TWI644801B - 可積層製造的生物可降解光聚合高分子複合材料及其應用 - Google Patents

可積層製造的生物可降解光聚合高分子複合材料及其應用 Download PDF

Info

Publication number
TWI644801B
TWI644801B TW106126999A TW106126999A TWI644801B TW I644801 B TWI644801 B TW I644801B TW 106126999 A TW106126999 A TW 106126999A TW 106126999 A TW106126999 A TW 106126999A TW I644801 B TWI644801 B TW I644801B
Authority
TW
Taiwan
Prior art keywords
pgsa
polymer composite
biodegradable
composite material
degradation
Prior art date
Application number
TW106126999A
Other languages
English (en)
Other versions
TW201910138A (zh
Inventor
潔 王
鄭逸琳
陳怡文
謝明佑
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW106126999A priority Critical patent/TWI644801B/zh
Priority to US15/859,802 priority patent/US10377865B2/en
Application granted granted Critical
Publication of TWI644801B publication Critical patent/TWI644801B/zh
Publication of TW201910138A publication Critical patent/TW201910138A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/064Use of macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/026Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight
    • C08F299/028Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight photopolymerisable compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • C08F299/0485Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters from polyesters with side or terminal unsaturations
    • C08F299/0492Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters from polyesters with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一種可積層製造的生物可降解光聚合高分子複合材料,其具有優異的生物相容性、生物可吸收性,還可透過材料之間不同的配方比例,達到調整物理性質與降解程度、降解型態或速率的優點,是一種優異的生醫材料與組織工程材料,其包含PGSA、具有生物相容性的光起始劑及選自由PCL-DA、PEG-DA所組成的群組;本發明透過PGSA、PCL-DA與PEG-DA等不同的材料配比,可適應性地生產具有不同軟彈性、機械特性、降解型態與延伸性的材料,適用於製造生物體內不同的組織、器官或其相關產品。

Description

可積層製造的生物可降解光聚合高分子複合材料及其應用
一種生物可降解光聚合高分子複合材料,特別是一種可適用於積層製造的生物可降解光聚合高分子複合材料。
生醫材料是一種應用於醫療器材或組織工程學的材料,其可與生物體內器官、組織與系統發生作用,用於修補或甚至是直接取代生物活體系統,並可順利執行該系統功能的材料,功能主要包含替換受損、功能缺失的生物體部分,協助傷口癒合修復、增進器官、組織間功能或直接取代有缺陷、不正常的組織器官等。由於生醫材料可能直接施用於生物體,除了一般的物理、化學性質需注意外,更需進一步考慮其與生物組織、器官、血液或體液接觸時的生物相容性、適應性及降解性等種種條件。
生醫材料的種類可大致分為高分子聚合物(Polymer)、陶瓷(Ceramic)、金屬(Composites)或是複合材料(Composites)等,依據機械強度、軟硬度與彈性需求區分適用的組織與器官,例如金屬與陶瓷材料主要用於替代人體的硬組織,而高分子聚合物與複合材料則較常使用於人體軟組織區域,但既有生醫材料的機械強度、軟硬度與彈性不易調控、且材料降解特性不易預測等,都是生醫材料領域急需解決的問題。
為了改善前述既有生醫材料機械強度、軟硬度與彈性不易調控、且材料成形不易與降解特性不易預測等問題,本發明提供一種可積層製造的生物可降解光聚合高分子複合材料及其應用,除了具有優異的生物相容性、生物可吸收性外,更可藉由不同的配方比例,達到調整物理性質與降解程度、降解型態、速率的優點,並可利用積層製造(3D列印)的方式加工成型,所述的該可積層製造的生物可降解光聚合高分子複合材料包含PGSA、具有生物相容性的光起始劑及選自由PCL-DA、PEG-DA所組成的群組。
其中,該PGSA的丙烯酸酯化率為5%~60%。
其中,其包含PGSA 60~90 wt%以及PCL-DA10~40 wt%。
其中,其包含PGSA 30~70wt%以及PEG-DA 30~70wt%。
其中,其包含PGSA 30~50wt%、PCL-DA 30~40 wt%以及PEG-DA 20~30wt%。
其中,該光起始劑包含可見光起始劑或紫外光起始劑,且添加比例範圍介於0.05~5 wt%;該可見光起始劑包含2,4,6-三甲基苯甲醯基-二苯基氧化膦、氟化二苯基鈦茂或樟腦酮;以及該紫外光起始劑包含氟化二苯基鈦茂或2,4,6-三甲基苯甲醯基-二苯基氧化膦。
其中,該可積層製造的生物可降解光聚合高分子複合材料以層狀降解型態降解或以塊狀降解型態降解。
其中,該PGSA是利用PGS與丙烯酰氯、三乙胺,於4-二甲氨基吡啶、二氯甲烷的溶液中接枝聚合;或該PGSA是利用PGS與丙烯酰氯、碳酸鉀,於4-二甲氨基吡啶、二氯甲烷的溶液中接枝聚合。
其中,該可積層製造的生物可降解光聚合高分子複合材料以光固化三維列印擠製成型後,進一步照射紫外光或加熱再次固化。
本發明進一步提供一種生醫材料,其包含前述之可積層製造的生物可降解光聚合高分子複合材料。
藉由上述說明可知,本發明具備以下優點:
1. 本發明透過PGSA、PCL-DA與PEG-DA等材料的不同配比,可適應性地調配出具有不同軟彈性、機械特性、降解型態與延伸性的材料,可適用於生物體內不同的組織、器官。
2. 本發明材料配方具有光固化特性,適用於目前3D列印快速成型技術,可適應性地依據人體組織或器官的特性需求,客製化地生產符合不同需求的產品。
3. 本發明透過材料配方與比例的搭配,可用於生產具有不同軟硬度、機械強度、降解型態需求的生物組織,降低目前生醫材料的使用不便與設計限制的問題。
一種可積層製造的生物可降解光聚合高分子複合材料,其包含PGSA(Poly(glycerol sebacate acrylate))、光起始劑及選自由PCL-DA(Polycaprolactone-diacrylate)、PEG-DA(Polyethyleneglycol-diacrylate)所組成的群組,該PGSA的丙烯酸酯化率(Degree of Acrylation)較佳介於5%~60%,更佳介於7%~30%。
本發明使用的PGSA、PCL-DA與PEG-DA皆為具有生物相容性、降解性良好的材料,且本發明選用含有丙烯酸基(Diarcylate, DA)的PCL-DA及PEG-DA可使PGSA、PCL-DA與PEG-DA在後續積層製造並照光成型後,材料分子間可形成較佳的交聯網絡。
本發明所使用的光起始劑較佳同樣具有生物相容性,其主要為本發明以積層製造成型時可使材料光固化之成分,包含適用於可見光、紫外光之2,4,6-三甲基苯甲醯基-二苯基氧化膦(TPO)或氟化二苯基鈦茂(Irgacure 784)等光起始劑,或是適用於可見光之樟腦酮(CQ, Camphorquinone)光起始劑,其添加的比例範圍介於0.05~5wt%。
本發明合成PGSA的方法,較佳實施例是利用PGS(Poly(glycerol sebacate))與不同比例的丙烯酰氯(Acryloyl chloride),於三乙胺(Triethylamine)、4-二甲氨基吡啶(4-dimethylamino pyridine, DMAP)、二氯甲烷(Dichloromethane, DCM)的溶液中進行接枝聚合。請參考下表1,其為製備丙烯酸酯化率7-30%的PGSA所對應使用的配方比例,以下表1僅本發明製備不同比例的PGSA示例,其它未脫離本發明所揭示的精神所完成的等效比例調整、改變或修飾,均應包括在本發明的主張範圍內。
表1 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 材料 </td><td> PGS (g) </td><td> 丙烯酰氯 (ml) </td><td> 三乙胺 (ml) </td><td> 4-二甲氨基吡啶 (mg) </td><td> 二氯甲烷 (ml) </td><td> PGSA (%) </td></tr><tr><td> 組別1 </td><td> 30 </td><td> 1.42 </td><td> 3.06 </td><td> 30 </td><td> 300 </td><td> 7 </td></tr><tr><td> 組別2 </td><td> 30 </td><td> 2.84 </td><td> 6.13 </td><td> 30 </td><td> 300 </td><td> 15 </td></tr><tr><td> 組別3 </td><td> 30 </td><td> 5.69 </td><td> 12.26 </td><td> 30 </td><td> 300 </td><td> 30 </td></tr></TBODY></TABLE>
本發明合成PGSA的方法除上述利用PGS(Poly(glycerol sebacate))與不同比例的丙烯酰氯(Acryloyl chloride)於三乙胺(Triethylamine)、4-二甲氨基吡啶(4-dimethylamino pyridine, DMAP)、二氯甲烷(Dichloromethane, DCM)的溶液中進行接枝聚合外,亦可將三乙胺(Triethylamine)由碳酸鉀(K 2CO 3)取代,由於碳酸鉀相對於三乙胺具有更好的生物相容性,可減少製成產品含有不具生物相同性的溶劑殘留,或是還需要後續去除不具生物相同性溶劑的步驟。
利用前述表1所合成出不同比例的PGSA,進一步與PCL-DA及/或PEG-DA混合,混合的方式較佳是將PGSA、光起始劑與PCL-DA及/或PEG-DA,於二氯甲烷中混合均勻後,再將二氯甲烷抽除,以完成本發明可積層製造的生物可降解光聚合高分子複合材料的製備。
為證實透過不同丙烯酸酯化率、材料混合配比,可達到機械強度與降解特性可調的性質,本發明將不同丙烯酸酯化率的PGSA混合不同濃度百分比之PCL-DA及/或PEG-DA,以積層製造(3D列印)方式製作測試試片,各實施例測試試片的列印參數較佳係列印沈積5層、每層厚度約為100μm,而第一層的照光/曝光時間為30秒,之後的每層的曝光時間為15秒。
本發明第一實施例係將丙烯酸酯化率7%~30%的PGSA,以PGSA:PCL-DA為2:1的相同混合濃度百分比比例混合,並添加1~5wt%的光起始劑後,以3D列印方式印出測試試片,並測得該試片的楊氏模數(Young’s Modules )隨著PGSA丙烯酸酯化率的增加,自1.42MPa逐漸上升至6.4MPa,最大抗拉強度(UTS)自0.19 MPa逐漸上升至0.69MPa,可證實本發明以不同丙烯酸酯化率的PGSA混合PCL-DA時,可調控所混成產品的機械強度特性。
將相同15%丙烯酸酯化率的PGSA,以2:1~4:1的不同濃度百分比例混合PCL-DA,並添加1~5wt%的光起始劑後,以3D列印方式印出測試試片,測得隨著PGSA添加量的增加,該試片的楊氏模數(Young’s Modules )自2.82 MPa稍稍下降自2.3 MPa,但延伸率(Elongation)則自11.28%上升至19.72%,第24天後的降解率自11.28%上升至19.72%,可見透過改變PGSA與PCL-DA的不同含量配比,可調整成品的軟彈性與降解特性。
本發明第二較佳實施例則係將丙烯酸酯化率為7%~30%的PGSA,以PGSA:PEG-DA為1:1的相同混合濃度百分比比例混合,並添加1~5wt%的光起始劑後,以3D列印方式印出測試試片,並測得該試片的楊氏模數(Young’s Modules )隨著PGSA丙烯酸酯化率的增加,自4.25 MPa逐漸上升至10.54MPa,最大抗拉強度(UTS)自0.8 MPa逐漸上升至1.1MPa,可證實本發明以不同丙烯酸酯化率的PGSA混合PEG-DA時,同樣可調控所混成產品的機械強度特性。
同樣地,將本發明第二較佳實施例以相同丙烯酸酯化率15%的PGSA,以1:1~2:1的不同濃度百分比比例混合PEG-DA,並添加1~5wt%的光起始劑後,以3D列印方式印出測試試片,測得其楊氏模數自7.58 MPa稍稍下降至4.66 MPa,最大抗拉強度自0.91稍稍下降至0.67 MPa,但其延伸率則自13.63 %上升至18.41 %,降解率也至13.63%上升至18.41%,如此可證實本發明第二較佳實施例確實同樣可透過材料的丙烯酸酯化率與材料添加配比含量的不同,調整成品的機械、降解特性。
本發明第三較佳實施例則是將相同30%丙烯酸酯化率的PGSA,以1:1:1~2:1:1的濃度百分比比率混合PCL-DA與PEG-DA,並添加1~5wt%的光起始劑後,以3D列印方式印出測試試片,並測得該試片的最大抗拉強度隨著PGSA添加量的增加,自0.40 MPa 上升至0.93 MPa,且降解率自10.55 %上升至25.05 %,而其楊氏模數則自4.32 MPa 稍稍下降至3.58 MPa。
另外,以相同30%丙烯酸酯化率的PGSA,以1:1:1~1:1:2的濃度百分比比率混合PCL-DA與PEG-DA,並添加1~5wt%的光起始劑後,以3D列印方式印出測試試片,測得其楊氏模數隨著PCL-DA的添加量增加,反而自4.32 MPa上升至6.38MPa,最大抗拉強度自0.40 MPa上升至1.28 MPa,降解率自10.55 %上升至25.02 %。
由上述本發明各實施例的測試數據可知,透過調整PGSA的丙烯酸酯化率以及PGSA、PCL-DA、PEG-DA的混合配比,以3D列印方式可印出具有不同機械特性、降解特性的成品。
進一步地,為證實本發明為適用於積層製造(3D列印)製程的材料,本發明將前述第一~第二較佳實施例的配方比例,改以塗佈方式,將配方直接塗布在膜片上,並同樣以紫外光固化,以塗布方式製作的試片,第一較佳實施例的配方所測得的楊氏模數自0.57 MPa至最高僅4.08 MPa,第二較佳實施例的配方所測得的楊氏模數同樣自3.43 MPa至最高僅10.88 MPa,由此可知,本發明各實施例以3D列印所製成的試片相較於用塗布方式所製成的試片,本發明以3D列印所製作的試片具有更優異的機械強度性能,這是由於以3D列印時,材料被快速擠製並光固化成型,可避免不同材料在製造成型的過程中產生沈澱、分層現象,如此即可增加材料的均勻度,增加材料成型後的機械強度。
請參考圖1~圖4,其為本發明以不同丙烯酸酯化率、不同比例的PGSA與PCL-DA所製備的3D列印試片,其楊氏模數(Young’s Modulus)、抗張強度(Ultimate Tensile Strength, MPa)、延伸率(Elongation, %)及於脂肪分解酵素(Lipase)作用下的降解率(Degradation, %)測試數據圖,其中,圖1~圖3中所示的1:0、4:1與2:1三種組別,係使用接枝率為7%、15%與30%的PGSA,分別以PGSA佔0%、80%和33%的PGSA:PCL-DA配比相互混合,所測得之數據。
透過圖1~圖4可看出,1:0與4:1兩組別中,有添加PGSA的4:1組別具有使材料機械性能降低的特性,達到適用於軟組織等應用,而4:1與2:1兩組別中則顯示 PGSA的丙烯酸酯化率越低,可明顯提昇材料硬度,但隨著PCL-DA的添加比例越多時,機械性質提升,但同時仍保持一定彈性,而PGSA的丙烯酸酯化率越高時,加入越多的PCL-DA則對材料的機械性質影響較低。
請參考圖5~圖6,其為本發明實施例1、實施例2,以不同丙烯酸酯化率、不同比例的PGSA與PCL-DA(實施例1)、PEG-DA(實施例2)製備的3D列印試片,所測定的幹細胞及人類肺泡上皮細胞的生物相容性SEM圖,由圖5~圖6可證實,本發明各實施例皆具備優異的生物相容性。
圖7~圖10為本發明以實施例A、C、H及J的代表實施例所做的不同程度降解特性的蘇木精-伊紅染色圖 (H&E染色圖),本發明第一較佳實施例與第二較佳實施例添加PCL-DA與PEG-DA的PGSA顯現出不同的降解特性,添加PCL-DA的PGSA以層狀降解為主,材料自外而內的層層降解崩離,此種降解特性可適用於對於物理或機械性質要求較高的醫療器材,需要持續維持整體支撐性的應用;而相反地,添加PEG-DA的PGSA以塊狀降解方式為主,材料整體以大塊崩解形式降解,降解速率較快。
其中,圖7~8為本發明第一較佳實施例的降解H&E染色圖,自圖7~圖8可以看出,PGSA添加PCL-DA後,其降解型態是自表面開始,由外而內的逐層降解的層狀降解型態,降解的過程中不會有大塊碎塊產生。由於此種降解型態在降解的過程中會持續維持一定的機械強度,因此此種可適用於組織癒合過程和醫療器材應用上,需要持續維持整體支撐性的應用。
反觀圖9~圖10的本發明第二較佳實施例的降解H&E染色圖,可看PGSA添加PEG-DA後,材料在降解的過程中會碎裂成塊,其降解的型態主要為塊狀降解,此種的降解型態相對前述的層狀降解,雖較無法維持材料整體的機械強度,但因表面積的增加,卻相對加快了材料的降解速率,可應用於機械強度較不要求,卻需要較快降解的應用。
本發明以3D列印方式印出測試試片後可再次光照或是加熱等後處理方式,進一步增加測試試片的機械性質,例如光照後處理的方式可以是將前述積層製造成型後的測試試片,進一步利用紫外光每一面照射30秒,總共照1分鐘。
由前述本發明各實施例的機械強度、降解型態與生物相容性的性質的測定結果,本發明進一步將前述各實施例對比人體各部位組織器官的組織工程應用表列如下表2,由表2可看出,本發明透過不同材料配方比例可製作出多種不同人體組織器官、生物支架等生物醫療或組織工程應用。表4僅為了顯示本發明各實施例所對應於人體各部位組織器官,並非限定僅可使用於該種用途。
表2 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 組別 </td><td> 適用於製造人體的組織器官 </td></tr><tr><td> 第一較佳實施例 (PGSA+PCL-DA) </td><td> 心臟、肝臟 </td></tr><tr><td> 第二較佳實施例(PGSA+PEG-DA) </td><td> 心臟 </td></tr><tr><td> 第三較佳實施例(PGSA+PCL-DA+PEG-DA) </td><td> 軟骨 </td></tr></TBODY></TABLE>
上述僅為本發明的較佳實施例而已,並非用以限定本發明主張的權利範圍,凡其它未脫離本發明所揭示的精神所完成的等效改變或修飾,均應包括在本發明的主張範圍內。
藉由上述說明可知,本發明具備以下優點:
1. 本發明透過PGSA、PCL-DA與PEG-DA等材料的不同配比,可適應性地製作出具有不同軟彈性、機械特性、降解型態與延伸性的材料,並可適應性地以積層製造方法,製作出具有不同特性的人體組織或器官相關產品。
2. 本發明材料配方具有光固化特性,可應用於目前3D列印快速成型技術,以符合客製化生產,可用於製造具有不同特性的人體組織、器官相關產品或其應用。
3. 本發明透過不同的材料配比可製造出具有不同軟硬度、機械強度、降解型態需求的生物組織或其相關產品,如此可解決目前生醫材料的使用不便與設計限制的問題。
圖1為本發明實施例A~E的楊氏模數測試數據圖。 圖2為本發明實施例A~E的抗張強度測試數據圖。 圖3為本發明實施例A~E的延伸率測試數據圖。 圖4為本發明實施例A~E的降解率測試數據圖。 圖5為本發明實施例A~O的幹細胞生物相容性SEM圖。 圖6為本發明實施例A~O的人類肺泡上皮細胞生物相容性SEM圖。 圖7為本發明實施例A的H&E染色圖。 圖8為本發明實施例C的H&E染色圖。 圖9為本發明實施例H的H&E染色圖。 圖10為本發明實施例J的H&E染色圖。

Claims (7)

  1. 一種可積層製造的生物可降解光聚合高分子複合材料,其包含濃度百分比例介於2:1~4:1的PGSA與PCL-DA,以及具有生物相容性的光起始劑,其中:該PGSA的丙烯酸酯化率為5%~60%。
  2. 如申請專利範圍第1項之可積層製造的生物可降解光聚合高分子複合材料,其進一步包含PEG-DA。
  3. 如申請專利範圍第1或2項之可積層製造的生物可降解光聚合高分子複合材料,其中:該光起始劑包含可見光起始劑或紫外光起始劑,且添加比例範圍介於0.05~5wt%;該可見光起始劑包含2,4,6-三甲基苯甲醯基-二苯基氧化膦、氟化二苯基鈦茂或樟腦酮;以及該紫外光起始劑包含氟化二苯基鈦茂或2,4,6-三甲基苯甲醯基-二苯基氧化膦。
  4. 如申請專利範圍第1或2項之可積層製造的生物可降解光聚合高分子複合材料,其中,該可積層製造的生物可降解光聚合高分子複合材料以層狀降解型態降解或以塊狀降解型態降解。
  5. 如申請專利範圍第1或2項之可積層製造的生物可降解光聚合高分子複合材料,其中,該PGSA是利用PGS與丙烯酰氯、三乙胺,於4-二甲氨基吡啶、二氯甲烷的溶液中接枝聚合;或該PGSA是利用PGS與丙烯酰氯、碳酸鉀,於4-二甲氨基吡啶、二氯甲烷的溶液中接枝聚合。
  6. 如申請專利範圍第1或2項之可積層製造的生物可降解光聚合高分子複合材料,該可積層製造的生物可降解光聚合高分子複合材料以光固化三維列印擠製成型後,進一步照射紫外光或加熱再次固化。
  7. 一種生醫材料,其包含如申請專利範圍第1~6項所述之可積層製造的生物可降解光聚合高分子複合材料。
TW106126999A 2017-08-10 2017-08-10 可積層製造的生物可降解光聚合高分子複合材料及其應用 TWI644801B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106126999A TWI644801B (zh) 2017-08-10 2017-08-10 可積層製造的生物可降解光聚合高分子複合材料及其應用
US15/859,802 US10377865B2 (en) 2017-08-10 2018-01-02 3D printable biodegradable polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106126999A TWI644801B (zh) 2017-08-10 2017-08-10 可積層製造的生物可降解光聚合高分子複合材料及其應用

Publications (2)

Publication Number Publication Date
TWI644801B true TWI644801B (zh) 2018-12-21
TW201910138A TW201910138A (zh) 2019-03-16

Family

ID=65274008

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106126999A TWI644801B (zh) 2017-08-10 2017-08-10 可積層製造的生物可降解光聚合高分子複合材料及其應用

Country Status (2)

Country Link
US (1) US10377865B2 (zh)
TW (1) TWI644801B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11583613B2 (en) * 2016-03-03 2023-02-21 University of Pittsburgh—of the Commonwealth System of Higher Education Hydrogel systems for skeletal interfacial tissue regeneration applied to epiphyseal growth plate repair
WO2019180208A1 (en) * 2018-03-22 2019-09-26 Gecko Biomedical 3d printing composition for biomaterials
CN110420351B (zh) * 2019-07-11 2020-11-13 中国科学院长春应用化学研究所 一种3d打印柔性多孔支架材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090011486A1 (en) * 2006-01-12 2009-01-08 Massachusetts Institute Of Technology Biodegradable Elastomers
US20150352145A1 (en) * 2006-01-18 2015-12-10 CorMartix Cardiovascular, Inc. Method and System for Treatment of Damaged Biological Tissue
WO2016057662A1 (en) * 2014-10-08 2016-04-14 Wake Forest University Health Sciences Synthesis and use of poly(glycerol-sebacate) films in fibroblast growth regulation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151678A1 (en) * 2008-03-11 2009-12-17 Massachusetts Institute Of Technology Stimuli-responsive surfaces
CA2800687A1 (en) * 2010-05-26 2011-12-01 Universiteit Twente Method for preparing a degradable polymer network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090011486A1 (en) * 2006-01-12 2009-01-08 Massachusetts Institute Of Technology Biodegradable Elastomers
US20150352145A1 (en) * 2006-01-18 2015-12-10 CorMartix Cardiovascular, Inc. Method and System for Treatment of Damaged Biological Tissue
WO2016057662A1 (en) * 2014-10-08 2016-04-14 Wake Forest University Health Sciences Synthesis and use of poly(glycerol-sebacate) films in fibroblast growth regulation

Also Published As

Publication number Publication date
US10377865B2 (en) 2019-08-13
TW201910138A (zh) 2019-03-16
US20190048151A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
van Bochove et al. Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications
TWI644801B (zh) 可積層製造的生物可降解光聚合高分子複合材料及其應用
EP1812481B1 (en) Block copolymers of polycaprolactone and poly (propylene fumarate)
JP5722773B2 (ja) ポリウレタングラフト化ヒドロゲル
KR101983741B1 (ko) 바이오 잉크 및 이의 제조방법
Shi et al. Three‐dimensional printing alginate/gelatin scaffolds as dermal substitutes for skin tissue engineering
KR20180116776A (ko) 광경화성 세라믹 슬러리 기반 3d 플라팅 기술
WO2019055656A1 (en) PHOTOREACTIVE INKS AND THERMOSETTING MATERIALS MANUFACTURED THEREFROM
CN112088020A (zh) 用于生物材料的3d打印组合物
JP2013526649A (ja) 分解性ポリマーネットワークの製造方法
JP6362614B2 (ja) 高精度の医療用インプラントのための吸収剤及び生物適合性反射染料
Duran et al. 3D printing of silicone and polyurethane elastomers for medical device application: A review
Tirgar et al. Introducing a flexible drug delivery system based on poly (glycerol sebacate)-urethane and its nanocomposite: potential application in the prevention and treatment of oral diseases
JP2024503122A (ja) 強靱な物体の付加製造のための放射線硬化性組成物
EP1869093A1 (de) Polymerisierter formkörper
Kim et al. Structure–property relationships of 3D-printable chain-extended block copolymers with tunable elasticity and biodegradability
CN112757743B (zh) 一种引导组织再生膜及其制备方法
US20230250303A1 (en) Three-dimensional printed porous silicone matrix using leachable porogen
CN109381748B (zh) 可积层制造的生物可降解光聚合高分子复合材料及其应用
WO2020087035A2 (en) Polyesters, polymer compositions, and methods of using thereof
JP6981313B2 (ja) ボーラス、ボーラスの製造方法、及び立体造形物
Subramanian et al. Polymers for additive manufacturing and 4D-printing for tissue regenerative applications
KR20200083108A (ko) 고강도 인체흡수성 폴리글리콜산계 블록공중합체 수지 및 이의 제조 방법
US20240157024A1 (en) Ceramic scaffold
KR102213063B1 (ko) 생체적합용 유연 탄성체 제조용 광경화성 조성물