TWI644192B - A simplest circuit drive magneto-rheological fluid - Google Patents

A simplest circuit drive magneto-rheological fluid Download PDF

Info

Publication number
TWI644192B
TWI644192B TW106140347A TW106140347A TWI644192B TW I644192 B TWI644192 B TW I644192B TW 106140347 A TW106140347 A TW 106140347A TW 106140347 A TW106140347 A TW 106140347A TW I644192 B TWI644192 B TW I644192B
Authority
TW
Taiwan
Prior art keywords
switch
fluidity
electrically connected
magnetorheological fluid
power source
Prior art date
Application number
TW106140347A
Other languages
Chinese (zh)
Other versions
TW201925945A (en
Inventor
沈志隆
沈佑陞
沈治衡
Original Assignee
沈志隆
沈佑陞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈志隆, 沈佑陞 filed Critical 沈志隆
Priority to TW106140347A priority Critical patent/TWI644192B/en
Application granted granted Critical
Publication of TWI644192B publication Critical patent/TWI644192B/en
Publication of TW201925945A publication Critical patent/TW201925945A/en

Links

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

一種驅動磁流變液之最簡電路,適用於控制一磁流變液的流動度,其包含一電源側單元、一負載側單元,及一流動度控制單元。該流動度控制單元偵測該磁流變液的流動度,並以脈波寬度調變控制控制該電源側單元,以控制該負載側單元產生於該磁流變液的磁場強度,進一步控制該磁流變液的流動度。 A simplified circuit for driving a magnetorheological fluid, suitable for controlling the fluidity of a magnetorheological fluid, comprising a power source side unit, a load side unit, and a fluidity control unit. The fluidity control unit detects the fluidity of the magnetorheological fluid, and controls the power source side unit with a pulse width modulation control to control the magnetic field strength generated by the load side unit from the magnetorheological fluid, further controlling the The fluidity of the magnetorheological fluid.

Description

驅動磁流變液之最簡電路 The simplest circuit for driving magnetorheological fluid

本發明是有關於一種變壓電路,尤其是一種驅動磁流變液之最簡電路。 The present invention relates to a transformer circuit, and more particularly to a simple circuit for driving a magnetorheological fluid.

磁流變液是一種新興的智能材料,主要由載液、磁性微粒及界面活性劑所組成,外加磁場時會發生明顯的磁化效應,並廣泛地運用在機械、化工及光電產業。 Magnetorheological fluid is an emerging intelligent material, which is mainly composed of carrier liquid, magnetic particles and surfactant. When a magnetic field is applied, obvious magnetization effect occurs, and it is widely used in the mechanical, chemical and optoelectronic industries.

磁流變液主要由載液、磁性微粒及界面活性劑所組成,當外加磁場時,磁流變液產生明顯的磁流變效應,而這種變化是連續、迅速、可逆,且容易控制的。 The magnetorheological fluid is mainly composed of carrier liquid, magnetic particles and surfactant. When a magnetic field is applied, the magnetorheological fluid produces a significant magnetorheological effect, which is continuous, rapid, reversible, and easy to control. .

其中,磁流變液可以替代阻尼器中的避震流體,磁流變液阻尼器是一種理想的半主動控制裝置,可以使用控制電路改變該磁流變液的流動性,即使當阻尼力在調節過程中發生故障,磁流變液阻尼器仍然能以被動式的方式被使用,讓阻尼器可以正常作用。 Among them, magnetorheological fluid can replace the shock absorber fluid in the damper. The magnetorheological fluid damper is an ideal semi-active control device. The control circuit can be used to change the fluidity of the magnetorheological fluid even when the damping force is If a fault occurs during the adjustment process, the magnetorheological fluid damper can still be used in a passive manner, allowing the damper to function normally.

但是目前控制磁流變液的驅動電路非常複雜,使用的電子元件數量眾多,因此驅動電路長時間工作後容易因其中之一電子元件損壞而無法工作。因此,如何簡化驅動電路以提高耐用度,是相關技術人員亟需努力的目標。 However, the driving circuit for controlling the magnetorheological fluid is very complicated at present, and the number of electronic components used is large. Therefore, after the driving circuit is operated for a long time, it is easy to work due to damage of one of the electronic components. Therefore, how to simplify the driving circuit to improve the durability is an urgent need of the technicians.

有鑑於此,本發明之一目的是在提供一種驅動磁流變液之最簡電路,適用於控制一磁流變液的流動度,其包含一電源側單元,及一負載側單元。 In view of the above, it is an object of the present invention to provide a simplified circuit for driving a magnetorheological fluid suitable for controlling the fluidity of a magnetorheological fluid comprising a power supply side unit and a load side unit.

該電源側單元包括一直流電源、一第一開關、一第二開關、一電源側變壓線圈、一電感、一第一電容、一第一二極體,及一第二二極體。 The power supply side unit includes a DC power supply, a first switch, a second switch, a power supply side transformer, an inductor, a first capacitor, a first diode, and a second diode.

該直流電源之正電端與該第一開關之正電端電連接,該直流電源之負電端與該第二開關之負電端電連接,該第一開關之負電端與電源側變壓線圈之正電端電連接,該電感之一端與該電源側變壓線圈之負電端電連接,該電感之另一端與第二開關之正電端電連接,該第一電容之一端與該第一開關之正電端電連接,該第一電容之另一端與該電源側變壓線圈之負電端電連接,該第一二極體之正電端與該第二開關之正電端電連接,該第一二極體之負電端與該第一開關之正電端電連接,該第二二極體之正電端與該第二開關之負電端電連接,該第二二極體之負電端與該第一開關之負電端電連接。 The positive terminal of the DC power source is electrically connected to the positive terminal of the first switch, and the negative terminal of the DC power source is electrically connected to the negative terminal of the second switch, and the negative terminal of the first switch and the power transformer side transformer The positive terminal is electrically connected, and one end of the inductor is electrically connected to a negative terminal of the power transformer side transformer, and the other end of the inductor is electrically connected to a positive terminal of the second switch, and one end of the first capacitor and the first switch The positive end of the first capacitor is electrically connected to the negative terminal of the power transformer side transformer, and the positive terminal of the first diode is electrically connected to the positive terminal of the second switch. The negative terminal of the first diode is electrically connected to the positive terminal of the first switch, and the positive terminal of the second diode is electrically connected to the negative terminal of the second switch, and the negative terminal of the second diode It is electrically connected to the negative terminal of the first switch.

該負載側單元包括一負載側變壓線圈,及一負載模組。 The load side unit includes a load side transformer coil and a load module.

該負載側變壓線圈與該電源側變壓線圈電磁耦合,該負載模組取得該負載側變壓線圈之電力,以於該磁流變液中產生磁場並控制該磁流變液的流動度。 The load side transformer coil is electromagnetically coupled to the power source side transformer coil, and the load module obtains power of the load side transformer coil to generate a magnetic field in the magnetorheological fluid and control the fluidity of the magnetorheological fluid .

本發明的又一技術手段,是在於上述之負載 側單元更包括一第三二極體,及一第二電容,該第三二極體之正電端與該負載側變壓線圈之負電端電連接,該第二電容之一端與該第三二極體之負電端電連接,該第二電容之另一端與該負載側變壓線圈之正電端電連接,該負載模組與該第二電容並聯。 Another technical means of the present invention lies in the above load The side unit further includes a third diode, and a second capacitor, wherein the positive terminal of the third diode is electrically connected to the negative terminal of the load side transformer, and the third terminal and the third capacitor The negative terminal of the diode is electrically connected, and the other end of the second capacitor is electrically connected to the positive terminal of the load side transformer, and the load module is connected in parallel with the second capacitor.

本發明的另一技術手段,是在於上述之驅動磁流變液之最簡電路更包含一流動度控制單元,其包括一流動度偵測模組,及一與該流動度偵測模組電連接之流動度控制模組,該流動度偵測模組偵測該磁流變液流動度,該流動度控制模組分析該流動度偵測模組的偵測資訊以控制該第一開關及該第二開關的啟閉頻率。 Another technical method of the present invention is that the simplified circuit for driving the magnetorheological fluid further comprises a fluidity control unit, comprising a fluidity detecting module, and a liquidity detecting module a fluidity control module for detecting the fluidity of the magnetorheological fluid, the fluidity control module analyzing the detection information of the fluidity detecting module to control the first switch and The opening and closing frequency of the second switch.

本發明的再一技術手段,是在於上述之流動度控制單元更包括一與該流動度控制模組電連接之電流偵測模組,該電流偵測模組用以偵測該負載側變壓線圈的輸出。 According to still another aspect of the present invention, the fluidity control unit further includes a current detecting module electrically connected to the fluidity control module, wherein the current detecting module is configured to detect the load side voltage change The output of the coil.

本發明的又一技術手段,是在於上述之流動度控制模組具有一用以控制該第一開關之第一調頻控制電路,及一用以控制該第二開關之第二調頻控制電路。 Another technical means of the present invention is that the fluidity control module has a first frequency modulation control circuit for controlling the first switch, and a second frequency modulation control circuit for controlling the second switch.

本發明的另一技術手段,是在於上述之流動度控制模組是以脈波寬度調變控制該電源側單元於一第一狀態,及一第二狀態間改變,當於該第一狀態時,導通該第一開關,截止該第二開關,該直流電源對該電感儲存電力,並透過該電感對該電源側變壓線圈輸出電力,以使該電源側變壓線圈的電流逐漸上升,當於該第二狀態時,截 止該第一開關,導通該第二開關,只透過該電感對該電源側變壓線圈輸出電力,以使該電源側變壓線圈的電流逐漸下降。 Another technical means of the present invention is that the fluidity control module controls the power supply side unit to change between a first state and a second state when the pulse width modulation is performed, and when the first state is Turning on the first switch, turning off the second switch, the DC power source stores power to the inductor, and outputs power to the power source side transformer coil through the inductor, so that the current of the power source side transformer coil gradually rises. In the second state, cut The first switch is turned on, and the second switch is turned on, and the power is outputted to the power supply side transformer coil only through the inductance, so that the current of the power source side transformer coil gradually decreases.

本發明之有益功效在於,該電源側單元為傳統降壓電路與返馳式變換電路之結合,可以控制該負載側變壓線圈的輸出電力,該流動度控制模組依據該流動度偵測模組及該電流偵測模組的偵測資訊來調變脈波寬度,可以更精確地控制該磁流變液的流動度。且該電路不需極低的責任週期,變壓器也不需要極高匝數比,即可達到高降壓的增益,除此之外,電路可以將變壓器的漏電感能量回收。 The utility model has the beneficial effects that the power source side unit is a combination of a conventional step-down circuit and a flyback type conversion circuit, and can control the output power of the load side transformer coil, and the fluidity control module detects the mode according to the fluidity. The detection information of the group and the current detecting module is used to modulate the pulse width, so that the fluidity of the magnetorheological fluid can be controlled more accurately. Moreover, the circuit does not require a very low duty cycle, and the transformer does not require a very high turns ratio to achieve a high buck gain. In addition, the circuit can recover the leakage inductance energy of the transformer.

A‧‧‧磁流變液 A‧‧‧ Magnetorheological fluid

B‧‧‧阻尼器 B‧‧ damper

3‧‧‧電源側單元 3‧‧‧Power side unit

Vin‧‧‧直流電源 V in ‧‧‧DC power supply

SW1‧‧‧第一開關 SW 1 ‧‧‧first switch

SW2‧‧‧第二開關 SW 2 ‧‧‧Second switch

Lm1‧‧‧電源側變壓線圈 L m1 ‧‧‧Power side transformer

L‧‧‧電感 L‧‧‧Inductance

Lk‧‧‧變壓漏感 L k ‧‧‧Transformation leakage inductance

C1‧‧‧第一電容 C 1 ‧‧‧first capacitor

D1‧‧‧第一二極體 D 1 ‧‧‧First Diode

D2‧‧‧第二二極體 D 2 ‧‧‧Secondary

4‧‧‧負載側單元 4‧‧‧Load side unit

Lm2‧‧‧負載側變壓線圈 L m2 ‧‧‧Load side transformer

R‧‧‧負載模組 R‧‧‧ load module

Do‧‧‧第三二極體 D o ‧‧‧third diode

Co‧‧‧第二電容 C o ‧‧‧second capacitor

5‧‧‧流動度控制單元 5‧‧‧Liquidity Control Unit

51‧‧‧流動度偵測模組 51‧‧‧liquidity detection module

52‧‧‧流動度控制模組 52‧‧‧Liquidity Control Module

521‧‧‧第一調頻控制電路 521‧‧‧First frequency modulation control circuit

522‧‧‧第二調頻控制電路 522‧‧‧Second frequency modulation control circuit

53‧‧‧電流偵測模組 53‧‧‧ Current detection module

iLm1‧‧‧電源側變壓線圈電流 i Lm1 ‧‧‧Power side transformer coil current

iLk‧‧‧變壓漏感電流 i Lk ‧‧‧Variable leakage current

iL‧‧‧電感電流 i L ‧‧‧Inductor current

iD1‧‧‧第一二極體電流 i D1 ‧‧‧first diode current

iD2‧‧‧第二二極體電流 i D2 ‧‧‧Second diode current

iDO‧‧‧第三二極體電流 i DO ‧‧‧third diode current

VSW1‧‧‧第一開關電壓 V SW1 ‧‧‧first switching voltage

VSW2‧‧‧第二開關電壓 V SW2 ‧‧‧second switching voltage

圖1是一電路圖,說明本發明一種驅動磁流變液之最簡電路之較佳實施例;圖2是一裝置示意圖,說明該較佳實施例控制一詞流變液的態樣;圖3是一時序圖,說明該較佳實施例控制的電路變化;圖4是一電流示意圖,說明該較佳實施例控制之一第一狀態;及圖5是一電流示意圖,說明該較佳實施例控制之一第二狀態。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a circuit diagram showing a preferred embodiment of a simplified circuit for driving a magnetorheological fluid; Figure 2 is a schematic view of a device for controlling the term rheological fluid; Figure 3 Is a timing diagram illustrating the circuit variations controlled by the preferred embodiment; FIG. 4 is a current diagram illustrating a first state of control of the preferred embodiment; and FIG. 5 is a current diagram illustrating the preferred embodiment Control one of the second states.

有關本發明之相關申請專利特色與技術內容,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚地呈現。 The related features and technical details of the present invention will be apparent from the following detailed description of the preferred embodiments.

參閱圖1、2,為本發明一種驅動磁流變液之最簡電路的一較佳實施例,該較佳實施例適用於控制一磁流變液A的流動度,其包含一電源側單元3、一負載側單元4,及一流動度控制單元5。 1 and 2, a preferred embodiment of a simplified circuit for driving a magnetorheological fluid according to the present invention, the preferred embodiment is suitable for controlling the fluidity of a magnetorheological fluid A, which comprises a power source side unit 3. A load side unit 4 and a fluidity control unit 5.

其中,本發明是使用於控制一阻尼器B的避震效果,該阻尼器B中使用的流體為該磁流變液A,控制該磁流變液A的流動度即可控制該阻尼器B的避震效果,由於使用磁流變液A作為流體的阻尼器B,已運用在市售產品中,在此不再詳加贅述,實際實施時,本發明可以使用於利用該磁流變液A的物品控制,不應以此為限。 Wherein, the present invention is used to control the shock absorbing effect of a damper B, the fluid used in the damper B is the magnetorheological fluid A, and the damper B can be controlled by controlling the fluidity of the magnetorheological fluid A. The shock absorbing effect of the damper B using the magnetorheological fluid A as the fluid has been used in commercially available products, and will not be described in detail herein. In actual practice, the present invention can be used to utilize the magnetorheological fluid. A's item control should not be limited to this.

該電源側單元3包括一直流電源Vin、一第一開關SW1、一第二開關SW2、一電源側變壓線圈Lm1、一電感L、一第一電容C1、一第一二極體D1,及一第二二極體D2The power source side unit 3 includes a DC power source V in , a first switch SW 1 , a second switch SW 2 , a power source side transformer coil L m1 , an inductor L, a first capacitor C 1 , and a first two a polar body D 1 and a second diode D 2 .

該直流電源Vin之正電端與該第一開關SW1之正電端電連接,該直流電源Vin之負電端與該第二開關SW2之負電端電連接,該第一開關SW1之負電端與電源側變壓線圈Lm1之正電端電連接,該電感L之一端與該電源側變壓線圈Lm1之負電端電連接,該電感L之另一端與第二開關SW2之正電端電連接,該第一電容C1之一端與該第一開關SW1之正電端電連接,該第一電容C1之另一端與該電源側 變壓線圈Lm1之負電端電連接,該第一二極體D1之正電端與該第二開關SW2之正電端電連接,該第一二極體D1之負電端與該第一開關SW1之正電端電連接,該第二二極體D2之正電端與該第二開關SW2之負電端電連接,該第二二極體D2之負電端與該第一開關SW1之負電端電連接。 The positive terminal of the DC power source V in is electrically connected to the positive terminal of the first switch SW 1 , and the negative terminal of the DC power source V in is electrically connected to the negative terminal of the second switch SW 2 , the first switch SW 1 the negatively and positively charged terminal electrically L terminal of the power supply-side transformer coil M1 is connected to one end of the inductor L is electrically connected to the negative terminal of the power supply side L M1 transformer coil, the other end of the inductor L and the second switch SW 2 the positively charged terminal electrically connected to a first end of the capacitor C 1 is electrically connected to the positively charged end of the first switch SW 1, the first capacitor C 1 and the other end of the power supply side of the transformer coil L m1 negative electrical terminals Electrically connected, the positive terminal of the first diode D 1 is electrically connected to the positive terminal of the second switch SW 2 , and the negative terminal of the first diode D 1 and the positive terminal of the first switch SW 1 The positive terminal of the second diode D 2 is electrically connected to the negative terminal of the second switch SW 2 , and the negative terminal of the second diode D 2 and the negative terminal of the first switch SW 1 . Electrical connection.

該負載側單元4,包括一負載側變壓線圈Lm2、一第三二極體Do、一第二電容Co,及一負載模組R,該負載側變壓線圈Lm2與該電源側變壓線圈Lm1電磁耦合,該負載模組R取得該負載側變壓線圈Lm2之電力,以於該磁流變液A中產生磁場並控制該磁流變液A的流動度。 The load side unit 4 includes a load side transformer coil L m2 , a third diode body D o , a second capacitor C o , and a load module R. The load side transformer coil L m2 and the power source The side transformer coil L m1 is electromagnetically coupled, and the load module R obtains electric power of the load side transformer coil L m2 to generate a magnetic field in the magnetorheological fluid A and control the fluidity of the magnetorheological fluid A.

該第三二極體Do之正電端與該負載側變壓線圈Lm2之負電端電連接,該第二電容Co之一端與該第三二極體Do之負電端電連接,該第二電容Co之另一端與該負載側變壓線圈Lm2之正電端電連接,該負載模組R與該第二電容Co並聯。其中,位於該電源側單元3之一變壓漏感Lk為該變壓器的漏電感,並與該電源側變壓線圈Lm1及該負載側變壓線圈Lm2形成變壓器。 The positive terminal of the third diode D o is electrically connected to the negative terminal of the load-side transformer coil L m2 , and one end of the second capacitor C o is electrically connected to the negative terminal of the third diode D o . The other end of the second capacitor C o is electrically connected to the positive terminal of the load side transformer coil L m2 , and the load module R is connected in parallel with the second capacitor C o . The voltage leakage inductance L k of one of the power source side units 3 is the leakage inductance of the transformer, and forms a transformer with the power source side transformer coil L m1 and the load side transformer coil L m2 .

該流動度控制單元5包括一流動度偵測模組51、一與該流動度偵測模組51電連接之流動度控制模組52,及一與該流動度控制模組52電連接之電流偵測模組53。其中,該流動度控制模組52上設有調整元件,用以提供使用者調整所需之磁流變液A的流動度。 The fluidity control unit 5 includes a fluidity detecting module 51, a fluidity control module 52 electrically connected to the fluidity detecting module 51, and a current electrically connected to the fluidity control module 52. Detection module 53. The fluidity control module 52 is provided with an adjusting component for providing the user with the fluidity of the magnetorheological fluid A required for adjustment.

該流動度偵測模組51偵測該磁流變液A流動度,於該較佳實施例,該流動度偵測模組51為壓力偵測元 件,用以偵測該阻尼器B內的流體壓力,實際實施時,該流動度偵測模組51可以為其他偵測元件,不應以此為限。該流動度控制模組52分析該流動度偵測模組51的偵測資訊以控制該第一開關SW1及該第二開關SW2的啟閉頻率,開啟為截止狀態,關閉為導通狀態。 The fluidity detecting module 51 detects the fluidity of the magnetorheological fluid A. In the preferred embodiment, the fluidity detecting module 51 is a pressure detecting component for detecting the inside of the damper B. The fluidity detecting module 51 can be other detecting components, and should not be limited thereto. The flow of the control module 52 analyzes the information detected fluidity detection module 51 to control out switch SW 1 of the first and the second opening and closing frequency of switch SW 2, the OFF state is turned on, is turned off state.

該電流偵測模組53用以偵測該負載側變壓線圈Lm2的輸出。於該較佳實施例,該電流偵測模組53為比流器,以使該流動度控制模組52取得該負載側變壓線圈Lm2的輸出電流,也就是通過該第三二極體電流iDO值。 The current detecting module 53 is configured to detect an output of the load side transformer coil L m2 . In the preferred embodiment, the current detecting module 53 is a current comparator, so that the fluidity control module 52 obtains the output current of the load side transformer coil L m2 , that is, through the third diode. Current i DO value.

該流動度控制模組52具有一用以控制該第一開關SW1之第一調頻控制電路521,及一用以控制該第二開關SW2之第二調頻控制電路522。較佳地,該流動度控制模組52依據使用者設定的參數,分析該流動度偵測模組51及該電流偵測模組53的偵測資訊,再藉由該第一調頻控制電路521及該第二調頻控制電路522,以脈波寬度調變(PWM)控制該第一開關SW1及該第二開關SW2的啟閉狀態。 The flow of the control module 52 has a switch SW for controlling the first frequency control circuit 521 of a first 1 and a second switch SW for controlling the second frequency modulation of the second control circuit 522. Preferably, the flow control module 52 analyzes the detection information of the fluidity detection module 51 and the current detection module 53 according to the parameters set by the user, and then the first frequency modulation control circuit 521 and the second frequency control circuit 522 to pulse width modulation (PWM) control of the first out switch SW 1 and the second opening and closing state of the switch SW 2.

參閱圖3,為該較佳實施例的電路時序圖,其中,該流動度控制模組52是以脈波寬度調變來控制該電源側單元3於一第一狀態,及一第二狀態間改變。其中,於時序圖中區分為5種工作模式,分析過程中均假設全部的開關與二極體都是理想的元件,電容均假設無限大,電容電壓不隨時間改變而變化,該負載側變壓線圈Lm2之漏電感不列入考慮,以方便分析動作模式與計算,其中,該第一開關SW1導通時,該第一開關電壓VSW1值為零,該第二開關SW2 導通時,該第二開關電壓VSW2值為零。 Referring to FIG. 3, it is a circuit timing diagram of the preferred embodiment, wherein the fluidity control module 52 controls the power source side unit 3 in a first state and a second state in a pulse width modulation. change. Among them, it is divided into five working modes in the timing chart. All the switches and diodes are assumed to be ideal components in the analysis process. The capacitance is assumed to be infinite, and the capacitance voltage does not change with time. The leakage inductance of the pressure coil L m2 is not taken into consideration to facilitate analysis of the operation mode and calculation. When the first switch SW 1 is turned on, the first switching voltage V SW1 is zero, and the second switch SW 2 is turned on. The second switching voltage V SW2 has a value of zero.

配合參閱圖4,當於該第一狀態時,導通該第一開關SW1,截止該第二開關SW2,為時序圖中t0~t1之mode1,該直流電源Vin對該電感L儲存電力,並透過該電感L對該電源側變壓線圈Lm1輸出電力,以使該電源側變壓線圈電流iLm1逐漸上升。其中,實線部分為有電流流過的電路,虛線部分為沒有電流流過的電路。 Referring to FIG. 4, when in the first state, the first switch SW 1 is turned on, and the second switch SW 2 is turned off, which is mode1 of t 0 ~ t 1 in the timing chart, and the DC power source V in is the inductance L The electric power is stored, and electric power is output to the power source side transformer coil L m1 through the inductance L to gradually increase the power source side transformer coil current i Lm1 . Among them, the solid line part is a circuit through which a current flows, and the broken line part is a circuit in which no current flows.

配合參閱圖5,當於該第二狀態時,截止該第一開關SW1,導通該第二開關SW2,為時序圖中t2~t4之mode3~mode4,只透過該電感L對該電源側變壓線圈Lm1輸出電力,以使該電源側變壓線圈電流iLm1逐漸下降。其中,實線部分為有電流流過的電路,虛線部分為沒有電流流過的電路。 Referring to FIG. 5, when in the second state, the first switch is turned off SW 1, turns on the second switch SW 2, is a timing diagram of t 2 ~ t 4 mode3 ~ mode4, which transmits only the inductance L supply-side transformer winding L m1 output power, so that the power supply-side transformer coil current i Lm1 decreased. Among them, the solid line part is a circuit through which a current flows, and the broken line part is a circuit in which no current flows.

其中,t1~t2之mode2與t4~t5之mode5為該第一調頻控制電路521與該第二調頻控制電路522控制該第一開關SW1及第二開關SW2的間隔時間,該第一開關SW1及第二開關SW2皆為截止狀態,以避免該第一開關SW1及第二開關SW2同時導通。t2~t3之mode3為將該變壓漏感Lk的電力儲存於該電感L中,用以釋放該變壓漏感Lk的電力,避免於電路中產生突波,更可以將能源進行回收。 The mode 2 of t 1 to t 2 and the mode 5 of t 4 to t 5 are intervals between the first frequency modulation control circuit 521 and the second frequency modulation control circuit 522 for controlling the first switch SW 1 and the second switch SW 2 . the first out switch SW 1 and the second switch SW 2 are both off-state, to avoid the first out switch SW 1 and the second switch SW 2 is turned on at the same time. The mode 3 of t 2 to t 3 stores the power of the voltage leakage leakage inductance L k in the inductance L to release the power of the voltage leakage leakage inductance L k , to avoid generating a surge in the circuit, and to Recycle.

詳細的說,於t0~t1之mode1,也就是該較佳實施例之第一狀態,該第一開關SW1在時間t0導通,該電感L經由該第一二極體D1順偏導通,因為該電感電流iL大於變壓漏感電流iLk,所以該電感電流iL被分流,分別對該第一 容器、該變壓漏感Lk與電源側變壓線圈Lm1進行儲能,因此該變壓漏感電流iLk與電源側變壓線圈電流iLm1上升,而該負載側變壓線圈Lm2因為該第三二極體Do逆偏而不導通,該第二電容Co提供能量給輸出該負載模組R,當該電感電流iL等於變壓漏感電流iLk後,該電感L持續釋能,因為該電感電流iL小於變壓漏感電流iLk,因此該電感L與該第一電容C1共同將能量提供至該變壓漏感Lk及該電源側變壓線圈Lm1,此時,該變壓漏感電流iLk與電源側變壓線圈電流iLm1持續上升。此外,該第三二極體Do逆偏不導通,該第二電容Co提供能量給該負載模組R,當該第一開關SW1截止後,結束mode1。 In detail, in the mode 1 of t 0 ~ t 1 , that is, the first state of the preferred embodiment, the first switch SW 1 is turned on at time t 0 , and the inductance L is compliant via the first diode D 1 The partial conduction is because the inductor current i L is greater than the voltage leakage leakage current i Lk , so the inductor current i L is shunted, and the first container, the variable leakage inductance L k and the power supply side transformer coil L m1 are respectively performed. The energy storage, so the voltage leakage leakage current i Lk and the power supply side transformer coil current i Lm1 rise, and the load side voltage transformation coil L m2 is not turned on because the third diode D o is reverse biased, the second The capacitor C o supplies energy to the output load module R. When the inductor current i L is equal to the voltage leakage leakage current i Lk , the inductor L continues to release energy because the inductor current i L is smaller than the voltage leakage leakage current i Lk Therefore, the inductor L and the first capacitor C 1 provide energy to the variable leakage inductance L k and the power supply side transformer coil L m1 . At this time, the voltage leakage leakage current i Lk and the power supply side voltage transformation The coil current i Lm1 continues to rise. In addition, the third diode D o impartial reverse conduction, the second capacitor C o to provide energy to the load module R, when the first out switch SW 1 is turned off, ending mode1.

於t1~t2之mode2,該第一開關SW1與該第二開關SW2截止,該電感L、該變壓漏感Lk,及該電源側變壓線圈Lm1釋能,該第一二極體D1、該第二二極體D2,及該第三二極體Do順偏導通,該電感L對該第一電容C1儲能,該變壓漏感Lk經由該第一二極體D1將能量回收至該給該直流電源Vin,同時該電源側變壓線圈Lm1將能量傳至該負載側變壓線圈Lm2,該第三二極體電流iDO對第二電容Co儲能,並提供能量給該負載模組R,當該第二開關SW2導通後,mode2結束。 At t 1 ~ t 2 of MODE2, the first switch SW 1 2 of the second switch SW is turned off, the inductor L, the transformer leakage inductance L k, and the power supply-side transformer winding L m1 discharging, the first The diode D 1 , the second diode D 2 , and the third diode D 0 are turned on, and the inductor L stores the first capacitor C 1 , and the voltage leakage inductance L k is via The first diode D 1 recovers energy to the DC power source V in , and the power source side transformer coil L m1 transmits energy to the load side transformer coil L m2 , the third diode current i The DO stores energy to the second capacitor C o and supplies energy to the load module R. When the second switch SW 2 is turned on, mode 2 ends.

於t2~t3之mode3,也就是該較佳實施例之第二狀態,該第二開關SW2開始導通,該第二二極體D2及該第三二極體Do順偏導通,該直流電源Vin對第一電容C1及該電感L儲能,因此該電感電流iL開始上升,該變壓漏感Lk將 能量回收至該電感L並流經該第二二極體D2。其中,該電源側變壓線圈Lm1延續mode2將能量傳至該負載側變壓線圈Lm2,該第三二極體電流iDO對第二電容Co儲能,並提供能量給該負載模組R,當該變壓漏感Lk將能量釋放完,mode3結束。 In mode 2 of t 2 to t 3 , that is, the second state of the preferred embodiment, the second switch SW 2 starts to conduct, and the second diode D 2 and the third diode D 0 are turned on. The DC power source V in stores energy for the first capacitor C 1 and the inductor L, so the inductor current i L starts to rise, and the voltage leakage leakage inductance L k recovers energy to the inductor L and flows through the second pole Body D 2 . Wherein, the power supply side transformer coil L m1 continues mode2 to transfer energy to the load side transformer coil L m2 , and the third diode current i DO stores energy to the second capacitor C o and supplies energy to the load mode Group R, when the pressure leakage inductance L k releases the energy, mode3 ends.

於t3~t4之mode4,也就是該較佳實施例之第二狀態,該第二開關SW2持續導通,該直流電源Vin延續mode3對第一電容C1及該電感L儲能,該電感電流iL繼續上升,該電源側變壓線圈Lm1繼續將能量傳至該負載側變壓線圈Lm2,該第三二極體電流iDO對該第二電容Co儲能,並提供能量給該負載模組R,該第三二極體電流iDO逐漸下降,mode4於該第二開關SW2截止時結束。 In a mode 4 of t 3 to t 4 , that is, a second state of the preferred embodiment, the second switch SW 2 is continuously turned on, and the DC power source V in continues mode3 to store energy of the first capacitor C 1 and the inductor L. The inductor current i L continues to rise, the power supply side transformer coil L m1 continues to transfer energy to the load side transformer coil L m2 , and the third diode current i DO stores the second capacitor C o , and Energy is supplied to the load module R, and the third diode current i DO gradually decreases, and the mode 4 ends when the second switch SW 2 is turned off.

於t4~t5之mode5,該第一開關SW1與該第二開關SW2截止,該第一二極體D1與該第三二極體Do順偏導通,該電感L經由該第一二極體D1向該第一電容C1儲能,而該電源側變壓線圈Lm1則繼續將能量傳至負載側變壓線圈Lm2,該第三二極體電流iDO對該第二電容Co儲能,並提供能量給負載模組R,該第三二極體電流iDO持續下降,當該第一開關SW1導通後,mode5結束。 In the mode 5 of t 4 to t 5 , the first switch SW 1 and the second switch SW 2 are turned off, and the first diode D 1 and the third diode D 0 are turned on, and the inductor L passes through the The first diode D 1 stores energy to the first capacitor C 1 , and the power supply side transformer coil L m1 continues to transfer energy to the load side transformer coil L m2 , the third diode current i DO pair The second capacitor C o stores energy and supplies energy to the load module R. The third diode current i DO continues to decrease. When the first switch SW 1 is turned on, the mode 5 ends.

本發明之輸出電壓增益的計算,可視作傳統電能轉換器降壓電路與返馳式變換電路的結合,當該第二開關SW2導通且該第一開關SW1截止時,該直流電源Vin以降壓電路對該電感L及該第一電容C1儲能,返馳式變換電路之電源側變壓線圈Lm1往負載側變壓線圈Lm2傳遞能量。 而當該第二開關SW2截止而該第一開關SW1導通時,可看為降壓電路之輸出為返馳式變換電路之輸入,此時返馳式變換電路之電源側變壓線圈Lm1正在儲能,因此其增益為降壓電路之增益與返馳式變換電路之增益相乘,並由下述公式進行推導。 The calculation of the output voltage gain of the present invention can be regarded as a combination of a conventional power converter step-down circuit and a flyback conversion circuit. When the second switch SW 2 is turned on and the first switch SW 1 is turned off, the DC power source V in The inductor L and the first capacitor C 1 are stored by a step-down circuit, and the power-side transformer coil L m1 of the flyback converter circuit transmits energy to the load-side transformer coil L m2 . When the second switch SW 2 is turned off and the first switch SW 1 is turned on, it can be seen that the output of the step-down circuit is an input of the flyback conversion circuit, and at this time, the power supply side transformer coil L of the flyback conversion circuit M1 is storing energy, so its gain is multiplied by the gain of the buck circuit and the gain of the flyback converter circuit, and is derived by the following equation.

降壓電路之增益推導,其中,Vo_buck為降壓電路輸出增益,Vo_flyback為返馳式變換電路輸出增益: The gain derivation of the buck circuit, where V o — buck is the output gain of the buck circuit, and V o — flyback is the output gain of the flyback converter circuit:

公式(1)整理後: After formula (1) is finished:

返馳式變換電路之增益推導: Gain derivation of the flyback converter circuit:

公式(3)整理後: After formula (3) is finished:

將公式(2)與公式(4)相乘後,可取得所提之高降壓電能轉換器之增益比: By multiplying equation (2) by equation (4), the gain ratio of the proposed high-voltage power converter can be obtained:

由上述分析可以得知,本發明所提之架構的電壓增益比會依據降壓電路與返馳式變換電路的增益,進行不同的變化。 It can be seen from the above analysis that the voltage gain ratio of the architecture proposed by the present invention varies according to the gains of the buck circuit and the flyback converter circuit.

發明人要強調的是,一般高性能的電動車驅 動電壓非常的高,用以驅動電動車產生強大的扭力,而本發明可直接使用電動車上高電壓的電力,調整成適合使用該磁流變液A之阻尼器B最適合之控制電力,除此之外,該流動度控制模組52更分析了該流動度偵測模組51及該電流偵測模組53的偵測資訊,控制該磁流變液A的流動度,可以在使用者設定的參數下,自動調整該阻尼器B達到所需的避震效果,其中,以磁場控制磁流變液A的流動度是非常快速的,因此,該流動度控制模組52更可以與分析該阻尼器B反饋的資訊,了解目前道路的路況,自動調整所需的避震參數。 The inventor wants to emphasize that the general high-performance electric vehicle drive The dynamic voltage is very high, and is used to drive the electric vehicle to generate a strong torque. However, the present invention can directly use the high voltage power of the electric vehicle to adjust the control power suitable for the damper B suitable for using the magnetorheological fluid A. In addition, the fluidity control module 52 further analyzes the detection information of the fluidity detecting module 51 and the current detecting module 53 to control the fluidity of the magnetorheological fluid A, which can be used. Under the parameter set, the damper B is automatically adjusted to achieve the desired shock absorbing effect, wherein the magnetic field control of the fluidity of the magnetorheological fluid A is very fast, and therefore, the fluidity control module 52 can be Analyze the information of the damper B feedback, understand the current road conditions, and automatically adjust the required suspension parameters.

由上述說明可知,本發明驅動磁流變液之最簡電路確實具有下列功效: As can be seen from the above description, the simple circuit for driving a magnetorheological fluid of the present invention does have the following effects:

一、電路簡單: First, the circuit is simple:

當使用於高電壓的電源時,不必再設置降壓電路,有效減少電子元件的使用量。 When used in a high-voltage power supply, it is no longer necessary to set a step-down circuit, which effectively reduces the amount of electronic components used.

二、效能較高: Second, the efficiency is higher:

本發明所使用的電路可以減少變壓器的砸數比,並可以達到高倍率的降壓,其中,更可以將變壓器之漏感電流回收,具有較佳的效能。 The circuit used in the invention can reduce the turns ratio of the transformer and can achieve high-voltage step-down, wherein the leakage current of the transformer can be recovered, and the performance is better.

三、耐用度較高: Third, the durability is higher:

相較於早期使用的控制電路,本發明以較少的電子零件,來控制磁流變液的流動度,可以減少電子零件的損壞率,具有較高的耐用度。 Compared with the control circuit used in the early stage, the invention controls the fluidity of the magnetorheological fluid with fewer electronic parts, can reduce the damage rate of the electronic parts, and has higher durability.

綜上所述,本發明可以有效地控制該負載側 變壓線圈Lm2輸出的電力,該流動度控制模組52依據該流動度偵測模組51及該電流偵測模組53的偵測資訊來調變脈波寬度,達到精確地控制該磁流變液A的流動度。且該電路不需極低的責任週期,變壓器也不需要極高匝數比,即可達到高降壓的增益,以達到控制該磁流變液A的流動度,進一步控制阻尼器B的避震效果,故確實可以達成本發明之目的。 In summary, the present invention can effectively control the power outputted by the load-side transformer coil L m2 , and the fluidity control module 52 detects the flow detection module 51 and the current detection module 53 . Information is used to modulate the pulse width to achieve precise control of the fluidity of the magnetorheological fluid A. Moreover, the circuit does not require a very low duty cycle, and the transformer does not need a very high turns ratio to achieve a high step-down gain to control the flow of the magnetorheological fluid A, and further control the avoidance of the damper B. The effect of the earthquake is indeed achieved, and the object of the present invention can be achieved.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.

Claims (6)

一種驅動磁流變液之最簡電路,適用於控制一磁流變液的流動度,其包含:一電源側單元,包括一直流電源、一第一開關、一第二開關、一電源側變壓線圈、一電感、一第一電容、一第一二極體,及一第二二極體,該直流電源之正電端與該第一開關之正電端電連接,該直流電源之負電端與該第二開關之負電端電連接,該第一開關之負電端與電源側變壓線圈之正電端電連接,該電感之一端與該電源側變壓線圈之負電端電連接,該電感之另一端與第二開關之正電端電連接,該第一電容之一端與該第一開關之正電端電連接,該第一電容之另一端與該電源側變壓線圈之負電端電連接,該第一二極體之正電端與該第二開關之正電端電連接,該第一二極體之負電端與該第一開關之正電端電連接,該第二二極體之正電端與該第二開關之負電端電連接,該第二二極體之負電端與該第一開關之負電端電連接;及一負載側單元,包括一負載側變壓線圈,及一負載模組,該負載側變壓線圈與該電源側變壓線圈電磁耦合,該負載模組取得該負載側變壓線圈之電力,以於該磁流變液中產生磁場並控制該磁流變液的流動度。 A simple circuit for driving a magnetorheological fluid, suitable for controlling the fluidity of a magnetorheological fluid, comprising: a power source side unit, comprising a DC power source, a first switch, a second switch, and a power supply side change a voltage coil, an inductor, a first capacitor, a first diode, and a second diode, wherein a positive terminal of the DC power source is electrically connected to a positive terminal of the first switch, and a negative power of the DC power source The terminal is electrically connected to the negative terminal of the second switch, and the negative terminal of the first switch is electrically connected to the positive terminal of the power transformer side voltage transformer coil, and one end of the inductor is electrically connected to the negative terminal of the power source side transformer coil. The other end of the inductor is electrically connected to the positive terminal of the second switch, and one end of the first capacitor is electrically connected to the positive terminal of the first switch, and the other end of the first capacitor and the negative terminal of the power transformer side transformer Electrically connected, the positive terminal of the first diode is electrically connected to the positive terminal of the second switch, and the negative terminal of the first diode is electrically connected to the positive terminal of the first switch, the second The positive terminal of the pole body is electrically connected to the negative terminal of the second switch, the second pole The negative side is electrically connected to the negative end of the first switch; and a load side unit includes a load side transformer coil, and a load module, the load side transformer coil is electromagnetically coupled to the power side transformer The load module obtains power of the load side transformer coil to generate a magnetic field in the magnetorheological fluid and control the fluidity of the magnetorheological fluid. 依據申請專利範圍第1項所述驅動磁流變液之最簡電路,其中,該負載側單元更包括一第三二極體,及一第二電容,該第三二極體之正電端與該負載側變壓線圈之 負電端電連接,該第二電容之一端與該第三二極體之負電端電連接,該第二電容之另一端與該負載側變壓線圈之正電端電連接,該負載模組與該第二電容並聯。 The simplified circuit for driving a magnetorheological fluid according to claim 1, wherein the load side unit further comprises a third diode, and a second capacitor, and the positive terminal of the third diode And the load side transformer coil The negative terminal is electrically connected, one end of the second capacitor is electrically connected to the negative terminal of the third diode, and the other end of the second capacitor is electrically connected to the positive terminal of the load side transformer, the load module and The second capacitors are connected in parallel. 依據申請專利範圍第2項所述驅動磁流變液之最簡電路,更包含一流動度控制單元,其包括一流動度偵測模組,及一與該流動度偵測模組電連接之流動度控制模組,該流動度偵測模組偵測該磁流變液流動度,該流動度控制模組分析該流動度偵測模組的偵測資訊以控制該第一開關及該第二開關的啟閉頻率。 The simplified circuit for driving a magnetorheological fluid according to claim 2, further comprising a fluidity control unit, comprising a fluidity detecting module, and an electrical connection with the fluidity detecting module The fluidity control module detects the fluidity of the magnetorheological fluid, and the fluidity control module analyzes the detection information of the fluidity detecting module to control the first switch and the first The opening and closing frequency of the two switches. 依據申請專利範圍第3項所述驅動磁流變液之最簡電路,其中,該流動度控制單元更包括一與該流動度控制模組電連接之電流偵測模組,該電流偵測模組用以偵測該負載側變壓線圈的輸出。 The simplified circuit for driving a magnetorheological fluid according to claim 3, wherein the fluidity control unit further comprises a current detecting module electrically connected to the fluidity control module, the current detecting module The group is used to detect the output of the load side transformer coil. 依據申請專利範圍第4項所述驅動磁流變液之最簡電路,其中,該流動度控制模組具有一用以控制該第一開關之第一調頻控制電路,及一用以控制該第二開關之第二調頻控制電路。 The simplified circuit for driving a magnetorheological fluid according to claim 4, wherein the fluidity control module has a first frequency modulation control circuit for controlling the first switch, and a control unit The second frequency modulation control circuit of the second switch. 依據申請專利範圍第4項所述驅動磁流變液之最簡電路,其中,該流動度控制模組是以脈波寬度調變控制該電源側單元於一第一狀態,及一第二狀態間改變,當於該第一狀態時,導通該第一開關,截止該第二開關,該直流電源對該電感儲存電力,並透過該電感對該電源側變壓線圈輸出電力,以使該電源側變壓線圈的電流逐漸上升,當於該第二狀態時,截止該第一開關,導通該第 二開關,只透過該電感對該電源側變壓線圈輸出電力,以使該電源側變壓線圈的電流逐漸下降。 The simplified circuit for driving a magnetorheological fluid according to claim 4, wherein the fluidity control module controls the power source side unit in a first state and a second state by pulse width modulation. Changing, when in the first state, turning on the first switch, turning off the second switch, the DC power source stores power to the inductor, and outputs power to the power source side transformer coil through the inductor, so that the power source The current of the side transformer coil gradually rises. When in the second state, the first switch is turned off, and the first switch is turned on. The two switches output power to the power supply side transformer coil only through the inductance, so that the current of the power source side transformer coil gradually decreases.
TW106140347A 2017-11-21 2017-11-21 A simplest circuit drive magneto-rheological fluid TWI644192B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106140347A TWI644192B (en) 2017-11-21 2017-11-21 A simplest circuit drive magneto-rheological fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106140347A TWI644192B (en) 2017-11-21 2017-11-21 A simplest circuit drive magneto-rheological fluid

Publications (2)

Publication Number Publication Date
TWI644192B true TWI644192B (en) 2018-12-11
TW201925945A TW201925945A (en) 2019-07-01

Family

ID=65431676

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106140347A TWI644192B (en) 2017-11-21 2017-11-21 A simplest circuit drive magneto-rheological fluid

Country Status (1)

Country Link
TW (1) TWI644192B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253768A (en) * 2021-06-29 2021-08-13 武汉润晶汽车电子有限公司 Magnetic rheological body-based flow control device and control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157095A (en) * 1998-12-04 2000-12-05 Delphi Technologies, Inc. Control circuit for inductive loads
US6208529B1 (en) * 1999-05-03 2001-03-27 Argus Technologies Ltd. Zero voltage switching buck derived converter
US6349044B1 (en) * 1999-09-09 2002-02-19 Virginia Tech Intellectual Properties, Inc. Zero voltage zero current three level dc-dc converter
US6466458B2 (en) * 2001-02-12 2002-10-15 Delta Electronics, Inc. Asymmetrical full bridge DC-to-DC converter
US7218081B2 (en) * 2004-04-29 2007-05-15 Delta Electronics, Inc. Power system having multiple power converters with reduced switching loss
TWM490170U (en) * 2012-09-29 2014-11-11 Tpv Electronics (Fujian) Co Ltd Flyback power supply having function of power factor correction
TW201739155A (en) * 2016-04-18 2017-11-01 Inno-Tech Co Ltd Power controller reducing the conduction loss and the switching loss and maintaining the best operation efficiency under different input voltages

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157095A (en) * 1998-12-04 2000-12-05 Delphi Technologies, Inc. Control circuit for inductive loads
US6208529B1 (en) * 1999-05-03 2001-03-27 Argus Technologies Ltd. Zero voltage switching buck derived converter
US6349044B1 (en) * 1999-09-09 2002-02-19 Virginia Tech Intellectual Properties, Inc. Zero voltage zero current three level dc-dc converter
US6466458B2 (en) * 2001-02-12 2002-10-15 Delta Electronics, Inc. Asymmetrical full bridge DC-to-DC converter
US7218081B2 (en) * 2004-04-29 2007-05-15 Delta Electronics, Inc. Power system having multiple power converters with reduced switching loss
TWM490170U (en) * 2012-09-29 2014-11-11 Tpv Electronics (Fujian) Co Ltd Flyback power supply having function of power factor correction
TW201739155A (en) * 2016-04-18 2017-11-01 Inno-Tech Co Ltd Power controller reducing the conduction loss and the switching loss and maintaining the best operation efficiency under different input voltages

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253768A (en) * 2021-06-29 2021-08-13 武汉润晶汽车电子有限公司 Magnetic rheological body-based flow control device and control method thereof

Also Published As

Publication number Publication date
TW201925945A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
CN107707136B (en) Full-bridge LLC (logical Link control) resonant plasma power supply based on SiC power device
CN103715897B (en) Isolated converter and apply its Switching Power Supply
CN101795076B (en) Power converter and method for controlling power converter
CN107005158A (en) Pulisitile linear electric power converter
WO2015117260A1 (en) Circuit structure for inhibiting dynamic magnetic bias of high frequency isolated full-bridge circuit, and control method
USRE44406E1 (en) Method of detecting switching power supply output current
CN102882376B (en) A kind of method of controller and power converter and control power converter
CN103715898B (en) Feedback voltage sample circuit, feedback voltage blanking circuit and method
CN103702486A (en) LED driving circuit system, control circuit and control method
CN110445363B (en) High-power pulse load power supply for inhibiting bus current peak
KR101654490B1 (en) Converter and bi-directional converter
CN202145619U (en) Bidirectional DC/DC converter
TWI732581B (en) Conversion device with oscillation reduction control and method of operation of oscillation reduction control the same
CN102624223A (en) Drive power circuit and driving method of low-energy-consumption relay
CN103079299A (en) Electromagnetic induction heating device
US20170012536A1 (en) Flyback controller featuring bidirectional power control and parallelly-connected power modules
US9985530B2 (en) DC-DC converter and control method thereof
CN103517506B (en) For the drive circuit of LED source power supply and method, power converter
CN112564489A (en) Mode control method of switch converter and switch converter
TWI644192B (en) A simplest circuit drive magneto-rheological fluid
CN202150803U (en) Voltage regulating and stabilizing device
CN104578766A (en) Bridge-type multilevel switched capacitor converter
Choi et al. High-efficiency supercapacitor charger using an improved two-switch forward converter
CN104780644B (en) A kind of Novel constant-flow voltage stabilizing inverse-excitation type LED drive power
CN202190220U (en) Synchronous rectification circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees