TWI646796B - Current flattening circuit, current compensation circuit and associated control method - Google Patents
Current flattening circuit, current compensation circuit and associated control method Download PDFInfo
- Publication number
- TWI646796B TWI646796B TW106104808A TW106104808A TWI646796B TW I646796 B TWI646796 B TW I646796B TW 106104808 A TW106104808 A TW 106104808A TW 106104808 A TW106104808 A TW 106104808A TW I646796 B TWI646796 B TW I646796B
- Authority
- TW
- Taiwan
- Prior art keywords
- current
- circuit
- voltage
- core
- compensation
- Prior art date
Links
Landscapes
- Control Of Electrical Variables (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
Abstract
本發明提出一種電流平坦化電路、一種電流補償電路與其相關的控制方法。電流平坦化電路電連接於一核心節點,且電流平坦化電路包含一參考電壓調整器與電流補償電路。參考電壓調整器產生一參考電壓,其中參考電壓為恆定。電流補償電路電連接於核心節點與參考電壓調整器。電流補償電路根據參考電壓,以及與核心節點對應之核心電壓之間的電壓差而產生一補償電流。 The invention provides a current flattening circuit, a current compensation circuit and a related control method thereof. The current flattening circuit is electrically connected to a core node, and the current flattening circuit includes a reference voltage regulator and a current compensation circuit. The reference voltage regulator generates a reference voltage in which the reference voltage is constant. The current compensation circuit is electrically connected to the core node and the reference voltage regulator. The current compensation circuit generates a compensation current based on a voltage difference between the reference voltage and a core voltage corresponding to the core node.
Description
本發明是有關於一種電流平坦化電路、電流補償電路與其相關的控制方法,且特別是有關於一種可避免核心電路的功率消耗被用於分析之電流平坦化電路、電流補償電路與其相關的控制方法。 The invention relates to a current flattening circuit, a current compensation circuit and a related control method thereof, and particularly relates to a current flattening circuit, a current compensation circuit and a related control thereof, which can avoid power consumption of a core circuit being used for analysis. method.
半導體被廣泛用於許多當前的電子產品,且安全性議題逐漸成為設計嵌入式系統的重要議題。 Semiconductors are widely used in many current electronic products, and security issues are becoming an important issue in designing embedded systems.
請參見第1圖,其係透過在電壓源與晶片間加入的電流計,進而偵測核心電路的操作之示意圖。晶片10的功率接腳自電壓源接收供應電壓(Vsrc)。晶片10可包含核心電路15,其中核心電路15執行指令的順序,可能會被電流計11的電流偵測結果洩漏。 Please refer to FIG. 1 , which is a schematic diagram of the operation of the core circuit by adding an ammeter between the voltage source and the wafer. The power pin of wafer 10 receives a supply voltage (Vsrc) from a voltage source. The wafer 10 may include a core circuit 15 in which the core circuit 15 executes the sequence of instructions and may be leaked by the current detection result of the ammeter 11.
因為核心電路15消耗的功率會隨著核心電路15的 操作不同而產生變化,且流經核心電路15的供應電流Ivdd可能夾帶著與所進行之操作、被處理的資料相關的資訊。因此,現已發展出差分功率分析(differential power analysis,簡稱為DPA)技術,其係依據核心電路15的瞬間功率消耗的情況,分析核心電路15所進行的操作。因此,亟需發展能保護核心電路15的操作不被分析的相關技術。 Because the power consumed by the core circuit 15 will follow the core circuit 15 The operation varies, and the supply current Ivdd flowing through the core circuit 15 may carry information related to the operation being performed and the material being processed. Therefore, a differential power analysis (DPA) technique has been developed which analyzes the operations performed by the core circuit 15 in accordance with the instantaneous power consumption of the core circuit 15. Therefore, there is an urgent need to develop a related art that can protect the operation of the core circuit 15 from being analyzed.
本揭露係有關於一種電流平坦化電路、電流補償電路與其相關的控制方法。 The disclosure relates to a current flattening circuit, a current compensation circuit and a related control method therefor.
根據本揭露之第一方面,提出一種電流平坦化電路。電流平坦化電路電連接於一核心節點,並包含:一參考電壓調整器與一電流補償電路。參考電壓調整器係產生一參考電壓,其中該參考電壓為恆定。電流補償電路電連接於該核心節點與該參考電壓調整器,其係根據該參考電壓以及與該核心節點對應之一核心電壓之間的一電壓差,產生一補償電流。 According to a first aspect of the present disclosure, a current leveling circuit is proposed. The current flattening circuit is electrically connected to a core node and includes: a reference voltage regulator and a current compensation circuit. The reference voltage regulator generates a reference voltage, wherein the reference voltage is constant. The current compensation circuit is electrically connected to the core node and the reference voltage regulator, and generates a compensation current according to a voltage difference between the reference voltage and a core voltage corresponding to the core node.
根據本揭露之第二方面,提出一種電流補償電路。電流補償電路電連接於一核心節點,其中該電流補償電路係包含:一電壓匹配電路以及一第一電流電路。電壓匹配電路係接收一參考電壓以及與該核心節點對應之一核心電壓,其中該電壓匹配電路的一輸出信號係隨著該參考電壓與該核心電壓間的一電壓差而改變。第一電流電路電連接於該核心節點與該電壓匹配電路,其中該第一電流電路係產生一補償電流。 According to a second aspect of the present disclosure, a current compensation circuit is provided. The current compensation circuit is electrically connected to a core node, wherein the current compensation circuit comprises: a voltage matching circuit and a first current circuit. The voltage matching circuit receives a reference voltage and a core voltage corresponding to the core node, wherein an output signal of the voltage matching circuit changes according to a voltage difference between the reference voltage and the core voltage. The first current circuit is electrically connected to the core node and the voltage matching circuit, wherein the first current circuit generates a compensation current.
根據本揭露之第三方面,提出一種應用於一電流平坦化電路的控制方法。控制方法包含以下步驟:產生一參考電壓;以及根據該參考電壓以及與該核心節點對應之一核心電壓間的一電壓差而產生一補償電流。其中該參考電壓係為恆定,且該補償電流係為該供應電流之一部分。 According to a third aspect of the present disclosure, a control method applied to a current leveling circuit is proposed. The control method includes the steps of: generating a reference voltage; and generating a compensation current according to the reference voltage and a voltage difference between a core voltage corresponding to the core node. Wherein the reference voltage is constant and the compensation current is part of the supply current.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:
10‧‧‧晶片 10‧‧‧ wafer
11、22‧‧‧電流計 11, 22‧‧‧ galvanometer
15、25‧‧‧核心電路 15, 25‧‧‧ core circuits
21‧‧‧電流平坦化電路 21‧‧‧ Current Flattening Circuit
23‧‧‧功率接腳 23‧‧‧Power pin
40‧‧‧電流平衡電路 40‧‧‧ Current Balance Circuit
30、30a、30c‧‧‧參考電壓調整器 30, 30a, 30c‧‧‧reference voltage regulator
50、51、53‧‧‧電流補償電路 50, 51, 53‧‧‧ current compensation circuit
60‧‧‧電流感測電路 60‧‧‧ Current sensing circuit
20‧‧‧系統電路 20‧‧‧System Circuit
S41、S42、S43、S44、S45、S47、S49、S471、S472、S473、S474、S477、S479‧‧‧步驟 S41, S42, S43, S44, S45, S47, S49, S471, S472, S473, S474, S477, S479‧‧
32a、32c‧‧‧恆定電壓源 32a, 32c‧‧‧ Constant voltage source
301a、301c‧‧‧電壓提供電路 301a, 301c‧‧‧ voltage supply circuit
303a、303c‧‧‧電壓轉電流電路 303a, 303c‧‧‧voltage to current circuit
305a、305c‧‧‧電流傳導電路 305a, 305c‧‧‧ current conduction circuit
309a、309c‧‧‧電流轉電壓電路 309a, 309c‧‧‧current to voltage circuit
306a‧‧‧第一電流鏡 306a‧‧‧First current mirror
306b‧‧‧第二電流鏡 306b‧‧‧second current mirror
50a、51a、53a‧‧‧電壓匹配電路 50a, 51a, 53a‧‧‧ voltage matching circuit
50b、51b、42b‧‧‧第一電流電路 50b, 51b, 42b‧‧‧ first current circuit
50c、51c、53c‧‧‧第二電流電路 50c, 51c, 53c‧‧‧ second current circuit
第1圖,其係透過在電壓源與晶片間加入的電流計,進而偵測核心電路的操作之示意圖。 Figure 1 is a schematic diagram showing the operation of the core circuit through an ammeter added between the voltage source and the wafer.
第2圖,其係說明系統電路包含電流平坦化電路與核心電路之示意圖。 Figure 2 is a schematic diagram showing the system circuit including a current flattening circuit and a core circuit.
第3圖,其係說明電流平坦化電路的操作如何使核心電壓保持一致之流程圖。 Figure 3 is a flow diagram illustrating how the operation of the current flattening circuit maintains the core voltage consistent.
第4圖,其係參考電壓調整器的一個實施例之示意圖。 Figure 4 is a schematic diagram of one embodiment of a reference voltage regulator.
第5圖,其係參考電壓調整器的另一實施例之示意圖。 Figure 5 is a schematic diagram of another embodiment of a reference voltage regulator.
第6圖,其係電流補償電路的內部方塊之示意圖。 Figure 6, which is a schematic diagram of the inner block of the current compensation circuit.
第7圖,其係說明電流補償電路的操作之流程圖。 Figure 7 is a flow chart showing the operation of the current compensation circuit.
第8圖,其係電流補償電路的一個實施例之示意圖。 Figure 8, which is a schematic diagram of one embodiment of a current compensation circuit.
第9圖,其係電流補償電路的另一實施例之示意圖。 Figure 9, which is a schematic diagram of another embodiment of a current compensation circuit.
本揭露提出一種電流平坦化電路、一種電流補償電 路,以及與其相關的控制方法。電流補償電路的使用,能使電流計所量測的電流變異量(deviation)維持相對穩定。 The present disclosure proposes a current flattening circuit and a current compensation circuit Road, and the control methods associated with it. The use of the current compensation circuit enables the current variation measured by the ammeter to remain relatively stable.
在本文中,為便於說明,將節點與節點上的電壓以相同的符號表示。例如,將接地電壓與接地電壓節點表示為“Gnd”。 In this document, the voltages on nodes and nodes are denoted by the same symbol for convenience of explanation. For example, the ground voltage and the ground voltage node are represented as "Gnd".
請參見第2圖,其係說明系統電路包含電流平坦化電路與核心電路之示意圖。系統電路20包含核心電路25與電流平坦化電路21,且系統電路20的功率接腳23電連接於提供供應電壓(Vsrc)的電壓源。電流計22與功率接腳23串接,並用於量測流經功率接腳23的供應電流(Ivdd),進而擷取核心電路25的操作。 Please refer to FIG. 2, which illustrates a schematic diagram of a system circuit including a current flattening circuit and a core circuit. The system circuit 20 includes a core circuit 25 and a current flattening circuit 21, and the power pin 23 of the system circuit 20 is electrically coupled to a voltage source that supplies a supply voltage (Vsrc). The galvanometer 22 is connected in series with the power pin 23 and is used to measure the supply current (Ivdd) flowing through the power pin 23, thereby taking the operation of the core circuit 25.
電流平坦化電路21電連接於功率接腳23與核心電路25間。此處將電流平坦化電路21連接至功率接腳23的節點定義為供應電壓節點(Nvdd),以及將連接至核心電路25與電流平坦化電路21的節點定義為核心節點(Ncore)。其中,核心節點(Ncore)的電壓位準被定義為核心電壓(Vcore)。再者,核心電流(Icore)代表從核心節點(Ncore)流至核心電路25的電流,且核心電流(Icore)會隨著核心電路25的操作而改變。系統電路20可為系統單晶片(system-on-chip,簡稱為SOC)或是系統級封裝(system-on-package,簡稱為SOP),所以核心電流(Icore)通常無法被偵測而是偵測供應電流(Ivdd)。據此,本揭露提出多個能抑制供應電流(Ivdd)波動的實施例。 The current flattening circuit 21 is electrically connected between the power pin 23 and the core circuit 25. A node to which the current flattening circuit 21 is connected to the power pin 23 is defined as a supply voltage node (Nvdd), and a node connected to the core circuit 25 and the current flattening circuit 21 is defined as a core node (Ncore). Among them, the voltage level of the core node (Ncore) is defined as the core voltage (Vcore). Furthermore, the core current (Icore) represents the current flowing from the core node (Ncore) to the core circuit 25, and the core current (Icore) changes with the operation of the core circuit 25. The system circuit 20 can be a system-on-chip (SOC) or a system-on-package (SOP), so the core current (Icore) cannot be detected but is detected. Measure the supply current (Ivdd). Accordingly, the present disclosure proposes a plurality of embodiments capable of suppressing fluctuations in supply current (Ivdd).
根據本揭露的一個實施例,電流平坦化電路21包含電流感測電路60與電流平衡電路40。電流感測電路60電連接於供應電壓節點(Nvdd)與核心節點(Ncore)。電流感測電路60可為一感測電阻Rs,流經電流感測電路60的電流則定義為感測電流(Is)。電流平衡電路40電連接於核心節點(Ncore)。 According to one embodiment of the present disclosure, the current flattening circuit 21 includes a current sensing circuit 60 and a current balancing circuit 40. The current sensing circuit 60 is electrically coupled to a supply voltage node (Nvdd) and a core node (Ncore). The current sensing circuit 60 can be a sensing resistor Rs, and the current flowing through the current sensing circuit 60 is defined as a sensing current (Is). The current balancing circuit 40 is electrically coupled to a core node (Ncore).
根據本揭露的構想,希望能使感測電流(Is)的電流值保持一致,且感測電流(Is)在大多數時候確實能保持一致。流經電流感測電路60的感測電流(Is)在核心節點(Ncore)分為兩個部分,一為核心電流(Icore),一為補償電流(Icmp)。因此,感測電流(Is)相當於(Icore)與補償電流(Icmp)的總和。基於此種加總關係,補償電流(Icmp)與核心電流(Icore)彼此為負相關,並能消除感測電流(Is)的波動。 According to the concept of the present disclosure, it is desirable to keep the current value of the sense current (Is) consistent, and the sense current (Is) does remain consistent most of the time. The sense current (Is) flowing through the current sensing circuit 60 is divided into two parts at the core node (Ncore), one being the core current (Icore) and the other being the compensation current (Icmp). Therefore, the sense current (Is) is equivalent to the sum of (Icore) and the compensation current (Icmp). Based on this summing relationship, the compensation current (Icmp) and the core current (Icore) are negatively correlated with each other and the fluctuation of the sensing current (Is) can be eliminated.
流經功率接腳23的供應電流(Ivdd)在供應電壓節點(Nvdd)一分為二,即,感測電流(Is)與輔助電流(Iadd)。輔助電流(Iadd)不一定會產生。當輔助電流(Iadd)產生時,供應電流(Ivdd)相當於感測電流(Is)與輔助電流(Iadd)的加總。否則,供應電流(Ivdd)相當於感測電流(Is)。一般說來,輔助電流(Iadd)相對小於感測電流(Is)。 The supply current (Ivdd) flowing through the power pin 23 is divided into two at the supply voltage node (Nvdd), that is, the sense current (Is) and the auxiliary current (Iadd). The auxiliary current (Iadd) does not necessarily occur. When the auxiliary current (Iadd) is generated, the supply current (Ivdd) is equivalent to the sum of the sense current (Is) and the auxiliary current (Iadd). Otherwise, the supply current (Ivdd) is equivalent to the sense current (Is). In general, the auxiliary current (Iadd) is relatively smaller than the sense current (Is).
電流平衡電路40進一步包含彼此電連接的參考電壓調整器30與電流補償電路50。參考電壓調整器30提供參考電壓(Vref)至電流補償電路50,且將參考電壓(Vref)的電壓位準設計為恆定。 The current balancing circuit 40 further includes a reference voltage regulator 30 and a current compensation circuit 50 that are electrically connected to each other. The reference voltage regulator 30 supplies a reference voltage (Vref) to the current compensation circuit 50, and the voltage level of the reference voltage (Vref) is designed to be constant.
理論上,核心電壓(Vcore)可等於參考電壓(Vref)的倍數。為便於說明,此處假設核心電壓(Vcore)等於參考電壓(Vref)。電流平衡電路40基於核心電壓(Vcore)與參考電壓(Vref),動態地產生補償電流(Icmp)與輔助電流(Iadd)。一旦參考電壓(Vref)與核心電壓(Vcore)間存在電壓差,補償電流(Icmp)將產生變化,並能縮小該電壓差。 In theory, the core voltage (Vcore) can be equal to a multiple of the reference voltage (Vref). For convenience of explanation, it is assumed here that the core voltage (Vcore) is equal to the reference voltage (Vref). The current balancing circuit 40 dynamically generates a compensation current (Icmp) and an auxiliary current (Iadd) based on the core voltage (Vcore) and the reference voltage (Vref). Once there is a voltage difference between the reference voltage (Vref) and the core voltage (Vcore), the compensation current (Icmp) will change and the voltage difference can be reduced.
當核心電流(Icore)增加時,感測電流(Is)會隨著增加,連帶使感測電阻(Rs)兩端壓降增加,並使核心電壓(Vcore)減少。在此種情況下,參考電壓(Vref)將大於核心電壓(Vcore),且參考電壓(Vref)與核心電壓(Vcore)間的電壓差會使補償電流(Icmp)產生變化。亦即,補償電流(Icmp)將開始減少。隨著補償電流(Icmp)的減少,核心電壓(Vcore)將增加。其後,核心電壓(Vcore)將持續增加,直到核心電壓(Vcore)等於參考電壓(Vref)。據此,核心電壓(Vcore)可維持與參考電壓(Vref)大致相等。 As the core current (Icore) increases, the sense current (Is) increases, which in turn increases the voltage drop across the sense resistor (Rs) and reduces the core voltage (Vcore). In this case, the reference voltage (Vref) will be greater than the core voltage (Vcore), and the voltage difference between the reference voltage (Vref) and the core voltage (Vcore) will cause a change in the compensation current (Icmp). That is, the compensation current (Icmp) will begin to decrease. As the compensation current (Icmp) decreases, the core voltage (Vcore) will increase. Thereafter, the core voltage (Vcore) will continue to increase until the core voltage (Vcore) is equal to the reference voltage (Vref). Accordingly, the core voltage (Vcore) can be maintained substantially equal to the reference voltage (Vref).
承上,因為核心電壓(Vcore)的位準大致等於參考電壓(Vref)的緣故,可使感測電阻(Rs)兩端的壓降(即,(Vdd-Vcore))維持一致。依照歐姆定律,可以根據(Vdd-Vcore)/Rs計算出流經感測電阻(Rs)的感測電流(Is)。因為供應電壓(Vdd)、核心電壓(Vcore)與感測電組(Rs)的電阻值均維持一致的緣故,感測電流(Is)的波動可被減緩。 As a result, since the level of the core voltage (Vcore) is substantially equal to the reference voltage (Vref), the voltage drop across the sense resistor (Rs) (ie, (Vdd-Vcore)) can be maintained. According to Ohm's law, the sense current (Is) flowing through the sense resistor (Rs) can be calculated from (Vdd-Vcore)/Rs. Since the resistance values of the supply voltage (Vdd), the core voltage (Vcore), and the sense group (Rs) are all consistent, the fluctuation of the sense current (Is) can be slowed down.
請參見第3圖,其係說明電流平坦化電路的操作如何使核心電壓保持一致之流程圖。首先,假設電流平坦化電路21 與核心電路25處於一平衡狀態。當電流平坦化電路21與核心電路25處於平衡狀態時,核心電壓(Vcore)與參考電壓(Vref)相等,且流至核心電壓(Vcore)的感測電流(Is)保持一致(步驟S41)。電流感測電路60提供感測電流(Is)的一部分作為核心電流(Icore),並供應核心電流(Icore)至核心電路25(步驟S42)。 See Figure 3, which is a flow chart illustrating how the operation of the current flattening circuit keeps the core voltage consistent. First, assume current flattening circuit 21 It is in an equilibrium state with the core circuit 25. When the current flattening circuit 21 and the core circuit 25 are in an equilibrium state, the core voltage (Vcore) is equal to the reference voltage (Vref), and the sensing current (Is) flowing to the core voltage (Vcore) remains the same (step S41). The current sensing circuit 60 provides a portion of the sense current (Is) as a core current (Icore) and supplies a core current (Icore) to the core circuit 25 (step S42).
參考電壓調整器30持續產生參考電壓(Vref)(步驟S43)。在此同時,電流感測電路60根據對核心電壓(Vocre)的偵測結果而偵測感測電流(Is),且電流感測電路60將偵測到的核心電壓(Vcore)輸出至電流補償電路50(步驟S44)。從電流感測電路60接收核心電壓(Vcore)後,電流補償電路50判斷核心電壓(Vcore)是否改變(步驟S45)。若步驟S45的判斷結果為否定,則重複執行步驟S41。 The reference voltage regulator 30 continuously generates a reference voltage (Vref) (step S43). At the same time, the current sensing circuit 60 detects the sensing current (Is) according to the detection result of the core voltage (Vocre), and the current sensing circuit 60 outputs the detected core voltage (Vcore) to the current compensation. Circuit 50 (step S44). After receiving the core voltage (Vcore) from the current sensing circuit 60, the current compensation circuit 50 determines whether the core voltage (Vcore) is changed (step S45). If the result of the determination in step S45 is negative, step S41 is repeatedly executed.
若步驟S45的判斷結果為肯定,電流補償電路50調整補償電流(Icmp),其中作為感測電流(Is)之另一部分的補償電流(Icmp)係隨著核心電壓(Vcore)與參考電壓(Vref)間的電壓差而產生(步驟S47)。其後,核心電壓(Vcore)將基於補償電流(Icmp)的調整而改變(步驟S49)。此後,整個操作流程將重複執行。 If the result of the determination in step S45 is affirmative, the current compensation circuit 50 adjusts the compensation current (Icmp), wherein the compensation current (Icmp) which is another part of the sensing current (Is) follows the core voltage (Vcore) and the reference voltage (Vref). A voltage difference between them is generated (step S47). Thereafter, the core voltage (Vcore) will be changed based on the adjustment of the compensation current (Icmp) (step S49). Thereafter, the entire operation flow will be repeated.
如前所述,感測電流(Is)可分為兩個部分,核心電流(Icore)與補償電流(Icmp)。當核心電流(Icore)隨著核心電路25的操作而變化時,便以反向的方式調整補償電流(Icmp)。 As mentioned earlier, the sense current (Is) can be divided into two parts, the core current (Icore) and the compensation current (Icmp). When the core current (Icore) changes with the operation of the core circuit 25, the compensation current (Icmp) is adjusted in a reverse manner.
以下分別說明參考電壓調整器與電流補償電路的不同實施例。下述的參考電壓調整器與電流補償電路可任意選擇並 搭配使用。 Different embodiments of the reference voltage regulator and current compensation circuit are separately described below. The following reference voltage regulator and current compensation circuit can be arbitrarily selected and For use with.
請參見第4圖,其係參考電壓調整器的一個實施例之示意圖。參考電壓調整器30a從恆定電壓源32a接收恆定電壓(Vbg),並產生參考電壓(Vref)至參考電壓節點。舉例來說,恆定電壓源32a可為但不限於帶隙電壓(bandgap voltage)電路,並用於產生具有微小溫度係數(temperature coefficient)的帶隙電壓。在第4圖中,參考電壓調整器30a包含電壓提供電路301a、電壓轉電流電路303a、電流傳導電路305a以及電流轉電壓電路309c。 Please refer to FIG. 4, which is a schematic diagram of one embodiment of a reference voltage regulator. The reference voltage regulator 30a receives a constant voltage (Vbg) from the constant voltage source 32a and generates a reference voltage (Vref) to the reference voltage node. For example, constant voltage source 32a can be, but is not limited to, a bandgap voltage circuit and is used to generate a bandgap voltage having a small temperature coefficient. In FIG. 4, the reference voltage regulator 30a includes a voltage supply circuit 301a, a voltage-to-current circuit 303a, a current conduction circuit 305a, and a current-to-voltage circuit 309c.
電壓提供電路301a包含來源操作放大器(OPs)。來源操作放大器(OPs)的反相輸入端點(-)從恆定電壓源32a接收恆定電壓(Vbg)。來源操作放大器(OPs)的非反相輸入端點(+)電連接於電壓轉電流電路303a。非反相輸入端點(+)與反相輸入端點(-)的電壓位準彼此相等,且來源操作放大器(Ops)的非反相輸入輸入端點(+)將準恆定電壓(Vbg’)傳送至電壓轉電流電路303a。來源操作放大器(Ops)的輸出端點電連接於電流傳導電路305a。來源操作放大器(Ops)對恆定電壓(Vbg)與準恆定電壓(Vbg’)之間的電壓差加以放大而產生輸出信號。恆定電壓(Vbg)與準恆定電壓(Vbg’)基本上彼此相等(Vbg=Vbg’)。 The voltage supply circuit 301a includes source operational amplifiers (OPs). The inverting input terminal (-) of the source operational amplifier (OPs) receives a constant voltage (Vbg) from the constant voltage source 32a. The non-inverting input terminal (+) of the source operational amplifier (OPs) is electrically coupled to the voltage to current circuit 303a. The voltage levels of the non-inverting input terminal (+) and the inverting input terminal (-) are equal to each other, and the non-inverting input input terminal (+) of the source operational amplifier (Ops) will have a quasi-constant voltage (Vbg' ) is transmitted to the voltage to current circuit 303a. The output terminal of the source operational amplifier (Ops) is electrically coupled to current conducting circuit 305a. The source operational amplifier (Ops) amplifies the voltage difference between the constant voltage (Vbg) and the quasi-constant voltage (Vbg') to produce an output signal. The constant voltage (Vbg) and the quasi-constant voltage (Vbg') are substantially equal to each other (Vbg = Vbg').
電壓轉電流電路303a包含第一電阻(R1),且電壓轉電流電路303電連接於電壓供應電路301與接地節點(Gnd)。如式(1)所示,來源電流(Isrc)可由恆定電壓(Vbg)與第一電阻(R1)所決定。 The voltage-to-current circuit 303a includes a first resistor (R1), and the voltage-to-current circuit 303 is electrically connected to the voltage supply circuit 301 and a ground node (Gnd). As shown in the formula (1), the source current (Isrc) can be determined by the constant voltage (Vbg) and the first resistance (R1).
Is=Vbg’/R1=Vbg/R1……………………………………式(1) Is=Vbg’/R1=Vbg/R1....................................(1)
第4圖的電流傳導電路305a包含PMOS電晶體(P)。PMOS電晶體(P)的閘極電連接於電壓提供電路301a的輸出端。PMOS電晶體(P)的源極電連接於電流轉電壓電路309a。PMOS電晶體(P)的汲極電連接於電壓轉電流電路303a。 The current conducting circuit 305a of Fig. 4 includes a PMOS transistor (P). The gate of the PMOS transistor (P) is electrically connected to the output terminal of the voltage supply circuit 301a. The source of the PMOS transistor (P) is electrically connected to the current to voltage circuit 309a. The drain of the PMOS transistor (P) is electrically connected to the voltage-to-current circuit 303a.
電流轉電壓電路309a包含第二電阻(R2)。如第4圖所示,第二電阻(R2)電連接於供應電壓節點(Vdd),且參考電流(Iref)流經第二電阻(R2)。根據參考電流(Iref),第二電阻R2兩端的壓降△VR2可表示為式(2)。 The current to voltage circuit 309a includes a second resistor (R2). As shown in FIG. 4, the second resistor (R2) is electrically connected to the supply voltage node (Vdd), and the reference current (Iref) flows through the second resistor (R2). According to the reference current (Iref), the voltage drop ΔV R2 across the second resistor R2 can be expressed as equation (2).
△VR2=Iref*R2=Vdd-Vref………………………………式(2) ΔV R2 =Iref*R2=Vdd-Vref..............................(2)
PMOS電晶體(P)由來源操作放大器(OPs)的輸出信號(Vops)所控制。當PMOS電晶體(P)導通時,傳導電流(Icon)流經PMOS電晶體(P)。如第4圖所示,傳導電流(Icon)、參考電流(Iref)與來源電流(Isrc)共同形成一個電流路徑。因此,傳導電流(Icon)、來源電流(Isrc)與參考電流(Iref)的電流值彼此相等,亦即,Icon=Is=Iref。 The PMOS transistor (P) is controlled by the output signal (Vops) of the source operational amplifier (OPs). When the PMOS transistor (P) is turned on, the conduction current (Icon) flows through the PMOS transistor (P). As shown in Figure 4, the conduction current (Icon), the reference current (Iref) and the source current (Isrc) together form a current path. Therefore, the current values of the conduction current (Icon), the source current (Isrc), and the reference current (Iref) are equal to each other, that is, Icon=Is=Iref.
由於來源電流(Isrc)與參考電流(Iref)彼此相等的緣故,式(2)的參考電流(Iref)可用來源電流(Isrc)代換。因此,式(2)可進一步推導為式(3)。 Since the source current (Isrc) and the reference current (Iref) are equal to each other, the reference current (Iref) of the equation (2) can be replaced with the source current (Isrc). Therefore, the formula (2) can be further derived into the formula (3).
Vref=Vdd-Iref*R2=Vdd-Is*R2=Vdd-(Vbg*R2)/R1…………………………………………式(3) Vref=Vdd-Iref*R2=Vdd-Is*R2=Vdd-(Vbg*R2)/R1..........................................(3)
根據式(3),參考電壓(Vref)可由供應電壓(Vdd)、恆 定電壓(Vbg)、電壓轉電流電路303a(第一電阻R1),以及電流轉電壓電路309a(第二電阻R2)得出,且供應電壓(Vdd)、恆定電壓(Vbg)、第一電阻R1,以及第二電阻R2的數值在設計與生產電壓參考調整器30a時均已確知。 According to equation (3), the reference voltage (Vref) can be supplied from the voltage (Vdd), constant Constant voltage (Vbg), voltage to current circuit 303a (first resistor R1), and current to voltage circuit 309a (second resistor R2), and supply voltage (Vdd), constant voltage (Vbg), first resistor R1 And the value of the second resistor R2 is known both when designing and producing the voltage reference regulator 30a.
請參見第5圖,其係參考電壓調整器的另一實施例之示意圖。參考電壓調整器30c從恆定電壓源32c接收恆定電壓(Vbg)並產生參考電壓(Vref)至電流補償電路(未繪式)。在第5圖中,參考電壓調整器30c包含電壓提供電路301c、電壓轉電流電路303c、電流傳導電路305c,以及電流轉電壓電路309c。電流傳導電路305c進一步包含第一電流鏡306a與第二電流鏡306b。 Please refer to FIG. 5, which is a schematic diagram of another embodiment of a reference voltage regulator. The reference voltage regulator 30c receives a constant voltage (Vbg) from the constant voltage source 32c and generates a reference voltage (Vref) to a current compensation circuit (not shown). In Fig. 5, the reference voltage regulator 30c includes a voltage supply circuit 301c, a voltage-to-current circuit 303c, a current conduction circuit 305c, and a current-to-voltage circuit 309c. The current conducting circuit 305c further includes a first current mirror 306a and a second current mirror 306b.
來源操作放大器301c與電壓轉電流電路303c的連接關係與操作方式均與第4圖相似,此處不詳述其細節。因此,第5圖的來源電流(Isrc)同樣可根據式(1)得出。 The connection relationship and operation mode of the source operational amplifier 301c and the voltage-to-current circuit 303c are similar to those of FIG. 4, and details thereof will not be described in detail herein. Therefore, the source current (Isrc) of Fig. 5 can also be derived from equation (1).
第一電流鏡306a包含第一PMOS電晶體(P1)與第二PMOS電晶體(P2)。第一PMOS電晶體(P1)與第二PMOS電晶體(P2)的閘極電連接於電壓提供電路301c的輸出端。第一PMOS電晶體(P1)與第二PMOS電晶體(P2)的源極均電連接於供應電壓節點(Vdd)。第一PMOS電晶體(P1)的汲極電連接於電壓轉電流電路303c,且第二PMOS電晶體(P2)的汲極電連接於第二電流鏡306b。 The first current mirror 306a includes a first PMOS transistor (P1) and a second PMOS transistor (P2). The gates of the first PMOS transistor (P1) and the second PMOS transistor (P2) are electrically connected to the output terminal of the voltage supply circuit 301c. The sources of the first PMOS transistor (P1) and the second PMOS transistor (P2) are both electrically connected to the supply voltage node (Vdd). The drain of the first PMOS transistor (P1) is electrically connected to the voltage-to-current circuit 303c, and the drain of the second PMOS transistor (P2) is electrically connected to the second current mirror 306b.
如第5圖所示,第一PMOS電晶體(P1)與第一電阻(R1)共同形成第一電流路徑,且第一鏡像輸入電流(Iin1)與來源電 流(Isrc)均流經第一電流路徑。因此,第一鏡像輸入電流(Iin1)的電流值與來源電流(Isrc)的電流值相等。第一鏡像輸入電流(Iin1)流經第一PMOS電晶體(P1),且第一鏡像輸出電流(Iout1)流經第二PMOS電晶體(P2)。基於電流鏡的架構,第一鏡像輸入電流(Iin1)等於第一鏡像輸出電流(Iout1)。 As shown in FIG. 5, the first PMOS transistor (P1) and the first resistor (R1) together form a first current path, and the first mirror input current (Iin1) and the source power The stream (Isrc) flows through the first current path. Therefore, the current value of the first mirror input current (Iin1) is equal to the current value of the source current (Isrc). The first mirrored input current (Iin1) flows through the first PMOS transistor (P1), and the first mirrored output current (Iout1) flows through the second PMOS transistor (P2). Based on the current mirror architecture, the first mirrored input current (Iin1) is equal to the first mirrored output current (Iout1).
第二電流鏡306b包含第一NMOS電晶體(N1)與第二NMOS電晶體(N2)。第一NMOS電晶體(N1)的閘極與第二NMOS電晶體(N2)的閘極電連接於第一電流鏡306a的輸出端。第一NMOS電晶體(N1)與第二NMOS電晶體(N2)的源極電連接於接地節點(Gnd)。第一NMOS電晶體(N1)的汲極電連接於第一電流鏡306a的輸出端,且第二NMOS電晶體(N2)的汲極電連接於電流轉電壓電路309c。 The second current mirror 306b includes a first NMOS transistor (N1) and a second NMOS transistor (N2). The gate of the first NMOS transistor (N1) and the gate of the second NMOS transistor (N2) are electrically connected to the output terminal of the first current mirror 306a. The sources of the first NMOS transistor (N1) and the second NMOS transistor (N2) are electrically connected to the ground node (Gnd). The drain of the first NMOS transistor (N1) is electrically connected to the output terminal of the first current mirror 306a, and the drain of the second NMOS transistor (N2) is electrically connected to the current-turning voltage circuit 309c.
如第5圖所示,第二PMOS電晶體(P2)與第一NMOS電晶體(N1)共同形成第二電流路徑,且第一鏡像輸出(Iout1)與第二鏡像輸入電流(Iin2)均流經第二電流路徑。因此,第一鏡像輸出(Iout1)與第二鏡像輸入電流(Iin2)的電流值彼此相等。第二鏡像輸入電流(Iin2)流經第一NMOS電晶體(N1),且第二鏡像輸出電流(Iout2)流經第二NMOS電晶體(N2)。根據電流鏡的架構,第二鏡像輸入電流(Iin2)等於第二鏡像輸出電流(Iout2)。 As shown in FIG. 5, the second PMOS transistor (P2) and the first NMOS transistor (N1) together form a second current path, and the first mirror output (Iout1) and the second mirror input current (Iin2) are both current. Through the second current path. Therefore, the current values of the first mirror output (Iout1) and the second mirror input current (Iin2) are equal to each other. The second mirrored input current (Iin2) flows through the first NMOS transistor (N1), and the second mirrored output current (Iout2) flows through the second NMOS transistor (N2). According to the architecture of the current mirror, the second mirrored input current (Iin2) is equal to the second mirrored output current (Iout2).
電流轉電壓電路309c包含第二電阻(R2)。第4圖的電流轉電壓電路309a,以及第5圖的電流轉電壓電路309c,均連接於供應電壓節點(Vdd)與電流補償電路間,且電流轉電壓電路 309a、309c的操作方式彼此相似。因為第4、5圖的第二電阻(R2)的連接關係與位置相似,第5圖的第二電阻(R2)兩端的壓降△VR2,也可套用式(2)計算得出。 The current to voltage circuit 309c includes a second resistor (R2). The current-to-voltage circuit 309a of FIG. 4 and the current-to-voltage circuit 309c of FIG. 5 are both connected between the supply voltage node (Vdd) and the current compensation circuit, and the operation modes of the current-to-voltage circuits 309a, 309c are similar to each other. Since the connection relationship and position of the second resistor (R2) in Figs. 4 and 5 are similar, the voltage drop ΔV R2 across the second resistor (R2) of Fig. 5 can also be calculated by applying equation (2).
如第5圖所示,第二電阻(R2)與第二NMOS電晶體(N2)共同形成第三電流路徑,其中參考電流Iref與第二鏡像輸出電流(Iout2)均流經第三電流路徑。因此,參考電流Iref與第二鏡像輸出電流(Iout2)的電流值彼此相等。根據前述說明可以得知,來源電流(Isrc)、第一鏡像輸入電流(Iin1)、第一鏡像輸出電流(Iout1),第二鏡像輸入電流(Iin2),第二鏡像輸出電流(Iout2),以及參考電流(Iref)均假設為彼此相等。亦即,Isrc=Iinl=Iout=Iin2=Iout2=Iref。 As shown in FIG. 5, the second resistor (R2) and the second NMOS transistor (N2) together form a third current path, wherein both the reference current Iref and the second mirror output current (Iout2) flow through the third current path. Therefore, the current values of the reference current Iref and the second mirror output current (Iout2) are equal to each other. According to the foregoing description, the source current (Isrc), the first mirror input current (Iin1), the first mirror output current (Iout1), the second mirror input current (Iin2), the second mirror output current (Iout2), and The reference currents (Iref) are assumed to be equal to each other. That is, Isrc=Iinl=Iout=Iin2=Iout2=Iref.
然而,參考電壓(Vref)與恆定電壓(Vbg)之間的關係可自由定義而不需限定。是故,來源電流(Isrc)、第一鏡像輸入電流(Iin1)、第一鏡像輸出電流(Iout1)、第二鏡像輸入電流(Iin2)、第二鏡像輸出電流(Iout2),以及參考電流(Iref)間的電流轉換比率(current transfer ratio)可能不等於“1”。 However, the relationship between the reference voltage (Vref) and the constant voltage (Vbg) can be freely defined without limitation. Therefore, source current (Isrc), first image input current (Iin1), first image output current (Iout1), second image input current (Iin2), second image output current (Iout2), and reference current (Iref) The current transfer ratio may not be equal to "1".
因此,第一電流鏡306a與第二電流鏡306b的設計相當彈性,且其輸入電流(Iin1與Iin2)以及輸出電流(Iout1與Iout2)間的電流轉換比率不一定等於“1”。連帶的,第一鏡像輸入電流(Iin1)、第一鏡像輸出電流(Iout1)、第二鏡像輸入電流(Iin2)、第二鏡像輸出電流(Iout2),以及參考電流(Iref)可為來源電流(Isrc)的倍數。或者,參考電流(Iref)的電流值與來源電流(Isrc)的電流 值成比例。關於電流轉換比率的設計變化,可以本案所屬技術領域中具有通常知識者任意代換或改變,此處不再詳述。 Therefore, the design of the first current mirror 306a and the second current mirror 306b is relatively flexible, and the current conversion ratio between the input currents (Iin1 and Iin2) and the output currents (Iout1 and Iout2) is not necessarily equal to "1". Incidentally, the first image input current (Iin1), the first image output current (Iout1), the second image input current (Iin2), the second image output current (Iout2), and the reference current (Iref) may be source currents ( A multiple of Isrc). Or, the current value of the reference current (Iref) and the current of the source current (Isrc) The value is proportional. The design changes regarding the current conversion ratio can be arbitrarily substituted or changed by those having ordinary knowledge in the technical field to which the present invention pertains, and will not be described in detail herein.
因為來源電流(Isrc)與參考電流(Iref)彼此相等的緣故,式(3)可以應用至第5圖的參考電壓(Vref)。由於供應電壓(Vdd)、恆定電壓(Vbg)、電壓轉電流電路303c(第一電阻R1)與電流轉電壓電路309a(第二電阻R2)都是在設計與製造電壓參考調整器30c時即已確定,參考電壓調整器30c所提供的參考電壓(Vref)將維持不變。 Since the source current (Isrc) and the reference current (Iref) are equal to each other, the equation (3) can be applied to the reference voltage (Vref) of FIG. Since the supply voltage (Vdd), the constant voltage (Vbg), the voltage-to-current circuit 303c (the first resistor R1), and the current-to-voltage circuit 309a (the second resistor R2) are both designed and manufactured by the voltage reference adjuster 30c, It is determined that the reference voltage (Vref) provided by the reference voltage regulator 30c will remain unchanged.
根據以上的實施例,參考電壓調整器30a,30c內的電流傳導電路305a,305c可用於橋接電壓轉電流電路303a,303c與電流轉電壓電路309a,309c。電流傳導電路305a,305c將來源電流(Isrc)的預設的電流值傳送至電流轉電壓電路t 309a,309c,進而讓電流轉電壓電路309a,309c使用預設的電流值作為參考電流(Iref)的電流值。 According to the above embodiment, the current conducting circuits 305a, 305c in the reference voltage regulators 30a, 30c can be used to bridge the voltage to current circuits 303a, 303c and the current to voltage circuits 309a, 309c. The current conducting circuits 305a, 305c transmit the preset current values of the source current (Isrc) to the current converting voltage circuits t 309a, 309c, thereby allowing the current converting voltage circuits 309a, 309c to use the preset current values as the reference currents (Iref). Current value.
換言之,電壓轉電流電路303a,303c的設計將決定來源電流(Isrc)的電流值。來源電流(Isrc)的電流值提供至電流傳導電路305a,305c,並據以決定傳導電流(Icon)的電流值。透過電流傳導電路305a,305c的橋接,來源電流(Isrc)總是等於參考電流(Iref),且這些電流的電流值可維持在一個恆定的預設值。據此,電流轉電壓電路309c可以持續提供恆定電壓(即,參考電壓(Vref))至電流補償電路。 In other words, the design of the voltage to current circuits 303a, 303c will determine the current value of the source current (Isrc). The current value of the source current (Isrc) is supplied to the current conducting circuits 305a, 305c, and the current value of the conduction current (Icon) is determined accordingly. Through the bridging of the current conducting circuits 305a, 305c, the source current (Isrc) is always equal to the reference current (Iref), and the current values of these currents can be maintained at a constant preset value. Accordingly, the current to voltage circuit 309c can continuously supply a constant voltage (ie, a reference voltage (Vref)) to the current compensation circuit.
如第4、5圖所示,電流轉電壓電路309a、309c均 設置於供應電壓節點(Vdd)與具有參考電壓(Vref)之參考電壓節點間,用以改善參考電壓調整器30a、30c的電源供應抑制比(power supply rejection ratio,簡稱為PSRR)。 As shown in Figures 4 and 5, the current-to-voltage circuits 309a, 309c are both It is disposed between the supply voltage node (Vdd) and the reference voltage node having the reference voltage (Vref) to improve the power supply rejection ratio (PSRR) of the reference voltage regulators 30a, 30c.
因為參考電流(Iref)等於來源電流(Isrc)的緣故,當供應電壓(Vdd)發生干擾時,參考電流(Iref)仍相對保持穩定,亦即,Iref=Is=Vbg/R1。連帶地,參考電壓(Vref)可能會隨著供應電壓(Vdd)的變化而改變。當參考電壓(Vref)與供應電壓(Vdd)同時改變時,由參考電壓(Vref)決定的核心電壓(Vcore)也會隨著供應電壓(Vdd)的變化而改變。因為第二電阻(R2)連接在供應電壓節點(Vdd)與參考電壓節點(Vref)之間的緣故,來源電流(Isrc)較不會受到供應電壓(Vdd)的干擾。 Since the reference current (Iref) is equal to the source current (Isrc), the reference current (Iref) remains relatively stable when the supply voltage (Vdd) interferes, that is, Iref=Is=Vbg/R1. Incidentally, the reference voltage (Vref) may change as the supply voltage (Vdd) changes. When the reference voltage (Vref) changes simultaneously with the supply voltage (Vdd), the core voltage (Vcore) determined by the reference voltage (Vref) also changes with the supply voltage (Vdd). Since the second resistor (R2) is connected between the supply voltage node (Vdd) and the reference voltage node (Vref), the source current (Isrc) is less likely to be disturbed by the supply voltage (Vdd).
根據本揭露的實施例,參考電壓調整器30持續接收恆定電壓(Vbg)並據以提供參考電壓(Vref)至電流補償電路50。電流補償電路50再利用參考電壓(Vref)作為核心電壓(Vcore)的比較基礎。基於參考電壓(Vref)與核心電壓(Vcore)的比較結果,電流補償電路50將動態調整補償電流(Icmp)的產生。以下說明電流補償電路50的操作。 According to an embodiment of the present disclosure, the reference voltage regulator 30 continues to receive a constant voltage (Vbg) and accordingly provides a reference voltage (Vref) to the current compensation circuit 50. The current compensation circuit 50 reuses the reference voltage (Vref) as a basis for comparison of the core voltage (Vcore). Based on the comparison of the reference voltage (Vref) with the core voltage (Vcore), the current compensation circuit 50 will dynamically adjust the generation of the compensation current (Icmp). The operation of the current compensation circuit 50 will be described below.
請參見第6圖,其係電流補償電路的內部方塊之示意圖。電流補償電路50包含電壓匹配電路50a與第一電流電路50b。此外,電流補償電路50可進一步包含第二電流電路50c。第一電流電路50b與第二電流電路50c可分別由第一開關(sw1)與第二開關(sw2)導通或斷開。 Please refer to Fig. 6, which is a schematic diagram of the inner block of the current compensation circuit. The current compensation circuit 50 includes a voltage matching circuit 50a and a first current circuit 50b. Further, the current compensation circuit 50 may further include a second current circuit 50c. The first current circuit 50b and the second current circuit 50c may be turned on or off by the first switch (sw1) and the second switch (sw2), respectively.
電壓匹配電路50a電連接於核心節點(Ncore),且第一電流電路50b透過第一開關(sw1)的導通而電連接於核心節點(Ncore)。第二電流電路50c藉由第二開關(sw2)的導通而電連接於供應電壓節點(Nvdd)。與第一電流電路50b不同的是,電壓匹配電路50a並不會從核心節點(Ncore)導通電流至接地節點(Gnd),電壓匹配電路50a僅感測核心電壓(Vcore)。亦即,並無電流從核心節點(Ncore)導通至電壓匹配電路50a。 The voltage matching circuit 50a is electrically connected to the core node (Ncore), and the first current circuit 50b is electrically connected to the core node (Ncore) through the conduction of the first switch (sw1). The second current circuit 50c is electrically connected to the supply voltage node (Nvdd) by conduction of the second switch (sw2). Unlike the first current circuit 50b, the voltage matching circuit 50a does not conduct current from the core node (Ncore) to the ground node (Gnd), and the voltage matching circuit 50a senses only the core voltage (Vcore). That is, no current is conducted from the core node (Ncore) to the voltage matching circuit 50a.
第一開關(sw1)與第二開關(sw2)可由核心電路(未繪式)控制而選擇性導通或斷開,且第一開關(sw1)與第二開關(sw2)可採用MOS電晶體實現。實際應用時,用於控制第一開關(sw1)與第二開關(sw2)之開關狀態的控制信號為彼此獨立,且這兩個開關(sw1與sw2)可同時或分別導通。用於控制相對應之開關的這兩個控制信號均可為隨機序列(random sequence)的控制信號或是一個維持在高位準的控制信號。為便於說明,本文假設兩個開關為同時導通的情形。 The first switch (sw1) and the second switch (sw2) may be selectively turned on or off by a core circuit (not shown), and the first switch (sw1) and the second switch (sw2) may be implemented by using a MOS transistor. . In practical applications, the control signals for controlling the switching states of the first switch (sw1) and the second switch (sw2) are independent of each other, and the two switches (sw1 and sw2) can be turned on simultaneously or separately. The two control signals used to control the corresponding switches can be either a random sequence control signal or a control signal that is maintained at a high level. For ease of explanation, this article assumes that the two switches are simultaneously turned on.
電壓匹配電路50a從參考電壓調整器30接收參考電壓(Vref),並從核心節點(Ncore)接收核心電壓(Vcore)。電壓匹配電路50a(Vopm)的輸出信號用於控制第一電流電路50b與第二電流電路50c,且電壓匹配電路50a(Vopm)的輸出信號係根據參考電壓(Vref)與核心電壓(Vcore)之間的電壓差產生。在本文中,以電壓形式表示電壓匹配電路50a分別從從參考電壓調整器30與核心節點(Ncore)擷取的信號,亦即,參考電壓(Vref)與核心電壓(Vcore)。 實際應用時,由參考電壓調整器30與核心節點(Ncore)提供的信號亦可以電流表示。 The voltage matching circuit 50a receives the reference voltage (Vref) from the reference voltage regulator 30 and receives the core voltage (Vcore) from the core node (Ncore). The output signal of the voltage matching circuit 50a (Vopm) is used to control the first current circuit 50b and the second current circuit 50c, and the output signal of the voltage matching circuit 50a (Vopm) is based on the reference voltage (Vref) and the core voltage (Vcore). The voltage difference between them is generated. Herein, the voltages that the voltage matching circuit 50a draws from the reference voltage regulator 30 and the core node (Ncore), that is, the reference voltage (Vref) and the core voltage (Vcore), are respectively represented in a voltage form. In practical applications, the signal provided by the reference voltage regulator 30 and the core node (Ncore) can also be represented by current.
根據電壓匹配電路50a的輸出信號(Vopm),第一電流電路50b與第二電流電路50c分別產生補償電流(Icmp)與輔助電流(Iadd)。輔助電流(Iadd)與補償電流(Icmp)成比例。補償電流(Icmp)輔助電流(Iadd)會在核心電流(Icore)減少時增加,反之亦然。 According to the output signal (Vopm) of the voltage matching circuit 50a, the first current circuit 50b and the second current circuit 50c generate a compensation current (Icmp) and an auxiliary current (Iadd), respectively. The auxiliary current (Iadd) is proportional to the compensation current (Icmp). The compensation current (Icmp) auxiliary current (Iadd) increases as the core current (Icore) decreases, and vice versa.
供應電流(Ivdd)在供應電壓節點(Nvdd)分為輔助電流(Iadd)與感測電流(Is)兩個部分,其中感測電流(Is)在核心節點(Ncore)進一步分為補償電流(Icmp)與核心電流(Icore)兩個部分。根據本揭露的實施例,感測電流(Is)較輔助電流(Iadd)大,且感測電流(Is)為供應電流(Ivdd)的主要部分。 The supply current (Ivdd) is divided into auxiliary current (Iadd) and sensing current (Is) at the supply voltage node (Nvdd), wherein the sensing current (Is) is further divided into compensation currents at the core node (Ncore) (Icmp). ) with the core current (Icore) two parts. According to an embodiment of the present disclosure, the sense current (Is) is larger than the auxiliary current (Iadd), and the sense current (Is) is a major portion of the supply current (Ivdd).
表1所列為第2、6圖所定義的電流,在兩個時點(第一時點t1與第二時點t2)的改變。 Table 1 lists the currents defined in Figures 2 and 6, with changes at two time points (first time point t1 and second time point t2).
表1的第一列為核心電流(Icore)的變化。在第一時點(t1)與第二時點(t2)的核心電流分別表示為Icore(t1)與Icore(t2)。在兩個時點間的核心電流的變化量(△Icore),可以根據在第一時點(t1)與第二時點(t2)的核心電流(Icore)計算得出,亦即,△Icore=Icore(t2)-Icore(t1)。 The first column of Table 1 shows the change in core current (Icore). The core currents at the first time point (t1) and the second time point (t2) are represented as Icore(t1) and Icore(t2), respectively. The amount of change in core current (ΔIcore) between two time points can be calculated from the core current (Icore) at the first time point (t1) and the second time point (t2), that is, ΔIcore=Icore (t2)-Icore(t1).
表1的第二列為補償電流(Icmp)的變化。在第一時點(t1)與第二時點(t2)的補償電流分別表示為Icmp(t1)與Icmp(t2)。在兩個時點間的補償電流的變化量(△Icmp),可以根據第一時點(t1)與第二時點(t2)的補償電流(Icmp)計算得出,亦即,△Icmp=Icmp(t2)-Icmp(t1)。 The second column of Table 1 is the variation of the compensation current (Icmp). The compensation currents at the first time point (t1) and the second time point (t2) are denoted as Icmp(t1) and Icmp(t2), respectively. The amount of change in the compensation current (ΔIcmp) between the two time points can be calculated from the compensation current (Icmp) at the first time point (t1) and the second time point (t2), that is, ΔIcmp=Icmp( T2) - Icmp (t1).
表1的第三列為感測電流(Is)的變化。在第一時點(t1)與第二時點(t2)的感測電流分別表示為Is(t1)與Is(t2)。在兩個時點間的感測電流的變化量(△Is),可以根據第一時點(t1)與第二 時點(t2)的感測電流(Is)計算得出,亦即,△Is=Is(t2)-Is(t1)。 The third column of Table 1 is the change in the sense current (Is). The sense currents at the first time point (t1) and the second time point (t2) are represented as Is(t1) and Is(t2), respectively. The amount of change in the sense current (ΔIs) between the two time points can be based on the first time point (t1) and the second time The sense current (Is) at the time point (t2) is calculated, that is, ΔIs = Is(t2) - Is(t1).
如前所述,感測電流(Is)等於核心電流(Icore)與補償電流(Icmp)的加總,亦即,Is=Icore+Icmp。因此,△Is=Is(t2)-Is(t1)可改寫為式(4)。 As previously mentioned, the sense current (Is) is equal to the sum of the core current (Icore) and the compensation current (Icmp), ie, Is = Icore + Icmp. Therefore, ΔIs=Is(t2)−Is(t1) can be rewritten as equation (4).
△Is=Is(t2)-Is(t1)=[Icore(t2)+Icmp(t2)]-[Icore(t1)+Icmp(t1)]=[Icore(t2)-Icore(t1)]+[Icmp(t2)+Icmp(t1)]=△Icore+△Icmp……………………………………………式(4) △Is=Is(t2)-Is(t1)=[Icore(t2)+Icmp(t2)]-[Icore(t1)+Icmp(t1)]=[Icore(t2)-Icore(t1)]+[ Icmp(t2)+Icmp(t1)]=△Icore+△Icmp................................................(4)
理想狀況下,式(4)的加總結果會維持為“0”。實際應用時,式(4)的加總結果會因為一些極端情形而不等於“0”,且式(4)的加總結果可能為正值或為負值。當核心電流(Icore)在短暫的瞬間顯著增加或顯著減少時,便可能發生這些極端情形。 Ideally, the sum of the equations (4) will remain at "0". In practical applications, the summation result of equation (4) may not be equal to "0" due to some extreme cases, and the summation result of equation (4) may be positive or negative. These extremes can occur when the core current (Icore) increases significantly or significantly at a brief instant.
當核心電流(Icore)在短暫的瞬間顯著增加時,因為補償電流(Icmp)減少速度較慢的緣故,導致補償電流(Icmp)減少的速度跟不上核心電流(Icore)增加的速度。連帶的,式(4)的加總結果為一正值,這代表當核心電流(Icore)在短暫的瞬間顯著增加時,感測電流(Is)可能會增加。 When the core current (Icore) increases significantly at a brief instant, the speed at which the compensation current (Icmp) decreases cannot keep up with the increase in the core current (Icore) because the compensation current (Icmp) decreases at a slower rate. Incidentally, the summation result of equation (4) is a positive value, which means that the sense current (Is) may increase when the core current (Icore) increases significantly at a brief moment.
當核心電流(Icore)在短暫的瞬間顯著減少時,因為補償電流(Icmp)增加速度較慢的緣故,導致補償電流(Icmp)增加的速度跟不上核心電流(Icore)減少的速度。連帶的,式(4)的加總 結果為一負值,這代表當核心電流(Icore)在短暫的瞬間顯著減少時,感測電流(Is)可能會減少。 When the core current (Icore) is significantly reduced at a short instant, the speed at which the compensation current (Icmp) increases cannot keep up with the speed at which the core current (Icore) decreases because the compensation current (Icmp) increases at a slower rate. Associated with the sum of formula (4) The result is a negative value, which means that the sense current (Is) may decrease when the core current (Icore) is significantly reduced at a brief instant.
換言之,在極端的情況下,感測電流(Is)的變化可能與核心電流(Icore)的變化呈現正相關的情況。為進一步減少感測電流(Is)與核心電流(Icore)在此類極端情況下的關聯性,本揭露進一步設置會在第二開關(sw2)導通時,提供輔助電流(Iadd)的第二電流電路50c,其中。輔助電流(Iadd)的產生可以調整,且輔助電流(Iadd)小於補償電流(Icmp)。 In other words, in an extreme case, the change in the sense current (Is) may be positively correlated with the change in the core current (Icore). To further reduce the correlation between the sense current (Is) and the core current (Icore) in such extreme cases, the present disclosure further provides for providing a second current of the auxiliary current (Iadd) when the second switch (sw2) is turned on. Circuit 50c, wherein. The generation of the auxiliary current (Iadd) can be adjusted, and the auxiliary current (Iadd) is smaller than the compensation current (Icmp).
表1的第四列為輔助電流(Iadd)的改變。在第一時點(t1)與第二時點(t2)的輔助電流分別表示為Iadd(t1)與Iadd(t2)。輔助電流在這兩個時點間的改變量(△Iadd),可根據在第一時點(t1)與第二時點(t2)的輔助電流(Iadd)計算得出,亦即,△Iadd=Iadd(t2)-Iadd(t1)。根據本揭露的實施例,在這兩個時點間的輔助電流改變量(△Iadd),小於補償電流在這兩個時點間的改變量(△Icmp),亦即,△Iadd<△Icmp。 The fourth column of Table 1 shows the change in the auxiliary current (Iadd). The auxiliary currents at the first time point (t1) and the second time point (t2) are represented as Iadd(t1) and Iadd(t2), respectively. The amount of change (ΔIadd) of the auxiliary current between the two time points can be calculated from the auxiliary current (Iadd) at the first time point (t1) and the second time point (t2), that is, ΔIadd=Iadd (t2)-Iadd(t1). According to the embodiment of the present disclosure, the amount of auxiliary current change (ΔIadd) between the two time points is smaller than the amount of change (ΔIcmp) of the compensation current between the two time points, that is, ΔIadd<ΔIcmp.
表1的第五列為供應電流(Ivdd)的改變。在第一時點(t1)與第二時點(t2)的供應電流分別表示為Ivdd(t1)與Ivdd(t2)。供應電流在這兩個時點間的改變量(△Ivdd)可根據在第一時點(t1)與第二時點Ivdd(t2)的供應電流(Ivdd)計算得出,亦即,△Ivdd=Ivdd(t2)-Ivdd(t1)。因為供應電流(Ivdd)相當於感測電流(Is)與輔助電流(Iadd)的總和(亦即,Ivdd=Is+Iadd))的緣故,△Ivdd=Ivdd(t2)-Ivdd(t1)可改寫為式(5)。 The fifth column of Table 1 shows the change in supply current (Ivdd). The supply currents at the first time point (t1) and the second time point (t2) are represented as Ivdd(t1) and Ivdd(t2), respectively. The amount of change (ΔIvdd) of the supply current between the two time points can be calculated from the supply current (Ivdd) at the first time point (t1) and the second time point Ivdd(t2), that is, ΔIvdd=Ivdd (t2) - Ivdd (t1). Since the supply current (Ivdd) is equivalent to the sum of the sense current (Is) and the auxiliary current (Iadd) (ie, Ivdd=Is+Iadd), ΔIvdd=Ivdd(t2)-Ivdd(t1) can be rewritten. For the formula (5).
△Ivdd=Ivdd(t2)-Ivdd(t1)=[Is(t2)+Iadd(t2)]-[Is(t1)+Iadd(t1)]=[Is(t2)-Is(t1)]+[Iadd(t2)-Iadd(t1)]=△Is+△Iadd……………………………………………….式(5) ΔIvdd=Ivdd(t2)-Ivdd(t1)=[Is(t2)+Iadd(t2)]-[Is(t1)+Iadd(t1)]=[Is(t2)-Is(t1)]+[ Iadd(t2)-Iadd(t1)]=△Is+△Iadd.................................................(5)
根據式(5),流經功率接腳23之供應電流(Ivdd)的改變量(△Ivdd),取決於感測電流的改變量(△Is)以及輔助電流的改變量(△Iadd)。根據式(4),可將式(5)進一步改寫為式(6)。 According to the equation (5), the amount of change (ΔIvdd) of the supply current (Ivdd) flowing through the power pin 23 depends on the amount of change in the sense current (ΔIs) and the amount of change in the assist current (ΔIadd). According to the formula (4), the formula (5) can be further rewritten to the formula (6).
△Ivdd=△Is+△Iadd=(△Icore+△Icmp)+△Iadd……………………………………式(6) ΔIvdd=ΔIs+ΔIadd=(ΔIcore+ΔIcmp)+ΔIadd....................................(6)
根據式(6),供應電流的改變量(△Ivdd)共包含三個部分,核心電流的改變量(△Icore)、補償電流的改變量(△Icmp),以及輔助電流的改變量(△Iadd)。根據式(6),當核心電流產生變化(產生△Icore)時,補償電流的改變量(△Icmp)與輔助電流的改變量(△Iadd)可用於調整並減少供應電流的改變量(△Ivdd),亦即,△Ivdd≒0。因為補償電流(Icmp)與輔助電流(Iadd)均與核心電流(Icore)負相關的緣故,供應電流(Ivdd)的波動可被抑制。 According to equation (6), the amount of change in supply current (ΔIvdd) includes three parts, the amount of change in core current (ΔIcore), the amount of change in compensation current (ΔIcmp), and the amount of change in auxiliary current (ΔIadd). ). According to the equation (6), when the core current changes (generating ΔIcore), the amount of change in the compensation current (ΔIcmp) and the amount of change in the auxiliary current (ΔIadd) can be used to adjust and reduce the amount of change in the supply current (ΔIvdd). ), that is, ΔIvdd≒0. Since both the compensation current (Icmp) and the auxiliary current (Iadd) are negatively correlated with the core current (Icore), the fluctuation of the supply current (Ivdd) can be suppressed.
簡言之,由第一電流電路50b產生的補償電流(Icmp)可視為提供第一階段的波動抑制功能,且由第二電流電路50c產生的輔助電流(Iadd)可視為提供第二階段的波動抑制功能。再者,第一開關(sw1)與第二開關(sw2)可隨著彼此獨立的控制信 號而選擇性導通或斷開,進而使電流計22量測到的供應電流(Ivdd)更難被預測。 In short, the compensation current (Icmp) generated by the first current circuit 50b can be regarded as providing the first stage of the ripple suppression function, and the auxiliary current (Iadd) generated by the second current circuit 50c can be regarded as providing the second stage of the fluctuation. Suppress function. Furthermore, the first switch (sw1) and the second switch (sw2) can be controlled independently of each other. The number is selectively turned on or off, which in turn makes the supply current (Ivdd) measured by the ammeter 22 more difficult to predict.
當第一開關(sw1)導通時,第一電流電路50b將產生補償電流(Icmp),此時感測電流(Is)包含核心電流(Icore)與補償電流(Icmp)。當第二開關(sw2)導通時,第二電流電路50c產生輔助電流(Iadd),此時供應電流(Ivdd)將包含感測電流(Is)與與輔助電流(Iadd)。 When the first switch (sw1) is turned on, the first current circuit 50b will generate a compensation current (Icmp), where the sense current (Is) includes a core current (Icore) and a compensation current (Icmp). When the second switch (sw2) is turned on, the second current circuit 50c generates an auxiliary current (Iadd), at which time the supply current (Ivdd) will include the sense current (Is) and the auxiliary current (Iadd).
在這些電流中,感測電流(Is)的一致性較核心電流(Icore)的一致性更高,且供應電流(Ivdd)主要部分為感測電流(Is),並可搭配輔助電流(Iadd)進行微幅調整。與感測電流(Is)相較,輔助電流(Idd)能使供應電流(Ivdd)在暫態響應的波動得以緩解。如第2圖所示,電流計22量測的是供應電流(Ivdd)而非核心電流(Icore)。根據本揭露的構想,供應電流(Ivdd)較核心電流(Icore)更能保持一致,因此,電流計22對供應電流(Ivdd)的量測並不會揭露核心電路25的操作。 Among these currents, the sense current (Is) is more consistent than the core current (Icore), and the supply current (Ivdd) is mainly the sense current (Is) and can be matched with the auxiliary current (Iadd). Make a slight adjustment. Compared with the sense current (Is), the auxiliary current (Idd) can alleviate the fluctuation of the supply current (Ivdd) in the transient response. As shown in FIG. 2, the ammeter 22 measures the supply current (Ivdd) instead of the core current (Icore). According to the concept of the present disclosure, the supply current (Ivdd) is more consistent than the core current (Icore), and therefore, the measurement of the supply current (Ivdd) by the ammeter 22 does not reveal the operation of the core circuit 25.
請參見第7圖,其係說明電流補償電路的操作之流程圖。首先,電壓匹配電路50a分別接收核心電壓(Vcore)(步驟S471)與參考電壓(Vref)(步驟S472)。其後,電壓匹配電路50a根據參考電壓(Vref)與核心電壓(Vcore)之間的電壓差,產生輸出信號(Vopm)(步驟S473)。虛線所框選的步驟S471、S472與S473代表電壓匹配電路50a的操作。 Please refer to FIG. 7, which is a flow chart illustrating the operation of the current compensation circuit. First, the voltage matching circuit 50a receives the core voltage (Vcore) (step S471) and the reference voltage (Vref), respectively (step S472). Thereafter, the voltage matching circuit 50a generates an output signal (Vopm) based on the voltage difference between the reference voltage (Vref) and the core voltage (Vcore) (step S473). Steps S471, S472 and S473, which are selected by the broken line, represent the operation of the voltage matching circuit 50a.
第一電流電路50b根據電壓匹配電路50a的輸出信 號(Vopm)而產生並調整補償電流(Icmp)(步驟S474)。補償電流(Icmp)的改變會影響核心電壓(Vcore)。連帶的,核心電壓(Vcore)產生變化,並趨近於參考電壓(Vref)(步驟S477)。當第二開關(sw2)導通時,第二電流電路50c產生輔助電流(Iadd)(步驟S479)。第7圖所示的操作流程會持續進行,直到核心電壓(Vcore)與參考電壓(Vref)相等為止。 The first current circuit 50b is based on the output signal of the voltage matching circuit 50a The compensation current (Icmp) is generated and adjusted by the number (Vopm) (step S474). The change in the compensation current (Icmp) affects the core voltage (Vcore). Incidentally, the core voltage (Vcore) changes and approaches the reference voltage (Vref) (step S477). When the second switch (sw2) is turned on, the second current circuit 50c generates an auxiliary current (Iadd) (step S479). The operation shown in Figure 7 continues until the core voltage (Vcore) is equal to the reference voltage (Vref).
請參見第8圖,其係電流補償電路的一個實施例之示意圖。電流補償電路51包含電壓匹配電路51a、第一電流電路51b與第二電流電路51c。 Please refer to Fig. 8, which is a schematic diagram of one embodiment of a current compensation circuit. The current compensation circuit 51 includes a voltage matching circuit 51a, a first current circuit 51b, and a second current circuit 51c.
電壓匹配電路51a包含匹配操作放大器(OPm’)。匹配操作放大器(OPm’)具有反相輸入端點(-)、非反相輸入端點(+)與輸出端點。匹配操作放大器(OPm’)的反相輸入端點(-)從參考電壓調整器30接收參考電壓(Vref),且匹配操作放大器(OPm’)的非反相輸入端點(+)電連接於核心節點(Ncore)與第一電流電路51b。匹配操作放大器51a的輸出端點電連接於第一電流電路51b與第二電流電路51c。 The voltage matching circuit 51a includes a matching operational amplifier (OPm'). The matched operational amplifier (OPm') has an inverting input terminal (-), a non-inverting input terminal (+), and an output terminal. The inverting input terminal (-) of the matching operational amplifier (OPm') receives the reference voltage (Vref) from the reference voltage regulator 30, and the non-inverting input terminal (+) of the matching operational amplifier (OPm') is electrically coupled to The core node (Ncore) and the first current circuit 51b. The output terminal of the matching operational amplifier 51a is electrically connected to the first current circuit 51b and the second current circuit 51c.
第一電流電路51b包含補償電晶體(Mb1’)(例如,第三NMOS電晶體);第二電流電路51c包含輔助電晶體(Mb2’)(例如,第四NMOS電晶體)。在設計電路時,輔助電晶體(Mb2’)的尺寸通常會為較補償電晶體(Mb1’)的尺寸更小。基於電晶體之間的尺寸關係,流經輔助電晶體(Mb2’)的輔助電流(Iadd’)會小於流經補償電晶體(Mb1’)的補償電流(Icmp’)。補 償電晶體(Mb1’)與輔助電晶體(Mb2’)的控制端共同電連接於匹配操作放大器(OPm’)的輸出端點。因此,補償電晶體(Mb1’)與輔助電晶體(Mb2’)的導通會由匹配操作放大器(OPm’)的輸出信號(Vopm’)決定。 The first current circuit 51b includes a compensation transistor (Mb1') (e.g., a third NMOS transistor); the second current circuit 51c includes an auxiliary transistor (Mb2') (e.g., a fourth NMOS transistor). When designing the circuit, the size of the auxiliary transistor (Mb2') will generally be smaller than that of the compensation transistor (Mb1'). Based on the dimensional relationship between the transistors, the auxiliary current (Iadd') flowing through the auxiliary transistor (Mb2') is smaller than the compensation current (Icmp') flowing through the compensation transistor (Mb1'). Make up The compensating crystal (Mb1') is electrically coupled to the control terminal of the auxiliary operating transistor (Mb2') to the output terminal of the matching operational amplifier (OPm'). Therefore, the conduction of the compensation transistor (Mb1') and the auxiliary transistor (Mb2') is determined by the output signal (Vopm') of the matching operational amplifier (OPm').
當匹配操作放大器(OPm’)的輸出信號(Vopm’)大於補償電晶體(Mb1’)與輔助電晶體(Mb2’)的臨限電壓時,補償電晶體(Mb1’)與輔助電晶體(Mb2’)將導通,並因而產生補償電流(Icmp’)與輔助電流(Iadd)。補償電流(Icmp’)從核心節點(Ncore)經由補償電晶體(Mb1’)流至接地節點(Gnd),輔助電流(Iadd’)從供應電壓節點(Nvdd)經由輔助電晶體(Mb2’)流至接地節點(Gnd)。 When the output signal (Vopm') of the matching operational amplifier (OPm') is greater than the threshold voltage of the compensation transistor (Mb1') and the auxiliary transistor (Mb2'), the compensation transistor (Mb1') and the auxiliary transistor (Mb2) ') will turn on, and thus generate compensation current (Icmp') and auxiliary current (Iadd). The compensation current (Icmp') flows from the core node (Ncore) to the ground node (Gnd) via the compensation transistor (Mb1'), and the auxiliary current (Iadd') flows from the supply voltage node (Nvdd) via the auxiliary transistor (Mb2') To the ground node (Gnd).
若輔助電晶體(Mb2’)的尺寸小於補償電晶體(Mb1’)的尺寸,則輔助電晶體(Mb2)的導通速度較補償電晶體(Mb1)的導通速度快。換言之,輔助電流(Iadd’)較補償電流(Icmp’)更快產生。 If the size of the auxiliary transistor (Mb2') is smaller than the size of the compensation transistor (Mb1'), the conduction speed of the auxiliary transistor (Mb2) is faster than the conduction speed of the compensation transistor (Mb1). In other words, the auxiliary current (Iadd') is generated faster than the compensation current (Icmp').
第9圖,其係電流補償電路的另一實施例之示意圖。電流補償電路53包含電壓匹配電路53a、第一電流電路53b與第二電流電路53c。 Figure 9, which is a schematic diagram of another embodiment of a current compensation circuit. The current compensation circuit 53 includes a voltage matching circuit 53a, a first current circuit 53b, and a second current circuit 53c.
電壓匹配電路53a包含匹配操作放大器(OPm”)。匹配操作放大器(OPm”)具有從參考電壓調整器30接收參考電壓(Vref)的非反相輸入端點(+)、電連接於核心節點(Ncore)與第一電流電路53b的反相輸入端點(-),以及電連接於第一電流電路53b 與第二電流電路53c的輸出端點。 The voltage matching circuit 53a includes a matching operational amplifier (OPm"). The matched operational amplifier (OPm" has a non-inverting input terminal (+) that receives a reference voltage (Vref) from the reference voltage regulator 30, and is electrically connected to the core node ( Ncore) and an inverting input terminal (-) of the first current circuit 53b, and electrically connected to the first current circuit 53b And an output terminal of the second current circuit 53c.
第一電流電路53b包含補償電晶體(Mb1”)(例如,第三PMOS電晶體);第二電流電路53c包含輔助電晶體(Mb2’’)(例如,第四PMOS電晶體)。輔助電晶體(Mb2”)的尺寸通常小於補償電晶體(Mb1”)的尺寸。根據電晶體的尺寸關係,流經輔助電晶體(Mb2”)的輔助電流(Iadd”)會小於流經補償電晶體(Mb1”)的補償電流(Icmp”)。補償電晶體(Mb1”)與輔助電晶體(Mb2”)的控制端共同電連接於匹配操作放大器(OPm”)的輸出端點。 The first current circuit 53b includes a compensation transistor (Mb1") (for example, a third PMOS transistor); the second current circuit 53c includes an auxiliary transistor (Mb2'') (for example, a fourth PMOS transistor). The size of (Mb2") is usually smaller than the size of the compensation transistor (Mb1"). Depending on the size relationship of the transistor, the auxiliary current (Iadd" flowing through the auxiliary transistor (Mb2") is smaller than that flowing through the compensation transistor (Mb1) ") compensation current (Icmp"). The compensation transistor (Mb1") and the control terminal of the auxiliary transistor (Mb2" are electrically connected to the output terminal of the matching operational amplifier (OPm").
當核心電壓(Vcore)與參考電壓(Vref)間存在壓差,導致匹配操作放大器(OPm”)的輸出信號(Vopm”)大於補償電晶體(Mb1”)與輔助電晶體(Mb2”)的臨限電壓時,補償電晶體(Mb1”)與輔助電晶體(Mb2”)將因此而導通,並分別產生補償電流(Icmp’)與輔助電流(Iadd”)。補償電流(Icmp”)從核心節點(Ncore)經由補償電晶體(Mb1”)流至接地節點(Gnd),且輔助電流(Iadd”)從供應電壓節點(Vdd)經由輔助電晶體(Mb2”)流至接地節點(Gnd)。若輔助電晶體(Mb2”)的尺寸小於補償電晶體(Mb1”)的尺寸,輔助電晶體(Mb2”)的導通速度會比補償電晶體(Mb1”)的導通速度更快。也就是說,輔助電流(Iadd’’)的產生會較補償電流(Icmp”)的產生更快。 When there is a voltage difference between the core voltage (Vcore) and the reference voltage (Vref), the output signal (Vopm) of the matched operational amplifier (OPm" is greater than that of the compensation transistor (Mb1) and the auxiliary transistor (Mb2). When the voltage is limited, the compensation transistor (Mb1") and the auxiliary transistor (Mb2") will be turned on, and the compensation current (Icmp') and the auxiliary current (Iadd" will be generated respectively. The compensation current (Icmp) is from the core node. (Ncore) flows to the ground node (Gnd) via the compensation transistor (Mb1", and the auxiliary current (Iadd" flows from the supply voltage node (Vdd) to the ground node (Gnd) via the auxiliary transistor (Mb2"). The size of the auxiliary transistor (Mb2") is smaller than the size of the compensation transistor (Mb1"), and the conduction speed of the auxiliary transistor (Mb2") is faster than the conduction speed of the compensation transistor (Mb1"). The current (Iadd'') is generated faster than the compensation current (Icmp).
本揭露提出的電流平坦化電路包含電流感測電路、電流補償電路與參考電壓調整器。參考電壓調整器提供參考電壓 (Vref)至電流補償電路。隨著流至核心電路的核心電流(Icore)的變化,由電流補償電路產生的補償電流(Icmp)也會跟著改變。一般說來,電流補償電流(Icmp)可使參考電壓(Vref)維持等於核心電壓(Vcore)。連帶的,流經電流感測電路的感測電流(Is)可以保持一致。如前所述,將輔助電流(Iadd)納入後,供應電流(Ivdd)的一致性更高。 The current flattening circuit proposed by the present disclosure includes a current sensing circuit, a current compensation circuit, and a reference voltage regulator. Reference voltage regulator provides reference voltage (Vref) to the current compensation circuit. As the core current (Icore) flowing to the core circuit changes, the compensation current (Icmp) generated by the current compensation circuit also changes. In general, the current compensation current (Icmp) maintains the reference voltage (Vref) equal to the core voltage (Vcore). The sense current (Is) flowing through the current sensing circuit can be kept consistent. As mentioned earlier, after the auxiliary current (Iadd) is included, the supply current (Ivdd) is more consistent.
綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106104808A TWI646796B (en) | 2017-02-14 | 2017-02-14 | Current flattening circuit, current compensation circuit and associated control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106104808A TWI646796B (en) | 2017-02-14 | 2017-02-14 | Current flattening circuit, current compensation circuit and associated control method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201830899A TW201830899A (en) | 2018-08-16 |
TWI646796B true TWI646796B (en) | 2019-01-01 |
Family
ID=63960636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106104808A TWI646796B (en) | 2017-02-14 | 2017-02-14 | Current flattening circuit, current compensation circuit and associated control method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI646796B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112947656B (en) * | 2021-01-27 | 2022-09-27 | 浙江大学 | Low quiescent current, off-chip capacitor LDO with dynamically optimized power supply rejection ratio |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200516364A (en) * | 2003-09-23 | 2005-05-16 | Semiconductor Components Ind Llc | Negative current compensation method and circuit |
US20070076890A1 (en) * | 2005-08-24 | 2007-04-05 | The University Of Guelph | Current flattening and current sensing methods and devices |
TW200832103A (en) * | 2006-10-10 | 2008-08-01 | Atmel Corp | Apparatus and method for providing a temperature compensated reference current |
CN102298412A (en) * | 2010-04-27 | 2011-12-28 | 罗姆股份有限公司 | Current generation circuit and reference voltage circuit using the same |
TW201310193A (en) * | 2011-08-17 | 2013-03-01 | Semiconductor Components Ind | Method of forming a circuit having a voltage reference and structure therefor |
-
2017
- 2017-02-14 TW TW106104808A patent/TWI646796B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200516364A (en) * | 2003-09-23 | 2005-05-16 | Semiconductor Components Ind Llc | Negative current compensation method and circuit |
US20070076890A1 (en) * | 2005-08-24 | 2007-04-05 | The University Of Guelph | Current flattening and current sensing methods and devices |
TW200832103A (en) * | 2006-10-10 | 2008-08-01 | Atmel Corp | Apparatus and method for providing a temperature compensated reference current |
CN102298412A (en) * | 2010-04-27 | 2011-12-28 | 罗姆股份有限公司 | Current generation circuit and reference voltage circuit using the same |
TW201310193A (en) * | 2011-08-17 | 2013-03-01 | Semiconductor Components Ind | Method of forming a circuit having a voltage reference and structure therefor |
Also Published As
Publication number | Publication date |
---|---|
TW201830899A (en) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101465598B1 (en) | Apparatus and method for generating reference voltage | |
KR100608112B1 (en) | Power regulator having over-current protection circuit and method of over-current protection thereof | |
US10133287B2 (en) | Semiconductor device having output compensation | |
US10042380B1 (en) | Current flattening circuit, current compensation circuit and associated control method | |
JP4937865B2 (en) | Constant voltage circuit | |
KR100780771B1 (en) | Band-gap reference voltage generator | |
US8680828B2 (en) | Voltage regulator | |
JP4982688B2 (en) | Internal power generator with temperature dependence | |
KR100888483B1 (en) | Reference bias circuit of compensating for process variation | |
US20060111865A1 (en) | On-chip temperature sensor for low voltage operation | |
JP5060871B2 (en) | Variable voltage dividing circuit and magnetic sensor circuit | |
KR20180017185A (en) | Apparatus and method for providing constant current | |
KR20080001288A (en) | Internal voltage generator | |
KR100816150B1 (en) | Tempperature sensor | |
KR100694985B1 (en) | Band gap reference circuit for the use of low voltage and semiconductor device with the same | |
US20120262146A1 (en) | Reference-voltage generation circuit | |
TWI646796B (en) | Current flattening circuit, current compensation circuit and associated control method | |
JP5889586B2 (en) | Reference current generation circuit, reference voltage generation circuit, and temperature detection circuit | |
JP5981890B2 (en) | Hall element drive circuit | |
CN108415498B (en) | Current flattening circuit, current compensation circuit and related control method thereof | |
JP2005038482A (en) | Semiconductor device | |
KR100728572B1 (en) | Semiconductor memory apparatus | |
TW202324021A (en) | Controlling circuit for low-power low dropout regulator and controlling method thereof | |
KR100748459B1 (en) | Vbb level sensing apparatus of semiconductor memory | |
JP2001210893A (en) | Hall element bias circuit |