8mm的尺寸而間隔開一100μm的距離D1或D2之半導體晶粒124或132。載體150的寬度W1乘上長度L1的表面積係容納大約5,000個具有8mm乘8mm的尺寸而間隔開一100μm的距離D1或D2之半導體晶粒124或132。半導體晶粒124及132可以在介於半導體晶粒124或132之間的一小於100μm的間隙或距離D1或D2下被置放在載體150上,以增加在載體150上的半導體晶粒124及132的密度並且進一步降低處理半導體晶粒124及132的成本。 In another example, the reconstituted wafer 158 includes semiconductor dies 124 and 132, wherein each of the semiconductor dies 124 and 132 have the same size, and the semiconductor dies are derived from semiconductor crystals having different diameters. Round 120 and 128. The semiconductor wafer 120 has a diameter of 450 mm, and an amount of about 2,200 individual 8 mm by 8 mm semiconductor dies 124 are formed on the semiconductor wafer 120. The semiconductor die 124 having a size of 8 mm by 8 mm is singulated from one or more semiconductor wafers 120. The semiconductor wafer 128 has a diameter of 300 mm, and an amount of about 900 individual 8 mm by 8 mm semiconductor dies 132 are formed on the semiconductor wafer 128. The semiconductor die 132 is singulated from the semiconductor wafer 128. The carrier 150 is, for example, prepared to have a standard width 560 of 560 mm and a standard length L1 of 600 mm. The carrier 150 having a width W1 of 560 mm is sized to accommodate a number of about 69 semiconductor dies 124 having a size of 8 mm by 8 mm and a distance D1 or D2 spaced apart by 100 μm across the width W1 of the carrier 150. Or 132. The carrier 150 having a length L1 of 560 mm is sized to accommodate a number of about 74 semiconductor dies 124 having a size of 8 mm by 8 mm and a distance D1 or D2 spaced apart by 100 μm across the length L1 of the carrier 150. Or 132. The surface area of the width W1 of the carrier 150 multiplied by the length L1 accommodates about 5,000 semiconductor dies 124 or 132 having a size of 8 mm by 8 mm and a distance D1 or D2 spaced apart by 100 μm. The semiconductor dies 124 and 132 may be placed on the carrier 150 at a gap of less than 100 μm or a distance D1 or D2 between the semiconductor dies 124 or 132 to increase the semiconductor dies 124 on the carrier 150 and The density of 132 further reduces the cost of processing semiconductor dies 124 and 132.
自動化的拾放設備係被用來根據半導體晶粒124及132的數 量及尺寸並且根據載體150的尺寸以製備重組晶圓158。在單粒化半導體晶圓128之後,一第一半導體晶粒124或132係被該自動化的拾放設備加以選擇。8mm乘8mm的半導體晶粒124或132可以源自於具有一450mm直徑的半導體晶圓120、或是來自具有一300mm直徑的半導體晶圓128。或者是,該8mm乘8mm的半導體晶粒可以源自於另一具有一不同的直徑之半導體晶圓。一第一半導體晶粒124或132係在載體150上的一藉由該可程式化的自動化拾放設備所決定的位置中被安裝到載體150。一第二半導體晶粒124或132係被該自動化的拾放設備加以選擇、置放在載體150上、並且設置在載體150上的一第一列中。介於相鄰的半導體晶粒124或132之間的距離D1或D2係被程式化到該自動化的拾放設備中,並且根據待被處理的半導體封裝的設計及規格來加以選擇。在一實施例中,在載體150上的相鄰的半導體晶粒124或132之間的間隙157或是距離D1或D2是100μm。該拾放操作係被重複,直到一列的大約69個半導體晶粒124或132係橫跨載體150的寬度W1被設置為止。 Automated pick and place equipment is used according to the number of semiconductor dies 124 and 132 The reconstituted wafer 158 is prepared in an amount and size and according to the size of the carrier 150. After singulating the semiconductor wafer 128, a first semiconductor die 124 or 132 is selected by the automated pick and place device. The 8 mm by 8 mm semiconductor die 124 or 132 may be derived from a semiconductor wafer 120 having a diameter of 450 mm or from a semiconductor wafer 128 having a diameter of 300 mm. Alternatively, the 8 mm by 8 mm semiconductor die may be derived from another semiconductor wafer having a different diameter. A first semiconductor die 124 or 132 is mounted to the carrier 150 in a position determined by the programmable automated pick and place device on the carrier 150. A second semiconductor die 124 or 132 is selected by the automated pick and place device, placed on the carrier 150, and disposed in a first column on the carrier 150. The distance D1 or D2 between adjacent semiconductor dies 124 or 132 is programmed into the automated pick and place apparatus and is selected according to the design and specifications of the semiconductor package to be processed. In one embodiment, the gap 157 or the distance D1 or D2 between adjacent semiconductor dies 124 or 132 on the carrier 150 is 100 μm. The pick and place operation is repeated until approximately 69 semiconductor dies 124 or 132 of a column are disposed across the width W1 of the carrier 150.
另一半導體晶粒124或132係被該自動化的拾放設備加以選擇、置放在載體150上、並且設置在載體150上的一相鄰該第一列的第二列中。在一實施例中,在一第一列的半導體晶粒124或132以及一第二列的半導體晶粒124或132之間的距離D1或D2是100μm。該拾放操作係被重複,直到大約74列的半導體晶粒124或132係橫跨載體150的長度L1被設置為止。該標準化的載體(具有560mm的寬度W1以及600mm的長度L1之載體150)係容納大約69行以及74列的8mm乘8mm的半導體晶粒124及132,以用於總數約5,000個半導體晶粒124設置在載體150上。該拾放操作係被 重複,直到載體150係部分或是完全填入半導體晶粒124或132為止。因此,重組晶圓158可包含從任何尺寸的半導體晶圓被單粒化的半導體晶粒124及132。載體150的尺寸係與半導體晶粒124及132的尺寸無關而且與半導體晶圓120以及128的尺寸無關。重組晶圓158可以利用相同的載體150以及和被用來處理重組晶圓156相同的後端處理設備來加以處理。對於具有從不同尺寸的進入的晶圓被單粒化之相同尺寸的半導體晶粒之重組晶圓而言,標準化的載體150係容許相同的材料能夠被使用於每個重組晶圓。因此,用於在載體150上的一重組晶圓156或158之材料清單係維持固定的。一致且可預測的材料清單係容許有用於半導體封裝之改善的成本分析及計畫。 Another semiconductor die 124 or 132 is selected by the automated pick and place device, placed on the carrier 150, and disposed in a second column of the carrier 150 adjacent the first column. In one embodiment, the distance D1 or D2 between the semiconductor dies 124 or 132 of a first column and the semiconductor dies 124 or 132 of a second column is 100 μm. The pick and place operation is repeated until approximately 74 columns of semiconductor dies 124 or 132 are disposed across the length L1 of the carrier 150. The standardized carrier (having a width W1 of 560 mm and a carrier 150 of length L1 of 600 mm) accommodates about 69 rows and 74 columns of 8 mm by 8 mm semiconductor dies 124 and 132 for a total of about 5,000 semiconductor dies 124. It is disposed on the carrier 150. The pick and place operation is This is repeated until the carrier 150 is partially or completely filled with the semiconductor die 124 or 132. Thus, the reconstituted wafer 158 can include semiconductor dies 124 and 132 that are singulated from semiconductor wafers of any size. The size of the carrier 150 is independent of the dimensions of the semiconductor dies 124 and 132 and is independent of the dimensions of the semiconductor wafers 120 and 128. The reconstituted wafer 158 can be processed using the same carrier 150 and the same backend processing equipment used to process the reconstituted wafer 156. For a reconstituted wafer having semiconductor dies of the same size that are singulated from different sized incoming wafers, the standardized carrier 150 allows the same material to be used for each reconstituted wafer. Thus, the bill of materials for a reconstituted wafer 156 or 158 on the carrier 150 remains fixed. A consistent and predictable bill of materials allows for cost analysis and planning for improved semiconductor packaging.
在另一實施例中,一重組晶圓158係包含設置在載體150上的各種半導體晶粒尺寸。例如,10mm乘10mm的半導體晶粒124係被安裝到載體150,並且5mm乘5mm的半導體晶粒132係被安裝到載體150,以形成重組晶圓158。該重組晶圓係包含多種尺寸的半導體晶粒在相同的重組晶圓上。換言之,重組晶圓158的一部分係包含一種尺寸的半導體晶粒,並且該重組晶圓的另一部分係包含另一種尺寸的半導體晶粒。在載體150上同時包含不同尺寸的半導體晶粒124及132之重組晶圓158係利用和被用來處理具有設置在載體150之上的均勻尺寸的半導體晶粒的重組晶圓156相同的後端處理設備來加以處理。 In another embodiment, a reconstituted wafer 158 includes various semiconductor grain sizes disposed on the carrier 150. For example, a 10 mm by 10 mm semiconductor die 124 is mounted to the carrier 150, and a 5 mm by 5 mm semiconductor die 132 is mounted to the carrier 150 to form a reconstituted wafer 158. The reconstituted wafer contains semiconductor dies of various sizes on the same reconstituted wafer. In other words, a portion of the reconstituted wafer 158 includes semiconductor dies of one size, and another portion of the reconstituted wafer contains semiconductor dies of another size. The reconstituted wafer 158 comprising simultaneously different sized semiconductor dies 124 and 132 on the carrier 150 utilizes the same back end as the reconstituted wafer 156 having a uniform sized semiconductor die disposed over the carrier 150. Process the device for processing.
總之,載體150係具有用於各種尺寸及數量的半導體晶粒的容量,該些半導體晶粒係從各種尺寸的半導體晶圓而被單粒化的。載體150的尺寸並不隨著被處理的半導體晶粒的尺寸而變化。該標準化的載體(載體 150)在尺寸上是固定的,並且可以容納多種尺寸的半導體晶粒。標準化的載體150的尺寸係與半導體晶粒或是半導體晶圓的尺寸無關的。相較於較大的半導體晶粒,更多小的半導體晶粒可以裝設在載體150之上。裝設在載體150上的半導體晶粒124或132的數量係隨著半導體晶粒124或132的尺寸以及介於半導體晶粒124或132之間的間隔或距離D1或D2而改變。例如,具有長度L1及寬度W1之載體150係在載體150的表面積之上容納5mm乘5mm的半導體晶粒132的數量大於在載體150的表面積之上的10mm乘10mm的半導體晶粒124的數量。載體150的尺寸及形狀係維持固定的,並且與半導體晶粒124或132、或是單粒化的半導體晶粒124或132所來自的半導體晶圓120或128的尺寸無關的。載體150係利用一組共同的處理設備,利用來自不同尺寸的半導體晶圓120及128之不同尺寸的半導體晶粒124及132以提供彈性,來製造重組晶圓156及158成為許多不同類型的半導體封裝。 In summary, carrier 150 has a capacity for semiconductor dies of various sizes and numbers that are singulated from semiconductor wafers of various sizes. The size of the carrier 150 does not vary with the size of the semiconductor die being processed. Standardized vector 150) is fixed in size and can accommodate semiconductor dies of various sizes. The size of the standardized carrier 150 is independent of the size of the semiconductor die or semiconductor wafer. More small semiconductor dies can be mounted on the carrier 150 than larger semiconductor dies. The number of semiconductor dies 124 or 132 mounted on the carrier 150 varies with the size of the semiconductor dies 124 or 132 and the spacing or distance D1 or D2 between the semiconductor dies 124 or 132. For example, carrier 150 having a length L1 and a width W1 is such that the number of semiconductor dies 132 that accommodate 5 mm by 5 mm above the surface area of carrier 150 is greater than the number of semiconductor dies 124 of 10 mm by 10 mm above the surface area of carrier 150. The size and shape of the carrier 150 remains fixed and independent of the size of the semiconductor die 124 or 132, or the semiconductor wafer 120 or 128 from which the singulated semiconductor die 124 or 132 are derived. The carrier 150 utilizes a common set of processing equipment to utilize the different sized semiconductor dies 124 and 132 from different sized semiconductor wafers 120 and 128 to provide resiliency to fabricate the reconstituted wafers 156 and 158 into many different types of semiconductors. Package.
圖4h係展示一種利用載體150以製造半導體封裝的製程。處理設備160係被用來在半導體晶粒上執行後端製程,例如囊封體及絕緣層的沉積、導電層的沉積、凸塊接合、回焊、標記、單粒化、以及其它後端製程。處理設備160係針對於一例如是載體150之標準化的載體的尺寸及形狀來加以設計。處理設備160係與載體150相容的,因為處理設備160的機械及電性構件係針對於載體150之標準化的尺寸及形狀客製化的。 Figure 4h shows a process for fabricating a semiconductor package using carrier 150. Processing device 160 is used to perform backend processes on semiconductor dies, such as deposition of encapsulants and insulating layers, deposition of conductive layers, bump bonding, reflow, marking, singulation, and other backend processes . Processing device 160 is designed for the size and shape of a standardized carrier such as carrier 150. The processing device 160 is compatible with the carrier 150 because the mechanical and electrical components of the processing device 160 are customized for the standardized size and shape of the carrier 150.
處理設備160係藉由控制系統162來加以控制。控制系統162可以是一被用來根據在載體150上的半導體晶粒的尺寸及形狀以組態設定處理設備160之軟體程式或演算法。控制系統162係被程式化及客製化, 以便供處理設備160處理形成在標準化的載體150上之例如是重組晶圓156及158的每個不同的重組晶圓。 Processing device 160 is controlled by control system 162. Control system 162 can be a software program or algorithm that is used to configure processing device 160 in accordance with the size and shape of the semiconductor die on carrier 150. Control system 162 is programmed and customized. In order for the processing device 160 to process each of the different reconstituted wafers, such as reconstituted wafers 156 and 158, formed on the standardized carrier 150.
藉由標準化載體150的尺寸,處理設備160可以保持固定的,因為載體150的尺寸並不隨著半導體晶粒的尺寸以及半導體晶圓的尺寸的變數而改變。控制系統162係針對於在載體150上的每個重組晶圓使用各種的演算法。例如,控制系統162可被利用以在半導體晶粒124於載體150上的最初的拾放操作期間最佳化間隔。重組晶圓156的規格係被輸入到控制系統162中。控制系統162係被程式化以控制處理設備160以拾取個別的半導體晶粒124,並且將半導體晶粒124在相隔一距離D1下置放到載體150之上,以形成重組晶圓156。重組晶圓156例如是包含10mm乘10mm的半導體晶粒124以及寬度W1及長度L1之標準的尺寸的載體150。處理設備160係利用控制系統162而被組態設定,以在載體150上的重組晶圓156上執行後端製程。控制系統162係管理處理設備160以根據該10mm乘10mm尺寸的半導體晶粒124以及標準尺寸的載體150,來執行沉積以及其它製造步驟。 By standardizing the size of the carrier 150, the processing device 160 can remain fixed because the size of the carrier 150 does not vary with the size of the semiconductor die and the size of the semiconductor wafer. Control system 162 is directed to using various algorithms for each reconstituted wafer on carrier 150. For example, control system 162 can be utilized to optimize spacing during initial pick and place operations of semiconductor die 124 on carrier 150. The specifications of the reconstituted wafer 156 are input to the control system 162. Control system 162 is programmed to control processing device 160 to pick up individual semiconductor dies 124 and place semiconductor dies 124 over carrier 150 at a distance D1 to form reconstituted wafer 156. The reconstituted wafer 156 is, for example, a carrier 150 that includes a semiconductor die 124 of 10 mm by 10 mm and a standard size of width W1 and length L1. Processing device 160 is configured with control system 162 to perform a backend process on reconstituted wafer 156 on carrier 150. Control system 162 manages processing device 160 to perform deposition and other fabrication steps in accordance with the 10 mm by 10 mm sized semiconductor die 124 and standard sized carrier 150.
控制系統162係容許處理設備160能夠針對於在標準化的載體150上的每個重組晶圓而被客製化。處理設備160並不需要針對於不同尺寸的半導體晶粒而被重建。在處理重組晶圓156之後,處理設備160係備妥以處理在載體150上的另一具有相同或是不同的半導體晶粒尺寸及間隔之重組晶圓。重組晶圓158的規格係被輸入到控制系統162中。控制系統162係被程式化以控制處理設備160以拾取個別的半導體晶粒132,並且將半導體晶粒132在相隔一距離D2下置放到載體150之上,以形成重組晶圓158。 重組晶圓158例如包含5mm乘5mm的半導體晶粒132以及寬度W1及長度L1之標準尺寸的載體150。處理設備160係利用控制系統162而被組態設定,以在載體150上的重組晶圓158上執行後端製程。控制系統162係管理處理設備160以根據該5mm乘5mm尺寸的半導體晶粒132以及標準尺寸的載體150來執行沉積以及其它製造步驟。 Control system 162 allows processing device 160 to be customized for each reconstituted wafer on standardized carrier 150. Processing device 160 does not need to be reconstructed for different sized semiconductor dies. After processing the reconstituted wafer 156, the processing device 160 is prepared to process another reconstituted wafer having the same or different semiconductor grain sizes and spacing on the carrier 150. The specifications of the reconstituted wafer 158 are input to the control system 162. Control system 162 is programmed to control processing device 160 to pick up individual semiconductor dies 132 and place semiconductor dies 132 over carrier 150 at a distance D2 to form reconstituted wafer 158. The reconstituted wafer 158 includes, for example, a 5 mm by 5 mm semiconductor die 132 and a carrier 150 of a standard size of width W1 and length L1. Processing device 160 is configured to utilize control system 162 to perform a backend process on reconstituted wafer 158 on carrier 150. Control system 162 manages processing device 160 to perform deposition and other fabrication steps in accordance with the 5 mm by 5 mm sized semiconductor die 132 and standard sized carrier 150.
處理設備160係維持固定的,而不論處理設備160是處理重組晶圓156或158、或是其它在標準化的載體150上之重組晶圓。控制系統162是可程式化的,並且處理設備160係輕易地適配於任何使用載體150的重組晶圓。因此,處理設備160的機械及物理特徵係被設計以考量標準化的載體150的物理特徵,同時處理設備160亦可以利用控制系統162來程式化,以在載體150上的半導體晶粒的任何配置上執行製程。 The processing device 160 remains fixed regardless of whether the processing device 160 is processing the reconstituted wafer 156 or 158, or other reconstituted wafer on the standardized carrier 150. Control system 162 is programmable and processing device 160 is readily adapted to any reconstituted wafer using carrier 150. Accordingly, the mechanical and physical characteristics of the processing device 160 are designed to take into account the physical characteristics of the standardized carrier 150, while the processing device 160 can also be programmed with the control system 162 for any configuration of the semiconductor die on the carrier 150. Execute the process.
處理設備160係被使用於從一在載體150上的重組晶圓來製造各種半導體封裝。例如,處理設備160可被利用以處理重組晶圓156或158成為扇入WLCSP、重組或eWLCSP、扇出WLCSP、覆晶封裝、例如是PoP的3D封裝、或是其它半導體封裝。控制系統162係被用來修改及控制處理設備160的操作,以根據待被製造的半導體封裝來執行後端製造步驟。因此,處理設備160可被利用以製造在此所述的每個半導體封裝。處理設備160可以橫跨多個共用相同尺寸的載體150的產品製造線來加以利用。於是,和在半導體晶粒的尺寸、半導體晶圓的尺寸、以及半導體封裝的類型上的改變相關的成本可被降低。在處理設備160中的投資風險係被降低,因為處理設備160的設計在載體150被標準化的情形中係被簡化。 Processing device 160 is used to fabricate various semiconductor packages from a reconstituted wafer on carrier 150. For example, processing device 160 can be utilized to process reconstituted wafer 156 or 158 into a fan-in WLCSP, a recombination or eWLCSP, a fan-out WLCSP, a flip chip package, a 3D package such as PoP, or other semiconductor package. Control system 162 is used to modify and control the operation of processing device 160 to perform back end manufacturing steps in accordance with the semiconductor package to be fabricated. Accordingly, processing device 160 can be utilized to fabricate each of the semiconductor packages described herein. Processing device 160 can be utilized across a plurality of product manufacturing lines that share carrier 150 of the same size. Thus, the cost associated with changes in the size of the semiconductor die, the size of the semiconductor wafer, and the type of semiconductor package can be reduced. The investment risk in the processing device 160 is reduced because the design of the processing device 160 is simplified in the case where the carrier 150 is standardized.
在圖4i中,一種囊封體或模製化合物164係利用一膏印刷、 轉移模製、液體囊封體模製、真空疊層、旋轉塗覆、或是其它適當的施用器而沉積在半導體晶粒124及載體150之上。囊封體164可以是聚合物複合材料,例如是具有填充物的環氧樹脂、具有填充物的環氧丙烯酸酯、或是具有適當的填充物的聚合物。囊封體164是非導電的,並且在環境上保護該半導體裝置免於外部的元素及污染物。在另一實施例中,囊封體164是一利用印刷、旋轉塗覆、噴霧塗覆、在加熱或是不在加熱下的真空或壓力疊層、或是其它適當的製程沉積的絕緣或介電層,其係包含一或多層的光敏的低固化溫度介電質阻劑、光敏的複合阻劑、積層化合物膜、具有填充物的絕緣膏、焊料遮罩阻劑膜、液體或顆粒模製化合物、聚醯亞胺、BCB、PBO、SiO2、Si3N4、SiON、Ta2O5、Al2O3、預浸料、或是其它具有類似的絕緣及結構的性質的介電材料。在一實施例中,囊封體164是一種在小於200℃下固化的具有或是不具有絕緣填充物之低溫固化光敏的介電聚合物。 In Figure 4i, an encapsulant or molding compound 164 is printed using a paste, Transfer molding, liquid encapsulation molding, vacuum lamination, spin coating, or other suitable applicator is deposited over semiconductor die 124 and carrier 150. The encapsulant 164 can be a polymer composite such as an epoxy with a filler, an epoxy acrylate with a filler, or a polymer with a suitable filler. The encapsulant 164 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants. In another embodiment, the encapsulant 164 is an insulating or dielectric deposited by printing, spin coating, spray coating, vacuum or pressure lamination under or without heating, or other suitable process deposition. a layer comprising one or more layers of photosensitive low-curing temperature dielectric resist, photosensitive composite resist, laminated compound film, insulating paste with filler, solder mask resist film, liquid or particulate molding compound Polyimine, BCB, PBO, SiO2, Si3N4, SiON, Ta2O5, Al2O3, prepreg, or other dielectric materials having similar insulating and structural properties. In one embodiment, the encapsulant 164 is a low temperature curing photosensitive dielectric polymer with or without an insulating filler that cures at less than 200 °C.
尤其,囊封體164係沿著基底基板的側表面148來加以設置。囊封體164亦覆蓋半導體晶粒124的背表面136。在一實施例中,囊封體164是不透明的,並且在色彩上是暗的或是黑色的。囊封體164可被利用於雷射標記重組晶圓156,以用於對準及單粒化。囊封體164可以在一後續的背面研磨步驟中被薄化。囊封體164亦可以沉積成使得囊封體164係與半導體晶粒124的背表面136共平面的,因而並不覆蓋背表面136。與囊封體164的背表面166相對之囊封體164的一表面168係被設置在載體150及介面層152之上,使得囊封體164的表面168可以是與半導體晶粒124的主動表面138共平面的。 In particular, the encapsulant 164 is disposed along the side surface 148 of the base substrate. The encapsulant 164 also covers the back surface 136 of the semiconductor die 124. In an embodiment, the encapsulant 164 is opaque and dark or black in color. Encapsulant 164 can be utilized for laser marking reconstituted wafer 156 for alignment and singulation. The encapsulant 164 can be thinned in a subsequent back grinding step. The encapsulant 164 can also be deposited such that the encapsulant 164 is coplanar with the back surface 136 of the semiconductor die 124 and thus does not cover the back surface 136. A surface 168 of the encapsulant 164 opposite the back surface 166 of the encapsulant 164 is disposed over the carrier 150 and the interface layer 152 such that the surface 168 of the encapsulant 164 can be the active surface of the semiconductor die 124 138 coplanar.
在圖4j中,載體150及介面層152係藉由化學蝕刻、機械 式剝離、化學機械平坦化(CMP)、機械式研磨、熱烘烤、UV光、雷射掃描、或是濕式剝除來加以移除,以露出絕緣層142、導電層140、以及囊封體164的表面168。 In Figure 4j, the carrier 150 and the interface layer 152 are chemically etched, mechanically Stripping, chemical mechanical planarization (CMP), mechanical polishing, thermal baking, UV light, laser scanning, or wet stripping to remove the insulating layer 142, the conductive layer 140, and the encapsulation Surface 168 of body 164.
一導電層170係利用一例如是印刷、PVD、CVD、濺鍍、電解的電鍍、以及無電的電鍍之圖案化及金屬沉積製程,以形成在絕緣層142及導電層140之上。導電層170可以是一或多層的Al、Cu、Sn、鈦(Ti)、Ni、Au、Ag、或是其它適當的導電材料。導電層170的一部分係沿著絕緣層142並且平行於半導體晶粒124的主動表面138水平地延伸,以橫向地重新分佈該電互連至導電層140。導電層170係運作為一用於半導體晶粒124的電性信號之重新分佈層(RDL)。導電層170係形成在半導體晶粒124的一覆蓋區之上,而且並不延伸超出半導體晶粒124的覆蓋區而到囊封體164之上。換言之,半導體晶粒124的一相鄰半導體晶粒124的週邊區域並沒有導電層170,因而囊封體164係維持露出的。在一實施例中,導電層170係相隔半導體晶粒124的側壁144一距離D3來加以形成,並且距離D3係至少1μm。導電層170的一部分係電連接至導電層140。導電層170的其它部分係根據半導體晶粒124的連接而為電性共通的、或是電性隔離的。 A conductive layer 170 is formed over the insulating layer 142 and the conductive layer 140 by a patterning and metal deposition process such as printing, PVD, CVD, sputtering, electrolytic plating, and electroless plating. Conductive layer 170 can be one or more layers of Al, Cu, Sn, titanium (Ti), Ni, Au, Ag, or other suitable electrically conductive material. A portion of conductive layer 170 extends horizontally along insulating layer 142 and parallel to active surface 138 of semiconductor die 124 to laterally redistribute the electrical interconnect to conductive layer 140. Conductive layer 170 operates as a redistribution layer (RDL) for the electrical signals of semiconductor die 124. The conductive layer 170 is formed over a footprint of the semiconductor die 124 and does not extend beyond the footprint of the semiconductor die 124 to over the encapsulant 164. In other words, the peripheral region of an adjacent semiconductor die 124 of the semiconductor die 124 does not have the conductive layer 170, and thus the encapsulant 164 remains exposed. In one embodiment, the conductive layer 170 is formed by a sidewall 144 of the semiconductor die 124 at a distance D3 and at a distance D3 of at least 1 μm. A portion of the conductive layer 170 is electrically connected to the conductive layer 140. Other portions of conductive layer 170 are electrically or electrically isolated depending on the connection of semiconductor die 124.
在圖4k中,一絕緣或保護層172係利用PVD、CVD、印刷、旋轉塗覆、噴霧塗覆、網版印刷或是疊層,以形成在絕緣層142及導電層170之上。絕緣層172可以是一或多層的SiO2、Si3N4、SiON、Ta2O5、Al2O3、或是其它具有類似絕緣及結構的性質之材料。在一實施例中,絕緣層172是一種在小於200℃下低溫固化之光敏的介電聚合物。在一實施例中,絕緣層172係形成在半導體晶粒124的覆蓋區之內,而且並不延伸超出半導體晶 粒124的覆蓋區而到囊封體164之上。換言之,半導體晶粒124的一相鄰半導體晶粒124的週邊區域並沒有絕緣層172,因而囊封體164係維持露出的。在另一實施例中,絕緣層172係形成在絕緣層142、半導體晶粒124以及囊封體164之上。絕緣層172的一部分係藉由一種利用一圖案化的光阻層之蝕刻製程或是藉由LDA來加以移除,以形成開口來露出導電層170。 In FIG. 4k, an insulating or protective layer 172 is formed over the insulating layer 142 and the conductive layer 170 by PVD, CVD, printing, spin coating, spray coating, screen printing, or lamination. The insulating layer 172 may be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other materials having similar insulating and structural properties. In one embodiment, the insulating layer 172 is a photosensitive dielectric polymer that cures at a low temperature of less than 200 °C. In one embodiment, the insulating layer 172 is formed within the footprint of the semiconductor die 124 and does not extend beyond the semiconductor crystal. The coverage of the particles 124 is above the encapsulant 164. In other words, the peripheral region of an adjacent semiconductor die 124 of the semiconductor die 124 does not have the insulating layer 172, and thus the encapsulant 164 remains exposed. In another embodiment, an insulating layer 172 is formed over the insulating layer 142, the semiconductor die 124, and the encapsulant 164. A portion of the insulating layer 172 is removed by an etching process using a patterned photoresist layer or by an LDA to form an opening to expose the conductive layer 170.
一種導電的凸塊材料係利用一蒸鍍、電解的電鍍、無電的電鍍、球式滴落、或是網版印刷製程以沉積在導電層170之上。在一實施例中,該凸塊材料係利用一球式滴落模版來加以沉積,亦即不需要遮罩。該凸塊材料可以是具有一選配的助熔溶劑之Al、Sn、Ni、Au、Ag、鉛(Pb)、Bi、Cu、焊料、以及其之組合。例如,該凸塊材料可以是共晶Sn/Pb、高鉛的焊料、或是無鉛的焊料。該凸塊材料係利用一適當的附裝或接合製程而被接合到導電層170。在一實施例中,該凸塊材料係藉由加熱該材料超過其熔點來加以回焊,以形成球或凸塊174。在某些應用中,凸塊174係被回焊第二次以改善至導電層170的電性接觸。凸塊174亦可以被壓縮接合或是熱壓接合到導電層170。凸塊174係代表一種可被形成在導電層170之上的互連結構類型。該互連結構亦可以使用接合線、導電膏、柱形凸塊、微凸塊、或是其它電互連。雷射標記可以在凸塊的形成之前或之後、或是在載體150的移除之後加以執行。 A conductive bump material is deposited over the conductive layer 170 by an evaporation, electrolytic plating, electroless plating, ball dropping, or screen printing process. In one embodiment, the bump material is deposited using a ball drop stencil, i.e., no mask is required. The bump material may be Al, Sn, Ni, Au, Ag, lead (Pb), Bi, Cu, solder, and combinations thereof with an optional fluxing solvent. For example, the bump material can be eutectic Sn/Pb, high lead solder, or lead free solder. The bump material is bonded to the conductive layer 170 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material beyond its melting point to form a ball or bump 174. In some applications, bumps 174 are reflowed a second time to improve electrical contact to conductive layer 170. The bumps 174 can also be bonded to the conductive layer 170 by compression bonding or thermocompression bonding. Bumps 174 represent a type of interconnect structure that can be formed over conductive layer 170. The interconnect structure can also use bond wires, conductive pastes, stud bumps, microbumps, or other electrical interconnects. The laser mark can be performed before or after the formation of the bump or after the removal of the carrier 150.
絕緣層172、導電層170以及凸塊174係全體地構成一堆積的互連結構176,其係形成在半導體晶粒124之上而且在半導體晶粒124的一覆蓋區之內。半導體晶粒124的一相鄰半導體晶粒124的週邊區域並沒有互連結構176,因而囊封體164係維持露出的。堆積的互連結構176可包含 只有一例如是導電層170的RDL或導電層、以及一例如是絕緣層172的絕緣層。在形成凸塊174之前,額外的絕緣層及RDL可被形成在絕緣層172之上,以根據半導體晶粒124的設計及功能來提供橫跨該封裝之額外的垂直及水平的電性連接。 The insulating layer 172, the conductive layer 170, and the bumps 174 collectively form a stacked interconnect structure 176 formed over the semiconductor die 124 and within a footprint of the semiconductor die 124. The peripheral region of an adjacent semiconductor die 124 of the semiconductor die 124 does not have an interconnect structure 176, and thus the encapsulant 164 remains exposed. The stacked interconnect structure 176 can include There is only one RDL or conductive layer such as conductive layer 170, and an insulating layer such as insulating layer 172. Additional insulating layers and RDL may be formed over the insulating layer 172 prior to forming the bumps 174 to provide additional vertical and horizontal electrical connections across the package in accordance with the design and function of the semiconductor die 124.
在圖41中,半導體晶粒124係利用鋸刀或雷射切割工具180而被單粒化成為個別的eWLCSP 182。重組晶圓156係穿過囊封體164及基底基板材料122沿著側表面184而被單粒化,以從半導體晶粒124的側邊移除囊封體164並且從半導體晶粒124的側邊移除基底基板材料122的一部分。因此,基底基板材料122係在eWLCSP 182的形成期間被切割或單粒化兩次,一次是在晶圓層級以及一次是在重組晶圓層級。因此,該些介電材料係較不易於裂開,並且eWLCSP 182的可靠度係被改善。 In FIG. 41, semiconductor die 124 is singulated into individual eWLCSPs 182 using a saw blade or laser cutting tool 180. The reconstituted wafer 156 is singulated along the side surface 184 through the encapsulant 164 and the base substrate material 122 to remove the encapsulant 164 from the sides of the semiconductor die 124 and from the sides of the semiconductor die 124 A portion of the base substrate material 122 is removed. Thus, the base substrate material 122 is cut or singulated twice during the formation of the eWLCSP 182, once at the wafer level and once at the reconstituted wafer level. Therefore, the dielectric materials are less prone to cracking and the reliability of the eWLCSP 182 is improved.
基底基板材料122的一部分係在單粒化之後維持被設置在沿著半導體晶粒124的側邊處。相鄰半導體晶粒124的基底基板材料122的厚度是至少1μm。換言之,一在半導體晶粒124的側表面184及側壁144之間的距離D4是至少1μm。eWLCSP 182在單粒化之前或是之後進行電性測試。 A portion of the base substrate material 122 remains disposed along the sides of the semiconductor die 124 after singulation. The thickness of the base substrate material 122 of the adjacent semiconductor die 124 is at least 1 μm. In other words, a distance D4 between the side surface 184 of the semiconductor die 124 and the sidewall 144 is at least 1 μm. The eWLCSP 182 was electrically tested before or after the singulation.
圖4m係展示在單粒化之後具有覆蓋半導體晶粒124的背表面136的囊封體之eWLCSP 182。半導體晶粒124係透過導電層140及170來電連接至凸塊174,以用於透過互連結構176之外部的互連。互連結構176並不延伸超出半導體晶粒124的一覆蓋區,並且因此形成一扇入封裝。囊封體164係維持在半導體晶粒124的背表面136之上。在半導體晶粒124的背表面136之上的囊封體164係消除對於一背面保護層或是背面積層的需 求,藉此降低eWLCSP 182的成本。囊封體164係在單粒化期間完全從半導體晶粒124的側邊加以移除,以露出基底基板材料122的側表面184。在一實施例中,eWLCSP 182係具有大約在長度上的4.445mm×在寬度上的3.875mm的尺寸,其具有一用於凸塊174的0.35-0.50mm的間距。在另一實施例中,eWLCSP 182可被形成具有一14mm的長度以及一14mm的寬度。eWLCSP 182係藉由在標準化的載體150上形成一重組晶圓,利用針對於單一標準化的載體尺寸所設計的設備來加以製造,此係降低用於eWLCSP 182的設備及材料成本。eWLCSP 182係利用標準化的載體150以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 4m shows an eWLCSP 182 having an encapsulant covering the back surface 136 of the semiconductor die 124 after singulation. The semiconductor die 124 is electrically coupled to the bumps 174 through the conductive layers 140 and 170 for interconnection through the exterior of the interconnect structure 176. The interconnect structure 176 does not extend beyond a footprint of the semiconductor die 124 and thus forms a fan-in package. The encapsulant 164 is maintained over the back surface 136 of the semiconductor die 124. The encapsulant 164 over the back surface 136 of the semiconductor die 124 eliminates the need for a backside protective layer or backside layer Therefore, thereby reducing the cost of the eWLCSP 182. The encapsulant 164 is completely removed from the sides of the semiconductor die 124 during singulation to expose the side surface 184 of the base substrate material 122. In one embodiment, the eWLCSP 182 has a size of approximately 4.445 mm in length x 3.875 mm in width having a pitch of 0.35-0.50 mm for the bumps 174. In another embodiment, the eWLCSP 182 can be formed to have a length of 14 mm and a width of 14 mm. The eWLCSP 182 is fabricated by forming a reconstituted wafer on a standardized carrier 150 using equipment designed for a single standardized carrier size, which reduces equipment and material costs for the eWLCSP 182. The eWLCSP 182 is manufactured in a larger amount using a standardized carrier 150, thereby simplifying the process and reducing unit cost.
圖5係展示一具有露出的背表面136及側壁184之eWLCSP 190。半導體晶粒124係透過導電層140及170而電連接至凸塊174,以用於透過互連結構176之外部的互連。互連結構176並不延伸超出半導體晶粒124的一覆蓋區,並且因此形成一扇入封裝。囊封體164係在一研磨操作期間完全從半導體晶粒124的背表面136加以移除。囊封體164係在單粒化期間完全從半導體晶粒124的側邊加以移除,以露出基底基板材料122的側表面184。在一實施例中,eWLCSP 190係具有大約在長度上的4.4mm×在寬度上的3.9mm的尺寸,其具有一用於凸塊174的0.35-0.50mm的間距。eWLCSP 190係藉由在標準化的載體150上形成一重組晶圓,利用針對於單一標準化的載體尺寸所設計的設備來加以製造,此係降低用於eWLCSP 190之設備及材料成本。eWLCSP 190係利用標準化的載體150以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 FIG. 5 shows an eWLCSP 190 having an exposed back surface 136 and sidewalls 184. The semiconductor die 124 is electrically connected to the bumps 174 through the conductive layers 140 and 170 for interconnection through the exterior of the interconnect structure 176. The interconnect structure 176 does not extend beyond a footprint of the semiconductor die 124 and thus forms a fan-in package. The encapsulant 164 is completely removed from the back surface 136 of the semiconductor die 124 during a lapping operation. The encapsulant 164 is completely removed from the sides of the semiconductor die 124 during singulation to expose the side surface 184 of the base substrate material 122. In one embodiment, the eWLCSP 190 has a dimension of approximately 4.4 mm in length x 3.9 mm in width with a pitch of 0.35-0.50 mm for the bumps 174. The eWLCSP 190 is fabricated by forming a reconstituted wafer on a standardized carrier 150 using equipment designed for a single standardized carrier size, which reduces the cost of equipment and materials for the eWLCSP 190. The eWLCSP 190 is manufactured in a larger amount using a standardized carrier 150, thereby simplifying the process and reducing unit cost.
圖6係展示一具有凸塊底部金屬化(UBM)194、背面保護層 196、以及露出的側表面184之替代的eWLCSP 192。一導電層194係在最終的再次鈍化(repassivation)之後,利用PVD、CVD、蒸鍍、電解的電鍍、無電的電鍍、或是其它適當的金屬沉積製程以形成在導電層170的露出的部分之上以及在絕緣層172之上。導電層194可以是Al、Cu、Sn、Ni、Au、Ag、W、或是其它適當的導電材料。導電層194是一電連接至導電層170及140的UBM。UBM 194可以是一具有黏著層、阻障層、以及晶種或潤濕層之多金屬的堆疊。該黏著層係形成在導電層170之上,並且可以是Ti、氮化鈦(TiN)、鈦鎢(TiW)、Al、或是鉻(Cr)。該阻障層係形成在該黏著層之上,並且可以是Ni、NiV、鉑(Pt)、鈀(Pd)、TiW、Ti、或是鉻銅(CrCu)。該阻障層係阻止Cu擴散到半導體晶粒124的主動表面138中。該晶種層係形成在該阻障層之上,並且可以是Cu、Ni、NiV、Au、或是Al。UBM 194係提供一低電阻的互連至導電層170、以及一焊料擴散的阻障以及用於焊料可潤濕性的晶種層。 Figure 6 shows a bumped bottom metallization (UBM) 194, back protective layer 196, and an alternative eWLCSP 192 of the exposed side surface 184. A conductive layer 194 is formed in the exposed portion of the conductive layer 170 by PVD, CVD, evaporation, electrolytic plating, electroless plating, or other suitable metal deposition process after final repassivation. Above and above the insulating layer 172. Conductive layer 194 can be Al, Cu, Sn, Ni, Au, Ag, W, or other suitable electrically conductive material. Conductive layer 194 is a UBM that is electrically connected to conductive layers 170 and 140. UBM 194 can be a stack of multiple metals with an adhesion layer, a barrier layer, and a seed or wetting layer. The adhesive layer is formed over the conductive layer 170 and may be Ti, titanium nitride (TiN), titanium tungsten (TiW), Al, or chromium (Cr). The barrier layer is formed over the adhesive layer and may be Ni, NiV, platinum (Pt), palladium (Pd), TiW, Ti, or chromium copper (CrCu). The barrier layer prevents Cu from diffusing into the active surface 138 of the semiconductor die 124. The seed layer is formed over the barrier layer and may be Cu, Ni, NiV, Au, or Al. UBM 194 provides a low resistance interconnect to conductive layer 170, as well as a solder diffusion barrier and a seed layer for solder wettability.
半導體晶粒124係透過導電層140、170及194而電連接至凸塊174,以用於透過互連結構176之外部的互連。導電層170及194以及絕緣層142及172並不延伸超出半導體晶粒124的一覆蓋區,並且因此形成一扇入封裝。背面絕緣層或是背面保護層196係形成在半導體晶粒124的背表面136之上,以用於機械式保護並且保護避免由於曝光到來自光或是其它放射的光子所造成的劣化。背面保護層196係包含一或多層的光敏的低固化溫度介電阻劑、光敏的複合阻劑、積層化合物膜、具有填充物或玻璃纖維織物的樹脂基質複合片、具有填充物及玻璃纖維織物的樹脂基質複合片、具有填充物的絕緣膏、焊料遮罩阻劑膜、液體模製化合物、顆粒模製 化合物、聚醯亞胺、BCB、PBO、SiO2、Si3N4、SiON、Ta2O5、Al2O3、預浸料、或是其它具有類似的絕緣及結構的性質的介電材料。背面保護層196係利用印刷、旋轉塗覆、噴霧塗覆、在加熱或是不在加熱下的真空或壓力疊層、或是其它適當的製程來加以沉積。在一實施例中,背面保護層196是一種在小於200℃下固化的具有或是不具有絕緣填充物之低溫固化光敏的介電聚合物。背面保護層196係提供機械式保護給半導體晶粒124,並且保護以避開光。在一實施例中,背面保護層196係具有一範圍從大約5到150μm的厚度。或者是,背面保護層196是一施加至eWLCSP 192的一背面之例如為Cu箔的金屬層。背面保護層196係接觸半導體晶粒124的背表面136以從半導體晶粒124傳導熱,並且改善該裝置的熱效能。 The semiconductor die 124 is electrically connected to the bumps 174 through the conductive layers 140, 170, and 194 for interconnection through the exterior of the interconnect structure 176. Conductive layers 170 and 194 and insulating layers 142 and 172 do not extend beyond a footprint of semiconductor die 124 and thus form a fan-in package. A backside insulating layer or backside protective layer 196 is formed over the back surface 136 of the semiconductor die 124 for mechanical protection and protection against degradation due to exposure to photons from light or other radiation. The back protective layer 196 comprises one or more layers of photosensitive low curing temperature dielectric resistors, photosensitive composite resists, laminated compound films, resin matrix composite sheets with filler or fiberglass fabric, with fillers and fiberglass fabrics. Resin matrix composite sheet, insulating paste with filler, solder mask resist film, liquid molding compound, particle molding A compound, polyimide, BCB, PBO, SiO2, Si3N4, SiON, Ta2O5, Al2O3, prepreg, or other dielectric material having similar insulating and structural properties. The backside protective layer 196 is deposited by printing, spin coating, spray coating, vacuum or pressure lamination with or without heating, or other suitable process. In one embodiment, the backside protective layer 196 is a low temperature curing photosensitive dielectric polymer with or without an insulating filler that cures at less than 200 °C. Backside protective layer 196 provides mechanical protection to semiconductor die 124 and is protected from light. In an embodiment, the backside protective layer 196 has a thickness ranging from about 5 to 150 [mu]m. Alternatively, the backside protective layer 196 is a metal layer such as a Cu foil applied to a back side of the eWLCSP 192. The backside protective layer 196 contacts the back surface 136 of the semiconductor die 124 to conduct heat from the semiconductor die 124 and improve the thermal performance of the device.
囊封體164係在單粒化期間從半導體晶粒124的側邊完全被移除,以露出基底基板材料122的側表面184。在一實施例中,eWLCSP 192係具有大約在長度上的4.4mm×在寬度上的3.9mm的尺寸,其具有一用於凸塊174的0.35-0.50mm的間距。在另一實施例中,eWLCSP 192可被形成具有一14mm的長度以及一14mm的寬度。eWLCSP 192係藉由在標準化的載體150上形成一重組晶圓,利用針對於單一標準化的載體尺寸所設計的設備來加以製造,此係降低用於eWLCSP 192的設備及材料成本。eWLCSP 192係利用標準化的載體150以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 The encapsulant 164 is completely removed from the sides of the semiconductor die 124 during singulation to expose the side surface 184 of the base substrate material 122. In one embodiment, the eWLCSP 192 has a dimension of approximately 4.4 mm in length x 3.9 mm in width with a pitch of 0.35-0.50 mm for the bumps 174. In another embodiment, the eWLCSP 192 can be formed to have a length of 14 mm and a width of 14 mm. The eWLCSP 192 is fabricated by forming a reconstituted wafer on a standardized carrier 150 using equipment designed for a single standardized carrier size, which reduces the cost of equipment and materials for the eWLCSP 192. The eWLCSP 192 is manufactured in a larger amount using a standardized carrier 150, thereby simplifying the process and reducing unit cost.
圖7a-7i係相關於圖1及2a-2c來描繪一種形成一具有薄的側壁囊封之重組或嵌入式扇入WLCSP或eWLCSP的製程。圖7a係展示半導體晶圓200的一部分的一橫截面圖。半導體晶圓200係包含一種用於結構的 支撐之基底基板材料202,例如是矽、鍺、砷化鎵、磷化銦、或是矽碳化物。複數個半導體晶粒或構件204係形成在晶圓200上,其係藉由一如上所述的非主動的晶粒間的晶圓區域或切割道206加以分開。切割道206係提供切割區域以單粒化半導體晶圓200成為個別的半導體晶粒204。半導體晶粒204係具有邊緣或側壁208。在一實施例中,半導體晶圓200在直徑上是200-300mm。在另一實施例中,半導體晶圓200在直徑上是100-450mm。在單粒化半導體晶圓成為個別的半導體晶粒204之前,半導體晶圓200可具有任意的直徑。 Figures 7a-7i depict, in relation to Figures 1 and 2a-2c, a process for forming a reconstituted or recessed fan-in WLCSP or eWLCSP having a thin sidewall encapsulation. FIG. 7a is a cross-sectional view showing a portion of a semiconductor wafer 200. Semiconductor wafer 200 includes a structure for The supported base substrate material 202 is, for example, tantalum, niobium, gallium arsenide, indium phosphide, or tantalum carbide. A plurality of semiconductor dies or features 204 are formed on wafer 200 by a non-active inter-die wafer region or scriber 206 as described above. The scribe line 206 provides a dicing area to singulate the semiconductor wafer 200 into individual semiconductor dies 204. Semiconductor die 204 has edges or sidewalls 208. In one embodiment, the semiconductor wafer 200 is 200-300 mm in diameter. In another embodiment, the semiconductor wafer 200 is 100-450 mm in diameter. The semiconductor wafer 200 can have any diameter before the singulated semiconductor wafer becomes the individual semiconductor dies 204.
每個半導體晶粒204係具有一背面或非主動表面210以及包含類比或數位電路的主動表面212,該些類比或數位電路係被實施為形成在半導體晶粒204之內並且根據半導體晶粒204的電性設計及功能電性互連的主動元件、被動元件、導電層、以及介電層。例如,該電路可包含一或多個形成在主動表面212內的電晶體、二極體、以及其它電路元件,以實施例如是DSP、ASIC、記憶體、或是其它信號處理電路的類比電路或數位電路。半導體晶粒204亦可包含例如是電感器、電容器、以及電阻器的IPD,以用於RF信號處理。 Each semiconductor die 204 has a back or non-active surface 210 and an active surface 212 including analog or digital circuitry that is implemented to be formed within the semiconductor die 204 and in accordance with the semiconductor die 204. Electrical design and functional electrical interconnection of active components, passive components, conductive layers, and dielectric layers. For example, the circuit can include one or more transistors, diodes, and other circuit components formed in active surface 212 to implement analog circuits such as DSPs, ASICs, memories, or other signal processing circuits or Digital circuit. Semiconductor die 204 may also include IPDs such as inductors, capacitors, and resistors for RF signal processing.
一導電層214係利用PVD、CVD、電解的電鍍、無電的電鍍製程、或是其它適當的金屬沉積製程以形成在主動表面212之上。導電層214可以是一或多層的Al、Cu、Sn、Ni、Au、Ag、或是其它適當的導電材料。導電層214係運作為電連接至主動表面212上的電路的接觸墊。如同在圖7a中所示,導電層214可被形成為相隔半導體晶粒204的邊緣208一第一距離而被並排設置的接觸墊。或者是,導電層214可被形成為以多個列 偏置的接觸墊,使得一第一列的接觸墊係相隔半導體晶粒204的邊緣208一第一距離而被設置,並且一和該第一列交錯的第二列的接觸墊係相隔半導體晶粒204的邊緣208一第二距離而被設置。 A conductive layer 214 is formed over the active surface 212 using PVD, CVD, electrolytic plating, an electroless plating process, or other suitable metal deposition process. Conductive layer 214 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 214 operates as a contact pad that is electrically connected to circuitry on active surface 212. As shown in FIG. 7a, conductive layer 214 can be formed as contact pads disposed side by side at a first distance from edge 208 of semiconductor die 204. Alternatively, the conductive layer 214 can be formed in multiple columns The biased contact pads are such that a contact pad of a first column is disposed a first distance apart from an edge 208 of the semiconductor die 204, and a contact pad of the second column interleaved with the first column is separated by a semiconductor crystal The edge 208 of the grain 204 is disposed a second distance.
一第一絕緣或保護層216係利用PVD、CVD、印刷、旋轉塗覆、噴霧塗覆、燒結或是熱氧化以形成在半導體晶粒204及導電層214之上。絕緣層216係包含一或多層的SiO2、Si3N4、SiON、Ta2O5、Al2O3、HfO2、BCB、PI、PBO、聚合物、或是其它具有類似的結構及絕緣性質的介電材料。絕緣層216係覆蓋並且提供保護給主動表面212。絕緣層216係保形地被施加在導電層214以及半導體晶粒204的主動表面212之上,而且並不延伸到半導體晶粒204的邊緣208之上或是超過半導體晶粒204的一覆蓋區。半導體晶粒204的一相鄰半導體晶粒204的週邊區域並沒有絕緣層216。絕緣層216的一部分係藉由利用雷射218的LDA或是透過一圖案化的光阻層之一蝕刻製程來加以移除,以透過絕緣層216露出導電層214並且提供用於後續,的電互連。 A first insulating or protective layer 216 is formed over the semiconductor die 204 and the conductive layer 214 by PVD, CVD, printing, spin coating, spray coating, sintering, or thermal oxidation. The insulating layer 216 comprises one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, HfO2, BCB, PI, PBO, polymer, or other dielectric material having similar structural and insulating properties. The insulating layer 216 covers and provides protection to the active surface 212. The insulating layer 216 is conformally applied over the conductive layer 214 and the active surface 212 of the semiconductor die 204 and does not extend over the edge 208 of the semiconductor die 204 or beyond a footprint of the semiconductor die 204. . The peripheral region of an adjacent semiconductor die 204 of the semiconductor die 204 does not have an insulating layer 216. A portion of the insulating layer 216 is removed by an LDA using the laser 218 or through an etching process of a patterned photoresist layer to expose the conductive layer 214 through the insulating layer 216 and provide electrical for subsequent use. interconnection.
半導體晶圓200係進行電性測試及檢查,以作為一品質管制過程的部分。人工的視覺檢查以及自動化的光學系統係被用來在半導體晶圓200上執行檢查。軟體可被利用在半導體晶圓200的自動化的光學分析中。視覺的檢查方法可以利用例如是一掃描電子顯微鏡、高強度或紫外線光、或是金相顯微鏡的設備。半導體晶圓200係被檢查包含翹曲、厚度變化、表面微粒、不規則性、裂縫、脫層以及變色之結構的特徵。 The semiconductor wafer 200 is electrically tested and inspected as part of a quality control process. Manual visual inspection and automated optical systems are used to perform inspections on the semiconductor wafer 200. The software can be utilized in automated optical analysis of the semiconductor wafer 200. The visual inspection method can utilize, for example, a scanning electron microscope, high intensity or ultraviolet light, or a metallographic microscope. The semiconductor wafer 200 is characterized by a structure including warpage, thickness variation, surface fine particles, irregularities, cracks, delamination, and discoloration.
在半導體晶粒204內的主動及被動構件係在晶圓層級針對於電性效能及電路功能進行測試。每個半導體晶粒204係利用一探針或其 它測試裝置來針對功能及電性參數加以測試。一探針係被用來電性接觸到在每個半導體晶粒204上的節點或接觸墊214,並且提供電性刺激至該些接觸墊。半導體晶粒204係響應於該些電性刺激,其係被量測並且相較於一預期的響應以測試半導體晶粒204的功能。該些電性測試可包含電路功能、引線完整性、電阻率、連續性、可靠度、接面深度、ESD、RF效能、驅動電流、臨界電流、漏電流、以及該構件類型特有的操作參數。半導體晶圓200的檢查及電性測試係使得通過的半導體晶粒204被標明為用於一半導體封裝的KGD。 The active and passive components within the semiconductor die 204 are tested at the wafer level for electrical performance and circuit function. Each semiconductor die 204 utilizes a probe or its It tests the device to test for functional and electrical parameters. A probe system is used to electrically contact the nodes or contact pads 214 on each of the semiconductor dies 204 and provide electrical stimulation to the contact pads. The semiconductor die 204 is responsive to the electrical stimuli, which are measured and tested for the function of the semiconductor die 204 as compared to an expected response. These electrical tests may include circuit function, lead integrity, resistivity, continuity, reliability, junction depth, ESD, RF performance, drive current, critical current, leakage current, and operating parameters specific to the type of component. Inspection and electrical testing of the semiconductor wafer 200 is such that the passed semiconductor die 204 is labeled as KGD for a semiconductor package.
在圖7b中,半導體晶圓200係透過切割道206,利用一鋸刀或雷射切割工具220而被單粒化成為個別的半導體晶粒204。半導體晶圓200係沿著基底基板材料202在切割道區域206內的一部分,藉由沿著基底基板的側表面222切割而被單粒化,以容許基底基板材料202的一部分維持設置在半導體晶粒204的側壁208上。相鄰半導體晶粒204的基底基板材料202的厚度是至少1μm。換言之,介於側壁208以及基底基板的側表面222之間的距離D5是至少1μm。個別的半導體晶粒204可被檢查及電性測試,以用於單粒化後的KGD之識別。 In FIG. 7b, semiconductor wafer 200 is singulated into individual semiconductor dies 204 by a saw blade or laser cutting tool 220 through dicing streets 206. The semiconductor wafer 200 is singulated along a portion of the base substrate material 202 within the dicing region 206 by dicing along the side surface 222 of the base substrate to allow a portion of the base substrate material 202 to remain disposed in the semiconductor die. On the side wall 208 of the 204. The thickness of the base substrate material 202 of the adjacent semiconductor die 204 is at least 1 μm. In other words, the distance D5 between the side wall 208 and the side surface 222 of the base substrate is at least 1 μm. Individual semiconductor dies 204 can be inspected and electrically tested for identification of KGD after singulation.
圖7c係展示一包含例如是矽、聚合物、鈹氧化物、玻璃、或是其它適當的低成本的剛性材料之犧牲基底材料以用於結構的支撐之載體或臨時的基板230的一部分的一橫截面圖。一介面層或雙面帶232係形成在載體230之上,以作為一臨時的黏著接合膜、蝕刻停止層、或是熱釋放層。來自圖7b的半導體晶粒204係在主動表面212被定向朝向載體230下,例如利用一拾放操作而被安裝到載體230及介面層232。 Figure 7c shows a carrier comprising a sacrificial base material such as tantalum, polymer, tantalum oxide, glass, or other suitable low cost rigid material for supporting the structure or a portion of the temporary substrate 230. Cross-sectional view. A face layer or double-sided tape 232 is formed over the carrier 230 as a temporary adhesive bonding film, an etch stop layer, or a heat release layer. The semiconductor die 204 from FIG. 7b is oriented under the active surface 212 toward the carrier 230, such as by a pick and place operation, to the carrier 230 and the interface layer 232.
載體230可以是一具有用於多個半導體晶粒204的容量之圓形或矩形面板(大於300mm)。載體230可具有一表面積大於半導體晶圓200的表面積。一較大的載體係降低該半導體封裝的製造成本,因為更多的半導體晶粒可以在該較大的載體上加以處理,藉此降低每單位的成本。半導體封裝及處理設備係針對於被處理的晶圓或載體的尺寸加以設計及配置。 Carrier 230 can be a circular or rectangular panel (greater than 300 mm) having a capacity for a plurality of semiconductor dies 204. The carrier 230 can have a surface area greater than the surface area of the semiconductor wafer 200. A larger carrier reduces the manufacturing cost of the semiconductor package because more semiconductor dies can be processed on the larger carrier, thereby reducing the cost per unit. Semiconductor packaging and processing equipment is designed and configured for the size of the wafer or carrier being processed.
為了進一步降低製造成本,載體230的尺寸係與半導體晶粒204的尺寸或是半導體晶圓200的尺寸無關地加以選擇。換言之,載體230係具有固定或標準化的尺寸,其可以容納從一或多個半導體晶圓200被單粒化的各種尺寸的半導體晶粒204。在一實施例中,載體230是具有一330mm的直徑之圓形。在另一實施例中,載體230是具有一560mm的寬度以及600mm的長度之矩形。半導體晶粒204可具有10mm乘10mm的尺寸,其係被設置在標準化的載體230上。或者是,半導體晶粒204可具有20mm乘20mm的尺寸,其係被設置在相同的標準化的載體230上。於是,標準化的載體230可以處理任何尺寸的半導體晶粒204,此係容許後續的半導體處理設備能夠被標準化到一共同的載體,亦即與晶粒尺寸或是進入的晶圓尺寸無關的。半導體封裝設備可以針對於一標準的載體來加以設計及配置,其係利用一組共同的處理工具、設備、以及材料清單以處理來自任何進入的晶圓尺寸的任何的半導體晶粒尺寸。該共同或是標準化的載體230係藉由降低或消除對於根據晶粒尺寸或是進入的晶圓尺寸之專用的半導體生產線之需求,來降低製造成本及資本風險。藉由選擇一預設的載體尺寸以使用於來自所有的半導體晶圓之任何尺寸的半導體晶粒,一具有彈性的製造線可加以實施。 In order to further reduce the manufacturing cost, the size of the carrier 230 is selected regardless of the size of the semiconductor die 204 or the size of the semiconductor wafer 200. In other words, the carrier 230 has a fixed or standardized size that can accommodate semiconductor dies 204 of various sizes that are singulated from one or more semiconductor wafers 200. In one embodiment, the carrier 230 is circular with a diameter of 330 mm. In another embodiment, the carrier 230 is a rectangle having a width of 560 mm and a length of 600 mm. The semiconductor die 204 may have a size of 10 mm by 10 mm that is disposed on a standardized carrier 230. Alternatively, the semiconductor die 204 may have a size of 20 mm by 20 mm, which is disposed on the same standardized carrier 230. Thus, the standardized carrier 230 can process semiconductor dies 204 of any size, which allows subsequent semiconductor processing equipment to be standardized to a common carrier, i.e., independent of die size or incoming wafer size. The semiconductor package device can be designed and configured for a standard carrier that utilizes a common set of processing tools, equipment, and bill of materials to process any semiconductor die size from any incoming wafer size. The common or standardized carrier 230 reduces manufacturing costs and capital risk by reducing or eliminating the need for a dedicated semiconductor production line based on die size or incoming wafer size. A flexible manufacturing line can be implemented by selecting a predetermined carrier size for use with semiconductor dies of any size from all semiconductor wafers.
圖7d係展示重組晶圓240的平面圖,其中半導體晶粒204係被設置在載體230之上。載體230是一具有用於各種尺寸及數量的半導體晶粒的容量之標準化的形狀及尺寸,該些半導體晶粒係從各種尺寸的半導體晶圓而被單粒化的。在一實施例中,載體230在形狀上是矩形,並且具有一560mm的寬度W2以及一600mm的長度L2。被安裝到載體230的半導體晶粒204的數量可以大於從半導體晶圓200被單粒化的半導體晶粒204的數量。越大表面積的載體230係容納更多的半導體晶粒204並且降低製造成本,因為每一重組晶圓240係處理更多的半導體晶粒204。 7d shows a plan view of a reconstituted wafer 240 in which semiconductor die 204 is disposed over carrier 230. Carrier 230 is a standardized shape and size having a capacity for semiconductor dies of various sizes and numbers that are singulated from semiconductor wafers of various sizes. In one embodiment, the carrier 230 is rectangular in shape and has a width W2 of 560 mm and a length L2 of 600 mm. The number of semiconductor dies 204 mounted to the carrier 230 may be greater than the number of semiconductor dies 204 that are singulated from the semiconductor wafer 200. The larger surface area carrier 230 accommodates more semiconductor die 204 and reduces manufacturing costs because each reconstituted wafer 240 processes more semiconductor die 204.
標準化的載體230在尺寸上是固定的,並且可以容納多種尺寸的半導體晶粒。標準化的載體230的尺寸係與半導體晶粒或是半導體晶圓的尺寸無關的。相較於較大的半導體晶粒,更多小的半導體晶粒可以裝設在載體230之上。例如,載體230係在載體230的表面積之上容納5mm乘5mm晶粒的數量大於在載體230的表面積之上容納10mm乘10mm晶粒的數量。 The standardized carrier 230 is fixed in size and can accommodate semiconductor dies of various sizes. The size of the standardized carrier 230 is independent of the size of the semiconductor die or semiconductor wafer. More small semiconductor dies can be mounted on the carrier 230 than larger semiconductor dies. For example, the carrier 230 is accommodating a number of 5 mm by 5 mm grains above the surface area of the carrier 230 that is larger than the number of grains of 10 mm by 10 mm above the surface area of the carrier 230.
例如,具有10mm乘10mm的尺寸之半導體晶粒204係在一介於相鄰的半導體晶粒204之間的200μm的距離D6下被設置在載體230上。從半導體晶圓200被單粒化的半導體晶粒204的數量是大約600個半導體晶粒,其中半導體晶圓200係具有一300mm的直徑。可以裝設在載體230上的10mm乘10mm的半導體晶粒204的數量是超過3,000個半導體晶粒。或者是,具有5mm乘5mm的尺寸之半導體晶粒204係在一介於相鄰的半導體晶粒204之間的200μm的距離D6下被設置在載體230上。在半導體晶圓200具有一200mm的直徑之情形中,從半導體晶圓200被單粒化的半導體 晶粒204的數量是大約1,000個半導體晶粒。可以裝設在載體230上的5mm乘5mm的半導體晶粒204的數量是超過12,000個半導體晶粒。 For example, a semiconductor die 204 having a size of 10 mm by 10 mm is disposed on the carrier 230 at a distance D6 of 200 μm between adjacent semiconductor dies 204. The number of semiconductor dies 204 that are singulated from the semiconductor wafer 200 is about 600 semiconductor dies, wherein the semiconductor wafer 200 has a diameter of 300 mm. The number of 10 mm by 10 mm semiconductor dies 204 that can be mounted on the carrier 230 is more than 3,000 semiconductor dies. Alternatively, the semiconductor die 204 having a size of 5 mm by 5 mm is disposed on the carrier 230 at a distance D6 of 200 μm between adjacent semiconductor dies 204. In the case where the semiconductor wafer 200 has a diameter of 200 mm, the semiconductor singulated from the semiconductor wafer 200 The number of grains 204 is approximately 1,000 semiconductor grains. The number of 5 mm by 5 mm semiconductor dies 204 that can be mounted on the carrier 230 is more than 12,000 semiconductor dies.
載體230的尺寸並不隨著被處理的半導體晶粒的尺寸而變化。裝設在載體230上的半導體晶粒204的數量係隨著半導體晶粒204的尺寸以及介於半導體晶粒204之間的間隔或距離D6而改變。載體230的尺寸及形狀係維持固定的,並且與半導體晶粒204的尺寸或是半導體晶粒204被單粒化所來自的半導體晶圓200無關。載體230以及重組晶圓240係利用一組例如來自圖4h的處理設備160之共同的處理設備,以提供彈性來製造具有來自不同尺寸的半導體晶圓200之不同尺寸的半導體晶粒204的許多不同類型的半導體封裝。 The size of the carrier 230 does not vary with the size of the semiconductor die being processed. The number of semiconductor dies 204 mounted on the carrier 230 varies with the size of the semiconductor dies 204 and the spacing or distance D6 between the semiconductor dies 204. The size and shape of the carrier 230 remains fixed and is independent of the size of the semiconductor die 204 or the semiconductor wafer 200 from which the semiconductor die 204 is singulated. Carrier 230 and reconstituted wafer 240 utilize a common set of processing equipment, such as from processing device 160 of FIG. 4h, to provide resiliency to fabricate many different semiconductor die 204 having different sizes of semiconductor wafers 200 from different sizes. Type of semiconductor package.
在圖7e中,一種囊封體或模製化合物244係利用一膏印刷、轉移模製、液體囊封體模製、真空疊層、旋轉塗覆、或是其它適當的施用器而沉積在半導體晶粒204及載體230之上。囊封體244可以是聚合物複合材料,例如是具有填充物的環氧樹脂、具有填充物的環氧丙烯酸酯、或是具有適當的填充物的聚合物。囊封體244是非導電的,並且在環境上保護該半導體裝置免於外部的元素及污染物。在另一實施例中,囊封體244是一利用印刷、旋轉塗覆、噴霧塗覆、在加熱或是不在加熱下的真空或壓力疊層、或是其它適當的製程來加以沉積的絕緣或介電層,其係包含一或多層的光敏的低固化溫度介電阻劑、光敏的複合阻劑、積層化合物膜、具有填充物的絕緣膏、焊料遮罩阻劑膜、液體或顆粒模製化合物、聚醯亞胺、BCB、PBO、SiO2、Si3N4、SiON、Ta2O5、Al2O3、預浸料、或是其它具有類似的絕緣及結構的性質的介電材料。在一實施例中,囊封體244是一種 在小於200℃下固化的具有或是不具有絕緣填充物之低溫固化的光敏的介電聚合物。 In Figure 7e, an encapsulant or molding compound 244 is deposited on the semiconductor using a paste printing, transfer molding, liquid encapsulation molding, vacuum lamination, spin coating, or other suitable applicator. Above the die 204 and the carrier 230. The encapsulant 244 can be a polymer composite such as an epoxy with a filler, an epoxy acrylate with a filler, or a polymer with a suitable filler. The encapsulant 244 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants. In another embodiment, the encapsulant 244 is an insulation or deposited by printing, spin coating, spray coating, vacuum or pressure lamination under or without heating, or other suitable process. a dielectric layer comprising one or more layers of photosensitive low-curing temperature dielectric resistors, photosensitive composite resists, laminated compound films, insulating pastes with fillers, solder mask resist films, liquid or particulate molding compounds Polyimine, BCB, PBO, SiO2, Si3N4, SiON, Ta2O5, Al2O3, prepreg, or other dielectric materials having similar insulating and structural properties. In an embodiment, the encapsulant 244 is a A low temperature curing photosensitive dielectric polymer with or without an insulating filler cured at less than 200 °C.
尤其,囊封體244係沿著基底基板的側表面222而被設置。囊封體244亦覆蓋半導體晶粒204的背表面210。在一實施例中,囊封體244是不透明的,並且在色彩上是暗的或是黑色的。囊封體244可被利用於雷射標記重組晶圓240,以用於對準及單粒化。囊封體244可以在一後續的背面研磨步驟中被薄化。囊封體244亦可以沉積成使得囊封體的一背表面246係與半導體晶粒204的背表面210共平面的,因而並不覆蓋背表面210。囊封體244的一與背表面246相對的表面248係被設置在載體230以及介面層232之上,使得囊封體244的表面248可以是與半導體晶粒204的主動表面212共平面的。 In particular, the encapsulant 244 is disposed along the side surface 222 of the base substrate. The encapsulant 244 also covers the back surface 210 of the semiconductor die 204. In one embodiment, the encapsulant 244 is opaque and dark or black in color. The encapsulant 244 can be utilized with the laser-marked reconstituted wafer 240 for alignment and singulation. The encapsulant 244 can be thinned in a subsequent back grinding step. The encapsulant 244 can also be deposited such that a back surface 246 of the encapsulant is coplanar with the back surface 210 of the semiconductor die 204 and thus does not cover the back surface 210. A surface 248 of the encapsulant 244 opposite the back surface 246 is disposed over the carrier 230 and the interface layer 232 such that the surface 248 of the encapsulant 244 can be coplanar with the active surface 212 of the semiconductor die 204.
在圖7f中,載體230及介面層232係藉由化學蝕刻、機械式剝離、CMP、機械式研磨、熱烘烤、UV光、雷射掃描、或是濕式剝除來加以移除,以露出絕緣層216、導電層214、以及囊封體244的表面248。 In FIG. 7f, the carrier 230 and the interface layer 232 are removed by chemical etching, mechanical peeling, CMP, mechanical grinding, hot baking, UV light, laser scanning, or wet stripping, The insulating layer 216, the conductive layer 214, and the surface 248 of the encapsulant 244 are exposed.
一導電層250係利用一例如是印刷、PVD、CVD、濺鍍、電解的電鍍、以及無電的電鍍之圖案化及金屬沉積製程以形成在絕緣層216及導電層214之上。導電層250可以是一或多層的Al、Cu、Sn、Ti、Ni、Au、Ag、或是其它適當的導電材料。導電層250的一部分係沿著絕緣層216並且平行於半導體晶粒204的主動表面212水平地延伸,以橫向地重新分佈該電互連至導電層214。導電層250係運作為一用於半導體晶粒204的電性信號的RDL。導電層250係形成在半導體晶粒204的一覆蓋區之上,而且並不延伸超出半導體晶粒204的覆蓋區而到囊封體244之上。換言之,半導 體晶粒204的一相鄰半導體晶粒204的週邊區域並沒有導電層250。在一實施例中,導電層250係形成在半導體晶粒204的一覆蓋區之內,並且相隔半導體晶粒204的邊緣或側壁208一至少1μm的距離D7。導電層250的一部分係電連接至導電層214。導電層250的其它部分係根據半導體晶粒204的連接而為電性共通或是電性隔離的。 A conductive layer 250 is formed over the insulating layer 216 and the conductive layer 214 by a patterning and metal deposition process such as printing, PVD, CVD, sputtering, electrolytic plating, and electroless plating. Conductive layer 250 can be one or more layers of Al, Cu, Sn, Ti, Ni, Au, Ag, or other suitable electrically conductive material. A portion of conductive layer 250 extends horizontally along insulating layer 216 and parallel to active surface 212 of semiconductor die 204 to laterally redistribute the electrical interconnect to conductive layer 214. Conductive layer 250 operates as an RDL for the electrical signal of semiconductor die 204. The conductive layer 250 is formed over a footprint of the semiconductor die 204 and does not extend beyond the footprint of the semiconductor die 204 to over the encapsulant 244. In other words, semi-guide The peripheral region of an adjacent semiconductor die 204 of the bulk die 204 does not have a conductive layer 250. In one embodiment, the conductive layer 250 is formed within a footprint of the semiconductor die 204 and spaced apart from the edge or sidewall 208 of the semiconductor die 204 by a distance D7 of at least 1 μm. A portion of the conductive layer 250 is electrically connected to the conductive layer 214. Other portions of conductive layer 250 are electrically or electrically isolated depending on the connection of semiconductor die 204.
在圖7g中,一絕緣或保護層260係利用PVD、CVD、印刷、旋轉塗覆、噴霧塗覆、網版印刷或是疊層,以形成在絕緣層216及導電層250之上。絕緣層260可以是一或多層的SiO2、Si3N4、SiON、Ta2O5、Al2O3、或是其它具有類似絕緣及結構的性質之材料。在一實施例中,絕緣層260是一種在小於200℃下低溫固化之光敏的介電聚合物。在一實施例中,絕緣層260係形成在絕緣層216、半導體晶粒204之上,並且延伸超出半導體晶粒204的覆蓋區一1μm或是更大的距離D8,而到囊封體244的表面248之上。絕緣層260係覆蓋在半導體晶粒204以及囊封體244之間的介面以在處理期間保護該介面,並且改善該裝置的可靠度。絕緣層260的一部分係藉由一種利用一圖案化的光阻層之蝕刻製程或是藉由LDA來加以移除,以形成開口來露出導電層250。 In FIG. 7g, an insulating or protective layer 260 is formed over the insulating layer 216 and the conductive layer 250 by PVD, CVD, printing, spin coating, spray coating, screen printing, or lamination. The insulating layer 260 may be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other materials having similar insulating and structural properties. In one embodiment, the insulating layer 260 is a photosensitive dielectric polymer that cures at a low temperature of less than 200 °C. In one embodiment, the insulating layer 260 is formed over the insulating layer 216, the semiconductor die 204, and extends beyond the footprint of the semiconductor die 204 by a distance D8 of 1 μm or greater, to the encapsulant 244. Above surface 248. The insulating layer 260 covers the interface between the semiconductor die 204 and the encapsulant 244 to protect the interface during processing and to improve the reliability of the device. A portion of the insulating layer 260 is removed by an etching process using a patterned photoresist layer or by LDA to form an opening to expose the conductive layer 250.
一種導電的凸塊材料係利用一蒸鍍、電解的電鍍、無電的電鍍、球式滴落、或是網版印刷製程而沉積在導電層250之上。在一實施例中,該凸塊材料係利用一球式滴落模版來加以沉積,亦即不需要遮罩。該凸塊材料可以是具有一選配的助熔溶劑之Al、Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料、以及其之組合。例如,該凸塊材料可以是共晶Sn/Pb、高鉛的焊料、或是無鉛的焊料。該凸塊材料係利用一適當的附裝或接合製程而被接 合到導電層250。在一實施例中,該凸塊材料係藉由加熱該材料超過其熔點來加以回焊,以形成球或凸塊262。在某些應用中,凸塊262係被回焊第二次以改善至導電層250的電性接觸。凸塊262亦可以被壓縮接合或是熱壓接合到導電層250。凸塊262係代表一種可被形成在導電層250之上的互連結構類型。該互連結構亦可以使用接合線、導電膏、柱形凸塊、微凸塊、或是其它電性互連。雷射標記可以在凸塊的形成之前或之後、或是在載體230的移除之後加以執行。 A conductive bump material is deposited over the conductive layer 250 by a vapor deposition, electrolytic plating, electroless plating, ball dropping, or screen printing process. In one embodiment, the bump material is deposited using a ball drop stencil, i.e., no mask is required. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof with an optional fluxing solvent. For example, the bump material can be eutectic Sn/Pb, high lead solder, or lead free solder. The bump material is attached using a suitable attachment or bonding process The conductive layer 250 is bonded. In one embodiment, the bump material is reflowed by heating the material beyond its melting point to form a ball or bump 262. In some applications, bumps 262 are reflowed a second time to improve electrical contact to conductive layer 250. The bumps 262 can also be compression bonded or thermocompression bonded to the conductive layer 250. Bumps 262 represent a type of interconnect structure that can be formed over conductive layer 250. The interconnect structure can also use bond wires, conductive pastes, stud bumps, micro bumps, or other electrical interconnects. The laser mark can be performed before or after the formation of the bump or after the removal of the carrier 230.
絕緣層260、導電層250以及凸塊262係全體地構成一形成在半導體晶粒204及囊封體244之上的堆積的互連結構264。或者是,堆積的互連結構264係完全形成在半導體晶粒204的一覆蓋區之內。堆積的互連結構264可包含只有一例如是導電層250的RDL或導電層、以及一例如是絕緣層260的絕緣層。額外的絕緣層及RDL可以在形成凸塊262之前被形成在絕緣層260之上,以根據半導體晶粒204的設計及功能來提供橫跨該封裝之額外的垂直及水平的電性連接。 The insulating layer 260, the conductive layer 250, and the bumps 262 collectively form a stacked interconnect structure 264 formed over the semiconductor die 204 and the encapsulant 244. Alternatively, the stacked interconnect structures 264 are fully formed within a footprint of the semiconductor die 204. The stacked interconnect structure 264 can include only one RDL or conductive layer, such as conductive layer 250, and an insulating layer, such as insulating layer 260. Additional insulating layers and RDL may be formed over insulating layer 260 prior to forming bumps 262 to provide additional vertical and horizontal electrical connections across the package in accordance with the design and function of semiconductor die 204.
在圖7h中,半導體晶粒204係利用鋸刀或雷射切割工具270而被單粒化成為個別的eWLCSP 272。重組晶圓240係穿過囊封體244而被單粒化。在單粒化之後,囊封體244的一部分係維持沿著半導體晶粒204的側邊而被設置。eWLCSP 272係在單粒化之前或是之後進行電性測試。 In Figure 7h, semiconductor die 204 is singulated into individual eWLCSPs 272 using a saw blade or laser cutting tool 270. The reconstituted wafer 240 is singulated by the encapsulant 244. After singulation, a portion of the encapsulant 244 is maintained along the sides of the semiconductor die 204. The eWLCSP 272 was electrically tested before or after singulation.
在圖7i中,其係展示具有形成在半導體晶粒204的背表面210及側壁208之上的囊封體之eWLCSP 272。半導體晶粒204係透過導電層214及250而電連接至凸塊262,以用於透過互連結構264之外部的互連。互連結構264的導電層並不延伸超出半導體晶粒204的一覆蓋區,並且因此 形成一扇入封裝。絕緣層260係覆蓋在半導體晶粒204及囊封體244之間的介面,以在處理期間保護該介面並且改善該裝置的可靠度。在一選配的研磨操作之後,囊封體244係維持在半導體晶粒204的背表面210之上。囊封體244係維持在基底基板的側表面222之上,以用於半導體晶粒204的機械式保護並且保護免於由於曝光到來自光或是其它放射的光子所造成的劣化。因此,囊封體244係形成在半導體晶粒204的五個側邊之上,亦即在四個基底基板的側表面222之上以及在背表面210之上。在半導體晶粒204的背表面210之上的囊封體244係消除對於一背面保護層或是背面積層的需求,藉此降低eWLCSP 272的成本。 In FIG. 7i, an eWLCSP 272 having an encapsulant formed over the back surface 210 and sidewalls 208 of the semiconductor die 204 is shown. Semiconductor die 204 is electrically coupled to bumps 262 through conductive layers 214 and 250 for interconnection through the exterior of interconnect structure 264. The conductive layer of interconnect structure 264 does not extend beyond a footprint of semiconductor die 204, and thus Form a fan-in package. The insulating layer 260 covers the interface between the semiconductor die 204 and the encapsulant 244 to protect the interface during processing and to improve the reliability of the device. After an optional grinding operation, the encapsulant 244 is maintained over the back surface 210 of the semiconductor die 204. The encapsulant 244 is maintained over the side surface 222 of the base substrate for mechanical protection of the semiconductor die 204 and to protect against degradation due to exposure to photons from light or other radiation. Thus, the encapsulant 244 is formed over the five sides of the semiconductor die 204, that is, over the side surfaces 222 of the four base substrates and over the back surface 210. The encapsulant 244 over the back surface 210 of the semiconductor die 204 eliminates the need for a backside protective layer or backside layer, thereby reducing the cost of the eWLCSP 272.
用於eWLCSP 272的囊封體244在基底基板的側表面222之上的厚度係小於150μm。在一實施例中,eWLCSP 272係具有在長度上的4.595mm×在寬度上的4.025mm×在高度上的0.470mm之尺寸以及一用於凸塊262的0.4mm的間距,其中半導體晶粒204係具有一4.445mm的長度以及一3.875mm的寬度。在另一實施例中,囊封體244在基底基板的側表面222之上的厚度係75μm或是更小。eWLCSP 272係具有在長度上的6.075mm×在寬度上的6.075mm×在高度上的0.8mm之尺寸以及一用於凸塊262的0.5mm的間距,其中半導體晶粒204係具有在長度上的6.0mm×在寬度上的6.0mm×在高度上的0.470mm之尺寸。在又一實施例中,eWLCSP 272係具有在長度上的5.92mm×在寬度上的5.92mm×在高度上的0.765mm之尺寸以及一用於凸塊262的0.5mm的間距,其中半導體晶粒204係具有在長度上的5.75mm×在寬度上的5.75mm×在高度上的0.535mm之尺寸。在另一實施例中,囊封體244在基底基板的側表面222之上的厚度係25μm或是更小。在又一實施 例中,eWLCSP 272可被形成具有一14mm的長度以及一14mm的寬度。eWLCSP 272係藉由在標準化的載體230上形成一重組晶圓,利用針對於單一標準化的載體尺寸所設計的設備來加以製造,此係降低用於eWLCSP 272的設備及材料成本。eWLCSP 272係利用標準化的載體230以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 The thickness of the encapsulant 244 for the eWLCSP 272 over the side surface 222 of the base substrate is less than 150 μm. In one embodiment, the eWLCSP 272 has a size of 4.595 mm in length x 4.025 mm in width x 0.470 mm in height and a pitch of 0.4 mm for the bumps 262, wherein the semiconductor die 204 It has a length of 4.445 mm and a width of 3.875 mm. In another embodiment, the thickness of the encapsulant 244 above the side surface 222 of the base substrate is 75 [mu]m or less. The eWLCSP 272 has a size of 6.075 mm in length x 6.075 mm in width x 0.8 mm in height and a pitch of 0.5 mm for the bumps 262, wherein the semiconductor die 204 has a length. 6.0 mm × 6.0 mm in width × 0.470 mm in height. In yet another embodiment, the eWLCSP 272 has a size of 5.92 mm in length x 5.92 mm in width x 0.765 mm in height and a pitch of 0.5 mm for the bumps 262, wherein the semiconductor die The 204 series has a size of 5.75 mm in length × 5.75 mm in width × 0.535 mm in height. In another embodiment, the thickness of the encapsulant 244 above the side surface 222 of the base substrate is 25 [mu]m or less. In yet another implementation In an example, the eWLCSP 272 can be formed to have a length of 14 mm and a width of 14 mm. The eWLCSP 272 is fabricated by forming a reconstituted wafer on a standardized carrier 230 using equipment designed for a single standardized carrier size, which reduces equipment and material costs for the eWLCSP 272. The eWLCSP 272 is manufactured in a larger amount using a standardized carrier 230, thereby simplifying the process and reducing unit cost.
圖8係展示在單粒化之後具有在半導體晶粒204的側壁208之上的囊封體並且具有背面保護層276之eWLCSP 274。半導體晶粒204係透過導電層214及250而電連接至凸塊262,以用於透過互連結構264之外部的互連。互連結構264的導電層並不延伸超出半導體晶粒204的一覆蓋區,並且因此形成一扇入封裝。絕緣層260係覆蓋在半導體晶粒204及囊封體244之間的介面,以在處理期間保護該介面並且改善該裝置的可靠度。背面絕緣層或是背面保護層276係形成在半導體晶粒204的背表面210之上,以用於機械式保護並且保護避免由於曝光到來自光或是其它放射的光子所造成的劣化。背面保護層276係包含一或多層的光敏的低固化溫度的介電阻劑、光敏的複合阻劑、積層化合物膜、具有填充物或玻璃纖維織物的樹脂基質複合片、具有填充物及玻璃纖維織物的樹脂基質複合片、具有填充物的絕緣膏、焊料遮罩阻劑膜、液體模製化合物、顆粒模製化合物、聚醯亞胺、BCB、PBO、SiO2、Si3N4、SiON、Ta2O5、Al2O3、預浸料、或是其它具有類似的絕緣及結構的性質的介電材料。背面保護層276係利用印刷、旋轉塗覆、噴霧塗覆、在加熱或是不在加熱下的真空或壓力疊層、或是其它適當的製程來加以沉積。在一實施例中,背面保護層276是一種在小於200℃下固化的具有或是不具有絕緣填充物之低溫固化的光敏的介 電聚合物。背面保護層276係提供機械式保護給半導體晶粒204,並且保護以避開光。在一實施例中,背面保護層276係具有一範圍從大約5到150μm的厚度。或者是,背面保護層276是一被施加至重組晶圓240的一背面之例如為Cu箔的金屬層。背面保護層276係接觸半導體晶粒204的背表面210以從半導體晶粒204傳導熱,並且改善該裝置的熱效能。 FIG. 8 shows an eWLCSP 274 having an encapsulant over sidewall 208 of semiconductor die 204 after singulation and having a backside protective layer 276. Semiconductor die 204 is electrically coupled to bumps 262 through conductive layers 214 and 250 for interconnection through the exterior of interconnect structure 264. The conductive layer of interconnect structure 264 does not extend beyond a footprint of semiconductor die 204 and thus forms a fan-in package. The insulating layer 260 covers the interface between the semiconductor die 204 and the encapsulant 244 to protect the interface during processing and to improve the reliability of the device. A backside insulating layer or backside protective layer 276 is formed over the back surface 210 of the semiconductor die 204 for mechanical protection and protection against degradation due to exposure to photons from light or other radiation. The back protective layer 276 is one or more layers of photosensitive low curing temperature dielectric resistors, photosensitive composite resists, laminated compound films, resin matrix composite sheets with filler or fiberglass fabric, with fillers and fiberglass fabrics. Resin matrix composite sheet, insulating paste with filler, solder mask resist film, liquid molding compound, particle molding compound, polyimine, BCB, PBO, SiO2, Si3N4, SiON, Ta2O5, Al2O3, pre Dip, or other dielectric material with similar insulating and structural properties. The backside protective layer 276 is deposited by printing, spin coating, spray coating, vacuum or pressure lamination with or without heating, or other suitable process. In one embodiment, the backside protective layer 276 is a low temperature cured photosensitive medium that cures at less than 200 ° C with or without an insulating filler. Electrical polymer. Backside protective layer 276 provides mechanical protection to semiconductor die 204 and is protected from light. In an embodiment, the backside protective layer 276 has a thickness ranging from about 5 to 150 [mu]m. Alternatively, the backside protective layer 276 is a metal layer such as a Cu foil that is applied to a back side of the reconstituted wafer 240. The backside protective layer 276 contacts the back surface 210 of the semiconductor die 204 to conduct heat from the semiconductor die 204 and improve the thermal performance of the device.
囊封體244係覆蓋基底基板的側表面222以保護半導體晶粒204以避免由於曝光到來自光或是其它放射的光子所造成的劣化。用於eWLCSP 274的囊封體244在基底基板的側表面222上的厚度係小於150μm。在一實施例中,eWLCSP 274係具有在長度上的4.595mm×在寬度上的4.025mm×在高度上的0.470mm之尺寸以及一用於凸塊262的0.4mm的間距,其中半導體晶粒204係具有一4.445mm的長度以及一3.875mm的寬度。在另一實施例中,囊封體244在基底基板的側表面222之上的厚度係75μm或是更小。eWLCSP 274係具有在長度上的6.075mm×在寬度上的6.075mm×在高度上的0.8mm之尺寸以及一用於凸塊262的0.5mm的間距,其中半導體晶粒204係具有在長度上的6.0mm×在寬度上的6.0mm×在高度上的0.470mm之尺寸。在又一實施例中,eWLCSP 274係具有在長度上的5.92mm×在寬度上的5.92mm×在高度上的0.765mm之尺寸以及一用於凸塊262的0.5mm的間距,其中半導體晶粒204係具有在長度上的5.75mm×在寬度上的5.75mm×在高度上的0.535mm之尺寸。在另一實施例中,囊封體244在基底基板的側表面222之上的厚度係25μm或是更小。在又一實施例中,eWLCSP 274可被形成具有一14mm的長度以及一14mm的寬度。eWLCSP 274係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體230 上形成一重組晶圓來加以製造,此係降低用於eWLCSP 274的設備及材料成本。eWLCSP 274係利用標準化的載體230以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 The encapsulant 244 covers the side surface 222 of the base substrate to protect the semiconductor die 204 from degradation due to exposure to photons from light or other radiation. The thickness of the encapsulant 244 for the eWLCSP 274 on the side surface 222 of the base substrate is less than 150 μm. In one embodiment, the eWLCSP 274 has a size of 4.595 mm in length x 4.025 mm in width x 0.470 mm in height and a pitch of 0.4 mm for the bumps 262, wherein the semiconductor die 204 It has a length of 4.445 mm and a width of 3.875 mm. In another embodiment, the thickness of the encapsulant 244 above the side surface 222 of the base substrate is 75 [mu]m or less. The eWLCSP 274 has a size of 6.075 mm in length x 6.075 mm in width x 0.8 mm in height and a pitch of 0.5 mm for the bumps 262, wherein the semiconductor die 204 has a length. 6.0 mm × 6.0 mm in width × 0.470 mm in height. In yet another embodiment, the eWLCSP 274 has a size of 5.92 mm in length x 5.92 mm in width x 0.765 mm in height and a pitch of 0.5 mm for the bumps 262, wherein the semiconductor die The 204 series has a size of 5.75 mm in length × 5.75 mm in width × 0.535 mm in height. In another embodiment, the thickness of the encapsulant 244 above the side surface 222 of the base substrate is 25 [mu]m or less. In yet another embodiment, the eWLCSP 274 can be formed to have a length of 14 mm and a width of 14 mm. The eWLCSP 274 utilizes equipment designed for a single standardized carrier size, with a standardized carrier 230 A reconstituted wafer is formed to be fabricated, which reduces the cost of equipment and materials for the eWLCSP 274. The eWLCSP 274 is manufactured in a larger amount using a standardized carrier 230, thereby simplifying the process and reducing unit cost.
圖9a-9p係相關於圖1及2a-2c來描繪一種形成一重組或是嵌入式扇入WLCSP的製程。圖9a係展示一具有一種例如是矽、鍺、砷化鎵、磷化銦、或是矽碳化物的基底基板材料292以用於結構的支撐之半導體晶圓290。複數個藉由一如上所述的非主動的晶粒間的晶圓區域或切割道296分開的半導體晶粒或構件294係形成在晶圓290上。切割道296係提供切割區域以單粒化半導體晶圓290成為個別的半導體晶粒294。在單粒化半導體晶圓成為個別的半導體晶粒294之前,半導體晶圓290可具有任意的直徑。在一實施例中,半導體晶圓290在直徑上是200-300mm。在另一實施例中,半導體晶圓290在直徑上是100-450mm。半導體晶粒294可具有任意的尺寸,並且在一實施例中,半導體晶粒294係具有10mm乘10mm的尺寸。 Figures 9a-9p depict a process for forming a recombination or embedded fan-in WLCSP in relation to Figures 1 and 2a-2c. Figure 9a shows a semiconductor wafer 290 having a base substrate material 292 such as tantalum, niobium, gallium arsenide, indium phosphide, or tantalum carbide for structural support. A plurality of semiconductor dies or features 294 separated by a non-active inter-die wafer region or scribe 296 as described above are formed on wafer 290. The scribe line 296 provides a dicing area to singulate the semiconductor wafer 290 into individual semiconductor dies 294. The semiconductor wafer 290 can have any diameter before the single granulated semiconductor wafer becomes the individual semiconductor die 294. In one embodiment, the semiconductor wafer 290 is 200-300 mm in diameter. In another embodiment, the semiconductor wafer 290 is 100-450 mm in diameter. The semiconductor die 294 can have any size, and in one embodiment, the semiconductor die 294 has a size of 10 mm by 10 mm.
圖9a亦展示半導體晶圓300,其係類似於半導體晶圓290。半導體晶圓300係包含一種例如是矽、鍺、砷化鎵、磷化銦、或是矽碳化物之基底基板材料302,以用於結構的支撐。複數個藉由一如上所述的非主動的晶粒間的晶圓區域或切割道306分開的半導體晶粒或構件304係形成在晶圓300上。切割道306係提供切割區域以單粒化半導體晶圓300成為個別的半導體晶粒304。半導體晶圓300可具有和半導體晶圓290相同的直徑或是不同的直徑。在單粒化半導體晶圓成為個別的半導體晶粒304之前,半導體晶圓300可具有任意的直徑。在一實施例中,半導體晶圓300在直徑上是200-300mm。在另一實施例中,半導體晶圓300在直徑上是100-450mm。 半導體晶粒304可具有任意的尺寸,並且在一實施例中,半導體晶粒304係小於半導體晶粒294,並且具有5mm乘5mm的尺寸。 FIG. 9a also shows a semiconductor wafer 300 that is similar to semiconductor wafer 290. The semiconductor wafer 300 includes a base substrate material 302 such as tantalum, niobium, gallium arsenide, indium phosphide, or tantalum carbide for structural support. A plurality of semiconductor dies or features 304 separated by a non-active inter-die wafer region or scribe 306 as described above are formed on wafer 300. The scribe line 306 provides a dicing area to singulate the semiconductor wafer 300 into individual semiconductor dies 304. Semiconductor wafer 300 can have the same diameter or a different diameter than semiconductor wafer 290. The semiconductor wafer 300 can have any diameter before the single granulated semiconductor wafer becomes the individual semiconductor die 304. In one embodiment, the semiconductor wafer 300 is 200-300 mm in diameter. In another embodiment, the semiconductor wafer 300 is 100-450 mm in diameter. The semiconductor die 304 can have any size, and in one embodiment, the semiconductor die 304 is smaller than the semiconductor die 294 and has a size of 5 mm by 5 mm.
圖9b係展示半導體晶圓290的一部分的一橫截面圖。每個半導體晶粒294係具有一背面或非主動表面310以及包含類比或數位電路的主動表面312,該些類比或數位電路係被實施為形成在該晶粒內並且根據該晶粒的電性設計及功能電性互連的主動元件、被動元件、導電層、以及介電層。例如,該電路可包含一或多個形成在主動表面312內之電晶體、二極體、以及其它電路元件,以實施例如是DSP、ASIC、記憶體、或是其它信號處理電路的類比電路或數位電路。半導體晶粒294亦可包含例如是電感器、電容器、以及電阻器的IPD,以用於RF信號處理。 FIG. 9b is a cross-sectional view showing a portion of a semiconductor wafer 290. Each semiconductor die 294 has a back or non-active surface 310 and an active surface 312 comprising an analog or digital circuit implemented to be formed within the die and based on the electrical properties of the die Active components, passive components, conductive layers, and dielectric layers that are designed and functionally electrically interconnected. For example, the circuit can include one or more transistors, diodes, and other circuit components formed in active surface 312 to implement analog circuits such as DSPs, ASICs, memories, or other signal processing circuits or Digital circuit. Semiconductor die 294 may also include IPDs such as inductors, capacitors, and resistors for RF signal processing.
一導電層314係利用PVD、CVD、電解的電鍍、無電的電鍍製程、或是其它適當的金屬沉積製程以形成在主動表面312之上。導電層314可以是一或多層的Al、Cu、Sn、Ni、Au、Ag、或是其它適當的導電材料。導電層314係運作為電連接至在主動表面312上的電路之接觸墊。如同在圖9b中所示,導電層314可被形成為相隔半導體晶粒294的邊緣一第一距離而被並排設置的接觸墊。或者是,導電層314可被形成為以多個列偏置的接觸墊,使得一第一列的接觸墊係相隔半導體晶粒294的邊緣一第一距離而被設置,並且一和該第一列交錯的第二列的接觸墊係相隔半導體晶粒294的邊緣一第二距離而被設置。 A conductive layer 314 is formed over the active surface 312 by PVD, CVD, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 314 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 314 operates as a contact pad that is electrically connected to circuitry on active surface 312. As shown in FIG. 9b, the conductive layer 314 can be formed as a contact pad disposed side by side with a first distance apart from the edge of the semiconductor die 294. Alternatively, the conductive layer 314 can be formed as a contact pad biased in a plurality of columns such that a contact pad of a first column is disposed a first distance apart from an edge of the semiconductor die 294, and the first and the first The contact pads of the second column of staggered columns are disposed at a second distance from the edge of the semiconductor die 294.
一第一絕緣或保護層316係利用PVD、CVD、印刷、旋轉塗覆、噴霧塗覆、燒結或是熱氧化,以形成在半導體晶粒294及導電層314之上。絕緣層316係包含一或多層的SiO2、Si3N4、SiON、Ta2O5、Al2O3、 HfO2、BCB、PI、PBO、聚合物、或是其它具有類似的結構及絕緣性質的介電材料。在一實施例中,絕緣層316是一種在小於200℃下固化的具有或是不具有絕緣填充物之低溫固化的光敏的介電聚合物。絕緣層316係覆蓋並且提供保護給主動表面312。絕緣層316的一部分係藉由利用雷射318的LDA或是透過一圖案化的光阻層之一蝕刻製程來加以移除,以透過絕緣層316的表面320露出導電層314並且提供用於後續的電互連。 A first insulating or protective layer 316 is formed over the semiconductor die 294 and conductive layer 314 by PVD, CVD, printing, spin coating, spray coating, sintering, or thermal oxidation. The insulating layer 316 comprises one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, HfO2, BCB, PI, PBO, polymer, or other dielectric materials having similar structural and insulating properties. In one embodiment, the insulating layer 316 is a low temperature curing photosensitive dielectric polymer that cures at less than 200 ° C with or without an insulating filler. The insulating layer 316 covers and provides protection to the active surface 312. A portion of insulating layer 316 is removed by an LDA using laser 318 or through an etching process of a patterned photoresist layer to expose conductive layer 314 through surface 320 of insulating layer 316 and provide for subsequent use. Electrical interconnection.
半導體晶圓290係進行電性測試及檢查,以作為一品質管制過程的部分。人工的視覺檢查以及自動化的光學系統係被用來在半導體晶圓290上執行檢查。軟體可被利用在半導體晶圓290的自動化的光學分析中。視覺的檢查方法可以利用例如是一掃描電子顯微鏡、高強度或紫外線光、或是金相顯微鏡的設備。半導體晶圓290係被檢查包含翹曲、厚度變化、表面微粒、不規則性、裂縫、脫層以及變色之結構的特徵。 The semiconductor wafer 290 is electrically tested and inspected as part of a quality control process. Manual visual inspection and automated optical systems are used to perform inspections on semiconductor wafer 290. Software can be utilized in automated optical analysis of semiconductor wafer 290. The visual inspection method can utilize, for example, a scanning electron microscope, high intensity or ultraviolet light, or a metallographic microscope. The semiconductor wafer 290 is characterized by a structure including warpage, thickness variation, surface particles, irregularities, cracks, delamination, and discoloration.
在半導體晶粒294內的主動及被動構件係在晶圓層級針對於電性效能及電路功能進行測試。每個半導體晶粒294係利用一探針或其它測試裝置來針對功能及電性參數加以測試。一探針係被用來電性接觸到每個半導體晶粒294上的節點或接觸墊314,並且提供電性刺激至該些接觸墊。半導體晶粒294係響應於該些電性刺激,此係被量測且相較於一預期的響應,以測試該半導體晶粒的功能。該些電性測試可包含電路功能、引線完整性、電阻率、連續性、可靠度、接面深度、ESD、RF效能、驅動電流、臨界電流、漏電流、以及該構件類型特有的操作參數。半導體晶圓290的檢查及電性測試係使得通過的半導體晶粒294能夠被標明為用於一半導體封裝的KGD。 The active and passive components within the semiconductor die 294 are tested at the wafer level for electrical performance and circuit function. Each semiconductor die 294 is tested for functional and electrical parameters using a probe or other test device. A probe system is used to electrically contact the nodes or contact pads 314 on each of the semiconductor dies 294 and provide electrical stimulation to the contact pads. The semiconductor die 294 is responsive to the electrical stimuli, which are measured and compared to an expected response to test the function of the semiconductor die. These electrical tests may include circuit function, lead integrity, resistivity, continuity, reliability, junction depth, ESD, RF performance, drive current, critical current, leakage current, and operating parameters specific to the type of component. Inspection and electrical testing of the semiconductor wafer 290 enables the passed semiconductor die 294 to be labeled as KGD for a semiconductor package.
在圖9c中,半導體晶圓290係透過切割道296,利用一鋸刀或雷射切割工具322而被單粒化成為具有側壁或側表面324之個別的半導體晶粒294。類似地,來自圖9a的半導體晶圓300係透過切割道306,利用一鋸刀或雷射切割工具322而被單粒化成為個別的半導體晶粒304。個別的半導體晶粒294及304可被檢查及電性測試,以用於單粒化後的KGD之識別。 In FIG. 9c, semiconductor wafer 290 is singulated through dicing streets 296 by a saw blade or laser cutting tool 322 into individual semiconductor dies 294 having sidewalls or side surfaces 324. Similarly, the semiconductor wafer 300 from FIG. 9a is singulated into individual semiconductor dies 304 by a saw blade or laser cutting tool 322 through a dicing street 306. Individual semiconductor dies 294 and 304 can be inspected and electrically tested for identification of KGD after singulation.
圖9d係展示一載體或臨時的基板330的一部分的一橫截面圖,其係包含例如是矽、聚合物、鈹氧化物、玻璃、或是其它適當的低成本的剛性材料之犧牲基底材料以用於結構的支撐。一介面層或雙面帶332係形成在載體330之上,以作為一臨時的黏著接合膜、蝕刻停止層、或是熱釋放層。 Figure 9d is a cross-sectional view showing a portion of a carrier or temporary substrate 330 comprising a sacrificial substrate material such as tantalum, polymer, tantalum oxide, glass, or other suitable low cost rigid material. Used for structural support. A face layer or double-sided tape 332 is formed over the carrier 330 as a temporary adhesive bonding film, an etch stop layer, or a heat release layer.
載體330是一具有多個半導體晶粒的容量之標準化的載體,並且可以容納從具有任意直徑的半導體晶圓被單粒化的多種尺寸之半導體晶粒。例如,載體330可以是一具有一305mm或更大的直徑之圓形面板、或者可以是一具有一300mm或更大的長度以及一300mm或更大的寬度之矩形面板。載體330可具有一表面積大於半導體晶圓290或300的表面積。在一實施例中,半導體晶圓290係具有一300mm的直徑,並且包含具有一10mm的長度以及一10mm的寬度之半導體晶粒294。在一實施例中,半導體晶圓300係具有一200mm的直徑,並且包含具有一5mm的長度以及一5mm的寬度之半導體晶粒304。載體330可以容納10mm乘10mm的半導體晶粒294以及5mm乘5mm的半導體晶粒304。載體330所承載的5mm乘5mm的半導體晶粒304的數量係大於10mm乘10mm的半導體晶粒294的數量。在另一實施例中,半導體晶粒294及304係具有相同的尺寸。載體330 係在尺寸及形狀上標準化,以容納任何尺寸的半導體晶粒。一較大的載體係降低半導體封裝的製造成本,因為更多的半導體晶粒可以在該較大的載體上加以處理,藉此降低每單位的成本。 The carrier 330 is a standardized carrier having a capacity of a plurality of semiconductor dies, and can accommodate semiconductor dies of various sizes that are singulated from semiconductor wafers having arbitrary diameters. For example, the carrier 330 may be a circular panel having a diameter of 305 mm or more, or may be a rectangular panel having a length of 300 mm or more and a width of 300 mm or more. Carrier 330 can have a surface area greater than the surface area of semiconductor wafer 290 or 300. In one embodiment, semiconductor wafer 290 has a diameter of 300 mm and includes semiconductor die 294 having a length of 10 mm and a width of 10 mm. In one embodiment, semiconductor wafer 300 has a diameter of 200 mm and includes semiconductor die 304 having a length of 5 mm and a width of 5 mm. The carrier 330 can accommodate 10 mm by 10 mm of semiconductor die 294 and 5 mm by 5 mm of semiconductor die 304. The number of 5 mm by 5 mm semiconductor dies 304 carried by the carrier 330 is greater than the number of semiconductor dies 294 of 10 mm by 10 mm. In another embodiment, semiconductor dies 294 and 304 have the same dimensions. Carrier 330 It is standardized in size and shape to accommodate semiconductor dies of any size. A larger carrier reduces the manufacturing cost of the semiconductor package because more semiconductor dies can be processed on the larger carrier, thereby reducing the cost per unit.
半導體封裝及處理設備係針對於被處理的半導體晶粒及載體的尺寸加以設計及配置。為了進一步降低製造成本,載體330的尺寸係與半導體晶粒294或304的尺寸無關而且與半導體晶圓290及300的尺寸無關地加以選擇。換言之,載體330係具有一固定或標準化的尺寸,其可以容納從一或多個半導體晶圓290或300被單粒化的各種尺寸的半導體晶粒294及304。在一實施例中,載體330係具有一330mm的直徑之圓形。在另一實施例中,載體330是具有一560mm的寬度以及600mm的長度之矩形。 Semiconductor packaging and processing equipment is designed and configured for the size of the semiconductor die and carrier being processed. To further reduce manufacturing costs, the size of the carrier 330 is independent of the size of the semiconductor die 294 or 304 and is selected independently of the size of the semiconductor wafers 290 and 300. In other words, carrier 330 has a fixed or standardized size that can accommodate semiconductor dies 294 and 304 of various sizes that are singulated from one or more semiconductor wafers 290 or 300. In one embodiment, the carrier 330 has a circular shape with a diameter of 330 mm. In another embodiment, the carrier 330 is a rectangle having a width of 560 mm and a length of 600 mm.
該標準化的載體(載體330)的大小及尺寸係在該處理設備的設計期間加以選擇,以便於發展出一對於半導體裝置的所有後端半導體製造而言為一致的製造線。載體330係在尺寸上維持固定的,而不論待被製造的半導體封裝的尺寸及類型為何。例如,半導體晶粒294可具有10mm乘10mm的尺寸,並且被設置在標準化的載體330上。或者是,半導體晶粒294可具有20mm乘20mm的尺寸,並且被設置在相同的標準化的載體330上。於是,標準化的載體330可以處理任何尺寸的半導體晶粒294及304,此係容許後續的半導體處理設備能夠被標準化到一共同的載體,亦即與晶粒尺寸或是進入的晶圓尺寸無關。半導體封裝設備可以針對於一標準的載體來加以設計及配置,其係利用一組共同的處理工具、設備、以及材料清單以處理來自任何進入的晶圓尺寸的任何的半導體晶粒尺寸。該共同或是標準化的載體330係藉由降低或消除對於根據晶粒尺寸或是進入的晶圓尺寸之 專用的半導體生產線之需求,來降低製造成本及資本風險。藉由選擇一預設的載體尺寸以使用於來自所有的半導體晶圓之任何尺寸的半導體晶粒,一具有彈性的製造線可加以實施。 The size and size of the standardized carrier (carrier 330) is selected during the design of the processing device to facilitate the development of a manufacturing line that is uniform for all back-end semiconductor fabrication of semiconductor devices. The carrier 330 remains fixed in size regardless of the size and type of semiconductor package to be fabricated. For example, the semiconductor die 294 can have a size of 10 mm by 10 mm and is disposed on a standardized carrier 330. Alternatively, the semiconductor die 294 may have a size of 20 mm by 20 mm and be disposed on the same standardized carrier 330. Thus, the standardized carrier 330 can process semiconductor dies 294 and 304 of any size, which allows subsequent semiconductor processing devices to be standardized to a common carrier, i.e., regardless of die size or incoming wafer size. The semiconductor package device can be designed and configured for a standard carrier that utilizes a common set of processing tools, equipment, and bill of materials to process any semiconductor die size from any incoming wafer size. The common or standardized carrier 330 is reduced or eliminated for the size of the wafer or the size of the incoming wafer. Demand for dedicated semiconductor production lines to reduce manufacturing costs and capital risks. A flexible manufacturing line can be implemented by selecting a predetermined carrier size for use with semiconductor dies of any size from all semiconductor wafers.
在圖9e中,來自圖9c的半導體晶粒294係在絕緣層316被定向朝向載體330下,利用例如一拾放操作而被安裝到載體330以及介面層332。半導體晶粒294係被安裝到載體330的介面層332,以形成重組或是重新配置的晶圓336。在一實施例中,絕緣層316係被嵌入在介面層332之內。例如,半導體晶粒294的主動表面312可以是與介面層332的表面334共平面的。在另一實施例中,絕緣層316係被安裝在介面層332之上,使得半導體晶粒294的主動表面312係相對介面層332加以偏置。 In Figure 9e, the semiconductor die 294 from Figure 9c is oriented with the insulating layer 316 oriented toward the carrier 330, mounted to the carrier 330 and the interface layer 332 using, for example, a pick and place operation. Semiconductor die 294 is mounted to interface layer 332 of carrier 330 to form a reconstituted or reconfigured wafer 336. In an embodiment, insulating layer 316 is embedded within interface layer 332. For example, the active surface 312 of the semiconductor die 294 can be coplanar with the surface 334 of the interface layer 332. In another embodiment, insulating layer 316 is mounted over interface layer 332 such that active surface 312 of semiconductor die 294 is biased relative to interface layer 332.
重組晶圓336可被處理成為許多類型的半導體封裝,其係包含扇入WLCSP、重組或eWLCSP、扇出WLCSP、覆晶封裝、例如是PoP的3D封裝、或是其它半導體封裝。重組晶圓336係根據所產生的半導體封裝的規格來加以配置。在一實施例中,半導體晶粒294係以一種高密度的配置,亦即相隔300μm或是更小而被設置在載體330上,以用於處理扇入裝置。以一在半導體晶粒294之間的間隙或距離D9分開的半導體晶粒294係被設置到載體330之上。介於半導體晶粒294之間的距離D9係根據待被處理的半導體封裝的設計及規格來加以選擇。在一實施例中,介於半導體晶粒294之間的距離D9係50μm或是更小。在另一實施例中,介於半導體晶粒294之間的距離D9是100μm或是更小。介於在載體330上的半導體晶粒294之間的距離D9係針對於以最低的單位成本來製造該些半導體封裝而被最佳化。 The reconstituted wafer 336 can be processed into many types of semiconductor packages, including fan-in WLCSP, recombination or eWLCSP, fan-out WLCSP, flip chip package, 3D package such as PoP, or other semiconductor packages. The reconstituted wafer 336 is configured according to the specifications of the resulting semiconductor package. In one embodiment, the semiconductor die 294 is disposed on the carrier 330 in a high density configuration, i.e., 300 [mu]m or less, for processing the fan-in device. A semiconductor die 294 separated by a gap or distance D9 between the semiconductor dies 294 is disposed over the carrier 330. The distance D9 between the semiconductor dies 294 is selected according to the design and specifications of the semiconductor package to be processed. In one embodiment, the distance D9 between the semiconductor dies 294 is 50 [mu]m or less. In another embodiment, the distance D9 between the semiconductor dies 294 is 100 μm or less. The distance D9 between the semiconductor dies 294 on the carrier 330 is optimized for manufacturing the semiconductor packages at the lowest unit cost.
圖9f係展示重組晶圓336的平面圖,其中半導體晶粒294係被安裝到載體330、或是設置在載體330之上。載體330是一標準化的形狀及尺寸,並且因此構成一標準化的載體。載體330係具有用於各種尺寸及數量的半導體晶粒的容量,該些半導體晶粒係從各種尺寸的半導體晶圓而被單粒化的。在一實施例中,載體330在形狀上是矩形,並且具有一560mm的寬度W3以及一600mm的長度L3。在另一實施例中,載體330在形狀上是矩形,並且具有一330mm的寬度W3以及一330mm的長度L3。在另一實施例中,載體330在形狀上是圓形,並且具有一330mm的直徑。 9f shows a plan view of a reconstituted wafer 336 in which semiconductor die 294 is mounted to carrier 330 or over carrier 330. The carrier 330 is of a standardized shape and size and thus constitutes a standardized carrier. Carrier 330 has a capacity for semiconductor dies of various sizes and numbers that are singulated from semiconductor wafers of various sizes. In an embodiment, the carrier 330 is rectangular in shape and has a width W3 of 560 mm and a length L3 of 600 mm. In another embodiment, the carrier 330 is rectangular in shape and has a width W3 of 330 mm and a length L3 of 330 mm. In another embodiment, the carrier 330 is circular in shape and has a diameter of 330 mm.
設置在載體330之上的半導體晶粒294的數量係依據半導體晶粒294的尺寸以及介於在重組晶圓336的結構內的半導體晶粒294之間的距離D9而定。安裝到載體330的半導體晶粒294的數量可以是大於、小於、或是等於從半導體晶圓290被單粒化的半導體晶粒294的數量。越大表面積的載體330係容納更多的半導體晶粒294並且降低製造成本,因為每一重組晶圓336係處理更多的半導體晶粒294。在一例子中,半導體晶圓290係具有一300mm的直徑,其中一數量約600個個別的10mm乘10mm的半導體晶粒294係形成在半導體晶圓290上。半導體晶粒294係從一或多個半導體晶圓290被單粒化。載體330例如是被製備成具有一560mm的標準的寬度W3以及一600mm的標準的長度L3。具有一560mm的寬度W3之載體330係被製作尺寸以在橫跨載體330的寬度W3上容納一數量約54個具有10mm乘10mm的尺寸並且間隔開一200μm的距離D9的半導體晶粒294。具有一600mm的長度L3之載體330係被製作尺寸以在橫跨載體330的長度L3上容納一數量約58個具有10mm乘10mm的尺寸且間隔開一200μm的距離D9 的半導體晶粒294。於是,載體330的寬度W3乘上長度L3的表面積係容納一數量約3,000個具有10mm乘10mm的尺寸以及一介於半導體晶粒294之間的200μm的間隙或距離D9之半導體晶粒294。半導體晶粒294可以在介於半導體晶粒294之間的一小於200μm的間隙或距離D9下被置放在載體330上,以增加半導體晶粒294在載體330上的密度並且進一步降低處理半導體晶粒294的成本。 The number of semiconductor dies 294 disposed over the carrier 330 depends on the size of the semiconductor die 294 and the distance D9 between the semiconductor dies 294 within the structure of the reconstituted wafer 336. The number of semiconductor dies 294 mounted to the carrier 330 can be greater than, less than, or equal to the number of semiconductor dies 294 that are singulated from the semiconductor wafer 290. The larger surface area carrier 330 accommodates more semiconductor grains 294 and reduces manufacturing costs because each reconstituted wafer 336 processes more semiconductor grains 294. In one example, semiconductor wafer 290 has a diameter of 300 mm, and an amount of about 600 individual 10 mm by 10 mm semiconductor dies 294 are formed on semiconductor wafer 290. Semiconductor die 294 is singulated from one or more semiconductor wafers 290. The carrier 330 is, for example, a length L3 which is prepared to have a standard width W3 of 560 mm and a standard of 600 mm. The carrier 330 having a width W3 of 560 mm is sized to accommodate a number of semiconductor dies 294 having a size of 10 mm by 10 mm and a distance D9 of 200 μm spaced across the width W3 of the carrier 330. The carrier 330 having a length L3 of 600 mm is sized to accommodate a number of approximately 58 sizes having a size of 10 mm by 10 mm and spaced apart by a distance of 200 μm across the length L3 of the carrier 330. Semiconductor die 294. Thus, the width W3 of the carrier 330 multiplied by the length L3 of the surface area accommodates an amount of about 3,000 semiconductor dies 294 having a size of 10 mm by 10 mm and a gap of 200 μm or distance D9 between the semiconductor dies 294. Semiconductor dies 294 may be placed on carrier 330 at a gap of less than 200 [mu]m or distance D9 between semiconductor dies 294 to increase the density of semiconductor dies 294 on carrier 330 and further reduce processing of semiconductor crystals. The cost of the grain 294.
自動化的拾放設備係被用來根據半導體晶粒294的數量及尺寸並且根據載體330的尺寸以製備重組晶圓336。例如,半導體晶粒294係被選擇成具有10mm乘10mm的尺寸。載體330係具有例如是560mm寬度W3以及600mm長度L3之標準的尺寸。自動化的設備係利用半導體晶粒294及載體330的尺寸而被程式化,以便於處理重組晶圓336。在單粒化半導體晶圓290之後,一第一半導體晶粒294係被該自動化的拾放設備加以選擇。一第一半導體晶粒294係在載體330上的一藉由該可程式化的自動化拾放設備所決定的位置中被安裝到載體330。一第二半導體晶粒294係被該自動化的拾放設備加以選擇、置放在載體330上、並且設置在載體330上的一第一列中。介於相鄰的半導體晶粒294之間的距離D9係被程式化到該自動化的拾放設備中,並且根據待被處理的半導體封裝的設計及規格來加以選擇。在一實施例中,在載體330上的介於相鄰的半導體晶粒294之間的間隙或距離D9是200μm。一第三半導體晶粒294係被該自動化的拾放設備加以選擇、置放在載體330上、並且相隔一相鄰的半導體晶粒294一200μm的距離D9而被設置在載體330上的該第一列中。該拾放操作係被重複,直到一第一列的大約54個半導體晶粒294係橫跨載體330的寬度W3被設置為 止。 An automated pick and place apparatus is used to prepare the reconstituted wafer 336 according to the number and size of the semiconductor dies 294 and according to the size of the carrier 330. For example, the semiconductor die 294 is selected to have a size of 10 mm by 10 mm. The carrier 330 has a size of, for example, a standard of 560 mm width W3 and 600 mm length L3. The automated equipment is programmed with the dimensions of semiconductor die 294 and carrier 330 to facilitate processing of reconstituted wafer 336. After singulating the semiconductor wafer 290, a first semiconductor die 294 is selected by the automated pick and place device. A first semiconductor die 294 is mounted to the carrier 330 in a position determined by the programmable automated pick and place device on the carrier 330. A second semiconductor die 294 is selected by the automated pick and place device, placed on the carrier 330, and disposed in a first column on the carrier 330. The distance D9 between adjacent semiconductor dies 294 is programmed into the automated pick and place apparatus and is selected according to the design and specifications of the semiconductor package to be processed. In one embodiment, the gap or distance D9 between adjacent semiconductor dies 294 on carrier 330 is 200 [mu]m. A third semiconductor die 294 is selected by the automated pick and place device, placed on the carrier 330, and disposed on the carrier 330 at a distance D9 of 200 μm apart from an adjacent semiconductor die 294. In a column. The pick and place operation is repeated until a first column of approximately 54 semiconductor dies 294 is across the width W3 of the carrier 330 is set to stop.
另一半導體晶粒294係被該自動化的拾放設備加以選擇、置放在載體330上、並且設置在載體330上的一相鄰該第一列的第二列中。介於相鄰列的半導體晶粒294之間的距離D9係被預先選擇並且程式化到該自動化的拾放設備中。在一實施例中,介於一第一列的半導體晶粒294以及一第二列的半導體晶粒294之間的距離D9是200μm。該拾放操作係被重複,直到大約58列的半導體晶粒294係橫跨載體330的長度L3被設置為止。該標準化的載體(具有560mm的寬度W3以及600mm的長度L3之載體330)係容納大約54行以及58列的10mm乘10mm的半導體晶粒294,以用於總數約3,000個半導體晶粒294設置在載體330上。該拾放操作係被重複,直到載體330係部分或是完全填入半導體晶粒294為止。在一例如是載體330之標準化的載體下,該自動化的拾放設備可以在載體330上安裝任何尺寸的半導體晶粒294,以形成重組晶圓336。重組晶圓336接著可以利用針對於載體330而被標準化的後端處理設備來加以處理。 Another semiconductor die 294 is selected by the automated pick and place device, placed on carrier 330, and disposed in a second column of carrier 330 adjacent to the first column. The distance D9 between the adjacent rows of semiconductor dies 294 is pre-selected and programmed into the automated pick-and-place device. In one embodiment, the distance D9 between the semiconductor die 294 of a first column and the semiconductor die 294 of a second column is 200 μm. The pick and place operation is repeated until approximately 58 columns of semiconductor dies 294 are disposed across the length L3 of the carrier 330. The standardized carrier (having a width W3 of 560 mm and a carrier 330 of length L3 of 600 mm) accommodates approximately 54 rows and 58 columns of 10 mm by 10 mm semiconductor die 294 for a total of approximately 3,000 semiconductor die 294 disposed at On the carrier 330. The pick and place operation is repeated until the carrier 330 is partially or completely filled with the semiconductor die 294. The automated pick and place apparatus can mount semiconductor dies of any size on the carrier 330 to form a reconstituted wafer 336 under a standardized carrier such as carrier 330. The reconstituted wafer 336 can then be processed using a backend processing device that is standardized for the carrier 330.
圖9g係展示重組晶圓338的平面圖,其中半導體晶粒304係被安裝到載體330、或是設置在載體330之上。如同被用來處理重組晶圓336,相同的標準化的載體330、或是一具有和載體330相同的尺寸之標準化的載體係被用來處理重組晶圓338。在一重組晶圓上的任何構形的半導體晶粒都可以藉由載體330來加以支承。設置在載體330之上的半導體晶粒304的數量係依據半導體晶粒304的尺寸以及在重組晶圓338的結構內的介於半導體晶粒304之間的距離D10而定。安裝到載體330的半導體晶粒304的數量可以是大於、小於、或是等於從半導體晶圓300被單粒化的半導體 晶粒304的數量。越大表面積的載體330係容納更多的半導體晶粒304並且降低製造成本,因為每一重組晶圓338係處理更多的半導體晶粒304。 Figure 9g shows a plan view of a reconstituted wafer 338 in which the semiconductor die 304 is mounted to the carrier 330 or over the carrier 330. As with the reconstituted wafer 336, the same standardized carrier 330, or a standardized carrier having the same dimensions as the carrier 330, is used to process the reconstituted wafer 338. Any configuration of semiconductor dies on a reconstituted wafer can be supported by carrier 330. The number of semiconductor dies 304 disposed over the carrier 330 depends on the size of the semiconductor dies 304 and the distance D10 between the semiconductor dies 304 within the structure of the reconstituted wafer 338. The number of semiconductor dies 304 mounted to the carrier 330 may be greater than, less than, or equal to the semiconductor singulated from the semiconductor wafer 300. The number of grains 304. The larger surface area carrier 330 accommodates more semiconductor die 304 and reduces manufacturing costs because each reconstituted wafer 338 processes more semiconductor die 304.
在一例子中,半導體晶圓300係具有一200mm的直徑,其中一數量約1,000個個別的5mm乘5mm的半導體晶粒304係形成在半導體晶圓300上。半導體晶粒304係從一或多個半導體晶圓300而被單粒化。載體330例如是被製備成具有一560mm的標準的寬度W3以及一600mm的標準的長度L3。具有一560mm的寬度W3之載體330係被製作尺寸以容納一數量約107個橫跨載體330的寬度W3的具有5mm乘5mm的尺寸且間隔開一200μm的距離D10之半導體晶粒304。具有一600mm的長度L3之載體330係被製作尺寸以容納一數量約115個橫跨載體330的長度L3的具有5mm乘5mm的尺寸且間隔開一200μm的距離D10之半導體晶粒304。於是,載體330的寬度W3乘上長度L3的表面積係容納大約12,000個具有5mm乘5mm的尺寸且間隔開一200μm的距離D10之半導體晶粒304。半導體晶粒304可以在介於半導體晶粒304之間的一小於200μm的間隙或距離D10下被置放在載體330上,以增加半導體晶粒304在載體330上的密度並且進一步降低處理半導體晶粒304的成本。 In one example, semiconductor wafer 300 has a diameter of 200 mm, and an amount of about 1,000 individual 5 mm by 5 mm semiconductor dies 304 are formed on semiconductor wafer 300. Semiconductor die 304 is singulated from one or more semiconductor wafers 300. The carrier 330 is, for example, a length L3 which is prepared to have a standard width W3 of 560 mm and a standard of 600 mm. The carrier 330 having a width W3 of 560 mm is sized to accommodate a number of about 70 semiconductor dies 304 having a width D3 across the width of the carrier 330 having a size of 5 mm by 5 mm and a distance D10 spaced apart by 200 μm. The carrier 330 having a length L3 of 600 mm is sized to accommodate a number of about 115 semiconductor dies 304 having a size L5 of 5 mm by 5 mm across the length L3 of the carrier 330 and spaced apart by a distance D10 of 200 μm. Thus, the width W3 of the carrier 330 multiplied by the length L3 of the surface area accommodates approximately 12,000 semiconductor dies 304 having a size of 5 mm by 5 mm and spaced apart by a distance D10 of 200 μm. The semiconductor die 304 can be placed on the carrier 330 at a gap of less than 200 μm or a distance D10 between the semiconductor dies 304 to increase the density of the semiconductor die 304 on the carrier 330 and further reduce processing of the semiconductor crystal. The cost of the pellets 304.
自動化的拾放設備係被用來根據半導體晶粒304的數量及尺寸並且根據載體330的尺寸以製備重組晶圓338。例如,半導體晶粒304係被選擇成具有5mm乘5mm的尺寸。載體330係具有例如是560mm的寬度W3以及600mm的長度L3之標準的尺寸。自動化的設備係利用半導體晶粒304及載體330的尺寸而被程式化,以便於處理重組晶圓338。在單粒化半導體晶圓300之後,一第一半導體晶粒304係被該自動化的拾放設備加以 選擇。一第一半導體晶粒304係在載體330上的一藉由該可程式化的自動化拾放設備所決定的位置中被安裝到載體330。一第二半導體晶粒304係被該自動化的拾放設備加以選擇、置放在載體330上、並且相隔第一半導體晶粒304一距離D10下被設置在載體330上的一第一列中。介於相鄰的半導體晶粒304之間的距離D10係被程式化到該自動化的拾放設備中,並且根據待被處理的半導體封裝的設計及規格來加以選擇。在一實施例中,在載體330上的相鄰的半導體晶粒304之間的間隙或距離D10是200μm。一第三半導體晶粒304係被該自動化的拾放設備加以選擇、置放在載體330上、並且設置在載體330上的該第一列中。該拾放操作係被重複,直到一列的大約107個半導體晶粒304係橫跨載體330的寬度W3被設置為止。 An automated pick and place apparatus is used to prepare the reconstituted wafer 338 based on the number and size of the semiconductor dies 304 and according to the dimensions of the carrier 330. For example, the semiconductor die 304 is selected to have a size of 5 mm by 5 mm. The carrier 330 has a size of, for example, a width W3 of 560 mm and a length L3 of 600 mm. The automated equipment is programmed with the dimensions of semiconductor die 304 and carrier 330 to facilitate processing of reconstituted wafer 338. After singulating the semiconductor wafer 300, a first semiconductor die 304 is applied by the automated pick and place device. select. A first semiconductor die 304 is mounted to the carrier 330 in a position on the carrier 330 that is determined by the programmable automated pick-and-place device. A second semiconductor die 304 is selected by the automated pick and place device, placed on carrier 330, and disposed in a first column on carrier 330 at a distance D10 from first semiconductor die 304. The distance D10 between adjacent semiconductor dies 304 is programmed into the automated pick and place apparatus and is selected according to the design and specifications of the semiconductor package to be processed. In one embodiment, the gap or distance D10 between adjacent semiconductor dies 304 on the carrier 330 is 200 [mu]m. A third semiconductor die 304 is selected by the automated pick and place device, placed on the carrier 330, and disposed in the first column on the carrier 330. The pick and place operation is repeated until approximately 107 semiconductor dies 304 of a column are disposed across the width W3 of the carrier 330.
另一半導體晶粒304係被該自動化的拾放設備加以選擇、置放在載體330上、並且設置在載體330上的一相鄰該第一列的第二列中。介於相鄰列的半導體晶粒304之間的距離D10係被預先選擇並且程式化到該自動化的拾放設備中。在一實施例中,介於一第一列的半導體晶粒304以及一第二列的半導體晶粒304之間的距離D10是200μm。該拾放操作係被重複,直到大約115列的半導體晶粒304係橫跨載體330的長度L3被設置為止。該標準化的載體(具有560mm的寬度W3以及600mm的長度L3之載體330)係容納大約107行以及115列的5mm乘5mm的半導體晶粒304,以用於總數約12,000個半導體晶粒304設置在載體330上。該拾放操作係被重複,直到載體330係部分或是完全填入半導體晶粒304為止。在一例如是載體330之標準化的載體下,該自動化的拾放設備可以在載體330上安裝任何尺寸的半導體晶粒,以形成重組晶圓338。重組晶圓338可以利用和被用 來處理重組晶圓336相同的載體330以及相同的後端處理設備來加以處理。 Another semiconductor die 304 is selected by the automated pick and place device, placed on carrier 330, and disposed in a second column of carrier 330 adjacent to the first column. The distance D10 between adjacent rows of semiconductor dies 304 is preselected and programmed into the automated pick and place apparatus. In one embodiment, the distance D10 between the semiconductor die 304 of a first column and the semiconductor die 304 of a second column is 200 μm. The pick and place operation is repeated until approximately 115 columns of semiconductor die 304 are disposed across the length L3 of the carrier 330. The standardized carrier (having a width W3 of 560 mm and a carrier 330 of length L3 of 600 mm) accommodates approximately 107 rows and 115 columns of 5 mm by 5 mm semiconductor die 304 for a total of approximately 12,000 semiconductor die 304 disposed at On the carrier 330. The pick and place operation is repeated until the carrier 330 is partially or completely filled with the semiconductor die 304. The automated pick and place apparatus can mount semiconductor dies of any size on the carrier 330 to form a reconstituted wafer 338 under a standardized carrier such as carrier 330. Reconstituted wafer 338 can be utilized and used The same carrier 330 of the reconstituted wafer 336 and the same back end processing equipment are processed for processing.
來自圖9f的重組晶圓336以及來自圖9g的重組晶圓338都使用相同的載體330、或是使用一對於重組晶圓336及338兩者都具有相同標準化的尺寸的載體。被設計用於該些重組晶圓的後端處理之處理設備係針對於載體330來加以標準化,因而能夠處理形成在載體330上的重組晶圓之任何配置、以及被置放在載體330上的任何尺寸的半導體晶粒。因為重組晶圓336及338都使用相同標準化的載體330,因此該些重組晶圓可以在相同的製造線上加以處理。於是,標準化的載體330之一目的是欲簡化製造半導體封裝所需的設備。 Both the reconstituted wafer 336 from Figure 9f and the reconstituted wafer 338 from Figure 9g use the same carrier 330 or a carrier of the same standardized size for both reconstituted wafers 336 and 338. The processing equipment designed for the back end processing of the reconstituted wafers is standardized for the carrier 330, thereby being able to process any configuration of the reconstituted wafer formed on the carrier 330, and being placed on the carrier 330. Semiconductor dies of any size. Because both reconstituted wafers 336 and 338 use the same standardized carrier 330, the reconstituted wafers can be processed on the same manufacturing line. Thus, one of the purposes of the standardized carrier 330 is to simplify the equipment required to fabricate a semiconductor package.
在另一例子中,重組晶圓338係包含半導體晶粒294及304,其中每個半導體晶粒294及304係具有相同的尺寸,並且該些半導體晶粒係源自於具有不同直徑的半導體晶圓290及300。半導體晶圓290係具有一450mm的直徑,其中一數量約2,200個個別的8mm乘8mm的半導體晶粒294係形成在半導體晶圓290上。具有8mm乘8mm的尺寸的半導體晶粒294係從一或多個半導體晶圓290而被單粒化。此外,半導體晶圓300係具有一300mm的直徑,其中一數量約900個個別的8mm乘8mm的半導體晶粒304係形成在半導體晶圓300上。具有8mm乘8mm的尺寸的半導體晶粒304係從一或多個半導體晶圓300而被單粒化。載體330例如是被製備成具有一標準的560mm的寬度W3以及一標準的600mm的長度L3。具有一560mm的寬度W3之載體330係被製作尺寸以在橫跨載體330的寬度W3上容納一數量約69個間隔開一100μm的距離D9或D10的具有8mm乘8mm的尺寸的半導體晶粒294或304。具有一560mm的長度L3之載體330係被製作尺寸 以在橫跨載體330的長度L3上容納一數量約74個間隔開一100μm的距離D9或D10的具有8mm乘8mm的尺寸的半導體晶粒294或304。載體330的寬度W3乘上長度L3的表面積係容納大約5,000個間隔開一100μm的距離D9或D10的具有8mm乘8mm的尺寸的半導體晶粒294或304。半導體晶粒294及304可以在一介於半導體晶粒294或304之間的小於100μm的間隙或距離D9或D10下被置放在載體330上以增加半導體晶粒294及304在載體330上的密度,並且進一步降低處理半導體晶粒294及304的成本。 In another example, the reconstituted wafer 338 includes semiconductor dies 294 and 304, wherein each of the semiconductor dies 294 and 304 have the same size, and the semiconductor dies are derived from semiconductor crystals having different diameters. Round 290 and 300. The semiconductor wafer 290 has a diameter of 450 mm, and an amount of about 2,200 individual 8 mm by 8 mm semiconductor dies 294 are formed on the semiconductor wafer 290. The semiconductor die 294 having a size of 8 mm by 8 mm is singulated from one or more semiconductor wafers 290. In addition, the semiconductor wafer 300 has a diameter of 300 mm, and an amount of about 900 individual 8 mm by 8 mm semiconductor dies 304 are formed on the semiconductor wafer 300. The semiconductor die 304 having a size of 8 mm by 8 mm is singulated from one or more semiconductor wafers 300. The carrier 330 is, for example, prepared to have a standard width 560 of 560 mm and a standard length L3 of 600 mm. The carrier 330 having a width W3 of 560 mm is sized to accommodate a semiconductor die 294 having a size of about 8 mm by 8 mm spaced apart by a distance of D9 or D10 spaced apart by a distance of 100 μm across the width W3 of the carrier 330. Or 304. Carrier 330 having a length of 560 mm L3 is made in size A semiconductor die 294 or 304 having a size of 8 mm by 8 mm spaced apart by a distance of about 100 distances D9 or D10 spaced apart by 100 μm is accommodated across the length L3 of the carrier 330. The width W3 of the carrier 330 multiplied by the length L3 of the surface area accommodates about 5,000 semiconductor dies 294 or 304 having a size of 8 mm by 8 mm spaced apart by a distance D9 or D10 of 100 μm. Semiconductor dies 294 and 304 may be placed on carrier 330 at a gap of less than 100 [mu]m or distance D9 or D10 between semiconductor dies 294 or 304 to increase the density of semiconductor dies 294 and 304 on carrier 330. And further reducing the cost of processing the semiconductor dies 294 and 304.
自動化的拾放設備係被用來根據半導體晶粒294及304的數量及尺寸並且根據載體330的尺寸來製備重組晶圓338。在單粒化半導體晶圓300之後,一第一半導體晶粒294或304係被該自動化的拾放設備加以選擇。8mm乘8mm的半導體晶粒294或304可以源自於具有一450mm直徑的半導體晶圓290、或是源自於具有一300mm直徑的半導體晶圓300。或者是,8mm乘8mm的半導體晶粒係源自於另一具有一不同直徑的半導體晶圓。一第一半導體晶粒294或304係在載體330上的一藉由該被程式化的自動化拾放設備所決定的位置中被安裝到載體330。一第二半導體晶粒294或304係被該自動化的拾放設備加以選擇、置放在載體330上,設置在載體330上的一第一列中。在相鄰的半導體晶粒294或304之間的距離D9或D10係被程式化到該自動化的拾放設備中,並且根據待被處理的半導體封裝的設計及規格來加以選擇。在一實施例中,介於在載體330上的相鄰的半導體晶粒294或304之間的間隙或距離D9或D10是100μm。該拾放操作係被重複,直到一列的大約69個半導體晶粒294或304係橫跨載體330的寬度W3被設置為止。 An automated pick and place apparatus is used to prepare the reconstituted wafer 338 based on the number and size of the semiconductor dies 294 and 304 and according to the size of the carrier 330. After singulating the semiconductor wafer 300, a first semiconductor die 294 or 304 is selected by the automated pick and place device. The 8 mm by 8 mm semiconductor die 294 or 304 may be derived from a semiconductor wafer 290 having a diameter of 450 mm or from a semiconductor wafer 300 having a diameter of 300 mm. Alternatively, the 8 mm by 8 mm semiconductor die is derived from another semiconductor wafer having a different diameter. A first semiconductor die 294 or 304 is mounted to the carrier 330 in a position on the carrier 330 that is determined by the programmed automated pick-and-place device. A second semiconductor die 294 or 304 is selected by the automated pick and place device, placed on the carrier 330, and disposed in a first column on the carrier 330. The distance D9 or D10 between adjacent semiconductor dies 294 or 304 is programmed into the automated pick and place apparatus and is selected according to the design and specifications of the semiconductor package to be processed. In an embodiment, the gap or distance D9 or D10 between adjacent semiconductor dies 294 or 304 on the carrier 330 is 100 μm. The pick and place operation is repeated until approximately 69 semiconductor dies 294 or 304 of a column are disposed across the width W3 of the carrier 330.
另一半導體晶粒294或304係被該自動化的拾放設備加以選擇、置放在載體330上、並且設置在載體330上的一相鄰該第一列的第二列中。在一實施例中,介於一第一列的半導體晶粒294或304以及一第二列的半導體晶粒294或304之間的距離D9或D10是100μm。該拾放操作係被重複,直到大約74列的半導體晶粒294或304係橫跨載體330的長度L3被設置為止。該標準化的載體(具有560mm的寬度W3以及600mm的長度L3的載體330)係容納大約69行及74列的8mm乘8mm的半導體晶粒294及304,以用於總數約5,000個半導體晶粒294設置在載體330上。該拾放操作係被重複,直到載體330係部分或是完全填入半導體晶粒294或304為止。因此,重組晶圓338可包含從任何尺寸的半導體晶圓被單粒化的半導體晶粒294及304。載體330的尺寸係與半導體晶粒294及304的尺寸無關,而且與半導體晶圓290及300的尺寸無關。重組晶圓338可以利用和被用來處理重組晶圓336者相同的載體330以及相同的後端處理設備來加以處理。對於具有從不同尺寸的進入的晶圓被單粒化的相同尺寸的半導體晶粒之重組晶圓而言,標準化的載體330係容許相同的材料能夠被使用於每個重組晶圓。因此,用於在載體330上的一重組晶圓336或338的材料清單係維持固定的。一致且可預測的材料清單係容許有用於半導體封裝之改善的成本分析及計畫。 Another semiconductor die 294 or 304 is selected by the automated pick and place device, placed on carrier 330, and disposed in a second column of carrier 330 adjacent to the first column. In one embodiment, the distance D9 or D10 between the semiconductor dies 294 or 304 of a first column and the semiconductor dies 294 or 304 of a second column is 100 μm. The pick and place operation is repeated until approximately 74 columns of semiconductor dies 294 or 304 are disposed across the length L3 of the carrier 330. The standardized carrier (having a width W3 of 560 mm and a carrier 330 of length L3 of 600 mm) accommodates approximately 69 rows and 74 columns of 8 mm by 8 mm semiconductor dies 294 and 304 for a total of approximately 5,000 semiconductor dies 294 It is disposed on the carrier 330. The pick and place operation is repeated until the carrier 330 is partially or completely filled with the semiconductor die 294 or 304. Thus, reconstituted wafer 338 can include semiconductor dies 294 and 304 that are singulated from semiconductor wafers of any size. The size of the carrier 330 is independent of the size of the semiconductor dies 294 and 304 and is independent of the dimensions of the semiconductor wafers 290 and 300. Reconstituted wafer 338 can be processed using the same carrier 330 and the same backend processing equipment as used to process reconstituted wafer 336. For reconstituted wafers having the same size semiconductor die that are singulated from different sized incoming wafers, the standardized carrier 330 allows the same material to be used for each reconstituted wafer. Thus, the bill of materials for a reconstituted wafer 336 or 338 on the carrier 330 remains fixed. A consistent and predictable bill of materials allows for cost analysis and planning for improved semiconductor packaging.
在另一實施例中,一重組晶圓338係包含被設置在載體330上的各種半導體晶粒尺寸。例如,10mm乘10mm的半導體晶粒294係被安裝到載體330,並且5mm乘5mm的半導體晶粒304係被安裝到載體330,以形成重組晶圓338。該重組晶圓係在相同的重組晶圓上包含多種尺寸的半 導體晶粒。換言之,重組晶圓338的一部分係包含一種尺寸的半導體晶粒,而該重組晶圓的另一部分係包含另一種尺寸的半導體晶粒。在載體330上同時包含不同尺寸的半導體晶粒294及304的重組晶圓338係利用和被用來處理另一具有被設置在載體330之上的一致尺寸的半導體晶粒的重組晶圓336者相同的後端處理設備來加以處理。 In another embodiment, a reconstituted wafer 338 includes various semiconductor grain sizes disposed on the carrier 330. For example, a 10 mm by 10 mm semiconductor die 294 is mounted to the carrier 330, and a 5 mm by 5 mm semiconductor die 304 is mounted to the carrier 330 to form a reconstituted wafer 338. The reconstituted wafer contains half of various sizes on the same reconstituted wafer Conductor grain. In other words, a portion of the reconstituted wafer 338 includes semiconductor dies of one size, and another portion of the reconstituted wafer contains semiconductor dies of another size. A reconstituted wafer 338 comprising simultaneously different sized semiconductor dies 294 and 304 on carrier 330 utilizes and is used to process another reconstituted wafer 336 having uniform sized semiconductor dies disposed over carrier 330. The same backend processing device is used to process it.
總之,載體330係具有用於各種尺寸及數量的半導體晶粒的容量,該些半導體晶粒係從各種尺寸的半導體晶圓而被單粒化的。載體330的尺寸並不隨著被處理的半導體晶粒的尺寸而變化。該標準化的載體(載體330)在尺寸上是固定的,並且可以容納多種尺寸的半導體晶粒。標準化的載體330的尺寸係與半導體晶粒或是半導體晶圓的尺寸無關的。相較於較大的半導體晶粒,更多小的半導體晶粒可以裝設在載體330之上。裝設在載體330上的半導體晶粒294或304的數量係隨著半導體晶粒294或304的尺寸以及介於半導體晶粒294或304之間的間隔或距離D9或D10而改變。例如,具有長度L3及寬度W3的載體330係在載體330的表面積之上容納比10mm乘10mm的半導體晶粒294在載體330的表面積之上的數量更大數量的5mm乘5mm的半導體晶粒304。例如,載體330係保持大約3,000個10mm乘10mm的半導體晶粒、或是大約12,000個5mm乘5mm的半導體晶粒。載體330的尺寸及形狀係維持固定的,並且與半導體晶粒294或304的尺寸或是半導體晶粒294或304被單粒化所來自的半導體晶圓290或300無關的。載體330係提供彈性以利用一組共同的處理設備來製造重組晶圓336及338,成為具有來自不同尺寸的半導體晶圓290及300之不同的尺寸半導體晶粒294及304的許多不同類型的半導體封裝。 In summary, the carrier 330 has a capacity for semiconductor dies of various sizes and numbers that are singulated from semiconductor wafers of various sizes. The size of the carrier 330 does not vary with the size of the semiconductor die being processed. The standardized carrier (carrier 330) is fixed in size and can accommodate semiconductor dies of various sizes. The size of the standardized carrier 330 is independent of the size of the semiconductor die or semiconductor wafer. More small semiconductor dies can be mounted on the carrier 330 than larger semiconductor dies. The number of semiconductor dies 294 or 304 mounted on the carrier 330 varies with the size of the semiconductor dies 294 or 304 and the spacing or distance D9 or D10 between the semiconductor dies 294 or 304. For example, carrier 330 having a length L3 and a width W3 accommodates a greater number of 5 mm by 5 mm semiconductor die 304 than semiconductor surface 294 of 10 mm by 10 mm over the surface area of carrier 330 over the surface area of carrier 330. . For example, carrier 330 holds approximately 3,000 10 mm by 10 mm semiconductor dies, or approximately 12,000 5 mm by 5 mm semiconductor dies. The size and shape of the carrier 330 remains fixed and independent of the size of the semiconductor die 294 or 304 or the semiconductor wafer 290 or 300 from which the semiconductor die 294 or 304 is singulated. The carrier 330 provides resiliency to fabricate the reconstituted wafers 336 and 338 using a common set of processing equipment into many different types of semiconductors having different sized semiconductor dies 294 and 304 from different sized semiconductor wafers 290 and 300. Package.
圖9h係展示一種利用載體330以製造半導體封裝的製程。處理設備340係被用來在半導體晶粒上執行後端製程,例如囊封體及絕緣層的沉積、導電層的沉積、凸塊接合、回焊、標記、單粒化、以及其它後端製程。處理設備340係針對於一例如是載體330的標準化的載體的尺寸及形狀來加以設計。處理設備340係與載體330相容的,因為處理設備340的機械及電性構件係針對於載體330之標準化的尺寸及形狀來客製化的。 Figure 9h shows a process for fabricating a semiconductor package using carrier 330. Processing device 340 is used to perform backend processes on semiconductor dies, such as deposition of encapsulants and insulating layers, deposition of conductive layers, bump bonding, reflow, marking, singulation, and other backend processes . Processing device 340 is designed for the size and shape of a standardized carrier such as carrier 330. Processing device 340 is compatible with carrier 330 because the mechanical and electrical components of processing device 340 are customized for the standardized size and shape of carrier 330.
處理設備340係藉由控制系統342來加以控制。控制系統342可以是一被用來根據在載體330上的半導體晶粒的尺寸及形狀以組態設定處理設備340的軟體程式或演算法。控制系統342係被程式化及客製化,以便供處理設備340處理在標準化的載體330上所形成的每個不同的重組晶圓,例如是重組晶圓336及338。 Processing device 340 is controlled by control system 342. Control system 342 can be a software program or algorithm that is used to configure processing device 340 based on the size and shape of the semiconductor die on carrier 330. Control system 342 is programmed and customized for processing device 340 to process each of the different reconstituted wafers formed on standardized carrier 330, such as reconstituted wafers 336 and 338.
藉由標準化載體330的尺寸,處理設備340可以保持固定的,因為載體330的尺寸並不隨著半導體晶粒的尺寸以及半導體晶圓的尺寸的變數而改變。控制系統342係對於在載體330上的每個重組晶圓使用各種的演算法。例如,控制系統342可被利用以在半導體晶粒294的最初的拾放操作期間最佳化在載體330上的間隔。重組晶圓336的規格係被輸入到控制系統342中。控制系統342係被程式化以控制處理設備340,以拾取個別的半導體晶粒294並且在相隔一距離D9下將半導體晶粒294置放到載體330之上,以形成重組晶圓336。重組晶圓336例如包含10mm乘10mm的半導體晶粒294以及寬度W3及長度L3的標準的尺寸載體330。處理設備340係利用控制系統342而被組態設定,以在載體330上的重組晶圓336上執行後端製程。控制系統342係管理處理設備340以根據該10mm乘10mm的尺 寸的半導體晶粒294以及標準尺寸的載體330來執行沉積以及其它製造步驟。 By standardizing the size of the carrier 330, the processing device 340 can remain fixed because the size of the carrier 330 does not change with the size of the semiconductor die and the size of the semiconductor wafer. Control system 342 uses various algorithms for each reconstituted wafer on carrier 330. For example, control system 342 can be utilized to optimize the spacing on carrier 330 during the initial pick and place operation of semiconductor die 294. The specifications of the reconstituted wafer 336 are entered into the control system 342. Control system 342 is programmed to control processing device 340 to pick up individual semiconductor dies 294 and place semiconductor dies 312 over carrier 330 at a distance D9 to form recombined wafer 336. The reconstituted wafer 336 includes, for example, a semiconductor die 294 of 10 mm by 10 mm and a standard size carrier 330 of width W3 and length L3. Processing device 340 is configured to utilize control system 342 to perform a backend process on reconstituted wafer 336 on carrier 330. Control system 342 manages processing device 340 to follow the 10 mm by 10 mm ruler The in-line semiconductor die 294 and the standard sized carrier 330 perform deposition and other fabrication steps.
控制系統342係容許處理設備340能夠針對於在標準化的載體330上的每個重組晶圓而被客製化。處理設備340並不需要針對於一不同尺寸的半導體晶粒而被重建。在處理重組晶圓336之後,處理設備340係準備以處理另一在載體330上的具有相同或不同的半導體晶粒尺寸及間隔的重組晶圓。重組晶圓338的規格係被輸入到控制系統342中。控制系統342係被程式化以控制處理設備340以拾取個別的半導體晶粒304並且在相隔一距離D10下置放半導體晶粒304到載體330之上,以形成重組晶圓338。重組晶圓338例如包含5mm乘5mm的半導體晶粒304以及寬度W3及長度L3的標準尺寸的載體330。處理設備340係利用控制系統342而被組態設定,以在載體330上的重組晶圓338上執行後端製程。控制系統342係管理處理設備340以根據該5mm乘5mm的尺寸的半導體晶粒304以及標準尺寸的載體330來執行沉積以及其它製造步驟。 Control system 342 allows processing device 340 to be customized for each reconstituted wafer on standardized carrier 330. Processing device 340 does not need to be reconstructed for a different size of semiconductor die. After processing the reconstituted wafer 336, processing device 340 is prepared to process another reconstituted wafer having the same or different semiconductor grain sizes and spacings on carrier 330. The specifications of the reconstituted wafer 338 are entered into the control system 342. Control system 342 is programmed to control processing device 340 to pick up individual semiconductor dies 304 and place semiconductor dies 304 onto carrier 330 at a distance D10 to form reconstituted wafer 338. The reconstituted wafer 338 includes, for example, a 5 mm by 5 mm semiconductor die 304 and a standard sized carrier 330 having a width W3 and a length L3. Processing device 340 is configured to utilize control system 342 to perform a backend process on reconstituted wafer 338 on carrier 330. Control system 342 manages processing device 340 to perform deposition and other fabrication steps in accordance with the 5 mm by 5 mm sized semiconductor die 304 and standard sized carrier 330.
處理設備340係維持固定的,而不論處理設備340是否處理重組晶圓336或338、或是其它在標準化的載體330上的重組晶圓。控制系統342是可程式化的,並且處理設備340是可輕易適配於任何使用載體330的重組晶圓。因此,處理設備340的機械及物理特性係被設計以考量標準化的載體330的物理特性,同時處理設備340也是可利用控制系統342來程式化的,以在載體330上的半導體晶粒的任何配置上執行製程。 Processing device 340 remains fixed regardless of whether processing device 340 processes reconstituted wafers 336 or 338, or other reconstituted wafers on standardized carrier 330. Control system 342 is programmable and processing device 340 is readily adaptable to any reconstituted wafer using carrier 330. Accordingly, the mechanical and physical characteristics of the processing device 340 are designed to take into account the physical characteristics of the standardized carrier 330, while the processing device 340 is also programmable with the control system 342 for any configuration of the semiconductor die on the carrier 330. Execute the process.
處理設備340係被使用於從一在載體330上的重組晶圓製造各種半導體封裝。例如,處理設備340可被利用以處理重組晶圓336或338 成為扇入WLCSP、重組或eWLCSP、扇出WLCSP、覆晶封裝、例如是PoP的3D封裝、或是其它半導體封裝。控制系統342係被用來根據待被製造的半導體封裝以修改及控制處理設備340的操作,來執行後端製造步驟。因此,處理設備340可被利用以製造在此所述的每個半導體封裝。處理設備340可以橫跨多個共用相同尺寸的載體330的產品製造線來加以利用。於是,和在半導體晶粒的尺寸、半導體晶圓的尺寸、以及半導體封裝的類型上的改變相關的成本可被降低。在處理設備340中的投資風險係被降低,因為在載體330被標準化的情形中,處理設備340的設計係被簡化。 Processing device 340 is used to fabricate various semiconductor packages from a reconstituted wafer on carrier 330. For example, processing device 340 can be utilized to process reconstituted wafer 336 or 338 It becomes a fan-in WLCSP, recombination or eWLCSP, fan-out WLCSP, flip chip package, 3D package such as PoP, or other semiconductor package. Control system 342 is used to perform the back end manufacturing steps in accordance with the semiconductor package to be fabricated to modify and control the operation of processing device 340. Accordingly, processing device 340 can be utilized to fabricate each of the semiconductor packages described herein. Processing device 340 can be utilized across a plurality of product manufacturing lines that share carrier 330 of the same size. Thus, the cost associated with changes in the size of the semiconductor die, the size of the semiconductor wafer, and the type of semiconductor package can be reduced. The investment risk in the processing device 340 is reduced because in the case where the carrier 330 is standardized, the design of the processing device 340 is simplified.
在圖9i中,一種囊封體或模製化合物344係利用一膏印刷、轉移模製、液體囊封體模製、真空疊層、旋轉塗覆、或是其它適當的施用器以沉積在半導體晶粒294及載體330之上。囊封體344可以是聚合物複合材料,例如是具有填充物的環氧樹脂、具有填充物的環氧丙烯酸酯、或是具有適當的填充物的聚合物。囊封體344是非導電的,並且在環境上保護該半導體裝置免於外部的元素及污染物。在另一實施例中,囊封體344是一利用印刷、旋轉塗覆、噴霧塗覆、在加熱或是不在加熱下的真空或壓力疊層、或是其它適當的製程來加以沉積的絕緣或介電層,其係包含一或多層的光敏的低固化溫度的介電阻劑、光敏的複合阻劑、積層化合物膜、具有填充物的絕緣膏、焊料遮罩阻劑膜、液體或顆粒模製化合物、聚醯亞胺、BCB、PBO、SiO2、Si3N4、SiON、Ta2O5、Al2O3、預浸料、或是其它具有類似的絕緣及結構的性質的介電材料。在一實施例中,囊封體344是一種在小於200℃下固化的具有或是不具有絕緣填充物之低溫固化的光敏的介電聚合物。 In Figure 9i, an encapsulant or molding compound 344 is deposited on a semiconductor using a paste printing, transfer molding, liquid encapsulation molding, vacuum lamination, spin coating, or other suitable applicator. Above the die 294 and the carrier 330. The encapsulant 344 can be a polymer composite such as an epoxy with a filler, an epoxy acrylate with a filler, or a polymer with a suitable filler. The encapsulant 344 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants. In another embodiment, the encapsulant 344 is an insulation or deposited by printing, spin coating, spray coating, vacuum or pressure lamination under heating or without heating, or other suitable process. a dielectric layer comprising one or more layers of a photosensitive low curing temperature dielectric resistor, a photosensitive composite resist, a laminated compound film, an insulating paste with a filler, a solder mask resist film, a liquid or particle molding A compound, polyimide, BCB, PBO, SiO2, Si3N4, SiON, Ta2O5, Al2O3, prepreg, or other dielectric material having similar insulating and structural properties. In one embodiment, the encapsulant 344 is a low temperature curing photosensitive dielectric polymer that cures at less than 200 ° C with or without an insulating filler.
尤其,囊封體344係沿著半導體晶粒294的側表面324加以設置,並且因此覆蓋半導體晶粒294的每個側表面324。於是,囊封體344係覆蓋或接觸半導體晶粒294的至少四個表面,亦即半導體晶粒294的四個側表面324。囊封體344亦覆蓋半導體晶粒294的背表面310。囊封體344係保護半導體晶粒294避免由於曝光到來自光或是其它放射的光子所造成的劣化。在一實施例中,囊封體344是不透明的,並且在色彩上是暗的或是黑色的。圖9i係展示被囊封體344所覆蓋的複合的基板或是重組晶圓336。囊封體344可被利用於雷射標記重組晶圓336,以用於對準及單粒化。囊封體344係形成在半導體晶粒294的背表面310之上,並且可以在一後續的背面研磨步驟中被薄化。囊封體344亦可以沉積成使得囊封體344係與背表面310共平面的,因而並不覆蓋半導體晶粒294的背表面310。 In particular, the encapsulant 344 is disposed along the side surface 324 of the semiconductor die 294 and thus covers each side surface 324 of the semiconductor die 294. Thus, the encapsulant 344 covers or contacts at least four surfaces of the semiconductor die 294, that is, the four side surfaces 324 of the semiconductor die 294. The encapsulant 344 also covers the back surface 310 of the semiconductor die 294. The encapsulant 344 protects the semiconductor die 294 from degradation due to exposure to photons from light or other radiation. In one embodiment, the encapsulant 344 is opaque and dark or black in color. Figure 9i shows a composite substrate or reconstituted wafer 336 covered by an encapsulation 344. The encapsulant 344 can be utilized with a laser marked reconstituted wafer 336 for alignment and singulation. The encapsulant 344 is formed over the back surface 310 of the semiconductor die 294 and may be thinned in a subsequent backgrinding step. The encapsulant 344 can also be deposited such that the encapsulant 344 is coplanar with the back surface 310 and thus does not cover the back surface 310 of the semiconductor die 294.
在圖9j中,囊封體344的一背表面346係利用研磨機345以進行一研磨操作,來平坦化及降低囊封體344,的一厚度。一化學蝕刻亦可被利用以移除及平坦化囊封體344並且形成平的背表面347。在一實施例中,囊封體344的一厚度係維持覆蓋在半導體晶粒294的背表面310之上。在一實施例中,囊封體344在沉積或是背面研磨之後剩餘在半導體晶粒294的背表面310之上的厚度範圍是從大約170到230μm或是更小。在另一實施例中,囊封體344剩餘在半導體晶粒294的背表面310之上的厚度範圍是從大約5到150μm。囊封體344的一與背表面346相對的表面348係被設置在載體330及介面層332之上,使得囊封體344的表面348可以是與半導體晶粒294的主動表面312共平面的。 In Figure 9j, a back surface 346 of the encapsulant 344 utilizes a grinder 345 to perform a lapping operation to planarize and reduce a thickness of the encapsulant 344. A chemical etch can also be utilized to remove and planarize the encapsulant 344 and form a flat back surface 347. In one embodiment, a thickness of the encapsulant 344 is maintained overlying the back surface 310 of the semiconductor die 294. In one embodiment, the thickness of the encapsulant 344 remaining over the back surface 310 of the semiconductor die 294 after deposition or back grinding ranges from about 170 to 230 μm or less. In another embodiment, the thickness of the encapsulant 344 remaining over the back surface 310 of the semiconductor die 294 ranges from about 5 to 150 [mu]m. A surface 348 of the encapsulant 344 opposite the back surface 346 is disposed over the carrier 330 and the interface layer 332 such that the surface 348 of the encapsulant 344 can be coplanar with the active surface 312 of the semiconductor die 294.
圖9k係描繪一替代的背面研磨步驟,其中囊封體344係完 全從半導體晶粒294的背表面310被移除。在圖9k中的研磨操作完成之後,半導體晶粒294的背表面310係被露出。半導體晶粒294的一厚度亦可以藉由該背面研磨操作而被降低。在一實施例中,半導體晶粒294係具有一225-305μm或是更小的厚度。在該背面研磨步驟之後,一清洗製程係被執行,以從半導體晶粒294的背表面310以及從重組晶圓336的背表面移除污染。該清洗製程是一種在一背面保護層的施加之前被執行的濕式或乾式清洗製程。該清洗製程係改善該背面保護層至重組晶圓336的黏著。 Figure 9k depicts an alternative backgrinding step in which the encapsulant 344 is finished All are removed from the back surface 310 of the semiconductor die 294. After the polishing operation in Figure 9k is completed, the back surface 310 of the semiconductor die 294 is exposed. A thickness of the semiconductor die 294 can also be reduced by the back grinding operation. In one embodiment, the semiconductor die 294 has a thickness of 225-305 [mu]m or less. After the back grinding step, a cleaning process is performed to remove contamination from the back surface 310 of the semiconductor die 294 and from the back surface of the reconstituted wafer 336. The cleaning process is a wet or dry cleaning process that is performed prior to application of a backside protective layer. The cleaning process improves adhesion of the backside protective layer to the reconstituted wafer 336.
在圖9l中,一絕緣層、保護層或是背面保護層349係在圖9k中的背面研磨步驟的完成之後形成在囊封體344以及半導體晶粒294的背表面310之上。背面保護層349係包含一或多層的光敏的低固化溫度的介電阻劑、光敏的複合阻劑、積層化合物膜、具有填充物或玻璃纖維織物的樹脂基質複合片、具有填充物及玻璃纖維織物的樹脂基質複合片、具有填充物的絕緣膏、焊料遮罩阻劑膜、液體模製化合物、顆粒模製化合物、聚醯亞胺、BCB、PBO、SiO2、Si3N4、SiON、Ta2O5、Al2O3、預浸料、或是其它具有類似的絕緣及結構的性質的介電材料。背面保護層349係利用印刷、旋轉塗覆、噴霧塗覆、在加熱或是不在加熱下的真空或壓力疊層、或是其它適當的製程來加以沉積。在一實施例中,背面保護層349是一種在小於200℃下固化的具有或是不具有絕緣填充物之低溫固化的光敏的介電聚合物。背面保護層349是一種背面保護層,並且提供機械式保護給半導體晶粒294,並且保護以避開光。在一實施例中,背面保護層349係具有一範圍從大約5到150μm的厚度。或者是,背面保護層349是一施加至重組晶圓336的一背面的例如為Cu箔的金屬層。背面保護層349係接觸半導體 晶粒294的背表面310,以從半導體晶粒294傳導熱,因而改善該裝置的熱效能。 In FIG. 91, an insulating layer, a protective layer or a back protective layer 349 is formed over the encapsulant 344 and the back surface 310 of the semiconductor die 294 after completion of the back grinding step in FIG. 9k. The back protective layer 349 is one or more layers of photosensitive low curing temperature dielectric resistor, photosensitive composite resist, laminated compound film, resin matrix composite sheet with filler or glass fiber fabric, with filler and glass fiber fabric. Resin matrix composite sheet, insulating paste with filler, solder mask resist film, liquid molding compound, particle molding compound, polyimine, BCB, PBO, SiO2, Si3N4, SiON, Ta2O5, Al2O3, pre Dip, or other dielectric material with similar insulating and structural properties. The backside protective layer 349 is deposited by printing, spin coating, spray coating, vacuum or pressure lamination with or without heating, or other suitable process. In one embodiment, the backside protective layer 349 is a low temperature curing photosensitive dielectric polymer that cures at less than 200 ° C with or without an insulating filler. The backside protective layer 349 is a backside protective layer and provides mechanical protection to the semiconductor die 294 and is protected from light. In an embodiment, the backside protective layer 349 has a thickness ranging from about 5 to 150 [mu]m. Alternatively, the backside protective layer 349 is a metal layer such as a Cu foil applied to a back side of the reconstituted wafer 336. Back protection layer 349 is in contact with semiconductor The back surface 310 of the die 294 conducts heat from the semiconductor die 294, thereby improving the thermal performance of the device.
載體330及介面層332係藉由化學蝕刻、機械式剝離、CMP、機械式研磨、熱烘烤、UV光、雷射掃描、或是濕式剝除來加以移除,以露出絕緣層316、導電層314、以及囊封體344的表面348。 The carrier 330 and the interface layer 332 are removed by chemical etching, mechanical peeling, CMP, mechanical polishing, thermal baking, UV light, laser scanning, or wet stripping to expose the insulating layer 316, Conductive layer 314, and surface 348 of encapsulant 344.
在圖9m中,一絕緣或保護層350係利用PVD、CVD、印刷、旋轉塗覆、噴霧塗覆、網版印刷或是疊層以形成在絕緣層316及導電層314之上。絕緣層350可以是一或多層的SiO2、Si3N4、SiON、Ta2O5、Al2O3、或是其它具有類似絕緣及結構的性質之材料。在一實施例中,絕緣層350是一種在小於200℃下低溫固化的光敏的介電聚合物。在一實施例中,絕緣層350係形成在半導體晶粒294的覆蓋區之內,而且並不延伸超出半導體晶粒294的覆蓋區而到囊封體344的表面348之上。換言之,半導體晶粒294的一相鄰半導體晶粒294的週邊區域並沒有絕緣層350。在另一實施例中,絕緣層350係形成在絕緣層316、半導體晶粒294、以及囊封體344的表面348之上,並且絕緣層350的一在囊封體344的表面348之上的部分係藉由一種利用一圖案化的光阻層之蝕刻製程或是藉由LDA來加以移除。絕緣層350的一部分係藉由一種利用一圖案化的光阻層之蝕刻製程或是藉由LDA來加以移除,以形成開口352來露出導電層314。 In FIG. 9m, an insulating or protective layer 350 is formed over the insulating layer 316 and the conductive layer 314 by PVD, CVD, printing, spin coating, spray coating, screen printing, or lamination. The insulating layer 350 may be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other materials having similar insulating and structural properties. In one embodiment, the insulating layer 350 is a photosensitive dielectric polymer that cures at a low temperature of less than 200 °C. In one embodiment, the insulating layer 350 is formed within the footprint of the semiconductor die 294 and does not extend beyond the footprint of the semiconductor die 294 to over the surface 348 of the encapsulant 344. In other words, the peripheral region of an adjacent semiconductor die 294 of the semiconductor die 294 does not have the insulating layer 350. In another embodiment, an insulating layer 350 is formed over the insulating layer 316, the semiconductor die 294, and the surface 348 of the encapsulant 344, and one of the insulating layers 350 is over the surface 348 of the encapsulant 344. Part of it is removed by an etching process using a patterned photoresist layer or by LDA. A portion of insulating layer 350 is removed by an etching process using a patterned photoresist layer or by LDA to form opening 352 to expose conductive layer 314.
在圖9n中,一導電層354係利用一例如是印刷、PVD、CVD、濺鍍、電解的電鍍、以及無電的電鍍之圖案化及金屬沉積製程以形成在絕緣層350及導電層314之上。導電層354可以是一或多層的Al、Cu、Sn、Ti、Ni、Au、Ag、或是其它適當的導電材料。導電層354的一部分係沿著 絕緣層350並且平行於半導體晶粒294的主動表面312水平地延伸,以橫向地重新分佈該電互連至導電層314。導電層354係運作為一用於半導體晶粒294的電性信號的RDL。導電層354係形成在半導體晶粒294的一覆蓋區之上,而且並不延伸超出半導體晶粒294的覆蓋區而到囊封體344的表面348之上。換言之,半導體晶粒294的一相鄰半導體晶粒294的週邊區域並沒有導電層354,使得一囊封體344的表面348係維持從導電層354露出。導電層354的一部分係電連接至導電層314。導電層354的其它部分係根據半導體晶粒294的連接而為電性共通或是電性隔離的。 In FIG. 9n, a conductive layer 354 is formed over the insulating layer 350 and the conductive layer 314 by a patterning and metal deposition process such as printing, PVD, CVD, sputtering, electrolytic plating, and electroless plating. . Conductive layer 354 can be one or more layers of Al, Cu, Sn, Ti, Ni, Au, Ag, or other suitable electrically conductive material. A portion of the conductive layer 354 is along The insulating layer 350 extends horizontally parallel to the active surface 312 of the semiconductor die 294 to laterally redistribute the electrical interconnect to the conductive layer 314. Conductive layer 354 operates as an RDL for the electrical signal of semiconductor die 294. Conductive layer 354 is formed over a footprint of semiconductor die 294 and does not extend beyond the footprint of semiconductor die 294 to over surface 348 of encapsulant 344. In other words, the peripheral region of an adjacent semiconductor die 294 of semiconductor die 294 does not have conductive layer 354 such that surface 348 of an encapsulant 344 remains exposed from conductive layer 354. A portion of conductive layer 354 is electrically connected to conductive layer 314. Other portions of conductive layer 354 are electrically or electrically isolated depending on the connection of semiconductor die 294.
一絕緣或保護層356係利用PVD、CVD、印刷、旋轉塗覆、噴霧塗覆、網版印刷或是疊層以形成在絕緣層350及導電層354之上。絕緣層356可以是一或多層的SiO2、Si3N4、SiON、Ta2O5、Al2O3、或是其它具有類似絕緣及結構的性質之材料。在一實施例中,絕緣層356是一種在小於200℃低溫固化的光敏的介電聚合物。在一實施例中,絕緣層356係形成在半導體晶粒294的覆蓋區之內,而且並不延伸超出半導體晶粒294的覆蓋區而到囊封體344之上。換言之,半導體晶粒294的一相鄰半導體晶粒294的週邊區域並沒有絕緣層356,使得囊封體344的表面348係維持從絕緣層356露出。在另一實施例中,絕緣層356係形成在絕緣層316、半導體晶粒294以及囊封體344之上,並且絕緣層350的一在囊封體344之上的部分係藉由一種利用一圖案化的光阻層之蝕刻製程或是藉由LDA來加以移除。絕緣層350的一部分係藉由一種利用一圖案化的光阻層之蝕刻製程或是藉由LDA來加以移除,以形成開口358來露出導電層354。 An insulating or protective layer 356 is formed over the insulating layer 350 and the conductive layer 354 by PVD, CVD, printing, spin coating, spray coating, screen printing, or lamination. The insulating layer 356 may be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other materials having similar insulating and structural properties. In one embodiment, the insulating layer 356 is a photosensitive dielectric polymer that cures at a low temperature of less than 200 °C. In one embodiment, the insulating layer 356 is formed within the footprint of the semiconductor die 294 and does not extend beyond the footprint of the semiconductor die 294 to over the encapsulant 344. In other words, the peripheral region of an adjacent semiconductor die 294 of the semiconductor die 294 is free of the insulating layer 356 such that the surface 348 of the encapsulant 344 remains exposed from the insulating layer 356. In another embodiment, the insulating layer 356 is formed over the insulating layer 316, the semiconductor die 294, and the encapsulant 344, and a portion of the insulating layer 350 above the encapsulant 344 is utilized by a The etching process of the patterned photoresist layer is removed by LDA. A portion of insulating layer 350 is removed by an etching process using a patterned photoresist layer or by LDA to form opening 358 to expose conductive layer 354.
在圖9o中,在最終的再次鈍化之後,一導電層360係利用 PVD、CVD、蒸鍍、電解的電鍍、無電的電鍍、或是其它適當的金屬沉積製程以形成在導電層354的露出的部分之上以及在絕緣層356之上。導電層360可以是Al、Cu、Sn、Ni、Au、Ag,W、或是其它適當的導電材料。導電層360是一電連接至導電層354及314的UBM。UBM 360可以是一具有黏著層、阻障層、以及晶種或潤濕層之多金屬的堆疊。該黏著層係形成在導電層354之上,並且可以是Ti、TiN、TiW、Al或是Cr。該阻障層係形成在該黏著層之上,並且可以是Ni、NiV、Pt、Pd、TiW、Ti或是CrCu。該阻障層係禁止Cu擴散到半導體晶粒294的主動表面312中。該晶種層係形成在該阻障層之上,並且可以是Cu、Ni、NiV、Au,或是Al。UBM 360係提供一低電阻的互連至導電層354、以及一焊料擴散的阻障以及用於焊料可潤濕性的晶種層。 In Figure 9o, after the final passivation, a conductive layer 360 is utilized. PVD, CVD, evaporation, electrolytic plating, electroless plating, or other suitable metal deposition process is formed over the exposed portions of conductive layer 354 and over insulating layer 356. Conductive layer 360 can be Al, Cu, Sn, Ni, Au, Ag, W, or other suitable electrically conductive material. Conductive layer 360 is a UBM that is electrically connected to conductive layers 354 and 314. UBM 360 can be a stack of multiple metals with an adhesive layer, a barrier layer, and a seed or wetting layer. The adhesive layer is formed over the conductive layer 354 and may be Ti, TiN, TiW, Al or Cr. The barrier layer is formed over the adhesive layer and may be Ni, NiV, Pt, Pd, TiW, Ti or CrCu. The barrier layer inhibits Cu from diffusing into the active surface 312 of the semiconductor die 294. The seed layer is formed over the barrier layer and may be Cu, Ni, NiV, Au, or Al. UBM 360 provides a low resistance interconnect to conductive layer 354, as well as a solder diffusion barrier and a seed layer for solder wettability.
一種導電的凸塊材料係利用一蒸鍍、電解的電鍍、無電的電鍍、球式滴落、或是網版印刷製程以沉積在導電層360之上。在一實施例中,該凸塊材料係利用一球式滴落模版來加以沉積,亦即不需要遮罩。該凸塊材料可以是具有一選配的助熔溶劑之Al、Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料、以及其之組合。例如,該凸塊材料可以是共晶Sn/Pb、高鉛的焊料、或是無鉛的焊料。該凸塊材料係利用一適當的附裝或接合製程而被接合到導電層360。在一實施例中,該凸塊材料係藉由加熱該材料超過其熔點來加以回焊,以形成球或凸塊362。在某些應用中,凸塊362係被回焊第二次以改善至導電層360的電性接觸。凸塊362亦可以被壓縮接合或是熱壓接合到導電層360。凸塊362係代表一種可被形成在導電層360之上的互連結構類型。該互連結構亦可以使用接合線、導電膏、柱形凸塊、微凸塊、或 是其它電互連。雷射標記可在凸塊的形成之前或之後、或是在載體330的移除之後加以執行。 A conductive bump material is deposited over conductive layer 360 by an evaporation, electrolytic plating, electroless plating, ball dropping, or screen printing process. In one embodiment, the bump material is deposited using a ball drop stencil, i.e., no mask is required. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof with an optional fluxing solvent. For example, the bump material can be eutectic Sn/Pb, high lead solder, or lead free solder. The bump material is bonded to conductive layer 360 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material beyond its melting point to form a ball or bump 362. In some applications, bumps 362 are reflowed a second time to improve electrical contact to conductive layer 360. The bumps 362 can also be compression bonded or thermocompression bonded to the conductive layer 360. Bumps 362 represent a type of interconnect structure that can be formed over conductive layer 360. The interconnect structure can also use bonding wires, conductive paste, stud bumps, micro bumps, or It is another electrical interconnection. The laser mark can be performed before or after the formation of the bump or after the removal of the carrier 330.
絕緣層350及356、導電層354及360以及凸塊362係全體地構成一形成在半導體晶粒294之上並且在半導體晶粒294的一覆蓋區之內的堆積的互連結構366。半導體晶粒294的一相鄰半導體晶粒294的週邊區域並沒有互連結構366,使得囊封體344的表面348係維持從互連結構366露出。堆積的互連結構366可包含只有一例如是導電層354的RDL或導電層以及一例如是絕緣層350的絕緣層。額外的絕緣層及RDL可以在形成凸塊362之前被形成在絕緣層356之上,以根據半導體晶粒294的設計及功能來提供橫跨該封裝之額外的垂直及水平的電性連接。 Insulation layers 350 and 356, conductive layers 354 and 360, and bumps 362 collectively form a stacked interconnect structure 366 formed over semiconductor die 294 and within a footprint of semiconductor die 294. The peripheral region of an adjacent semiconductor die 294 of semiconductor die 294 does not have interconnect structure 366 such that surface 348 of encapsulant 344 remains exposed from interconnect structure 366. The stacked interconnect structure 366 can include only one RDL or conductive layer, such as conductive layer 354, and an insulating layer, such as insulating layer 350. Additional insulating layers and RDL may be formed over insulating layer 356 prior to forming bumps 362 to provide additional vertical and horizontal electrical connections across the package in accordance with the design and function of semiconductor die 294.
在圖9p中,半導體晶粒294係利用鋸刀或雷射切割工具370,穿過囊封體344而被單粒化成為個別的eWLCSP 372。eWLCSP 372係在單粒化之前或是之後進行電性測試。重組晶圓336係被單粒化成為eWLCSP 372,以在半導體晶粒294的側表面324之上留下一薄層的囊封體344。或者是,重組晶圓336係被單粒化,以從側表面324完全地移除囊封體344。 In Figure 9p, the semiconductor die 294 is singulated into individual eWLCSPs 372 by a saw blade or laser cutting tool 370 through the encapsulant 344. The eWLCSP 372 was electrically tested before or after singulation. The reconstituted wafer 336 is singulated into an eWLCSP 372 to leave a thin layer of encapsulant 344 over the side surface 324 of the semiconductor die 294. Alternatively, the reconstituted wafer 336 is singulated to completely remove the encapsulant 344 from the side surface 324.
圖10係展示在單粒化之後,具有在半導體晶粒294的側壁324之上的囊封體以及在半導體晶粒294的背表面310之上的背面保護層349的eWLCSP 372。半導體晶粒294係透過導電層314、354及360以電連接凸塊362,以用於透過互連結構366之外部的互連。互連結構366並不延伸超出半導體晶粒294的一覆蓋區,並且因此形成一種扇入封裝。背面保護層349係形成在半導體晶粒294的背表面310之上,以用於機械式保護並且保 護避免由於曝光到來自光或是其它放射的光子所造成的劣化。 FIG. 10 shows an eWLCSP 372 having an encapsulant over sidewalls 324 of semiconductor die 294 and a backside protection layer 349 over back surface 310 of semiconductor die 294 after singulation. The semiconductor die 294 is electrically coupled to the bumps 362 through the conductive layers 314, 354, and 360 for interconnecting the exterior of the interconnect structure 366. The interconnect structure 366 does not extend beyond a footprint of the semiconductor die 294 and thus forms a fan-in package. A back protective layer 349 is formed over the back surface 310 of the semiconductor die 294 for mechanical protection and protection Protection against deterioration due to exposure to photons from light or other radiation.
囊封體344係覆蓋半導體晶粒294的側表面324,以保護半導體晶粒294免於因為曝光到來自光或是其它放射的光子所造成的劣化。對於eWLCSP 372而言,在側表面324之上的囊封體344的厚度係小於150μm。在一實施例中,eWLCSP 372係具有在長度上的4.595mm×在寬度上的4.025mm×在高度上的0.470mm之尺寸以及一用於凸塊362的0.4mm的間距,其中半導體晶粒294係具有一4.445mm的長度以及一3.875mm的寬度。在另一實施例中,在半導體晶粒294的側表面324之上的囊封體344的厚度是75μm或是更小。eWLCSP 372係具有在長度上的6.075mm×在寬度上的6.075mm×在高度上的0.8mm之尺寸以及一用於凸塊362的0.5mm的間距,其中半導體晶粒294係具有在長度上的6.0mm×在寬度上的6.0mm×在高度上的0.470mm之尺寸。在又一實施例中,eWLCSP 372係具有在長度上的5.92mm×在寬度上的5.92mm×在高度上的0.765mm之尺寸以及一用於凸塊362的0.5mm的間距,其中半導體晶粒294係具有在長度上的5.75mm×在寬度上的5.75mm×在高度上的0.535mm之尺寸。在另一實施例中,在半導體晶粒294的側表面324之上的囊封體344的厚度是25μm或是更小。在又一實施例中,eWLCSP 372可被形成具有一14mm的長度以及一14mm的寬度。eWLCSP 372係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體330上形成一重組晶圓來加以製造,此係降低用於eWLCSP 372的設備及材料成本。eWLCSP 372係利用標準化的載體330以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 The encapsulant 344 covers the side surface 324 of the semiconductor die 294 to protect the semiconductor die 294 from degradation due to exposure to photons from light or other radiation. For eWLCSP 372, the thickness of the encapsulant 344 above the side surface 324 is less than 150 [mu]m. In one embodiment, the eWLCSP 372 has a dimension of 4.595 mm in length x 4.025 mm in width x 0.470 mm in height and a pitch of 0.4 mm for the bumps 362, wherein the semiconductor die 294 It has a length of 4.445 mm and a width of 3.875 mm. In another embodiment, the thickness of the encapsulant 344 over the side surface 324 of the semiconductor die 294 is 75 [mu]m or less. The eWLCSP 372 has a size of 6.075 mm in length x 6.075 mm in width x 0.8 mm in height and a pitch of 0.5 mm for the bumps 362, wherein the semiconductor die 294 has a length. 6.0 mm × 6.0 mm in width × 0.470 mm in height. In yet another embodiment, the eWLCSP 372 has a size of 5.92 mm in length x 5.92 mm in width x 0.765 mm in height and a pitch of 0.5 mm for the bumps 362, wherein the semiconductor die The 294 series has a size of 5.75 mm in length x 5.75 mm in width x 0.535 mm in height. In another embodiment, the thickness of the encapsulant 344 over the side surface 324 of the semiconductor die 294 is 25 [mu]m or less. In yet another embodiment, the eWLCSP 372 can be formed to have a length of 14 mm and a width of 14 mm. The eWLCSP 372 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 330, which reduces the cost of equipment and materials for the eWLCSP 372. The eWLCSP 372 is manufactured in a larger amount using a standardized carrier 330, thereby simplifying the process and reducing unit cost.
圖11係展示一具有在半導體晶粒294的背表面310之上的 背面保護層349以及半導體晶粒294的露出的側壁324之替代的eWLCSP380。半導體晶粒294係透過導電層314、354及360以電連接至凸塊362,以用於透過互連結構366之外部的互連。互連結構366並不延伸超出半導體晶粒294的一覆蓋區,並且因此形成一扇入封裝。背面保護層349係形成在半導體晶粒294的背表面310之上,以用於機械式保護並且保護避免由於曝光到來自光或是其它放射的光子所造成的劣化。囊封體344係在單粒化期間完全從半導體晶粒294的側表面324加以移除,以露出側表面324。eWLCSP 380的長度及寬度係和半導體晶粒294的長度及寬度相同。在一實施例中,eWLCSP 380係具有大約在長度上的4.4mm×在寬度上的3.9mm之尺寸,其具有一用於凸塊362的0.35-0.50mm的間距。在另一實施例中,eWLCSP 380可被形成具有一14mm的長度以及一14mm的寬度。eWLCSP 380係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體330上形成一重組晶圓來加以製造,此係降低用於eWLCSP 380的設備及材料成本。eWLCSP 380係利用標準化的載體330以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 Figure 11 shows a pattern having a top surface 310 of semiconductor die 294. The backside protective layer 349 and the exposed sidewalls 324 of the semiconductor die 294 are replaced by an eWLCSP 380. Semiconductor die 294 is electrically coupled to bumps 362 through conductive layers 314, 354, and 360 for interconnecting the exterior of interconnect structure 366. The interconnect structure 366 does not extend beyond a footprint of the semiconductor die 294 and thus forms a fan-in package. A backside protective layer 349 is formed over the back surface 310 of the semiconductor die 294 for mechanical protection and protection against degradation due to exposure to photons from light or other radiation. The encapsulant 344 is completely removed from the side surface 324 of the semiconductor die 294 during singulation to expose the side surface 324. The length and width of the eWLCSP 380 are the same as the length and width of the semiconductor die 294. In one embodiment, the eWLCSP 380 has a dimension of approximately 4.4 mm in length x 3.9 mm in width with a pitch of 0.35-0.50 mm for the bumps 362. In another embodiment, the eWLCSP 380 can be formed to have a length of 14 mm and a width of 14 mm. The eWLCSP 380 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 330, which reduces the cost of equipment and materials for the eWLCSP 380. The eWLCSP 380 is manufactured in a larger amount using a standardized carrier 330, thereby simplifying the process and reducing unit cost.
圖12係展示另一eWLCSP 384,其中囊封體係形成在半導體晶粒294的背表面310及側壁324之上。半導體晶粒294係透過導電層314、354及360以電連接至凸塊362,以用於透過互連結構366之外部的互連。互連結構366並不延伸超出半導體晶粒294的一覆蓋區,並且因此形成一扇入封裝。在圖9j中所示的研磨操作之後,囊封體344係維持在半導體晶粒294的背表面310之上。在單粒化之後,囊封體344係維持在半導體晶粒294的側表面324之上,以用於機械式保護並且保護避免由於曝光到來自光或 是其它放射的光子所造成的劣化。因此,囊封體344係形成在半導體晶粒294的五個側邊之上,亦即在四個側表面324之上以及在背表面310之上。在半導體晶粒294的背表面310之上的囊封體344係消除對於一背面保護層或是背面積層的需求,藉此降低eWLCSP 384的成本。 FIG. 12 shows another eWLCSP 384 in which an encapsulation system is formed over the back surface 310 and sidewalls 324 of the semiconductor die 294. Semiconductor die 294 is electrically coupled to bumps 362 through conductive layers 314, 354, and 360 for interconnecting the exterior of interconnect structure 366. The interconnect structure 366 does not extend beyond a footprint of the semiconductor die 294 and thus forms a fan-in package. After the lapping operation shown in FIG. 9j, the encapsulant 344 is maintained over the back surface 310 of the semiconductor die 294. After singulation, the encapsulant 344 is maintained over the side surface 324 of the semiconductor die 294 for mechanical protection and protection from exposure to light or It is the deterioration caused by other emitted photons. Thus, the encapsulant 344 is formed over the five sides of the semiconductor die 294, that is, over the four side surfaces 324 and above the back surface 310. The encapsulant 344 over the back surface 310 of the semiconductor die 294 eliminates the need for a backside protective layer or backside layer, thereby reducing the cost of the eWLCSP 384.
對於eWLCSP 384而言,囊封體344在側表面324之上的厚度係小於150μm。在一實施例中,eWLCSP 384係具有在長度上的4.595mm×在寬度上的4.025mm×在高度上的0.470mm之尺寸以及一用於凸塊362的0.4mm的間距,其中半導體晶粒294係具有一4.445mm的長度以及一3.875mm的寬度。在另一實施例中,囊封體344在半導體晶粒294的側表面324之上的厚度係75μm或是更小。eWLCSP 384係具有在長度上的6.075mm×在寬度上的6.075mm×在高度上的0.8mm之尺寸以及一用於凸塊362的0.5mm的間距,其中半導體晶粒294係具有在長度上的6.0mm×在寬度上的6.0mm×在高度上的0.470mm之尺寸。在又一實施例中,eWLCSP 384係具有在長度上的5.92mm×在寬度上的5.92mm×在高度上的0.765mm之尺寸以及一用於凸塊362的0.5mm的間距,其中半導體晶粒294係具有在長度上的5.75mm×在寬度上的5.75mm×在高度上的0.535mm之尺寸。在另一實施例中,囊封體344在半導體晶粒294的側表面324之上的厚度是25μm或是更小。在又一實施例中,eWLCSP 384可被形成具有一14mm的長度以及一14mm的寬度。eWLCSP 384係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體330上形成一重組晶圓來加以製造,此係降低用於eWLCSP 384的設備及材料成本。eWLCSP 384係利用標準化的載體330以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 For eWLCSP 384, the thickness of the encapsulant 344 above the side surface 324 is less than 150 [mu]m. In one embodiment, the eWLCSP 384 has a dimension of 4.595 mm in length x 4.025 mm in width x 0.470 mm in height and a pitch of 0.4 mm for the bumps 362, wherein the semiconductor die 294 It has a length of 4.445 mm and a width of 3.875 mm. In another embodiment, the thickness of the encapsulant 344 over the side surface 324 of the semiconductor die 294 is 75 [mu]m or less. The eWLCSP 384 has a size of 6.075 mm in length x 6.075 mm in width x 0.8 mm in height and a pitch of 0.5 mm for the bumps 362, wherein the semiconductor die 294 has length over 6.0 mm × 6.0 mm in width × 0.470 mm in height. In yet another embodiment, the eWLCSP 384 has a size of 5.92 mm in length x 5.92 mm in width x 0.765 mm in height and a pitch of 0.5 mm for the bumps 362, wherein the semiconductor die The 294 series has a size of 5.75 mm in length x 5.75 mm in width x 0.535 mm in height. In another embodiment, the thickness of the encapsulant 344 above the side surface 324 of the semiconductor die 294 is 25 [mu]m or less. In yet another embodiment, the eWLCSP 384 can be formed to have a length of 14 mm and a width of 14 mm. The eWLCSP 384 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 330, which reduces the cost of equipment and materials for the eWLCSP 384. The eWLCSP 384 is manufactured in a larger amount using a standardized carrier 330, thereby simplifying the process and reducing unit cost.
圖13係展示另一具有背面囊封體以及露出的側壁之eWLCSP 386。半導體晶粒294係透過導電層314、354及360以電連接至凸塊362,以用於透過互連結構366之外部的互連。互連結構366並不延伸超出半導體晶粒294的一覆蓋區,並且因此形成一扇入封裝。在圖9j中所示的研磨操作之後,囊封體344係維持在半導體晶粒294的背表面310之上。在半導體晶粒294的背表面310之上的囊封體344係消除對於一背面保護層或是背面積層的需求,藉此降低eWLCSP 386的成本。在單粒化期間,囊封體344係完全從半導體晶粒294的側表面324被移除,以露出側表面324。eWLCSP 386的長度及寬度係和半導體晶粒294的長度及寬度相同。在一實施例中,eWLCSP 386係具有大約在長度上的4.445mm×在寬度上的3.875mm之尺寸,其具有一用於凸塊362的0.35-0.50mm的間距。在另一實施例中,eWLCSP 386可被形成具有一14mm的長度以及一14mm的寬度。eWLCSP 386係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體330上形成一重組晶圓來加以製造,此係降低用於eWLCSP 386的設備及材料成本。eWLCSP 386係利用標準化的載體330以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 Figure 13 shows another eWLCSP 386 having a back encapsulant and exposed sidewalls. Semiconductor die 294 is electrically coupled to bumps 362 through conductive layers 314, 354, and 360 for interconnecting the exterior of interconnect structure 366. The interconnect structure 366 does not extend beyond a footprint of the semiconductor die 294 and thus forms a fan-in package. After the lapping operation shown in FIG. 9j, the encapsulant 344 is maintained over the back surface 310 of the semiconductor die 294. The encapsulant 344 over the back surface 310 of the semiconductor die 294 eliminates the need for a backside protective layer or backside layer, thereby reducing the cost of the eWLCSP 386. During singulation, the encapsulant 344 is completely removed from the side surface 324 of the semiconductor die 294 to expose the side surface 324. The length and width of the eWLCSP 386 are the same as the length and width of the semiconductor die 294. In one embodiment, the eWLCSP 386 has a size of approximately 4.445 mm in length x 3.875 mm in width, having a pitch of 0.35-0.50 mm for the bumps 362. In another embodiment, the eWLCSP 386 can be formed to have a length of 14 mm and a width of 14 mm. The eWLCSP 386 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 330, which reduces the cost of equipment and materials for the eWLCSP 386. The eWLCSP 386 is manufactured in a larger amount using a standardized carrier 330, thereby simplifying the process and reducing unit cost.
圖14係展示另一具有半導體晶粒294的露出的背表面310以及側壁324之eWLCSP 388。半導體晶粒294係透過導電層314、354及360以電連接至凸塊362,以用於透過互連結構366之外部的互連。互連結構366並不延伸超出半導體晶粒294的一覆蓋區,並且因此形成一扇入封裝。囊封體344係在圖9k中所示的研磨操作期間完全從半導體晶粒294的背表面310被移除。囊封體344係在單粒化期間完全從半導體晶粒294的側表面324 被移除,以露出側表面324。在eWLCSP 388中,並沒有囊封體344維持覆蓋半導體晶粒294的一表面。eWLCSP 388的長度及寬度係和半導體晶粒294的長度及寬度相同的。在一實施例中,eWLCSP 388係具有大約在長度上的4.4mm×在寬度上的3.9mm之尺寸,其具有一用於凸塊362的0.35-0.50mm的間距。eWLCSP 388係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體330上形成一重組晶圓來加以製造,此係降低用於eWLCSP 388的設備及材料成本。eWLCSP 388係利用標準化的載體330以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 FIG. 14 shows another eWLCSP 388 having an exposed back surface 310 of semiconductor die 294 and sidewalls 324. Semiconductor die 294 is electrically coupled to bumps 362 through conductive layers 314, 354, and 360 for interconnecting the exterior of interconnect structure 366. The interconnect structure 366 does not extend beyond a footprint of the semiconductor die 294 and thus forms a fan-in package. The encapsulant 344 is completely removed from the back surface 310 of the semiconductor die 294 during the lapping operation shown in Figure 9k. The encapsulant 344 is completely from the side surface 324 of the semiconductor die 294 during singulation. It is removed to expose the side surface 324. In eWLCSP 388, no encapsulant 344 remains covering a surface of semiconductor die 294. The length and width of the eWLCSP 388 are the same as the length and width of the semiconductor die 294. In one embodiment, the eWLCSP 388 has a dimension of approximately 4.4 mm in length x 3.9 mm in width with a pitch of 0.35-0.50 mm for the bumps 362. The eWLCSP 388 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 330, which reduces the cost of equipment and materials for the eWLCSP 388. The eWLCSP 388 is manufactured in a larger amount using a standardized carrier 330, thereby simplifying the process and reducing unit cost.
圖15a-15k係相關於圖1及2a-2c來描繪一種形成一重組或是嵌入式扇入WLCSP的製程。從圖9b繼續,圖15a係展示半導體晶圓290的一部分的一截面圖。導電層314係形成在半導體晶粒294的主動表面312之上。絕緣層316係形成在主動表面312及導電層314之上,其中開口係透過絕緣層316加以形成,以露出導電層314。 Figures 15a-15k depict a process for forming a recombination or embedded fan-in WLCSP in relation to Figures 1 and 2a-2c. Continuing from Figure 9b, Figure 15a shows a cross-sectional view of a portion of a semiconductor wafer 290. Conductive layer 314 is formed over active surface 312 of semiconductor die 294. An insulating layer 316 is formed over the active surface 312 and the conductive layer 314, wherein the openings are formed through the insulating layer 316 to expose the conductive layer 314.
在圖15a中,一絕緣層410形成在絕緣層316及導電層314之上。絕緣層410係包含一或多層的SiO2、Si3N4、SiON、Ta2O5、Al2O3、或是其它具有類似絕緣及結構的性質之材料。絕緣層410係利用PVD、CVD、印刷、旋轉塗覆、噴霧塗覆、燒結、熱氧化、或是其它適當的製程來加以沉積的。在一實施例中,絕緣層410是一種在小於200℃下低溫固化的光敏的介電聚合物。在一實施例中,絕緣層410係形成在絕緣層316、半導體晶粒294之上,並且在半導體晶粒294的一覆蓋區之外的基底半導體材料292之上。換言之,半導體晶粒294的一相鄰半導體晶粒294的週邊區域係包含絕緣層410。絕緣層410的一部分係藉由一曝光或是顯影製程、LDA、 蝕刻、或是其它適當的製程來加以移除以形成開口412,來露出導電的墊314。 In FIG. 15a, an insulating layer 410 is formed over the insulating layer 316 and the conductive layer 314. The insulating layer 410 comprises one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other materials having similar insulating and structural properties. The insulating layer 410 is deposited by PVD, CVD, printing, spin coating, spray coating, sintering, thermal oxidation, or other suitable process. In one embodiment, the insulating layer 410 is a photosensitive dielectric polymer that cures at a low temperature of less than 200 °C. In an embodiment, insulating layer 410 is formed over insulating layer 316, semiconductor die 294, and overlying semiconductor material 292 outside of a footprint of semiconductor die 294. In other words, the peripheral region of an adjacent semiconductor die 294 of the semiconductor die 294 includes an insulating layer 410. A portion of the insulating layer 410 is formed by an exposure or development process, LDA, Etching, or other suitable process, is removed to form openings 412 to expose conductive pads 314.
在圖15b中,一導電層414係利用一例如是印刷、PVD、CVD、濺鍍、電解的電鍍、以及無電的電鍍之圖案化及金屬沉積製程,以形成在絕緣層410及導電層314之上。導電層414可以是一或多層的Al、Cu、Sn、Ti、Ni、Au、Ag、或是其它適當的導電材料。導電層414的一部分係沿著絕緣層410並且平行於半導體晶粒294的主動表面312水平地延伸,以橫向地重新分佈該電互連至導電層314。導電層414係運作為一用於半導體晶粒294的電性信號之RDL。導電層414係形成在半導體晶粒294的一覆蓋區之上而且並不延伸超出半導體晶粒294的覆蓋區。換言之,半導體晶粒294的一相鄰半導體晶粒294的週邊區域並沒有導電層414。導電層414的一部分係電連接至導電層314。導電層414的其它部分係根據半導體晶粒294的連接而為電性共通或是電性隔離的。 In FIG. 15b, a conductive layer 414 is formed on the insulating layer 410 and the conductive layer 314 by a patterning and metal deposition process such as printing, PVD, CVD, sputtering, electrolytic plating, and electroless plating. on. Conductive layer 414 can be one or more layers of Al, Cu, Sn, Ti, Ni, Au, Ag, or other suitable electrically conductive material. A portion of conductive layer 414 extends horizontally along insulating layer 410 and parallel to active surface 312 of semiconductor die 294 to laterally redistribute the electrical interconnect to conductive layer 314. Conductive layer 414 operates as an RDL for the electrical signal of semiconductor die 294. Conductive layer 414 is formed over a footprint of semiconductor die 294 and does not extend beyond the footprint of semiconductor die 294. In other words, the peripheral region of an adjacent semiconductor die 294 of the semiconductor die 294 does not have a conductive layer 414. A portion of conductive layer 414 is electrically connected to conductive layer 314. Other portions of conductive layer 414 are electrically or electrically isolated depending on the connection of semiconductor die 294.
一絕緣或保護層416係利用PVD、CVD、印刷、旋轉塗覆、噴霧塗覆、網版印刷或是疊層以形成在絕緣層410及導電層414之上。絕緣層416可以是一或多層的SiO2、Si3N4、SiON、Ta2O5、Al2O3、或是其它具有類似絕緣及結構的性質之材料。在一實施例中,絕緣層416是一種在小於200℃下低溫固化的光敏的介電聚合物。在一實施例中,絕緣層416係形成在半導體晶粒294之上並且在半導體晶粒294的一覆蓋區之外的基底半導體材料292之上。在另一實施例中,絕緣層416係形成在半導體晶粒294的覆蓋區之內,而且並不延伸超出半導體晶粒294的覆蓋區。絕緣層416的一部分係藉由一種利用一圖案化的光阻層之蝕刻製程或是藉由LDA來加以移 除,以形成開口418來露出導電層414。 An insulating or protective layer 416 is formed over the insulating layer 410 and the conductive layer 414 by PVD, CVD, printing, spin coating, spray coating, screen printing, or lamination. The insulating layer 416 may be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other materials having similar insulating and structural properties. In one embodiment, the insulating layer 416 is a photosensitive dielectric polymer that cures at a low temperature of less than 200 °C. In an embodiment, insulating layer 416 is formed over semiconductor die 294 and overlying semiconductor semiconductor material 292 outside of a footprint of semiconductor die 294. In another embodiment, the insulating layer 416 is formed within the footprint of the semiconductor die 294 and does not extend beyond the footprint of the semiconductor die 294. A portion of the insulating layer 416 is removed by an etching process using a patterned photoresist layer or by LDA Divide to form opening 418 to expose conductive layer 414.
在圖15c中,半導體晶圓290係利用一鋸刀或雷射切割工具420,透過切割道296而被單粒化成為個別的半導體晶粒294。半導體晶圓290亦透過絕緣層316、絕緣層410以及絕緣層416而被單粒化,以形成側壁或側表面422。側表面422係包含半導體晶粒294的側邊以及絕緣層316、410及416。個別的半導體晶粒294可被檢查及電性測試,以用於單粒化後的KGD之識別。 In FIG. 15c, semiconductor wafer 290 is singulated into individual semiconductor dies 294 by dicing 296 using a saw or laser cutting tool 420. The semiconductor wafer 290 is also singulated by the insulating layer 316, the insulating layer 410, and the insulating layer 416 to form sidewalls or side surfaces 422. Side surface 422 includes sidewalls of semiconductor die 294 and insulating layers 316, 410, and 416. Individual semiconductor dies 294 can be inspected and electrically tested for identification of KGD after singulation.
在圖15d中,來自圖15c的半導體晶粒294例如是利用一拾放操作,在主動表面312被定向朝向載體430下被安裝到載體430及介面層432。半導體晶粒294被安裝到載體430的介面層432,以形成重組或是重新配置的晶圓436。 In Figure 15d, the semiconductor die 294 from Figure 15c is mounted to the carrier 430 and the interface layer 432, for example, using a pick and place operation with the active surface 312 oriented toward the carrier 430. Semiconductor die 294 is mounted to interface layer 432 of carrier 430 to form a reconstituted or reconfigured wafer 436.
載體430可以是一具有用於多個半導體晶粒294的容量之圓形或矩形面板(大於300mm)。載體430可具有一表面積大於半導體晶圓290或300的表面積。一較大的載體係降低該半導體封裝的製造成本,因為更多的半導體晶粒可以在該較大的載體上加以處理,藉此降低每單位的成本。半導體封裝及處理設備係針對於被處理的晶圓或載體的尺寸加以設計及配置。 Carrier 430 can be a circular or rectangular panel (greater than 300 mm) having a capacity for a plurality of semiconductor dies 294. Carrier 430 can have a surface area greater than the surface area of semiconductor wafer 290 or 300. A larger carrier reduces the manufacturing cost of the semiconductor package because more semiconductor dies can be processed on the larger carrier, thereby reducing the cost per unit. Semiconductor packaging and processing equipment is designed and configured for the size of the wafer or carrier being processed.
為了進一步降低製造成本,載體430的尺寸係與半導體晶粒294的尺寸或是半導體晶圓290及300的尺寸無關地加以選擇。換言之,載體430係具有固定或標準化的尺寸,其可以容納從一或多個半導體晶圓290及300被單粒化的各種尺寸的半導體晶粒294。在一實施例中,載體430是具有一330mm的直徑之圓形。在另一實施例中,載體430是具有一560mm 的寬度以及600mm的長度之矩形。半導體晶粒294可具有10mm乘10mm的尺寸,其係被設置在標準化的載體430上。或者是,半導體晶粒294可具有20mm乘20mm的尺寸,其係被設置在相同的標準化的載體430上。於是,標準化的載體430可以處理任何尺寸的半導體晶粒294,此係容許後續的半導體處理設備能夠被標準化到一共同的載體,亦即與晶粒尺寸或是進入的晶圓尺寸無關的。半導體封裝設備可以針對於一標準的載體來加以設計及配置,其係利用一組共同的處理工具、設備、以及材料清單以處理來自任何進入的晶圓尺寸的任何的半導體晶粒尺寸。該共同或是標準化的載體430係藉由降低或消除對於根據晶粒尺寸或是進入的晶圓尺寸之專用的半導體生產線之需求,來降低製造成本及資本風險。藉由選擇一預設的載體尺寸以使用於來自所有的半導體晶圓之任何尺寸的半導體晶粒,一具有彈性的製造線可加以實施。 To further reduce manufacturing costs, the size of the carrier 430 is selected independently of the size of the semiconductor die 294 or the size of the semiconductor wafers 290 and 300. In other words, carrier 430 has a fixed or standardized size that can accommodate semiconductor dies 294 of various sizes that are singulated from one or more semiconductor wafers 290 and 300. In one embodiment, the carrier 430 is circular with a diameter of 330 mm. In another embodiment, the carrier 430 has a 560 mm The width and the rectangle of the length of 600mm. The semiconductor die 294 can have a size of 10 mm by 10 mm that is disposed on a standardized carrier 430. Alternatively, the semiconductor die 294 can have a size of 20 mm by 20 mm that is disposed on the same standardized carrier 430. Thus, the standardized carrier 430 can process semiconductor dies 294 of any size, which allows subsequent semiconductor processing devices to be standardized to a common carrier, i.e., independent of die size or incoming wafer size. The semiconductor package device can be designed and configured for a standard carrier that utilizes a common set of processing tools, equipment, and bill of materials to process any semiconductor die size from any incoming wafer size. The common or standardized carrier 430 reduces manufacturing costs and capital risk by reducing or eliminating the need for a dedicated semiconductor production line based on die size or incoming wafer size. A flexible manufacturing line can be implemented by selecting a predetermined carrier size for use with semiconductor dies of any size from all semiconductor wafers.
重組晶圓436可被處理成為許多類型的半導體封裝,其包含扇入WLCSP、重組或eWLCSP、扇出WLCSP、覆晶封裝、例如是PoP的3D封裝、或是其它半導體封裝。重組晶圓436係根據所產生的半導體封裝的規格來加以配置。在一實施例中,半導體晶粒294係以一種高密度的配置,亦即相隔300μm或是更小而被設置在載體430上,以用於處理扇入裝置。半導體晶粒294係以分開一介於半導體晶粒294之間的間隙或距離D12而被設置到載體430之上。介於半導體晶粒294之間的距離D12係根據待被處理的半導體封裝的設計及規格來加以選擇。在一實施例中,介於半導體晶粒294之間的距離D12是50μm或是更小。在另一實施例中,介於半導體晶粒294之間的距離D12是100μm或是更小。在載體430上的介於半導體 晶粒294之間的距離D12係針對於以最低的單位成本來製造該些半導體封裝而被最佳化。 The reconstituted wafer 436 can be processed into many types of semiconductor packages including fan-in WLCSP, recombination or eWLCSP, fan-out WLCSP, flip chip package, 3D package such as PoP, or other semiconductor package. The reconstituted wafer 436 is configured according to the specifications of the resulting semiconductor package. In one embodiment, the semiconductor die 294 is disposed on the carrier 430 in a high density configuration, i.e., 300 [mu]m or less, for processing the fan-in device. The semiconductor die 294 is disposed over the carrier 430 with a gap or distance D12 between the semiconductor dies 294. The distance D12 between the semiconductor dies 294 is selected according to the design and specifications of the semiconductor package to be processed. In one embodiment, the distance D12 between the semiconductor dies 294 is 50 μm or less. In another embodiment, the distance D12 between the semiconductor dies 294 is 100 μm or less. Inter-semiconductor on carrier 430 The distance D12 between the dies 294 is optimized for manufacturing the semiconductor packages at the lowest unit cost.
圖15e係展示重組晶圓436的平面圖,其中半導體晶粒294係被設置在載體430之上。載體430是一具有用於各種尺寸及數量的半導體晶粒的容量之標準化的形狀及尺寸,該些半導體晶粒係從各種尺寸的半導體晶圓而被單粒化的。在一實施例中,載體430在形狀上是矩形,並且具有一560mm的寬度W4以及一600mm的長度L4。安裝到載體430的半導體晶粒294的數量可以是大於、小於、或是等於從半導體晶圓290被單粒化的半導體晶粒294的數量。越大表面積的載體430係容納更多的半導體晶粒294並且降低製造成本,因為每一重組晶圓436係處理更多的半導體晶粒294。 Figure 15e shows a plan view of a reconstituted wafer 436 in which semiconductor die 294 is disposed over carrier 430. Carrier 430 is a standardized shape and size having a capacity for semiconductor dies of various sizes and numbers that are singulated from semiconductor wafers of various sizes. In an embodiment, the carrier 430 is rectangular in shape and has a width W4 of 560 mm and a length L4 of 600 mm. The number of semiconductor dies 294 mounted to the carrier 430 can be greater than, less than, or equal to the number of semiconductor dies 294 that are singulated from the semiconductor wafer 290. The larger surface area carrier 430 accommodates more semiconductor grains 294 and reduces manufacturing costs because each reconstituted wafer 436 processes more semiconductor grains 294.
該標準化的載體(載體430)在尺寸上是固定的,並且可以容納多種尺寸的半導體晶粒。標準化的載體430的尺寸係與半導體晶粒或是半導體晶圓的尺寸無關的。相較於較大的半導體晶粒,更多小的半導體晶粒可以裝設在載體430之上。例如,載體430係在載體430的表面積之上容納比在載體430的表面積之上的10mm乘10mm晶粒的數量更大數量的5mm乘5mm晶粒。 The standardized carrier (carrier 430) is fixed in size and can accommodate semiconductor dies of various sizes. The size of the standardized carrier 430 is independent of the size of the semiconductor die or semiconductor wafer. More small semiconductor dies can be mounted on the carrier 430 than larger semiconductor dies. For example, carrier 430 holds a greater number of 5 mm by 5 mm grains than the number of 10 mm by 10 mm grains above the surface area of carrier 430 over the surface area of carrier 430.
例如,具有10mm乘10mm的尺寸之半導體晶粒294係在一介於相鄰的半導體晶粒294之間的200μm的距離D12下被設置在載體430上。從半導體晶圓290被單粒化的半導體晶粒294的數量係大約600個半導體晶粒,其中半導體晶圓290係具有一300mm的直徑。可以裝設在載體430上的10mm乘10mm的半導體晶粒294的數量係大約3,000個半導體晶粒。 或者是,具有5mm乘5mm的尺寸的半導體晶粒294係在一介於相鄰的半導體晶粒294之間的200μm的距離D12下被設置在載體430上。在半導體晶圓290具有一200mm的直徑之情形中,從半導體晶圓290被單粒化的半導體晶粒294的數量是大約1,000個半導體晶粒。可以裝設在載體430上的5mm乘5mm的半導體晶粒294的數量是大約12,000個半導體晶粒。 For example, a semiconductor die 294 having a size of 10 mm by 10 mm is disposed on the carrier 430 at a distance D12 of 200 μm between adjacent semiconductor dies 294. The number of semiconductor dies 294 that are singulated from the semiconductor wafer 290 is about 600 semiconductor dies, wherein the semiconductor wafer 290 has a diameter of 300 mm. The number of 10 mm by 10 mm semiconductor dies 294 that can be mounted on carrier 430 is about 3,000 semiconductor dies. Alternatively, the semiconductor die 294 having a size of 5 mm by 5 mm is disposed on the carrier 430 at a distance D12 of 200 μm between adjacent semiconductor dies 294. In the case where the semiconductor wafer 290 has a diameter of 200 mm, the number of semiconductor dies 294 that are singulated from the semiconductor wafer 290 is about 1,000 semiconductor dies. The number of 5 mm by 5 mm semiconductor dies 294 that can be mounted on carrier 430 is about 12,000 semiconductor dies.
載體430的尺寸並不隨著被處理的半導體晶粒的尺寸而變化。裝設在載體430上的半導體晶粒294的數量係隨著半導體晶粒294的尺寸以及介於半導體晶粒294之間的間隔或距離D12而改變。載體430的尺寸及形狀係維持固定的,並且與半導體晶粒294的尺寸或是半導體晶粒294被單粒化所來自的半導體晶圓290無關的。載體430及重組晶圓436係提供彈性以利用一組例如是來自圖9h的處理設備340之共同的處理設備來製造具有來自不同尺寸的半導體晶圓290之不同尺寸的半導體晶粒294的許多不同類型的半導體封裝。 The size of the carrier 430 does not vary with the size of the semiconductor die being processed. The number of semiconductor dies 294 disposed on the carrier 430 varies with the size of the semiconductor dies 294 and the spacing or distance D12 between the semiconductor dies 294. The size and shape of the carrier 430 remains fixed and independent of the size of the semiconductor die 294 or the semiconductor wafer 290 from which the semiconductor die 294 is singulated. Carrier 430 and reconstituted wafer 436 provide resiliency to fabricate many different semiconductor die 294 having different sizes of semiconductor wafers 290 from different sizes using a common processing device such as processing device 340 from Figure 9h. Type of semiconductor package.
在圖15f中,一種囊封體或模製化合物438係利用一膏印刷、轉移模製、液體囊封體模製、真空疊層、旋轉塗覆、或是其它適當的施用器以沉積在半導體晶粒294及載體430之上。囊封體438可以是聚合物複合材料,例如是具有填充物的環氧樹脂、具有填充物的環氧丙烯酸酯、或是具有適當的填充物的聚合物。囊封體438是非導電的,並且在環境上保護該半導體裝置免於外部的元素及污染物。在另一實施例中,囊封體438是一利用印刷、旋轉塗覆、噴霧塗覆、在加熱或是不在加熱下的真空或壓力疊層、或是其它適當的製程來加以沉積的絕緣或介電層,其係包含一或多層的光敏的低固化溫度的介電阻劑、光敏的複合阻劑、積層化合物膜、 具有填充物的絕緣膏、焊料遮罩阻劑膜、液體或顆粒模製化合物、聚醯亞胺、BCB、PBO、SiO2、Si3N4、SiON、Ta2O5、Al2O3、預浸料、或是其它具有類似的絕緣及結構的性質的介電材料。在一實施例中,囊封體438是一種在小於200℃下固化的具有或是不具有絕緣填充物之低溫固化的光敏的介電聚合物。 In Figure 15f, an encapsulant or molding compound 438 is deposited on the semiconductor using a paste printing, transfer molding, liquid encapsulation molding, vacuum lamination, spin coating, or other suitable applicator. Above the die 294 and the carrier 430. The encapsulant 438 can be a polymer composite such as an epoxy with a filler, an epoxy acrylate with a filler, or a polymer with a suitable filler. The encapsulant 438 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants. In another embodiment, the encapsulant 438 is an insulation or deposited by printing, spin coating, spray coating, vacuum or pressure lamination under heating or without heating, or other suitable process. a dielectric layer comprising one or more layers of a photosensitive low curing temperature dielectric resistor, a photosensitive composite resist, a laminated compound film, Insulating paste with filler, solder mask resist film, liquid or particulate molding compound, polyimine, BCB, PBO, SiO2, Si3N4, SiON, Ta2O5, Al2O3, prepreg, or the like Dielectric materials of insulating and structural properties. In one embodiment, the encapsulant 438 is a low temperature curing photosensitive dielectric polymer that cures at less than 200 ° C with or without an insulating filler.
尤其,囊封體438係沿著半導體晶粒294的側表面422來加以設置,並且因此覆蓋半導體晶粒294的每個側表面422以及絕緣層316、410及416。於是,囊封體438係覆蓋或接觸半導體晶粒294的至少四個表面,亦即半導體晶粒294的四個側表面422。囊封體438亦覆蓋半導體晶粒294的背表面310。囊封體438係保護半導體晶粒294避免由於曝光到來自光或是其它放射的光子所造成的劣化。在一實施例中,囊封體438是不透明的,並且在色彩上是暗的或是黑色的。囊封體438可被利用於雷射標記重組晶圓436,以用於對準及單粒化。在另一實施例中,囊封體438係加以沉積,使得囊封體438係與半導體晶粒294的背表面310共平面的,因而並不覆蓋背表面310。 In particular, the encapsulant 438 is disposed along the side surface 422 of the semiconductor die 294 and thus covers each side surface 422 of the semiconductor die 294 and the insulating layers 316, 410, and 416. Thus, the encapsulant 438 covers or contacts at least four surfaces of the semiconductor die 294, that is, the four side surfaces 422 of the semiconductor die 294. The encapsulant 438 also covers the back surface 310 of the semiconductor die 294. The encapsulant 438 protects the semiconductor die 294 from degradation due to exposure to photons from light or other radiation. In one embodiment, the encapsulant 438 is opaque and dark or black in color. Encapsulant 438 can be utilized for laser marking reconstituted wafer 436 for alignment and singulation. In another embodiment, the encapsulant 438 is deposited such that the encapsulant 438 is coplanar with the back surface 310 of the semiconductor die 294 and thus does not cover the back surface 310.
在圖15g中,囊封體344的一背表面440係利用研磨機442以進行一研磨操作,來平坦化及降低囊封體438的一厚度。一化學蝕刻亦可被利用以移除及平坦化囊封體438,並且形成平的背表面444。在一實施例中,囊封體438的一厚度係維持覆蓋在半導體晶粒294的背表面310之上。在另一實施例中,半導體晶粒294的背表面310係在該背面研磨步驟期間被露出。半導體晶粒294的一厚度亦可藉由該研磨操作而被降低。在一實施例中,半導體晶粒294係具有一225到305μm或是更小的厚度。 In Figure 15g, a back surface 440 of the encapsulant 344 is milled 442 to perform a polishing operation to planarize and reduce a thickness of the encapsulant 438. A chemical etch can also be utilized to remove and planarize the encapsulant 438 and form a flat back surface 444. In one embodiment, a thickness of the encapsulant 438 is maintained overlying the back surface 310 of the semiconductor die 294. In another embodiment, the back surface 310 of the semiconductor die 294 is exposed during the back grinding step. A thickness of the semiconductor die 294 can also be reduced by the polishing operation. In one embodiment, the semiconductor die 294 has a thickness of 225 to 305 [mu]m or less.
圖15h係展示被囊封體438覆蓋的重組晶圓436。在一實施例中,在沉積或是背面研磨之後,剩餘在半導體晶粒294的背表面310之上的囊封體438的厚度範圍是從大約170到230μm或是更小。在另一實施例中,剩餘在背表面310的半導體晶粒294之上的囊封體438的厚度範圍是從大約5到150μm。囊封體438的一與背表面440相對的表面448係被設置在載體430及介面層432之上。 Figure 15h shows a reconstituted wafer 436 covered by an encapsulant 438. In one embodiment, the thickness of the encapsulant 438 remaining over the back surface 310 of the semiconductor die 294 after deposition or backgrinding ranges from about 170 to 230 [mu]m or less. In another embodiment, the thickness of the encapsulant 438 remaining over the semiconductor die 294 of the back surface 310 ranges from about 5 to 150 [mu]m. A surface 448 of the encapsulant 438 opposite the back surface 440 is disposed over the carrier 430 and the interface layer 432.
在圖15i中,載體430及介面層432係藉由化學蝕刻、機械式剝離、CMP、機械式研磨、熱烘烤、UV光、雷射掃描、或是濕式剝除來加以移除,以露出絕緣層416、導電層414、以及囊封體438的表面448。 In FIG. 15i, the carrier 430 and the interface layer 432 are removed by chemical etching, mechanical peeling, CMP, mechanical grinding, hot baking, UV light, laser scanning, or wet stripping, The insulating layer 416, the conductive layer 414, and the surface 448 of the encapsulant 438 are exposed.
在圖15j中,在最終的再次鈍化之後,一導電層460係利用PVD、CVD、蒸鍍、電解的電鍍、無電的電鍍、或是其它適當的金屬沉積製程,以形成在導電層414的露出的部分之上並且在絕緣層416之上。導電層460可以是Al、Cu、Sn、Ni、Au、Ag、W、或是其它適當的導電材料。導電層460是一電連接至導電層414及314的UBM。UBM 460可以是一具有黏著層、阻障層、以及晶種或潤濕層之多金屬的堆疊。該黏著層係形成在導電層414之上,並且可以是Ti、TiN、TiW、Al或是Cr。該阻障層係形成在該黏著層之上,並且可以是Ni、NiV、Pt、Pd、TiW、Ti或是CrCu。該阻障層係禁止Cu擴散到半導體晶粒294的主動表面312中。該晶種層係形成在該阻障層之上,並且可以是Cu、Ni、NiV、Au或是Al。UBM 460係提供一低電阻的互連至導電層414、以及一焊料擴散的阻障及用於焊料可潤濕性的晶種層。 In FIG. 15j, after final re-passivation, a conductive layer 460 is formed by PVD, CVD, evaporation, electrolytic plating, electroless plating, or other suitable metal deposition process to form an exposed layer 414. Above the portion and above the insulating layer 416. Conductive layer 460 can be Al, Cu, Sn, Ni, Au, Ag, W, or other suitable electrically conductive material. Conductive layer 460 is a UBM that is electrically connected to conductive layers 414 and 314. UBM 460 can be a stack of multiple metals with an adhesion layer, a barrier layer, and a seed or wetting layer. The adhesive layer is formed over the conductive layer 414 and may be Ti, TiN, TiW, Al or Cr. The barrier layer is formed over the adhesive layer and may be Ni, NiV, Pt, Pd, TiW, Ti or CrCu. The barrier layer inhibits Cu from diffusing into the active surface 312 of the semiconductor die 294. The seed layer is formed over the barrier layer and may be Cu, Ni, NiV, Au or Al. UBM 460 provides a low resistance interconnect to conductive layer 414, as well as a solder diffusion barrier and a seed layer for solder wettability.
一種導電的凸塊材料係利用一蒸鍍、電解的電鍍、無電的電 鍍、球式滴落、或是網版印刷製程以沉積在導電層460之上。在一實施例中,該凸塊材料係利用一球式滴落模版來加以沉積,亦即不需要遮罩。該凸塊材料可以是具有一選配的助熔溶劑之Al、Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料、以及其之組合。例如,該凸塊材料可以是共晶Sn/Pb、高鉛的焊料、或是無鉛的焊料。該凸塊材料係利用一適當的附裝或接合製程而被接合到導電層460。在一實施例中,該凸塊材料係藉由加熱該材料超過其熔點來加以回焊,以形成球或凸塊462。在某些應用中,凸塊462係被回焊第二次以改善至導電層460的電性接觸。凸塊462亦可被壓縮接合或是熱壓接合到導電層460。凸塊462係代表一種可被形成在導電層460之上的互連結構類型。該互連結構亦可以使用接合線、導電膏、柱形凸塊、微凸塊、或是其它電互連。雷射標記可以在凸塊的形成之前或之後、或是在載體430的移除之後被執行。 A conductive bump material utilizes an evaporation, electrolytic plating, and electroless electricity A plating, ball drop, or screen printing process is deposited over the conductive layer 460. In one embodiment, the bump material is deposited using a ball drop stencil, i.e., no mask is required. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof with an optional fluxing solvent. For example, the bump material can be eutectic Sn/Pb, high lead solder, or lead free solder. The bump material is bonded to conductive layer 460 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material beyond its melting point to form a ball or bump 462. In some applications, bumps 462 are reflowed a second time to improve electrical contact to conductive layer 460. The bumps 462 can also be compression bonded or thermocompression bonded to the conductive layer 460. Bump 462 represents a type of interconnect structure that can be formed over conductive layer 460. The interconnect structure can also use bond wires, conductive pastes, stud bumps, microbumps, or other electrical interconnects. The laser mark can be performed before or after the formation of the bump or after the removal of the carrier 430.
絕緣層410及416、導電層414及460、以及凸塊462係全體構成一形成在半導體晶粒294之上並且在半導體晶粒294的一覆蓋區之內的堆積的互連結構466。半導體晶粒294的一相鄰半導體晶粒294的週邊區域並沒有互連結構466,並且囊封體438的表面448係維持從互連結構466露出的。堆積的互連結構466可包含只有一例如是導電層414的RDL或導電層、以及一例如是絕緣層410的絕緣層。額外的絕緣層及RDL可以在形成凸塊462之前被形成在絕緣層416之上,以根據半導體晶粒294的設計及功能來提供橫跨該封裝之額外的垂直及水平的電性連接。 The insulating layers 410 and 416, the conductive layers 414 and 460, and the bumps 462 all form a stacked interconnect structure 466 formed over the semiconductor die 294 and within a footprint of the semiconductor die 294. The peripheral region of an adjacent semiconductor die 294 of semiconductor die 294 does not have interconnect structure 466, and surface 448 of encapsulant 438 remains exposed from interconnect structure 466. The stacked interconnect structure 466 can include only one RDL or conductive layer, such as conductive layer 414, and an insulating layer, such as insulating layer 410. Additional insulating layers and RDL may be formed over insulating layer 416 prior to forming bumps 462 to provide additional vertical and horizontal electrical connections across the package depending on the design and function of semiconductor die 294.
在圖15k中,半導體晶粒294係利用鋸刀或雷射切割工具470,穿過囊封體438而被單粒化成為個別的eWLCSP 472。重組晶圓436係 被單粒化成為eWLCSP 472,以在半導體晶粒294的側表面422以及絕緣層316、410及416之上留下一薄層的囊封體438。或者是,重組晶圓436係被單粒化,以從側表面422完全移除囊封體438。eWLCSP 472係在單粒化之前或是之後進行電性測試。 In Figure 15k, the semiconductor die 294 is singulated into individual eWLCSPs 472 by a saw blade or laser cutting tool 470 through the encapsulant 438. Reconstituted wafer 436 It is singulated into eWLCSP 472 to leave a thin layer of encapsulant 438 over side surface 422 of semiconductor die 294 and insulating layers 316, 410 and 416. Alternatively, the reconstituted wafer 436 is singulated to completely remove the encapsulant 438 from the side surface 422. The eWLCSP 472 was electrically tested before or after singulation.
圖16係展示具有形成在半導體晶粒294的背表面310及側壁422之上的囊封體之eWLCSP 472。半導體晶粒294係透過導電層314、414及460以電連接至凸塊462,以用於透過互連結構466之外部的互連。互連結構466並不延伸超出半導體晶粒294的一覆蓋區,並且因此形成一扇入封裝。在圖15g中所示的研磨操作之後,囊封體438係維持在半導體晶粒294的背表面310之上。囊封體438係維持在半導體晶粒294的側表面422以及絕緣層316、410及416之上,以用於機械式保護並且保護避免由於曝光到來自光或是其它放射的光子所造成的劣化。因此,囊封體438係形成在半導體晶粒294的五個側邊之上,亦即在四個側表面422之上並且在背表面310之上。在半導體晶粒294的背表面310之上的囊封體438係消除對於一背面保護層或是背面積層的需求,藉此降低eWLCSP 472的成本。 FIG. 16 shows an eWLCSP 472 having an encapsulant formed over the back surface 310 and sidewalls 422 of the semiconductor die 294. Semiconductor die 294 is electrically coupled to bumps 462 through conductive layers 314, 414, and 460 for interconnecting the exterior of interconnect structure 466. The interconnect structure 466 does not extend beyond a footprint of the semiconductor die 294 and thus forms a fan-in package. After the lapping operation shown in Figure 15g, the encapsulant 438 is maintained over the back surface 310 of the semiconductor die 294. The encapsulant 438 is maintained over the side surface 422 of the semiconductor die 294 and over the insulating layers 316, 410 and 416 for mechanical protection and protection against degradation due to exposure to photons from light or other radiation. . Thus, the encapsulant 438 is formed over the five sides of the semiconductor die 294, that is, over the four side surfaces 422 and above the back surface 310. The encapsulant 438 over the back surface 310 of the semiconductor die 294 eliminates the need for a backside protective layer or backside layer, thereby reducing the cost of the eWLCSP 472.
對於eWLCSP 472而言,囊封體438在側表面422之上的厚度是小於150μm。在一實施例中,eWLCSP 472係具有在長度上的4.595mm×在寬度上的4.025mm×在高度上的0.470mm之尺寸以及一用於凸塊462的0.4mm的間距,其中半導體晶粒294係具有一4.445mm的長度以及一3.875mm的寬度。在另一實施例中,囊封體438在半導體晶粒294的側表面324之上的厚度是75μm或是更小。eWLCSP 472係具有在長度上的6.075mm×在寬度上的6.075mm×在高度上的0.8mm之尺寸以及一用於凸塊462的 0.5mm的間距,其中半導體晶粒294係具有在長度上的6.0mm×在寬度上的6.0mm×在高度上的0.470mm之尺寸。在又一實施例中,eWLCSP 472係具有在長度上的5.92mm×在寬度上的5.92mm×在高度上的0.765mm之尺寸以及一用於凸塊462的0.5mm的間距,其中半導體晶粒294係具有在長度上的5.75mm×在寬度上的5.75mm×在高度上的0.535mm之尺寸。在另一實施例中,囊封體438在側表面422之上的厚度是25μm或是更小。在又一實施例中,eWLCSP 472可被形成具有一14mm的長度以及一14mm的寬度。eWLCSP 472係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體430上形成一重組晶圓來加以製造,此係降低用於eWLCSP 472的設備及材料成本。eWLCSP 472係利用標準化的載體430以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 For eWLCSP 472, the thickness of the encapsulant 438 above the side surface 422 is less than 150 [mu]m. In one embodiment, the eWLCSP 472 has a size of 4.595 mm in length x 4.025 mm in width x 0.470 mm in height and a pitch of 0.4 mm for the bumps 462, wherein the semiconductor die 294 It has a length of 4.445 mm and a width of 3.875 mm. In another embodiment, the thickness of the encapsulant 438 above the side surface 324 of the semiconductor die 294 is 75 μm or less. The eWLCSP 472 has a size of 6.075 mm in length x 6.075 mm in width x 0.8 mm in height and one for the bump 462. A pitch of 0.5 mm in which the semiconductor die 294 has a size of 6.0 mm in length × 6.0 mm in width × 0.470 mm in height. In yet another embodiment, the eWLCSP 472 has a size of 5.92 mm in length x 5.92 mm in width x 0.765 mm in height and a pitch of 0.5 mm for the bumps 462, wherein the semiconductor die The 294 series has a size of 5.75 mm in length x 5.75 mm in width x 0.535 mm in height. In another embodiment, the thickness of the encapsulant 438 above the side surface 422 is 25 [mu]m or less. In yet another embodiment, the eWLCSP 472 can be formed to have a length of 14 mm and a width of 14 mm. The eWLCSP 472 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 430, which reduces the cost of equipment and materials for the eWLCSP 472. The eWLCSP 472 is manufactured in a larger amount using a standardized carrier 430, thereby simplifying the process and reducing unit cost.
圖17係展示另一具有在半導體晶粒294的背表面310之上的囊封體438以及半導體晶粒294的露出的側壁422之eWLCSP 480。半導體晶粒294係透過導電層314、414及460以電連接至凸塊462,以用於透過互連結構466之外部的互連。互連結構466並不延伸超出半導體晶粒294的一覆蓋區,並且因此形成一扇入封裝。圖15g中所示的研磨操作之後,囊封體438係維持在半導體晶粒294的背表面310之上。在半導體晶粒294的背表面310之上的囊封體438係消除對於一背面保護層或是背面積層的需求,藉此降低eWLCSP 480的成本。囊封體438係在單粒化期間完全從半導體晶粒294的側表面422以及絕緣層316、410及416被移除,以露出側表面422。eWLCSP 480的長度及寬度係和半導體晶粒294的長度及寬度相同的。在一實施例中,eWLCSP 480係具有大約在長度上的4.445mm×在寬度上 的3.875mm之尺寸,其具有一用於凸塊462的0.35-0.50mm的間距。在另一實施例中,eWLCSP 480可被形成具有一14mm的長度以及一14mm的寬度。eWLCSP 480係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體430上形成一重組晶圓來加以製造,此係降低用於eWLCSP 480的設備及材料成本。eWLCSP 480係利用標準化的載體430以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 17 shows another eWLCSP 480 having an encapsulation 438 over the back surface 310 of the semiconductor die 294 and exposed sidewalls 422 of the semiconductor die 294. Semiconductor die 294 is electrically coupled to bumps 462 through conductive layers 314, 414, and 460 for interconnecting the exterior of interconnect structure 466. The interconnect structure 466 does not extend beyond a footprint of the semiconductor die 294 and thus forms a fan-in package. After the lapping operation shown in Figure 15g, the encapsulant 438 is maintained over the back surface 310 of the semiconductor die 294. The encapsulant 438 over the back surface 310 of the semiconductor die 294 eliminates the need for a backside protective layer or backside layer, thereby reducing the cost of the eWLCSP 480. The encapsulant 438 is completely removed from the side surface 422 of the semiconductor die 294 and the insulating layers 316, 410, and 416 during singulation to expose the side surface 422. The length and width of the eWLCSP 480 are the same as the length and width of the semiconductor die 294. In one embodiment, the eWLCSP 480 has a thickness of approximately 4.445 mm over the length. The 3.875 mm size has a pitch of 0.35-0.50 mm for the bumps 462. In another embodiment, the eWLCSP 480 can be formed to have a length of 14 mm and a width of 14 mm. The eWLCSP 480 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 430, which reduces the cost of equipment and materials for the eWLCSP 480. The eWLCSP 480 is manufactured in a larger amount using a standardized carrier 430, thereby simplifying the process and reducing unit cost.
圖18係展示在單粒化之後具有在半導體晶粒294的側壁422之上的囊封體以及背面保護層484之eWLCSP 482。半導體晶粒294係透過導電層314、414及460以電連接至凸塊462,以用於透過互連結構466之外部的互連。互連結構466並不延伸超出半導體晶粒294的一覆蓋區,並且因此形成一扇入封裝。囊封體438係完全從半導體晶粒294的背表面310被移除。背面絕緣層或是背面保護層484係形成在半導體晶粒294的背表面310之上,以用於機械式保護並且保護避免由於曝光到來自光或是其它放射的光子所造成的劣化。背面保護層484係包含一或多層的光敏的低固化溫度的介電阻劑、光敏的複合阻劑、積層化合物膜、具有填充物或玻璃纖維織物的樹脂基質複合片、具有填充物及玻璃纖維織物的樹脂基質複合片、具有填充物的絕緣膏、焊料遮罩阻劑膜、液體模製化合物、顆粒模製化合物、聚醯亞胺、BCB、PBO、SiO2、Si3N4、SiON、Ta2O5、Al2O3、預浸料、或是其它具有類似的絕緣及結構的性質的介電材料。背面保護層484係利用印刷、旋轉塗覆、噴霧塗覆、在加熱或是不在加熱下的真空或壓力疊層、或是其它適當的製程來加以沉積。在一實施例中,背面保護層484是一種在小於200℃下固化的具有或是不具有絕緣填充物之低溫固化的光敏的介 電聚合物。背面保護層484係提供機械式保護給半導體晶粒294,並且保護以避開光。在一實施例中,背面保護層484係具有一範圍從大約5到150μm的厚度。或者是,背面保護層484是一施加至重組晶圓436的一背面的例如為Cu箔的金屬層。背面保護層484係接觸半導體晶粒294的背表面310以從半導體晶粒294傳導熱,並且改善該裝置的熱效能。 Figure 18 shows an eWLCSP 482 having an encapsulant over the sidewall 422 of the semiconductor die 294 and a backside protective layer 484 after singulation. Semiconductor die 294 is electrically coupled to bumps 462 through conductive layers 314, 414, and 460 for interconnecting the exterior of interconnect structure 466. The interconnect structure 466 does not extend beyond a footprint of the semiconductor die 294 and thus forms a fan-in package. The encapsulant 438 is completely removed from the back surface 310 of the semiconductor die 294. A backside insulating layer or backside protective layer 484 is formed over the back surface 310 of the semiconductor die 294 for mechanical protection and protection against degradation due to exposure to photons from light or other radiation. The back protective layer 484 comprises one or more layers of photosensitive low curing temperature dielectric resistors, photosensitive composite resists, laminated compound films, resin matrix composite sheets with filler or fiberglass fabric, with fillers and fiberglass fabrics. Resin matrix composite sheet, insulating paste with filler, solder mask resist film, liquid molding compound, particle molding compound, polyimine, BCB, PBO, SiO2, Si3N4, SiON, Ta2O5, Al2O3, pre Dip, or other dielectric material with similar insulating and structural properties. Backside protective layer 484 is deposited by printing, spin coating, spray coating, vacuum or pressure lamination with or without heating, or other suitable process. In one embodiment, the backside protective layer 484 is a low temperature curing photosensitive medium that cures at less than 200 ° C with or without an insulating filler. Electrical polymer. Backside protective layer 484 provides mechanical protection to semiconductor die 294 and is protected from light. In an embodiment, the backside protective layer 484 has a thickness ranging from about 5 to 150 [mu]m. Alternatively, the backside protective layer 484 is a metal layer, such as a Cu foil, applied to a back side of the reconstituted wafer 436. The backside protective layer 484 contacts the back surface 310 of the semiconductor die 294 to conduct heat from the semiconductor die 294 and improve the thermal performance of the device.
囊封體438係覆蓋半導體晶粒294的側表面422,以保護半導體晶粒294避免由於曝光到來自光或是其它放射的光子所造成的劣化。對於eWLCSP 482而言,囊封體438在側表面422之上的厚度是小於150μm。在一實施例中,eWLCSP 482係具有在長度上的4.595mm×在寬度上的4.025mm×在高度上的0.470mm之尺寸以及一用於凸塊462的0.4mm的間距,其中半導體晶粒294係具有一4.445mm的長度以及一3.875mm的寬度。在另一實施例中,囊封體438在側表面422之上的厚度是75μm或是更小。eWLCSP 482係具有在長度上的6.075mm×在寬度上的6.075mm×在高度上的0.8mm之尺寸以及一用於凸塊462的0.5mm的間距,其中半導體晶粒294係具有在長度上的6.0mm×在寬度上的6.0mm×在高度上的0.470mm之尺寸。在又一實施例中,eWLCSP 482係具有在長度上的5.92mm×在寬度上的5.92mm×在高度上的0.765mm之尺寸以及一用於凸塊462的0.5mm的間距,其中半導體晶粒294係具有在長度上的5.75mm×在寬度上的5.75mm×在高度上的0.535mm之尺寸。在另一實施例中,囊封體438在側表面422之上的厚度是25μm或是更小。在又一實施例中,eWLCSP 482可被形成具有一14mm的長度以及一14mm的寬度。eWLCSP 482係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體430上形成一重組晶圓來加以製 造,此係降低用於eWLCSP 482的設備及材料成本。eWLCSP 482係利用標準化的載體430以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 The encapsulant 438 covers the side surface 422 of the semiconductor die 294 to protect the semiconductor die 294 from degradation due to exposure to photons from light or other radiation. For eWLCSP 482, the thickness of the encapsulant 438 above the side surface 422 is less than 150 [mu]m. In one embodiment, the eWLCSP 482 has a size of 4.595 mm in length x 4.025 mm in width x 0.470 mm in height and a pitch of 0.4 mm for the bumps 462, wherein the semiconductor die 294 It has a length of 4.445 mm and a width of 3.875 mm. In another embodiment, the thickness of the encapsulant 438 above the side surface 422 is 75 [mu]m or less. The eWLCSP 482 has a size of 6.075 mm in length x 6.075 mm in width x 0.8 mm in height and a pitch of 0.5 mm for the bump 462, wherein the semiconductor die 294 has a length. 6.0 mm × 6.0 mm in width × 0.470 mm in height. In yet another embodiment, the eWLCSP 482 has a size of 5.92 mm in length x 5.92 mm in width x 0.765 mm in height and a pitch of 0.5 mm for the bumps 462, wherein the semiconductor die The 294 series has a size of 5.75 mm in length x 5.75 mm in width x 0.535 mm in height. In another embodiment, the thickness of the encapsulant 438 above the side surface 422 is 25 [mu]m or less. In yet another embodiment, the eWLCSP 482 can be formed to have a length of 14 mm and a width of 14 mm. The eWLCSP 482 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 430. This reduces the cost of equipment and materials used for eWLCSP 482. The eWLCSP 482 is manufactured in a larger amount using a standardized carrier 430, thereby simplifying the process and reducing unit cost.
圖19係展示一具有背面保護層484以及露出的側壁422之替代的eWLCSP 488。半導體晶粒294係透過導電層314、414及460以電連接至凸塊462,以用於透過互連結構466之外部的互連。互連結構466並不延伸超出半導體晶粒294的一覆蓋區,並且因此形成一扇入封裝。囊封體438係從半導體晶粒294的背表面310完全被移除。背面絕緣層或是背面保護層484係形成在半導體晶粒294的背表面310之上,以用於機械式保護並且保護避免由於曝光到來自光或是其它放射的光子所造成的劣化。囊封體438係在單粒化期間完全從半導體晶粒294的側表面324被移除,以露出側表面422。eWLCSP 488的長度及寬度係和半導體晶粒294的長度及寬度相同的。在一實施例中,eWLCSP 488係具有大約在長度上的4.4mm×在寬度上的3.9mm之尺寸,其具有一用於凸塊462的0.35-0.50mm的間距。在另一實施例中,eWLCSP 488可被形成具有一14mm的長度以及一14mm的寬度。eWLCSP 488係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體430上形成一重組晶圓來加以製造,此係降低用於eWLCSP 488的設備及材料成本。eWLCSP 488係利用標準化的載體430以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 Figure 19 shows an alternative eWLCSP 488 having a backside protective layer 484 and exposed sidewalls 422. Semiconductor die 294 is electrically coupled to bumps 462 through conductive layers 314, 414, and 460 for interconnecting the exterior of interconnect structure 466. The interconnect structure 466 does not extend beyond a footprint of the semiconductor die 294 and thus forms a fan-in package. The encapsulant 438 is completely removed from the back surface 310 of the semiconductor die 294. A backside insulating layer or backside protective layer 484 is formed over the back surface 310 of the semiconductor die 294 for mechanical protection and protection against degradation due to exposure to photons from light or other radiation. The encapsulant 438 is completely removed from the side surface 324 of the semiconductor die 294 during singulation to expose the side surface 422. The length and width of the eWLCSP 488 are the same as the length and width of the semiconductor die 294. In one embodiment, the eWLCSP 488 has a dimension of approximately 4.4 mm in length x 3.9 mm in width having a pitch of 0.35-0.50 mm for the bumps 462. In another embodiment, the eWLCSP 488 can be formed to have a length of 14 mm and a width of 14 mm. The eWLCSP 488 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 430, which reduces the cost of equipment and materials for the eWLCSP 488. The eWLCSP 488 is manufactured in a larger amount using a standardized carrier 430, thereby simplifying the process and reducing unit cost.
圖20係展示一類似於eWLCSP 482的eWLCSP 486,但是並無導電層460。凸塊462係直接形成在導電層414上。該凸塊材料係利用一適當的附裝或接合製程而被接合到導電層414。在一實施例中,該凸塊材料 係藉由加熱該材料超過其熔點來加以回焊,以形成球或凸塊462。在某些應用中,凸塊462係被回焊第二次以改善至導電層414的電性接觸。凸塊462亦可被壓縮接合或是熱壓接合到導電層414。凸塊462係代表一種可被形成在導電層414之上的互連結構類型。該互連結構亦可以使用接合線、導電膏、柱形凸塊、微凸塊、或是其它電互連。 Figure 20 shows an eWLCSP 486 similar to eWLCSP 482, but without a conductive layer 460. Bumps 462 are formed directly on conductive layer 414. The bump material is bonded to conductive layer 414 using a suitable attachment or bonding process. In an embodiment, the bump material The material is reflowed by heating the material beyond its melting point to form a ball or bump 462. In some applications, bumps 462 are reflowed a second time to improve electrical contact to conductive layer 414. The bumps 462 can also be compression bonded or thermocompression bonded to the conductive layer 414. Bump 462 represents a type of interconnect structure that can be formed over conductive layer 414. The interconnect structure can also use bond wires, conductive pastes, stud bumps, microbumps, or other electrical interconnects.
半導體晶粒294係透過導電層314及414以電連接至凸塊462,以用於透過互連結構466之外部的互連。互連結構466並不延伸超出半導體晶粒294的一覆蓋區,並且因此形成一扇入封裝。囊封體438係完全從半導體晶粒294的背表面310被移除。背面保護層484係形成在半導體晶粒294的背表面310之上,以用於機械式保護並且保護避免由於曝光到來自光或是其它放射的光子所造成的劣化。囊封體438係覆蓋半導體晶粒294的側表面422,以保護半導體晶粒294避免由於曝光到來自光或是其它放射的光子所造成的劣化。對於eWLCSP 486而言,囊封體438在側表面422之上的厚度是小於150μm。eWLCSP 486係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體430上形成一重組晶圓來加以製造,此係降低用於eWLCSP 486的設備及材料成本。eWLCSP 486係利用標準化的載體430以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 Semiconductor die 294 is electrically coupled to bumps 462 through conductive layers 314 and 414 for interconnection through the exterior of interconnect structure 466. The interconnect structure 466 does not extend beyond a footprint of the semiconductor die 294 and thus forms a fan-in package. The encapsulant 438 is completely removed from the back surface 310 of the semiconductor die 294. A backside protective layer 484 is formed over the back surface 310 of the semiconductor die 294 for mechanical protection and protection against degradation due to exposure to photons from light or other radiation. The encapsulant 438 covers the side surface 422 of the semiconductor die 294 to protect the semiconductor die 294 from degradation due to exposure to photons from light or other radiation. For the eWLCSP 486, the thickness of the encapsulant 438 above the side surface 422 is less than 150 [mu]m. The eWLCSP 486 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 430, which reduces the cost of equipment and materials for the eWLCSP 486. The eWLCSP 486 is manufactured in a larger amount using a standardized carrier 430, thereby simplifying the process and reducing unit cost.
圖21係展示另一具有露出的背表面310以及半導體晶粒294的側壁422之eWLCSP 490。半導體晶粒294係透過導電層314、414及460以電連接至凸塊462,以用於透過互連結構466之外部的互連。互連結構466並不延伸超出半導體晶粒294的一覆蓋區,並且因此形成一扇入封裝。囊封體438係在圖15g中所示的研磨操作期間完全從半導體晶粒294的背表面 310被移除。囊封體438係在單粒化期間完全從半導體晶粒294的側表面422被移除,以露出側表面422。eWLCSP 490的長度及寬度係和半導體晶粒294的長度及寬度相同的。在一實施例中,eWLCSP 490係具有大約在長度上的4.4mm×在寬度上的3.9mm之尺寸,其具有一用於凸塊462的0.35-0.50mm的間距。eWLCSP 490係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體430上形成一重組晶圓來加以製造,此係降低用於eWLCSP 490的設備及材料成本。eWLCSP 490係利用標準化的載體430以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 21 shows another eWLCSP 490 having an exposed back surface 310 and sidewalls 422 of semiconductor die 294. Semiconductor die 294 is electrically coupled to bumps 462 through conductive layers 314, 414, and 460 for interconnecting the exterior of interconnect structure 466. The interconnect structure 466 does not extend beyond a footprint of the semiconductor die 294 and thus forms a fan-in package. The encapsulant 438 is completely from the back surface of the semiconductor die 294 during the lapping operation shown in Figure 15g. 310 was removed. The encapsulant 438 is completely removed from the side surface 422 of the semiconductor die 294 during singulation to expose the side surface 422. The length and width of the eWLCSP 490 are the same as the length and width of the semiconductor die 294. In one embodiment, the eWLCSP 490 has a dimension of approximately 4.4 mm in length x 3.9 mm in width having a pitch of 0.35-0.50 mm for the bumps 462. The eWLCSP 490 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 430, which reduces the cost of equipment and materials for the eWLCSP 490. The eWLCSP 490 is manufactured in a larger amount using a standardized carrier 430, thereby simplifying the process and reducing unit cost.
圖22a-22m係相關於圖1及2a-2c來描繪一種形成一具有在該半導體晶粒的側壁之上的囊封體並且具有一露出的背表面之扇入eWLCSP的製程。圖22a係展示半導體晶圓500的一部分的一橫截面圖,其係具有一種基底基板材料502,例如是矽、鍺、砷化鎵、磷化銦、或是矽碳化物,以用於結構的支撐。複數個藉由一非主動的晶粒間的晶圓區域或切割道506分開的半導體晶粒或構件504係形成在晶圓500上。切割道506係提供切割區域以單粒化半導體晶圓500成為個別的半導體晶粒504。在一實施例中,半導體晶圓500在直徑上是200-300mm。在另一實施例中,半導體晶圓500在直徑上是100-450mm。在單粒化半導體晶圓500成為個別的半導體晶粒504之前,半導體晶圓500可具有任意的直徑。 Figures 22a-22m relate to Figures 1 and 2a-2c depicting a process for forming a fan-in eWLCSP having an encapsulant over the sidewalls of the semiconductor die and having an exposed back surface. 22a is a cross-sectional view showing a portion of a semiconductor wafer 500 having a base substrate material 502, such as tantalum, niobium, gallium arsenide, indium phosphide, or tantalum carbide, for structural use. support. A plurality of semiconductor dies or features 504 separated by a non-active inter-die wafer region or scribe 506 are formed over wafer 500. The scribe line 506 provides a dicing area to singulate the semiconductor wafer 500 into individual semiconductor dies 504. In one embodiment, the semiconductor wafer 500 is 200-300 mm in diameter. In another embodiment, the semiconductor wafer 500 is 100-450 mm in diameter. The semiconductor wafer 500 may have any diameter before the singulated semiconductor wafer 500 becomes an individual semiconductor die 504.
每個半導體晶粒504係具有一背面或非主動表面508以及一包含類比或數位電路的主動表面510,該些類比或數位電路係被實施為形成在該晶粒內並且根據該晶粒的電性設計及功能電性互連的主動元件、被動元件、導電層、以及介電層。例如,該電路可包含形成在主動表面510之 內的一或多個電晶體、二極體、以及其它電路元件,以實施例如是DSP、ASIC、記憶體、或是其它信號處理電路的類比電路或數位電路。半導體晶粒504亦可包含例如是電感器、電容器、以及電阻器的IPD,以用於RF信號處理。 Each semiconductor die 504 has a back or non-active surface 508 and an active surface 510 comprising an analog or digital circuit implemented to be formed within the die and based on the die Active components, passive components, conductive layers, and dielectric layers that are electrically connected and functionally interconnected. For example, the circuit can include a formation on the active surface 510 One or more transistors, diodes, and other circuit components within the system to implement analog or digital circuits such as DSPs, ASICs, memories, or other signal processing circuits. Semiconductor die 504 may also include IPDs such as inductors, capacitors, and resistors for RF signal processing.
一導電層512係利用PVD、CVD、電解的電鍍、無電的電鍍製程、或是其它適當的金屬沉積製程以形成在主動表面510之上。導電層512可以是一或多層的Al、Cu、Sn、Ni、Au、Ag、或是其它適當的導電材料。導電層512係運作為電連接至主動表面510上的電路的接觸墊。如同在圖22a中所示,導電層512可被形成為相隔半導體晶粒504的邊緣或側壁514一第一距離被並排設置的接觸墊。或者是,導電層512可被形成為以多個列偏置的接觸墊,使得一第一列的接觸墊係相隔半導體晶粒504的邊緣514一第一距離而被設置,並且一和該第一列交錯的第二列的接觸墊係相隔半導體晶粒504的邊緣514一第二距離而被設置。 A conductive layer 512 is formed over the active surface 510 by PVD, CVD, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 512 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 512 operates as a contact pad that is electrically connected to circuitry on active surface 510. As shown in FIG. 22a, the conductive layer 512 can be formed as a contact pad that is spaced apart from each other by a first distance or a sidewall 514 of the semiconductor die 504. Alternatively, the conductive layer 512 can be formed as a contact pad biased in a plurality of columns such that the contact pads of a first column are disposed a first distance apart from the edge 514 of the semiconductor die 504, and the first and the first A row of staggered second columns of contact pads are disposed a second distance apart from the edge 514 of the semiconductor die 504.
一第一絕緣或保護層516係利用PVD、CVD、印刷、旋轉塗覆、噴霧塗覆、燒結或是熱氧化以形成在半導體晶粒504及導電層512之上。絕緣層516係包含一或多層的SiO2、Si3N4、SiON、Ta2O5、Al2O3、HfO2、BCB、PI、PBO、聚合物、或是其它具有類似的結構及絕緣性質的介電材料。在一實施例中,絕緣層516是一種在小於200℃下固化的具有或是不具有絕緣填充物之低溫固化的光敏的介電聚合物。絕緣層516係覆蓋並且提供保護給主動表面510。絕緣層516係保形地被施加在半導體晶粒504的導電層512及主動表面510之上,而且並不延伸到半導體晶粒504的邊緣514之上、或是超過半導體晶粒504的一覆蓋區。半導體晶粒504的一相鄰半導體晶粒 504的週邊區域並沒有絕緣層516。絕緣層516的一部分係藉由利用雷射520的LDA、或是藉由透過一圖案化的光阻層之一蝕刻製程來加以移除,以在絕緣層516中形成開口522。開口522係透過絕緣層516以露出導電層512,並且提供用於後續的電互連。 A first insulating or protective layer 516 is formed over the semiconductor die 504 and conductive layer 512 by PVD, CVD, printing, spin coating, spray coating, sintering, or thermal oxidation. The insulating layer 516 comprises one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, HfO2, BCB, PI, PBO, polymer, or other dielectric material having similar structural and insulating properties. In one embodiment, the insulating layer 516 is a low temperature curing photosensitive dielectric polymer that cures at less than 200 ° C with or without an insulating filler. The insulating layer 516 covers and provides protection to the active surface 510. The insulating layer 516 is conformally applied over the conductive layer 512 and the active surface 510 of the semiconductor die 504 and does not extend over the edge 514 of the semiconductor die 504 or exceeds a coverage of the semiconductor die 504. Area. An adjacent semiconductor die of semiconductor die 504 There is no insulating layer 516 in the peripheral region of 504. A portion of the insulating layer 516 is removed by an LDA utilizing the laser 520 or by an etching process through a patterned photoresist layer to form an opening 522 in the insulating layer 516. Opening 522 is through insulating layer 516 to expose conductive layer 512 and is provided for subsequent electrical interconnection.
半導體晶圓500係進行電性測試及檢查,以作為一品質管制過程的部分。人工的視覺檢查以及自動化的光學系統係被用來在半導體晶圓500上執行檢查。軟體可被利用在半導體晶圓500的自動化的光學分析中。視覺的檢查方法可以利用例如是一掃描電子顯微鏡、高強度或紫外線光、或是金相顯微鏡的設備。半導體晶圓500係被檢查包含翹曲、厚度變化、表面微粒、不規則性、裂縫、脫層以及變色之結構的特徵。 The semiconductor wafer 500 is electrically tested and inspected as part of a quality control process. Manual visual inspection and automated optical systems are used to perform inspections on the semiconductor wafer 500. The software can be utilized in automated optical analysis of the semiconductor wafer 500. The visual inspection method can utilize, for example, a scanning electron microscope, high intensity or ultraviolet light, or a metallographic microscope. The semiconductor wafer 500 is characterized by a structure including warpage, thickness variation, surface particles, irregularities, cracks, delamination, and discoloration.
在半導體晶粒504內的主動及被動構件係在晶圓層級針對於電性效能及電路功能來進行測試。每個半導體晶粒504係利用一探針或其它測試裝置來針對功能及電性參數加以測試。一探針係被用來電性接觸到在每個半導體晶粒504上的節點或接觸墊512,並且提供電性刺激至該些接觸墊。半導體晶粒504係響應於該些電性刺激,此係被量測且相較於一預期的響應,以測試該半導體晶粒的功能。該些電性測試可包含電路功能、引線完整性、電阻率、連續性、可靠度、接面深度、ESD、RF效能、驅動電流、臨界電流、漏電流、以及該構件類型特有的操作參數。半導體晶圓500的檢查及電性測試係使得通過的半導體晶粒504能夠被標明為用於一半導體封裝的KGD。 Active and passive components within the semiconductor die 504 are tested at the wafer level for electrical performance and circuit function. Each semiconductor die 504 is tested for functional and electrical parameters using a probe or other test device. A probe system is used to electrically contact the nodes or contact pads 512 on each of the semiconductor dies 504 and provide electrical stimulation to the contact pads. The semiconductor die 504 is responsive to the electrical stimuli, which are measured and compared to an expected response to test the function of the semiconductor die. These electrical tests may include circuit function, lead integrity, resistivity, continuity, reliability, junction depth, ESD, RF performance, drive current, critical current, leakage current, and operating parameters specific to the type of component. Inspection and electrical testing of the semiconductor wafer 500 enables the passed semiconductor die 504 to be designated as KGD for a semiconductor package.
在圖22b中,一溝槽或通道530係利用鋸刀或雷射切割工具532而被切入在切割道506內的基底基板材料502中。溝槽530係環繞半導 體晶粒504的一週邊區域而延伸。溝槽530的寬度係小於切割道506的寬度。在一實施例中,鋸刀532係被選擇為具有一寬度是小於切割道506的一寬度。鋸刀532係具有一寬度是小於切割道506的寬度約1μm。鋸刀532的寬度係容許溝槽530能夠相隔半導體晶粒504的邊緣514一距離D14來加以形成。在一實施例中,介於溝槽530以及邊緣514之間的距離D14是0.5μm或是較大的。在另一實施例中,切割道506是比溝槽530或鋸刀532寬超過1μm。溝槽530係部分穿過基底基板材料502來加以形成,並且具有一150μm或是更小的深度。在一實施例中,溝槽530係具有一60μm或是更小的深度。鋸刀532係被選擇成具有一範圍從1,500到3,500的粒度尺寸。溝槽530的形成係構成在一用於半導體晶圓500之階梯的單粒化製程中的第一切割。 In Figure 22b, a groove or channel 530 is cut into the base substrate material 502 within the scribe line 506 using a saw or laser cutting tool 532. The trench 530 is surrounded by a semi-conductive The peripheral region of the bulk crystal grains 504 extends. The width of the trench 530 is less than the width of the scribe line 506. In one embodiment, the saw blade 532 is selected to have a width that is less than a width of the cutting track 506. The saw blade 532 has a width that is less than about 1 [mu]m across the width of the cutting track 506. The width of the saw blade 532 is such that the trench 530 can be formed by being spaced apart from the edge 514 of the semiconductor die 504 by a distance D14. In one embodiment, the distance D14 between the trench 530 and the edge 514 is 0.5 [mu]m or larger. In another embodiment, the scribe line 506 is more than 1 [mu]m wider than the groove 530 or the saw blade 532. The trench 530 is partially formed through the base substrate material 502 and has a depth of 150 μm or less. In one embodiment, trench 530 has a depth of 60 [mu]m or less. The saw blade 532 is selected to have a particle size ranging from 1,500 to 3,500. The formation of trenches 530 constitutes a first dicing in a single granulation process for the steps of semiconductor wafer 500.
在圖22c中,半導體晶圓500係利用一鋸刀或雷射切割工具540,透過切割道506而被單粒化以分開半導體晶圓500成為個別的半導體晶粒504。半導體晶圓500係透過溝槽530並且透過在切割道506內的基底基板材料502而被單粒化。在一實施例中,鋸刀540係被選擇成具有一類似鋸刀532的粒度尺寸,亦即具有一範圍從1,500到3,500的粒度尺寸。在另一實施例中,鋸刀540係被選擇成具有一比鋸刀532粗的粒度尺寸。基底基板材料502的一部分係藉由鋸刀540來加以移除,同時留下溝槽530及基底基板材料502的一部分在切割道506之內。基底基板材料502的一部分係維持設置在半導體晶粒504的側壁514上。基底基板材料502係在半導體晶粒504周圍形成一密封環。 In FIG. 22c, semiconductor wafer 500 is singulated by dicing streets 506 using a saw or laser cutting tool 540 to separate semiconductor wafers 500 into individual semiconductor dies 504. The semiconductor wafer 500 is singulated by the trench 530 and transmitted through the base substrate material 502 in the scribe line 506. In one embodiment, the saw blade 540 is selected to have a particle size similar to the saw blade 532, i.e., having a particle size ranging from 1,500 to 3,500. In another embodiment, the saw blade 540 is selected to have a grain size that is thicker than the saw blade 532. A portion of the base substrate material 502 is removed by the saw blade 540 while leaving a portion of the trench 530 and the base substrate material 502 within the scribe line 506. A portion of the base substrate material 502 is maintained disposed on the sidewall 514 of the semiconductor die 504. The base substrate material 502 forms a seal ring around the semiconductor die 504.
在一實施例中,鋸刀540係具有一寬度小於鋸刀532的寬度、或是小於溝槽530的寬度。鋸刀540的一寬度是小於鋸刀532的一寬度 至少5μm,並且在單粒化之後,溝槽530的一部分係保持在半導體晶粒504的一週邊區域中。利用一第二且較薄的切割的半導體晶圓500的單粒化係產生一形成在基底基板材料502中的步階切割或缺口544。缺口544係藉由利用比鋸刀532薄的鋸刀540,透過溝槽530的單粒化本質而維持在半導體晶粒504的一週邊區域中的基底基板材料502內。在一實施例中,一介於溝槽530的邊緣以及側表面542之間的距離D15是大約2.5μm。在另一實施例中,距離D15是至少0.5-1μm。缺口544係沿著半導體晶粒504的四個側邊而延伸。在又一實施例中,溝槽530係完全被移除,使得距離D15是0μm。一完整雷射切割或是隱形(stealth)雷射切割係被用來透過溝槽530,橫跨溝槽530的整個寬度來單粒化。透過溝槽530的單粒化係構成在用於半導體晶圓500之階梯的單粒化製程中的第二切割。 In one embodiment, the saw blade 540 has a width that is less than the width of the saw blade 532 or less than the width of the groove 530. A width of the saw blade 540 is less than a width of the saw blade 532 At least 5 μm, and after singulation, a portion of the trench 530 remains in a peripheral region of the semiconductor die 504. The singulation of a second and thinner diced semiconductor wafer 500 produces a step cut or gap 544 formed in the base substrate material 502. The notch 544 is maintained in the base substrate material 502 in a peripheral region of the semiconductor die 504 by the use of a saw blade 540 that is thinner than the saw blade 532, through the singulation nature of the trench 530. In an embodiment, a distance D15 between the edge of the trench 530 and the side surface 542 is about 2.5 [mu]m. In another embodiment, the distance D15 is at least 0.5-1 [mu]m. The notches 544 extend along the four sides of the semiconductor die 504. In yet another embodiment, the trench 530 is completely removed such that the distance D15 is 0 [mu]m. A full laser cut or stealth laser cut is used to singulate across the entire width of the trench 530 through the trench 530. The singulation through the trenches 530 constitutes a second dicing in a single granulation process for the steps of the semiconductor wafer 500.
在一替代實施例中,溝槽530係在單粒化期間被使用於對準檢查。鋸刀540係具有一寬度類似於鋸刀532的寬度、或是類似於溝槽530的寬度。在利用鋸刀或雷射切割工具540的單粒化期間,基底基板材料502的一部分係在切割道506之內以及在溝槽530之內被移除。半導體晶圓500的利用具有一和鋸刀532類似的寬度之鋸刀540的單粒化係產生一平的側壁542。溝槽530係在該單粒化期間完全被移除,因為鋸刀540係移除在溝槽530之下的基底基板材料502。基底基板材料502的表面可以在視覺上被檢查,以檢查該單粒化切割的對準。在利用類似尺寸的鋸刀540的單粒化之後,一剩餘在基底基板材料502中之步階或缺口係指出鋸刀540的對準偏移。 In an alternate embodiment, the grooves 530 are used for alignment inspection during singulation. The saw blade 540 has a width similar to the width of the saw blade 532 or a width similar to the groove 530. During singulation with a saw blade or laser cutting tool 540, a portion of the base substrate material 502 is within the scribe line 506 and removed within the trench 530. The singulation of the semiconductor wafer 500 using a saw blade 540 having a width similar to the saw blade 532 produces a flat sidewall 542. The trench 530 is completely removed during the singulation because the saw blade 540 is removed from the base substrate material 502 below the trench 530. The surface of the base substrate material 502 can be visually inspected to check the alignment of the singulated cut. After singulation with a similarly sized saw blade 540, a step or gap remaining in the base substrate material 502 indicates the alignment offset of the saw blade 540.
圖22d係展示包含例如是矽、聚合物、鈹氧化物、玻璃、或是其它適當的低成本的剛性材料之犧牲基底材料以用於結構的支撐之載體 或臨時的基板560。一介面層或是雙面帶562係形成在載體560之上,以作為一臨時的黏著接合膜、蝕刻停止層、或是熱釋放層。在絕緣層516被定向朝向載體560下,半導體晶粒504係利用例如一拾放操作而被安裝到載體560及介面層562。半導體晶粒504係被設置在介面層562的表面564之上並且在載體560之上,以形成重組或是重新配置的晶圓566。在一實施例中,絕緣層516係被嵌入在介面層562之內。例如,半導體晶粒504的主動表面510係與介面層562的表面564共平面。在另一實施例中,絕緣層516係被安裝在介面層562之上,使得半導體晶粒504的主動表面510係與介面層562偏置的。 Figure 22d shows a carrier comprising a sacrificial base material such as tantalum, polymer, niobium oxide, glass, or other suitable low cost rigid material for structural support Or a temporary substrate 560. A via or double-sided tape 562 is formed over the carrier 560 as a temporary adhesive bonding film, etch stop layer, or heat release layer. With the insulating layer 516 oriented toward the carrier 560, the semiconductor die 504 is mounted to the carrier 560 and the interface layer 562 using, for example, a pick and place operation. Semiconductor die 504 is disposed over surface 564 of interface layer 562 and over carrier 560 to form a reconstituted or reconfigured wafer 566. In an embodiment, insulating layer 516 is embedded within interface layer 562. For example, active surface 510 of semiconductor die 504 is coplanar with surface 564 of interface layer 562. In another embodiment, the insulating layer 516 is mounted over the interface layer 562 such that the active surface 510 of the semiconductor die 504 is offset from the interface layer 562.
載體560可以是一具有用於多個半導體晶粒504的容量之圓形或矩形面板。在一實施例中,載體560是一個12吋的晶圓。在另一實施例中,載體560是一具有一300mm的寬度以及一300mm的長度之面板。載體560可具有一表面積是大於半導體晶圓500的表面積。一較大的載體係降低該半導體封裝的製造成本,因為更多的半導體晶粒可以在該較大的載體上加以處理,藉此降低每單位的成本。在另一實施例中,載體560是一用於各種尺寸及數量的半導體晶粒的容量之標準化的形狀及尺寸,該些半導體晶粒係從各種尺寸的半導體晶圓而被單粒化的。標準化的載體560在尺寸上是固定的,並且可以容納多種尺寸的半導體晶粒。例如,標準化的載體560在形狀上是矩形,並且具有一560mm的寬度以及一600mm的長度。標準化的載體560的尺寸係與半導體晶粒504或是半導體晶圓500的尺寸無關的。相較於較大的半導體晶粒,更多小的半導體晶粒可以裝設在載體560之上。例如,相較於在載體560的表面積之上的10mm乘10mm晶粒的數量, 載體560係在載體560的表面積之上容納較大數量的5mm乘5mm晶粒。於是,標準化的載體560可以處理任何尺寸的半導體晶粒504,此係容許後續的半導體處理設備能夠被標準化到一共同的載體,亦即與晶粒尺寸或是進入的晶圓尺寸無關。半導體封裝設備可以針對於一標準的載體來加以設計及配置,其係利用一組共同的處理工具、設備、以及材料清單以處理來自任何進入的晶圓尺寸的任何的半導體晶粒尺寸。該共同或是標準化的載體560係藉由降低或消除對於根據晶粒尺寸或是進入的晶圓尺寸之專用的半導體生產線之需求,來降低製造成本及資本風險。藉由選擇一預設的載體尺寸以使用於來自所有的半導體晶圓之任何尺寸的半導體晶粒,一具有彈性的製造線可加以實施。 Carrier 560 can be a circular or rectangular panel having a capacity for a plurality of semiconductor dies 504. In one embodiment, carrier 560 is a 12 inch wafer. In another embodiment, carrier 560 is a panel having a width of 300 mm and a length of 300 mm. Carrier 560 can have a surface area that is greater than the surface area of semiconductor wafer 500. A larger carrier reduces the manufacturing cost of the semiconductor package because more semiconductor dies can be processed on the larger carrier, thereby reducing the cost per unit. In another embodiment, carrier 560 is a standardized shape and size for the capacitance of various sizes and numbers of semiconductor dies that are singulated from semiconductor wafers of various sizes. The standardized carrier 560 is fixed in size and can accommodate semiconductor dies of various sizes. For example, the standardized carrier 560 is rectangular in shape and has a width of 560 mm and a length of 600 mm. The size of the standardized carrier 560 is independent of the size of the semiconductor die 504 or the semiconductor wafer 500. More small semiconductor dies can be mounted on the carrier 560 than larger semiconductor dies. For example, compared to the number of 10 mm by 10 mm grains above the surface area of the carrier 560, Carrier 560 accommodates a greater number of 5 mm by 5 mm grains above the surface area of carrier 560. Thus, the standardized carrier 560 can process semiconductor dies 504 of any size, which allows subsequent semiconductor processing devices to be standardized to a common carrier, i.e., regardless of die size or incoming wafer size. The semiconductor package device can be designed and configured for a standard carrier that utilizes a common set of processing tools, equipment, and bill of materials to process any semiconductor die size from any incoming wafer size. The common or standardized carrier 560 reduces manufacturing costs and capital risk by reducing or eliminating the need for a dedicated semiconductor production line based on die size or incoming wafer size. A flexible manufacturing line can be implemented by selecting a predetermined carrier size for use with semiconductor dies of any size from all semiconductor wafers.
圖22e係展示具有設置在載體560之上的半導體晶粒504之重組晶圓566。重組晶圓566可被處理成為許多類型的半導體封裝,其包含扇入WLCSP、重組或eWLCSP、扇出WLCSP、覆晶封裝、例如是PoP的3D封裝、或是其它半導體封裝。重組晶圓566係根據所產生的半導體封裝的規格來加以配置。在一實施例中,半導體晶粒504係以一種高密度的配置,亦即相隔500μm或是更小而被設置在載體560上,以用於處理扇入裝置。分開一介於半導體晶粒504之間的間隙或距離D16的半導體晶粒504係被設置到載體560之上。介於半導體晶粒504之間的距離D16係根據待被處理的半導體封裝的設計及規格來加以選擇。在一實施例中,介於半導體晶粒504之間的距離D16是500μm或是更小。在載體560上的介於半導體晶粒504之間的距離D16係針對於以最低的單位成本來製造該些半導體封裝而被最佳化。 Figure 22e shows a reconstituted wafer 566 having semiconductor dies 504 disposed over carrier 560. The reconstituted wafer 566 can be processed into many types of semiconductor packages including fan-in WLCSP, recombination or eWLCSP, fan-out WLCSP, flip chip package, 3D package such as PoP, or other semiconductor package. The reconstituted wafer 566 is configured according to the specifications of the resulting semiconductor package. In one embodiment, the semiconductor die 504 is disposed on the carrier 560 in a high density configuration, i.e., 500 [mu]m or less, for processing the fan-in device. A semiconductor die 504 that is separated by a gap between semiconductor dies 504 or a distance D16 is disposed over carrier 560. The distance D16 between the semiconductor dies 504 is selected according to the design and specifications of the semiconductor package to be processed. In one embodiment, the distance D16 between the semiconductor dies 504 is 500 μm or less. The distance D16 between the semiconductor dies 504 on the carrier 560 is optimized for manufacturing the semiconductor packages at the lowest unit cost.
一種囊封體或模製化合物570係利用一膏印刷、轉移模製、液體囊封體模製、真空疊層、旋轉塗覆、或是其它適當的施用器以沉積在半導體晶粒504之上及周圍而且在載體560及介面層562之上。囊封體570可以是聚合物複合材料,例如是具有填充物的環氧樹脂、具有填充物的環氧丙烯酸酯、或是具有適當的填充物的聚合物。囊封體570是非導電的,並且在環境上保護該半導體裝置免於外部的元素及污染物。在另一實施例中,囊封體570是一利用印刷、旋轉塗覆、噴霧塗覆、在加熱或是不在加熱下的真空或壓力疊層、或是其它適當的製程來加以沉積的絕緣或介電層,其係包含一或多層的光敏的低固化溫度的介電阻劑、光敏的複合阻劑、積層化合物膜、具有填充物的絕緣膏、焊料遮罩阻劑膜、液體或顆粒模製化合物、聚醯亞胺、BCB、PBO、SiO2、Si3N4、SiON、Ta2O5、Al2O3、預浸料、或是其它具有類似的絕緣及結構的性質的介電材料。在一實施例中,囊封體570係包含一種具有一55μm或是更小的尺寸之填充物。在另一實施例中,囊封體570係包含一種具有一30μm或是更小的尺寸之填充物。在又一實施例中,囊封體570是一種在小於200℃下固化的具有或是不具有絕緣填充物之低溫固化的光敏的介電聚合物。 An encapsulant or molding compound 570 is deposited onto the semiconductor die 504 by a paste printing, transfer molding, liquid encapsulation molding, vacuum lamination, spin coating, or other suitable applicator. And around and above the carrier 560 and the interface layer 562. The encapsulant 570 can be a polymer composite such as an epoxy with a filler, an epoxy acrylate with a filler, or a polymer with a suitable filler. The encapsulant 570 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants. In another embodiment, the encapsulant 570 is an insulation or deposited by printing, spin coating, spray coating, vacuum or pressure lamination under heating or without heating, or other suitable process. a dielectric layer comprising one or more layers of a photosensitive low curing temperature dielectric resistor, a photosensitive composite resist, a laminated compound film, an insulating paste with a filler, a solder mask resist film, a liquid or particle molding A compound, polyimide, BCB, PBO, SiO2, Si3N4, SiON, Ta2O5, Al2O3, prepreg, or other dielectric material having similar insulating and structural properties. In one embodiment, the encapsulant 570 comprises a filler having a size of 55 [mu]m or less. In another embodiment, the encapsulant 570 comprises a filler having a size of 30 μm or less. In yet another embodiment, the encapsulant 570 is a low temperature curing photosensitive dielectric polymer that cures at less than 200 ° C with or without an insulating filler.
尤其,囊封體570係沿著側表面542並且進入缺口544中,而被設置在半導體晶粒504的一週邊區域中。囊封體570係填入缺口544並且圍繞半導體晶粒504的四個側壁。囊封體570的一表面572係與半導體晶粒504的主動表面510共平面的。囊封體570亦覆蓋半導體晶粒504的背表面508。在一實施例中,介於半導體晶粒504的背表面508以及囊封體570的背表面574之間的囊封體的一厚度是50μm或是更大的。囊封體570的背 表面574係在一後續的背面研磨步驟中被薄化。或者是,囊封體570係被沉積成使得囊封體570的背表面574係與半導體晶粒504的背表面508共平面的,因而囊封體570並不覆蓋背表面508。 In particular, the encapsulant 570 is disposed along the side surface 542 and into the gap 544 to be disposed in a peripheral region of the semiconductor die 504. The encapsulant 570 is filled into the gap 544 and surrounds the four sidewalls of the semiconductor die 504. A surface 572 of the encapsulant 570 is coplanar with the active surface 510 of the semiconductor die 504. The encapsulant 570 also covers the back surface 508 of the semiconductor die 504. In one embodiment, a thickness of the encapsulant between the back surface 508 of the semiconductor die 504 and the back surface 574 of the encapsulant 570 is 50 μm or greater. Back of capsule 570 Surface 574 is thinned in a subsequent back grinding step. Alternatively, the encapsulant 570 is deposited such that the back surface 574 of the encapsulant 570 is coplanar with the back surface 508 of the semiconductor die 504 such that the encapsulant 570 does not cover the back surface 508.
在圖22f中,載體560及介面層562係藉由化學蝕刻、機械式剝離、CMP、機械式研磨、熱烘烤、UV光、雷射掃描、或是濕式剝除來加以移除,以露出絕緣層516、導電層512、以及囊封體570的表面572。重組晶圓566係維持晶圓形式或是面板形式,並且構成一扇入基板。一熱退火製程係被施加至重組晶圓566,以使得釋氣變得容易。在一實施例中,熱退火係在200℃或是更高溫度下被執行30分鐘。 In FIG. 22f, the carrier 560 and the interface layer 562 are removed by chemical etching, mechanical peeling, CMP, mechanical polishing, thermal baking, UV light, laser scanning, or wet stripping. The insulating layer 516, the conductive layer 512, and the surface 572 of the encapsulant 570 are exposed. The reconstituted wafer 566 is maintained in wafer form or in the form of a panel and constitutes a fan-in substrate. A thermal annealing process is applied to the reconstituted wafer 566 to facilitate outgassing. In one embodiment, the thermal annealing is performed for 30 minutes at 200 ° C or higher.
一絕緣或保護層580係利用PVD、CVD、印刷、旋轉塗覆、噴霧塗覆、網版印刷或是疊層以形成在絕緣層516及導電層512之上。絕緣層580可以是一或多層的SiO2、Si3N4、SiON、Ta2O5、Al2O3、或是其它具有類似絕緣及結構的性質之材料。在一實施例中,絕緣層580是一種在小於200℃下低溫固化的光敏的介電聚合物。絕緣層580係形成在半導體晶粒504的覆蓋區之內,而且並不延伸超出半導體晶粒504的覆蓋區而到囊封體570之上。換言之,半導體晶粒504的一相鄰半導體晶粒504的週邊區域並沒有絕緣層580,使得囊封體570係相對於絕緣層580維持露出的。在另一實施例中,絕緣層580係形成在絕緣層516、半導體晶粒504之上,並且延伸到囊封體570之上。 An insulating or protective layer 580 is formed over the insulating layer 516 and the conductive layer 512 by PVD, CVD, printing, spin coating, spray coating, screen printing, or lamination. The insulating layer 580 may be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other materials having similar insulating and structural properties. In one embodiment, insulating layer 580 is a photosensitive dielectric polymer that cures at a low temperature of less than 200 °C. The insulating layer 580 is formed within the footprint of the semiconductor die 504 and does not extend beyond the footprint of the semiconductor die 504 onto the encapsulant 570. In other words, the peripheral region of an adjacent semiconductor die 504 of the semiconductor die 504 does not have an insulating layer 580 such that the encapsulant 570 remains exposed relative to the insulating layer 580. In another embodiment, an insulating layer 580 is formed over the insulating layer 516, the semiconductor die 504, and over the encapsulant 570.
絕緣層580的一部分係藉由一種利用一圖案化的光阻層之蝕刻製程或是藉由LDA來加以移除,以形成開口582來露出導電層512。開口582係形成在導電層512之上,以提供用於電連接至導電層512。在一 實施例中,開口582係被形成以露出導電層512以及絕緣層516的一部分。絕緣層580係完全從導電層512之上被移除。絕緣層580並不重疊導電層512而且並不重疊在導電層512之上的絕緣層516中的開口522。導電層512並沒有絕緣層580。在另一實施例中,開口582係被形成以露出導電層512,同時留下絕緣層580的一部分被設置成接觸導電層512。絕緣層580係被形成在導電層512之上的絕緣層516中的開口522之內。絕緣層580係延伸到絕緣層516中的開口522內而且在導電層512之上。 A portion of insulating layer 580 is removed by an etching process using a patterned photoresist layer or by LDA to form opening 582 to expose conductive layer 512. An opening 582 is formed over the conductive layer 512 to provide electrical connection to the conductive layer 512. In a In an embodiment, opening 582 is formed to expose conductive layer 512 and a portion of insulating layer 516. The insulating layer 580 is completely removed from above the conductive layer 512. The insulating layer 580 does not overlap the conductive layer 512 and does not overlap the opening 522 in the insulating layer 516 over the conductive layer 512. Conductive layer 512 does not have an insulating layer 580. In another embodiment, the opening 582 is formed to expose the conductive layer 512 while leaving a portion of the insulating layer 580 disposed to contact the conductive layer 512. The insulating layer 580 is formed within the opening 522 in the insulating layer 516 over the conductive layer 512. The insulating layer 580 extends into the opening 522 in the insulating layer 516 and over the conductive layer 512.
在圖22g中,一導電層584係利用一例如是印刷、PVD、CVD、濺鍍、電解的電鍍、以及無電的電鍍之圖案化及金屬沉積製程以形成在絕緣層580及導電層512之上。導電層584可以是一或多層的Al、Cu、Sn、Ti、Ni、Au、Ag、或是其它適當的導電材料。導電層584的一部分係沿著絕緣層580並且平行於半導體晶粒504的主動表面510水平地延伸,以橫向地重新分佈該電互連至導電層512。導電層584係運作為一用於半導體晶粒504的電性信號之RDL。導電層584係形成在半導體晶粒504的一覆蓋區之上,而且並不延伸超出半導體晶粒504的覆蓋區或是在囊封體570之上。換言之,半導體晶粒504的一相鄰半導體晶粒504的週邊區域並沒有導電層584,使得囊封體570係相對於導電層584維持露出的。在一實施例中,導電層584係形成到達半導體晶粒504的邊緣514,而且並不延伸超出半導體晶粒504的主動區域。在另一實施例中,導電層584係相隔半導體晶粒504的邊緣514一距離D18來加以形成,其中距離D18是大於0μm。導電層584的一部分係電連接至導電層512。導電層584的其它部分係根據半導體晶粒504的連接而為電性共通或是電性隔離的。 In FIG. 22g, a conductive layer 584 is formed over the insulating layer 580 and the conductive layer 512 by a patterning and metal deposition process such as printing, PVD, CVD, sputtering, electrolytic plating, and electroless plating. . Conductive layer 584 can be one or more layers of Al, Cu, Sn, Ti, Ni, Au, Ag, or other suitable electrically conductive material. A portion of conductive layer 584 extends horizontally along insulating layer 580 and parallel to active surface 510 of semiconductor die 504 to laterally redistribute the electrical interconnect to conductive layer 512. Conductive layer 584 operates as an RDL for the electrical signal of semiconductor die 504. The conductive layer 584 is formed over a footprint of the semiconductor die 504 and does not extend beyond the footprint of the semiconductor die 504 or over the encapsulant 570. In other words, the peripheral region of an adjacent semiconductor die 504 of the semiconductor die 504 does not have a conductive layer 584 such that the encapsulant 570 remains exposed relative to the conductive layer 584. In an embodiment, conductive layer 584 is formed to reach edge 514 of semiconductor die 504 and does not extend beyond the active region of semiconductor die 504. In another embodiment, the conductive layer 584 is formed by a distance DF from the edge 514 of the semiconductor die 504, wherein the distance D18 is greater than 0 [mu]m. A portion of the conductive layer 584 is electrically connected to the conductive layer 512. Other portions of conductive layer 584 are electrically or electrically isolated depending on the connection of semiconductor die 504.
在圖22h中,一絕緣或保護層590係利用PVD、CVD、印刷、旋轉塗覆、噴霧塗覆、網版印刷或是疊層以形成在絕緣層580及導電層584之上。絕緣層590可以是一或多層的SiO2、Si3N4、SiON、Ta2O5、Al2O3、或是其它具有類似絕緣及結構的性質之材料。在一實施例中,絕緣層590係包含和絕緣層580相同的材料。在另一實施例中,絕緣層590係包含一種不同於絕緣層580的材料,例如是一種具有一較高或是較低的熱膨脹係數(CTE)之材料。在另一實施例中,絕緣層590是一種在小於200℃下低溫固化的光敏的介電聚合物。 In FIG. 22h, an insulating or protective layer 590 is formed over the insulating layer 580 and the conductive layer 584 by PVD, CVD, printing, spin coating, spray coating, screen printing, or lamination. The insulating layer 590 may be one or more layers of SiO2, Si3N4, SiON, Ta2O5, Al2O3, or other materials having similar insulating and structural properties. In an embodiment, the insulating layer 590 comprises the same material as the insulating layer 580. In another embodiment, the insulating layer 590 comprises a material different from the insulating layer 580, such as a material having a higher or lower coefficient of thermal expansion (CTE). In another embodiment, the insulating layer 590 is a photosensitive dielectric polymer that cures at a low temperature of less than 200 °C.
絕緣層590係被形成在半導體晶粒504的覆蓋區之內,而且並不延伸超出半導體晶粒504的覆蓋區而超過邊緣514或是在囊封體570之上。半導體晶粒504的一相鄰半導體晶粒504的週邊區域並沒有絕緣層590,使得囊封體570係相對於絕緣層590維持露出的。在另一實施例中,絕緣層590係形成在半導體晶粒504之上而且在半導體晶粒504的一覆蓋區之外而到基底基板材料502之上,而且並不延伸到囊封體570之上。絕緣層590係形成在半導體晶粒504周圍的基底基板材料502之上,同時囊封體係相對於絕緣層590維持露出的。在又一實施例中,絕緣層590係形成在絕緣層580、半導體晶粒504、以及囊封體570之上。絕緣層590的一部分係藉由一種利用一圖案化的光阻層之蝕刻製程或是藉由LDA來加以移除,以形成開口來露出導電層584。 The insulating layer 590 is formed within the footprint of the semiconductor die 504 and does not extend beyond the footprint of the semiconductor die 504 beyond the edge 514 or over the encapsulant 570. The peripheral region of an adjacent semiconductor die 504 of the semiconductor die 504 does not have an insulating layer 590 such that the encapsulant 570 remains exposed relative to the insulating layer 590. In another embodiment, the insulating layer 590 is formed over the semiconductor die 504 and over a footprint of the semiconductor die 504 to the base substrate material 502 and does not extend to the encapsulant 570. on. An insulating layer 590 is formed over the base substrate material 502 around the semiconductor die 504 while the encapsulation system remains exposed relative to the insulating layer 590. In yet another embodiment, an insulating layer 590 is formed over the insulating layer 580, the semiconductor die 504, and the encapsulant 570. A portion of the insulating layer 590 is removed by an etching process using a patterned photoresist layer or by an LDA to form an opening to expose the conductive layer 584.
一種導電的凸塊材料係利用一蒸鍍、電解的電鍍、無電的電鍍、球式滴落、或是網版印刷製程以沉積在導電層584之上。在一實施例中,該凸塊材料係利用一球式滴落模版來加以沉積,亦即不需要遮罩。該 凸塊材料可以是具有一選配的助熔溶劑之Al、Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料、以及其之組合。例如,該凸塊材料可以是共晶Sn/Pb、高鉛的焊料、或是無鉛的焊料。該凸塊材料係利用一適當的附裝或接合製程而被接合到導電層584。在一實施例中,該凸塊材料係藉由加熱該材料超過其熔點來加以回焊,以形成球或凸塊592。在某些應用中,凸塊592係被回焊第二次以改善至導電層584的電性接觸。凸塊592亦可被壓縮接合或是熱壓接合到導電層584。凸塊592係代表一種可被形成在導電層584之上的互連結構類型。該互連結構亦可以使用接合線、導電膏、柱形凸塊、微凸塊、或是其它電互連。 A conductive bump material is deposited over conductive layer 584 by an evaporation, electrolytic plating, electroless plating, ball dropping, or screen printing process. In one embodiment, the bump material is deposited using a ball drop stencil, i.e., no mask is required. The The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof with an optional fluxing solvent. For example, the bump material can be eutectic Sn/Pb, high lead solder, or lead free solder. The bump material is bonded to conductive layer 584 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material beyond its melting point to form a ball or bump 592. In some applications, bumps 592 are reflowed a second time to improve electrical contact to conductive layer 584. The bump 592 can also be compression bonded or thermocompression bonded to the conductive layer 584. Bump 592 represents a type of interconnect structure that can be formed over conductive layer 584. The interconnect structure can also use bond wires, conductive pastes, stud bumps, microbumps, or other electrical interconnects.
絕緣層580及590、導電層584及凸塊592係全體地構成一形成在半導體晶粒504之上而且在半導體晶粒504的一覆蓋區之內的扇入堆積的互連結構594。半導體晶粒504的一相鄰半導體晶粒504的週邊區域並沒有互連結構594,使得囊封體570係相對於互連結構594維持露出的。於是,互連結構594係構成一扇入互連結構。堆積的互連結構594可包含只有一例如是導電層584的RDL或導電層以及一例如是絕緣層590的絕緣層。額外的絕緣層及RDL可以在形成凸塊592之前被形成在絕緣層590之上,以根據半導體晶粒504的設計及功能來提供橫跨該封裝之額外的垂直及水平的電性連接。 Insulating layers 580 and 590, conductive layer 584, and bumps 592 collectively form a fan-in bulk interconnect structure 594 formed over semiconductor die 504 and within a footprint of semiconductor die 504. The peripheral region of an adjacent semiconductor die 504 of the semiconductor die 504 does not have an interconnect structure 594 such that the encapsulant 570 remains exposed relative to the interconnect structure 594. Thus, interconnect structure 594 forms a fan-in interconnect structure. The stacked interconnect structure 594 can include only one RDL or conductive layer, such as conductive layer 584, and an insulating layer, such as insulating layer 590. Additional insulating layers and RDL may be formed over insulating layer 590 prior to forming bumps 592 to provide additional vertical and horizontal electrical connections across the package in accordance with the design and function of semiconductor die 504.
在圖22i中,一背面研磨帶596係被施加在半導體晶粒504的主動表面510之上,並且覆蓋重組晶圓566的互連結構594及凸塊592。重組晶圓566可被安裝到一支撐台,其中背面研磨帶596係被定向朝向該支撐台。囊封體570的一部分係從背表面574,選配地藉由利用研磨機600的 背面研磨、或是藉由CMP、蝕刻製程、或是LDA來加以移除。該背面研磨操作係從半導體晶粒504的背表面508來移除囊封體570,以降低重組晶圓566的翹曲。在一實施例中,該背面研磨操作係從半導體晶粒504之上完全移除囊封體570,以露出半導體晶粒504的背表面508。在背面研磨之後,囊封體570的一背表面602係與半導體晶粒504的背表面508共平面的。在該背面研磨操作之後,重組晶圓566係具有一降低的厚度。在一實施例中,半導體晶粒504的背表面508的一部分係在該背面研磨操作期間被移除,以薄化半導體晶粒504。在一實施例中,半導體晶粒504係具有一500μm或是更小的厚度。雷射標記可以直接被施加到半導體晶粒504的背表面508,以用於對準及單粒化。 In FIG. 22i, a backgrinding tape 596 is applied over the active surface 510 of the semiconductor die 504 and overlies the interconnect structure 594 and bumps 592 of the reconstituted wafer 566. The reconstituted wafer 566 can be mounted to a support table with the back grinding strip 596 oriented toward the support table. A portion of the encapsulant 570 is from the back surface 574, optionally by utilizing the grinder 600 Back grinding, or removal by CMP, etching process, or LDA. The back grinding operation removes the encapsulant 570 from the back surface 508 of the semiconductor die 504 to reduce warpage of the reconstituted wafer 566. In one embodiment, the backgrinding operation completely removes the encapsulant 570 from above the semiconductor die 504 to expose the back surface 508 of the semiconductor die 504. After back grinding, a back surface 602 of the encapsulant 570 is coplanar with the back surface 508 of the semiconductor die 504. After the back grinding operation, the reconstituted wafer 566 has a reduced thickness. In an embodiment, a portion of the back surface 508 of the semiconductor die 504 is removed during the backgrinding operation to thin the semiconductor die 504. In one embodiment, the semiconductor die 504 has a thickness of 500 μm or less. Laser markings can be applied directly to the back surface 508 of the semiconductor die 504 for alignment and singulation.
在圖22j中,一安裝帶、切割帶、或是支撐載體610係被施加至重組晶圓566的一背表面。切割帶610係在後續的製造步驟期間以及在單粒化成為個別的半導體封裝期間提供支撐給重組晶圓566。背面研磨帶596係在重組晶圓566被安裝到切割帶610時,從重組晶圓566加以移除。 In Figure 22j, a mounting strip, dicing tape, or support carrier 610 is applied to a back surface of the reconstituted wafer 566. The dicing tape 610 provides support to the reconstituted wafer 566 during subsequent fabrication steps and during singulation into individual semiconductor packages. Backgrinding tape 596 is removed from reconstituted wafer 566 as it is mounted to dicing tape 610.
在圖22k中,重組晶圓566係利用一鋸刀或雷射切割工具620而被單粒化成為個別的eWLCSP 622。重組晶圓566係穿過囊封體570並且穿過切割帶610而被單粒化。鋸刀620並不切割穿過半導體晶粒504的基底基板材料502。由於重組晶圓566是穿過囊封體570而被單粒化,而不是穿過基底基板材料502,因此基底基板材料502是較不易於裂開及破碎。鋸刀620係被選擇成具有一寬度是小於在相鄰的半導體晶粒504之間的間隙的一寬度。在一實施例中,鋸刀620係比在相鄰的半導體晶粒504之間的間隙窄至少20μm。在另一實施例中,鋸刀620係比在相鄰的半導體晶粒504 之間的間隙窄40-100μm。由於鋸刀620是比在晶粒504之間的間隙窄,因此在重組晶圓566的單粒化之後,囊封體570係維持覆蓋到側表面542。設置在表面542之上的囊封體570的厚度係被展示為厚度或距離D20。在一實施例中,囊封體570在側表面542之上的厚度D20是0.5μm或是更大的。在另一實施例中,囊封體570在側表面542之上的厚度D20範圍是從5到50μm。在又一實施例中,囊封體570在側表面542之上的厚度D20是至少10μm。重組晶圓566亦可以利用一種類似於在圖22b-22c中所示的製程之步階的單粒化製程而被單粒化。一溝槽係利用一鋸刀或雷射切割工具,透過囊封體570來加以形成。該溝槽係部分地延伸穿過在半導體晶粒504之間的囊封體570。該溝槽係構成在該步階的單粒化製程中的第一切割。重組晶圓566係利用在該步階的單粒化製程中的第二切割,透過在囊封體570中的溝槽而被單粒化,以完全分開個別的eWLCSP 622。在重組晶圓566的單粒化之後,切割帶610係從eWLCSP 622被移除。 In Figure 22k, the reconstituted wafer 566 is singulated into individual eWLCSPs 622 using a saw or laser cutting tool 620. The reconstituted wafer 566 is passed through the encapsulant 570 and passed through the dicing tape 610 to be singulated. The saw blade 620 does not cut through the base substrate material 502 of the semiconductor die 504. Since the reconstituted wafer 566 is singulated by the encapsulant 570 rather than passing through the base substrate material 502, the base substrate material 502 is less prone to cracking and breaking. The saw blade 620 is selected to have a width that is less than a gap between adjacent semiconductor dies 504. In one embodiment, the saw blade 620 is at least 20 [mu]m narrower than the gap between adjacent semiconductor dies 504. In another embodiment, the saw blade 620 is compared to the adjacent semiconductor die 504. The gap between them is narrow by 40-100 μm. Since the saw blade 620 is narrower than the gap between the dies 504, the encapsulant 570 remains covered to the side surface 542 after singulation of the reconstituted wafer 566. The thickness of the encapsulant 570 disposed over the surface 542 is shown as a thickness or distance D20. In one embodiment, the thickness D20 of the encapsulant 570 above the side surface 542 is 0.5 [mu]m or greater. In another embodiment, the thickness D20 of the encapsulant 570 above the side surface 542 ranges from 5 to 50 [mu]m. In yet another embodiment, the thickness D20 of the encapsulant 570 above the side surface 542 is at least 10 [mu]m. Reconstituted wafer 566 can also be singulated using a single granulation process similar to the steps of the process illustrated in Figures 22b-22c. A groove is formed through the encapsulant 570 using a saw or laser cutting tool. The trench extends partially through the encapsulant 570 between the semiconductor dies 504. The groove constitutes a first cut in the single granulation process of the step. The reconstituted wafer 566 is singulated by a second cut in the single granulation process of the step, through the grooves in the encapsulant 570, to completely separate the individual eWLCSPs 622. After the singulation of the reconstituted wafer 566, the dicing tape 610 is removed from the eWLCSP 622.
圖221係展示在單粒化之後具有覆蓋側表面542的囊封體570之eWLCSP 622。半導體晶粒504係透過導電層512及584以電連接至凸塊592,以用於透過互連結構594之外部的互連。互連結構594的電互連並不延伸超出半導體晶粒504的一覆蓋區,並且因此形成一扇入封裝。製造eWLCSP 622的製程係藉由透過一步階的單粒化製程以及覆蓋半導體晶粒504的側壁的囊封體570的使用,以降低半導體晶粒504的缺陷來改善良率。在半導體晶圓500的單粒化期間所用的步階切割係降低半導體晶粒504的主動表面510的裂開及破碎。溝槽530是在單粒化半導體晶圓500之前形成,以便於控制半導體晶粒504的裂開以及破碎。在基底基板材料502中的缺口 544亦可以在半導體晶圓500的單粒化期間被利用於對準。該用於半導體晶圓500之步階的單粒化製程係藉由降低對於半導體晶粒504的損壞來改善良率。 Figure 221 shows an eWLCSP 622 having an encapsulant 570 covering a side surface 542 after singulation. Semiconductor die 504 is electrically coupled to bumps 592 through conductive layers 512 and 584 for interconnection through the exterior of interconnect structure 594. The electrical interconnections of interconnect structure 594 do not extend beyond a footprint of semiconductor die 504 and thus form a fan-in package. The process of fabricating the eWLCSP 622 improves yield by reducing the defects of the semiconductor die 504 by passing through a one-step single granulation process and the use of an encapsulant 570 that covers the sidewalls of the semiconductor die 504. The step cutting used during the singulation of the semiconductor wafer 500 reduces cracking and fracture of the active surface 510 of the semiconductor die 504. Trench 530 is formed prior to singulation of semiconductor wafer 500 to facilitate control of cracking and fracture of semiconductor die 504. Gap in the base substrate material 502 544 can also be utilized for alignment during singulation of semiconductor wafer 500. The single granulation process for the steps of the semiconductor wafer 500 improves yield by reducing damage to the semiconductor die 504.
囊封體570係在半導體晶粒504的四個側邊之上提供側壁保護,以在機械上強化半導體晶粒504。囊封體570係覆蓋側表面542並且覆蓋圍繞半導體晶粒504的邊緣514之基底基板材料502。囊封體570係在背面研磨以及單粒化期間保護半導體晶粒504。囊封體570係被單粒化以分開個別的eWLCSP 622,而不穿過基底基板材料502或是半導體晶粒504來單粒化。設置在側表面542之上的囊封體570係降低基底基板材料502以及半導體晶粒504的裂開及破碎。在一實施例中,囊封體570在側表面542之上的厚度D20是0.5μm或是更大的。在另一實施例中,囊封體570在側表面542之上的厚度D20範圍是從5到50μm。半導體晶粒504係由一在半導體晶粒504的邊緣514周圍的基底基板材料502的環所圍繞。半導體晶粒504及基底基板材料502係由一個囊封體570的環所圍繞。該囊封體570的環係具有一介於在基底基板材料502中的缺口544以及eWLCSP 622的外部的邊緣之間的厚度D22。在一實施例中,厚度D22是至少0.5μm。 The encapsulant 570 provides sidewall protection over the four sides of the semiconductor die 504 to mechanically strengthen the semiconductor die 504. The encapsulant 570 covers the side surface 542 and covers the base substrate material 502 surrounding the edge 514 of the semiconductor die 504. The encapsulant 570 protects the semiconductor die 504 during back grinding and singulation. The encapsulant 570 is singulated to separate the individual eWLCSPs 622 without passing through the base substrate material 502 or the semiconductor grains 504 for singulation. The encapsulant 570 disposed over the side surface 542 reduces cracking and fracture of the base substrate material 502 and the semiconductor die 504. In one embodiment, the thickness D20 of the encapsulant 570 above the side surface 542 is 0.5 [mu]m or greater. In another embodiment, the thickness D20 of the encapsulant 570 above the side surface 542 ranges from 5 to 50 [mu]m. Semiconductor die 504 is surrounded by a ring of base substrate material 502 around edge 514 of semiconductor die 504. The semiconductor die 504 and the base substrate material 502 are surrounded by a ring of an encapsulant 570. The ring of the encapsulant 570 has a thickness D22 between the notch 544 in the base substrate material 502 and the outer edge of the eWLCSP 622. In an embodiment, the thickness D22 is at least 0.5 μm.
囊封體570係在該背面研磨製程期間從半導體晶粒504的背表面508被移除,以降低eWLCSP 622的厚度。半導體晶粒504係在背面研磨期間被薄化,以降低eWLCSP 622的翹曲。在一實施例中,半導體晶粒504係具有一500μm或是更小的厚度D21。囊封體570及半導體晶粒504的降低的厚度係改善在安裝eWLCSP 622至一例如是PCB的基板之後的eWLCSP 622的可靠度。 The encapsulant 570 is removed from the back surface 508 of the semiconductor die 504 during the backgrinding process to reduce the thickness of the eWLCSP 622. The semiconductor die 504 is thinned during back grinding to reduce warpage of the eWLCSP 622. In one embodiment, the semiconductor die 504 has a thickness D21 of 500 μm or less. The reduced thickness of the encapsulant 570 and the semiconductor die 504 improves the reliability of the eWLCSP 622 after mounting the eWLCSP 622 to a substrate such as a PCB.
eWLCSP 622是一具有側壁保護的扇入封裝以強化半導體晶粒504,而不需要一背面保護層。eWLCSP 622可以在無背面保護層下,以一較低的成本來加以製造。再者,半導體晶粒504的露出的背表面508係容許半導體晶粒504的針對於裂縫及破碎之視覺的檢查。eWLCSP 622係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體560上形成一重組晶圓來加以製造,此係降低用於eWLCSP 622的設備及材料成本。eWLCSP 622係利用標準化的載體560以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 The eWLCSP 622 is a fan-in package with sidewall protection to strengthen the semiconductor die 504 without the need for a backside protective layer. The eWLCSP 622 can be manufactured at a lower cost without a back protection layer. Moreover, the exposed back surface 508 of the semiconductor die 504 allows for inspection of the semiconductor die 504 for crack and broken vision. The eWLCSP 622 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 560, which reduces the cost of equipment and materials for the eWLCSP 622. The eWLCSP 622 is manufactured in a larger amount using a standardized carrier 560, thereby simplifying the process and reducing unit cost.
圖22m係展示eWLCSP 622的一背表面的平面圖。半導體晶粒504的背表面508係從囊封體570露出。半導體晶粒504係由一個囊封體570的環所圍繞,其係覆蓋半導體晶粒504的四個側表面。在一實施例中,囊封體570在側表面542之上的厚度D20是0.5μm或是更大的。在另一實施例中,囊封體570在側表面542之上的厚度D20範圍是從5到50μm。設置在側表面542之上的囊封體570係降低基底基板材料502及半導體晶粒504的裂開及破碎。囊封體570係藉由在處理及單粒化成為eWLCSP 622的期間降低對於半導體晶粒504的損壞來改善良率。 Figure 22m shows a plan view of a back surface of the eWLCSP 622. The back surface 508 of the semiconductor die 504 is exposed from the encapsulant 570. The semiconductor die 504 is surrounded by a ring of an encapsulant 570 that covers the four side surfaces of the semiconductor die 504. In one embodiment, the thickness D20 of the encapsulant 570 above the side surface 542 is 0.5 [mu]m or greater. In another embodiment, the thickness D20 of the encapsulant 570 above the side surface 542 ranges from 5 to 50 [mu]m. The encapsulant 570 disposed over the side surface 542 reduces cracking and fracture of the base substrate material 502 and the semiconductor die 504. The encapsulant 570 improves yield by reducing damage to the semiconductor die 504 during processing and singulation into the eWLCSP 622.
圖23係展示具有在半導體晶粒504的側壁之上的囊封體570並且具有一露出的背表面508之eWLCSP 630。半導體晶粒504係透過導電層512及584以電連接至凸塊592,以用於透過互連結構632之外部的互連。互連結構632的電互連並不延伸超出半導體晶粒504的一覆蓋區,並且因此形成一扇入封裝。絕緣層590係形成在導電層584及絕緣層580之上。此外,eWLCSP 630的絕緣層590係延伸超過半導體晶粒504的一覆蓋區,以覆蓋 囊封體570的一在半導體晶粒504的一週邊區域中的部分。絕緣層590係接觸囊封體570的表面572並且延伸在囊封體570之上一距離D24,其中距離D24是大於0μm。絕緣層590與囊封體570的重疊係提供在半導體晶粒504以及囊封體570之間的改善的密封。由於絕緣層590延伸在囊封體570之上,eWLCSP 622的可靠度係被改善。 23 shows an eWLCSP 630 having an encapsulant 570 over the sidewalls of the semiconductor die 504 and having an exposed back surface 508. Semiconductor die 504 is electrically coupled to bumps 592 through conductive layers 512 and 584 for interconnection through the exterior of interconnect structure 632. The electrical interconnections of interconnect structure 632 do not extend beyond a footprint of semiconductor die 504 and thus form a fan-in package. An insulating layer 590 is formed over the conductive layer 584 and the insulating layer 580. In addition, the insulating layer 590 of the eWLCSP 630 extends beyond a footprint of the semiconductor die 504 to cover A portion of the encapsulant 570 in a peripheral region of the semiconductor die 504. The insulating layer 590 is in contact with the surface 572 of the encapsulant 570 and extends over the encapsulant 570 by a distance D24 wherein the distance D24 is greater than 0 [mu]m. The overlap of insulating layer 590 with encapsulant 570 provides an improved seal between semiconductor die 504 and encapsulant 570. Since the insulating layer 590 extends over the encapsulant 570, the reliability of the eWLCSP 622 is improved.
製造eWLCSP 630的製程係藉由透過一步階的單粒化製程以及覆蓋半導體晶粒504的側壁的囊封體570的使用,以降低半導體晶粒504的缺陷來改善良率。在半導體晶圓500的單粒化期間所用的步階切割係降低半導體晶粒504的主動表面510的裂開及破碎。溝槽530係在單粒化半導體晶圓500之前被形成,以便於控制半導體晶粒504的裂開及破碎。在基底基板材料502中的缺口544亦可被利用於在半導體晶圓500的單粒化期間的對準。用於半導體晶圓500之步階的單粒化製程係藉由降低對於半導體晶粒504的損壞來改善良率。 The process of fabricating the eWLCSP 630 improves yield by reducing the defects of the semiconductor die 504 by passing through a one-step single granulation process and the use of an encapsulant 570 that covers the sidewalls of the semiconductor die 504. The step cutting used during the singulation of the semiconductor wafer 500 reduces cracking and fracture of the active surface 510 of the semiconductor die 504. Trench 530 is formed prior to singulation of semiconductor wafer 500 to facilitate control of cracking and fracture of semiconductor die 504. The notches 544 in the base substrate material 502 can also be utilized for alignment during singulation of the semiconductor wafer 500. The single granulation process for the steps of the semiconductor wafer 500 improves yield by reducing damage to the semiconductor die 504.
囊封體570係在半導體晶粒504的四個側邊之上提供側壁保護,以在機械上強化半導體晶粒504。半導體晶粒504係由一在半導體晶粒504的邊緣514周圍的基底基板材料502的環所圍繞。半導體晶粒504及基底基板材料500係由一個囊封體570的環所圍繞。該囊封體570的環係具有一介於在基底基板材料502中的缺口544以及eWLCSP 630的外部的邊緣之間的厚度D22。在一實施例中,厚度D22是至少0.5μm。囊封體570係覆蓋側表面542並且覆蓋基底基板材料502,其係圍繞半導體晶粒504的邊緣514。囊封體570係在背面研磨及單粒化期間保護半導體晶粒504。囊封體570係被單粒化以分開個別的eWLCSP 630,而不透過基底基板材料502或 是半導體晶粒504來單粒化。設置在側表面542之上的囊封體570係降低基底基板材料502及半導體晶粒504的裂開及破碎。在一實施例中,囊封體570在側表面542之上的厚度D20是0.5μm或是更大的。在另一實施例中,囊封體570在側表面542之上的厚度D20範圍是從5到50μm。 The encapsulant 570 provides sidewall protection over the four sides of the semiconductor die 504 to mechanically strengthen the semiconductor die 504. Semiconductor die 504 is surrounded by a ring of base substrate material 502 around edge 514 of semiconductor die 504. The semiconductor die 504 and the base substrate material 500 are surrounded by a ring of an encapsulant 570. The ring of the encapsulant 570 has a thickness D22 between the notch 544 in the base substrate material 502 and the outer edge of the eWLCSP 630. In an embodiment, the thickness D22 is at least 0.5 μm. The encapsulant 570 covers the side surface 542 and covers the base substrate material 502 that surrounds the edge 514 of the semiconductor die 504. The encapsulant 570 protects the semiconductor die 504 during back grinding and singulation. The encapsulant 570 is singulated to separate the individual eWLCSP 630 without passing through the substrate material 502 or The semiconductor die 504 is singulated. The encapsulant 570 disposed over the side surface 542 reduces cracking and fracture of the base substrate material 502 and the semiconductor die 504. In one embodiment, the thickness D20 of the encapsulant 570 above the side surface 542 is 0.5 [mu]m or greater. In another embodiment, the thickness D20 of the encapsulant 570 above the side surface 542 ranges from 5 to 50 [mu]m.
囊封體570係在該背面研磨製程期間從半導體晶粒504的背表面508被移除,以降低eWLCSP 630的厚度。半導體晶粒504係在背面研磨期間被薄化,以降低eWLCSP 630的翹曲。在一實施例中,半導體晶粒504係具有一500μm或是更小的厚度D21。囊封體570及半導體晶粒504的降低的厚度係改善在安裝eWLCSP 630至一例如是PCB的基板之後的eWLCSP 630的可靠度。 The encapsulant 570 is removed from the back surface 508 of the semiconductor die 504 during the back grinding process to reduce the thickness of the eWLCSP 630. The semiconductor die 504 is thinned during back grinding to reduce warpage of the eWLCSP 630. In one embodiment, the semiconductor die 504 has a thickness D21 of 500 μm or less. The reduced thickness of the encapsulant 570 and the semiconductor die 504 improves the reliability of the eWLCSP 630 after mounting the eWLCSP 630 to a substrate such as a PCB.
eWLCSP 630是一具有側壁保護的扇入封裝以強化半導體晶粒504,而不需要一背面保護層。eWLCSP 630可以在無背面保護層下,以一較低的成本來加以製造。再者,半導體晶粒504的露出的背表面508係容許半導體晶粒504的針對於裂縫及破碎之視覺的檢查。eWLCSP 630係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體560上形成一重組晶圓來加以製造,此係降低用於eWLCSP 630的設備及材料成本。eWLCSP 630係利用標準化的載體560以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 The eWLCSP 630 is a fan-in package with sidewall protection to strengthen the semiconductor die 504 without the need for a backside protective layer. The eWLCSP 630 can be manufactured at a lower cost without a back cover. Moreover, the exposed back surface 508 of the semiconductor die 504 allows for inspection of the semiconductor die 504 for crack and broken vision. The eWLCSP 630 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 560, which reduces the cost of equipment and materials for the eWLCSP 630. The eWLCSP 630 is manufactured in a larger amount using a standardized carrier 560, thereby simplifying the process and reducing unit cost.
圖24係展示具有在半導體晶粒的側壁之上的囊封體、一露出的背表面以及一UBM之eWLCSP 640。一導電層642係在最終的再次鈍化之後,利用PVD、CVD、蒸鍍、電解的電鍍、無電的電鍍、或是其它適當的金屬沉積製程以形成在導電層584的露出的部分之上、以及在絕緣層 590之上。導電層642可以是Al、Cu、Sn、Ni、AU、Ag、W、或是其它適當的導電材料。導電層642是一電連接至導電層584及512的UBM。UBM 642可以是一具有黏著層、阻障層、以及晶種或潤濕層之多金屬的堆疊。該黏著層係形成在導電層584之上,並且可以是Ti、TiN、TiW、Al、或是Cr。該阻障層係形成在該黏著層之上,並且可以是Ni、NiV、Pt、Pd、TiW、Ti、或是CrCu。該阻障層係禁止Cu擴散到半導體晶粒504的主動表面510中。該晶種層係形成在該阻障層之上,並且可以是Cu、Ni、NiV、AU、或是Al。UBM 642係提供一低電阻的互連至導電層584、以及一焊料擴散的阻障以及用於焊料可潤濕性的晶種層。 Figure 24 shows an encapsulant having an overlying sidewall of a semiconductor die, an exposed back surface, and a UBM's eWLCSP 640. A conductive layer 642 is formed on the exposed portion of conductive layer 584 by PVD, CVD, evaporation, electrolytic plating, electroless plating, or other suitable metal deposition process after final repassivation, and In the insulation layer Above 590. Conductive layer 642 can be Al, Cu, Sn, Ni, AU, Ag, W, or other suitable electrically conductive material. Conductive layer 642 is a UBM that is electrically connected to conductive layers 584 and 512. UBM 642 can be a stack of multiple metals with an adhesion layer, a barrier layer, and a seed or wetting layer. The adhesive layer is formed over the conductive layer 584 and may be Ti, TiN, TiW, Al, or Cr. The barrier layer is formed over the adhesive layer and may be Ni, NiV, Pt, Pd, TiW, Ti, or CrCu. The barrier layer inhibits Cu from diffusing into the active surface 510 of the semiconductor die 504. The seed layer is formed over the barrier layer and may be Cu, Ni, NiV, AU, or Al. UBM 642 provides a low resistance interconnect to conductive layer 584, as well as a solder diffusion barrier and a seed layer for solder wettability.
一種導電的凸塊材料係利用一蒸鍍、電解的電鍍、無電的電鍍、球式滴落、或是網版印刷製程以沉積在導電層642之上。在一實施例中,該凸塊材料係利用一球式滴落模版來加以沉積,亦即不需要遮罩。該凸塊材料可以是具有一選配的助熔溶劑之Al、Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料、以及其之組合。例如,該凸塊材料可以是共晶Sn/Pb、高鉛的焊料、或是無鉛的焊料。該凸塊材料係利用一適當的附裝或接合製程而被接合到導電層642。在一實施例中,該凸塊材料係藉由加熱該材料超過其熔點來加以回焊,以形成球或凸塊592。在某些應用中,凸塊592係被回焊第二次以改善至導電層642的電性接觸。凸塊592亦可被壓縮接合或是熱壓接合到導電層642。凸塊592係代表一種可被形成在導電層642之上的互連結構類型。該互連結構亦可以使用接合線、導電膏、柱形凸塊、微凸塊、或是其它電互連。 A conductive bump material is deposited over conductive layer 642 using an evaporation, electrolytic plating, electroless plating, ball dropping, or screen printing process. In one embodiment, the bump material is deposited using a ball drop stencil, i.e., no mask is required. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof with an optional fluxing solvent. For example, the bump material can be eutectic Sn/Pb, high lead solder, or lead free solder. The bump material is bonded to conductive layer 642 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material beyond its melting point to form a ball or bump 592. In some applications, bumps 592 are reflowed a second time to improve electrical contact to conductive layer 642. The bump 592 can also be compression bonded or thermocompression bonded to the conductive layer 642. Bump 592 represents a type of interconnect structure that can be formed over conductive layer 642. The interconnect structure can also use bond wires, conductive pastes, stud bumps, microbumps, or other electrical interconnects.
絕緣層580及590、導電層584及642、以及凸塊592係全 體構成一形成在半導體晶粒504之上並且在半導體晶粒504的一覆蓋區之內之堆積的互連結構644。半導體晶粒504的一相鄰半導體晶粒504的週邊區域並沒有互連結構644,使得囊封體570的表面572係相對於互連結構644維持露出的。堆積的互連結構644可包含只有一例如是導電層584的RDL或導電層、以及一例如是絕緣層580的絕緣層。額外的絕緣層及RDL可以在形成凸塊592之前被形成在絕緣層580之上,以根據半導體晶粒504的設計及功能來提供橫跨該封裝之額外的垂直及水平的電性連接。 Insulation layers 580 and 590, conductive layers 584 and 642, and bumps 592 are all The body constitutes an interconnect structure 644 formed over the semiconductor die 504 and deposited within a footprint of the semiconductor die 504. The peripheral region of an adjacent semiconductor die 504 of semiconductor die 504 does not have interconnect structure 644 such that surface 572 of encapsulant 570 remains exposed relative to interconnect structure 644. The stacked interconnect structure 644 can include only one RDL or conductive layer, such as conductive layer 584, and an insulating layer, such as insulating layer 580. Additional insulating layers and RDL may be formed over insulating layer 580 prior to forming bumps 592 to provide additional vertical and horizontal electrical connections across the package depending on the design and function of semiconductor die 504.
製造eWLCSP 640的製程係藉由透過一種步階的單粒化製程以及覆蓋半導體晶粒504的側壁的囊封體570的使用,以降低半導體晶粒504的缺陷來改善良率。在半導體晶圓500的單粒化期間所用的步階切割係降低半導體晶粒504的主動表面510的裂開及破碎。溝槽530係在單粒化半導體晶圓500之前被形成,以便於控制半導體晶粒504的裂開及破碎。在基底基板材料502中的缺口544亦可被利用於在半導體晶圓500的單粒化期間的對準。用於半導體晶圓500之步階的單粒化製程係藉由降低對於半導體晶粒504的損壞來改善良率。 The process of fabricating the eWLCSP 640 improves yield by reducing the defects of the semiconductor die 504 by passing through a single granulation process of one step and the use of an encapsulant 570 that covers the sidewalls of the semiconductor die 504. The step cutting used during the singulation of the semiconductor wafer 500 reduces cracking and fracture of the active surface 510 of the semiconductor die 504. Trench 530 is formed prior to singulation of semiconductor wafer 500 to facilitate control of cracking and fracture of semiconductor die 504. The notches 544 in the base substrate material 502 can also be utilized for alignment during singulation of the semiconductor wafer 500. The single granulation process for the steps of the semiconductor wafer 500 improves yield by reducing damage to the semiconductor die 504.
囊封體570係在半導體晶粒504的四個側邊之上提供側壁保護,以在機械上強化半導體晶粒504。半導體晶粒504係由一在半導體晶粒504的邊緣514周圍的基底基板材料502的環所圍繞。囊封體570係覆蓋側表面542並且覆蓋基底基板材料502,其係圍繞半導體晶粒504的邊緣514。囊封體570係在背面研磨及單粒化期間保護半導體晶粒504。囊封體570係被單粒化以分開個別的eWLCSP 640,而不透過基底基板材料502或是半導體晶粒504來單粒化。設置在側表面542之上的囊封體570係降低基底基板 材料502及半導體晶粒504的裂開及破碎。在一實施例中,囊封體570在側表面542之上的厚度D20是0.5μm或是更大的。在另一實施例中,囊封體570在側表面542之上的厚度D20範圍是從5到50μm。 The encapsulant 570 provides sidewall protection over the four sides of the semiconductor die 504 to mechanically strengthen the semiconductor die 504. Semiconductor die 504 is surrounded by a ring of base substrate material 502 around edge 514 of semiconductor die 504. The encapsulant 570 covers the side surface 542 and covers the base substrate material 502 that surrounds the edge 514 of the semiconductor die 504. The encapsulant 570 protects the semiconductor die 504 during back grinding and singulation. The encapsulant 570 is singulated to separate the individual eWLCSP 640 without singulation through the base substrate material 502 or the semiconductor die 504. The encapsulant 570 disposed over the side surface 542 lowers the base substrate The material 502 and the semiconductor die 504 are cracked and broken. In one embodiment, the thickness D20 of the encapsulant 570 above the side surface 542 is 0.5 [mu]m or greater. In another embodiment, the thickness D20 of the encapsulant 570 above the side surface 542 ranges from 5 to 50 [mu]m.
囊封體570係在該背面研磨製程期間從半導體晶粒504的背表面508被移除,以降低eWLCSP 640的厚度並且露出半導體晶粒504的背表面508。半導體晶粒504係在背面研磨期間被薄化,以降低eWLCSP 640的翹曲。在一實施例中,半導體晶粒504係具有一500μm或是更小的厚度D21。囊封體570及半導體晶粒504的降低的厚度係改善在安裝eWLCSP 640至一例如是PCB的基板之後的eWLCSP 640的可靠度。 The encapsulant 570 is removed from the back surface 508 of the semiconductor die 504 during the backgrinding process to reduce the thickness of the eWLCSP 640 and expose the back surface 508 of the semiconductor die 504. The semiconductor die 504 is thinned during back grinding to reduce warpage of the eWLCSP 640. In one embodiment, the semiconductor die 504 has a thickness D21 of 500 μm or less. The reduced thickness of the encapsulant 570 and the semiconductor die 504 improves the reliability of the eWLCSP 640 after mounting the eWLCSP 640 to a substrate such as a PCB.
eWLCSP 640是一具有側壁保護的扇入封裝以強化半導體晶粒504,而不需要一背面保護層。eWLCSP 640可以在無背面保護層下,以一較低的成本來加以製造。再者,半導體晶粒504的露出的背表面508係容許半導體晶粒504的針對於裂縫及破碎之視覺的檢查。eWLCSP 640係利用針對於單一標準化的載體尺寸所設計的設備,藉由在標準化的載體560上形成一重組晶圓來加以製造,此係降低用於eWLCSP 640的設備及材料成本。eWLCSP 640係利用標準化的載體560以一較大的量來加以製造,藉此簡化該製程並且降低單位成本。 The eWLCSP 640 is a fan-in package with sidewall protection to strengthen the semiconductor die 504 without the need for a backside protective layer. The eWLCSP 640 can be manufactured at a lower cost without a back cover. Moreover, the exposed back surface 508 of the semiconductor die 504 allows for inspection of the semiconductor die 504 for crack and broken vision. The eWLCSP 640 is fabricated using a device designed for a single standardized carrier size by forming a reconstituted wafer on a standardized carrier 560, which reduces the cost of equipment and materials for the eWLCSP 640. The eWLCSP 640 is manufactured in a larger amount using a standardized carrier 560, thereby simplifying the process and reducing unit cost.
儘管本發明的一或多個實施例已經詳細地加以描述,但是本領域技術人員將會體認到可以對於那些實施例做成修改及調適,而不脫離如同在以下的申請專利範圍中所闡述的本發明的範疇。 Although one or more embodiments of the present invention have been described in detail, those skilled in the art will recognize that modifications and adaptations can be made to those embodiments without departing from the scope of the following claims. The scope of the invention.
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/070,509 US9704824B2 (en) | 2013-01-03 | 2013-11-02 | Semiconductor device and method of forming embedded wafer level chip scale packages |
US14/070,509 | 2013-11-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201519331A TW201519331A (en) | 2015-05-16 |
TWI651783B true TWI651783B (en) | 2019-02-21 |
Family
ID=53348180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103136264A TWI651783B (en) | 2013-11-02 | 2014-10-21 | Semiconductor device and method of forming embedded wafer level chip scale packages |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN104701195B (en) |
SG (2) | SG10201800413PA (en) |
TW (1) | TWI651783B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10366956B2 (en) * | 2015-06-10 | 2019-07-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and manufacturing method thereof |
US20170098628A1 (en) * | 2015-10-05 | 2017-04-06 | Mediatek Inc. | Semiconductor package structure and method for forming the same |
US10123419B2 (en) * | 2016-03-30 | 2018-11-06 | Intel Corporation | Surface-mountable power delivery bus board |
TWI622142B (en) | 2016-11-07 | 2018-04-21 | 財團法人工業技術研究院 | Chip package and chip packaging method |
TWI664683B (en) * | 2017-03-16 | 2019-07-01 | 佳邦科技股份有限公司 | Method of manufacturing semiconductor package |
CN107342256A (en) * | 2017-06-26 | 2017-11-10 | 矽力杰半导体技术(杭州)有限公司 | Semiconductor technology and semiconductor structure |
US10283424B1 (en) * | 2018-03-08 | 2019-05-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Wafer structure and packaging method |
CN109002806A (en) * | 2018-07-27 | 2018-12-14 | 星科金朋半导体(江阴)有限公司 | A kind of rear road packaging method of QFN product |
TWI670779B (en) * | 2018-11-16 | 2019-09-01 | 典琦科技股份有限公司 | Method for manufacturing chip package |
TWI703615B (en) * | 2019-08-12 | 2020-09-01 | 矽品精密工業股份有限公司 | Method for fabricating electronic package |
US11538787B2 (en) * | 2020-10-30 | 2022-12-27 | Advanced Semiconductor Engineering, Inc. | Method and system for manufacturing a semiconductor package structure |
CN112885793A (en) * | 2021-03-12 | 2021-06-01 | 苏州晶方半导体科技股份有限公司 | Chip packaging structure and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120126427A1 (en) * | 2010-11-18 | 2012-05-24 | Sae Magnetics (H.K.) Ltd. | Memory device, laminated semiconductor substrate and method of manufacturing the same |
US20130037935A1 (en) * | 2011-08-09 | 2013-02-14 | Yan Xun Xue | Wafer level package structure and the fabrication method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0574932A (en) * | 1991-09-17 | 1993-03-26 | Fujitsu Ltd | Dicing method for semiconductor wafer |
CN101521165B (en) * | 2008-02-26 | 2012-01-11 | 上海凯虹电子有限公司 | Chip-scale packaging method |
US20110014746A1 (en) * | 2009-07-17 | 2011-01-20 | Stats Chippac, Ltd. | Semiconductor Device and Method of Forming Conductive TSV in Peripheral Region of Die Prior to Wafer Singulaton |
EP2453474A1 (en) * | 2010-11-10 | 2012-05-16 | Nxp B.V. | Semiconductor device packaging method and semiconductor device package |
CN103035578B (en) * | 2011-10-06 | 2017-08-18 | 新科金朋有限公司 | Form the semiconductor devices and method of the reconstructed wafer with compared with larger vector |
CN103117232B (en) * | 2011-11-16 | 2015-07-01 | 美新半导体(无锡)有限公司 | Wafer-level packaging method and packaging structure thereof |
TWI463619B (en) * | 2012-06-22 | 2014-12-01 | 矽品精密工業股份有限公司 | Semiconductor package and method of forming the same |
-
2014
- 2014-10-21 TW TW103136264A patent/TWI651783B/en active
- 2014-10-27 SG SG10201800413PA patent/SG10201800413PA/en unknown
- 2014-10-27 SG SG10201406984RA patent/SG10201406984RA/en unknown
- 2014-10-31 CN CN201410858205.3A patent/CN104701195B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120126427A1 (en) * | 2010-11-18 | 2012-05-24 | Sae Magnetics (H.K.) Ltd. | Memory device, laminated semiconductor substrate and method of manufacturing the same |
US20130037935A1 (en) * | 2011-08-09 | 2013-02-14 | Yan Xun Xue | Wafer level package structure and the fabrication method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104701195A (en) | 2015-06-10 |
SG10201406984RA (en) | 2015-06-29 |
TW201519331A (en) | 2015-05-16 |
SG10201800413PA (en) | 2018-03-28 |
CN104701195B (en) | 2019-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11488933B2 (en) | Semiconductor device and method of forming embedded wafer level chip scale packages | |
US11961764B2 (en) | Semiconductor device and method of making a wafer-level chip-scale package | |
US11257729B2 (en) | Semiconductor device and method of forming encapsulated wafer level chip scale package (eWLCSP) | |
US11488932B2 (en) | Semiconductor device and method of using a standardized carrier to form embedded wafer level chip scale packages | |
TWI651783B (en) | Semiconductor device and method of forming embedded wafer level chip scale packages | |
TWI658543B (en) | Semiconductor device and method of using a standardized carrier in semiconductor packaging |