JP4577542B2 - Series load power supply - Google Patents

Series load power supply Download PDF

Info

Publication number
JP4577542B2
JP4577542B2 JP2000301366A JP2000301366A JP4577542B2 JP 4577542 B2 JP4577542 B2 JP 4577542B2 JP 2000301366 A JP2000301366 A JP 2000301366A JP 2000301366 A JP2000301366 A JP 2000301366A JP 4577542 B2 JP4577542 B2 JP 4577542B2
Authority
JP
Japan
Prior art keywords
waveform
output
power supply
load
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000301366A
Other languages
Japanese (ja)
Other versions
JP2002110377A (en
Inventor
幸司 右田
恵一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2000301366A priority Critical patent/JP4577542B2/en
Publication of JP2002110377A publication Critical patent/JP2002110377A/en
Application granted granted Critical
Publication of JP4577542B2 publication Critical patent/JP4577542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、空港における標識灯に対する定電流供給装置のように直列接続された複数個の負荷に対して給電する直列負荷給電装置に関する。
【従来の技術】
従来、空港における標識灯に対する定電流供給装置は、位相制御装置を備え、負荷電流を検出してこの検出信号が一定化するように位相制御装置の導通位相を制御するようになっている。また、負荷に対しては可飽和形の絶縁トランスを介して電力供給がなされるようになっている。これによって、仮に負荷が断心等開放された場合には可飽和トランスの磁心が飽和し、一次側インピーダンスを低下させて、直列接続された他の負荷(絶縁トランス)への給電を可能にしている。
【0002】
また、負荷開放等の異常状態は、可飽和形の磁心の飽和時に現われる位相制御電圧波形上の歪を検出して行うことが提案されている。すなわち、位相制御電圧波形の特定位相範囲内に歪が発生するか否かによって負荷異常の有無を検知するようにしている。
【発明が解決しようとする課題】
従来技術のものは、定電流化のために位相制御された電圧波形を出力するもので、もともと歪成分を含んだ波形である。したがって、負荷異常時の可飽和形の磁心の飽和時に現われる歪を検出して異常検知することは、実際には複雑なフィルタ回路および判定回路が必要で高価格化の一要因となっていた。また、定電流供給装置の出力段に中間タップを有するトランスを用い、タップの切換えにより調光点灯する場合には、タップによって歪の発生位相、歪成分が異なるため、高精度な異常検知が困難であった。
【0003】
本発明は、簡単な構成で高精度に負荷の異常状態を検知することができる直列負荷給電装置を提供することを目的とする。
【課題を解決するための手段】
請求項1記載の発明は、低周波でかつ非位相制御の略正弦波の電圧を出力する定電流電源装置と;一次巻線を互いに直列接続されて定電流電源装置の出力を供給され、各二次巻線から各負荷に対して給電する複数個の可飽和形のトランスと;直列接続された可飽和形のトランスの一次巻線に流れる電流に対応した信号を検出し、一次巻線に流れる電流を各負荷の内の一部の負荷が開放したときにも一定化するように定電流電源装置の出力を制御する電流制御手段と;定電流電源装置の出力電流波形、出力電圧波形の少なくとも一方を検出し、これら検出波形と正弦波波形との差分または検出波形の微分値に応じて各負荷の内の一部の負荷が開放したときの異常を検知する負荷異常検知手段と;を具備していることを特徴とする。
【0004】
請求項1記載の発明および以下の発明において、特に断らない限り各構成、各用語はつぎのように定義される。
定電流電源装置としては、インバータ、チョッパ等の高周波発生装置を主として構成することができる。この場合には半導体スイッチング素子等の電子部品を中心に構成できるので小形、軽量化に有利である。定電流電源装置の低周波とは、50Hz、60Hzの商用周波数を中心に、数Hz〜1KHzの範囲に設定するのが好ましい。すなわち、数Hz以上であれば可飽和形のトランスを使用でき、1KHz以下であれば相当に長距離に亘って設置される配線に伴う浮遊容量、誘導性インピーダンスによる電圧降下の問題を少なくできる。
【0005】
負荷異常検知手段は、定電流電源装置の出力電流波形および出力電圧波形のうちの少なくとも一方を検出するものであるが、要は負荷の内の一部が開放した場合の、検出波形と正弦波との差分または検出波形の微分値を検出可能であればよい。したがって、厳密に定電流電源装置の出力端間における電流波形、電圧波形を検出する必要はなく、検出個所は特に限定されない。また、検出波形と正弦波波形との差分または検出波形の微分値を求める方法としては、検出波形と基準正弦波波形との差分を求める方法、検出波形を正弦波阻止フィルタに入力しその出力を監視する方法、検出波形を微分演算する方法等が考えられる。また、単にピーク値が所定値を超えるか否かを検知するようにしてもよい。
【0006】
請求項1記載の発明は、負荷の内の一部が開放すると、この負荷に対応した可飽和形のトランスが飽和して他の負荷に対して給電可能にする。しかし、負荷が開放した場合、定電流電源装置の出力電流は、トランスが非飽和から飽和へ変化するまでの間は実質流れないため、その波形は正弦波波形に比べて非飽和から飽和へ変化するまでの間を切取られたような波形となる。また、出力電圧は、トランスが非飽和から飽和へ変化するまでの間は大きな値となり、トランスが飽和した後は負荷が正常時のものとなる。負荷異常検知手段は、これら波形について、正弦波波形との差分または微分値を求めて負荷の異常を検知して報知し、かつ、必要に応じて記録する。この場合、定電流電源装置の負荷正常時の出力電流波形、出力電圧波形は略正弦波であるので、上記差分が明確に検知可能であり、また、可飽和形のトランスの特性により出力波形の急激な変化により微分値も大きくなって明確に検知可能であり、その分、回路構成の簡単化を図れ、また、検知精度の向上を図れる。負荷異常時でも定電流電源装置により他の負荷に対しては、平均値的または実効値的には一定化された電流を供給可能である。
【0007】
請求項2記載の発明は、直流電源装置と;直流電源装置の出力をスイッチングし、低周波の略正弦波成分に対応するようにそれぞれがPWM制御された高周波電圧を出力する高周波発生装置と;高周波発生装置の出力から高周波成分を除去して略正弦波電圧を出力するフィルタ手段と;一次巻線を互いに直列接続されてフィルタ手段の出力を供給され、各二次巻線から各負荷に対して給電する複数個の可飽和形のトランスと;直列接続された可飽和形のトランスの一次巻線に流れる電流に対応した信号を検出し、一次巻線に流れる電流を各負荷の内の一部の負荷が開放したときにも一定化するように高周波発生装置の高周波電圧をPWM制御する電流制御手段と;可飽和形のトランスに給電される電流波形、電圧波形の少なくとも一方を検出し、これら検出波形と正弦波波形との差分または検出波形の微分値に応じて各負荷の内の一部の負荷が開放したときの異常を検知する負荷異常検知手段と;を具備していることを特徴とする。
【0008】
請求項2記載の発明において、電流制御手段の電流に対応した信号を検出する手段を負荷異常検知手段の電流波形検出手段と兼用してもよいものである。この場合、部品点数を減少して小形軽量化、低価格化を図れる。
【0009】
請求項2の発明は、電流制御手段にて可飽和形のトランスに流れる電流に応じて高周波発生装置の高周波電圧をPWM制御する。したがって、フィルタ手段を介して直列接続された可飽和形のトランス(負荷)に供給される電流は一定化されたものとなっている。負荷が異常になると、請求項1記載の発明と同様に負荷異常検知手段が負荷異常を検知する。また、PWM制御による定電流化制御が平均値的または実効値的に行われる場合には、他の負荷には継続して一定化されたた電流を供給できる。
【発明の実施の形態】
つぎに、本発明の一実施形態を図1および図2を参照して説明する。
図1は本発明の一実施形態を示す回路図、図2は作用を説明する波形図である。1は定電流電源装置で、たとえば50Hzの正弦波交流電圧を出力するものである。図1では、直流電源装置2、この直流電源装置2の出力をスイッチングする出力可変の高周波発生装置3、高周波発生装置3の出力から高周波成分を除去するフィルタ手段4を有してなるものである。前記高周波発生装置3は、発振制御手段5によってスイッチングを制御され、もって出力を変化可能なものである。発振制御手段5は後述する帰還信号によって出力を変化するが、その詳細は後述する。
【0010】
フィルタ手段4の出力は出力トランス6を介して直列接続された複数個の可飽和形のトランス(変流器)7、7、に供給される。可飽和形のトランス7、7、には各々負荷8、8、が接続されている。図1において負荷8、8、は電球を示しているが、空港における標識灯用の定電流給電装置として用いる場合には、負荷8、8、は地中に埋込まれた、あるいは地上に設置された標識灯となる。
【0011】
つぎに、前記発振制御手段5を帰還制御する構成について説明する。前記信号出力トランス6の二次巻線側には電流検出手段9としての変流器が介挿され、二次巻線の電流すなわち負荷8、8、に流れる電流を検出している。この電流検出手段9の出力は、実効値変換手段10を介して誤差増幅器11の負端子に入力されている。誤差増幅器11の正端子には基準信号源12が接続されており、その出力は乗算器13の一方の入力端子に入力されるようになっている。乗算器13の他方の入力端子には基準正弦波信号源14からの信号が入力されており、前記誤差増幅器12の出力と乗算された信号で発振制御手段5を制御する。
【0012】
前記電流検出手段9の検出信号は負荷異常検知手段15にも入力される。負荷異常検知手段15は、整流手段16、微分演算手段17、この微分演算手段17の出力および基準信号源18からの出力を比較する比較手段19、ラッチ手段20および報知手段21を有している。
【0013】
つぎに本実施形態の作用を説明する。負荷8、8、が正常である場合には、定電流電源装置1からは図2(a)に示すような略正弦波の電圧が出力され、各可飽和形のトランス7、7、を介して各負荷8、8、に供給されている。このときの負荷電流は電流検出手段9にて検出され、誤差増幅器11で基準信号との誤差を検出されて乗算器13に入力される。乗算器13は基準正弦波信号と乗算した信号を発振制御手段5に入力して、発振制御手段5を制御する。したがって、高周波発生装置3は出力を変化し、この結果、フィルタ手段4の出力は正弦波電圧の振幅が制御され、負荷8、8、の電流を一定化する。
【0014】
電流検出手段9の検出信号は負荷異常検知手段15にも入力されている。負荷8、8、が正常であるときには、電流波形は図2(a)のように略正弦波であるから、微分演算手段17の出力は、零ないしは微小であり負荷異常を検知することはない。負荷8、8、のいずれかが開放等の異常状態になると、その異常な負荷を接続している可飽和トランスは交流電圧の半サイクル毎に非飽和状態から飽和状態への状態変化を繰返す。したがって、電流検出手段9によって検出された電流波形は図2(b)のようになる。この図2(b)のような波形を入力されることにより微分演算手段17の出力は大きくなり、基準信号源18の信号を越えると比較手段19は負荷異常信号を出力し、報知手段21で報知するとともに、ラッチ手段20によってラッチする。
【0015】
図3は高周波発生装置の一実施形態を示す回路図である。図4は高周波発生装置の出力電圧波形およびフィルタ手段の出力電圧波形を簡略化して示す波形図である。図3の高周波発生装置はブリッジ接続された4個のスイッチング装置31、32、33、34を主として構成されている。スイッチング装置31、32、33、34は伝導度変調形電界効果トランジスタ(IGBT)である。これらスイッチング装置31、32、33、34は、発振制御手段5によってオンオフを制御される。本実施形態では、スイッチング装置31と34とが同期して、また、他方のスイッチング装置32と33とが同期してオンオフし、かつ、スイッチング装置31および34は、スイッチング装置32および33とはオンオフが逆になるように制御される。そして、低周波の略正弦波成分を含むようにそれぞれPWM制御された高周波電圧を出力する。図4(a)はこのような高周波電圧であり、正弦波電圧(同図(b))の波高値が大きい部分ではオン期間が大きく、波高値が小さい部分ではオン期間が小さくなっている。正弦波(同図(b))の負の半サイクルでも同様に制御された高周波電圧になっている。このような高周波電圧はフィルタ手段4に入力され、高周波成分を除去されて図4(b)のような略正弦波電圧として出力する。
【発明の効果】
請求項1および2記載の発明は、負荷に対して低周波の略正弦波の電圧を供給しながら負荷電流値を設定された所定値に安定化するようにし、かつ、出力電圧波形、出力電流波形の少なくとも一方を検出してこれら検出波形と正弦波波形との差分または検出波形の微分値に応じて負荷開放時の異常を検知するようにしたから、フィルタ回路、判定回路等の構成を簡単化して低価格化を図れるとともに、異常検知の精度向上を図れる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す回路図
【図2】同じく作用を説明する波形図
【図3】本発明の高周波発生装置の一実施形態を示す回路図
【図4】高周波発生装置の出力電圧波形およびフィルタ手段の出力電圧波形を簡略化して示す波形図
【符号の説明】
1…定電流電源装置、3…高周波発生装置、4…フィルタ手段、5…発振制御手段、6…出力トランス、7…可飽和形のトランス、8…負荷、15…負荷異常検知手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a series load power supply apparatus that supplies power to a plurality of loads connected in series like a constant current supply apparatus for a marker lamp at an airport.
[Prior art]
Conventionally, a constant current supply device for an indicator lamp at an airport includes a phase control device, and detects a load current and controls a conduction phase of the phase control device so that the detection signal is constant. In addition, power is supplied to the load via a saturable insulating transformer. As a result, if the load is opened, such as when the load is disconnected, the magnetic core of the saturable transformer is saturated, the primary impedance is lowered, and power can be supplied to another load (insulation transformer) connected in series. Yes.
[0002]
In addition, it has been proposed that an abnormal state such as an open load is detected by detecting distortion on a phase control voltage waveform that appears when a saturable magnetic core is saturated. That is, the presence / absence of load abnormality is detected based on whether or not distortion occurs within a specific phase range of the phase control voltage waveform.
[Problems to be solved by the invention]
In the prior art, a voltage waveform whose phase is controlled for constant current output is output, which originally includes a distortion component. Therefore, detecting the strain that appears when the saturable magnetic core is saturated when the load is abnormal and detecting the abnormality actually requires a complicated filter circuit and a determination circuit, which is one factor in increasing the price. Also, when using a transformer with an intermediate tap at the output stage of the constant current supply device and dimming lighting by switching the tap, the distortion generation phase and distortion component differ depending on the tap, making it difficult to detect abnormalities with high accuracy. Met.
[0003]
An object of this invention is to provide the series load electric power feeder which can detect the abnormal state of load with a simple structure with high precision.
[Means for Solving the Problems]
The invention according to claim 1 is a constant-current power supply device that outputs a low-frequency, non-phase-controlled, substantially sinusoidal voltage; and the primary windings are connected in series with each other and supplied with the output of the constant-current power supply device. A plurality of saturable transformers supplying power to each load from the secondary winding; and detecting a signal corresponding to the current flowing in the primary winding of the saturable transformer connected in series, Current control means for controlling the output of the constant current power supply so that the flowing current is constant even when some of the loads are released; the output current waveform and output voltage waveform of the constant current power supply Load abnormality detection means for detecting at least one of the detected waveforms and a difference between the detected waveform and the sine wave waveform or a differential value of the detected waveform to detect an abnormality when a part of the loads is released ; It is characterized by having.
[0004]
In the invention described in claim 1 and the following invention, unless otherwise specified, each component and each term are defined as follows.
As the constant current power supply device, a high frequency generator such as an inverter or a chopper can be mainly configured. In this case, electronic components such as semiconductor switching elements can be mainly formed, which is advantageous for reduction in size and weight. The low frequency of the constant current power supply device is preferably set in the range of several Hz to 1 KHz centering on commercial frequencies of 50 Hz and 60 Hz. That is, a saturable transformer can be used if it is several Hz or more, and if it is 1 KHz or less, the problem of voltage drop due to stray capacitance and inductive impedance associated with wiring installed over a long distance can be reduced.
[0005]
The load abnormality detection means detects at least one of the output current waveform and the output voltage waveform of the constant current power supply device. In short, the detection waveform and sine wave when a part of the load is opened are used. Or the differential value of the detected waveform may be detected. Accordingly, it is not necessary to strictly detect the current waveform and voltage waveform between the output terminals of the constant current power supply device, and the detection location is not particularly limited. In addition, as a method of obtaining the difference between the detection waveform and the sine wave waveform or the differential value of the detection waveform, a method for obtaining the difference between the detection waveform and the reference sine wave waveform, the detection waveform is input to the sine wave blocking filter, and the output is obtained. A method for monitoring, a method for differentiating the detected waveform, and the like are conceivable. Moreover, you may make it detect only whether a peak value exceeds predetermined value.
[0006]
According to the first aspect of the present invention , when a part of the load is opened, the saturable transformer corresponding to the load is saturated and power can be supplied to another load. However, when the load is released, the output current of the constant current power supply does not substantially flow until the transformer changes from non-saturated to saturated, so the waveform changes from unsaturated to saturated compared to the sine waveform. It becomes a waveform that is cut off until it is done. The output voltage is a large value until the transformer changes from non-saturation to saturation, and after the transformer is saturated, the output voltage is normal. The load abnormality detecting means obtains a difference or differential value from the sine waveform for these waveforms, detects and notifies the load abnormality, and records it as necessary. In this case, the output current waveform and the output voltage waveform when the load of the constant current power supply device is normal are substantially sine waves, so that the above difference can be clearly detected, and the output waveform of the constant current power supply device depends on the characteristics of the saturable transformer. The differential value becomes large due to a sudden change and can be clearly detected. Accordingly, the circuit configuration can be simplified and the detection accuracy can be improved. Even when the load is abnormal, the constant current power supply device can supply a constant current in terms of average value or effective value to other loads.
[0007]
The invention according to claim 2 is a DC power supply device; a high-frequency generator that switches the output of the DC power supply device and outputs a high-frequency voltage that is PWM-controlled so as to correspond to a low-frequency substantially sinusoidal component; Filter means for removing a high-frequency component from the output of the high-frequency generator and outputting a substantially sinusoidal voltage; primary windings connected in series with each other and supplied with the output of the filter means; And detecting a signal corresponding to the current flowing in the primary winding of the saturable transformer connected in series, and supplying the current flowing in the primary winding to one of the loads. high frequency generator and a current control means for PWM controlling the high-frequency voltage of the device to a constant reduction even when the load is open parts; transformer powered by the current waveform of the saturable type, detecting at least one of the voltage waveform , Part of the load of the each load in accordance with the differential value of the difference or the detected waveform with these detected waveform and the sine waveform and the abnormal load detection means for detecting an abnormality when opened; that comprises a It is characterized by.
[0008]
In the second aspect of the invention, the means for detecting a signal corresponding to the current of the current control means may also be used as the current waveform detection means of the load abnormality detection means. In this case, the number of parts can be reduced to reduce the size, weight and cost.
[0009]
According to the invention of claim 2, the high frequency voltage of the high frequency generator is PWM-controlled by the current control means in accordance with the current flowing through the saturable transformer. Therefore, the current supplied to the saturable transformer (load) connected in series via the filter means is constant. When the load becomes abnormal, the load abnormality detection means detects the load abnormality as in the first aspect of the invention. Further, when the constant current control by PWM control is performed in an average value or an effective value, a constant current can be continuously supplied to other loads.
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIG. 1 and FIG.
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG. 2 is a waveform diagram for explaining the operation. Reference numeral 1 denotes a constant current power supply device that outputs, for example, a 50 Hz sine wave AC voltage. In FIG. 1, a DC power supply device 2, an output variable high frequency generator 3 for switching the output of the DC power supply device 2, and a filter means 4 for removing a high frequency component from the output of the high frequency generator 3 are provided. . The high frequency generator 3 is controlled in switching by the oscillation control means 5 and can change its output. The oscillation control means 5 changes its output in response to a feedback signal described later, details of which will be described later.
[0010]
The output of the filter means 4 is supplied to a plurality of saturable transformers (current transformers) 7 and 7 connected in series via an output transformer 6. Loads 8 and 8 are connected to the saturable transformers 7 and 7, respectively. In FIG. 1, the loads 8 and 8 indicate a light bulb. However, when used as a constant current power supply device for a marker lamp at an airport, the loads 8 and 8 are embedded in the ground or installed on the ground. It becomes a beacon light.
[0011]
Next, a configuration for feedback control of the oscillation control means 5 will be described. A current transformer as a current detecting means 9 is inserted on the secondary winding side of the signal output transformer 6 to detect the current of the secondary winding, that is, the current flowing through the loads 8 and 8. The output of the current detection means 9 is input to the negative terminal of the error amplifier 11 via the effective value conversion means 10. A reference signal source 12 is connected to the positive terminal of the error amplifier 11, and its output is inputted to one input terminal of the multiplier 13. A signal from the reference sine wave signal source 14 is input to the other input terminal of the multiplier 13, and the oscillation control means 5 is controlled by a signal multiplied by the output of the error amplifier 12.
[0012]
The detection signal of the current detection means 9 is also input to the load abnormality detection means 15. The load abnormality detection unit 15 includes a rectification unit 16, a differential calculation unit 17, a comparison unit 19, a latch unit 20, and a notification unit 21 that compare the output of the differential calculation unit 17 and the output from the reference signal source 18. .
[0013]
Next, the operation of this embodiment will be described. When the loads 8 and 8 are normal, a constant sine wave voltage as shown in FIG. 2 (a) is output from the constant current power supply 1 and is passed through each of the saturable transformers 7 and 7. Are supplied to each load 8,8. The load current at this time is detected by the current detection means 9, and an error from the reference signal is detected by the error amplifier 11, and is input to the multiplier 13. The multiplier 13 inputs the signal multiplied by the reference sine wave signal to the oscillation control means 5 and controls the oscillation control means 5. Therefore, the high frequency generator 3 changes the output, and as a result, the amplitude of the sine wave voltage is controlled in the output of the filter means 4 and the currents of the loads 8 and 8 are made constant.
[0014]
The detection signal of the current detection means 9 is also input to the load abnormality detection means 15. When the loads 8 and 8 are normal, the current waveform is a substantially sine wave as shown in FIG. 2 (a), so the output of the differential calculation means 17 is zero or minute and does not detect a load abnormality. . When any one of the loads 8, 8 is in an abnormal state such as an open state, the saturable transformer connected to the abnormal load repeats the state change from the non-saturated state to the saturated state every half cycle of the AC voltage. Therefore, the current waveform detected by the current detection means 9 is as shown in FIG. When the waveform as shown in FIG. 2 (b) is input, the output of the differential calculation means 17 increases, and when the signal of the reference signal source 18 is exceeded, the comparison means 19 outputs a load abnormality signal, and the notification means 21 Notifying and latching by the latch means 20.
[0015]
FIG. 3 is a circuit diagram showing an embodiment of the high-frequency generator. FIG. 4 is a simplified waveform diagram showing the output voltage waveform of the high frequency generator and the output voltage waveform of the filter means. The high-frequency generator shown in FIG. 3 mainly includes four switching devices 31, 32, 33, and 34 that are bridge-connected. The switching devices 31, 32, 33, and 34 are conductivity modulation type field effect transistors (IGBT). These switching devices 31, 32, 33 and 34 are controlled to be turned on / off by the oscillation control means 5. In the present embodiment, the switching devices 31 and 34 are synchronized and the other switching devices 32 and 33 are synchronized and turned on and off, and the switching devices 31 and 34 are switched on and off with the switching devices 32 and 33. Are controlled to be reversed. Then, a high-frequency voltage that is PWM-controlled so as to include a low-frequency substantially sine wave component is output. FIG. 4A shows such a high-frequency voltage. The ON period is large in the portion where the crest value of the sine wave voltage (FIG. 4B) is large, and the ON period is small in the portion where the peak value is small. Even in the negative half cycle of the sine wave ((b) in the figure), the controlled high frequency voltage is obtained. Such a high-frequency voltage is input to the filter means 4, and the high-frequency component is removed and output as a substantially sine wave voltage as shown in FIG.
【The invention's effect】
According to the first and second aspects of the present invention, the load current value is stabilized at a predetermined value while supplying a low-frequency substantially sinusoidal voltage to the load, and the output voltage waveform, the output current are stabilized. Since at least one of the waveforms is detected and an abnormality at the time of load release is detected according to the difference between the detected waveform and the sine waveform or the differential value of the detected waveform, the configuration of the filter circuit, judgment circuit, etc. is simplified The price can be reduced to improve the accuracy of abnormality detection.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of the present invention. FIG. 2 is a waveform diagram for explaining the operation. FIG. 3 is a circuit diagram showing an embodiment of a high-frequency generator according to the present invention. Waveform diagram showing simplified output voltage waveform and output voltage waveform of filter means
DESCRIPTION OF SYMBOLS 1 ... Constant current power supply device, 3 ... High frequency generator, 4 ... Filter means, 5 ... Oscillation control means, 6 ... Output transformer, 7 ... Saturable type transformer, 8 ... Load, 15 ... Load abnormality detection means.

Claims (2)

低周波でかつ非位相制御の略正弦波の電圧を出力する定電流電源装置と;
一次巻線を互いに直列接続されて定電流電源装置の出力を供給され、各二次巻線から各負荷に対して給電する複数個の可飽和形のトランスと;
直列接続された可飽和形のトランスの一次巻線に流れる電流に対応した信号を検出し、一次巻線に流れる電流を各負荷の内の一部の負荷が開放したときにも一定化するように定電流電源装置の出力を制御する電流制御手段と;
定電流電源装置の出力電流波形、出力電圧波形の少なくとも一方を検出し、これら検出波形と正弦波波形との差分または検出波形の微分値に応じて各負荷の内の一部の負荷が開放したときの異常を検知する負荷異常検知手段と;を具備していることを特徴とする直列負荷給電装置。
A constant-current power supply device that outputs a low-frequency, non-phase controlled, substantially sinusoidal voltage;
A plurality of saturable transformers in which primary windings are connected in series with each other and supplied with an output of a constant current power supply, and each secondary winding supplies power to each load;
A signal corresponding to the current flowing in the primary winding of a saturable transformer connected in series is detected, and the current flowing in the primary winding is made constant even when some of the loads are opened. Current control means for controlling the output of the constant current power supply device;
At least one of the output current waveform and output voltage waveform of the constant current power supply is detected, and some of the loads are opened according to the difference between the detected waveform and sine waveform or the differential value of the detected waveform . A load abnormality detecting means for detecting an abnormality at the time ; and a series load power supply device.
直流電源装置と;
直流電源装置の出力をスイッチングし、低周波の略正弦波成分に対応するようにそれぞれがPWM制御された高周波電圧を出力する高周波発生装置と;
高周波発生装置の出力から高周波成分を除去して略正弦波電圧を出力するフィルタ手段と;
一次巻線を互いに直列接続されてフィルタ手段の出力を供給され、各二次巻線から各負荷に対して給電する複数個の可飽和形のトランスと;
直列接続された可飽和形のトランスの一次巻線に流れる電流に対応した信号を検出し、一次巻線に流れる電流を各負荷の内の一部の負荷が開放したときにも一定化するように高周波発生装置の高周波電圧をPWM制御する電流制御手段と;
可飽和形のトランスに給電される電流波形、電圧波形の少なくとも一方を検出し、これら検出波形と正弦波波形との差分または検出波形の微分値に応じて各負荷の内の一部の負荷が開放したときの異常を検知する負荷異常検知手段と;を具備していることを特徴とする直列負荷給電装置。
A DC power supply;
A high-frequency generator that outputs a high-frequency voltage that is PWM-controlled so as to correspond to a low-frequency substantially sine wave component;
Filter means for removing a high frequency component from the output of the high frequency generator and outputting a substantially sinusoidal voltage;
A plurality of saturable transformers having primary windings connected in series with each other and supplied with the output of the filter means to feed each load from each secondary winding;
A signal corresponding to the current flowing in the primary winding of a saturable transformer connected in series is detected, and the current flowing in the primary winding is made constant even when some of the loads are opened. Current control means for PWM-controlling the high-frequency voltage of the high-frequency generator;
At least one of the current waveform and voltage waveform supplied to the saturable transformer is detected. Depending on the difference between the detected waveform and sine waveform or the differential value of the detected waveform , some of the loads A load abnormality detecting means for detecting an abnormality when opened ; and a series load power supply device.
JP2000301366A 2000-09-29 2000-09-29 Series load power supply Expired - Fee Related JP4577542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000301366A JP4577542B2 (en) 2000-09-29 2000-09-29 Series load power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000301366A JP4577542B2 (en) 2000-09-29 2000-09-29 Series load power supply

Publications (2)

Publication Number Publication Date
JP2002110377A JP2002110377A (en) 2002-04-12
JP4577542B2 true JP4577542B2 (en) 2010-11-10

Family

ID=18782915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000301366A Expired - Fee Related JP4577542B2 (en) 2000-09-29 2000-09-29 Series load power supply

Country Status (1)

Country Link
JP (1) JP4577542B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139755A (en) * 2004-10-15 2006-06-01 Toshiba Lighting & Technology Corp Led type marker light lighting device and marker light system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133876A (en) * 1986-11-21 1988-06-06 Matsushita Electric Works Ltd Dc/ac inverter
JPH03205790A (en) * 1990-01-08 1991-09-09 Fuji Electric Co Ltd Abnormality detecting method for fluorescent lamp lighting device
JPH06188076A (en) * 1992-12-16 1994-07-08 Toshiba Corp Lamp filament breakage detection device
JP2000188876A (en) * 1998-12-22 2000-07-04 Matsushita Electric Ind Co Ltd Converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133876A (en) * 1986-11-21 1988-06-06 Matsushita Electric Works Ltd Dc/ac inverter
JPH03205790A (en) * 1990-01-08 1991-09-09 Fuji Electric Co Ltd Abnormality detecting method for fluorescent lamp lighting device
JPH06188076A (en) * 1992-12-16 1994-07-08 Toshiba Corp Lamp filament breakage detection device
JP2000188876A (en) * 1998-12-22 2000-07-04 Matsushita Electric Ind Co Ltd Converter

Also Published As

Publication number Publication date
JP2002110377A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
CN103427419B (en) Active power filter selective harmonic compensation control method
KR101768430B1 (en) Feedback circuit for zero-voltage-switching converter
AU2002361651A8 (en) Voltage sag and over-voltage compensation device with pulse-width modulated transformer
WO2014049779A1 (en) Power conversion device
James et al. A series tuned high power IPT stage lighting controller
EP2677651B1 (en) Synchronized isolated AC-AC converter with variable regulated output voltage
JP2009060723A (en) Controller for power conversion equipment and static auxiliary power supply for vehicle
JP4577542B2 (en) Series load power supply
JP2010148221A (en) Noncontact feeding power supply
CN112014727B (en) Testing device for harmonic current switching capacity of tap switch
JP2018023268A (en) Smart switching system and control method of switch box
Ferreira et al. Alternative power distribution in residential and commercial buildings
Ljusev et al. Safe-commutation principle for direct single-phase ac-ac converters for use in audio power amplification
JP4560690B2 (en) Constant current power supply
JP2005510198A (en) Three-phase power supply parallel feedforward compensation type power factor correction circuit
US7973519B2 (en) Device for transforming a primary AC voltage in a lower AC voltage in a lower AC voltage for supplying an electrical load
González et al. Analysis and design of clamped-mode resonant converters with variable load
CN114252669B (en) Device for generating series arc harmonic signals
JP2003309973A (en) Alternating-current power regulator
JP2006020394A (en) Auxiliary power supply for vehicle
JP2018088819A (en) High frequency power source
JPH11184541A (en) Constant current power unit
KR101213446B1 (en) Power supplier for on-line electric vehicle and driving method thereof, control circuit for power supplier
KR100541739B1 (en) power system associated private power station
JP6567772B2 (en) Common line communication in cascaded inverters

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees