TWI644506B - Power supply device - Google Patents
Power supply device Download PDFInfo
- Publication number
- TWI644506B TWI644506B TW106143571A TW106143571A TWI644506B TW I644506 B TWI644506 B TW I644506B TW 106143571 A TW106143571 A TW 106143571A TW 106143571 A TW106143571 A TW 106143571A TW I644506 B TWI644506 B TW I644506B
- Authority
- TW
- Taiwan
- Prior art keywords
- capacitor
- power supply
- supply device
- unit
- discharge resistor
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M5/4585—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/10—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
- H02H7/12—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
- H02H7/1216—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for AC-AC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/322—Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
本案提供在異常時使平滑部中包含的電容器迅速地放電、並且可減低平常時之損耗的一種電源裝置。電源裝置具備有:順變換部3;平滑部4;逆變換部5;收納以上三者的框體7;以及檢測出順變換部3、逆變換部5、及框體7中之至少一者的異常的異常檢出部;平滑部4包含有:與順變換部3之輸出並聯的電容器10、將電容器10予以放電的第一放電電阻12、以及與第一放電電阻12串聯的開關元件14;且在藉由異常檢出部檢測出異常時,藉由異常檢出部閉合開關元件14,當開關元件14被閉合時,電容器10係藉由第一放電電阻12加以放電。 The present invention provides a power supply device that rapidly discharges a capacitor included in a smooth portion at an abnormal time and can reduce the usual loss. The power supply device includes: a smoothing unit 3; a smoothing unit 4; an inverse transform unit 5; a housing 7 that houses the above three; and detects at least one of the forward conversion unit 3, the inverse conversion unit 5, and the housing 7. The abnormal abnormality detecting unit; the smoothing unit 4 includes a capacitor 10 connected in parallel with the output of the forward converting unit 3, a first discharging resistor 12 that discharges the capacitor 10, and a switching element 14 connected in series with the first discharging resistor 12. When the abnormality detecting unit detects an abnormality, the abnormal detecting portion closes the switching element 14, and when the switching element 14 is closed, the capacitor 10 is discharged by the first discharge resistor 12.
Description
本發明係關於一種電源裝置。 The present invention relates to a power supply device.
專利文獻1中記載的反向器(反向器:inverter,依國立教育研究院電子計算機名詞工具書稱為反向器,亦有稱為反用換流器或逆變器之情形)裝置,係從交流電源產生直流電源,且從經由以電抗器(reactor)及平滑電容器(smoothing capacitor)所構成之平滑電路之輸出的直流輸出,以控制反向器電路的開關元件的導通(ON)關斷(OFF)的方式來獲得交流輸出,而將高頻的交流輸出供給至感應加熱用的加熱線圈(coil)。此反向器裝置中,以預定的放電時間常數將平滑電容器予以放電的放電用電阻係與平滑電容器並聯。 The inverter described in Patent Document 1 (inverter: in accordance with the National Institute of Education Electronic Computer Noun Tool is called an inverter, and there is also a case called a reverse inverter or an inverter), A DC power source is generated from an AC power source, and a DC output through an output of a smoothing circuit composed of a reactor and a smoothing capacitor is used to control the ON of the switching element of the inverter circuit. The AC output is obtained by means of OFF (OFF), and the AC output of the high frequency is supplied to a heating coil for induction heating. In this inverter device, a discharge resistor that discharges a smoothing capacitor with a predetermined discharge time constant is connected in parallel with a smoothing capacitor.
專利文獻1:日本專利第3419641號公報 Patent Document 1: Japanese Patent No. 3419641
如專利文獻1所記載之反向器裝置(inverter device),當放電用電阻與平滑電容器並聯,則放電用電阻就會一直消耗電力。為減低因受放電用電阻所消耗的電力而將放電用電阻的電阻值加大,放電時間常數就會變大,平滑電容器放電所需的時間就會變長。若平滑電容器中殘留有電荷就會對電路的檢查及維修造成妨礙,故而在裝置發生異常時,要求平滑電容器迅速地(例如在10秒以內)放電。 In the inverter device described in Patent Document 1, when the discharge resistor is connected in parallel with the smoothing capacitor, the discharge resistor always consumes electric power. In order to reduce the electric power consumed by the discharge resistor, the resistance value of the discharge resistor is increased, the discharge time constant is increased, and the time required for the smoothing capacitor to discharge is increased. If the electric charge remains in the smoothing capacitor, the inspection and maintenance of the circuit are hindered. Therefore, when an abnormality occurs in the device, the smoothing capacitor is required to be quickly discharged (for example, within 10 seconds).
專利文獻1所記載之反向器裝置係用於鍋等的調理器具之感應加熱,其輸出較小,平滑電容器的靜電容量也較小。因此,即使因受放電用電阻的電阻值加大而放電時間常數變大,其影響也算輕微。作為記載於專利文獻1之一例的平滑電容器的靜電容量為9μF,放電用電阻的電阻值為240KΩ之情況,放電時間常數為2秒左右。 The inverter device described in Patent Document 1 is used for induction heating of a conditioning tool such as a pot, and the output thereof is small, and the electrostatic capacity of the smoothing capacitor is also small. Therefore, even if the resistance value of the resistor for discharge is increased, the discharge time constant becomes large, and the influence is slight. The capacitance of the smoothing capacitor described in one example of Patent Document 1 is 9 μF, and the resistance value of the discharge resistor is 240 KΩ, and the discharge time constant is about 2 seconds.
但是,用於鋼材的熱處理、電焊鋼管的熔接等之輸出較大的電源裝置,平滑電容器的靜電容量也較大。特別是,對於用於電焊鋼管的熔接之電源裝置係要求低漣波(ripple)的電源裝置,而用於此種電源裝置之平滑電容器的靜電容量為數萬μF之極大值。平滑電容器的靜電容量如此之大的話,放電用電阻的電阻值之增大會造成放電時間常數之顯著增大。另一方面,若使放電用電阻的電阻值減小,則放電用電阻所消耗的電量會增加,而且因為消耗電力與電阻器的額定值之關係會需要很多個電阻器,而會有電源裝置的製造成本及運轉成本的上升、以及電源 裝置會大型化的疑慮。 However, in a power supply device having a large output such as heat treatment of steel materials and welding of electric welded steel pipes, the electrostatic capacitance of the smoothing capacitor is also large. In particular, a power supply device for welding welded electric steel pipes requires a low-ripple power supply device, and the electrostatic capacitance of the smoothing capacitor used for such a power supply device is a maximum value of several tens of μF. When the electrostatic capacitance of the smoothing capacitor is so large, an increase in the resistance value of the discharge resistor causes a significant increase in the discharge time constant. On the other hand, if the resistance value of the discharge resistor is decreased, the amount of electric power consumed by the discharge resistor increases, and since the relationship between the power consumption and the rated value of the resistor requires a large number of resistors, there is a power source. Increase in manufacturing cost and operating cost of the device, and power supply The device will be large-scale concerns.
本發明係有鑑於上述的課題而完成者,其目的在於提供在異常時使平滑部中包含的電容器迅速地放電、並且可減低平常時之損耗的一種電源裝置。 The present invention has been made in view of the above-described problems, and an object of the invention is to provide a power supply device that can quickly discharge a capacitor included in a smooth portion during an abnormality and can reduce the loss in normal times.
本發明的一態樣之電源裝置係具備有:將從交流電源所供給的交流電力變換為直流電力的順變換部;使從前述順變換部所輸出之含有漣波(ripple)之直流電力平滑化的平滑部;將經前述平滑部所平滑化後的直流電力變換為交流電力的逆變換部;收納前述順變換部、前述平滑部、及前述逆變換部的框體;以及檢測前述順變換部、前述逆變換部、及前述框體中之至少一者的異常的異常檢出部;前述平滑部係包含有:與前述順變換部的輸出並聯的至少一個電容器、將前述電容器予以放電的第一放電電阻、以及與前述第一放電電阻串聯的開關元件;在藉由前述異常檢出部檢測出異常時,藉由前述異常檢出部閉合前述開關元件,且在前述開關元件被閉合時,前述電容器係藉由前述第一放電電阻加以放電;前述平滑部的前述電容器係包含有第一電容器,該第一電容器係經由以順向偏壓方式連接的二極體而連接至前述順變換部的輸出,且前述第一放電電阻係與前述第一電容器並聯。 A power supply device according to an aspect of the present invention includes: a conversion unit that converts AC power supplied from an AC power source into DC power; and smoothes DC power including ripple generated from the forward conversion unit a smoothing unit that converts the DC power smoothed by the smoothing unit into an AC power; an apparatus that stores the forward transform unit, the smoothing unit, and the inverse transform unit; and detects the forward transform The abnormality detecting unit of the abnormality of at least one of the inverse transform unit and the housing; the smoothing unit includes at least one capacitor connected in parallel with the output of the forward converting unit, and discharging the capacitor a first discharge resistor and a switching element connected in series with the first discharge resistor; when the abnormality detecting unit detects an abnormality, the abnormality detecting unit closes the switching element, and when the switching element is closed The capacitor is discharged by the first discharge resistor; the capacitor of the smoothing portion includes a first capacitor, the first capacitor System is connected via a diode connected in forward bias mode to the forward transform unit to output, and the first discharge resistor and the first capacitor in parallel lines.
根據本發明,就可提供在異常時使平滑部中包含的電容器迅速地放電、並且可減低平常時之損耗的電源裝置。 According to the present invention, it is possible to provide a power supply device which can rapidly discharge a capacitor included in a smooth portion at the time of abnormality and can reduce the loss in normal times.
1‧‧‧電源裝置 1‧‧‧Power supply unit
2‧‧‧交流電源 2‧‧‧AC power supply
3‧‧‧順變換部 3‧‧‧Shunchang Department
4‧‧‧平滑部 4‧‧‧Smooth Department
5‧‧‧逆變換部 5‧‧‧ inverse transformation
6‧‧‧斷路器 6‧‧‧Circuit breaker
7‧‧‧框體 7‧‧‧ frame
8‧‧‧控制部 8‧‧‧Control Department
9‧‧‧負載 9‧‧‧load
10‧‧‧電容器 10‧‧‧ capacitor
11‧‧‧電抗器 11‧‧‧Reactor
12‧‧‧第一放電電阻 12‧‧‧First discharge resistance
13‧‧‧第二放電電阻 13‧‧‧Second discharge resistor
14‧‧‧開關元件 14‧‧‧Switching elements
20‧‧‧二極體 20‧‧‧ diode
21‧‧‧第一電容器 21‧‧‧First capacitor
22‧‧‧第二電容器 22‧‧‧second capacitor
23‧‧‧第一放電電阻 23‧‧‧First discharge resistance
24‧‧‧第二放電電阻 24‧‧‧second discharge resistor
25‧‧‧第三放電電阻 25‧‧‧ Third discharge resistor
26‧‧‧開關元件 26‧‧‧Switching elements
30‧‧‧PLL電路 30‧‧‧ PLL circuit
31‧‧‧異常檢出電路 31‧‧‧Abnormal detection circuit
32‧‧‧變流器 32‧‧‧Converter
33‧‧‧變壓器 33‧‧‧Transformers
40‧‧‧相位比較電路 40‧‧‧ phase comparison circuit
41‧‧‧類比加減法器 41‧‧‧ analog addition and subtraction
42‧‧‧電壓控制振盪器 42‧‧‧Voltage Controlled Oscillator
43‧‧‧訊號控制電路 43‧‧‧Signal Control Circuit
50‧‧‧波形整形器 50‧‧‧ waveform shaper
50A‧‧‧電阻器 50A‧‧‧Resistors
50B‧‧‧電容器 50B‧‧‧ capacitor
51‧‧‧波形整形器 51‧‧‧ waveform shaper
51A‧‧‧電阻器 51A‧‧‧Resistors
51B‧‧‧電容器 51B‧‧‧ capacitor
52‧‧‧資料正反器 52‧‧‧Information flip-flop
53‧‧‧正反器 53‧‧‧Factor
54‧‧‧比較器 54‧‧‧ comparator
55‧‧‧反轉器 55‧‧‧Reversal
56‧‧‧可變電阻器 56‧‧‧Variable Resistor
57‧‧‧屏蔽手段 57‧‧‧Shielding means
CL‧‧‧時脈輸入埠 CL‧‧‧clock input埠
D‧‧‧資料輸入埠 D‧‧‧Data input埠
g1至g4‧‧‧控制端子 G1 to g4‧‧‧ control terminals
I1‧‧‧電流 I1‧‧‧ Current
M1至M4‧‧‧功率半導體元件 M1 to M4‧‧‧ power semiconductor components
Q‧‧‧設定訊號埠 Q‧‧‧Set signal 埠
R‧‧‧重設輸入埠 R‧‧‧Reset input埠
S‧‧‧設定輸入埠 S‧‧‧Setting input埠
V1‧‧‧電壓 V1‧‧‧ voltage
第1圖係用來說明本發明的實施形態之電源裝置的一例之方塊圖。 Fig. 1 is a block diagram for explaining an example of a power supply device according to an embodiment of the present invention.
第2圖係第1圖之電源裝置的平滑部的電路圖。 Fig. 2 is a circuit diagram of a smoothing portion of the power supply device of Fig. 1.
第3圖係第1圖之電源裝置的平滑部的變形例的電路圖。 Fig. 3 is a circuit diagram showing a modification of the smoothing portion of the power supply device of Fig. 1.
第4圖係用來說明本發明的實施形態之電源裝置的另一例之方塊圖。 Fig. 4 is a block diagram for explaining another example of the power supply device according to the embodiment of the present invention.
第5圖係第4圖之電源裝置的控制部的電路圖。 Fig. 5 is a circuit diagram of a control unit of the power supply device of Fig. 4.
第6圖係第4圖之電源裝置的控制部的電路圖。 Fig. 6 is a circuit diagram of a control unit of the power supply device of Fig. 4.
第1圖顯示用來說明本發明的實施形態之電源裝置的一例,第2圖顯示平滑部的一例。 Fig. 1 shows an example of a power supply device for explaining an embodiment of the present invention, and Fig. 2 shows an example of a smoothing unit.
電源裝置1係具備有:順變換部3,係將從交流電源2所供給的交流電力變換為直流電力;平滑部4,係將從順變換部3所輸出之含有漣波之直流電力予以平滑化;以及逆變換部5,係將藉由平滑部4而平滑化後的直流電力予以變換為交流電力。在本例中,電源裝置1還具備有:當交流電源2到順變換部3流通有過電流時,切斷對於順變換部3的電力供給的斷路器(breaker)6,且順變換部3、平滑部4、逆變換部5、及斷路器6係收納於框體7內。 The power supply device 1 includes a forward conversion unit 3 that converts AC power supplied from the AC power supply 2 into DC power, and a smoothing unit 4 that smoothes DC power including chopping output from the forward conversion unit 3. The inverse transform unit 5 converts the DC power smoothed by the smoothing unit 4 into AC power. In the present example, the power supply device 1 further includes a breaker 6 that cuts off the power supply to the forward conversion unit 3 when the AC power supply 2 passes the overcurrent in the forward conversion unit 3, and the conversion unit 3 The smoothing unit 4, the inverse conversion unit 5, and the circuit breaker 6 are housed in the casing 7.
順變換部3可為利用例如二極體電橋(diode bridge)進行整流者,亦可使用可根據外部訊號控制導通的閘流體(thyristor)等的半導體元件來可變化地整流平滑化 後的直流電壓。在利用半導體元件之情況,半導體元件之導通係由控制部8加以控制。 The forward conversion unit 3 may be rectified by, for example, a diode bridge, or may be variably rectified and smoothed using a semiconductor element such as a thyristor that can be turned on according to an external signal. After the DC voltage. In the case of using a semiconductor element, the conduction of the semiconductor element is controlled by the control unit 8.
逆變換部5係由例如以能夠切換(switching)動作的四個功率半導體元件為主體的全橋式電路(full-bridge circuit)所構成,利用四個功率半導體元件的預定的切換動作來產生高頻的交流電力。另外,亦可使用六個功率半導體元件來使高頻的輸出成為三相輸出。功率半導體元件的切換動作係由控制部8加以控制。 The inverse transform unit 5 is composed of, for example, a full-bridge circuit mainly composed of four power semiconductor elements capable of switching operations, and is generated by a predetermined switching operation of four power semiconductor elements. Frequency AC power. In addition, six power semiconductor elements can also be used to make the high frequency output a three-phase output. The switching operation of the power semiconductor element is controlled by the control unit 8.
功率半導體元件可使用例如IGBT(Insulated Gate Bipolar Transistor:絕緣閘雙極電晶體)及MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:金屬-氧化物-半導體場效電晶體)之類的可切換動作之各種功率半導體元件,就半導體材料而言,例如使用矽(Si)者、或使用碳化矽(SiC)者。 As the power semiconductor element, a switchable action such as an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) can be used. For various types of power semiconductor elements, for semiconductor materials, for example, those using germanium (Si) or using tantalum carbide (SiC).
逆變換部5的輸出係連接包含有加熱線圈的負載9,且將逆變換部5所產生的高頻的交流電力供給至加熱線圈。並且,利用加熱線圈對加熱對象物進行感應加熱。加熱對象物及加熱目的並沒有特別的限制,可舉出的例子有鋼材的熱處理(淬火等)、電焊鋼管的熔接等。 The output of the inverse conversion unit 5 is connected to the load 9 including the heating coil, and the high-frequency AC power generated by the inverse conversion unit 5 is supplied to the heating coil. Further, the object to be heated is induction-heated by the heating coil. The object to be heated and the purpose of heating are not particularly limited, and examples thereof include heat treatment of steel materials (such as quenching) and welding of electric steel pipes.
在第2圖所示的例子中,平滑部4係包含有電容器10、電抗器11、第一放電電阻12、第二放電電阻13、以及開關元件14。 In the example shown in FIG. 2, the smoothing unit 4 includes a capacitor 10, a reactor 11, a first discharge resistor 12, a second discharge resistor 13, and a switching element 14.
電容器10係與順變換部3的輸出並聯,用來消除或減輕順變換部3的直流輸出中所含有的漣波。電 容器10的靜電容量係與電源裝置1的輸出相對應而適當地設定,在例如電源裝置1的輸出為300kW之程度的情況,電容器10的靜電容量可設定為20000μF左右(惟,此靜電容量為在非常低漣波的電源裝置之值)。就電容器10而言,例如採用較容易做到大容量化的電解電容,但並不限定於電解電容。 The capacitor 10 is connected in parallel with the output of the forward converting unit 3 to cancel or reduce the chopping contained in the DC output of the forward converting unit 3. Electricity The electrostatic capacity of the container 10 is appropriately set in accordance with the output of the power supply device 1. For example, when the output of the power supply device 1 is about 300 kW, the electrostatic capacity of the capacitor 10 can be set to about 20,000 μF (however, the electrostatic capacity is In the value of a very low chopping power supply unit). The capacitor 10 is, for example, an electrolytic capacitor that is relatively easy to increase in capacity, but is not limited to an electrolytic capacitor.
另外,在本例中,電抗器11係介設於順變換部3的輸出的正極、與連接於正極側之電容器10的端子之間。電抗器11係與電容器10共同動作並形成低通濾波器(low-pass filter),以提高去除漣波的能力。 Further, in this example, the reactor 11 is interposed between the positive electrode of the output of the forward conversion unit 3 and the terminal of the capacitor 10 connected to the positive electrode side. The reactor 11 operates in conjunction with the capacitor 10 and forms a low-pass filter to improve the ability to remove chopping.
第一放電電阻12與開關元件14串聯,且串聯後的第一放電電阻12及開關元件14係與順變換部3的輸出並聯。開關元件14係可根據外部訊號而斷開閉合,由控制部8來斷開閉合。並且,在開關元件14為閉合(導通)時,電容器10通過第一放電電阻12及開關元件14而放電。 The first discharge resistor 12 is connected in series with the switching element 14, and the first discharge resistor 12 and the switching element 14 connected in series are connected in parallel with the output of the forward conversion unit 3. The switching element 14 can be opened and closed according to an external signal, and is closed and closed by the control unit 8. Further, when the switching element 14 is closed (conducted), the capacitor 10 is discharged by the first discharge resistor 12 and the switching element 14.
開關元件14可採用例如利用由電磁鐵所吸引的可動鐵片而開關的磁式開關(magnet switch)等之具有機械性的接點之元件、或閘流體等之半導體元件,但與具有機械性的接點之元件相比較,適宜採用元件的壽命較長的半導體元件。 The switching element 14 can be, for example, a mechanical contact element such as a magnetic switch that is switched by a movable iron piece attracted by an electromagnet, or a semiconductor element such as a thyristor, but has mechanical properties. In comparison with the components of the contacts, it is preferable to use semiconductor components having a long life of the components.
第二放電電阻13係與第一放電電阻12並聯,電容器10係通過第二放電電阻13而恆常地放電。第二放電電阻13的電阻值係比第一放電電阻12的電阻值還 大,舉例來說,第一放電電阻12的電阻值為數百Ω,而第二放電電阻13的電阻值為數十kΩ至數百kΩ。 The second discharge resistor 13 is connected in parallel with the first discharge resistor 12, and the capacitor 10 is constantly discharged by the second discharge resistor 13. The resistance value of the second discharge resistor 13 is greater than the resistance value of the first discharge resistor 12 Large, for example, the resistance value of the first discharge resistor 12 is several hundred Ω, and the resistance value of the second discharge resistor 13 is several tens of kΩ to several hundreds kΩ.
斷路器6係在交流電源2到順變換部3流通有過電流時,切斷對於順變換部3的電力供給,且在切斷對於順變換部3的電力供給時,將顯示順變換部3之異常的異常訊號送出至控制部8。 When the AC power supply 2 has an overcurrent flowing to the forward conversion unit 3, the circuit breaker 6 cuts off the power supply to the forward conversion unit 3, and when the power supply to the forward conversion unit 3 is cut off, the display conversion unit 3 is displayed. The abnormal abnormal signal is sent to the control unit 8.
控制部8係例如以處理器為主體而構成,且控制逆變換部5的功率半導體元件的開關動作,而且當順變換部3採用閘流體等的半導體元件時,控制半導體元件的導通。此外,控制部8在有異常訊號從斷路器6輸進來時,使開關元件14閉合。 The control unit 8 is configured mainly by a processor, and controls the switching operation of the power semiconductor element of the inverse conversion unit 5, and controls the conduction of the semiconductor element when the forward conversion unit 3 uses a semiconductor element such as a thyristor. Further, the control unit 8 closes the switching element 14 when an abnormal signal is input from the circuit breaker 6.
藉由開關元件14的閉合,藉此電容器10除了通過第二放電電阻13,且通過第一放電電阻12而被放電。第一放電電阻12的電阻值(例如數百Ω)係比第二放電電阻13的電阻值(例如數十kΩ至數百kΩ)還小,而蓄積於電容器10的電荷幾乎都流通於第一放電電阻12。相對於電容器10的端子間電壓,放電電阻的的電阻值越小流通於放電電阻的電流越大,而當斷路器6及控制部8檢測出順變換部3有異常時,可藉由電阻值較小的第一放電電阻12令電容器10迅速地放電。在例如電容器10的靜電容量為20000μF,且第一放電電阻12的電阻值為300Ω時,放電時間常數為6秒左右。 By the closing of the switching element 14, the capacitor 10 is discharged through the second discharge resistor 13 and through the first discharge resistor 12. The resistance value of the first discharge resistor 12 (for example, several hundred Ω) is smaller than the resistance value of the second discharge resistor 13 (for example, several tens of kΩ to several hundreds of kΩ), and the charge accumulated in the capacitor 10 is almost always distributed in the first. Discharge resistor 12. The smaller the resistance value of the discharge resistor is, the larger the current flowing through the discharge resistor is with respect to the voltage between the terminals of the capacitor 10, and when the circuit breaker 6 and the control unit 8 detect that there is an abnormality in the forward conversion portion 3, the resistance value can be obtained. The smaller first discharge resistor 12 causes the capacitor 10 to discharge rapidly. For example, when the electrostatic capacity of the capacitor 10 is 20,000 μF and the resistance value of the first discharge resistor 12 is 300 Ω, the discharge time constant is about 6 seconds.
再者,從對於發熱的安全性的觀點,平時通電的電阻器,一般係1/4左右的額定電力被運用,但在 異常時蓄積於電容器10的電荷僅在開關元件14閉合的時序流通於第一放電電阻12,而伴隨著第一放電電阻12之通電的發熱係瞬時性的,所以第一放電電阻12可運用在額定電力的上限或上限附近。藉此,可削減構成第一放電電阻12之電阻器的個數,而可削減電源裝置1的製造成本及使電源裝置1小型化。例如,在交流電源2的輸出電壓為440V,且順變換部3採用二極體電橋來整流時,順變換部3的輸出電壓為約600V。並且,在第一放電電阻12的電阻值為300Ω時,流通於第一放電電阻12之電流最大為2A,第一放電電阻12的消耗電力最大為1200W。在此情況,例如採用漆包式電阻器(enamelled resistor)等之額定電力較大的電阻器,則以一個電阻器來構成第一放電電阻12。這是因為第一放電電阻12係只使用於放電時,而使用在使用率非常低的緣故。 Furthermore, from the viewpoint of the safety of heat generation, a resistor that is normally energized is generally used with a rated power of about 1/4, but The charge accumulated in the capacitor 10 during the abnormality flows only to the first discharge resistor 12 at the timing when the switching element 14 is closed, and the heat generation due to the energization of the first discharge resistor 12 is instantaneous, so that the first discharge resistor 12 can be used in Near or above the upper limit of rated power. Thereby, the number of resistors constituting the first discharge resistor 12 can be reduced, and the manufacturing cost of the power supply device 1 can be reduced and the power supply device 1 can be downsized. For example, when the output voltage of the AC power supply 2 is 440 V and the forward conversion unit 3 is rectified by a diode bridge, the output voltage of the forward conversion unit 3 is about 600V. Further, when the resistance value of the first discharge resistor 12 is 300 Ω, the current flowing through the first discharge resistor 12 is at most 2 A, and the power consumption of the first discharge resistor 12 is at most 1200 W. In this case, for example, a resistor having a large rated power such as an enamelled resistor is used, and the first discharge resistor 12 is constituted by one resistor. This is because the first discharge resistor 12 is used only for discharge, and is used at a very low usage rate.
並且,在平時,亦即未檢測出有異常,而電源裝置1係正常地動作或停止時,第一放電電阻12不被通電,亦不會有電力被第一放電電阻12消耗。因此,可削減電源裝置1的運轉成本。 Further, in the normal state, that is, when an abnormality is not detected, and the power supply device 1 is normally operated or stopped, the first discharge resistor 12 is not energized, and no electric power is consumed by the first discharge resistor 12. Therefore, the running cost of the power supply device 1 can be reduced.
在異常時令電容器10迅速地放電的觀點,第二放電電阻13亦可省略,惟最好還是設置第二放電電阻13,使電源裝置1在正常地動作或停止時,電容器10恆常地通過第二放電電阻13而放電。例如,在電容器10之充電開始時等之過渡狀態下,會有電容器10的端子間電壓瞬時地變高的情形,惟電容器10通過第二放電電阻13被放 電,藉此可抑制過高的電壓施加至逆變換部5,可保護逆變換部5的功率半導體元件。 The second discharge resistor 13 may be omitted from the viewpoint of rapidly discharging the capacitor 10 in an abnormal state, but it is preferable to provide the second discharge resistor 13 so that the capacitor 10 passes normally when the power supply device 1 is normally operated or stopped. The second discharge resistor 13 is discharged. For example, in a transient state in which the charging of the capacitor 10 is started or the like, there is a case where the voltage between the terminals of the capacitor 10 instantaneously becomes high, but the capacitor 10 is placed through the second discharge resistor 13 By this, it is possible to suppress an excessive voltage from being applied to the inverse conversion unit 5, and the power semiconductor element of the inverse conversion unit 5 can be protected.
並且,因為第二放電電阻13的電阻值比第一放電電阻12的電阻值大得非常多(例如數十kΩ至數百kΩ),所以流通於第二放電電阻13之電流極小(例如數mA至數十mA),所以即使第二放電電阻13恆常地消耗電力,消耗的電量也微乎其微。 Further, since the resistance value of the second discharge resistor 13 is much larger than the resistance value of the first discharge resistor 12 (for example, several tens of kΩ to several hundreds of kΩ), the current flowing through the second discharge resistor 13 is extremely small (for example, several mA). Up to several tens of mA), so even if the second discharge resistor 13 constantly consumes power, the amount of power consumed is negligible.
第3圖係顯示平滑部4的變形例。 Fig. 3 shows a modification of the smoothing portion 4.
在第3圖所示的例子中,平滑部4係包含有:第一電容器21,以經由二極體20連接的方式作為與順變換部3之輸出並聯的電容器、以及直接連接的第二電容器22;該平滑部4還包含有:第一放電電阻23、第二放電電阻24、第三放電電阻25、以及開關元件26。 In the example shown in FIG. 3, the smoothing unit 4 includes a first capacitor 21, a capacitor connected in parallel with the output of the forward converting unit 3, and a second capacitor directly connected to each other via the diode 20. The smoothing portion 4 further includes a first discharge resistor 23, a second discharge resistor 24, a third discharge resistor 25, and a switching element 26.
第一放電電阻23與開關元件26串聯,且串聯後的第一放電電阻23及開關元件26係與第一電容器21並聯。開關元件26係可根據外部訊號而斷開閉合,由控制部8來斷開閉合。 The first discharge resistor 23 is connected in series with the switching element 26, and the first discharge resistor 23 and the switching element 26 connected in series are connected in parallel with the first capacitor 21. The switching element 26 can be opened and closed according to an external signal, and is closed and closed by the control unit 8.
第二放電電阻24係與第一放電電阻23並聯,第一電容器21通過第二放電電阻24而恆常地放電。從削減第二放電電阻24所消耗的電量的觀點,第二放電電阻24的電阻值係比第一放電電阻23的電阻值還大,舉例來說,第一放電電阻23的電阻值為數百Ω,而第二放電電阻24的電阻值為數十kΩ至數百kΩ。 The second discharge resistor 24 is connected in parallel with the first discharge resistor 23, and the first capacitor 21 is constantly discharged by the second discharge resistor 24. From the viewpoint of reducing the amount of electric power consumed by the second discharge resistor 24, the resistance value of the second discharge resistor 24 is larger than the resistance value of the first discharge resistor 23, for example, the resistance value of the first discharge resistor 23 is several hundred. Ω, and the resistance value of the second discharge resistor 24 is several tens of kΩ to several hundred kΩ.
第三放電電阻25係與第二電容器22並 聯,第二電容器22係通過第三放電電阻25而恆常地放電。從削減第三放電電阻25所消耗的電量的觀點,第三放電電阻25的電阻值係比第一放電電阻23的電阻值還大,舉例來說,第一放電電阻23的電阻值為數百Ω,而第三放電電阻25的電阻值為數十kΩ至數百kΩ。 The third discharge resistor 25 is coupled to the second capacitor 22 The second capacitor 22 is constantly discharged by the third discharge resistor 25. The resistance value of the third discharge resistor 25 is larger than the resistance value of the first discharge resistor 23 from the viewpoint of reducing the amount of electric power consumed by the third discharge resistor 25, for example, the resistance value of the first discharge resistor 23 is several hundred. Ω, and the resistance value of the third discharge resistor 25 is several tens of kΩ to several hundred kΩ.
經由二極體20與順變換部3的輸出並聯的第一電容器21,係在第一電容器21的端子間電壓比第二電容器22的端子間電壓還低之情況被充電。因此,順變換部3的輸出中含有的漣波基本上係由第二電容器22加以消除或減輕。與第2圖所示的平滑部4的電容器10同樣地,第二電容器22係通過第三放電電阻25而恆常地放電,藉此抑制過渡狀態中的第二電容器22的端子間電壓的上升,而保護逆變換部5的功率半導體元件。第一電容器21係與二極體20及第二放電電阻24共同動作並形成過渡電壓抑制電路,以進一步抑制過渡狀態中之第二電容器22的端子間電壓之上升。由於過渡狀態中之第二電容器22的端子間電壓的上升係藉由上述過渡電壓抑制電路加以抑制,所以亦可省略第三放電電阻25。 The first capacitor 21 connected in parallel with the output of the forward conversion unit 3 via the diode 20 is charged when the voltage between the terminals of the first capacitor 21 is lower than the voltage between the terminals of the second capacitor 22. Therefore, the chopping contained in the output of the forward converting portion 3 is substantially eliminated or reduced by the second capacitor 22. Similarly to the capacitor 10 of the smoothing unit 4 shown in Fig. 2, the second capacitor 22 is constantly discharged by the third discharge resistor 25, thereby suppressing the rise of the voltage between the terminals of the second capacitor 22 in the transient state. The power semiconductor element of the inverse transform unit 5 is protected. The first capacitor 21 operates in conjunction with the diode 20 and the second discharge resistor 24 to form a transient voltage suppression circuit to further suppress an increase in the voltage between the terminals of the second capacitor 22 in the transient state. Since the rise of the voltage between the terminals of the second capacitor 22 in the transient state is suppressed by the above-described transient voltage suppression circuit, the third discharge resistor 25 can be omitted.
最好是第一電容器21的靜電容量比第二電容器22的靜電容量還小,就靜電容量相對較小的第一電容器21而言,例如壽命比電解電容器長之薄膜電容器(film condenser)較合適。 Preferably, the electrostatic capacity of the first capacitor 21 is smaller than the electrostatic capacity of the second capacitor 22. For the first capacitor 21 having a relatively small electrostatic capacitance, for example, a film capacitor having a longer life than the electrolytic capacitor is suitable. .
在第3圖所示的例子中也一樣,在交流電源2流到順變換部3流通有過電流時,利用斷路器6切斷 對於順變換部3之電力供給,且異常訊號係從斷路器6送出至控制部8,由控制部8來閉合開關元件26。藉由開關元件26的閉合,首先使第一電容器21除了通過第二放電電阻24,且通過第一放電電阻23而被放電。第一放電電阻23的電阻值(例如數百Ω)係比第二放電電阻24的電阻值(例如數十kΩ至數百kΩ)還小,而蓄積於第一電容器21的電荷幾乎都流通於第一放電電阻23,第一電容器21係通過第一放電電阻23而迅速地放電。於是,第一電容器21被放電並使第一電容器21的端子間電壓變得比第二電容器22的端子間電壓還低,藉此第二電容器22也再通過第一放電電阻23而迅速地放電。例如第一電容器21的靜電容量為7000μF,第二電容器22的靜電容量為20000μF,且第一放電電阻23的電阻值為300Ω時,放電時間常數為8秒左右。 Similarly, in the example shown in Fig. 3, when the AC power supply 2 flows to the forward conversion unit 3, an overcurrent flows, and the circuit breaker 6 cuts off. The power supply to the forward conversion unit 3 is sent from the circuit breaker 6 to the control unit 8, and the control unit 8 closes the switching element 26. By the closing of the switching element 26, the first capacitor 21 is first discharged in addition to the second discharge resistor 24 and through the first discharge resistor 23. The resistance value of the first discharge resistor 23 (for example, several hundred Ω) is smaller than the resistance value of the second discharge resistor 24 (for example, several tens of kΩ to several hundreds of kΩ), and the charge accumulated in the first capacitor 21 is almost always distributed. The first discharge resistor 23, the first capacitor 21 is rapidly discharged by the first discharge resistor 23. Then, the first capacitor 21 is discharged and the voltage between the terminals of the first capacitor 21 becomes lower than the voltage between the terminals of the second capacitor 22, whereby the second capacitor 22 is again rapidly discharged through the first discharge resistor 23. . For example, when the electrostatic capacity of the first capacitor 21 is 7000 μF, the electrostatic capacity of the second capacitor 22 is 20,000 μF, and the resistance value of the first discharge resistor 23 is 300 Ω, the discharge time constant is about 8 seconds.
至此,就電源裝置1的異常而言,以交流電源2到順變換部3流通有過電流的情況為例,且以藉由斷路器6及控制部8來檢測出該順變換部3的異常的例子加以說明,惟電源裝置1的異常,亦可是檢測出框體7的開啟。例如適當地在框體7的門或門框設置由開關或感測器所構成的開啟檢出部,開啟檢出部係以因應框體7的開啟的方式導通(ON)或關斷(OFF),且根據開啟檢出部的導通(ON)狀態及關斷(OFF)狀態,由控制部8來檢測框體7的開啟。在檢測到框體7的開啟時,在第2圖所示之平滑部4中,係由控制部8來閉合開關元件14,令電容器10 通過第一放電電阻12而迅速地放電,此外,在第3圖所示之平滑部4中,係由控制部8來閉合開關元件26,令第一電容器21及第二電容器22通過第一放電電阻23而迅速地放電。 The abnormality of the power supply device 1 is an example in which an overcurrent flows from the AC power supply 2 to the forward conversion unit 3, and the abnormality of the forward conversion unit 3 is detected by the circuit breaker 6 and the control unit 8. For example, the abnormality of the power supply device 1 may be that the opening of the casing 7 is detected. For example, an opening detecting portion composed of a switch or a sensor is appropriately provided in the door or the door frame of the casing 7, and the opening detecting portion is turned on (ON) or turned off (OFF) in response to the opening of the casing 7. The control unit 8 detects the opening of the casing 7 in accordance with the ON state and the OFF state of the opening detection unit. When the opening of the casing 7 is detected, in the smoothing portion 4 shown in Fig. 2, the switching element 14 is closed by the control portion 8, so that the capacitor 10 is provided. The first discharge resistor 12 is rapidly discharged. Further, in the smoothing portion 4 shown in Fig. 3, the switching element 26 is closed by the control unit 8, and the first capacitor 21 and the second capacitor 22 are passed through the first discharge. The resistor 23 is rapidly discharged.
另外,就電源裝置1之異常而言,亦可是檢測出逆變換部5的異常,參照第4至6圖來說明逆變換部5的異常、及其檢出方法的一例。與上述的電源裝置1共通的元件係標以共通的符號,並將其說明予以省略或簡化。 In addition, in the abnormality of the power supply device 1, the abnormality of the inverse conversion unit 5 may be detected, and an example of the abnormality of the inverse conversion unit 5 and the detection method thereof will be described with reference to FIGS. 4 to 6. The components common to the power supply device 1 described above are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
控制部8係具有:將逆變換部5所輸出的交流電力的頻率予以控制成與連接至逆變換部5之負載9的共振頻率相同的相位同步迴路電路(以下簡稱為「PLL電路」)30、以及異常檢出電路31。逆變換部5中設有:檢測供給至負載9之電流I1的變流器32、以及檢測施加至負載9之電壓V1的變壓器33。 The control unit 8 has a phase synchronization loop circuit (hereinafter simply referred to as "PLL circuit") 30 that controls the frequency of the AC power output by the inverse conversion unit 5 to be the same as the resonance frequency of the load 9 connected to the inverse conversion unit 5. And the abnormality detecting circuit 31. The inverse conversion unit 5 is provided with a current transformer 32 that detects the current I1 supplied to the load 9, and a transformer 33 that detects the voltage V1 applied to the load 9.
如第5圖所示,PLL電路30中設有:相位比較電路40,係檢測藉由變流器32所檢測出的電流I1和藉由變壓器33所檢測出的電壓V1的相位;類比加減法器41,係以因應相位比較電路40所檢測出的相位的方式,加減預先設定的頻率設定值;電壓控制振盪器42,係輸出與該類比減法器41所輸出的電壓相對應之頻率的訊號;以及控制訊號電路43,係以因應由電壓控制振盪器42所輸出之訊號的頻率的方式,送出控制訊號至逆變換部5的功率半導體元件M1至M4的控制端子g1至g4。 As shown in FIG. 5, the PLL circuit 30 is provided with a phase comparison circuit 40 for detecting the current I1 detected by the converter 32 and the phase of the voltage V1 detected by the transformer 33; analogy addition and subtraction The controller 41 adds or subtracts a preset frequency setting value in response to the phase detected by the phase comparison circuit 40. The voltage controlled oscillator 42 outputs a signal having a frequency corresponding to the voltage output from the analog subtractor 41. And the control signal circuit 43 sends the control signals to the control terminals g1 to g4 of the power semiconductor elements M1 to M4 of the inverse conversion unit 5 in response to the frequency of the signal output from the voltage controlled oscillator 42.
藉由PLL電路30,以消除供給至負載9之電流I1、及施加至負載9之電壓V1的相位偏差的方式,控制逆變換部5的動作頻率控,使逆變換部5所輸出之交流電力的頻率與包含電感成分L及電容成分C之負載9的共振頻率一致。藉此,可提高電源裝置101的效率。 The PLL circuit 30 controls the operation frequency control of the inverse conversion unit 5 so as to cancel the phase difference between the current I1 supplied to the load 9 and the voltage V1 applied to the load 9, and the AC power output from the inverse conversion unit 5 is output. The frequency coincides with the resonant frequency of the load 9 including the inductance component L and the capacitance component C. Thereby, the efficiency of the power supply device 101 can be improved.
然而,若發生負載9側電路的一部分短路、或斷路之異常時,負載9的阻抗就會急遽變化,共振頻率會大幅變動。如此,PLL電路30係以追隨負載9的共振頻率的方式調節逆變換部5的動作頻率,而在過渡狀態中瞬間性地大電流及/或電壓發生在逆變換部5,而會有破壞功率半導體元件M1至M4的疑慮。具體而言,因受負載9的阻抗的變化,當電流I1的相位相對於電壓V1的相位超前,則發生較大的突波電壓(surge voltage),而會有因該突波電壓破壞功率半導體元件M1至M4的疑慮。因此,異常檢出電路31係以變流器32及變壓器33共同動作的方式構成相位偏移檢出部,來檢測藉由變流器32所檢測出的電流I1和藉由變壓器33所檢測出的電壓V1的相位偏移。 However, when a part of the circuit on the load 9 side is short-circuited or an abnormality in the open circuit occurs, the impedance of the load 9 changes rapidly, and the resonance frequency greatly fluctuates. In this manner, the PLL circuit 30 adjusts the operating frequency of the inverse conversion unit 5 so as to follow the resonance frequency of the load 9. In the transient state, a large current and/or voltage instantaneously occurs in the inverse conversion unit 5, and the power is destroyed. Concerns about the semiconductor elements M1 to M4. Specifically, due to the change in the impedance of the load 9, when the phase of the current I1 leads the phase of the voltage V1, a large surge voltage occurs, and the power semiconductor is destroyed by the surge voltage. Concerns of components M1 to M4. Therefore, the abnormality detecting circuit 31 forms a phase shift detecting unit such that the current transformer 32 and the transformer 33 operate together to detect the current I1 detected by the converter 32 and the detected by the transformer 33. The phase shift of the voltage V1.
異常檢出電路31係輸入有藉由變流器32所檢測出的電流I1、及藉由變壓器33所檢測出的電壓V1,且如第6圖所示,該異常檢出電路31係設置有:波形整形器50,係將輸入的電壓V1的波形整形成預定的方形波;波形整形器51,係將輸入的電流I1的波形整形成預定的方形波;資料正反器(data flip-flop)52,係作為檢測出電壓V1及電流I1之相位偏移的相位偏移檢出手段;正反 器53,係作為保持該資料正反器52之輸出的閂鎖器(latch);比較器54,係檢測電流I1的大小是否達到基準值;以及反轉器55,係反轉該比較器54的輸出訊號。 The abnormality detecting circuit 31 receives the current I1 detected by the current transformer 32 and the voltage V1 detected by the transformer 33, and as shown in Fig. 6, the abnormality detecting circuit 31 is provided with The waveform shaper 50 integrates the waveform of the input voltage V1 into a predetermined square wave; the waveform shaper 51 forms a predetermined square wave of the input current I1; the data flip-flop 52 is a phase offset detecting means for detecting the phase shift of the voltage V1 and the current I1; The device 53 serves as a latch for holding the output of the data flip-flop 52; the comparator 54 detects whether the magnitude of the current I1 reaches a reference value; and the inverter 55 reverses the comparator 54 Output signal.
波形整形器50係具備有:具有與輸入至資料正反器52之電壓相對應之直流電阻值的電阻器50A、用來將電壓V1的波形中所包含之非必要之高諧波成分予以阻斷的電容器50B等等。波形整形器51係與波形整形器50同樣地具備有:具有與輸入至資料正反器52之電壓相對應之直流電阻值的電阻器51A、用來將電流I1的波形中所包含的非必要之高諧波成分予以阻斷的電容器51B等等。 The waveform shaper 50 is provided with a resistor 50A having a DC resistance value corresponding to the voltage input to the data flip-flop 52 for blocking the unnecessary harmonic components included in the waveform of the voltage V1. Broken capacitor 50B and so on. Similarly to the waveform shaper 50, the waveform shaper 51 includes a resistor 51A having a DC resistance value corresponding to the voltage input to the data flip-flop 52, and a non-essential included in the waveform of the current I1. The capacitor 51B that blocks the high harmonic component and the like.
資料正反器52係具有:時脈輸入埠CL,係輸入時脈訊號;資料輸入埠D,係輸入資料訊號;設定輸入埠S,係輸入設定訊號;重設輸入埠R,係輸入重設訊號、以及設定訊號埠Q,係若進入設定狀態就送出設定訊號;且若時脈訊號同時地輸入有資料訊號時,就進入設定狀態並從設定訊號埠Q送出設定訊號。 The data flip-flop 52 has: clock input 埠 CL, input clock signal; data input 埠 D, input data signal; set input 埠 S, input setting signal; reset input 埠 R, input reset The signal and the setting signal 埠Q are sent to the setting signal if the setting state is entered; and if the clock signal is simultaneously input with the data signal, the setting state is entered and the setting signal is sent from the setting signal 埠Q.
比較器54係比較分別輸入至兩個輸入埠之交流訊號之大小的比較器。比較器54的一方輸入埠係輸入有顯示供給至負載9之電流I1值的交流訊號。比較器54的另一方輸入埠係輸入有以可變電阻器56將預定的交流電壓V2予以分壓後的交流訊號,以作為預先設定的基準值。若電流I1比基準值還大,比較器54輸出穩定運轉訊號。此穩定運轉訊號係在反轉器55被反轉並傳送至資料正 反器52的重設輸入埠R。藉由比較器54、反轉器55及可變電阻器56,從而形成在電流I1值變到大於基準值之前持續對資料正反器52輸出重設訊號的屏蔽(mask)手段57。 The comparator 54 compares the comparators respectively input to the magnitudes of the alternating signals of the two input ports. An input signal of the comparator 54 is input with an alternating current signal indicating the value of the current I1 supplied to the load 9. The other input of the comparator 54 is input with an alternating current signal obtained by dividing the predetermined alternating voltage V2 by the variable resistor 56 as a predetermined reference value. If the current I1 is larger than the reference value, the comparator 54 outputs a stable operation signal. This stable operation signal is inverted in the inverter 55 and transmitted to the data positive The reset input of the counter 52 is 埠R. By means of the comparator 54, the inverter 55 and the variable resistor 56, a mask means 57 for continuously outputting a reset signal to the data flip-flop 52 before the current I1 value becomes greater than the reference value is formed.
在以上的構成中,在電源裝置1啟動後到電源裝置1的運轉到達穩定狀態之前,具體而言在逆變換部5的動作頻率與負載9的共振頻率一致,且供給至負載9之電流I1比基準值還大之前,屏蔽手段57持續對資料正反器52輸出重設訊號,來停止由異常檢出電路31所進行之相位偏移檢測動作。藉此,消除:供給至負載9的電流I1不穩定,在相位與電壓不一致之電源裝置1剛啟動後就被強制停止的不良影響。並且,當電源裝置1的運轉到達穩定狀態,才開始由異常檢出電路31所進行之相位偏移檢測動作。 In the above configuration, before the operation of the power supply device 1 reaches the steady state after the power supply device 1 is started, specifically, the operating frequency of the inverse conversion unit 5 coincides with the resonance frequency of the load 9, and the current I1 supplied to the load 9 Before the reference value is larger, the masking means 57 continues to output a reset signal to the data flip-flop 52 to stop the phase shift detecting operation by the abnormality detecting circuit 31. Thereby, it is eliminated that the current I1 supplied to the load 9 is unstable, and the power supply device 1 whose phase does not coincide with the voltage is forced to stop immediately after starting. Further, when the operation of the power supply device 1 reaches a steady state, the phase shift detecting operation by the abnormality detecting circuit 31 is started.
其中,當負載9的共振頻率與逆變換部5的動作頻率一致,且電壓V1的相位與電流I1的相位相互一致的狀態時,資料正反器52係維持在重設狀態,不遷移到設定狀態,且未從設定訊號埠Q送出設定訊號,則電源裝置1繼續原來的運轉。 When the resonance frequency of the load 9 matches the operation frequency of the inverse conversion unit 5 and the phase of the voltage V1 and the phase of the current I1 coincide with each other, the data flip-flop 52 is maintained in the reset state and does not migrate to the setting. In the state, and the setting signal is not sent from the setting signal 埠Q, the power supply device 1 continues the original operation.
另一方面,當負載9發生異常,當負載9的共振頻率自逆變換部5的動作頻率發偏移,則電壓V1的相位與電流I1的相位彼此不一致,造成逆變換部5的異常。在形成如上述狀態時,資料正反器52遷移到設定狀態,且從設定訊號埠Q送出設定訊號,該設定訊號係經由正反器53而作為顯示逆變換部5之異常的異常訊號輸入至 PLL電路30。 On the other hand, when the load 9 is abnormal, when the resonance frequency of the load 9 is shifted from the operating frequency of the inverse transform unit 5, the phase of the voltage V1 and the phase of the current I1 do not coincide with each other, causing an abnormality of the inverse transform unit 5. When the state as described above is formed, the data flip-flop 52 shifts to the set state, and the set signal is sent from the set signal 埠Q, and the set signal is input to the abnormal signal indicating the abnormality of the inverse transform unit 5 via the flip-flop 53. PLL circuit 30.
異常訊號輸入後的PLL電路30係適當地使功率半導體元件M1至M4設為關斷狀態,來停止對於負載9之電力供給,以保護功率半導體元件M1至M4。異常訊號係持續輸出到正反器53被重設為止。並且,藉由異常訊號往來在內部的PLL電路30與異常檢出電路31之間的控制部8,在第2圖所示的平滑部4中係閉合開關元件14,令電容器10通過第一放電電阻12迅速地放電,此外,在第3圖所示的平滑部4中係閉合開關元件26,令第一電容器21及第二電容器22通過第一放電電阻23迅速地放電。 The PLL circuit 30 after the abnormal signal input appropriately sets the power semiconductor elements M1 to M4 to the off state to stop the power supply to the load 9 to protect the power semiconductor elements M1 to M4. The abnormal signal is continuously output until the flip-flop 53 is reset. Further, the control unit 8 between the internal PLL circuit 30 and the abnormality detecting circuit 31 by the abnormal signal contacts the switching element 14 in the smoothing portion 4 shown in Fig. 2, and causes the capacitor 10 to pass the first discharge. The resistor 12 is rapidly discharged. Further, in the smoothing portion 4 shown in FIG. 3, the switching element 26 is closed, and the first capacitor 21 and the second capacitor 22 are quickly discharged by the first discharge resistor 23.
根據上述的逆變換部5的異常的檢出方法,可從由於負載9的共振頻率的變動所引起的電流I1與電壓V1的相位偏移而迅速地檢測出逆變換部5的異常,可在逆變換部5的動作頻率追隨負載9之共振頻率的PLL電路30的動作完成之前,確實地檢測出逆變換部5的異常。並且,在檢測出逆變換部5之異常時,適當地使逆變換部5的功率半導體元件M1至M4設為關斷狀態,藉此可事先防止功率半導體元件M1至M4的破壞。 According to the abnormality detecting method of the inverse transform unit 5 described above, the abnormality of the inverse transform unit 5 can be quickly detected from the phase shift of the current I1 and the voltage V1 due to the fluctuation of the resonant frequency of the load 9. Before the operation frequency of the inverse transform unit 5 follows the operation of the PLL circuit 30 of the resonance frequency of the load 9, the abnormality of the inverse transform unit 5 is surely detected. When the abnormality of the inverse transform unit 5 is detected, the power semiconductor elements M1 to M4 of the inverse transform unit 5 are appropriately turned off, whereby the destruction of the power semiconductor elements M1 to M4 can be prevented in advance.
再者,檢測電流I1與電壓V1的相位偏移的異常檢出電路31,係包含有資料正反器52,該資料正反器52係因受與時脈訊號同時輸入的資料訊號而形成設定狀態,且送出屬於設定狀態之訊號的設定輸出;且只在電流I1與電壓V1的相位有偏移時,從資料正反器52輸出設定訊號(異常訊號),藉此,可利用簡單的電路構成檢測 出電流I1與電壓V1的相位偏移。 Further, the abnormality detecting circuit 31 for detecting the phase shift of the current I1 and the voltage V1 includes a data flip-flop 52 which is formed by the data signal input simultaneously with the clock signal. a state, and a setting output of a signal belonging to the set state is sent; and when the phase of the current I1 and the voltage V1 is shifted, the setting signal (abnormal signal) is output from the data flip-flop 52, whereby a simple circuit can be utilized. Composition test The phase of the output current I1 and the voltage V1 is shifted.
再者,異常檢出電路31係包含有屏蔽手段57,該屏蔽手段57係進行供給至負載9之電流I1的電流值、與預先設定的基準值之比較,且直到電流I1的值變到大於基準值為止,持續對資料正反器52輸出重設訊號;在電流I1不穩定,而電流I1的相位與電壓V1的相位彼此不一致之電源裝置1的啟動時,暫時停止異常檢出電路31的相位偏移檢測動作,所以亦可消除在啟動後強制地停止電源裝置1的不良影響。 Further, the abnormality detecting circuit 31 includes a shielding means 57 for comparing the current value of the current I1 supplied to the load 9 with a predetermined reference value, and until the value of the current I1 becomes larger than The reset signal is continuously outputted to the data flip-flop 52 until the reference value is reached; when the current I1 is unstable, and the phase of the current I1 and the phase of the voltage V1 do not coincide with each other, the abnormality detecting circuit 31 is temporarily stopped. Since the phase shift detecting operation is performed, it is possible to eliminate the adverse effect of forcibly stopping the power supply device 1 after starting.
經以上說明:由斷路器6及控制部8所構成檢測順變換部3之異常的異常檢出部、由上述開啟檢出部及控制部8所構成檢測框體7之異常的異常檢出部、由包含異常檢出電路31之控制部8及變流器32及變壓器33所構成檢測逆變換部5之異常的異常檢出部,亦可分別單獨使用,亦可複數個相組合而使用。 As described above, the abnormality detecting unit that detects the abnormality of the forward converting unit 3 by the circuit breaker 6 and the control unit 8 and the abnormality detecting unit that detects the abnormality of the detecting frame 7 by the opening detecting unit and the control unit 8 are described. The abnormality detecting unit that detects the abnormality of the inverse transform unit 5 by the control unit 8 including the abnormality detecting circuit 31, the converter 32, and the transformer 33 may be used alone or in combination of a plurality of phases.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017185140A JP6340463B1 (en) | 2017-09-26 | 2017-09-26 | Power supply |
JP2017-185140 | 2017-09-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI644506B true TWI644506B (en) | 2018-12-11 |
TW201916569A TW201916569A (en) | 2019-04-16 |
Family
ID=62487518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106143571A TWI644506B (en) | 2017-09-26 | 2017-12-12 | Power supply device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6340463B1 (en) |
CN (1) | CN110521076B (en) |
TW (1) | TWI644506B (en) |
WO (1) | WO2019065472A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111431389A (en) * | 2020-04-15 | 2020-07-17 | 中国南方电网有限责任公司超高压输电公司广州局 | MMC power module quick discharge circuit |
EP3920391A1 (en) * | 2020-06-04 | 2021-12-08 | Schaffner EMV AG | Emi filter |
JP7546760B2 (en) * | 2021-04-01 | 2024-09-06 | 三菱電機株式会社 | Power Conversion Equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62260564A (en) * | 1986-05-01 | 1987-11-12 | Mitsubishi Electric Corp | Protective circuit for damping resistor of inverter |
JPH02269479A (en) * | 1989-04-11 | 1990-11-02 | Toshiba Corp | Inverter device |
JPH10225133A (en) * | 1997-01-31 | 1998-08-21 | Toshiba Corp | Inverter device |
JPH11235044A (en) * | 1998-02-16 | 1999-08-27 | High Frequency Heattreat Co Ltd | Abnormal load detecting circuit for inverter |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5920138A (en) * | 1982-07-23 | 1984-02-01 | オリンパス光学工業株式会社 | Light source apparatus |
JP2695941B2 (en) * | 1989-09-22 | 1998-01-14 | 株式会社東芝 | Uninterruptible power system |
KR20010075919A (en) * | 2000-01-21 | 2001-08-11 | 구자홍 | Current limit circuit of inverter refrigerator |
CN1305195C (en) * | 2003-06-09 | 2007-03-14 | 清华大学 | Active power filtering method with inversing capacitor regulation and branch impendance controlled decoupling |
JP3751300B2 (en) * | 2003-09-30 | 2006-03-01 | ファナック株式会社 | Motor drive device |
JP4971750B2 (en) * | 2006-10-31 | 2012-07-11 | 株式会社日立製作所 | Power supply circuit and control circuit used therefor |
JP2008136312A (en) * | 2006-11-29 | 2008-06-12 | Fanuc Ltd | Motor drive apparatus |
JP5464851B2 (en) * | 2008-12-16 | 2014-04-09 | 三菱電機株式会社 | Inverter device |
JP5567381B2 (en) * | 2010-04-27 | 2014-08-06 | 日立オートモティブシステムズ株式会社 | Power converter |
JP5472176B2 (en) * | 2011-03-25 | 2014-04-16 | 三菱自動車工業株式会社 | Inverter device |
CN102957163A (en) * | 2011-08-23 | 2013-03-06 | 台达电子企业管理(上海)有限公司 | Direct-current chopper and direct-current chopping method for doubly-fed induction generator system |
JP5250163B1 (en) * | 2012-02-21 | 2013-07-31 | パナソニック株式会社 | DC power supply circuit |
WO2013125010A1 (en) * | 2012-02-23 | 2013-08-29 | トヨタ自動車株式会社 | Electric automobile |
JP5482840B2 (en) * | 2012-07-23 | 2014-05-07 | ダイキン工業株式会社 | Power supply |
JP5686145B2 (en) * | 2013-01-29 | 2015-03-18 | トヨタ自動車株式会社 | Power converter for electric vehicles |
JP6171885B2 (en) * | 2013-11-20 | 2017-08-02 | 株式会社デンソー | In-vehicle electrical system |
JP5705382B1 (en) * | 2013-11-22 | 2015-04-22 | 三菱電機株式会社 | Insulation detector and electrical equipment |
US9787214B2 (en) * | 2013-12-27 | 2017-10-10 | Mitsubishi Electric Corporation | Power conversion device with overvoltage suppression |
CN204244092U (en) * | 2014-12-24 | 2015-04-01 | 北京天诚同创电气有限公司 | The charge-discharge circuit of DC bus and converter system |
JP6459945B2 (en) * | 2015-12-11 | 2019-01-30 | スズキ株式会社 | Control device for electric vehicle |
JP2017185140A (en) | 2016-04-08 | 2017-10-12 | 株式会社アサヒ製作所 | Laundry feeder |
CN106786396B (en) * | 2017-01-16 | 2019-01-08 | 广东百事泰电子商务股份有限公司 | A kind of amendment wave inverter intelligent type protective switch of the short circuit circuit |
-
2017
- 2017-09-26 JP JP2017185140A patent/JP6340463B1/en active Active
- 2017-12-12 TW TW106143571A patent/TWI644506B/en active
-
2018
- 2018-09-20 CN CN201880026156.3A patent/CN110521076B/en active Active
- 2018-09-20 WO PCT/JP2018/034913 patent/WO2019065472A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62260564A (en) * | 1986-05-01 | 1987-11-12 | Mitsubishi Electric Corp | Protective circuit for damping resistor of inverter |
JPH02269479A (en) * | 1989-04-11 | 1990-11-02 | Toshiba Corp | Inverter device |
JPH10225133A (en) * | 1997-01-31 | 1998-08-21 | Toshiba Corp | Inverter device |
JP3419641B2 (en) * | 1997-01-31 | 2003-06-23 | 株式会社東芝 | Inverter device |
JPH11235044A (en) * | 1998-02-16 | 1999-08-27 | High Frequency Heattreat Co Ltd | Abnormal load detecting circuit for inverter |
Also Published As
Publication number | Publication date |
---|---|
JP2019062640A (en) | 2019-04-18 |
TW201916569A (en) | 2019-04-16 |
WO2019065472A1 (en) | 2019-04-04 |
CN110521076A (en) | 2019-11-29 |
JP6340463B1 (en) | 2018-06-06 |
CN110521076B (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI644506B (en) | Power supply device | |
JP2010263702A (en) | Three-phase/single-phase direct power converter circuit | |
US20140132080A1 (en) | Operating a static transfer switch to eliminate transformer inrush current in the presence of residual flux | |
US9853568B2 (en) | Power conversion device | |
US9595886B2 (en) | Vehicle auxiliary power supply device and overcurrent protection method thereof | |
CA2463015A1 (en) | Method for varying the power consumption of capacitive loads | |
KR101809944B1 (en) | Arcless DC Circuit Breaker using Semiconductor Switch | |
TWI644517B (en) | Load abnormality detection circuit for inverter and inverter device | |
TW201918722A (en) | Load abnormality detection circuit for inverter | |
JP2012080738A (en) | Power supply device | |
JP5383526B2 (en) | Induction heating cooker | |
JPH01292790A (en) | Inverter power supply for magnetron | |
US5914066A (en) | Circuit for the control of energy supply in a resonance converter | |
KR100904237B1 (en) | Apparatus for controlling off time of inverter heating circuit | |
RU2291548C1 (en) | Frequency converter with off-line inductor | |
JP2016213116A (en) | Induction heating apparatus | |
Sozanski | The shunt active power filter with better dynamic performance | |
JP2650960B2 (en) | Inverter power supply for magnetron | |
JP4577542B2 (en) | Series load power supply | |
JP2013222619A (en) | Induction heating cooker | |
JP2547186Y2 (en) | Power supply for arc machining | |
JP2002027757A (en) | Circuit for detecting phase of power supply | |
CN112335163A (en) | Determination of the capacitor function of a passive filter circuit | |
SU1337965A1 (en) | Method and device for protecting the distributing electric mains with nonlinear load and power filter against overloads by resonance-frequency currents | |
JP2004119246A (en) | Inverter control circuit |