TWI642780B - 從人類滋養層幹細胞中生成神經幹細胞 - Google Patents

從人類滋養層幹細胞中生成神經幹細胞 Download PDF

Info

Publication number
TWI642780B
TWI642780B TW104108091A TW104108091A TWI642780B TW I642780 B TWI642780 B TW I642780B TW 104108091 A TW104108091 A TW 104108091A TW 104108091 A TW104108091 A TW 104108091A TW I642780 B TWI642780 B TW I642780B
Authority
TW
Taiwan
Prior art keywords
cells
cell
another embodiment
hts
tnscs
Prior art date
Application number
TW104108091A
Other languages
English (en)
Other versions
TW201534723A (zh
Inventor
李昭男
李東穎
李育達
蔡英美
Original Assignee
李昭男
李東穎
李育達
蔡英美
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李昭男, 李東穎, 李育達, 蔡英美 filed Critical 李昭男
Publication of TW201534723A publication Critical patent/TW201534723A/zh
Application granted granted Critical
Publication of TWI642780B publication Critical patent/TWI642780B/zh

Links

Abstract

本發明提供經分離的神經幹細胞。亦提供使用包含有該等經分離的神經幹細胞之適合的製劑來治療神經退化疾病的方法。

Description

從人類滋養層幹細胞中生成神經幹細胞
本件申請案主張於2010年11月15日提申的美國臨時申請案第61/413,892號以及於2011年1月20日提申的美國臨時申請案第61/434,790號的利益,該等申請案在此被併入本案以作為參考資料。
人類滋養層幹(human trophoblast stem,hTS)細胞能夠在一未分化的狀態下在活體外(in vitro)無限的增生。hTS細胞維持潛在的多元性分化能力(potential multilineage differentiation capabilities)。hTS細胞製劑在活體外或在活體內(in vivo)可以被誘導分化成為滋養層譜系的細胞。進一步地,hTS細胞可以被誘導分化成為神經元,諸如多巴胺神經元(dopaminergic neurons)。hTS細胞可以被用來治療在黑質紋狀體途徑(nigrostriatal pathway)中多巴胺神經元的一功能異常或缺失,諸如人類中的神經退化障礙(neurodegenerative disorders)。
發明概要
神經退化障礙在人類族群中具有很深的社會經濟影響(socio-economic effects)。目前的藥物藉由減輕神經退化障礙[諸如,巴金森氏症(Parkinson’s disease)、阿茲海默症(Alzheimer’s disease)、杭丁頓氏症(Huntington’s disease)或類似者]的特定症狀而僅提供有限的效益。巴金森氏症(PD)是藉由在黑質紋狀體途徑中多巴胺神經元的功能異常或缺失所造成,並且在人類中是一常見的神經退化障礙。此處所提供的是供用於在神經退化障礙[包括巴金森氏症、杭丁頓氏症、阿茲海默症、縮性脊髓側索硬化症(amyotrophic lateral sclerosis,ALS)、多重系統萎縮(multiple system atrophy)、路易氏體失智(Lewy body dementia)、周邊感覺神經病變(peripheral sensory neuropathies),或者在哺乳動物中的脊髓損傷(spinal cord injuries)]上之另擇的以細胞-為基礎的治療(cell-based therapy)的經分離的神經幹細胞(isolated neural stem cells)。
在一個方面,此處所提供的是經分離的神經幹細胞,其中該等經分離的神經幹細胞是衍生自滋養層組織(trophoblast tissue)。在某些具體例中,該滋養層組織是人類滋養層組織。
在一個具體例中,此處所描述的一經分離的神經幹細胞表現針對一或更多之尾型同源盒2(eaudal type homeobox 2,Cdx2)、Nanog同源盒(Nanog homeobox)、巢蛋白(nestin)、八聚物-結合轉錄因子4(octamer-binding transcription factor 4,Oct-4)、神經絲(neurofilament)、神經元素-3(neurogenin-3,NgN3)、Neo-D、微管-關聯性蛋白-2(microtubule-associated protein-2,MAP-2)、CD133、視黃酸受體β(retinoic acid receptor beta,RAR β)、類視色素X受體α(retinoid X receptor alpha,RXR α)、類視色素X受體β(retinoid X receptor beta,RXR β)、細胞視黃酸結合蛋白2(cellular retinoic acid binding protein 2,CRABP-2)、細胞視黃醇結合蛋白1(cellular retinol binding protein 1,CRBP-1)、視網醛去氫酶2(retinaldehyde dehydrogenase 2,RALDH-2)或視網醛去氫酶3(retinaldehyde dehydrogenase 3,RALDH-3)的轉錄本(transcript)。
在一個具體例中,該經分離的神經幹細胞是一人類神經幹細胞。在一個具體例中,該細胞具有一正常的核型(karyotype)。在另一個具體例中,該經分離的神經幹細胞具有一或多種免疫-豁免的特性(immune-privileged characteristics)。在另一個具體例中,該一或多種免疫-豁免的特性包含有缺少CD33的表現和/或CD133的表現。
此處進一步所提供的是將該經分離的神經幹細胞分化成為神經元(neurons)的方法,該方法包含有:將該經分離的神經幹細胞投藥至一哺乳動物的腦中,其中該經分離的神經幹細胞分化成為一神經元。在另一個具體例中,該神經元是一多巴胺神經元、麩胺酸能神經元(glutaminergic neuron)、血清基能神經元(serotonergic neuron)或GABAergic(γ-胺基丁酸)神經元。
在一個具體例中,該經投藥的(例如,經移植的)經分離的神經幹細胞在該投藥之前被預-誘導以一誘導藥物(induction drug)。在另一個具體例中,該經分離的神經幹細胞在該投藥之前不被預-誘導以一誘導藥物。
在一個具體例中,在該投藥之前,該哺乳動物的腦被損害或已蒙受神經元缺失(neuronal loss)。在另一個具體例中,該損害是針對一多巴胺神經元、麩胺酸能神經元、血清基能神經元或GABAergic(γ-胺基丁酸)神經元。在另一個具體例中,該神經元缺失是針對一多巴胺神經元。
在一個具體例中,該細胞被轉染以一表現載體(expression vector)。
在另一個具體例中,該經分離的神經幹細胞,在被投藥至該個體的腦中之後,移轉至該個體的腦的黑質緻密部(substantia nigra pars compacta,SNC)區域。在另一個具體例中,該投藥增進在該哺乳動物中的感覺運動功能(Sensorimotor function)。在另一個具體例中,該投藥致使在該哺乳動物的僵硬(rigidity)、運動失能症(akinesia)或平衡障礙(balance impairment)上的一減少。
此處所提供的是將經分離的神經幹細胞分化成為一多巴胺神經元的方法,該等方法包含有:將該等經分離的神經幹細胞投藥至一哺乳動物的腦中,其中該等經分離的神經幹細胞表現針對一或更多之Cdx2、Nanog、巢蛋 白、Oct-4、神經絲、NgN3、Neo-D、MAP-2、CD133、RAR β、RXR α、RXR β、CRABP-2、CRBP-1、RALDH-2或RALDH-3的轉錄本,其中該哺乳動物的腦被損害或已蒙受神經元缺失,其中一或更多之該經分離的神經幹細胞分化成為一多巴胺神經元。
此處所提供的是將經分離的神經幹細胞分化成為一多巴胺神經元的方法,該方法包含有:將該等經分離的神經幹細胞投藥至一哺乳動物的腦中,其中該經分離的神經幹細胞是衍生自滋養層組織,其中該哺乳動物的腦被損害或已蒙受神經元缺失,其中一或更多之該經分離的神經幹細胞分化成為一多巴胺神經元。
在上面所述的方法的一個具體例中,該投藥增進在該哺乳動物中的感覺運動功能。在上面所述的方法的另一個具體例中,該投藥致使在該哺乳動物的僵硬、運動失能症或平衡障礙上的一減少。
此處所提供的是將一經分離的人類滋養層幹細胞(isolated human trophoblast stem cell)分化成為一神經幹細胞的方法,其包含有:調節一Cdx2、Nanog、巢蛋白、Oct4、神經絲、NgN3、Neo-D、MAP-2、CD133、RAR β、RXR α、RXR β、CRABP-2、CRBP-1、RALDH-2或RALDH-3基因的活性。
此處所提供的是將一經分離的人類滋養層幹細胞分化成為一神經幹細胞的方法,其包含有:調節一Cdx2、Nanog、巢蛋白、Oct4、神經絲、NgN3、Neo-D、MAP-2 、CD133、RAR β、RXR α、RXR β、CRABP-2、CRBP-1、RALDH-2或RALDH-3轉錄本的位準。
此處所提供的是將一經分離的人類滋養層幹細胞分化成為一神經幹細胞的方法,其包含有:調節一Cdx2、Nanog、巢蛋白、Oct4、神經絲、NgN3、Neo-D、MAP-2、CD133、RAR β、RXR α、RXR β、CRABP-2、CRBP-1、RALDH-2或RALDH-3蛋白質的位準或活性。
此處所提供的是篩選一供用於治療或預防一疾病之化合物的方法,其包含有:令一經分離的人類滋養層幹細胞與該化合物接觸;以及偵測在該人類滋養層幹細胞中至少一基因、轉錄本或蛋白質的活性上的一改變。在上面所述的方法的一個具體例中,當相較於一沒有接觸以該化合物之可比較的經分離的人類滋養層幹細胞,在該人類滋養層幹細胞中至少一基因、轉錄本或蛋白質的活性減少。在上面所述的方法的另一個具體例中,當相較於一沒有接觸以該化合物之可比較的經分離的人類滋養層幹細胞,在該人類滋養層幹細胞中至少一基因、轉錄本或蛋白質的活性增加。在上面所述的方法的另一個具體例中,該疾病是一神經退化障礙。在上面所述的方法的另一個具體例中,該疾病是巴金森氏症、阿茲海默症、精神分裂症(schizophrenia)或縮性脊髓側索硬化症。
此處所提供的是篩選一供用於治療或預防一疾病之化合物的方法,其包含有:令一經分離的人類滋養層幹細胞與該化合物接觸;以及偵測在該人類滋養層幹細胞 中至少一轉錄本或蛋白質的位準上的一改變。在上面所述的方法的一個具體例中,當相較於一沒有接觸以該化合物之經分離的人類滋養層幹細胞,在該人類滋養層幹細胞中至少一轉錄本或蛋白質的位準減少。在上面所述的方法的另一個具體例中,當相較於一沒有接觸以該化合物之可比較的經分離的人類滋養層幹細胞,在該人類滋養層幹細胞中至少一轉錄本或蛋白質的位準增加。在上面所述的方法的另一個具體例中,該疾病是一神經退化障礙。在上面所述的方法的另一個具體例中,該疾病是巴金森氏症、阿茲海默症、精神分裂症或縮性脊髓側索硬化症。
此處所提供的是篩選一能夠在一細胞中誘導改變的化合物的方法,其包含有:令一經分離的人類滋養層幹細胞與該化合物接觸;以及偵測該人類滋養層幹細胞的一誘導分化。
此處所提供的是篩選一能夠在一細胞中誘導改變的化合物的方法,其包含有:令一經分離的神經幹細胞與該化合物接觸;以及偵測該神經幹細胞的一誘導分化。
此處所提供的是篩選一供用於治療或預防一疾病之化合物的方法,其包含有:令一經分離的神經幹細胞與該化合物接觸;以及偵測在該神經幹細胞中至少一基因、轉錄本或蛋白質的活性上的一改變。在上面所述的方法的一個具體例中,當相較於一沒有接觸以該化合物之可比較的經分離的神經幹細胞,在該神經幹細胞中至少一基因、轉錄本或蛋白質的活性減少。在上面所述的方法的另一 個具體例中,當相較於一沒有接觸以該化合物之可比較的經分離的神經幹細胞,在該神經幹細胞中至少一基因、轉錄本或蛋白質的活性增加。在上面所述的方法的另一個具體例中,該疾病是一神經退化障礙。在一特定的具體例中,該疾病是巴金森氏症、阿茲海默症、精神分裂症或縮性脊髓側索硬化症。
此處所提供的是篩選一供用於治療或預防一疾病之化合物的方法,其包含有:令一經分離的神經幹細胞與該化合物接觸;以及偵測在該神經幹細胞中至少一轉錄本或蛋白質的位準上的一改變。在上面所述的方法的一個具體例中,當相較於一沒有接觸以該化合物之可比較的經分離的神經幹細胞,在該神經幹細胞中至少一轉錄本或蛋白質的位準減少。在上面所述的方法的另一個具體例中,當相較於一沒有接觸以該化合物之可比較的經分離的神經幹細胞,在該神經幹細胞中至少一轉錄本或蛋白質的位準增加。在上面所述的方法的另一個具體例中,該疾病是一神經退化障礙。在上面所述的方法的另一個具體例中,該疾病是巴金森氏症、阿茲海默症、精神分裂症或縮性脊髓側索硬化症。
在此處所提供的一個具體例描述一種治療在一有此需要的哺乳動物中的一神經障礙(neurological disorder)的方法,其包含有:將至少一神經幹細胞投藥至該哺乳動物,其中該細胞是經免疫豁免的。在另一個具體例中,該哺乳動物是一小鼠、大鼠、豬、犬、猴、猩猩或人 猿。在另一個具體例中,該哺乳動物是一人類。
在一個具體例中,該有此需要的哺乳動物具有一或多種與一神經障礙有關聯的症狀。在另一個具體例中,該一或多種症狀是選自於由下列所構成的群組:僵硬、運動失能症、平衡障礙、震顫(tremor)、步態病變(gait disorder)、不良性步態(maldispositional gait)、痴呆(dementia)、過度腫脹(excessive swelling)[水腫(edema)]、肌無力(muscle weakness)、下肢萎縮(atrophy in the lower extremity)、運動障礙(movement disorder)[舞蹈病(chorea)]、肌肉僵直(muscle rigidity)、物理運動的一慢化[運動遲緩(bradykinesia)]、物理運動的缺失(運動失能症)、健忘(forgetfulness)、認知(智能)損傷[cognitive(intellectual)impairment]、辨識的缺失(loss of recognition)[失識症(agnosia)]、經損傷的功能(諸如決策與計畫)、半面臉部麻痺(hemifacial paralysis)、感覺缺失(sensory deficits)、麻木(numbness)、刺痛感(tingling)、四肢的疼痛感覺異常(painful paresthesias in the extremities)、虛弱(weakness)、腦神經麻痺(cranial nerve palsies)、語言障礙(difficulty with speech)、眼球運動(eye movements)、視野障礙(visual field defects)、失明(blindness)、出血(hemorrhage)、分泌物(exudates)、近端肌肉失用(proximal muscle wasting)、運動困難症(dyskinesia)、四肢肌肉張力的異常(abnormality of tonus in limb muscles)、肌強直減少(decrease in myotony)、運動失調(incoordination)、在手指-手指測試或手指-鼻測 試中錯誤的指示、辨距不良(dysmetria)、霍-斯二氏現象(Holmes-Stewart phenomenon)、不完全的或完全的全身性麻痹(incomplete or complete systemic paralysis)、視神經炎(optic neuritis)、視物顯多症(multiple vision)、眼球運動障礙(ocular motor disturbance)[諸如眼球震顫(nystagmus)]、痙攣性麻痺(spastic paralysis)、痛苦的強直發作(painful tonic seizure)、Lhermitte氏綜合症(Lhermitte syndrome)、失調症(ataxia)、語言困難(mogilalia)、膀胱直腸障礙(vesicorectal disturbance)、起立性低血壓(orthostatic hypotension)、運動功能的減少(decrease in motor function)、尿床(bed wetting)、貧乏的言語表達(poor verbalization)、不充足的睡眠型態(poor sleep patterns)、睡眠障礙(sleep disturbance)、食慾障礙(appetite disturbance)、體重改變(change in weight)、心理動作激動或遲滯(psychomotor agitation or retardation)、經減少的活力(decreased energy)、無價值的感受或過度或不適當的內疚、思考或全神貫注之困難、反復的死亡意圖或者自殺的意念或企圖、害怕(fearfulness)、焦慮(anxiety)、興奮增盛(irritability)、沉思的或強迫性沉思(brooding or obsessive rumination)、過度擔心身體健康(excessive concern with physical health)、恐慌發作(panic attacks)以及恐懼症(phobias)。在另一個具體例中,該神經障礙是巴金森氏症、阿茲海默症、杭丁頓氏症、縮性脊髓側索硬化症、弗利德來運動失調(Friedreich’s ataxia)、路易氏體症(Lewy body disease)、脊髓性肌萎縮 (spinal muscular atrophy)、多重系統萎縮、痴呆、精神分裂症、麻痺(paralysis)、多發性硬化症(multiple sclerosis)、脊髓損傷、腦損傷(brain injuries)[例如,中風(stroke)]、腦神經障礙(cranial nerve disorders)、周邊感覺神經病變、癲癇(epilepsy)、病原性蛋白顆粒障礙(prion disorders)、庫賈氏症(Creutzfeldt-Jakob disease)、亞爾培氏症(Alper's disease)、小腦/脊髓小腦退化(cerebellar/spinocerebellar degeneration)、巴登氏病(Batten disease)、皮質基底核退化(corticobasal degeneration)、伯耳氏癱(Bell’s palsy)、格巴二氏症候群(Guillain-Barre Syndrome)、皮克氏症(Pick's disease)以及自閉症(autism)。
在一個具體例中,亦於此處所提供的是一種治療在一有此需要的哺乳動物中的一神經障礙的方法,其包含有:將至少一神經幹細胞投藥至該哺乳動物,其中該細胞是經免疫豁免的並且衍生自滋養層組織。在另一個具體例中,該經免疫豁免的細胞具有低位準的CD33表現。在另一個具體例中,該經免疫豁免的細胞具有低位準的CD133表現。在另一個具體例中,該神經元祖幹細胞(neuronal progenitor stem cell)不會引起一免疫反應。在另一個具體例中,該神經元祖幹細胞不會形成一腫瘤。在另一個具體例中,該神經幹細胞表現針對一或更多之Cdx2、Nanog、巢蛋白、Oct-4、神經絲、NgN3、Neo-D、MAP-2、CD133、RAR β、RXR α、RXR β、CRABP-2、CRBP-1、RALDH-2或RALDH-3的轉錄本。
在另一個具體例中,該方法進一步包含有:將該一或多種神經幹細胞投藥至一哺乳動物的腦中,其中該細胞分化成為一神經元。在另一個具體例中,該投藥包含有注射(injecting)或植入(implanting)。在另一個具體例中,該神經元是一多巴胺神經元、麩胺酸能神經元、血清基能神經元或GABAergic(γ-胺基丁酸)神經元。在另一個具體例中,該祖細胞(progenitor cell)在該投藥之前被預-誘導以一誘導藥物。
在一個具體例中,亦於此處所提供的是一種誘導或促進一幹細胞分化成為一具有神經元特性的細胞的方法,其包含有:(a)令該幹細胞與一誘導藥物接觸;(b)在該幹細胞中以該誘導藥物來調節一或多種蛋白質,其中該一或多種蛋白質包含有:Wnt2B、Fzd6、Dvl3、FRAT1、GSK3 β、HDAC6、β-連接素、G α q/11、G β、RXR α、RAR β、GLuR1、PI3K、AKt1、AKt2、AKt3、mTOR、elf4EBP、CREB1、TH(酪胺酸羥化酶)、PLC-β、PIP2、CaMKII、elf4B、parkin、SNCA、微管蛋白(tubulin)、鈣調去磷酸酶(calcineurin)、CRMP-2、NFAT1、內輸蛋白(importin)、LEF1、Pitx2、MEF2A或EP300;以及(c)誘導或促進該幹細胞分化成為一具有神經元特性的細胞。
在一個具體例中,該幹細胞是一哺乳動物滋養層幹細胞(mammalian trophoblast stem cell)。在另一個具體例中,該幹細胞是一哺乳動物胚胎幹細胞(mammalian embryonic stem cell)。在另一個具體例中,該幹細胞是一哺 乳動物經誘導的多潛能幹細胞(mammalian induced pluripotent stem cell)。在另一個具體例中,其中該幹細胞是一內胚層、中胚層、外胚層或間質幹細胞(endodermal,mesodermal,ectodermal or mesenchymal stem cell)。在另一個具體例中,該幹細胞是來自於一小鼠、大鼠、人類、黑猩猩、大猩猩、犬、豬、山羊、海豚或母牛。在另一個具體例中,該幹細胞是來自於一人類。在另一個具體例中,該幹細胞是一人類滋養層幹細胞。在另一個具體例中,該具有神經元特性的細胞是一神經幹細胞(NSC)、多巴胺生成細胞(dopamine producing cell)、多巴胺神經元、單極神經元(unipolar neuron)、雙極神經元(bipolar neuron)、多極神經元(multipolar neuron)、錐體細胞(pyramidal cell)、普金氏細胞(Purkinje cell)以及前角細胞(anterior horn cell)、籃狀細胞(basket cell)、貝氏細胞(betz cell)、雷休細胞(Renshaw cell)、顆粒細胞(granule cell)或中等刺狀細胞(medium spiny cell)。
在一個具體例中,該誘導藥物包含有:視黃酸(retinoic acid)、菸鹼醯胺(nicotinamide)或β-巰乙醇(beta-mercaptoethanol)、維生素B12(vitamin B12)、肝素(heparin)、腐胺(putrescine)、生物素(biotin)或Fe2+、丁基羥基甲氧苯(butylated hydroxyanisole)、丙戊酸(valproic acid)、佛司可林(forskolin)、5-氮胞核苷(5-azacytidine)、吲哚美洒辛(indomethacin)、異丁基甲基黃嘌呤(isobutylmethylxanthine)或胰島素(insulin)。在另一個具體 例中,該調節包含有:增加該一或多種蛋白質中之至少一者的活性。在另一個具體例中,該調節包含有:增加該一或多種蛋白質中之至少一者的表現。在另一個具體例中,增加表現包含有:增加編碼該一或多種蛋白質中之至少一者的mRNA的數量,或者增加該一或多種蛋白質中之至少一者從一mRNA中被轉譯的數量。在另一個具體例中,該調節包含有:減少該一或多種蛋白質中之至少一者的活性。在另一個具體例中,該調節包含有:減少該一或多種蛋白質中之至少一者的表現。在另一個具體例中,減少表現包含有:減少編碼該一或多種蛋白質中之至少一者的mRNA的數量,或者減少該一或多種蛋白質中之至少一者從一mRNA中被轉譯的數量。
亦於此處所描述的是誘導或促進一幹細胞分化成為一具有神經元特性的細胞的方法,其中該神經元特性包含有多巴胺(dopamine)、麩胺酸鹽NMDA受體的次單元(subunits of the glutamate NMDA receptor)、突觸蛋白I(synapsin I)、一鈣離子通道標記(calcium channel marker)、GAP-43、電壓-依賴的K+通道(voltage-dependent K+ channel)、一電壓-依賴的Ca2+通道(voltage-dependent Ca2+ channel)或一電壓-依賴的Na+通道(voltage-dependent Na+ channel)的表現。
在一個具體例中,該誘導或促進一幹細胞分化成為一具有神經元特性的細胞的方法包含有:在該幹細胞中以該誘導藥物來調節一或多種蛋白質,其中該一或多種 蛋白質是Wnt2B。在另一個具體例中,Wnt2B被活化。在另一個具體例中,Wnt2B被去活化。在另一個具體例中,Wnt2B被活化以及接著被去活化。在另一個具體例中,Wnt2B被去活化以及接著被活化。在另一個具體例中,Wnt2B促進該幹細胞的分化或增生。在另一個具體例中,Wnt2B促進或誘導多巴胺表現。
在一個具體例中,該誘導或促進一幹細胞分化成為一具有神經元特性的細胞的方法包含有:在該幹細胞中以該誘導藥物來調節一或多種蛋白質,其中該一或多種蛋白質是GSK3 β。在另一個具體例中,GSK3 β被活化。在另一個具體例中,GSK3 β被去活化。在另一個具體例中,GSK3 β被活化以及接著被去活化。在另一個具體例中,GSK3 β被去活化以及接著被活化。在另一個具體例中,GSK3 β促進該幹細胞的分化或增生。在另一個具體例中,GSK3 β調節微管組合(microtubule assembly)。
在一個具體例中,該誘導或促進一幹細胞分化成為一具有神經元特性的細胞的方法包含有:在該幹細胞中以該誘導藥物來調節一或多種蛋白質,其中該一或多種蛋白質是CREB1。在另一個具體例中,CREB1被活化。在另一個具體例中,CREB1被去活化。在另一個具體例中,CREB1被活化以及接著被去活化。在另一個具體例中,CREB1被去活化以及接著被活化。在另一個具體例中,CREB1促進該幹細胞的分化或增生。在另一個具體例中,CREB1促進或誘導多巴胺表現。
在一個具體例中,該誘導或促進一幹細胞分化成為一具有神經元特性的細胞的方法包含有:在該幹細胞中以該誘導藥物來調節一或多種蛋白質,其中該一或多種蛋白質是CaMKII。在另一個具體例中,CaMKII被活化。在另一個具體例中,CaMKII被去活化。在另一個具體例中,CaMKII被活化以及接著被去活化。在另一個具體例中,CaMKII被去活化以及接著被活化。在另一個具體例中,CaMKII促進該幹細胞的分化或增生。在另一個具體例中,CaMKII調節微管組合。
在一個具體例中,該誘導或促進一幹細胞分化成為一具有神經元特性的細胞的方法包含有:在該幹細胞中以該誘導藥物來調節一或多種蛋白質,其中該一或多種蛋白質是MAPT。在另一個具體例中,MAPT被活化。在另一個具體例中,MAPT被去活化。在另一個具體例中,MAPT被活化以及接著被去活化。在另一個具體例中,MAPT被去活化以及接著被活化。在另一個具體例中,MAPT促進該幹細胞的分化或增生。在另一個具體例中,MAPT調節微管組合。
在一個具體例中,於此處所提供的是一種誘導或促進一幹細胞分化成為一具有經減少的免疫原性(immunogenicity)的細胞的方法,其包含有:(a)令該幹細胞與一誘導藥物接觸;(b)在該幹細胞中以該誘導藥物來調節一或多種蛋白質,其中該一或多種蛋白質包含有:Wnt2B、Fzd6、Dvl3、FRAT1、GSK3 β、HDAC6、β-連接素、Gαq/11 、G β、RXR α、RAR β、GLuR1、PI3K、AKt1、AKt2、AKt3、mTOR、elf4EBP、CREB1、TH(酪胺酸羥化酶)、PLC-β、PIP2、CaMKII、elf4B、parkin、SNCA、微管蛋白、鈣調去磷酸酶、CRMP-2、NFAT1、內輸蛋白、LEF1、Pitx2、MEF2A或EP300;以及(c)誘導或促進該幹細胞分化成為一具有經減少的免疫原性的細胞。
在一個具體例中,該幹細胞是一哺乳動物滋養層幹細胞。在另一個具體例中,該幹細胞是一哺乳動物胚胎幹細胞。在另一個具體例中,該幹細胞是一哺乳動物經誘導的多潛能幹細胞。在另一個具體例中,其中該幹細胞是一內胚層、中胚層、外胚層或間質幹細胞。在另一個具體例中,該幹細胞是來自於一小鼠、大鼠、人類、黑猩猩、大猩猩、犬、豬、山羊、海豚或母牛。在另一個具體例中,該幹細胞是來自於一人類。在另一個具體例中,該幹細胞是一人類滋養層幹細胞。
在一個具體例中,於此處所描述的是誘導或促進一幹細胞分化成為一具有經減少的免疫原性的細胞的方法,其中該具有經減少的免疫原性的細胞是一神經幹細胞(NSC)、多巴胺生成細胞、多巴胺神經元、單極神經元、雙極神經元、多極神經元、錐體細胞、普金氏細胞以及前角細胞、籃狀細胞、貝氏細胞、雷休細胞、顆粒細胞或中等刺狀細胞。在另一個具體例中,該具有經減少的免疫原性的細胞不會誘導一免疫反應或者可以抑制一免疫反應。在另一個具體例中,該具有經減少的免疫原性的細胞不會誘 導一免疫反應,或者可以藉由一T細胞、B細胞、巨噬細胞(macrophage)、小神經膠質細胞(microglia cell)、肥大細胞(mast cell)或NK細胞來抑制一免疫反應。
在一個具體例中,該誘導或促進一幹細胞分化成為一具有經減少的免疫原性的細胞的方法包含有:令該幹細胞與一誘導藥物接觸,其中該誘導藥物包含有視黃酸、菸鹼醯胺或β-巰乙醇、維生素B12、肝素、腐胺、生物素或Fe2+、丁基羥基甲氧苯、丙戊酸、佛司可林、5-氮胞核苷、吲哚美洒辛、異丁基甲基黃嘌呤或胰島素。
在一個具體例中,該誘導或促進一幹細胞分化成為一具有經減少的免疫原性的細胞的方法包含有:在該幹細胞中以該誘導藥物來調節一或多種蛋白質,其中該調節包含有:增加該一或多種蛋白質中之至少一者的活性。在另一個具體例中,該調節包含有:增加該一或多種蛋白質中之至少一者的表現。在另一個具體例中,該增加表現包含有:增加編碼該一或多種蛋白質中之至少一者的mRNA的數量,或者增加該一或多種蛋白質中之至少一者從一mRNA中被轉譯的數量。在另一個具體例中,該調節包含有:減少該一或多種蛋白質中之至少一者的活性。在另一個具體例中,該調節包含有:減少該一或多種蛋白質中之至少一者的表現。在另一個具體例中,該減少表現包含有:減少編碼該一或多種蛋白質中之至少一者的mRNA的數量,或者減少該一或多種蛋白質中之至少一者從一mRNA中被轉譯的數量。
在一個具體例中,該誘導或促進一幹細胞分化成為一具有經減少的免疫原性的細胞的方法進一步包含有:誘導或促進該幹細胞分化成為一具有神經元特性的細胞,其中該神經元特性包含有多巴胺、麩胺酸鹽NMDA受體的次單元、突觸蛋白I、一鈣離子通道標記、GAP-43、電壓-依賴的K+通道、一電壓-依賴的Ca2+通道或一電壓-依賴的Na+通道的表現。
在一個具體例中,該誘導或促進一幹細胞分化成為一具有經減少的免疫原性的細胞的方法包含有:在該幹細胞中以該誘導藥物來調節一或多種蛋白質,其中該一或多種蛋白質是NFAT。在另一個具體例中,NFAT被活化。在另一個具體例中,NFAT被去活化。在另一個具體例中,NFAT被活化以及接著被去活化。在另一個具體例中,NFAT被去活化以及接著被活化。在另一個具體例中,NFAT促進該幹細胞的分化或增生。在另一個具體例中,NFAT調節微管組合。
亦於此處所描述的是一種誘導或促進一人類滋養層幹細胞分化成為一具有經減少的免疫原性或者可以抑制一免疫反應的tNSC[滋養層神經幹細胞(trophoblast neural stem cell)]的方法,其包含有:(a)令該人類滋養層幹細胞與一誘導藥物接觸;(b)在該幹細胞中以該誘導藥物來調節一或多種蛋白質,其中該一或多種蛋白質包含有:Wnt2B、Fzd6、Dvl3、FRAT1、GSK3 β、HDAC6、β-連接素、G α q/11、G β、RXR α、RAR β、GLuR1、PI3K、AKt1 、AKt2、AKt3、mTOR、elf4EBP、CREB1、TH(酪胺酸羥化酶)、PLC-β、PIP2、CaMKII、elf4B、parkin、SNCA、微管蛋白、鈣調去磷酸酶、CRMP-2、NFAT1、內輸蛋白、LEF1、Pitx2、MEF2A或EP300;以及(c)誘導或促進該人類滋養層幹細胞分化成為一tNSC。
在一個具體例中,該誘導或促進一人類滋養層幹細胞分化成為一具有經減少的免疫原性或者可以抑制一免疫反應的tNSC(滋養層神經幹細胞)的方法包含有:令該人類滋養層幹細胞與一誘導藥物接觸,其中該誘導藥物包含有視黃酸、菸鹼醯胺或β-巰乙醇、維生素B12、肝素、腐胺、生物素或Fe2+、丁基羥基甲氧苯、丙戊酸、佛司可林、5-氮胞核苷、吲哚美洒辛、異丁基甲基黃嘌呤或胰島素。在另一個具體例中,該tNSC不會誘導一免疫反應,或者可以藉由一免疫細胞來抑制一免疫反應。在另一個具體例中,該免疫細胞是一T細胞、B細胞、巨噬細胞、小神經膠質細胞、肥大細胞或NK細胞。
在本說明書中所提及的所有公開案、專利案以及專利申請案在此以參考相同範圍而被併入,如同各個個別的公開案、專利案或專利申請案被特定地以及個別地指明要被併入以作為參考資料。
圖式簡單說明
本發明之新穎的特徵在隨文檢附的申請專利範圍內中被詳細地描述。此處所描述的特徵以及優點將會藉由參照下列描述例示說明的具體例(其中本發明的原理被 使用)的詳細說明以及它們的隨文檢附的圖式而被獲得一更佳的理解:圖1顯示hTS細胞中多能性(pluripotence)以及再生(renewal)的特性。(1a)由RT-PCR分析所測量,hTS細胞表現內細胞群(inner cell mass,ICM)與滋養外胚層(trophectoderm)這兩者的特定的基因。(1b)說明有如藉由免疫細胞化學染色法(immunocytochemical staining)所看見的特異性階段胚胎抗原-1、-3以及-4[specific stage embryonic antigen(SSEA)-1,-3,and-4]的表現以及細胞內定位(經暗化的斑點)。在hTS細胞中(上區),SSEA-1大部分被表現在細胞質中(左上區),SSEA-3被表現在核中(中間上面區),以及SSEA-4被表現在細胞質以及膜這兩者中(右上區)。這些SSEA-表現的細胞是組織學上相似於異位絨毛滋胚內層(ectopic villous cytotrophoblasts)(下區)。(1c)藉由末端限制片段南方點墨分析[Terminal Restriction Fragment(TRF)Southern blot analysis]所測量的在第3與第7代之時的hTS細胞培養物的未經改變的端粒(telomere)長度(上以及下區)。(1d)文氏圖(Venn diagram)說明在hTS(859基因)以及滋養層關聯性胎盤衍生的間質幹細胞(placenta derived mesenchymal stem cells,PDMS cells)(2449基因)中基因表現的微陣列分析(microarray analysis)。一總數為2,140以及3,730的基因在hTS細胞以及滋養層關聯性PDMS細胞中表現(倍數變化>2-倍)。(1e)說明來自於對不同濃度的白血病抑制因子(leukemia inhibitory factor,LIF)[亦即500、250、 125U/ml;U:單位/ml,肌動蛋白(Actin):β-肌動蛋白作為對照組樣品]反應的轉錄因子表現的反轉錄聚合酶鏈反應(reverse transcription polymerase chain reaction,RT-PCR)分析的結果。LIF的撤除在hTS細胞中抑制Oct4以及Sox2,但是過度表現Nanog以及Cdx2。(1f)LIF(125U/ml)促進hTS細胞中Nanog、Cdx2、Sox2以及Oct4的表現的流動式細胞測量分析(左區)。直方圖顯示一在Nanog與Cdx2中負向劑量-依賴的方式(左區)以及一在Oct4與Sox2中正向劑量-依賴的方式(右區)。(1g)一在婦女中輸卵管(fallopian tubes)的不同節段中LIF位準的生理學分布的圖式,特別地在輸卵管中從壺腹(ampulla)朝向峽部(isthmus)的LIF位準的生理學減少。Oct4、Nanog以及Sox2相對於Cdx2的相對比例各個在輸卵管的3個不同節段中顯示一劑量-依賴性(dose-dependency)。(1h)不同的siRNAs對於hTS細胞中特定的轉錄者Nanog與Cdx2的效用是藉由RT-PCR(左邊)以及流動式細胞測量分析(右邊)而被分析,說明一在hTS細胞的多能性的維持上的介於Nanog以及Cdx2之間的交互關係。數據表示用於3次分析的平均值±SD。(1i)基因強度的直方圖在hTS細胞中顯示一均質型,而在PDMS細胞中顯示一個二相的型態(biphasic pattern)。
圖2說明視黃酸(RA)誘導hTS細胞分化成為各種不同的表現型的神經幹細胞。(2a)各種不同的神經祖細胞亞型(neural progenitor subtypes)的分布,包括神經膠質限 制的前驅細胞(glial restricted precursors,GRP)、神經元限制的前驅細胞(neuronal restricted precursors,NRP)、多潛能性神經幹(multipotent neural stem,MNS)細胞、星狀細胞(astrocytes,AST)以及未定義的滋養層巨細胞(trophoblast giant cells,TGC)。在RA誘導以時間(亦即1、3、5以及7天)的期間在一致的比例下所分布的hTS細胞-衍生的神經祖細胞亞型的頻率,分別從第1至第4列所顯示的。n:表示被計數的總細胞數。(2b)在1-天RA(10μM)誘導之前與之後hTS細胞的神經幹細胞-相關的基因的表現的RT-PCR分析,包括從經RA(10μM)誘導的hTS細胞中所生成的巢蛋白、Oct-4、神經絲、NgN3、Neo-D、MAP-2以及CD133。(2c)有如由流動式細胞測量分析所觀察到的,3-與5-天RA-誘導的hTS細胞這兩者表現陽性的免疫反應的神經幹細胞基因,包括神經絲蛋白、巢蛋白以及GFAP,它們在分布上維持一相似的比例。(2d)該滋養層神經幹細胞(tNSCs)所表現的免疫反應的巢蛋白、酪胺酸羥化酶-2(tyrosine hydroxylase-2,TH-2)以及血清素(serotonin)的免疫細胞化學分析(Immunocytochemical analysis)。(2e)藉由流動式細胞測量分析所進行的hTS細胞、tNSCs以及人類胚胎幹(hES)細胞中的免疫-相關的基因的比較性表現:HLA-ABC(MHC I型)在hTS細胞(99.4%)以及tNSCs中高度表現但是在hES細胞中較低。HLA-DR(MHC II型)在該等細胞中不表現。(2f)藉由流動式細胞測量分析所進行的hTS細胞、tNSCs以及hES細胞中的免疫-相關的基因的比較性表現: 在該等細胞中CD14以及CD44表現上沒有差異被觀察到。增生因子(Proliferative factor)CD73在hTS細胞以及tNSCs中高度表現,但是在hES細胞中負向地表現。(2g)藉由流動式細胞測量分析所進行的hTS細胞、tNSCs以及hES細胞中的免疫-相關的基因的比較性表現:穿膜受體CD33(transmembrane receptor CD33)在hTS以及hES細胞中被表現但沒有在tNSCs中。CD45在該等細胞中不表現。(2h)藉由流動式細胞測量分析所進行的hTS細胞、tNSCs以及hES細胞中的免疫-相關的基因的比較性表現:在hTS細胞、tNSCs以及hES中的間質幹細胞標記CD105的表現上沒有強度上的差異被發現,然而,相較於hTS細胞(93.6%)以及hES細胞(98.8%),較少的癌症幹細胞標記CD133(11.8%)在tNSCs中被表現。
圖3說明RA-誘導的基因表現。(3a)說明RA(10μM)在活化tNSCs中的c-Src/Stat3/Nanog途徑上的效用。藉由RT-PCR分析所測定的(n=3),RA誘導c-Src的明顯的表現,波峰在第15分鐘之時以及接著維持呈一較低的位準。(3b)藉由西方墨點分析(western blot analysis),顯示RA在第30分鐘、第1小時、第2小時以及第4小時之時分別刺激RXR α、c-Src以及RAR β表現。RA誘導在30分鐘內促進G α q/11以及G β這兩者的表現,暗示G蛋白質信號傳遞(G proteins signaling)的涉入。(3c)免疫沉澱(Immunoprecipitation,IP)分析證明RXR α以及RAR β之間經RA誘導的直接的結合;然而,此交互作用是藉由c-Src 抑制劑PP1類似物而被阻斷,顯示c-Src涉及RXR α以及RAR β結合以形成一支架蛋白質複合體(scaffolding protein complex)。(3d)IP測定分析顯示:RXR α具有一與G α q/11之獨立的結合交互作用而RAR β具有一與G β之獨立的結合交互作用。(3e)說明在hTS中一經RA誘導之c-Src的早期生成、Stat3在Tyr705位址上明顯的磷酸化以及Nanog在第1小時之時的活化的西方墨點分析;β-肌動蛋白被使用於對照組樣品。(3f)藉由西方墨點分析,此c-Src蛋白質的快速生成接著誘導Stat3在Tyr705位址上的磷酸化以及Nanog的過度表現。藉由西方墨點分析,c-Src抑制劑PP1類似物(4μM)抑制RA-誘導的Stat3在Tyr 705上的磷酸化以及Nanog的表現。(3g)說明RA刺激Stat3與Nanog啟動子的結合交互作用的染色質免疫沉澱(chromatin immunoprecipitation,ChIP)測定分析。輸入:溶胞產物,C:對照組。
圖4說明雙免疫金螢光穿透電子顯微鏡(immunogold fluorescence transmission electron microscopy,IEM)分析結果。RA-誘導的在細胞膜之處介於小的金粒子-標記的RXR α(6μM)與大的金粒子-標記的G α q/11(20μM)之間的結合交互作用被顯示。藉由動態共焦免疫螢光顯微鏡(dynamic confocal immunofluorescence microscopy),經免疫染色的RXR α以及G α q/11在細胞質或核中主要呈現一均質特徵(圖4,上區)。藉由處理以RA歷時5分鐘,細胞溶質的RXR α強度在核-周區域增加而核的 強度減少(第1行),顯示一在刺激之後的細胞溶質轉位(cytosolic translocation)。核的RXR α強度在第15分鐘之時變得顯著,而細胞溶質的強度減少。這些現象顯示:一核中活性的增加維持一細胞中的穩定狀態。一明顯的細胞溶質轉位在30分鐘內再次被觀察到。G α q/11表現的區隔變化,另一方面,是相似於RXR α所具者(第2行)。
圖5說明將GFP-標誌的tNSCs(3×106)移植至巴金森氏症(PD)大鼠中的分析。(5a)經去水嗎啡(apomorphine)誘導的旋轉測試(rotation test)的分析;a組(深色-陰影的圓,n=4),它是有關於接受tNSCs移植的PD大鼠,顯示從植入後的第3週至第12週在對側的旋轉上顯著的減少;b組(淺色-陰影的圓,n=4),它是有關於接受5-天RA-處理的hTS細胞的PD大鼠,顯示一在植入後的第6週之時最初的顯著的改善,但是此改善在經過第12週期間逐漸減少;以及c組(三角形,n=4),它是有關於作為對照組的未經處理的PD大鼠,顯示沒有改善。藉由重複測量ANOVA所進行的統計學分析:p值=0.001以及在重複測量ANOVA之後的2組之間的LSD事後比較(LSD post hoc comparisons):在第6週之時p=0.037(a vs.c組)以及p=0.008(b vs.c組);在第9週之時p=0.019(a vs.c組);在第12週之時p=0.005(組a vs.c)以及p=0.018(組a vs.b)。*表示p<0.05。(5b)說明在植入後的第18週之時在a組的經損傷的紋狀體(lesioned striatum)中的TH-陽性免疫組織化學染色(上區);免疫螢光顯微鏡分析顯示:免疫螢光的GFP-標誌的tNSCs仍然在注 射位址之處具有一斑點形成存留在經損傷的紋狀體中(下區)。(5c)說明在植入後的第18週之時在a組的經損傷的黑質緻密(substantia nigra compacta,SNC)中所再生的TH-陽性神經元(上區);末端區域的放大被顯示(左下區),比例尺:100μM;免疫螢光顯微鏡分析顯示:免疫螢光的GFP-標誌的tNSCs呈一經散射的分布(scattered distribution)存留(右下區,箭頭表示GFP-標誌的tNSCs)。(5d)說明在植入後的第18週之時b組的免疫組織化學染色:沒有TH-陽性細胞在左邊經損傷的紋狀體(str,上區)或丘腦下核(subthalamic nucleus)(stn,下區)中被發現。(5e)說明在植入後的第18週之時c組的免疫組織化學染色:沒有TH-染色的細胞在左邊經損傷的紋狀體(str,上區)或經損傷的SNC(下區)中被發現;箭頭表示植入針軌跡。
圖6說明來自於在一注射位址之處將tNSCs(1.5×106)移植至“老化的(aged)”PD大鼠(n=16;體重,630-490gm)的經損傷的紋狀體中的結果。行為評估(Behavioral assessments)在植入後每3週被分析。結果顯示:從植入後的第3週至第12週中所評估的行為障礙(behavioral impairments)有一顯著的改善。史徒登氏t試驗(Student t test):*p<0.05作為統計學顯著性(statistic significance)。**p<0.01以及***p<0.001。(6a)去水嗎啡-誘導的旋轉測試的分析證明:相較於作為對照組的未經處理的“老化的”PD大鼠(i組;n=8,未經填充的圓),接受tNSCs植入的老化的PD大鼠(ii組,n=8,經填充的圓) 從第3週至第12週顯著地改善旋轉數。(6b)說明有關運動失能症(秒)的行為評估結果。(6c)說明有關步伐長度(step length)(mm)的行為評估結果。(6d)說明有關跨步長度(stride length)(mm)的行為評估結果。(6e)說明有關步行速度(walking speed)(cm/秒)的行為評估結果。(6f)說明有關支撐的基礎(mm)的行為評估結果。(6g)說明針對行為評估所分析的步態:A與正常大鼠相關,B與在細胞移植之前的類巴金森氏症大鼠(hemiparkinsonian rats)相關,以及C與在細胞移植之後的類巴金森氏症大鼠相關。
圖7說明在適當的誘導之後,hTS細胞表現全部3種初級胚層(primary germ layers)的組分,包括外胚層(ectoderm)、中胚層(mesoderm)以及內胚層(endoderm);各個區的左行是有關於在誘導之前的基因表現;各個區的右行是有關於在誘導之後的基因表現。
圖8說明流動式細胞測量分析結果,顯示hTS細胞表現間質幹細胞標記[CD90、CD44、CK7、中間絲蛋白(Vimentin)以及神經絲]並且有關造血幹細胞標記(hematopoietic stem cell markers)[CD34、CD45、α 6-整合蛋白(α 6-integrin)、E-鈣黏素(E-cadherin)以及L-選擇素(L-selectin)]是負向的。
圖9顯示在適當的誘導下,hTS細胞會被分化成為各種不同的特定的細胞表現型(cell phenotypes)。
圖10說明將hTS細胞皮下移植至雄性嚴重合併性免疫缺失症(severe combined immune deficiency,SCID) 小鼠中在植入後的第6-8週之時僅造成具有類-黏液樣的奇異型細胞(myxoid-like bizarre cells)的輕微嵌合反應(minor chimeric reaction)的組織學分析(histological analysis)(經填充的、黑色的箭頭標示奇異型細胞;未經填充的箭頭標示肌纖維;“NT”標示針軌跡)。
圖11染色體分析顯示:hTS細胞不會改變核型的型態(46,XY)。為了檢查世代中的細胞壽命,藉由南方點墨分析,介於第3與第7代培養物之間在端粒長度上沒有顯著的縮短被觀察到(圖1c)。
圖12說明被使用於細胞分化的特定的培養基。
圖13說明被使用於RT-PCR的PCR引子。
圖14說明AhR在細胞膜之處作為一信號分子的分析,包括藉由Huh-7細胞中BBP的導入(1μM),在細胞膜之處經轉染的pGFP-C1-AhR的活性。(14a)所顯示的影像是藉由TIRF顯微鏡分析所測量的GFP-標誌的AhR的相對強度的表現。圓以及箭頭表示隨著時間所測量的區域:在刺激之前(第1區)、在波峰之處(第2區)以及在靜止之處(第3區)。圖(第4區)顯示在大約第2分鐘之時一波峰數值被發現,以箭頭表示BBP被添加的時間。(14b)對BBP的反應的memAhR的定量RT-PCR分析顯示一在第5分鐘之時快速的上升在第15分鐘之時達到波峰繼而在第2小時之時一逐漸的下降至一較低的平線區位準。誤差槓(Error bars)表示標準偏差(standard deviation)。*,p<0.05,t-試驗(n=3)。(14c)西方墨點分析的分析顯示:BBP在第15 分鐘之時促進AhR上升繼而在第30分鐘之時一輕微的下降以及在第60分鐘之時一再-上升。(14d)西方墨點分析的分析顯示:BBP在第30分鐘之時誘導G α q/11以及G β這兩者的生成。(14e)免疫沉澱(IP)分析顯示在BBP刺激之後AhR與G α q/11之間的交互作用,字母C代表對照組。(14f)藉由西方墨點分析所測量,由siRNA所造成的AhR的剔除證明:BBP抑制Huh-7細胞中AhR與G α q/11這兩者的表現,字母S代表作為負對照組的零亂siRNA。
圖15說明動態免疫螢光成像(dynamic immunofluorescence imaging)的結果。(15a)說明未經處理的對照組細胞的免疫染色;AhR以及G α q/11表現主要地在Huh-7細胞的核中被觀察到並且微弱地在細胞溶質中;帶狀比例尺(bar scale):50μM。(15b)被處理以BBP(1μM)歷時5以及15分鐘的細胞各個顯示一從核至細胞溶質隔室(cytosolic compartment)中的AhR與G α q/11這兩者的轉位。經免疫染色的G α q/11在第15分鐘之時特別地聚集在細胞膜之處。(15c)被轉染以AhR siRNA的細胞強烈地減少細胞溶質與核的隔室這兩者中AhR強度(上區),而被轉染以零亂siRNA不會改變免疫染色強度(下區)。(15d)BBP回復在使用預-轉染的AhR siRNA 15分鐘之後的細胞中AhR與G α q/11這兩者的強度。
圖16說明雙免疫金穿透電子顯微鏡分析(double immunogold transmission electron microscopic analysis)的結果。(16a)免疫金-染色的G α q/11(白色箭頭) 會在作為對照組的Huh-7細胞中的細胞膜之處存在有如呈單一的或雙重的或三重的實體。(16b)在第20分鐘之時,BBP(1μM)-處理的細胞顯示一免疫金-標誌的AhR粒子(呈6nm的大小,黑色箭頭)與免疫金-標誌的G α q/11粒子(呈20nm的大小,白色箭頭)的交互作用,形成一複合體,在細胞膜之處出現有如不同的實體:單體的(monomeric)(未顯示)、二聚體的(dimeric)(未顯示)、三聚體的(trimeric)(左邊)以及聚合的(polymeric)(右邊)實體。(16c)一在細胞膜之處所出現的AhR以及G α q/11的三聚複合體。CM:細胞膜、N:核,以及帶狀比例尺:500nm。
圖17說明“拉與推”機制以及生化過程。(17a)在Huh-7細胞中對BBP處理反應的G α q/11訊息級聯(signaling cascades)的測量。西方墨點分析顯示:BBP(1μM)在第30分鐘之時觸發G α q/11與G β這兩者的生成。經活化的G α q/11導致在PIP2上的減少,造成經增加的IP3R位準。(17b)說明免疫螢光的Fluo-4-標記的鈣(immunofluorescent Fluo-4-labled calcium)在Huh-7細胞中的反應性的分析。被顯示的是未經標記的細胞(左上區)以及Fluo-4-標記的鈣(綠色,左下區)。亦被顯示的是在BBP(1μM)刺激(箭頭)之後在BSS培養基(中間上面區)以及無鈣培養基(中間下面區)中相對的鈣位準的變化。培養在具有預-處理的IP3R抑制劑2-APB(100μM,1小時)的無鈣培養基中的細胞(右上的區)顯示一在鈣密集上的減少(右上的區),它存在一劑量-反應方式(dose-response manner)(y=-0.4x +2.5,R2=0.94)(右下的區)。誤差槓表示平均值的標準偏差(n=5)。(17c)西方墨點分析的結果指示:BBP-誘導的COX-2表現藉由預-處理以2-APB(30μM,1小時)而被抑制,字母C表示對照組。(17d)說明西方墨點分析的結果,顯示BBP(1μM)經由AhR/Ca2+/ERK/COX-2途徑誘導COX-2的過度表現。ERK1/2在BBP處理之後第15分鐘之時被磷酸化以及第30分鐘之時被去磷酸化。(17e)說明西方墨點分析的結果,顯示BBP-誘導的COX-2表現藉由預處理以化學品PD98059(20μM,1小時,Calciochem)而被抑制,字母C表示對照組。(17f)說明ARNT位準藉由處理以BBP(1μM)而顯著地被抑制(隔夜所測量的)。數據代表平均值±SD,n=3以及*:史徒登氏t-試驗,p<0.01。(17g)說明一構成經由GPCRs-G蛋白質信號傳遞的配位子-誘導的非基因AhR信號傳遞途徑(ligand-induced nongenomic AhR signaling pathway)的基礎的“拉與推”機制的途徑表示。
圖18說明LIF在Nanog表現上的效用。(18a)說明LIF促進Nanog的表現。左區說明:藉由hTS細胞中的流動式細胞測量分析,Nanog表現是以一負向劑量-依賴的方式而顯著地被抑制。數據表示用於3次分析的平均值±SD。*p<0.01(史徒登氏t試驗,n=3)。右區說明當hTS細胞被預培育以RA(10μM)隔夜繼而以不同的位準(亦即各個125、250以及500U/mL)處理LIF歷時1-天時相對的Nanog表現。(18b)說明藉由流動式細胞測量分析,在hTS細胞中的RA誘導(1天培育,10μM)刺激Nanog以及Oct4 的表現,而不是Cdx2以及Sox2。
圖19說明在老年的PD大鼠中行為改善的評估。(19a)說明在植入後的第12週之時在一系列的腦部切片(30μM)上的TH+神經元的免疫組織化學(immunohistochemistry)顯示:大量經重新再生的TH-陽性神經元出現在經損傷的黑質紋狀體途徑中(左邊部分)。在SNC區域中,TH-陽性神經元呈現一具有從細胞體中突起的多重外生(multiple outgrowths)以與宿主組織形成神經元迴路(neuronal circuitries)的特徵。在一大鼠中的經再生的多巴胺神經元的數目佔相對的正常側的28.2%(n=5)。(19b)相較於正常側,一大鼠的經損傷的SNC中多巴胺神經元的數目再生至28.2%。
圖20:(20a)說明藉由RT-PCR,ICM與滋養外胚層(TE)這兩者的特定基因的表現;(20b)說明hTS細胞被轉染以一F1B-GFP質體建構物的DNA混合物(DNA mixture of F1B-GFP plasmid construct)以產生一超過95%的成功率;(20c)說明經RA誘導的eIF4B的生成的時程;(20d)說明c-Src的活化藉由使用eIF-4B而被抑制;(20e)說明IP分析顯示:活性的c-Src直接結合至Stat3[轉錄的訊息傳遞者(signal transducer)以及活化子(activator)];(20f)說明c-Src siRNA抑制Stat3的表現;(20g)說明Nanog表現藉由Stat3 siRNA而被抑制;以及(20h)說明一在hTS細胞中經由次細胞c-Src mRNA定位的RA-誘導的c-Src/Stat3/Nanog途徑的途徑。
圖21說明G α q/11信號傳遞途徑的活化:(21a)說明藉由西方墨點法,在RA處理(10μM)之後G α q/11途徑-相關的組分隨著時間的表現;(21b)說明在被培養在無鈣培養基中並且在RA處理之前20分鐘被預-裝填以配於BSS緩衝液中的Fluo4(1μM)的hTS細胞中的即時活細胞成像顯微鏡(real-time live cell imaging microscopy)(Cell-R system,Olympus,Tokyo)。(a)RA-誘導的細胞內鈣的消耗是藉由以一SOCE型態添加CaCl2(2mM)而被回復。(b)RA-誘導的細胞內鈣位準是藉由2-APB(10分鐘)以一顯著的劑量-依賴的方式而被抑制(R2=0.8984)。(c)在ER鈣的消耗之後,KCl(60mM)能夠去活化L-型鈣離子通道(L-type calcium channels)。(d)在ER鈣消耗之後,KCl-依賴的L-型鈣離子通道是藉由抑制劑硝苯地平(nifedipine)(5μM)而被阻斷。n:被計數的總細胞;(21c)說明CaMKII直接與CREB1以及eIF4B交互作用;(21d)說明藉由西方墨點法,eIF4B siRNA抑制CaMKII、鈣調去磷酸酶以及eIF4B的表現;(21e)說明藉由西方墨點法,KN93(1μM,2小時)抑制eIF4B表現;(21f)說明parkin直接與CaMKII以及MAPT交互作用;(21g)說明SNCA直接與MAPT交互作用;(21h)說明MAPT與GSK3 β以及α-微管蛋白(α-tubulin)交互作用;(21i)說明藉由西方墨點法,2-APB抑制鈣調去磷酸酶、NFAT1以及MEF2A的表現;(21j)說明內輸蛋白與NFAT1之間的直接交互作用;(21k)說明藉由分段分析(fractional assay),RA刺激NFAT1核轉位(nuclear translocation)。核 纖層蛋白A/C:核的標記以及α-微管蛋白:細胞質的標記;(21l)說明Akt2直接與GSK3 β交互作用;(21m)說明在動態變化中使用不同抗體所顯示的在被處理以RA歷時4小時(空白的柱)以及歷時24小時(黑色的柱)的細胞中GSK3 β表現的流動分析(flow analysis)。數據顯示平均值±SD,n=3;(21n)說明流動式細胞測量分析顯示Akt2 siRNA抑制RA-誘導的GSK3 β表現。
圖22說明轉錄複合體(transcriptional complex)的形成:(22a)說明β-連接素與LEF1之間(上面)以及LEF1與Pitx2之間的交互作用;(22b)說明藉由RA處理(4小時),LEF1轉錄基因Pitx2而不是基因Pitx3(22c)說明藉由西方墨點法,MEF2A直接與NFAT1、MEF2A、Pitx2、SNCA以及EP300交互作用;(22d)說明藉由西方墨點法,RA誘導MEF2A、EP300以及Pitx2隨著時間的生成;(22e)說明藉由西方墨點法,NFAT1 siRNA抑制MEF2A的表現;(22f)說明CREB1標靶在MEF2A基因的啟動子處;(22g)說明MEF2A轉錄基因SNCA(上面)、TH(中間)以及MEF2A本身(下面);(22h)說明藉由西方墨點法,MEF2A siRNA抑制EP300、Pitx2以及MEF2A的表現;(22i)說明EP300標靶在HDAC6(上面)以及TH(下面)基因的啟動子處;(22j)說明藉由西方墨點法,在第4小時以及第24小時時間點之時各種不同的分子活性的鑑定。縮寫,IP:免疫沉澱分析;ChIP:染色質免疫沉澱分析。
圖23說明在hTS細胞中RA-誘導的神經生成 (neurogenesis)的途徑的調節網路(上區)。2種mRNA轉譯的工具:帽蓋-依賴的(cap-dependent)(左下)以及帽蓋-獨立的(cap-independent)(右下)。紅色的線:時空信號傳遞途徑;黑色的線:轉錄途徑;雙-向的箭頭:分子連接至其它途徑。
圖24說明RA信號傳遞促進Wnt2B/Fzd6/β-連接素途徑:(24a)說明流動式細胞測量分析顯示:藉由經預處理的Wnt2B siRNA的抑制作用隔夜所證明,RA(10μM)顯著地誘導Wnt2B、Dvl3以及FRAT1的活化但是抑制GSK3 β。數據顯示平均值±SD;n=3;(24b)說明由RA RT-PCR所造成的經增加的Fzd6 mRNA表現。數據顯示平均值±SD;n=3,*:藉由史徒登氏試驗p<0.05;(24c)說明藉由西方墨點法,RA誘導在β-連接素以及HDAC6的表現隨著時間的改變;(24d)說明IP分析顯示:一藉由隔夜培育以RA所造成的HDAC6與β-連接素之間的物理交互作用;(24e)說明在隔夜培育之後,藉由分離測定(fractionation assay),RA誘導β-連接素的核/細胞質轉位。核纖層蛋白以及α-微管蛋白分別作用作為核的以及細胞質的標記;(24f)說明共焦免疫螢光顯微鏡顯示:RA-誘導的β-連接素以及HDAC6的動態變化顯示β-連接素在第30分鐘之時的核轉位,它藉由HDAC6 siRNA而被抑制;(24g)說明細狀的β-連接素在RA處理的第5分鐘之時出現在突觸區域中(箭頭)。
圖25說明共焦免疫螢光顯微鏡分析。在對抗 HDAC6的siRNA的存在下,β-連接素的核定位被阻斷。
圖26說明在細胞膜之處的分子事件:(26a)說明藉由西方墨點法,RA誘導G α q/11、G β、RXR α以及RAR β隨著時間的生成。β-肌動蛋白作為對照組;(26b)說明即時共焦免疫螢光顯微鏡分析,顯示代表性GFP-標誌的RXR α在RA刺激之後的第0、4.5以及13分鐘之時從核周區域朝向細胞膜(箭頭)的移動。在核中沒有RXR α是可見的。正常相位對比(左上)以及螢光影像(右上)。槓(Bar)表示30μM;(26c)說明一從核(N)至細胞膜(M)的相對定量的GFP-標誌的RXR α在時程上的強度上的動態移動與變化。正常相位對比以及螢光成像顯示在右上之處;(26d)說明一代表性成像顯示藉由RA在第5分鐘之時所造成的RXR α以及G α q/11在細胞膜之處的共-表現;(26e)說明在RA處理歷時20分鐘之後在細胞膜之處所觀察到的雙免疫金標記的RXR α(6μM;黑色箭頭)以及G α q/11(20μM;白色箭頭)。N:核;(26f)說明RXR α siRNA抑制RA-誘導的G α q/11與RXR α的交互作用(24小時);(26g)說明RAR β siRNA抑制RA-誘導的G β與RAR β的交互作用以及G β與PI3K的交互作用(24小時)。IP:免疫沉澱分析;IgG:負對照組;C:正對照組;(26h)說明IP測定分析顯示:一選擇性c-Src抑制劑PP1類似物能夠防止RXR α-RAR β異型二聚物(heterodimer)的形成;(26i)說明藉由雙免疫金穿透電子顯微鏡所觀察到的RA-誘導的金粒子-標誌的RXR α在內質網(ER)中的定錨(anchorage)。
圖27說明藉由RT-PCR,RA刺激典型Wnt2B途徑;在hTS細胞中隔夜處理(10μM)之後,RA誘導Wnt2B信號傳遞途徑的組分的表現,顯示呈一統計學上顯著的結果;在隔夜處理之後,Wnt2B siRNA抑制RA-誘導的Wnt2B途徑的組分。
圖28說明RXR α以及RAR β的局部合成:(28a)說明藉由RT-PCR,RA(10μM)在第15分鐘之時快速地誘導RXR α mRNA與RAR β mRNA這兩者的短暫的上升。數據顯示平均值±SD,n=3,t試驗*:p<0.05;(28b)說明藉由西方墨點法,RA誘導PI3K以及Akt異構型(isoforms)隨著時間的表現;(28c)說明藉由流動式細胞測量術,PI3K抑制劑124005抑制RA-誘導的Akt異構型(24小時)。數據顯示平均值±SD,n=3;(28d)說明藉由西方墨點法,Akt3與mTOR交互作用,但是藉由Akt3 siRNA而被抑制;(28e)說明藉由西方墨點法,RA誘導mTOR的暫時性表現;(28f)說明Akt3 siRNA抑制RA-誘導的mTOR的磷酸化;(28g)說明mTOR直接與4EBP1交互作用(4小時);(28h)說明使用或沒有使用mTOR siRNA或4EBP1 siRNA的預培育之藉由RA(4小時)所處理的hTS細胞是藉由西方墨點法針對mTOR、4EBP1、eIF4E以及eIF4B的表現而被分析;(28i)說明藉由西方墨點法,eIF4E siRNA抑制RA-誘導(4小時)的在RXR α與G α q/11之間(上面)以及RAR β與G β之間(下面)的交互作用。
圖29:(29a)說明藉由RT-PCR,PI3K抑制劑在 hTS細胞中隔夜處理之後抑制RA-誘導的Akt異構型,Akt1、2以及3的表現;(29b)藉由RT-PCR,Akt2抑制劑抑制β-連接素mRNA的表現;(29c)藉由流動式細胞測量術,Akt3 siRNA抑制mTOR的表現。
圖30說明CREB1促進TH的轉錄:(30a)說明藉由西方墨點法,CREB1直接與Akt1以及β-連接素交互作用;(30b)說明Aktl siRNA抑制CREB1的表現。β-肌動蛋白:對照組;(30c)說明CREB1標靶在TH基因的啟動子處;(30d)說明藉由西方墨點法,CREB1 siRNA抑制TH的表現;(30e)說明免疫螢光組織分析顯示tNSCs在PD大鼠腦中的植入後的第12週之時在治療的SNC側中的DA神經元(白色箭頭)中TH-FITC(藍色)以及TH-Cy-3(紅色)的共-表現(右區)。在正常側中(左上)以及在治療側中(左下)的經放大的DA神經元。陽性CERB1染色在核中被發現到;(30f)說明直方圖顯示DA神經元中所表現的TH以及CREB1在正常(左邊;n=86)以及治療側(右邊;n=114)中的相對平均強度。誤差槓:平均值±SD;n:被計數的總細胞;p<0.05:統計學上顯著的。
圖31說明免疫組織螢光分析(immunohistofluoresence analysis):對照組的SNC中TH(+)以及NeuN(+)運動神經元(motor neurons)(箭頭)(左上)。在6-OHDA損傷之後第1-週之時經減少的TH(+)(箭頭)(右上)。在損傷後的第6週之時隨著TH-陽性的神經末梢的擾亂,在TH(+)神經元上明顯的減少(綠色顆粒),以及各種不同 的退化性空腔形成(紅色爆炸性圓)(左下)。在移植之後,在退化性空腔的壁之處(紅色爆炸性圓;插入物)的TH(+)神經元(箭頭)帶有突出至空腔(右下)中的TH(+)神經末梢(綠色)。
圖32說明具有較少免疫反應的TH(+)以及GFAP(+)細胞的活體內(in vivo)再生:(32a)說明在損傷後的第1與第6週之時TH(+)細胞的數目分別減少至在經損傷的SNC(紅色)中的48%與13%以及在經損傷的紋狀體(淺藍色)中的78%與4%。在移植之後,TH(+)細胞在經損傷的SNC以及紋狀體中分別重新-成長至67%以及73%(右區)。數據藉由Tissuequest 2.0軟體(TissueGnostics Gmbh,Vienna,Austria)而被分析;(32b)說明在經損傷的SNC(下區)中以及放大(左上,插入物a)與無損傷側(右上,插入物b)相較的多巴胺神經元的再生;(32c)說明相較於無損傷側,在第12週之時tNSCs的移植在經損傷的SNC中的TH-陽性神經元(箭頭)上產生78.4±8.3%(平均值±SEM;n=4)的復原率;(32d)說明在損傷後的第6週之時在經損傷的紋狀體中TH-FITC(+)以及GFAP-Cy-3(+)Wilson束(Wilson’s pencils)(空白箭頭)的退化(左行)。在植入後的第12週之時(右行),數個GFAP(+)細胞(箭頭)出現在重新-建立的Wilson束(空白箭頭)的細纖維(fine fibers)內;(32e)說明免疫組織螢光成像分析,在藉由細胞大小的位置(呈8-10μm的直徑)以及它對應的GFAP-Cy-3的強度所決定的閘(gate)(左邊的散佈圖)中的細胞被計數。閘(紅色散佈圖):被計數的神經 膠細胞(glial cells);黑色散佈圖:排除具有異常大小的細胞;藍色散佈圖:具有異常GFAP強度的細胞。在紋狀體中,相較於無損傷側,在經損傷側中的GFAP(+)細胞在處理之前是65.5%以及在細胞治療之後變成93.9%(右邊的區);(32f)說明hTS細胞植入至SCID小鼠中僅引起輕微免疫反應並且沒有腫瘤形成(tumorigenesis)被觀察到。類-黏液樣的奇異型細胞(黑色箭頭),肌纖維(空白箭頭)以及針軌跡(NT)。
圖33說明藉由在慢性PD大鼠中的免疫組織螢光散佈圖所測量,利用在TH-FITC與NeuN-Cy-3之間的決定係數(coefficient of determination)在細胞治療之前以及之後SNC中的TH(+)細胞的鑑定。(33左上)說明正常的SNC:R2=0.72;(33右上)說明藉由6-OHDA損傷所造成的SNC(1-週):R2=0.77;(33左下)說明藉由6-OHDA損傷所造成的SNC(6-週):R2=0.25;(33右下)在tNSCs移植之後的SNC(12-週):R2=0.66。被顯示的結果代表2隻大鼠的平均值。
發明的詳細說明
神經組織-衍生的幹細胞(Neural tissue-derived stem cells)、衍生自多潛能胚胎幹細胞(embryonic stem cells,ESC)的表現型-特化的祖細胞(phenotype-specified progenitor cells)以及衍生自各種不同的經轉分化的非-神經幹細胞(transdifferentiated non-neural stem cells)的神經細胞已全部在針對它們的能力去生成神經元以及神經膠質 (glia)的臨床前研究中被探討,並且神經幹細胞在臨床試驗中的用途已被描述。雖然胚胎幹(ES)細胞已顯示作為細胞治療劑(cell therapeutics)的可能性(Bjorklund,L.M.,et al.Proc.Nat.Acad.Sci.2002,99,2344-49),但使用該等治療是受限的並且與倫理關懷(ethical concerns)有關聯。
幹細胞具有自我-更新(self-renewal)以及生成定向祖細胞(committed progenitors)(包括神經幹細胞)的能力(Reubinoff B.E.et al.,Nat.Biotech.2001,19,1134-1140)。
此處所提供的是衍生自滋養層組織的經分離的神經幹細胞。此處進一步所提供的是在細胞培養中是穩健的且存活數代並且亦具有多能性(pluripotency)以及免疫豁免(immune privilege)的特性之經分離的神經幹細胞(tNSCs)。在此處所描述的一個具體例中,一種供用於從衍生自人類滋養層幹(hTS)細胞的tNSCs中誘導多巴胺神經元的方法被描述。此處進一步所提供的是容許經移植的tNSCs能存活並且生長成為多巴胺神經元的方法,以及用於評估經損傷的行為的復原以達到相較於目前的治療攝生法具有降低的變異性之結果的方法。
亦於此處所提供的是衍生自hTS細胞之經分離的神經幹細胞,該hTS細胞沒有使用小鼠胚胎餵養細胞(mouse embryonic feeder cells)而被培養,以防止可疑的汙染。此處所提供的是用於有效率地以及可再現地生成hTS細胞-衍生的tNSCs的方法,該方法致使一個經均勻地混合 的族群的子集合,而可區別於其它被用來從其它來源的細胞中誘導多巴胺神經元的方法。此處所提供的是用於將多巴胺tNSCs以一細胞懸浮液(cell suspension)移植至腦內的方法,藉此防止與組織移植物有關聯的不均勻的生長。
此處所提供的是以一誘導藥物來調節一幹細胞分化成為一具有神經元特性的細胞的方法。在一個具體例中,該誘導藥物調節在該幹細胞中的一或多種蛋白質的表現或活性。在一個具體例中,該一或多種蛋白質的一者是Wnt2B、Fzd6、Dvl3、FRAT1、GSK3 β、HDAC6、β-連接素、G α q/11、G β、RXR α、RAR β、GLuR1、PI3K、AKt1、AKt2、AKt3、mTOR、elf4EBP、CREB1、TH(酪胺酸羥化酶)、PLC-β、PIP2、CaMKII、elf4B、parkin、SNCA、微管蛋白、鈣調去磷酸酶、CRMP-2、NFAT1、內輸蛋白、LEF1、Pitx2、MEF2A或EP300。在一個具體例中,該幹細胞可以是一滋養層、胚胎的或經誘導的祖幹細胞。在一個具體例中,該具有神經元特性的細胞是一NSC、多巴胺生成細胞、多巴胺神經元、單極神經元、雙極神經元、多極神經元、錐體細胞、普金氏細胞以及前角細胞、籃狀細胞、貝氏細胞、雷休細胞、顆粒細胞或中等刺狀細胞。
亦於此處所提供的是以一誘導藥物來調節一幹細胞分化成為一具有經減少的免疫原性的細胞的方法。在一個具體例中,該誘導藥物調節在該幹細胞中的一或多種蛋白質的表現或活性。在一個具體例中,該一或多種蛋白質的一者是Wnt2B、Fzd6、Dvl3、FRAT1、GSK3 β、HDAC6 、β-連接素、G α q/11、G β、RXR α、RAR β、GLuR1、PI3K、AKt1、AKt2、AKt3、mTOR、elf4EBP、CREB1、TH(酪胺酸羥化酶)、PLC-β、PIP2、CaMKII、elf4B、parkin、SNCA、微管蛋白、鈣調去磷酸酶、CRMP-2、NFAT1、內輸蛋白、LEF1、Pitx2、MEF2A或EP300。在一個具體例中,該幹細胞可以是一滋養層、胚胎的或經誘導的祖幹細胞。在一個具體例中,該具有經減少的免疫原性的細胞不會誘導一免疫反應,或者可以藉由一T細胞、B細胞、巨噬細胞、小神經膠質細胞、肥大細胞或NK細胞來抑制一免疫反應。
人類滋養層幹細胞(hTS細胞)
人類輸卵管在婦女中是受精的位址以及子宮外孕(ectopic pregnancies)的常見位址,其中有數種生物事件發生,諸如內細胞群(ICM)與滋養外胚層之間的區別以及具有主要的表觀遺傳改變(epigenetic changes)之從全潛能性(totipotency)轉換至多能性。這些觀察提供有關輸卵管在著床前的階段作為一供用於獲得囊胚-關聯性幹細胞(blastocyst-associated stem cells)的棲位儲存處(niche reservoir)的支持。在工業化國家中,子宮外孕佔全部懷孕的1至2%並且在開發中國家中是高更多的。假如在人類胚胎幹細胞(hES細胞)以及胎腦組織(fetal brain tissue)的可利用性上的不足,此處所描述的是衍生自子宮外孕的人類滋養層細胞(hTS細胞)作為一針對幾乎不可利用的hES細胞的替代以供生成祖細胞的用途。
在一個具體例中,該等衍生自子宮外孕的人類 滋養層細胞不涉及一人類胚胎的破壞。在另一個具體例中,該等衍生自子宮外孕的人類滋養層細胞不涉及一可活的人類胚胎的破壞。在另一個具體例中,該等人類滋養層細胞是衍生自與非可活的子宮外孕有關聯的滋養層組織。在另一個具體例中,該子宮外孕不能被挽救。在另一個具體例中,該子宮外孕將不會致使一可活的人類胚胎。在另一個具體例中,該子宮外孕威脅母親的生命。在另一個具體例中,該子宮外孕是輸卵管的(tubal)、腹的(abdominal)、卵巢的(ovarian)或子宮頸的(cervical)。
在囊胚發育的期間,ICM本身接觸或它的衍生的可擴散的“誘導物(inducer)”會引起一在極性滋養外胚層中之高速率的細胞增生(cell proliferation),而導致在整個囊胚期朝向壁區域(mural region)的細胞移動並且甚至在ICM與滋養外胚層的區別之後會持續。覆蓋ICM的壁滋養外胚層細胞能夠保留ICM的一“細胞記憶(cell memory)”。通常地,在著床的起始階段,在ICM對面的壁細胞由於來自子宮內膜(uterine endometrium)的機械性限制而停止分裂。然而,沒有該等限制存在於輸卵管中,這致使極性滋養外胚層細胞的持續分裂而在一子宮外孕的停滯的囊胚中形成胚外外胚層(extraembryonic ectoderm,ExE)。在一個具體例中,ExE-衍生的滋養層幹(TS)細胞是呈一增生狀態而存在歷時至少一為4-天的時間,這取決於ICM-分泌的FGF4與它的受體Fgfr2的相互作用。在另一個具體例中,ExE-衍生的TS細胞是呈一增生狀態而存在歷時至少一為1-天 、至少一為2-天、至少一為3-天、至少一為4-天、至少一為5-天、至少一為6-天、至少一為7-天、至少一為8-天、至少一為9-天、至少一為10-天、至少一為11-天、至少一為12-天、至少一為13-天、至少一為14-天、至少一為15-天、至少一為16-天、至少一為17-天、至少一為18-天、至少一為19-天、至少一為20-天的時間。直到臨床介入發生,這些細胞過程會在著床前的胚胎中產生一無限數目的hTS細胞,該等細胞保留來自於ICM的細胞記憶,這藉由ICM-相關的基因的表現而被反映。
此處所描述的一個方面是在子宮著床之前的hTS細胞以及絨毛膜的滋胚內層(chorionic cytotrophoblasts)。在一個具體例中,hTS細胞具有內細胞群(ICM)(Oct4Nanog、Sox2、FGF4)與滋養外胚層(Cdx2Fgfr-2EomesBMP4)這兩者的特定基因(圖1a)並且表現3種初級胚層全部的組分(圖7)。在另一個具體例中,該等hTS細胞表現hES細胞-相關的表面標記[諸如特異性階段胚胎抗原(SSEA)-1、-3與-4](圖1b)以及間質幹細胞-相關的標記(CD44、CD90、CK7以及中間絲蛋白),而造血幹細胞標記(CD34、CD45、α 6-整合蛋白、E-鈣黏素以及L-選擇素)沒有被表現(圖8)。在一個具體例中,hTS細胞可依據誘導而被分化成為3種初級胚層之各種不同的特定細胞表現型(圖9)。將hTS細胞皮下地移植至雄性嚴重合併性免疫缺失症(SCID)小鼠中可在植入後的6-8週之時僅造成組織學上輕微的嵌合反應(圖10)。在一個具體例中,染色體分 析顯示hTS細胞不會改變核型的型態(46,XY)(圖11)。在另一個具體例中,細胞壽命在培養介於第3代與第7代之間的端粒長度上沒有被顯著地縮短(圖1c)。
此處所提供的一個方面是使用AffymetrixTM平台以詢問GeneChip Human Genome U133 plus 2.0 GeneChip有關一在hTS細胞與PDMS細胞之間的總體基因比較,而描述hTS細胞與胎盤衍生的間質幹(PDMS)細胞[placenta derived mesenchymal stem(PDMS)cell]之間的區別。在一個具體例中,該等hTS細胞展現出要比在PDMS細胞中的基因表現還少大約10%、大約15%、大約20%、大約25%、大約30%、大約35%、大約40%、大約45%、大約50%、大約55%、大約60%、大約65%、大約70%或大約75%的基因表現。在另一個具體例中,該等hTS細胞展現出總數為2,140的基因(倍數變化>2倍),它要比在PDMS細胞中所具者還少大約40%(3,730基因)(圖1d)。在一個具體例中,hTS細胞的基因強度分布展現出一與在PDMS細胞中所具者有區別的均質型(homogenous pattern)。在另一個具體例中,該等hTS細胞代表在一著床前的階段的一種滋胚內層的特殊群組,而使得它們具有內細胞群(ICM)和/或滋養外胚層的分子肖像(molecular portraits)。在另一個具體例中,該等hTS細胞展現出相似於hES細胞所具者的多能性以及自我-更新的特性。
在hTS細胞中LIF的撤除調控Nanog的過度表現
在人類中,滋胚內層是融合細胞滋養層 (syncytiotrophoblasts)的先驅(Benirschke,K.,Kaufmann,P.in Pathology of the human placenta,39-51 Spring-Verlag New York Inc.,1990)。當胚胎是一桑椹胚(morula)時,一滋養層特化的區域被建立,這反映一種在該區域的細胞中之轉錄因子的特殊組合以及對於它們具有影響之各種不同的環境線索與生長因子。
許多證據指出早期外胚層以及真實ES細胞的原始多能性(naive pluripotency)是取決於3個轉錄組成體(transcriptional organizers)(Oct4、Sox2以及Nanog)的作用(Chambers I.,et al.,Oncogene,23:7150-7160(2004);Niwa H.Development,134:635-646(2007))。ES細胞經由一種具有不同的信號傳遞途徑以及轉錄因子[包括白血病抑制因子(LIF)、Nanog、Sox2以及Oct3/4]的複雜相互作用來維持多能性。轉錄因子Nanog在維持小鼠以及人類ES細胞的多能性上扮演一關鍵角色,而LIF與Oct4以及Nanog協調地作用,俾以支持多能性以及自我-更新(Cavaleri,F.et al.Cell 113,551-552(2003))。
LIF[一種介白素-6型細胞激素(interleukin-6 class cytokine)]會影響細胞生長以及分化。LIF結合至LIFR-α[它與GP130共同受體形成一異型二聚物受體複合體(heterodimeric receptor complex)]。LIF的結合導致JAK/STAT信號傳遞途徑以及MAPK途徑的活化。LIF通常被表現於發育中的胚胎的滋養外胚層中。LIF被認為在維持未經分化的狀態上扮演一個角色。從一幹細胞培養物中移 除LIF通常會導致經培養的幹細胞的分化。LIF亦會影響Nanog(一種被知曉在幹細胞維持上扮演一重要角色的基因)的表現。
一多效性細胞激素白血病抑制因子(LIF)通常是呈一在輸卵管中要比在子宮內膜中還高的濃度而被表現,這顯示一從壺腹至峽部節段(isthmic segment)的梯度降低(圖1g)。雖然在子宮外孕中,LIF位準在輸卵管中會增加2至4倍(Wånggren,K.,et al.,Mol.Hum.Reprod.2007,13,391-397)。LIF在功能上能整合其它信號去活化多潛能轉錄因子(例如,Oct4以及Nanog),俾以維持小鼠胚胎幹(mES)細胞中的多能性以及自我-更新。在LIF的撤除時,細胞增生持續但是一尾型同源盒轉錄因子Cdx2(caudal-related homeobox transcription factor Cdx2)被活化,而在胚胎幹(ES)細胞中引起滋養外胚層分化。
在一個具體例中,一種方法被描述要去決定hTS細胞如何維持多能性以及自我-更新的特性。在一個具體例中,LIF與多潛能轉錄因子[例如,在Smith,A.G.,et al.,Nature 336,688-690(1998);Williams,R.L.,et al.,Nature 336,684-687,(1998);Cavaleri,F.et al.,Cell 113,551-552(2003);Chambers I.,et al.,Cell,2003;113:643-655;Boiani,L.A.et al.,Nature Rev.Mol.Cell Biol.6,872-884(2005)中所描述的因子]的締合在hTS細胞中被檢測。
hTS細胞是從在妊娠的第5-8週之時已蒙受輸卵管子宮外孕的婦女體內而被獲得並且被視為一滋胚內層 的特殊群體,而具有ICM-衍生的人類胚胎幹(hES)細胞以及滋養外胚層的特定的基因標記(例如,在Adjaye,J.,et al.,Stem Cells,2005,23,1514-1525中所描述的標記)(圖1a)。
在一個具體例中,此處所提供的是一種藉由調節該細胞暴露至LIF來影響hTS細胞分化的方法。例如,hTS細胞被區分為3組並且被暴露至不同濃度的LIF。在一個具體例中,LIF的濃度是大約1000、大約750、大約600、大約550、大約525、大約500、大約450、大約400、大約350、大約300、大約250、大約200、大約150、大約125、大約100、大約75、大約50或大約25單位/mL。在另一個具體例中,LIF的濃度是500、250以及125單位/mL。在一個具體例中,LIF的濃度是500單位/mL。在另一個具體例中,LIF的濃度是250單位/mL。在另一個具體例中,LIF的濃度是125單位/mL。
在一個具體例中,該等hTS細胞被暴露至不同濃度的LIF歷時1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30天。在另一個具體例中,該等hTS細胞被暴露至不同濃度的LIF歷時3、6、12、18、24、30、36、48、60、72、84、96、108、120、132、144、156、168、180、192、204、216、228、240或252小時。在另一個具體例中,該等hTS細胞被暴露至不同濃度的LIF歷時大約1至30、大約1至28、大約1至26、大約1至24、大約1至22、大約1至20、大約1至18、大約1至 15、大約1至13、大約1至10、大約1至9、大約1至8、大約1至9、大約1至8、大約1至7、大約1至6、大約1至5、大約1至4或大約1至2天。在另一個具體例中,該等hTS細胞被暴露至不同濃度的LIF歷時3天。
此處所描述的一個方面是較低濃度的LIF會改變特定基因的表現,這包括,但不限於:Oct4、Sox2、Cdx2以及Nanog)。另一個具體例藉由RT-PCR而證明:LIF的撤除和/或較低濃度的LIF會抑制Oct4以及Sox2表現,並且相反地,會促進Cdx2以及Nanog(圖1e)。在一個具體例中,這些現象是藉由流動式細胞測量分析而被進一步確認,其顯示Oct4以及Sox2的抑制是呈一劑量-依賴的方式(圖1f)。
在另一個具體例中,Oct4/Cdx2的相對表現比例暗示在早期胚胎分化上的細胞命運(cell fate)。在另一個具體例中,LIF暴露的撤除和/或減少會導致一在Oct4表現上的減少。在另一個具體例中,LIF暴露的撤除和/或減少是以一劑量-依賴的方式來促進Cdx2、Nanog以及Sox2轉錄因子的表現,這與定量PCR(qPCR)分析是一致的。
此處所描述的另一個方面是在hTS細胞中一位於壺腹的高Oct4/Cdx2比例以一朝向峽部節段的梯度降低(圖1g)與輸卵管中LIF位準的趨勢是相容的,藉此暗示一細胞命運選擇趨向hES細胞。在一個具體例中,相對的Nanog/Cdx2比例的上升調節(2倍)進一步執行細胞中的多能性。在一個具體例中,相對的Nanog/Cdx2比例的上升調 節(2倍)維持hTS細胞中的多能性。在另一個具體例中,有關hTS細胞的Sox2/Cdx2表現比例不會改變以維持多能性。在另一個具體例中,Cdx2過度表現是有利於hTS細胞去維持一滋養層的表現型。
此處所描述的一個具體例是一種用以檢測hTS細胞中Nanog與Cdx2之間的關係的方法。在另一個具體例中,藉由使用siRNA所造成之Nanog以及Cdx2這兩者的剔除研究分別促進Cdx2以及Nanog表現(圖1h),這支持了在hTS細胞中Nanog與Cdx2之間的相互關係相似於在ES細胞中Oct4與Cdx2對於細胞命運選擇所具者(Niwa,H.,et al.,Cell 123,917-929)。在另一個具體例中,Nanog的過度表現結合以升高的Nanog/Cdx2比例補償被降低的Oct4/Cdx2比例並且足以維持在hTS細胞中決定細胞分化命運的多能性和/或更新。
此處所描述的一個方面顯示:在LIF撤除時的Nanog的過度表現是至少一個在維持hTS細胞的多能性上扮演一角色的因子。
視黃酸(RA)以及相關的途徑
視黃酸(RA)(一種維生素A的衍生物)在ES細胞的分化以及胚胎形成(embryogenesis)上扮演一角色。在ES細胞中,RA是藉由結合至它的核受體並且誘導特定標的基因的轉錄來作用,俾以生成數種不同的細胞類型。在一個具體例中,以RA誘導能夠使一hTS細胞-衍生的tNSCs去維持一具有特定的型樣化之穩定地未經分化的狀態。
在一個具體例中,將hTS細胞處理以全反式-視黃酸(RA)會生成適合用於植入至一大鼠疾病模型(例如,巴金森氏症疾病模型)中的神經幹細胞。在另一個具體例中,在hTS細胞中LIF暴露的撤除和/或一減少會調控Nanog(它負責hTS細胞的多能性以及自我-更新的維持)的過度表現。亦於此處所描述的是允許經RA誘導的hTS細胞分化成為神經幹細胞的特定分子途徑,包括在可逆的上皮-間質轉變(epithelial-mesenchymal transition,EMT)、骨型態形成蛋白質(bone morphogenetic protein,BMP)與Wnt信號傳遞途徑的相互作用(cross-talk)以及觸發標的基因Pitx2以供神經幹細胞形成上扮演一角色的途徑。因此,一個具體例描述RA-相關的途徑的調節子供用於從hTS細胞生成神經幹細胞的用途。
RA誘導一NSC亞型的一致複合體
在一個具體例中,hTS細胞被誘導以生成神經幹細胞。在一個具體例中,該等hTS細胞被暴露至或被處理以一誘導劑。在一個具體例中,一誘導劑包括,但不限於:視黃酸、神經生長因子(nerve growth factor)、鹼性纖維母細胞生長因子(basic fibroblast growth factor)、神經滋養因子(neurotrophins)(例如,神經滋養因子3),和/或它們的組合。額外的示範性誘導劑包括,但不限於:促紅血球生成素(erythropoietin,EPO)、大腦衍生的神經滋養因子(brain derived neurotrophic factor,BDNF)、Wnt蛋白質(例如,Wnt3a)、轉變生長因子α(transforming growth factor alpha,TGF α)、轉變生長因子β(transforming growth factor beta,TGF β)、骨型態形成蛋白質(BMPs)、甲狀腺激素(thyroid hormone,TH)(包括T3以及T4型這兩者)、甲狀腺刺激素(thyroid stimulating hormone,TSH)、甲狀腺釋放激素(thyroid releasing hormone,TRH)、刺蝟蛋白(hedgehog proteins)[例如,音蝟因子(sonic hedgehog)]、血小板衍生的生長因子(platelet derived growth factor,PDGF)、環狀AMP(cyclic AMP)、垂體腺苷酸環化酶活化多肽(pituitary adenylate cyclase activating polypeptide,PACAP)、濾泡刺激素(follicle-stimulating hormone,FSH)、生長激素(growth hormone,GH)、似胰島素生長因子(insulin-like growth factors,IGFs)(例如,IGF-1)、生長素釋放激素(growth hormone releasing hormone,GHRH)、泌乳素(prolactin,PRL)、泌乳素釋放胜肽(prolactin releasing peptide,PRP)、纖維母細胞生長因子(fibroblast growth factor,FGF)、雌激素(estrogen)、血清素(serotonin)、表皮生長因子(epidermal growth factor,EGF)、促性腺素釋放激素(gonadotropin releasing hormone,GnRH)、纖毛神經滋養因子(ciliary neurotrophic factor,CNTF)、白血病抑制因子(LIF)、顆粒球群落刺激因子(granulocyte colony stimulating factor,G-CSF)、顆粒球細胞-巨噬細胞群落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF)、血管內皮生長因子(vascular endothelial growth factor,VEGF)、黃體素(luteinizing hormone,LH)、人類絨 毛促性腺激素(human chorionic gonadotropin,hCG)、費洛蒙(pheromones){例如,2-第二-丁基-4,5-二氫噻唑(2-sec-butyl-4,5-dihydrothiazole)、2,3-去氫-西部松小蠹集合信息素(2,3-dehydro-exo-brevicomin)、αβ菌綠烯(alpha and beta farnesenes)、6-羥基-6-甲基-3-庚酮(6-hydroxy-6-methyl-3-heptanone)、2-庚酮(2-heptanone)、反-5-庚烯-2-酮(trans-5-hepten-2-one)、反-4-庚烯-2-酮(trans-4-hepten-2-one)、乙酸正戊酯(n-pentyl acetate)、順-2-戊烯-1-基-乙酸酯(cis-2-penten-1-yl-acetate)、2,5-二甲基吡(2,5-dimethylpyrazine)、丙酸十二烷酯(dodecyl propionate)以及(Z)-7-十二烯-1-基乙酸酯[(Z)-7-dodecen-1-yl acetate]},和/或它們的組合。在另一個具體例中,該誘導劑是一具有天然誘導劑的活性的類似物或變異體。
作為非-限制性實例,視黃酸被用來化學地誘導hTS細胞。多效性因子全-反式視黃酸(RA)是經由多重途徑而在神經分化(neural differentiation)、型樣化(patterning)以及運動軸突外生(motor axon outgrowth)上扮演活體內功能,該等多重途徑包括,但不限於:在ES細胞中的RA/RARs/RXRs信號傳遞、Wnt信號傳遞以及ERK途徑(Maden,M.Nat.Rev.Neuroscience 8,755-765(2007),Lu J,et al.,BMC Cell Biol.2009,10:57,Wichterle H,et al.,Cell.2002;110:385-397)。在mES細胞(Wichterle H,et al.,Cell.2002;110:385-397)、hES細胞中(Li,L.et al.Stem Cells 22,448-456(2004))以及在成人神經生成(Jacobs S,et al.,Proc Natl Acad Sci 2006,103(10):3902-7)上,RA誘導酪胺酸羥化酶(TH)[多巴胺神經元的特徵酵素]的表現以及軸突形成(neurite formation)。
在一個具體例中,一種方法被描述要去決定被處理以RA的hTS細胞的命運。在另一個具體例中,該等hTS細胞被處理以1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、20、25、30、35、40、45、50、55、60或65μM的RA。在另一個具體例中,該等hTS細胞被處理以大約0.5-75、大約1-65、大約1-60、大約1-50、大約1-55、大約1-50、大約1-40、大約1-35、大約1-30、大約1-25、大約1-20、大約1-15、大約1-13、大約1-10、大約2-10、大約5-10或大約8-10μM的RA。在另一個具體例中,該等hTS細胞被處理以10μM的RA。
在一個具體例中,該等hTS細胞被暴露至RA歷時1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35或40天。在另一個具體例中,該等hTS細胞被暴露至RA歷時3、6、12、18、24、30、36、48、60、72、84、96、108、120、132、144、156、168、180、192、204、216、228、240或252小時。在另一個具體例中,該等hTS細胞被暴露至RA歷時大約1至20、大約1至18、大約1至15、大約1至13、大約1至10、大約1至9、大約1至8、大約1至7、大 約1至6、大約1至5、大約1至4或大約1至2天。在另一個具體例中,該等hTS細胞各自被暴露至RA歷時下列不同的期間:1、2、3、4、5、6、7或8天。在另一個具體例中,該等hTS細胞被暴露至RA歷時1天。在另一個具體例中,該等hTS細胞被暴露至RA歷時2天。在另一個具體例中,該等hTS細胞被暴露至RA歷時3天。在另一個具體例中,該等hTS細胞被暴露至RA歷時4天。在另一個具體例中,該等hTS細胞被暴露至RA歷時5天。在另一個具體例中,該等hTS細胞被暴露至RA歷時6天。在另一個具體例中,該等hTS細胞被暴露至RA歷時7天。在另一個具體例中,該等hTS細胞被暴露至RA歷時8天。
在一個具體例中,RA誘導hTS細胞分化成為各種不同表現型的神經細胞,其包括,但不限於:神經膠質限制的前驅細胞(GRP)、神經元限制的前驅細胞(NRP)、多潛能性神經幹(MNS)細胞、星狀細胞(AST)以及未定義的滋養層巨細胞(TGC)(圖2a),它們免疫細胞化學地表現神經幹細胞標記巢蛋白(圖2b)。在另一個具體例中,歷時一為1至5天的RA-誘導期,在經混合的RA-誘導的神經祖細胞的分布上的一相似比例產生。在另一個具體例中,歷時一為7天的RA處理,細胞分化變為未定義的滋養層巨細胞。
因此,在一個具體例中,此處所提供的是衍生自hTS細胞之經RA-誘導的神經幹細胞。在另一個具體例中,該RA誘導期是1、2、3、4、5、6、7、8、9、10、11 、12、13、14、15、16、17、18、19、20、25、30、35或40天。在另一個具體例中,該RA誘導期是3、6、12、18、24、30、36、48、60、72、84、96、108、120、132、144、156、168、180、192、204、216、228、240或252小時。在另一個具體例中,該RA誘導期是大約1至20、大約1至18、大約1至15、大約1至13、大約1至10、大約1至9、大約1至8、大約1至7、大約1至6、大約1至5、大約1至4或大約1至2天。在一個具體例中,該RA誘導期是落在大約1天至大約7天。在另一個具體例中,該RA誘導期是1天。在另一個具體例中,該RA誘導期是2天。在另一個具體例中,該RA誘導期是3天。在另一個具體例中,該RA誘導期是4天。在一個具體例中,該RA誘導期是5天。在一個具體例中,該RA誘導期是6天。在另一個具體例中,該RA誘導期是7天。在另一個具體例中,該RA誘導期是24小時。在一個具體例中,該RA誘導期是12小時。在另一個具體例中,該RA誘導期是1小時至24小時。
在一個具體例中,此處所描述的是一種表現至少一神經幹細胞基因以及標記的tNSC。在另一個具體例中,該tNSC表現至少2種、至少3種、至少4種或至少5種神經幹細胞基因。在另一個具體例中,該tNSC表現至少2種、至少3種、至少4種或至少5種神經幹細胞標記。神經幹細胞基因以及標記的非-限制性實例包括:巢蛋白、神經絲、NgN3、MAP-2、Neo-D、CD133以及Oct4(圖2b)。 在一個具體例中,該tNSCs亦表現RA受體基因(其包括,但不限於:RAR β、RXR α以及RXR β)、細胞視黃酸結合蛋白(CRABP)-2、細胞視黃醇結合蛋白(CRBP)-1以及特別地,被發現不存在於ES細胞中的RA-合成酶RALDH-2以及RALDH-3。
因此,一個具體例描述經表現的神經幹細胞基因以及標記[包括巢蛋白、神經絲、NgN3、MAP-2、Neo-D、CD133與Oct4、RA受體基因(諸如RAR β、RXR α以及RXR β)、CRABP-2、CRBP-1、RA-合成酶RALDH-2與RALDH-3或類似者,和/或它們的調節子]用以促進tNSCs的分化能力的用途。在一個具體例中,3天與5天RA-誘導的hTS細胞這兩者都以一相似的比例維持神經幹細胞標記,包括巢蛋白、GFAP以及神經絲蛋白(圖2c)。在另一個具體例中,這些tNSCs免疫細胞化學地表現酪胺酸羥化酶-2(TH-2)以及血清素(圖2d),這暗示它們要被分化成為多巴胺神經元以及血清基能神經元的能力。此處所描述的另一個具體例是將tNSCs分化成為多巴胺神經元以及血清基能神經元。
此處所進一步提供的是由一致地經混合的神經上皮祖細胞(neuroepithelial progenitor cells)[在細胞培養期間能在基因以及表現型上維持呈一穩定狀態(steady-state)]所構成的tNSCs。這種在產物上的一致性對於任何包含有以幹細胞為基礎的治療的治療攝生法(treatment regimen)是一種所欲的特性。
就Nanog表現而言LIF與RA之間的關聯性
在早期胚胎發育中,tNSCs典型地表現RALDH-2。此處所描述的一個具體例是一種用以評估在hTS細胞中LIF如何影響RA-誘導的神經生成的方法。在小鼠ES(mES)細胞中,LIF具有抑制RA-誘導的神經元分化的能力而使得移植更為困難(Martín-Ibáñez R,et al.,J.Neuron.Res.85,2686-2710(2007);Bain G,et al.,Dev Biol 168:342-357)。其它報導主張LIF在ES細胞分化成為神經元上的一正向角色(Tropepe V,Neuron 2001,30:65-78)。
在一個具體例中,一種方法被描述要去評估在hTS細胞中就Nanog表現而言LIF與RA之間的關聯性。在另一個具體例中,tNSCs被處理以LIF並且藉由流動式細胞測量術而被進行Nanog表現的測量(圖18a)。在一個具體例中,該等tNSCs被處理以大約1000、大約750、大約600、大約550、大約525、大約500、大約450、大約400、大約350、大約300、大約250、大約200、大約150、大約125、大約100、大約75、大約50或大約25單位/mL的LIF。在另一個具體例中,該等tNSCs被處理以1-1000、1-500、1-450、1-400、1-350、1-300、1-250、1-200、1-150、1-125、1-100、1-75或1-50單位/mL的LIF。在另一個具體例中,該等tNSCs被處理以500、250和/或125單位/mL的LIF。
在一個具體例中,該等hTS細胞被暴露至LIF歷時1、2、3、4、5、6、7、8、9或10天。在另一個具體 例中,該等hTS細胞被暴露至LIF隔夜。在另一個具體例中,該等hTS細胞被暴露至LIF歷時3、6、12、15、18、22、24、30、36、48、60、72、84、96、108、120、132、144、156、168、180、192、204、216、228、240或252小時。在另一個具體例中,該等hTS細胞被暴露至LIF歷時大約1至20、大約1至18、大約1至15、大約1至13、大約1至10、大約1至9、大約1至8、大約1至7、大約1至6、大約1至5、大約1至4或大約1至2天。
在一個具體例中,以RA來處理hTS細胞誘導Nanog過度表現。在另一個具體例中,LIF以一劑量-依賴的方式來抑制RA-誘導的Nanog。在另一個具體例中,LIF在tNSC發育上發揮一抑制作用。
此處所描述的一個方面是在於在ES細胞的神經分化上LIF與RA相互作用。在一個具體例中,LIF影響RA在hTS細胞中的多能性上的效用。結果顯示:在hTS細胞中,RA誘導Nanog以及Oct4的過度表現但不是Cdx2以及Sox2(圖18b)。在腦的峽部區域中,Nanog表現在LIF-誘導的細胞中被觀察到呈62.5%(圖1f,左以及右區),但在RA-誘導的細胞中僅有26.9%(圖18b)。亦被觀察到的是:一較高位準的LIF通常抑制RA-誘導的Nanog並且LIF的撤除顯著地增強RA-誘導的Nanog表現(圖18a)。這些結果暗示有如hTS細胞朝向峽部移動。在一個具體例中,RA藉由Nanog表現維持細胞多能性。
在一個具體例中,在一個RA-增富的微環境 (RA-enriched microenviroment)中植入tNSCs促進活體內幹細胞的連續增生。在另一個具體例中,該等tNSCs被植入至腦內。在另一個具體例中,該等tNSCs被植入或被注射至海馬迴(hippocampus)、大腦皮質(cerebral cortex)、紋狀體、間隔(septum)、間腦(diencephalon)、中腦(mesencephalon)、後腦(hindbrain)或脊髓基底神經節(spinal cord basal ganglia)內。在另一個具體例中,該等tNSCs被植入至腦的紋狀體內。在另一個具體例中,該等tNSCs被植入或被注射至中樞神經系統(central nervous system)的任何部位內。在另一個具體例中,該等tNSCs被植入或被注射至在特定的神經退化障礙中退化的細胞的神經末梢區域內。在另一個具體例中,該等tNSCs被植入或被注射至中腦(midbrain)中的黑質緻密部內。在另一個具體例中,該等tNSCs被植入或被注射至前腦(forebrain)中的神經末梢區域內。在另一個具體例中,該等tNSCs被植入或被注射至腦室系統(ventricular system)內。在另一個具體例中,該等tNSCs被植入或注射至側腦室(lateral ventricle)內。
在維持tNSCs中之多潛能性(multipotency)上的G蛋白質信號傳遞
此處所描述的另一個方面是一種用以研究tNSCs如何維持它們的多潛能性狀態的方法。在一個具體例中,RA在大約第15分鐘之時誘導c-Src mRNA表現波峰(圖3a)。此處所描述的另一個具體例是基於RA刺激RXR α、c-Src以及RAR β的表現而藉由西方墨點分析來評估 GPCR信號傳遞途徑(圖3b)。在一個具體例中,RA在30分鐘內促進G α q/11以及G β這兩者表現。在另一個具體例中,免疫沉澱(IP)分析法的分析證明:RA誘導RXR α與RAR β之間的直接結合;然而,此種交互作用藉由c-Src抑制劑PP1類似物而被阻斷,這表示c-Src涉及RXR α以及RAR β之間要形成一支架蛋白質複合體(圖3c)。
藉由免疫沉澱(IP)分析(圖3d),我們獨立地觀察到RXR α展現出與G α q/11結合交互作用,而RAR β顯示與G β結合交互作用。這些結果是與GPCR-G蛋白質信號傳遞的“拉與推(pull and push)”模型相容的(Tsai et al.,“The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation.Nat.Med. 13,1504-1509,(2007))。
在一個具體例中,RARs以及RXRs的異型二聚物對(heterodimeric pair)扮演核中的配位子-活化的轉錄因子(ligand-activated transcription factors)以及內生性細胞表面信號分子(endogenous cell surface signal molecules)的角色。經組成性地活化的RXR α破壞受體構形並且募集c-Src去與相締合的G α q/11交互作用和/或活化相締合的G α q/11。在一個實例中,這種非-基因的RA訊息傳遞協助解釋非-視黃酸-反應元(retinoic acid-response element,RARE)-調控的基因表現(Maden,M.,Mat.Rev.Meuroscience 8,755-765(2007))。
因此,此處所提供的是用於防止在移植此處所 提供的神經幹細胞之前以及之後的細胞過度生長的策略。一個具體例描述調節RA-相關的途徑藉此防止和/或減少和/或緩和過度生長和/或移植物排斥(graft rejection)之試劑的用途。
Src以及Nanog
c-Src維持ES細胞處於一未經分化的狀態(Annerén C.et al.,J Biol Chem.279,590-598(2004))。Nanog以及Stat3協同地結合來活化Stat3-依賴的啟動子(Torres J.,et al.,Nat Cell Biol.10,194-201(2008))。在一個具體例中,c-Src誘導Stat3在Tyr705位址上的磷酸化,並且此作用是藉由c-Src抑制劑PP1類似物而被阻斷,藉此連結了c-Src與Stat3分子之間的關聯性(圖3f)。在另一個具體例中,Stat3直接作用在Nanog啟動子上(圖3g)。在另一個具體例中,Stat3沒有直接作用在Nanog啟動子上。在另一個具體例中,RXR α直接作用在Nanog啟動子上。在另一個具體例中,RXR α沒有直接作用在Nanog啟動子上。在另一個具體例中,RAR β直接作用在Nanog啟動子上。在另一個具體例中,RAR β沒有直接作用在Nanog啟動子上。在另一個具體例中,RA在hTS細胞中誘導c-Src、pStat3(圖3e)以及Nanog(圖1e)的過度表現。在另一個具體例中,RXR α以及RAR β這兩者對RA的反應是經由GPCR-G蛋白質信號傳遞而扮演一個傳遞的角色。
在一個具體例中,此處所描述的是一種用以在tNSCs中維持多潛能性的方法,該方法包含有活化 c-Src/Stat3/Nanog轉錄途徑。在另一個具體例中,c-Src與G α q/11的交互作用活化c-Src/Stat3/Nanog途徑。為了進一步藉由成像研究證實RXR α與G α q/11之間的直接交互作用,雙免疫金螢光穿透電子顯微鏡(IEM)被使用。RA誘導在小的金粒子-標記的RXR α(6μM)與大的金粒子-標記的G α q/11(20μM)之間於細胞膜(plasma membrane)之處的結合交互作用(圖4)。藉由動態共焦免疫螢光顯微鏡,經免疫染色的RXR α與G α q/11這兩者主要地呈一均質特徵出現在細胞質或核中(圖4)。藉由處理以RA歷時5分鐘,細胞溶質的RXR α強度在核-周區域之處增加而核的RXR α強度減低(圖4,第1行),這表示在刺激之後的一細胞溶質轉位。在第15分鐘之時,該核的RXR α強度變得顯著,而細胞溶質的RXR α強度減低(圖3a)。
在一個具體例中,在一細胞核中的一活性增加維持一細胞中的穩定狀態。一明顯的細胞溶質轉位在30分鐘內再次被觀察到。另一方面,G α q/11表現的區隔變化是相似於RXR α所具者(圖4,第2行)。在一個具體例中,在刺激之後的第30分鐘之時有一G α q/11的明顯聚集在細胞膜之處被觀察到。在另一個具體例中,RA能夠促進RXR α與G α q/11這兩者在hTS細胞中的組成性合成以及轉位。
因此,此處所提供的是RA在細胞膜之處經由GPCR-G蛋白質信號傳遞而作用於hTS細胞上(這與基因的RA/RXRs/RARs途徑是可區別的)以供生成tNSCs的用途。如此處所顯示的,RA在將hTS細胞分化成為tNSCs上是經 由Nanog以及Oct4,而非Cdx2以及Sox2途徑來作用。亦於此處所提供的是RA-誘導的Nanog活化供用於維持在tNSCs中之多潛能性以及自我-更新的用途。此處所提供的是RA活化G蛋白質-偶合受體(G protein-coupled receptor,GPCR)-G蛋白質信號傳遞,以及伴隨著活化RXR α/G α q/11/c-Src/stat3/Nanog途徑以供維持在tNSCs中之多潛能性的用途。此處所提供的是RXR α以及RAR β的異型二聚物在細胞膜之處作用有如信號分子以供維持在tNSCs中之多潛能性的用途。亦於此處所提供的是RA藉由Nanog的過度表現來誘導hTS細胞分化成為神經幹細胞(NSCs)以供維持多能性以及再生的用途。
此處所描述的tNSCs會表現幫助神經生成的視網醛去氫酶(RALDH)-2以及RALDH-3。此處所描述的在tNSCs中存在RALDHs以及不存在CD33暗示tNSCs在分化成為感覺運動神經元(sensorimotor neurons)上是優於hES細胞的。因此,此處所提供的是於此處所描述的tNSCs供用於神經生成和/或再生藥物(regenerative medicine)的用途。
在發育紋狀體以及海馬迴上,一經增加的Src激酶活性與神經元分化以及生長的尖峰期相一致。然而,RA可以藉由24小時培育來抑制核糖體S6激酶(ribosomal S6 kinase)以及它的下游真核起始因子4B(eukaryotic Initiation factor 4B,eIF4B)的磷酸化,俾以造成許多細胞類型的生長停滯(growth arrest)。RA在第15分鐘之時誘導hTS 細胞中之一快速短暫的c-Src mRNA波峰的表現(圖3a),繼而在第1小時之時生成c-Src蛋白質(圖3e)。在一個具體例中,c-Src mRNA含有一個內部核糖體進入位址(internal ribosome entry site)。在另一個具體例中,RA在第4小時之時短暫地產生eIF4B波峰,但在第24小時之時消退(圖20c)。此作用是藉由使用eIF4B siRNA而被抑制(圖20d)。mTOR/eIF4EBP1信號傳遞[雷帕黴素/真核起始因子4E結合蛋白1(rapamycin/eukaryotic Initiation factor 4E binding protein 1)的機制標的]的涉入被排除(圖20b)。在另一個具體例中,RA活化eIF4B以供次細胞mRNA定位去生成c-Src。
活性的c-Src藉由位在Tyr705位址的磷酸化而直接地結合至Stat3(轉錄的訊息傳遞者以及活化子)(圖20e)以生成蛋白質(圖3e)。在一個具體例中,此作用是藉由使用c-Src siRNA而被抑制(圖20f)。在另一個具體例中,此作用是藉由一種選擇性c-Src抑制劑PP1類似物而被抑制(圖3f)。在另一個具體例中,Stat3在Nanog基因啟動子上的一直接作用是藉由染色質免疫沉澱(ChIP)分析而被觀察到(圖3g)。在另一個具體例中,Nanog在4小時內被生成(圖3f以及20f),它可藉由使用PP1類似物(圖3f)以及Stat3 siRNA(圖20g)而被阻斷。
在一個具體例中,此處所描述的是一種用以維持tNSCs的多能性的方法,其包含有將細胞暴露至一誘導劑以調節非基因的eIF4B/c-Src/Stat3/Nanog信號傳遞途徑 所調控的c-Src次細胞mRNA定位(圖20h)。在另一個具體例中,該誘導劑是RA。
RA以及Wnt信號傳遞
亦於此處所提供的是一種用以誘導hTS細胞成為神經幹細胞的方法。在一個具體例中,該方法包含有調節Wnt2B/β-連接素信號傳遞途徑。在另一個具體例中,該方法包含有調節RARs-Akt信號傳遞途徑。在另一個具體例中,該方法包含有調節Wnt2B/β-連接素以及RARs/Akt信號傳遞途徑。在另一個具體例中,該等hTS細胞是藉由處理以視黃酸(RA)而被誘導。在另一個具體例中,該用以誘導hTS細胞成為神經幹細胞的方法進一步包含有活化轉錄因子Pitx2。在另一個具體例中,該用以誘導hTS細胞成為神經幹細胞的方法進一步包含有活化轉錄因子NTN。在另一個具體例中,該用以誘導hTS細胞成為神經幹細胞的方法進一步包含有活化轉錄因子Pitx2以及NTN。在另一個具體例中,RAR以及RXR有如一異型二聚物而存在,該異型二聚物經由它的DNA-結合領域(DNA-binding domain,DBD)而被結合至RARE DR-5。在另一個具體例中,共抑制子(corepressors)結合至RAR並且募集HDAC而造成轉錄抑制(transcriptional repression)。在另一個具體例中,RA被添加至hTS細胞以及轉錄是藉由RA結合至RAR而被活化。在另一個具體例中,RAR結合至RA接著募集共活化子(coactivators)以及HAT。
RA-調控的Wnt信號傳遞途徑在成人神經生成 以及活體內存活的期間是一重要的貢獻者。存在於神經幹細胞微環境中的Wnt蛋白質在早期胚胎形成中是細胞行為的關鍵調節子,並且能維持神經幹細胞潛力。在成人神經生成中,Wnt蛋白質結合至它們的受體卷曲蛋白(Frizzled)(例如,Fzd6)以傳遞許多訊息級聯(signaling cascades),例如藉由針對特定的標的基因來活化β-連接素/LEF信號傳遞。
Wnt信號在神經發育(neurodevelopment)的期間涉及細胞週期控制(cell cycle control)以及組織分化(morphogenesis)。在它們之中,Wnt2B會抑制視網膜神經元的分化,並且已使用比較性生物信息學實驗數據分析和管理解決方案分析(comparative integromics analysis)而被暗示是一個有關NSCs的幹細胞因子。在一個具體例中,Wnt2B調節Fzd6的表現。在另一個具體例中,Wnt2B誘導Fzd6的表現。在另一個具體例中,Fzd6在Wnt2B的存在下被過度表現。在一個具體例中,RA調節一種用於在hTS細胞中的多巴胺分化的典型Wnt2B/Fzd6/β-連接素信號傳遞途徑。在一個具體例中,RA誘導一種用於在hTS細胞中的多巴胺分化的典型Wnt2B/Fzd6/β-連接素信號傳遞途徑。
此處所提供的一個具體例描述典型Wnt途徑作為誘導一抑制性GSK3 β,而致使β-連接素的穩定以供在細胞中的核轉位。在另一個具體例中,RA快速地誘導GSK3 β位在Tyr216位址之處[Akt2的下游效應子(effector)]的磷酸化。在另一個具體例中,RA快速地誘導GSK3 β位在 Tyr216位址之處的磷酸化,而致使在最初的數小時之時的β-連接素的磷酸化,並扮演一個用於隨後的典型Wnt途徑的“促發(priming)”效應。在另一個具體例中,這些經活化的Fzd6以及Dvl3能夠促進JNK與細胞骨架(cytoskeleton)的交互作用或增加細胞內Ca2+位準,接著在一非-典型Wnt/Ca2+信號傳遞途徑中活化用於突觸功能的CaMKII。隨著時間進行,從非-典型至典型Wnt途徑的一轉換發生,這歸因於GSK3 β位在Ser9/21位址之處的磷酸化。在一個具體例中,G蛋白質在一起始階段調節非-典型Wnt2B信號傳遞的傳導。在另一個具體例中,一種典型Wnt2B信號傳遞在早期發育的神經元分化中的後期階段發生。
HDAC6
亦於此處所提供的是一種用以誘導hTS細胞成為神經幹細胞的方法,該方法包含有調節組織蛋白去乙醯酶6(histone deacetylase 6,HDAC6)。組織蛋白去乙醯酶6(HDAC6)(一種主要位於細胞質中的酵素)調節許多生物過程(biological processes),包括細胞移動(cell migration)、免疫突觸形成(immune synapse formation)、病毒感染(viral infection)以及經錯誤摺疊的蛋白質的降解。例如,HDAC6可將微管蛋白、Hsp90以及皮層蛋白(cortactin)去乙醯化,並且與其它夥伴蛋白質(partner proteins)形成複合體。
HDAC6能運輸β-連接素以供核定位。在一個具體例中,藉由細胞分離分析,HDAC6與β-連接素交互作用而導致β-連接素的核轉位。在另一個具體例中,RA誘導 一新穎的典型Wnt2B/Fzd6/β-連接素信號傳遞途徑,而允許在hTS細胞中的β-連接素的核轉位。在核內,β-連接素涉及調控關鍵的基因表現程式,或作為一對接平台(docking platform)以供各種不同的轉錄共活化子(transcriptional co-activators)去刺激轉錄。
HDAC4
HDAC4是一種功能性hTS細胞-誘導的神經幹細胞的重要表觀遺傳調節子(epigenetic regulator)。HDAC4抑制細胞-週期進展並且保護神經元免於細胞死亡。藉由RARs所造成的轉錄調節涉及由HDACs[它們是藉由核的共抑制子(nuclear co-repressors)而被募集至RA-標的基因]來修飾染色質,這決定了對於RA的差別反應。
LEF/TCF/Pitx2
Lef-1以及Pitx2藉由募集並且與β-連接素交互作用來活化標的基因而在Wnt信號傳遞途徑中作用。Pitx2與Lef-1蛋白質內的2個位址交互作用。此外,β-連接素與Pitx2同源區(homeodomain)交互作用,而Lef-1與Pitx2 C-端的尾部交互作用。Lef-1以及β-連接素經由2個不同的位址同時地並且獨立地與Pitx2交互作用,俾以調節Pitx2轉錄活性。這些數據支持一個有關Pitx2經由差異的Lef-1異構型表現以及與Lef-1以及β-連接素的交互作用而在細胞增生、移動以及細胞分裂(cell division)上的角色。
NTN1
NTN1的分子機制被認為主要涉及軸突導引 (axonal guidance)以及神經元細胞移動的控制。
Wnt/PS1/PI3K/Akt途徑的活化以及藉由RA所造成的GSK3-β的抑制
由於增生性祖細胞的數目增加以及一在經分化的神經元上的對應減少,增加的Wnt信號傳遞擴張幹細胞庫(stem cell pool)並且強化一穩定的β-連接素的表現而致使一個大的腦(Chenn,A.et al.,Science 297,365-369,(2002))。β-連接素作為一接合蛋白(junctional protein)而具有一雙重角色,並且在典型Wnt信號傳遞中,表現型可能是由於經增加的Wnt信號傳遞(它被連結至NSC自我-更新)或經增加的接合穩定性(junctional stability)。
PI3K/Akt信號傳遞
在一個具體例中,此處所描述的是一種用於維持tNSCs的多能性的方法,該方法包含有調節PI3K/Akt信號傳遞途徑。G-蛋白質β/γ異型二聚物亦活化磷酸肌醇-3-激酶的調節次單元5(Phosphoinositide-3-kinase,regulatory subunit 5)[PI3K regclass IB(p101)],而致使磷酸肌醇-3-激酶的催化γ多肽(Phosphoinositide-3-kinase,catalytic,gammapolypeptide)[PI3K cat class IB(p110-γ)]-調控的磷脂肌醇4,5-二磷酸鹽[phosphatidylinositol 4,5-biphosphate,PtdIns(4,5)P2]至磷脂肌醇3,4,5-三磷酸鹽[phosphatidylinositol3,4,5-triphosphate,PtdIns(3,4,5)P3]的轉換[3]。PtdIns(3,4,5)P3是一種直接地結合至3-磷酸肌醇依賴的蛋白激酶-1(3-phosphoinositide dependent protein kinase-1)[PDK(PDPK1)]以及V-akt小鼠胸腺瘤病毒致癌基因同源物1(V-akt murine thymoma viral oncogene homolog 1)[AKT(PKB)]的次級傳訊子(second messenger)。PDK(PDPK1)磷酸化AKT(PKB)並且活化AKT信號傳遞[4]。
PI3K/Akt信號傳遞在下面的幹細胞系統中調節自我-更新以及分化能力。從原生殖細胞(primordial germ cells,PGC)中的多潛能胚胎生殖(embryonic germ,EG)細胞的衍生在PGC-特異的Pten-缺乏的小鼠(PGC-specific Pten-deficient mice)中被增強(Kimura T,et al.,Development 130:1691-1700,(2003))。
在一個具體例中所顯示的是:利用Akt信號傳遞的條件活化,PI3K/Akt信號傳遞在休眠幹細胞的活化上扮演一角色。在另一個具體例中,PI3K/Akt信號傳遞在成人表皮中的祖細胞的增生上扮演一角色。
在一個具體例中,PI3K/Akt信號傳遞在這些培養-適應的幹細胞中促進幹細胞的自我-更新,而不是定向祖細胞的生成。在一個具體例中,RA在hTS細胞中調節Akt3/mTOR信號傳遞的活化,而引起次細胞mRNAs轉譯來編碼蛋白質RXR α以及RAR β。在一個具體例中,RA在hTS細胞中誘導Akt3/mTOR信號傳遞的活化,而引起次細胞mRNAs轉譯來編碼蛋白質RXR α以及RAR β。在另一個具體例中,一誘導劑抑制Akt3/mTOR信號傳遞的活化。在另一個具體例中,RXR α/G α q/11以及RAR β/G β信號傳 遞途徑的選擇性移動與交互作用被獨立地啟動。
在另一個具體例中,RA調節有關細胞功能的基因程式轉錄活性是取決於一多效性以及細胞環境-依賴的方式(cellular context-dependent manner);亦即,產出表現型(output phenotype)是一由AP-1和/或β-連接素-LEF/TCF抑制以及RARE活化的效用所構成的組合。
GSK3 β調節微管組合
hTS細胞包括主要的GSK3 β功能,而在神經發育上GSK3 β的起始活化促進神經元分化以及隨後的不活化促進祖細胞增生。在休眠細胞中,GSK3的基礎活性通常是相對高的,而將細胞暴露至引導信號會在10分鐘內降低它的比活性(specific activity)達至介於30-70%之間。GSK3 β對於它的已被磷酸化的受質具有一強的偏好,因此,在典型Wnt2B信號傳遞中先前經促發的β-連接素對於隨後的抑制性GSK3 β而言變成一適合者。
在一個具體例中,快速地時空活性的GSK3 β磷酸化局限在軸突生長核心中的MAPT,而導致促進微管組合、神經元極性(neuronal polarity)以及軸突外生的微管蛋白異型二聚物的活化(圖21a以及21b),這與GSK3 β的活化涉及軸突微管組合的概念是一致的。此外,GSK3 β亦能夠調節CRMP-2的磷酸化而促使微管組合,藉此CRMP-2優先地結合至微管蛋白異型二聚物,這明顯地與MAPT所具者有區別。一種CRMP-2的突變型以一優勢-負向的方式來抑制軸突生長以及分支。
在一個具體例中,此處所提供的是一種用以幫助解釋在活體內GSK-3信號傳遞是一恆定控制(homeostatic control)的重要媒介而在發育的腦中調節神經祖細胞的機制基礎。在另一個具體例中,PI3K/Akt途徑的初始的局部活化誘導在hTS細胞中的GSK3 β位在Tyr216之處的活化。在一個具體例中,PI3K/Akt途徑的初始的局部活化與藉由在分離自E18大鼠胚胎的海馬迴神經元(hippocampal neurons)中的Ser9/21磷酸化所誘導的GSK3 β的不活化是有區別的。在一個具體例中,在GSK3 β中的不同位址上的磷酸化致使不同的細胞命運,這取決於時間因素。經磷酸化的GSK3 β藉由促進核輸出來防止鈣調去磷酸酶-誘導的NFAT1的DNA結合。NFAT在促進基因轉錄(包括在免疫反應期間T-細胞中的細胞激素基因)上扮演一核心角色。這些事實至少部分地解釋為何hTS細胞與tNSCs這兩者具有促進PD大鼠中的顱內移植(intracranial transplantation)的免疫優勢。
G蛋白質以及神經元可塑性(Neuronal Plasticity)
在NSCs中高度的自主性是藉由在神經生成的期間選擇性定位以及轉譯mRNAs的子集合而允許針對引導信號的快速局部反應,其中mTOR典型地在NSCs中經由磷酸化mRNA轉譯以及核糖體合成的關鍵調節子來上升調節蛋白質合成。在hTS細胞中,活性的Akt3/mTOR信號傳遞觸發mRNA轉譯以獨立地合成RXR α以及RAR β蛋白質(它們分別地活化G α q/11以及G β信號傳遞途徑),其中局部 CREB1被活化並且扮演一個短暫地標靶TH基因轉錄的誘導型基因表現的角色,俾以生成神經傳遞質多巴胺(neurotransmitter dopamine)。已被顯示的是:RA促進樹突RNA顆粒中的RAR α表現並且活化局部的麩胺酸受體1(glutamate receptor 1,GluR1)合成,這意味著一恆定的突觸可塑性(homeostatic synaptic plasticity)。因此,一多巴胺D1/D5受體(CREB的上游增強子)的活化會誘導GluR1嵌入位在神經元中的突觸位址上。
在一個具體例中,此處所提供的是一種分子模型供用於研究RA信號-相關的可塑性。
用於多巴胺神經生成的轉錄因子
在一個具體例中,β-連接素與CREB1在核中的交互作用代表一在TH轉錄上的主流。在一個具體例中,活性的β-連接素結合至淋巴增強子因子1/T細胞因子1(lymphoid enhancer factor 1/T cell factor 1)(LEF1),而導致LEF1從轉錄的抑制子轉換至活化子。LEF1接著募集並且與Pitx2(一個bicoid-相關的因子的超家族的成員)交互作用。在一個具體例中,LEF1促進Pitx2基因轉錄。在另一個具體例中,LEF1促進Pitx3基因轉錄。在另一個具體例中,LEF1促進Pitx3以及Pitx2這兩者基因轉錄。在一個具體例中,β-連接素、Pitx2以及LEF1協同地交互作用以調節LEF-1啟動子。
此外,短暫的核活性的NFAT1扮演有如轉錄因子以生成供用於免疫反應的細胞激素以及TNF-α。然而, 因為經磷酸化的GSK3 β能夠去抑制鈣調去磷酸酶-誘導的NFAT1在核中的DNA結合並且促進核輸出,此作用不太可能在本案例中發生。因此,由於此作用是藉由NFAT1 siRNA而被抑制(圖22e),活性的細胞質NFAT1將會交互作用並且活化細胞質轉錄因子肌原細胞增強子因子2A(myocyte enhancer factor 2A,MEF2A)(圖22c以及22d)。特別地,快速誘導型CREB1進入核內並且轉錄生成MEF2A蛋白質的MEF2A基因(圖22f)。MEF2A可能在基因轉錄上以多種方式而作用(圖22g),包括經由自動-調節的自身轉錄以生成更多MEF2A、轉錄TH基因以供多巴胺特化(dopaminergic specification)、轉錄SNCA基因以供SNCA/MAPT/parkin複合體形成,以及與EP300和Pitx2交互作用(它是藉由MEF2A siRNA而被抑制)(圖22h)。
在一個具體例中,活性的EP300標靶HDAC6基因以及TH基因。在一個具體例中,活性的EP300標靶HDAC6基因。在另一個具體例中,活性的EP300標靶TH基因。在一個具體例中,活性的EP300促進HDAC6基因以及TH基因的轉錄。在另一個具體例中,活性的EP300抑制HDAC6基因以及TH基因的轉錄。在另一個具體例中,HDAC6運輸β-連接素以供核轉位。
在一個具體例中,此處所提供的是一種執行轉錄複合體的特徵,該執行轉錄複合體被形成以及被指定以供TH基因轉錄。例如,CREB1、EP300以及MEF2A能夠標靶TH基因的啟動子,而β-連接素、LEF1以及Pitx2在 轉錄過程期間執行作為增強子的共活化子。在一個具體例中,此處所提供的是用以瞭解這些基因如何在多巴胺NSCs中的分化以及增生之間操縱平衡的方法,這對於評估疾病機制(例如,PD)具有含意。
CaMKII的多種面貌
在發育NSCs上,經由電位-閘控的鈣離子通道(voltage-gated calcium channels)或神經傳遞質受體(neurotransmitter receptors)的局部鈣流入(local calcium influx)導致CaMKII的活化,而向前傳送數種訊息。在一個具體例中,針對興奮-轉錄偶合(excitation-transcription coupling),時空的CaMKII在hTS細胞中經由活化的eIF4B觸發c-Src mRNA定位以合成c-Src蛋白質,而致使Nanog的活化以供自我-更新以及增生。在另一個具體例中,CaMKII觸發局部CREB1的活化,而導致一回向運輸(retrograde trafficking)至核內以標靶基因MEF2A的轉錄。MEF2A不僅在神經元分化以及增生上,並且在骨骼肌以及心肌發育(skeletal and cardiac muscle development)上調控細胞功能。在一個具體例中,CaMKII活化MAPT而調控parkin蛋白質以及依序地,MAPT活化供用於微管組合的微管蛋白異型二聚物(圖22a以及22j)。這些結果暗示:早期時空的CaMKII信號對於微管蛋白的活化以在早期發育的NSCs中促進微管組合、神經元移動以及神經元極化(neuronal polarization)是足夠的,這確保與腦內的紋狀體標的(striatal targets)的適當連接性。
L-型鈣離子通道以其它的方式來調節細胞內鈣以供恆定,這涉及成人NSCs中的興奮-神經生成(excitation-neurogenesis)。一升高的氯化鉀(KCl)位準致使膜去極化(membrane depolarization),而導致鈣經由L-型電位敏感的鈣離子通道的一流入,這足以經由神經元中的ER以及粒線體之間的相互作用來誘導粒線體功能異常(mitochondrial dysfunction)。在一個具體例中,RA調節與L-型鈣離子通道有關聯的細胞內ER鈣。
CaMKII{攜鈣蛋白(CaM)-依賴的蛋白激酶II[calmodulin(CaM)-dependent protein kinase II]}(一種L-型Ca2+通道的下游效應子)在對於短暫的低-振幅的鈣離子電位(transient low-amplitude calcium spikes)的反應上展現出一針對Ca2+/攜鈣蛋白的較低親和力。在一個具體例中,RA調節CaMKII的一時空活化。在另一個具體例中,RA誘導CaMKII的一時空活化。在另一個具體例中,RA抑制CaMKII的一時空活化。
藉由IP分析,CaMKII直接地磷酸化以及活化CREB1(圖21c),這與CaMKII在興奮-轉錄偶合上局部地將L-型鈣離子通道活性編碼為至核的CREB的信號之先前研究是相容的。因為軸突含有各種不同的局部地mRNA編碼特定的蛋白質合成,包括在發育的神經元中的CaMKII、鈣調去磷酸酶以及CREB1,這顯示外來的RA-觸發的mRNA轉譯機器發生在它們身上,因為它們能藉由真核起始因子4B(elf4B)siRNA而被抑制(圖21d)。因此,此局部的CREB1 能夠回向運輸以供用於在核中負有末梢軸突的信號之責任的特定轉錄過程。這些結果顯示:對於細胞外信號的一快速誘導型基因轉錄。
這些結果首次探究的是:G α q/11信號-衍生的CaMKII興奮涉及tNSCs的自我-更新的維持。同時,這些結果顯示在早期神經生成上軸突行為(axonal behaviors)的重要性。SNCA與磷脂膜(phospholipid membranes)交互作用並且在神經退化障礙(包括PD以及阿茲海默症)的致病機制(pathogenesis)上扮演重要的角色。
鈣調去磷酸酶/NFAT1信號傳遞
在一個具體例中,RA調節鈣調去磷酸酶的生成。在一個具體例中,RA誘導鈣調去磷酸酶的生成。在另一個具體例中,ER鈣被連結至鈣調去磷酸酶/NFAT1信號傳遞,這與先前的研究是一致的。在另一個具體例中,藉由細胞分離分析,RA誘導NFAT1以及內輸蛋白[一種核質細胞質轉運蛋白(nucleocytoplasmic transporter)]的一短暫交互作用,而致使NFAT1核轉位。這種NFAT1的短暫效用被認為是一種細胞藉此辨別持續的以及短暫的鈣信號的機制。在一個具體例中,RA-誘導的鈣調去磷酸酶/NFAT1信號傳遞涉及早期神經生成。
在初始的神經生成之時的細胞再成型(Cellular Remodeling)
在一個具體例中,此處所提供的是一種用於在hTS細胞轉變趨向tNSCs的期間誘導分子過程的方法。在 一個具體例中,該等分子過程是藉由RA而被誘導。在一個具體例中,分子級聯(molecular cascades)在2個時間點被檢測:第4小時(早期)以及第24小時(晚期)。在一個具體例中,分子事件發生於2個時期內。在一個特定的具體例中,一個時期包括在組織分化上的時空反應(例如,圖23,早期,紅線)。在另一個特定的具體例中,一個時期包括在細胞分化以及增生上的基因轉錄(例如,圖23,晚期,黑線)。
在一個具體例中,在早期神經元組織分化上的機制被特徵化。一旦幹細胞感測到外來的引導信號,各種不同的特定次細胞mRNA定位快速地啟動,而作為反應去局部地製造特定蛋白質(晚於核中的遙遠轉錄過程)。經由蛋白質-蛋白質交互作用以及“感覺經驗(sensory experience)”,這些局部蛋白質聚集在次細胞區域之處以在早期發育的NSCs中啟動生長錐(growth cone)形成。不對稱分裂(asymmetric division)伴隨著基因轉錄而開始。例如,β-連接素的存在在RA處理歷時5分鐘之後於突觸膜(synaptic membrane)之處是可見的(圖25,箱形插入物)以及局部的經活化的CREB1移動回到核內以標靶基因MEF2A的轉錄。
在一個具體例中,一系列的分子過程協同地發生以調節粒線體功能(mitochondrial function)、膜的脂質代謝(lipid metabolism of membrane)、軸突生長(axonal growth)、神經元移動與可塑性(neuronal migration and plasticity)以及微管組合,這些分子過程包括,但不限於: RXRα、RARβ、β-連接素、Akt、CREB1、mTOR、CaMKII、鈣調去磷酸酶、c-Src、GSK3 β、SNCA以及MAPT。在另一個具體例中,藉由MEF2A、EP300以及CREB1所造成的在TH基因上的轉錄代表一誘導型基因表現,其從染色體區域誘導染色質環(chromatin looping),而促進之後的基因轉錄。在另一個具體例中,RA-誘導的G蛋白質信號傳遞的組分在神經元組織分化上扮演一個關鍵的角色並且在TH基因之處的活化轉錄上亦扮演一個整體部分。
此處所描述的是一介於分化以及增生之間的平衡以在活體外維持呈一穩定狀態的tNSCs。在一個具體例中,神經分化是藉由調節RA-信號傳導而被控制。在再生藥物或藥物發現上的進一步應用之前,hTS細胞的操控能經由這些調節機制的理解而在活體外被更有效地賦能。
tNSCs具有免疫豁免
此處所提供的一個具體例描述一種使用至少一tNSC治療一神經障礙的方法,其中該細胞是經免疫豁免的。在另一個具體例中,該tNSC不會引起一免疫反應。在另一個具體例中,該tNSC不會引起來自於一T細胞、B細胞、巨噬細胞、小神經膠質(microglia)、NK細胞或肥大細胞的一免疫反應。在另一個具體例中,該tNSC抑制一免疫反應。在另一個具體例中,該tNSC具有經減少的免疫原性。在另一個具體例中,該tNSC不會導致腫瘤形成。在另一個具體例中,該tNSC被設計為經免疫豁免的。在此處所提供的另一個具體例中描述一種使用tNSC細胞的一族群來治 療一神經障礙的方法,其中該等細胞是經免疫豁免的。在另一個具體例中,幹細胞或它們的衍生物作為細胞治療的應用是得益於理解它們的免疫原性以幫助決定免疫抑制劑(immunosuppression agents)植入後的應用。
此處所描述的另一個方面是一種用以檢測以及比較在hTS細胞、tNSCs以及hES細胞中的免疫-關聯性基因以及標記的表現的方法。在一個具體例中,表現是藉由流動式細胞測量分析而被檢測。
在hTS細胞、tNSCs以及hES細胞中的免疫-關聯性基因以及標記的實例包括,但不限於:HLA-ABC、HLA-DR、CD14、CD44、CD73、CD33、CD34、CD45、CD105以及CD133。在另一個具體例中,HLA-ABC在hTS細胞以及tNSCs中的表現相較於在hES細胞中所具者,在tNSCs中是較高的。在一個具體例中,HLA-DR的陰性表現在全部3種幹細胞中被觀察到(圖2e)。在另一個具體例中,HLA-ABC在hTS細胞(99.4%)以及tNSCs(99.7%)中的表現相較於在hES細胞中所具者(12.9%),在tNSCs中是更高的(圖2e)。在另一個具體例中,在CD14以及CD44表現上的無差異在hTS細胞、tNSCs以及hES細胞之中被看見。在另一個具體例中,相較於在hES細胞中的陰性表現位準,高位準的CD73被表現於hTS細胞以及tNSCs中(圖2f)。在一個具體例中,該tNSCs具有間質幹細胞的特性,其有利於神經膠細胞的增生。
在另一個具體例中,CD33(它在細胞外部分之 處含有免疫球蛋白結構並且是一穿膜受體)被表現於hTS以及hES細胞中但在tNSCs中沒有表現(圖2g)。在另一個具體例中,在tNSCs中的CD33的不存在有利於細胞治療,因為它與免疫防禦(immune defense)的關聯。因此,此處所提供的是具有低位準之CD33的表現並且因而具有低免疫原性的tNSCs。
在一個具體例中,在間質幹細胞標記CD105的表現上沒有強度上的差異在它們之中被發現到。在另一個具體例中,相較於hTS細胞以及hES細胞,癌症幹細胞標記CD133(cancer stem cell marker CD133)的低位準的表現在tNSCs中被發現到。在另一個具體例中,相較於hTS細胞(93.6%)以及hES細胞(98.8%),癌症幹細胞標記CD133的低位準的表現(11.8%)在tNSCs中被發現到(圖2h)。因此,此處所提供的是具有低位準的CD133的表現並且因而具有低的致腫瘤性(tumorigenicity)的tNSCs。
此處進一步所提供的是CD133+tNSCs的選擇性族群,它們有益於移植以及組織再生(tissue regeneration)以供幹細胞治療。亦於此處所提供的是具有免疫-豁免的狀態的tNSCs,它們對於以細胞為基礎的治療而言是可實行的候選者。
在一個具體例中,RA誘導在免疫-相關的標記的表現上的改變,例如,具有CD34(+)的細胞增加但具有CD133(+)者減少。在另一個具體例中,RA誘導CD34(+)hES細胞分化成為平滑肌祖細胞(smooth muscle progenitor cells)。在另一個具體例中,以CD34(+)免疫選擇的移植物來自體移植(autologous transplantation)tNSCs在帶有高-風險神經胚細胞瘤(neuroblastoma)的兒童中是可行的。
植入後分化以及增生
在神經生成上,RA以及視黃酸-反應元(RARE)之間的關聯(Maden,M.et al.,Nat.Rev.Meuroscience.8,755-765,(2007))是被知曉的,然而非-RARE作用的存在性被不足地理解。在一個具體例中,RA經由G蛋白質-偶合受體(GPCRs)信號傳遞的“拉與推”機制誘導RXR α/RAR β/c-Src複合體的活化。在另一個具體例中,在2小時內RXR α藉由與G α q/11的交互作用而最先被活化,繼而c-Src以及之後RAR β的活化而形成一複合體(圖3a以及3b)。在它們之中,c-Src隨後地經由Stat3誘導Nanog過度表現以供維持那些hTS細胞-衍生的NSCs的多潛能性以及自我-更新。
此種信號傳遞途徑暗示:RA沒有必要進入細胞去觸發典型RA/RXR/RAR/RARE途徑,替代的,RA經由GPCR信號傳遞來活化G蛋白質G α q/11,這與訊息傳遞(signal transduction)的概念是相容的。因此,在一個具體例中,此處所提供的是用於控制RA-調控的NSCs的多潛能性以及自我-更新的調節,以及在移植之前與之後操控hTS細胞和/或神經幹細胞的方法。在另一個具體例中,Wnt以及RA在近端啟動子中分別經由一非典型的RARE以及Lef/Tcf-反應元(LRE)影響Cdx1。
在一個具體例中,RA經由一典型RA/RARE信號傳遞途徑誘導hTS細胞分化成為多巴胺NSCs以維持幹細胞性質。在另一個具體例中,是一種非-RARE信號傳遞途徑經由Wnt/β-連接素訊息級聯的活化而生成功能性多巴胺NSCs。在另一個具體例中,非-RARE信號傳遞的損害造成多巴胺生成的功能異常或缺失,而導致多巴胺神經元的進行性退化性變化(progressive degenerative change)。因此,在另一個具體例中,此處所提供的是一種神經幹細胞經由活化非-RARE信號傳遞途徑而分化為多巴胺神經元。
RA在誘導RAR-β表現之前於第6小時之時活化PKC途徑。RA在第2分鐘之時引起在細胞內二酸甘油脂(diacylglycerol,DG)上的一短暫的1.3倍增加以及在5分鐘之內的PKC的γ同功酶(gamma isozyme)(PKC-γ)的一轉位(Kurie J.M.et al.,Biochim Biophys Acta.1993,1179(2):203-7)。這些發現顯示:PKC途徑活化是一在RA-調控的人類TC分化上的早期步驟,以及PKC-γ會加強RA在RAR轉錄活化上的效用。因此,此處所提供的是用以控制hTS細胞分化的方法。在一個具體例中,PKC信號傳遞途徑的調節控制hTS細胞分化。
BMP4與LIF一起來支持未經分化的mES細胞的擴張。BMP4誘導hES細胞的滋養層分化(Qi X,et al.,Proc Natl Acad Sci U S A.2004;101:6027-6032)。BMP誘導的Id蛋白質與STAT3合作來抑制分化並且維持胚胎幹細胞自我-更新(Ying,Q.L.,et al.,Cell.2003;115:281-292)。骨 型態形成蛋白質(BMPs)與LIF結合來作用以維持自我-更新以及保持多元性分化、嵌合體聚落形成(chimera colonization)以及生殖系列傳遞(germline transmission)性質(Xu RH,et al.,Nat Biotechnol.2002;20:1261-1264)。因此,在一個具體例中,此處所提供的是一種藉由調節PKC和/或BMP來誘導此處所描述的tNSCs的多巴胺分化的方法。
疾病的治療
此處所提供的是一種用以治療一障礙的方法,其中該方法包含有將神經元的一純族群或特定的神經幹細胞族群的一複合體移植至一病患,其中該病患是有此需要的。在一個具體例中,該病患被診斷具有一神經疾病。在另一個具體例中,該病患被診斷具有一神經精神障礙(neuropsychiatric disorder)。在另一個具體例中,該病患被診斷具有一神經退化障礙。在另一個具體例中,該神經元的純族群包含有多巴胺神經元。
此處所描述的任何方法可以被用來治療一疾病(disease)或障礙(disorder)。在一個具體例中,該疾病是一神經疾病。在另一個具體例中,該疾病是一神經退化疾病或障礙。神經疾病的非-限制性實例包括:巴金森氏症、阿茲海默症、杭丁頓氏症、縮性脊髓側索硬化症、弗利德來運動失調、路易氏體症、脊髓性肌萎縮、多重系統萎縮、痴呆、精神分裂症、麻痺、多發性硬化症、脊髓損傷、腦損傷(例如,中風)、腦神經障礙、周邊感覺神經病變、癲癇 、病原性蛋白顆粒障礙、庫賈氏症、亞爾培氏症、小腦/脊髓小腦退化、巴登氏病、皮質基底核退化、伯耳氏癱、格巴二氏症候群、皮克氏症以及自閉症。
因此,此處所描述的tNSCs適合用於治療神經退化障礙包括,但不限於:巴金森氏症、阿茲海默症、杭丁頓氏症、脊髓損傷、青光眼(glaucoma)或類似者。
此外,tNSCs亦表現神經傳遞質血清素。因此,一個具體例描述tNSCs在治療神經精神障礙上的用途。神經精神障礙的非-限制性實例包括:憂鬱(depression)、精神分裂症、痴呆、自閉症、注意力不足過動症(attention deficit hyperactivity disorder)以及躁鬱症(bipolar disorder)。
此處所描述的任何方法可以被用來改善或改進一神經疾病或障礙的一症狀。與神經疾病或障礙有關聯的症狀的非-限制性實例包括:震顫、步態病變、不良性步態、痴呆、過度腫脹(水腫)、肌無力、下肢萎縮、運動障礙(舞蹈病)、肌肉僵直、物理運動的一慢化(運動遲緩)、物理運動的缺失(運動失能症)、健忘、認知(智能)損傷、辨識的缺失(失識症)、經損傷的功能(諸如決策與計畫)、半面臉部麻痺、感覺缺失、麻木、刺痛感、四肢的疼痛感覺異常、虛弱、腦神經麻痺、語言障礙、眼球運動、視野障礙、失明、出血、分泌物、近端肌肉失用、運動困難症、四肢肌肉張力的異常、肌強直減少、運動失調、在手指-手指測試或手指-鼻測試中錯誤的指示、辨距不良、霍-斯二氏現象、 不完全的或完全的全身性麻痺、視神經炎、視物顯多症、眼球運動障礙(諸如眼球震顫)、痙攣性麻痺、痛苦的強直發作、Lhermitte氏綜合症、失調症、語言困難、膀胱直腸障礙、起立性低血壓、運動功能的減少、尿床、貧乏的言語表達、不充足的睡眠型態、睡眠障礙、食慾障礙、體重改變、心理動作激動或遲滯、經減少的活力、無價值的感受或過度或不適當的內疚、思考或全神貫注之困難、反復的死亡意圖或者自殺的意念或企圖、害怕、焦慮、興奮增盛、沉思的或強迫性沉思、過度擔心身體健康、恐慌發作以及恐懼症。
此處所描述的是具有下列特定的所欲特性的tNSCs:首先,該等tNSCs是由具有在表現型上的一致性、穩定的基因表現以及多潛能特性的異質性亞型(heterogeneous subtypes)所組成的經混合的細胞族群;第二,它們含有實質上加強多巴胺神經生成的神經膠質祖細胞(glia progenitor cells)以及星狀細胞;第三,它們具有一用於“挽救”功能異常的多巴胺神經元的內在能力以及免疫-豁免的性質;以及最後,分泌自宿主組織上之不同的神經前驅物神經滋養效用將會促進結構修復(structural repair)。
在某些具體例中,此處所提供的是具有下列特定的所欲特性的tNSCs而允許在移植治療上適當的操作:1)該等獨特的tNSCs是藉由關於品質上的一致性以及充足的細胞來源的RA而被簡單地以及有效地誘導;2)該等經移 植的tNSCs在經損傷的黑質紋狀體途徑(nigrostriatal pathway)中功能地生成新生多巴胺神經元,它可以存活歷時至少植入後的18週;3)感覺運動障礙(sensorimotor impairments)是與從植入後的第3週一樣早的而被顯著地改善;4)該等tNSCs具有免疫豁免,促進幹細胞治療;5)如此處所描述的操控在細胞增生上的分子機制允許發展用於在移植之後預防腫瘤形成的策略;6)該等tNSCs能夠在經由數個細胞繼代的培養中而生長;以及7)該等tNSCs能夠被培養於沒有小鼠胚胎餵養細胞的培養基中。
在一個具體例中,此處所提供的是一種用以治療急性以及慢性疾病的方法,其中該方法包含有植入hTS細胞-衍生的tNSCs。在一個具體例中,該等tNSCs被植入至一蒙受一神經障礙的病患的腦內。在另一個具體例中,該等tNSCs被植入至一蒙受一神經障礙的病患的紋狀體內。
此處所描述的一個方面是一種用於治療一神經疾病的方法,其中該方法包含有tNSCs的位址-特異性整合(site-specific integration)。在一個具體例中,該等tNSCs是衍生自hTS細胞。在另一個具體例中,當相較於hES細胞治療時,腫瘤形成的可能性是較低的。
藉由多巴胺神經元的再生來治療神經退化疾病
此處所提供的是用於在一哺乳動物中誘導多巴胺神經元的方法,其中此處所描述的神經元祖細胞有如一細胞懸浮液而被移植,藉此相較於組織厚片的移植物可產 生一更均質的神經再支配(homogenous reinnervation)。在一個具體例中,如此處所描述的誘導多巴胺神經元降低異動症(dyskinesias)的風險並且增加臨床上有益的效用的可能性。在一個具體例中,該哺乳動物是一人類。在另一個具體例中,該哺乳動物是一大鼠、小鼠、豬、犬、猴、猩猩或人猿。
tNSCs的移植在黑質紋狀體途徑中誘導新生成的多巴胺神經元並且實質上改善在巴金森氏症大鼠中的行為障礙。這些結果提供的證據是:hTS細胞是適用於在臨床應用中使用去治療神經退化疾病的人類多潛能幹細胞。
一個第一實驗被實施以檢測:1)被處理以不同的持續時間的RA的tNSCs是否會影響在PD大鼠中的行為缺陷(behavioral deficits)的改善上的效力;以及2)該等經植入的tNSCs在腦中能存活多久。藉由去水嗎啡-誘導的旋轉分析,將GFP-標誌的tNSCs(1.5×106)移植至經損傷的紋狀體的2個位址內顯著地改善從第3週直到第12週的行為缺陷(圖5a)。接受5-天RA-誘導的tNSCs的PD大鼠在植入後6-週的開始之時顯著地改善,然而,此效用在第12週之時隨後消失而與對照組所具者相似。此原因可以被解釋為大多數的在誘導超過5天之後的神經遺傳命運-限制的GRP(Götz)在分化成為未定義的滋養層巨細胞上被置放在一脊(ridge)之處。設若行為改善,大鼠在第18週之時被犧牲俾以檢測那些GFP-標誌的tNSCs的可活性。腦部切片免疫組織化學地顯示:在黑質紋狀體途徑中大量新生成的具有從 細胞體中突起的多重外生的多巴胺神經元神經再支配周圍的腦區域(圖5b)。然而,在接受5-天RA-誘導的tNSCs(圖5c)以及對照PD組(圖5d)的大鼠中,沒有該等現象被觀察到。在第18週之時,免疫螢光顯微鏡術證明GFP-標誌的tNSCs仍然存在於經損傷的區域中,且呈散布的或斑點型態而分布在注射位址之處。沒有畸胎瘤形成(teratoma formation)被發現到,亦沒有免疫抑制劑被使用。
為了避免來自多巴胺過度生長以及不均勻與不勻稱的神經再支配的反效應,一個第二實驗試圖要將較少的tNsCs(1×106)藉由注射在一個位址上來移植至“老化的”PD大鼠(n=16;體重630-490gm)的經損傷的紋狀體內。行為評估在植入後的每3週被分析。結果顯示:在去水嗎啡-誘導的旋轉測試中,從植入後的第3週至第12週有一對側的旋轉的顯著改善(圖6a)。為了評估在姿勢不平衡(postural imbalance)以及步態病變(PIGD)(特徵為運動失能症、僵硬以及步伐與平衡障礙)上細胞治療的效用,數種測試(諸如步行速度、步伐長度、跨步長度以及支撐的基礎)被執行。受影響的前肢在槓上的抓握時間被顯著地縮短達3週並且在“槓測試(bar test)”中於第12週的結束之時持續改善(圖6b),這暗示一在前肢的抓取力量上非常快速的改善。步伐長度(圖6c)、跨步長度(圖6d)、步行速度(圖6e)以及支撐的基礎(圖6f)的測量顯示tNSCs的移植從早期第3週至第12週顯著地功能上改善感覺運動障礙。在一個具體例中,該等tNSCs在再生藥物上是合適的候選者以供用於 在帶有神經退化疾病(例如,巴金森氏症)的病患中之以幹細胞為基礎的治療。在第12週的結束之時,大鼠被犧牲以及腦部切片被進行酪胺酸羥酶(TH)免疫染色。該等實驗顯示新的多巴胺神經元的再生在黑質紋狀體途徑中(圖19)出現。新生成的多巴胺神經元是藉由使用密度測定法(densitometry)而被評估,其顯示一為28.2%的復原。在一個具體例中,該等tNSCs在帶有神經退化疾病的病患的治療上是hES細胞以及胚胎中腦組織(fetal mesencephalic tissue)這兩者的一個另擇的替代物。
在一個具體例中,此處所提供的是一種hTS細胞,它是一種除了一hES細胞之外的人類多潛能幹細胞,但在早期胚胎形成上具有多能性以及自我-更新的相似特性。在活體內,經移植的tNSCs在經損傷的黑質紋狀體途徑中功能上生成新生多巴胺神經元,它們在PD大鼠中能存活歷時至少植入後的第18週。藉由一組在年輕以及老化的PD大鼠這兩者中的行為評估,感覺運動障礙是與從植入後的第3週一樣早的而被顯著地改善。將hTS細胞-衍生的NSCs移植至腦的神經毒素-神經切除的紋狀體(neurotoxin-denervated striatum)中能夠使缺失的多巴胺神經元再生以及改善在帶有PD的大鼠中的主要行為缺陷。
在一個具體例中,在黑質紋狀體途徑中的DA神經元被再生。在另一個具體例中,經植入的tNSCs增加紋狀體中的神經膠細胞。在另一個具體例中,RA誘導GRAP以及GFAP-陽性的祖細胞的表現,這產生遍及CNS的神經 元以及寡樹突細胞(oligodendrocytes)。
阿茲海默症的治療
此處所提供的是用於治療阿茲海默症的方法,其中該方法包含有將神經元祖細胞移植至一哺乳動物的腦中。在一個具體例中,該哺乳動物是一人類。在另一個具體例中,該人類是一被診斷帶有阿茲海默症或處於發展阿茲海默症的風險(例如,一位具有該疾病的家族史或他已被鑑定為具有關於該疾病的一風險因子的人)中的病患。在另一個具體例中,該哺乳動物是一豬、犬、猴、猩猩或人猿。在另一個具體例中,該哺乳動物是一小鼠。在另一個具體例中,該哺乳動物是一大鼠。在另一個具體例中,該大鼠或小鼠展現阿茲海默症的症狀。在一個具體例中,該等神經元祖細胞被移植至一針對該疾病的非-人類動物模型[例如,一小鼠模型(其中AD7c-NTP被過度表現)、一阿茲海默症大鼠模型、一基因轉殖的小鼠模型等等]中。
在一個具體例中,hTS細胞被處理以一誘導劑以提供一具有一生物標記(biomarker)特徵的神經元細胞族群。在一個特定的具體例中,該誘導劑是RA。在一個具體例中,分子機制或信號傳遞途徑被調節以維持多能性。在另一個具體例中,分子機制或信號傳遞途徑被調節以預防在移植之後的腫瘤形成。
在另一個具體例中,該等tNSCs被移植或被嵌入至哺乳動物的腦中。在一個具體例中,該等神經元祖細胞有如一細胞懸浮液而被移植,藉此產生一更均質的神經 再支配。在另一個具體例中,該等神經元祖細胞被注射至該哺乳動物的腦內。在另一個具體例中,該等衍生自hTS細胞的tNSCs被嵌入至腦的腦室下區(subventricular zone)。在一個具體例中,該哺乳動物是一人類。
在一個具體例中,如此處所描述的神經元的誘導減少腫瘤形成的風險並且增加臨床上有益的效用的可能性。在另一個具體例中,tNSCs的接受者顯示在與阿茲海默症有關聯的症狀上的一改善。在另一個具體例中,在腦中的神經元之間的連接被增加並且被加強。
精神分裂症的治療
此處所提供的是用於治療精神分裂症的方法,其中該方法包含有將神經元祖細胞移植至一哺乳動物的腦中。在一個具體例中,該哺乳動物是一人類。在另一個具體例中,該人類是一被診斷帶有精神分裂症或處於發展精神分裂症的風險(例如,一位具有該疾病的家族史或他已被鑑定為具有關於該疾病的一風險因子的人)中的病患。在另一個具體例中,該哺乳動物是一小鼠。在另一個具體例中,該哺乳動物是一大鼠。在另一個具體例中,該哺乳動物是一豬、犬、猴、猩猩或人猿。在另一個具體例中,該大鼠或小鼠展現精神分裂症的症狀。
在一個具體例中,該等神經元祖細胞被移植至一針對該疾病的非-人類動物模型(例如,一精神分裂症大鼠模型、一基因轉殖的小鼠模型等等)中。在一個具體例中,模型小鼠具有神經元系統之一經改變的正常生理學調節。 在另一個具體例中,該模型動物或組織能被利用於篩選作用於細胞內層次上的潛在的治療劑和/或治療性攝生法。
在一個具體例中,hTS細胞被處理以一誘導劑以提供一具有一生物標記特徵的神經元細胞族群。在一個特定的具體例中,該誘導劑是RA。在一個具體例中,分子機制或信號傳遞途徑被調節以維持多能性。在另一個具體例中,分子機制或信號傳遞途徑被調節以預防在移植之後的腫瘤形成。
在另一個具體例中,該等tNSCs被移植或被嵌入至哺乳動物的腦中。在一個具體例中,該神經元祖細胞有如一細胞懸浮液而被移植,藉此產生一更均質的神經再支配。在另一個具體例中,神經元祖細胞被注射至該哺乳動物的腦內。
在一個具體例中,如此處所描述的神經元的誘導減少腫瘤形成的風險並且增加臨床上有益的效用的可能性。在另一個具體例中,tNSCs的接受者顯示在與精神分裂症有關聯的症狀上的一改善。
給藥(Dosing)以及投藥(Administration)
此處所描述的一經分離的神經幹細胞製劑的投藥的模式包括,但不限於:全身性靜脈注射(systemic intravenous injection)以及直接注射至所意欲的活性位址。該製劑可藉由任何便利的途徑[例如,藉由滴注(infusion)或巨量注射(bolus injection)]而被投藥,以及可與其它生物活性試劑(biologically active agents)一起被投藥。在一個具 體例中,投藥是全身性定位投藥(systemic localized administration)。
在一個具體例中,一神經幹細胞製劑或組成物被配方為一適用於靜脈內投藥至哺乳動物(包括人類)的藥學組成物(pharmaceutical composition)。在某些具體例中,用於靜脈內投藥的組成物是呈無菌的等張水性緩衝液(sterileisotonic aqueous buffer)的溶液。在必要時,該組成物亦包括一局部麻醉劑(local anesthetic)以改善在注射的位址之處的任何疼痛。在該組成物要藉由滴注而被投藥時,它可使用一含有無菌的藥學等級水或鹽水(saline)的滴注瓶(infusion bottle)而被配藥。在該組成物要藉由注射而被投藥時,一用於注射的無菌水或鹽水的安瓿(ampoule)可被提供而使得該等成分在投藥之前被混合。
在一個具體例中,適合的藥學組成物包含有一治療有效量的祖幹細胞以及一藥學上可接受的載劑(carrier)或賦形劑(excipient)。此一載劑包括,但不限於:鹽水、緩衝的鹽水(buffered saline)、右旋糖(dextrose)、水,以及它們的組合。
在一個具體例中,此處所描述的經分離的tNSCs是藉由一適合用於將細胞標靶至一特定組織的遞送系統而被遞送至一經標靶的位址(例如,腦、脊髓或任何其它神經損傷和/或退化的位址)。例如,該等細胞被囊封在一輸送載體(delivery vehicle)中,而允許該等細胞在經標靶的位址之處緩慢的釋出。該輸送載體被修飾而使得它被專一地標靶 至一特定的組織。經標靶的遞送系統的表面以各種不同的方式而被修飾。當是一脂質體-標靶的遞送系統時,脂質基團被併入至該脂質體的脂雙層(lipid bilayer)中,俾以維持標靶配位子與脂質體雙層(liposomal bilayer)呈穩定的相締合。
在另一個實例中,一膠體分散系統(colloidal dispersion system)被使用。膠體分散系統包括大分子複合體(macromolecule complexes)、奈米膠囊(nanocapsules)、微球體(microspheres)、珠粒(beads)以及以脂質為基礎的系統[包括水包油乳化液(oil-in-water emulsions)、微胞(micelles)、經混合的微胞(mixed micelles)以及脂質體]。
此處所描述的tNSCs的投藥是藉由下列方式而選擇性地針對一個體來量身訂作:(1)增加或減少被注射的細胞數量;(2)改變注射的數量;(3)改變該等細胞的遞送方法;或(4)改變細胞的來源,例如藉由基因工程細胞或來自活體外細胞培養物。
tNSC製劑是呈一有效於促進在接受者中的細胞植入的數量而被使用。在醫師的裁量下,投藥被調整至滿足最佳的效力以及藥理給藥。
篩選的方法
此處所提供的是篩選一供用於治療或預防一疾病之化合物的方法。在一個具體例中,該方法包含有令一經分離的人類滋養層幹細胞與該化合物接觸。在另一個具體例中,該方法包含有令一經分離的神經幹細胞與該化合 物接觸。在另一個具體例中,該方法進一步包含有偵測在該人類滋養層幹細胞中至少一基因、轉錄本或蛋白質的活性上的一改變。在另一個具體例中,該方法進一步包含有偵測在該人類滋養層幹細胞中至少一轉錄本或蛋白質的位準上的一改變。在另一個具體例中,該方法包含有偵測在該神經幹細胞中至少一基因、轉錄本或蛋白質的活性上的一改變。
此處所提供的一個具體例描述一種篩選一具有能力去誘導在一細胞中的改變的化合物的方法。在一個具體例中,該方法包含有令一經分離的人類滋養層幹細胞與該化合物接觸。在另一個具體例中,該方法包含有令一經分離的神經祖幹細胞與該化合物接觸。在另一個具體例中,該方法進一步包含有偵測一該人類滋養層幹細胞的分化的誘導。在另一個具體例中,該方法進一步包含有偵測一該神經幹細胞的分化的誘導。
亦於此處所提供的是一種篩選一具有細胞毒性(cellular toxicity)或調節細胞的化合物的方法,該方法包含有令本發明的一經分化的細胞與該化合物接觸。在另一個具體例中,該方法進一步包含有決定在該細胞中任何起因於與該化合物接觸的表現型或代謝改變,以及與細胞毒性或任何其它在細胞功能或生物化學上的改變有關聯的改變。在另一個具體例中,分化的藥劑(pharmaceuticals)、毒素或潛在調節子的篩選被促進。這些物質(例如,藥劑、毒素或潛在調節子)可以被添加至培養基。
此處所提供的一個具體例描述一種篩選增生因子(proliferation factors)、分化因子(differentiation factors)以及藥劑的方法。在一個具體例中,人類滋養層幹細胞或神經幹細胞被用來篩選有關影響人類滋養層幹細胞或神經幹細胞在培養中的特性的因子[諸如小分子藥物、胜肽(peptides)、聚核苷酸(polynucleotides)以及類似之物]或條件(諸如培養條件或操作)。在一個具體例中,此系統具有不會受一由測試化合物所造成的餵養細胞的擾亂而引起的次級效用(secondary effect)所複雜化的優點。在另一個具體例中,生長-影響物質被測試。在另一個具體例中,條件培養基(conditioned medium)從該培養物中被撤除以及一較單純的培養基予以取代。在另一個具體例中,不同的井接著被處理以不同的可溶性因子的雞尾酒(cocktails)(它們是用於取代該條件培養基的組分的候選者)。若經處理的細胞被維持並且以一滿意的方式來增生(最佳地與在條件培養基中一樣),各個混合物的效力被決定。潛在的分化因子或條件可以藉由依據測試操作程序來處理細胞而被測試,並且接著決定經處理的細胞是否發展一特定譜系之一經分化的細胞的功能性或表現型特性。
在一個具體例中,該人類滋養層幹細胞或神經幹細胞被用來篩選細胞分化的潛在調節子。在一個具體例中,該細胞分化是神經分化。例如,在一個用於篩選細胞分化的調節子的分析中,該人類滋養層幹細胞或神經幹細胞可在無血清、低密度條件(隨著情況需要在LIF的存在或 缺少下、在調節子的存在下,以及在RA的存在或缺少下)下而被培養,並且在分化上的效用可被偵測。在另一個具體例中,此處所描述的篩選方法可被用來研究與細胞發育有關聯的條件以及篩選有關該條件的潛在治療劑或矯正的藥物或調節子。例如,在一個具體例中,正常的人類滋養層幹細胞或神經幹細胞的發育是與具有該條件的細胞的發育相比較。
在一個具體例中,基因以及蛋白質表現可在得自於人類滋養層幹細胞或神經幹細胞的不同細胞族群之間而被比較,並且被用來鑑定以及區別在分化的期間被上升調節或被下降調節的因子,以及生成受影響的基因的核苷酸複製品(nucleotide copies)。
在一個具體例中,無餵養的人類滋養層幹細胞或神經幹細胞培養物亦可在藥物研究中被使用於測試藥學化合物(pharmaceutical compounds)。候選藥學化合物的活性的評估通常涉及將本發明的經分化的細胞組合以該候選化合物,決定任何所形成的改變,並且接著使該化合物的效用與被觀察到的改變產生關聯。在另一個具體例中,篩選被完成,例如,因為該化合物被設計要在特定的細胞類型上具有一藥理作用(pharmacological effect),或因為一被設計要在別處具有效用的化合物具有非所欲的副作用。在另一個具體例中,2或多種藥物是被組合地(藉由同時地或依序地與細胞組合)測試,俾以偵測可能的藥物-藥物交互作用效應(interaction effects)。在另一個具體例中,化合物最 初地針對潛在的毒性而被篩選。在另一個具體例中,細胞毒性是藉由在細胞可活性(cell viability)、存活、形態學(morphology)上,在特定的標記、受體或酵素的表現或釋放上,在DNA合成或修復上的作用而被決定。
術語“治療(treating)”、“治療(treatment)”以及類似者在此處被使用要意指獲得一所欲的藥理和/或生理效用。在某些具體例中,一個體(例如,一被懷疑蒙受一神經退化障礙和/或基因上對於一神經退化障礙具有得病傾向的個體)是預防地被治療以此處所描述的一tNSCs的製劑並且該預防性治療完全地或部分地預防一神經退化障礙或者它的徵兆或症狀。在某些具體例中,一個體被治療性地治療(例如,當一個體蒙受一神經退化障礙時),該治療性治療造成對於一障礙的一部分或完全治癒(cure),和/或逆轉一可歸因於該障礙的反效應,和/或穩定該障礙,和/或延緩該障礙的進展,和/或造成該障礙的消退。
將tNSCs投藥(例如,移植)至有治療需要的區域是藉由,例如並且不受限地,在手術期間的局部滴注、藉由注射、藉由一導管(catheter)的方式,或藉由一植入物(implant){該植入物是一多孔性(porous)、非孔性(non-porous)或凝膠狀材料,包括膜[諸如矽膠膜(silastic membranes)]或纖維}的方式而被完成。
“移植(transplanting)”一組合物至一哺乳動物中意指藉由在此技藝中所建立的任何方法來將該組合物導入至該哺乳動物的體內。被導入的組合物是“移植物 (transplant)”,以及該哺乳動物是“接受者(recipient)”。該移植物以及該接受者可以是同源的(syngeneic)、同種異體的(allogeneic)或異種的(xenogeneic)。此外,該移植可以是一自體移植。
一“有效量(effective amount)”是一治療劑足以達到所欲目的的一數量。例如,一用以增加hTS細胞或tNSCs的數目之一因子的有效量是一足以在活體內或在活體外視情況而致使在神經幹細胞數目上的一增加的數量。一用以治療或改善一神經退化疾病或病況的組成物的一有效量是該組成物足以減少或移除神經退化疾病或病況的症狀的一數量。一既定的治療劑的有效量將會隨著因子(諸如試劑的性質、投藥的途徑、要接受治療劑的動物的大小與物種,以及投藥的目的)而變化。
在一個具體例中,此處所進一步提供的是經基因改造的tNSCs。操控改造了細胞的各種不同的性質,例如,使它更適應於或抵抗特定的環境條件,和/或誘導一或多種由該細胞生成的特定物質,該等物質可以,例如增進細胞的可活性。該等基因改變可被執行以使該細胞更適合供用於移植,例如,為了避免該細胞來自於接受者的排斥(有關基因治療操作程序的回顧文獻,參見Anderson,Science,256:808;Mulligan,Science,926;Miller,Nature,357:455;Van Brunt,Biotechnology,6(10):1149;以及Yu et al.,Gene Therapy,1:13)。
一“載體(vector)”意指一重組型DNA或RNA建 構物,諸如一質體(plasmid)、一嗜菌體(phage)、重組型病毒,或者其它的載體,當導入至一適當的宿主細胞中會致使此處所描述的一祖細胞的一修飾。適當的表現載體是那些本技藝中具有通常技藝者所熟知的,並且包括那些在真核和/或原核細胞中可複製者以及那些維持游離基因態(episomal)者或那些合併至宿主細胞基因組內者。
載體的構築是使用此處所描述的技術而被達成,例如,有如在Sambrook et al.,1989中所描述的。在一個具體例中,經分離的質體或DNA片段是以所欲生成質體的形式而被切割、裁剪以及再接合。若所欲的,為了確認在經構築的質體中的正確序列的分析是使用任何適合的方法而被執行。用於構築表現載體、製備活體外轉錄本、導入DNA至宿主細胞中以及執行有關評估基因表現以及功能的分析的適合方法是被知曉的。基因呈現、擴增和/或表現是在一樣品中被直接地測量,例如,藉由傳統的南方墨點法(Southern blotting)、用以定量mRNA的轉錄的北方墨點法(Northern blotting)、點漬法(dot blotting)(DNA或RNA分析)或原位雜交法(in situ hybridization)(使用可以此處所提供的一序列為基礎的一適當地經標記的探針)。
如此處所用的,術語諸如“轉染(transfection)”、“轉形(transformation)”以及類似者被意欲要意指將核酸呈功能的形式而轉移至一細胞或生物體。該等術語包括各種不同的將核酸轉移至細胞的方法,包括轉染以CaPO4、電穿孔(electroporation)、病毒傳導(viral transduction)、脂質 體轉染(lipofection)、使用脂質體和/或其它輸送載體遞送。
細胞是藉由親和力技術(affinity techniques)或藉由細胞分類器(cell sorting)[諸如螢光-活化的細胞分類器(fluorescence-activated cell sorting)]而被分類,其中它們被標記以一適合的標記,諸如一被綴合至或部分的,例如一反訊息核酸分子(antisense nucleic acid molecule)或一免疫球蛋白(immunoglobulin)的螢光團(fluorophore),或者一內生性螢光蛋白質(intrinsically fluorescent protein)[諸如綠色螢光蛋白(green fluorescent protein,GFP)或它的變異體]。如此處所用的,“分類(sorting)”意指一第一種細胞類型至少部分的物理分離自一第二種細胞類型。
如此處所用的,術語“大約(about)”意指±15%。例如,術語“大約10”包括8.5至11.5。
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1顯示hTS細胞中多能性(pluripotence)以及再生(renewal)的特性。(1a)由RT-PCR分析所測量,hTS細胞表現內細胞群(inner cell mass,ICM)與滋養外胚層(trophectoderm)這兩者的特定的基因。(1b)說明有如藉由免疫細胞化學染色法(immunocytochemical staining)所看見的特異性階段胚胎抗原-1、-3以及-4[specific stage embryonic antigen(SSEA)-1,-3,and-4]的表現以及細胞內定位(經暗化的斑點)。在hTS細胞中(上區),SSEA-1大部分被表現在 細胞質中(左上區),SSEA-3被表現在核中(中間上面區),以及SSEA-4被表現在細胞質以及膜這兩者中(右上區)。這些SSEA-表現的細胞是組織學上相似於異位絨毛滋胚內層(ectopic villous cytotrophoblasts)(下區)。(1c)藉由末端限制片段南方點墨分析[Terminal Restriction Fragment(TRF)Southern blot analysis]所測量的在第3與第7代之時的hTS細胞培養物的未經改變的端粒(telomere)長度(上以及下區)。(1d)文氏圖(Venn diagram)說明在hTS(859基因)以及滋養層關聯性胎盤衍生的間質幹細胞(placenta derived mesenchymal stem cells,PDMS cells)(2449基因)中基因表現的微陣列分析(microarray analysis)。一總數為2,140以及3,730的基因在hTS細胞以及滋養層關聯性PDMS細胞中表現(倍數變化>2-倍)。(1e)說明來自於對不同濃度的白血病抑制因子(leukemia inhibitory factor,LIF)[亦即500、250、125U/ml;U:單位/ml,肌動蛋白(Actin):β-肌動蛋白作為對照組樣品]反應的轉錄因子表現的反轉錄聚合酶鏈反應(reverse transcription polymerase chain reaction,RT-PCR)分析的結果。LIF的撤除在hTS細胞中抑制Oct4以及Sox2,但是過度表現Nanog以及Cdx2。(1f)LIF(125U/ml)促進hTS細胞中Nanog、Cdx2、Sox2以及Oct4的表現的流動式細胞測量分析(左區)。直方圖顯示一在Nanog與Cdx2中負向劑量-依賴的方式(左區)以及一在Oct4與Sox2中正向劑量-依賴的方式(右區)。(1g)一在婦女中輸卵管(fallopian tubes)的不同節段中LIF位準的生理學分布的 圖式,特別地在輸卵管中從壺腹(ampulla)朝向峽部(isthmus)的LIF位準的生理學減少。Oct4、Nanog以及Sox2相對於Cdx2的相對比例各個在輸卵管的3個不同節段中顯示一劑量-依賴性(dose-dependency)。(1h)不同的siRNAs對於hTS細胞中特定的轉錄者Nanog與Cdx2的效用是藉由RT-PCR(左邊)以及流動式細胞測量分析(右邊)而被分析,說明一在hTS細胞的多能性的維持上的介於Nanog以及Cdx2之間的交互關係。數據表示用於3次分析的平均值±SD。(1i)基因強度的直方圖在hTS細胞中顯示一均質型,而在PDMS細胞中顯示一個二相的型態(biphasic pattern);圖2說明視黃酸(RA)誘導hTS細胞分化成為各種不同的表現型的神經幹細胞。(2a)各種不同的神經祖細胞亞型(neural progenitor subtypes)的分布,包括神經膠質限制的前驅細胞(glial restricted precursors,GRP)、神經元限制的前驅細胞(neuronal restricted precursors,NRP)、多潛能性神經幹(multipotent neural stem,MNS)細胞、星狀細胞(astrocytes,AST)以及未定義的滋養層巨細胞(trophoblast giant cells,TGC)。在RA誘導以時間(亦即1、3、5以及7天)的期間在一致的比例下所分布的hTS細胞-衍生的神經祖細胞亞型的頻率,分別從第1至第4列所顯示的。n:表示被計數的總細胞數。(2b)在1-天RA(10μM)誘導之前與之後hTS細胞的神經幹細胞-相關的基因的表現的RT-PCR分析,包括從經RA(10μM)誘導的hTS細胞中所生成的巢蛋 白、Oct-4、神經絲、NgN3、Neo-D、MAP-2以及CD133。(2c)有如由流動式細胞測量分析所觀察到的,3-與5-天RA-誘導的hTS細胞這兩者表現陽性的免疫反應的神經幹細胞基因,包括神經絲蛋白、巢蛋白以及GFAP,它們在分布上維持一相似的比例。(2d)該滋養層神經幹細胞(tNSCs)所表現的免疫反應的巢蛋白、酪胺酸羥化酶-2(tyrosine hydroxylase-2,TH-2)以及血清素(serotonin)的免疫細胞化學分析(Immunocytochemical analysis)。(2e)藉由流動式細胞測量分析所進行的hTS細胞、tNSCs以及人類胚胎幹(hES)細胞中的免疫-相關的基因的比較性表現:HLA-ABC(MHC I型)在hTS細胞(99.4%)以及tNSCs中高度表現但是在hES細胞中較低。HLA-DR(MHC II型)在該等細胞中不表現。(2f)藉由流動式細胞測量分析所進行的hTS細胞、tNSCs以及hES細胞中的免疫-相關的基因的比較性表現:在該等細胞中CD14以及CD44表現上沒有差異被觀察到。增生因子(Proliferative factor)CD73在hTS細胞以及tNSCs中高度表現,但是在hES細胞中負向地表現。(2g)藉由流動式細胞測量分析所進行的hTS細胞、tNSCs以及hES細胞中的免疫-相關的基因的比較性表現:穿膜受體CD33(transmembrane receptor CD33)在hTS以及hES細胞中被表現但沒有在tNSCs中。CD45在該等細胞中不表現。(2h)藉由流動式細胞測量分析所進行的hTS細胞、tNSCs以及hES細胞中的免疫-相關的基因的比較性表現:在hTS細胞、tNSCs以及hES中的間質幹細胞標記CD105的表現上沒有 強度上的差異被發現,然而,相較於hTS細胞(93.6%)以及hES細胞(98.8%),較少的癌症幹細胞標記CD133(11.8%)在tNSCs中被表現;圖3說明RA-誘導的基因表現。(3a)說明RA(10μM)在活化tNSCs中的c-Src/Stat3/Nanog途徑上的效用。藉由RT-PCR分析所測定的(n=3),RA誘導c-Src的明顯的表現,波峰在第15分鐘之時以及接著維持呈一較低的位準。(3b)藉由西方墨點分析(western blot analysis),顯示RA在第30分鐘、第1小時、第2小時以及第4小時之時分別刺激RXR α、c-Src以及RAR β表現。RA誘導在30分鐘內促進G α q/11以及G β這兩者的表現,暗示G蛋白質信號傳遞(G proteins signaling)的涉入。(3c)免疫沉澱(Immunoprecipitation,IP)分析證明RXR α以及RAR β之間經RA誘導的直接的結合;然而,此交互作用是藉由c-Src抑制劑PP1類似物而被阻斷,顯示c-Src涉及RXR α以及RAR β結合以形成一支架蛋白質複合體(scaffolding protein complex)。(3d)IP測定分析顯示:RXR α具有一與G α q/11之獨立的結合交互作用而RAR β具有一與G β之獨立的結合交互作用。(3e)說明在hTS中一經RA誘導之c-Src的早期生成、Stat3在Tyr705位址上明顯的磷酸化以及Nanog在第1小時之時的活化的西方墨點分析;β-肌動蛋白被使用於對照組樣品。(3f)藉由西方墨點分析,此c-Src蛋白質的快速生成接著誘導Stat3在Tyr705位址上的磷酸化以及Nanog的過度表現。藉由西方墨點分析,c-Src抑制劑PP1 類似物(4μM)抑制RA-誘導的Stat3在Tyr 705上的磷酸化以及Nanog的表現。(3g)說明RA刺激Stat3與Nanog啟動子的結合交互作用的染色質免疫沉澱(chromatin immunoprecipitation,ChIP)測定分析。輸入:溶胞產物,C:對照組;圖4說明雙免疫金螢光穿透電子顯微鏡(immunogold fluorescence transmission electron microscopy,IEM)分析結果。RA-誘導的在細胞膜之處介於小的金粒子-標記的RXR α(6μM)與大的金粒子-標記的G αq/11(20μM)之間的結合交互作用被顯示。藉由動態共焦免疫螢光顯微鏡(dynamic confocal immunofluorescence microscopy),經免疫染色的RXR α以及G α q/11在細胞質或核中主要呈現一均質特徵(圖4,上區)。藉由處理以RA歷時5分鐘,細胞溶質的RXR α強度在核-周區域增加而核的強度減少(第1行),顯示一在刺激之後的細胞溶質轉位(cytosolic translocation)。核的RXR α強度在第15分鐘之時變得顯著,而細胞溶質的強度減少。這些現象顯示:一核中活性的增加維持一細胞中的穩定狀態。一明顯的細胞溶質轉位在30分鐘內再次被觀察到。G α q/11表現的區隔變化,另一方面,是相似於RXR α所具者(第2行);圖5說明將GFP-標誌的tNSCs(3×106)移植至巴金森氏症(PD)大鼠中的分析。(5a)經去水嗎啡(apomorphine)誘導的旋轉測試(rotation test)的分析;a組(深色-陰影的圓,n=4),它是有關於接受tNSCs移植的PD大鼠,顯示從植入後的 第3週至第12週在對側的旋轉上顯著的減少;b組(淺色-陰影的圓,n=4),它是有關於接受5-天RA-處理的hTS細胞的PD大鼠,顯示一在植入後的第6週之時最初的顯著的改善,但是此改善在經過第12週期間逐漸減少;以及c組(三角形,n=4),它是有關於作為對照組的未經處理的PD大鼠,顯示沒有改善。藉由重複測量ANOVA所進行的統計學分析:p值=0.001以及在重複測量ANOVA之後的2組之間的LSD事後比較(LSD post hoc comparisons):在第6週之時p=0.037(a vs.c組)以及p=0.008(b vs.c組);在第9週之時p=0.019(a vs.c組);在第12週之時p=0.005(組a vs.c)以及p=0.018(組a vs.b)。*表示p<0.05。(5b)說明在植入後的第18週之時在a組的經損傷的紋狀體(lesioned striatum)中的TH-陽性免疫組織化學染色(上區);免疫螢光顯微鏡分析顯示:免疫螢光的GFP-標誌的tNSCs仍然在注射位址之處具有一斑點形成存留在經損傷的紋狀體中(下區)。(5c)說明在植入後的第18週之時在a組的經損傷的黑質緻密(substantia nigra compacta,SNC)中所再生的TH-陽性神經元(上區);末端區域的放大被顯示(左下區),比例尺:100μM;免疫螢光顯微鏡分析顯示:免疫螢光的GFP-標誌的tNSCs呈一經散射的分布(scattered distribution)存留(右下區,箭頭表示GFP-標誌的tNSCs)。(5d)說明在植入後的第18週之時b組的免疫組織化學染色:沒有TH-陽性細胞在左邊經損傷的紋狀體(str,上區)或丘腦下核(subthalamic nucleus)(stn,下區)中被發現。(5e)說明在植 入後的第18週之時c組的免疫組織化學染色:沒有TH-染色的細胞在左邊經損傷的紋狀體(str,上區)或經損傷的SNC(下區)中被發現;箭頭表示植入針軌跡;圖6說明來自於在一注射位址之處將tNSCs(1.5×106)移植至“老化的(aged)”PD大鼠(n=16;體重,630-490gm)的經損傷的紋狀體中的結果。行為評估(Behavioral assessments)在植入後每3週被分析。結果顯示:從植入後的第3週至第12週中所評估的行為障礙(behavioral impairments)有一顯著的改善。史徒登氏t試驗(Student t test):*p<0.05作為統計學顯著性(statistic significance)。**p<0.01以及***p<0.001。(6a)去水嗎啡-誘導的旋轉測試的分析證明:相較於作為對照組的未經處理的“老化的”PD大鼠(i組;n=8,未經填充的圓),接受tNSCs植入的老化的PD大鼠(ii組,n=8,經填充的圓)從第3週至第12週顯著地改善旋轉數。(6b)說明有關運動失能症(秒)的行為評估結果。(6c)說明有關步伐長度(step length)(mm)的行為評估結果。(6d)說明有關跨步長度(stride length)(mm)的行為評估結果。(6e)說明有關步行速度(walking speed)(cm/秒)的行為評估結果。(6f)說明有關支撐的基礎(mm)的行為評估結果。(6g)說明針對行為評估所分析的步態:A與正常大鼠相關,B與在細胞移植之前的類巴金森氏症大鼠(hemiparkinsonian rats)相關,以及C與在細胞移植之後的類巴金森氏症大鼠相關;圖7說明在適當的誘導之後,hTS細胞表現全部3種初 級胚層(primary germ layers)的組分,包括外胚層(ectoderm)、中胚層(mesoderm)以及內胚層(endoderm);各個區的左行是有關於在誘導之前的基因表現;各個區的右行是有關於在誘導之後的基因表現;圖8說明流動式細胞測量分析結果,顯示hTS細胞表現間質幹細胞標記[CD90、CD44、CK7、中間絲蛋白(Vimentin)以及神經絲]並且有關造血幹細胞標記(hematopoietic stem cell markers)[CD34、CD45、α 6-整合蛋白(α 6-integrin)、E-鈣黏素(E-cadherin)以及L-選擇素(L-selectin)]是負向的;圖9顯示在適當的誘導下,hTS細胞會被分化成為各種不同的特定的細胞表現型(cell phenotypes);圖10說明將hTS細胞皮下移植至雄性嚴重合併性免疫缺失症(severe combined immune deficiency,SCID)小鼠中在植入後的第6-8週之時僅造成具有類-黏液樣的奇異型細胞(myxoid-like bizarre cells)的輕微嵌合反應(minor chimeric reaction)的組織學分析(histological analysis)(經填充的、黑色的箭頭標示奇異型細胞;未經填充的箭頭標示肌纖維;“NT”標示針軌跡);圖11染色體分析顯示:hTS細胞不會改變核型的型態(46,XY)。為了檢查世代中的細胞壽命,藉由南方點墨分析,介於第3與第7代培養物之間在端粒長度上沒有顯著的縮短被觀察到(圖1c);圖12說明被使用於細胞分化的特定的培養基; 圖13說明被使用於RT-PCR的PCR引子;圖14說明AhR在細胞膜之處作為一信號分子的分析,包括藉由Huh-7細胞中BBP的導入(1μM),在細胞膜之處經轉染的pGFP-C1-AhR的活性。(14a)所顯示的影像是藉由TIRF顯微鏡分析所測量的GFP-標誌的AhR的相對強度的表現。圓以及箭頭表示隨著時間所測量的區域:在刺激之前(第1區)、在波峰之處(第2區)以及在靜止之處(第3區)。圖(第4區)顯示在大約第2分鐘之時一波峰數值被發現,以箭頭表示BBP被添加的時間。(14b)對BBP的反應的memAhR的定量RT-PCR分析顯示一在第5分鐘之時快速的上升在第15分鐘之時達到波峰繼而在第2小時之時一逐漸的下降至一較低的平線區位準。誤差槓(Error bars)表示標準偏差(standard deviation)。*,p<0.05,t-試驗(n=3)。(14c)西方墨點分析的分析顯示:BBP在第15分鐘之時促進AhR上升繼而在第30分鐘之時一輕微的下降以及在第60分鐘之時一再-上升。(14d)西方墨點分析的分析顯示:BBP在第30分鐘之時誘導G α q/11以及G β這兩者的生成。(14e)免疫沉澱(IP)分析顯示在BBP刺激之後AhR與G α q/11之間的交互作用,字母C代表對照組。(14f)藉由西方墨點分析所測量,由siRNA所造成的AhR的剔除證明:BBP抑制Huh-7細胞中AhR與G α q/11這兩者的表現,字母S代表作為負對照組的零亂siRNA;圖15說明動態免疫螢光成像(dynamic immunofluorescence imaging)的結果。(15a)說明未經處理的 對照組細胞的免疫染色;AhR以及G α q/11表現主要地在Huh-7細胞的核中被觀察到並且微弱地在細胞溶質中;帶狀比例尺(bar scale):50μM。(15b)被處理以BBP(1μM)歷時5以及15分鐘的細胞各個顯示一從核至細胞溶質隔室(cytosolic compartment)中的AhR與G α q/11這兩者的轉位。經免疫染色的G α q/11在第15分鐘之時特別地聚集在細胞膜之處。(15c)被轉染以AhR siRNA的細胞強烈地減少細胞溶質與核的隔室這兩者中AhR強度(上區),而被轉染以零亂siRNA不會改變免疫染色強度(下區)。(15d)BBP回復在使用預-轉染的AhR siRNA 15分鐘之後的細胞中AhR與G α q/11這兩者的強度;圖16說明雙免疫金穿透電子顯微鏡分析(double immunogold transmission electron microscopic analysis)的結果。(16a)免疫金-染色的G α q/11(白色箭頭)會在作為對照組的Huh-7細胞中的細胞膜之處存在有如呈單一的或雙重的或三重的實體。(16b)在第20分鐘之時,BBP(1μM)-處理的細胞顯示一免疫金-標誌的AhR粒子(呈6nm的大小,黑色箭頭)與免疫金-標誌的G α q/11粒子(呈20nm的大小,白色箭頭)的交互作用,形成一複合體,在細胞膜之處出現有如不同的實體:單體的(monomeric)(未顯示)、二聚體的(dimeric)(未顯示)、三聚體的(trimeric)(左邊)以及聚合的(polymeric)(右邊)實體。(16c)一在細胞膜之處所出現的AhR以及G α q/11的三聚複合體。CM:細胞膜、N:核,以及帶狀比例尺:500nm; 圖17說明“拉與推”機制以及生化過程。(17a)在Huh-7細胞中對BBP處理反應的G α q/11訊息級聯(signaling cascades)的測量。西方墨點分析顯示:BBP(1μM)在第30分鐘之時觸發G α q/11與G β這兩者的生成。經活化的G α q/11導致在PIP2上的減少,造成經增加的IP3R位準。(17b)說明免疫螢光的Fluo-4-標記的鈣(immunofluorescent Fluo-4-labled calcium)在Huh-7細胞中的反應性的分析。被顯示的是未經標記的細胞(左上區)以及Fluo-4-標記的鈣(綠色,左下區)。亦被顯示的是在BBP(1μM)刺激(箭頭)之後在BSS培養基(中間上面區)以及無鈣培養基(中間下面區)中相對的鈣位準的變化。培養在具有預-處理的IP3R抑制劑2-APB(100μM,1小時)的無鈣培養基中的細胞(右上的區)顯示一在鈣密集上的減少(右上的區),它存在一劑量-反應方式(dose-response manner)(y=-0.4x+2.5,R2=0.94)(右下的區)。誤差槓表示平均值的標準偏差(n=5)。(17c)西方墨點分析的結果指示:BBP-誘導的COX-2表現藉由預-處理以2-APB(30μM,1小時)而被抑制,字母C表示對照組。(17d)說明西方墨點分析的結果,顯示BBP(1μM)經由AhR/Ca2+/ERK/COX-2途徑誘導COX-2的過度表現。ERK1/2在BBP處理之後第15分鐘之時被磷酸化以及第30分鐘之時被去磷酸化。(17e)說明西方墨點分析的結果,顯示BBP-誘導的COX-2表現藉由預處理以化學品PD98059(20μM,1小時,Calciochem)而被抑制,字母C表示對照組。(17f)說明ARNT位準藉由處理以BBP(1μM)而顯著地被抑制( 隔夜所測量的)。數據代表平均值±SD,n=3以及*:史徒登氏t-試驗,p<0.01。(17g)說明一構成經由GPCRs-G蛋白質信號傳遞的配位子-誘導的非基因AhR信號傳遞途徑(ligand-induced nongenomic AhR signaling pathway)的基礎的“拉與推”機制的途徑表示;圖18說明LIF在Nanog表現上的效用。(18a)說明LIF促進Nanog的表現。左區說明:藉由hTS細胞中的流動式細胞測量分析,Nanog表現是以一負向劑量-依賴的方式而顯著地被抑制。數據表示用於3次分析的平均值±SD。*p<0.01(史徒登氏t試驗,n=3)。右區說明當hTS細胞被預培育以RA(10μM)隔夜繼而以不同的位準(亦即各個125、250以及500U/mL)處理LIF歷時1-天時相對的Nanog表現。(18b)說明藉由流動式細胞測量分析,在hTS細胞中的RA誘導(1天培育,10μM)刺激Nanog以及Oct4的表現,而不是Cdx2以及Sox2;圖19說明在老年的PD大鼠中行為改善的評估。(19a)說明在植入後的第12週之時在一系列的腦部切片(30μM)上的TH+神經元的免疫組織化學(immunohistochemistry)顯示:大量經重新再生的TH-陽性神經元出現在經損傷的黑質紋狀體途徑中(左邊部分)。在SNC區域中,TH-陽性神經元呈現一具有從細胞體中突起的多重外生(multiple outgrowths)以與宿主組織形成神經元迴路(neuronal circuitries)的特徵。在一大鼠中的經再生的多巴胺神經元的數目佔相對的正常側的28.2%(n=5)。(19b)相較於正常側, 一大鼠的經損傷的SNC中多巴胺神經元的數目再生至28.2%;圖20:(20a)說明藉由RT-PCR,ICM與滋養外胚層(TE)這兩者的特定基因的表現;(20b)說明hTS細胞被轉染以一F1B-GFP質體建構物的DNA混合物(DNA mixture of F1B-GFP plasmid construct)以產生一超過95%的成功率;(20c)說明經RA誘導的eIF4B的生成的時程;(20d)說明c-Src的活化藉由使用eIF-4B而被抑制;(20e)說明IP分析顯示:活性的c-Src直接結合至Stat3[轉錄的訊息傳遞者(signal transducer)以及活化子(activator)];(20f)說明c-Src siRNA抑制Stat3的表現;(20g)說明Nanog表現藉由Stat3 siRNA而被抑制;以及(20h)說明一在hTS細胞中經由次細胞c-Src mRNA定位的RA-誘導的c-Src/Stat3/Nanog途徑的途徑;圖21說明G α q/11信號傳遞途徑的活化:(21a)說明藉由西方墨點法,在RA處理(10μM)之後G α q/11途徑-相關的組分隨著時間的表現;(21b)說明在被培養在無鈣培養基中並且在RA處理之前20分鐘被預-裝填以配於BSS緩衝液中的Fluo4(1μM)的hTS細胞中的即時活細胞成像顯微鏡(real-time live cell imaging microscopy)(Cell-R system,Olympus,Tokyo)。(a)RA-誘導的細胞內鈣的消耗是藉由以一SOCE型態添加CaCl2(2mM)而被回復。(b)RA-誘導的細胞內鈣位準是藉由2-APB(10分鐘)以一顯著的劑量-依賴的方式而被抑制(R2=0.8984)。(c)在ER鈣的消耗之後,KCl (60mM)能夠去活化L-型鈣離子通道(L-type calcium channels)。(d)在ER鈣消耗之後,KCl-依賴的L-型鈣離子通道是藉由抑制劑硝苯地平(nifedipine)(5μM)而被阻斷。n:被計數的總細胞;(21c)說明CaMKII直接與CREB1以及eIF4B交互作用;(21d)說明藉由西方墨點法,eIF4B siRNA抑制CaMKII、鈣調去磷酸酶以及eIF4B的表現;(21e)說明藉由西方墨點法,KN93(1μM,2小時)抑制eIF4B表現;(21f)說明parkin直接與CaMKII以及MAPT交互作用;(21g)說明SNCA直接與MAPT交互作用;(21h)說明MAPT與GSK3 β以及α-微管蛋白(α-tubulin)交互作用;(21i)說明藉由西方墨點法,2-APB抑制鈣調去磷酸酶、NFAT1以及MEF2A的表現;(21j)說明內輸蛋白與NFAT1之間的直接交互作用;(21k)說明藉由分段分析(fractional assay),RA刺激NFAT1核轉位(nuclear translocation)。核纖層蛋白A/C:核的標記以及α-微管蛋白:細胞質的標記;(21l)說明Akt2直接與GSK3 β交互作用;(21m)說明在動態變化中使用不同抗體所顯示的在被處理以RA歷時4小時(空白的柱)以及歷時24小時(黑色的柱)的細胞中GSK3 β表現的流動分析(flow analysis)。數據顯示平均值±SD,n=3;(21n)說明流動式細胞測量分析顯示Akt2 siRNA抑制RA-誘導的GSK3 β表現;圖22說明轉錄複合體(transcriptional complex)的形成:(22a)說明β-連接素與LEF1之間(上面)以及LEF1與Pitx2之間的交互作用;(22b)說明藉由RA處理(4小時),LEF1 轉錄基因Pitx2而不是基因Pitx3(22c)說明藉由西方墨點法,MEF2A直接與NFAT1、MEF2A、Pitx2、SNCA以及EP300交互作用;(22d)說明藉由西方墨點法,RA誘導MEF2A、EP300以及Pitx2隨著時間的生成;(22e)說明藉由西方墨點法,NFAT1 siRNA抑制MEF2A的表現;(22f)說明CREB1標靶在MEF2A基因的啟動子處;(22g)說明MEF2A轉錄基因SNCA(上面)、TH(中間)以及MEF2A本身(下面);(22h)說明藉由西方墨點法,MEF2A siRNA抑制EP300、Pitx2以及MEF2A的表現;(22i)說明EP300標靶在HDAC6(上面)以及TH(下面)基因的啟動子處;(22j)說明藉由西方墨點法,在第4小時以及第24小時時間點之時各種不同的分子活性的鑑定。縮寫,IP:免疫沉澱分析;ChIP:染色質免疫沉澱分析;圖23說明在hTS細胞中RA-誘導的神經生成(neurogenesis)的途徑的調節網路(上區)。2種mRNA轉譯的工具:帽蓋-依賴的(cap-dependent)(左下)以及帽蓋-獨立的(cap-independent)(右下)。紅色的線:時空信號傳遞途徑;黑色的線:轉錄途徑;雙-向的箭頭:分子連接至其它途徑;圖24說明RA信號傳遞促進Wnt2B/Fzd6/β-連接素途徑:(24a)說明流動式細胞測量分析顯示:藉由經預處理的Wnt2B siRNA的抑制作用隔夜所證明,RA(10μM)顯著地誘導Wnt2B、Dvl3以及FRAT1的活化但是抑制GSK3 β。數據顯示平均值±SD;n=3;(24b)說明由RA RT-PCR所造 成的經增加的Fzd6 mRNA表現。數據顯示平均值±SD;n=3,*:藉由史徒登氏試驗p<0.05;(24c)說明藉由西方墨點法,RA誘導在β-連接素以及HDAC6的表現隨著時間的改變;(24d)說明IP分析顯示:一藉由隔夜培育以RA所造成的HDAC6與β-連接素之間的物理交互作用;(24e)說明在隔夜培育之後,藉由分離測定(fractionation assay),RA誘導β-連接素的核/細胞質轉位。核纖層蛋白以及α-微管蛋白分別作用作為核的以及細胞質的標記;(24f)說明共焦免疫螢光顯微鏡顯示:RA-誘導的β-連接素以及HDAC6的動態變化顯示β-連接素在第30分鐘之時的核轉位,它藉由HDAC6 siRNA而被抑制;(24g)說明細狀的β-連接素在RA處理的第5分鐘之時出現在突觸區域中(箭頭);圖25說明共焦免疫螢光顯微鏡分析。在對抗HDAC6的siRNA的存在下,β-連接素的核定位被阻斷;圖26說明在細胞膜之處的分子事件:(26a)說明藉由西方墨點法,RA誘導G α q/11、G β、RXR α以及RAR β隨著時間的生成。β-肌動蛋白作為對照組;(26b)說明即時共焦免疫螢光顯微鏡分析,顯示代表性GFP-標誌的RXR α在RA刺激之後的第0、4.5以及13分鐘之時從核周區域朝向細胞膜(箭頭)的移動。在核中沒有RXR α是可見的。正常相位對比(左上)以及螢光影像(右上)。槓(Bar)表示30μM;(26c)說明一從核(N)至細胞膜(M)的相對定量的GFP-標誌的RXR α在時程上的強度上的動態移動與變化。正常相位對比以及螢光成像顯示在右上之處;(26d)說明一代表性成 像顯示藉由RA在第5分鐘之時所造成的RXR α以及G α q/11在細胞膜之處的共-表現;(26e)說明在RA處理歷時20分鐘之後在細胞膜之處所觀察到的雙免疫金標記的RXR α(6μM;黑色箭頭)以及G α q/11(20μM;白色箭頭)。N:核;(26f)說明RXR α siRNA抑制RA-誘導的G α q/11與RXR α的交互作用(24小時);(26g)說明RAR β siRNA抑制RA-誘導的G β與RAR β的交互作用以及G β與PI3K的交互作用(24小時)。IP:免疫沉澱分析;IgG:負對照組;C:正對照組;(26h)說明IP測定分析顯示:一選擇性c-Src抑制劑PP1類似物能夠防止RXR α-RAR β異型二聚物(heterodimer)的形成;(26i)說明藉由雙免疫金穿透電子顯微鏡所觀察到的RA-誘導的金粒子-標誌的RXR α在內質網(ER)中的定錨(anchorage);圖27說明藉由RT-PCR,RA刺激典型Wnt2B途徑;在hTS細胞中隔夜處理(10μM)之後,RA誘導Wnt2B信號傳遞途徑的組分的表現,顯示呈一統計學上顯著的結果;在隔夜處理之後,Wnt2B siRNA抑制RA-誘導的Wnt2B途徑的組分;圖28說明RXR α以及RAR β的局部合成:(28a)說明藉由RT-PCR,RA(10μM)在第15分鐘之時快速地誘導RXR α mRNA與RAR β mRNA這兩者的短暫的上升。數據顯示平均值±SD,n=3,t試驗*:p<0.05;(28b)說明藉由西方墨點法,RA誘導PI3K以及Akt異構型(isoforms)隨著時間的表現;(28c)說明藉由流動式細胞測量術,PI3K抑制 劑124005抑制RA-誘導的Akt異構型(24小時)。數據顯示平均值±SD,n=3;(28d)說明藉由西方墨點法,Akt3與mTOR交互作用,但是藉由Akt3 siRNA而被抑制;(28e)說明藉由西方墨點法,RA誘導mTOR的暫時性表現;(28f)說明Akt3 siRNA抑制RA-誘導的mTOR的磷酸化;(28g)說明mTOR直接與4EBP1交互作用(4小時);(28h)說明使用或沒有使用mTOR siRNA或4EBP1 siRNA的預培育之藉由RA(4小時)所處理的hTS細胞是藉由西方墨點法針對mTOR、4EBP1、eIF4E以及eIF4B的表現而被分析;(28i)說明藉由西方墨點法,eIF4E siRNA抑制RA-誘導(4小時)的在RXR α與G α q/11之間(上面)以及RAR β與G β之間(下面)的交互作用;圖29:(29a)說明藉由RT-PCR,PI3K抑制劑在hTS細胞中隔夜處理之後抑制RA-誘導的Akt異構型,Akt1、2以及3的表現;(29b)藉由RT-PCR,Akt2抑制劑抑制β-連接素mRNA的表現;(29c)藉由流動式細胞測量術,Akt3 siRNA抑制mTOR的表現;圖30說明CREB1促進TH的轉錄:(30a)說明藉由西方墨點法,CREB1直接與Akt1以及β-連接素交互作用;(30b)說明Akt1 siRNA抑制CREB1的表現。β-肌動蛋白:對照組;(30c)說明CREB1標靶在TH基因的啟動子處;(30d)說明藉由西方墨點法,CREB1 siRNA抑制TH的表現;(30e)說明免疫螢光組織分析顯示tNSCs在PD大鼠腦中的植入後的第12週之時在治療的SNC側中的DA神經元(白色箭頭) 中TH-FITC(藍色)以及TH-Cy-3(紅色)的共-表現(右區)。在正常側中(左上)以及在治療側中(左下)的經放大的DA神經元。陽性CERB1染色在核中被發現到;(30f)說明直方圖顯示DA神經元中所表現的TH以及CREB1在正常(左邊;n=86)以及治療側(右邊;n=114)中的相對平均強度。誤差槓:平均值±SD;n:被計數的總細胞;p<0.05:統計學上顯著的;圖31說明免疫組織螢光分析(immunohistofluoresence analysis):對照組的SNC中TH(+)以及NeuN(+)運動神經元(motor neurons)(箭頭)(左上)。在6-OHDA損傷之後第1-週之時經減少的TH(+)(箭頭)(右上)。在損傷後的第6週之時隨著TH-陽性的神經末梢的擾亂,在TH(+)神經元上明顯的減少(綠色顆粒),以及各種不同的退化性空腔形成(紅色爆炸性圓)(左下)。在移植之後,在退化性空腔的壁之處(紅色爆炸性圓;插入物)的TH(+)神經元(箭頭)帶有突出至空腔(右下)中的TH(+)神經末梢(綠色);圖32說明具有較少免疫反應的TH(+)以及GFAP(+)細胞的活體內(in vivo)再生:(32a)說明在損傷後的第1與第6週之時TH(+)細胞的數目分別減少至在經損傷的SNC(紅色)中的48%與13%以及在經損傷的紋狀體(淺藍色)中的78%與4%。在移植之後,TH(+)細胞在經損傷的SNC以及紋狀體中分別重新-成長至67%以及73%(右區)。數據藉由Tissuequest 2.0軟體(TissueGnostics Gmbh,Vienna,Austria)而被分析;(32b)說明在經損傷的SNC(下區)中以 及放大(左上,插入物a)與無損傷側(右上,插入物b)相較的多巴胺神經元的再生;(32c)說明相較於無損傷側,在第12週之時tNSCs的移植在經損傷的SNC中的TH-陽性神經元(箭頭)上產生78.4±8.3%(平均值±SEM;n=4)的復原率;(32d)說明在損傷後的第6週之時在經損傷的紋狀體中TH-FITC(+)以及GFAP-Cy-3(+)Wilson束(Wilson’s pencils)(空白箭頭)的退化(左行)。在植入後的第12週之時(右行),數個GFAP(+)細胞(箭頭)出現在重新-建立的Wilson束(空白箭頭)的細纖維(fine fibers)內;(32e)說明免疫組織螢光成像分析,在藉由細胞大小的位置(呈8-10μm的直徑)以及它對應的GFAP-Cy-3的強度所決定的閘(gate)(左邊的散佈圖)中的細胞被計數。閘(紅色散佈圖):被計數的神經膠細胞(glial cells);黑色散佈圖:排除具有異常大小的細胞;藍色散佈圖:具有異常GFAP強度的細胞。在紋狀體中,相較於無損傷側,在經損傷側中的GFAP(+)細胞在處理之前是65.5%以及在細胞治療之後變成93.9%(右邊的區);(32f)說明hTS細胞植入至SCID小鼠中僅引起輕微免疫反應並且沒有腫瘤形成(tumorigenesis)被觀察到。類-黏液樣的奇異型細胞(黑色箭頭),肌纖維(空白箭頭)以及針軌跡(NT);以及圖33說明藉由在慢性PD大鼠中的免疫組織螢光散佈圖所測量,利用在TH-FITC與NeuN-Cy-3之間的決定係數(coefficient of determination)在細胞治療之前以及之後SNC中的TH(+)細胞的鑑定。(33左上)說明正常的SNC: R2=0.72;(33右上)說明藉由6-OHDA損傷所造成的SNC(1-週):R2=0.77;(33左下)說明藉由6-OHDA損傷所造成的SNC(6-週):R2=0.25;(33右下)在tNSCs移植之後的SNC(12-週):R2=0.66。被顯示的結果代表2隻大鼠的平均值。
實施例 材料
抗體。用於免疫墨點法(immunoblot)以及免疫細胞化學法(immunocytochemistry):一次抗體(primary antibodies):SSEA-1、-2、-3、CD90以及巢蛋白(Chemicon)。神經絲以及GFAP(BioGenex)。Nanog、Oct4、Cdx2以及Sox2(BD Biosciences,San Jose,CA,USA)。G α q/11(C-19,sc-392)、G β(T-20,sc-378)、RXR α、RAR β、c-Src、pStat3、Stat3、PP1類似物以及β-肌動蛋白(Santa Cruz Biotechnology,Santa Cruz,CA,USA)、TH(Sigma-Aldrich St.Louis,MO and Temcoula,CA)以及血清素(Sigma-Aldrich St.Louis,MO)。
二次抗體(Secondary antibodies):
siRNAs:Nanog siRNA以及Cdx2 siRNA(Sigma-Aldrich St.Louis,MO)。
用於流動式細胞測量術的一次抗體:HLA-ABC、CD9、CD14、CD34、CD45、CD73、CD90、CK7、中間絲蛋白、6-整合蛋白、E-鈣黏素、L-選擇素、Nanog、Oct4 、Cdx2以及Sox2是購自於BD Biosciences,San Jose,CA,USA;HLA-DR、CD33、CD44以及CD105來自於eBioscience,San Diego,CA,USA;CD133來自於Miltenyi Biotec,Germany。
為了進行TH-2以及血清素免疫染色,細胞是在以PBS洗滌之後在4℃下被培育於0.1M PBS中隔夜。在室溫下以封阻溶液[50mL 0.1M PBS、0.05g疊氮化鈉(sodium azide)、1%馬血清以及10% Triton X-100]培育歷時1小時之後,細胞再次被洗滌。細胞被培育以一次抗體,亦即TH-2(1:200,Sigma-Aldrich,St.Louis,MO)以及血清素(1:100,Sigma-Aldrich,St.Louis,MO)歷時2小時並且以PBS予以洗滌。藉由以帶有FITC或PE的抗-小鼠IgG(Sigma-Aldrich,St.Louis,MO)培育歷時1小時,細胞以PBS予以徹底地洗滌並且被進行免疫螢光分析。
實施例1:分離、分化以及細胞培養
胚胎絨毛膜絨毛(Embryonic chorionic villous)是從經由腹腔鏡外科手術(laparoscopic surgery)的婦女體內的早期子宮外孕(胎齡:6-8週)的輸卵管而被獲得,由人體研究以及倫理委員會的機構審查委員會(Institutional Review Board on Human Subjects Research and Ethics Committees)所認可。組織在無血清的α-MEM(Sigma-Aldrich,St.Louis,MO)中被絞碎並且被胰蛋白酶化以0.025%胰蛋白酶/EDTA(Sigma-Aldrich,St.Louis,MO)歷時15分鐘接著此分解是藉由添加含有10% FBS的α -MEM而被終止。此操作程序被重複數次。在離心之後,細胞被收集並且在37℃下在5% CO2中以含有20% FBS的α-MEM(JRH,Biosciences,San Jose,CA)以及1%盤尼西林-鏈黴素(penicillin-streptomycin)予以培養。在培養2代之後藉由一商業套組(Dako,Carpinteria,CA)所測量的培養基中hCG表現變得無法偵測。
細胞分化:hTS細胞在37℃下在5% CO2中被培養於含有20% FBS、1%盤尼西林-鏈黴素以及10μg/mL bFGF的條件α-MEM(CytoLab Ltd,Rehovot,Israel)中。培養基每3天被置換。在5代之後,成為各種不同之經特化的表現型的分化是藉由使用具有改良的已公開的操作程序而被起始。有關在穿透小室盤(Transwell plate)(Corning,New York,NY)中的細胞培養,上層小室被塗覆以500μL的呈一為4:1比例的含有PureCol的膠原蛋白凝膠(Inamed Biomaterials,Fremont,CA)以及條件L-DMEM(Gibco,Grand Island,NY)(使用1M NaHCO3而被調整至pH 7.4)。細胞(4×105)是被培養於在上層小室上的條件L-DMEM(1mL)中。下層小室含有條件H-DMEM(3mL)。初步的實驗顯示:在這兩者小室中的葡萄糖位準可能在4小時內達到一平衡狀態。
亞表現型的細胞分化:細胞在37℃下在5% CO2中被培養於含有20% FBS、1%盤尼西林-鏈黴素以及10μg/mL bFGF的條件α-MEM(CytoLab Ltd,Rehovot,Israel)中。一般而言培養基每3天被更新。在培養5代之後,成 為各種不同的特定細胞表現型的分化是藉由各種不同的策略(如在圖12的表中所示的)而被執行。針對骨原性分化(osteogenic differentiation),細胞化學礦物基質(cytochemical mineral matrix)是使用一茜紅S分析(Alizarin red S assay)(Sigma-Aldrich,St.Louis,MO)而被分析俾以偵測鈣礦物質含量。為了鑑定鈣沉積物,細胞被固定並且在黑暗中被培育以2%硝酸銀溶液(w/v)歷時10分鐘繼而以去-離子水徹底地洗滌接著被暴露於亮光下歷時15分鐘。細胞是使用一商業套組(Sigma-Aldrich,St.Louis,MO)而被處理以von Kossa染色俾以偵測鹼性磷酸酶(alkaline phosphatase)活性。軟骨性分化(Chondrogenic differentiation)是在一酸性pH位準下使用艾爾遜藍染色(Alcian blue staining)(Sigma-Aldrich,St.Louis,MO)而被確認。針對肌原性分化(myogenic differentiation),細胞被培育以配於磷酸緩衝的鹽水溶液(PBS)中的3%過氧化氫歷時10分鐘俾以抑制內生性過氧化酶酵素活性。非-專一性位址是藉由含有10%人類血清以及0.1% Triton X-100的PBS而被阻斷歷時60分鐘並且藉由封阻緩衝液而被洗滌歷時5分鐘。細胞被培育於含有骨骼肌肌凝蛋白重鏈-專一性單株抗體(skeletal muscle myosin heavy chain-specific monoclonal antibody)的封阻緩衝液(Vector Laboratories,Burlingame,CA)中歷時1小時,接著使用VectaStain ABC套組(Vector Laboratories)而被染色。針對脂肪生成性分化,細胞是藉由條件培養基被誘導並且在含有1%鈣的4%三 聚甲醛(paraformaldehyde)中被固定歷時60分鐘接著以70%乙醇予以洗滌。在暴露於2%油紅O試劑(Oil red O reagent)(Sigma-Aldrich,St.Louis,MO)歷時5分鐘之後,過度的染色是藉由70%乙醇繼而水潤洗而被移除。油紅O染劑被應用作為一細胞內脂質聚集的指示劑。神經幹細胞是藉由配於乙醇中的10μM全-反式視黃酸(all-trans retinoic acid)(Sigma-Aldrich,St.Louis,MO)而被誘導。
實施例2:質體轉染
為了進行質體轉染,hTS細胞是如先前所描述的藉由全-反式視黃酸(10μM)(Sigma-Aldrich,St.Louis,MO)而被誘導隔夜繼而以一F1B-GFP的DNA混合物共-轉染(Myers)。簡言之,DNA混合物在4℃下被緩慢地添加至含有DOTAP(30μL)脂質體轉染試劑(Roche Applied Science,Indianapolis,IN)以及70μL HBSS緩衝液[含有NaCl(867g配於80mL H2O中)]的DOTAP(100μL)溶液[附加2mL HEPES溶液(1M,pH 7.4,Gibco)]中歷時15分鐘。在由PBS洗滌之後,細胞被充分地混合以DNA混合物。在培育隔夜之後,穩定的細胞株是藉由透過培養歷時2-3週直到聚落的形成為止的G418選擇(400μg/mL,Roche Applied Science)而被得到。G418-抗性細胞被合併以及被溶解並且藉由使用單株抗-GFP抗體(Stratagene,La Jolla,CA)的西方墨點法(Western blotting)而被分析俾以定量表現GFP的轉染子的百分比。藉由繼代培養(subcultures),經轉染的hTS細胞以甲醇予以固定(10分鐘)俾以藉由免疫螢光 法(immunofluorescence)來偵測GFP的表現。轉染率獲得超過95%的效力。
實施例3:RT-PCR以及定量PCR(qPCR)
為了進行RT-PCR,來自於105-106細胞的總RNA是藉由使用TRIZOL試劑(Invitrogen)而被抽取以及mRNA表現藉由使用一Ready-To-Go RT-PCR珠粒套組(Ready-To-Go RT-PCR Beads kit)(AmerSham Biosciences,Buckinghamshire,UK)。簡言之,反應產物於1.5%瓊脂糖凝膠上被解析並且以溴化乙錠(ethidium bromide)而被顯影。β-肌動蛋白或β-2微球蛋白(β-2 microglobulin)被使用作為一正對照組。全部的實驗被執行3重複。有關qPCR,基因表現是以iQ5即時PCR偵測系統(iQ5 Real-Time PCR Detection System)(Bio-Rad Laboratories)而被測量並且以Bio-Rad iQ5光學系統軟體,版本2.0(Bio-Rad iQ5 Optical System Software,version 2.0)(Bio-Rad Laboratories)而被分析。相對的mRNA位準是使用比較性Ct方法(comparative Ct method)(Bio-Rad,使用手冊)而被計算並且被呈現作為一相對於生物對照組的比例。全部的引子對被確認在一循環內大約使產物的數量加倍並且產生一所預期的大小的單一產物。
實施例4:西方墨點法
細胞被接種至具有無血清培養基的10cm皿中歷時隔夜並且被處理以或不處理以RA(10μM)歷時各種不同的有如所指示的時間間隔。在刺激之後,細胞以冰-冷的 PBS予以洗滌兩次並且藉由RIPA溶解緩衝液(RIPA lysis buffer)(Minipore)而被溶解。蛋白質濃度是藉由BCA蛋白質分析套組(BCA protein assay kit)(Thermo)而被測定。相等數量(30μg)的蛋白質是藉由8% SDS-PAGE而被解析,被轉印至PVDF膜上並且在室溫下以5%脫脂奶粉予以封阻歷時1小時。在封阻之後,該膜在4℃下被培育以一次抗體歷時4小時。細胞以PBST予以洗滌3次並且接著在室溫下被培育以綴合有HRP的二次抗體歷時1小時。在以PBST緩衝液洗滌6次之後,該膜被培育以一化學發光受質(chemiluminescent substrate)(GE Healthcare)歷時1分鐘。特定的條帶是使用一增強化學發光套組(enhanced chemiluminescence kit,ECL)(Amersham)而被顯影。
實施例5:南方墨點法
hTS細胞的端粒長度是如先前所描述的在第3代以及第7代之時藉由南方免疫墨點分析(southern immunoblot analysis)而被測量(Tsai)。簡言之,片段被轉印至Hybond N+尼龍膜(Hybond N+ nylon membranes)(Amersham Biosciences)並且在65℃下被雜交至一使用Ready-To-Go標記珠粒(Ready-To-Go labeling beads)(Amersham Biosciences)而被標記以α-32P-dCTP之TTAGGG重複的探針。末端限制片段是藉由與互補於端粒重複序列之經標記的寡核苷酸(oligonucleotides)雜交而被顯影。TRFs的大小分布是與一DNA長度標準物相比較。
實施例6:末端限制片段(TRF)南方墨點法
自從一細胞啟動它的癌變,它的端粒將會變得非常短。端粒長度是在hTS細胞的培養中第3以及第7代之時被測量。簡言之,片段被轉印至Hybond-N+尼龍膜(Amersham Biosciences)並且在65℃下被雜交至一藉由使用Ready-To-Go標記珠粒(Amersham Biosciences)被標記以α-[32P]-dCTP的TTAGGG重複的探針。末端限制片段是藉由與互補於端粒重複序列之經標記的寡核苷酸雜交而被顯影。末端限制片段的大小分布是與一DNA長度標準物相比較。有關電子顯微術,hTS細胞-衍生的似葡萄細胞群(hTS cell-derived grape-like cell mass)是藉由穿透電子顯微術(JEM-2000 EXII,JEOL,Tokyo,Japan)而被檢測俾以鑑定細胞的基礎結構。
Oct4Sox2NANOGfgfr2FGF4BMP4Cdx2以及內生性對照組β-肌動蛋白(ACTB)在hTS以及藉由500單位LIF(Chemicon,Temecula,CA)所處理的hTS細胞中的差別的基因表現是藉由使用螢光素(fluorescein)作為一用於標準化井-對-井的光學偏差(well-to-well optical variation)的內部被動參考染料(internal passive reference dye)的IQ5即時PCR偵測系統(Bio-Rad Laboratories)而被測量。PCR擴增是以一為25μL的總體積[含有12.5μL的2X SYBR Green supermix(Bio-Rad)、0.5μL的10μM的各個引子以及0.5μL的cDNA樣品並且被混合以無菌水]被執行。反應是在95℃下被起始,3分鐘,繼而60個由在95℃下30s的變性反應(denaturation)、在60℃下30s的黏合 (annealing)、在72℃下15s的延伸反應(extension)所構成的3-步驟擴增循環。在最終解離階段之時,它被進行來產生一用於確認擴增產物專一性的熔化曲線(melting curve)。即時qPCR是藉由Bio-Rad IQ5光學系統軟體版本2.0(Bio-Rad IQ5 optical system software version 2.0)(Bio-Rad)被監測以及被分析。相對的mRNA位準是使用比較性Ct方法(Bio-Rad使用手冊)被計算並且被呈現以一相對於生物對照組的比例。ACTB轉錄本位準被確認與總RNA數量非常相關因而始終被用於標準化。全部所使用的引子對被確認在一循環內大約使產物的數量加倍並且產生一所預期的大小的單一產物。Oct4Sox2NANOGfgfr2FGF4BMP4Cdx2以及內生性對照組β-肌動蛋白(ACTB)的引子序列被顯示在圖13中。
OCT4-F:CCATCTGCCGCTTTGAGG;
OCT4-R:ACGAGGGTTTCTGCTTTGC;
ACTB-F:GATCGGCGGCTCCATCCTG;
ACTB-R:GACTCGTCATACTCCTGCTTGC;
CDX2-F:GTGTACACGGACCACCAGCG
CDX2-R:GGTGGCTGCTGCTGCTGTTG
MIG7-F:TCCACTACCAAGAGACAGGCTT
MIG7-R:TCAAGCTGTGTTGCACCCAA
IPF-1-F:GGAGGAGAACAAGCGGACGC
IPF-1-R:CGCGCTTCTTGTCCTCCTCC
實施例7:免疫細胞化學法
培養物在室溫下以4%三聚甲醛(paraformaldehyde)予以固定歷時30分鐘並且接著以PBS予以洗滌3次。如製造商的建議,LSAB套組(Dako,CA)被用於免疫細胞化學染色。為了進行SSEA-1與-4染色,細胞以tris-磷酸緩衝的鹽水溶液(tris-phosphate buffered saline,TBS)予以潤洗以及以H2O2予以洗滌歷時10分鐘。在使用山羊血清(1:200,Dako)阻斷反應歷時30分鐘之後,細胞接著被培育以一次抗體隔夜。在以TBS洗滌細胞以及被處理 以鏈黴抗生物素蛋白(streptavidin)歷時20分鐘之後,細胞是藉由生物素(biotin)而被染色(20分鐘),再次被洗滌,以及被處理以3,3’-二胺基聯苯胺四氯化氫(3,3’-diaminobenzidine tetrachloride)(Boehringer-Mannheim,Mannheim,Germany)歷時10分鐘。最後,細胞以蘇木精染料(hematoxylin stain)予以對比染色。為了進行SSEA-3染色,相似的操作程序被遵循,除了經顯露的抗原(它是配於檸檬酸緩衝液中使用一高-壓力鍋歷時15分鐘而被得到)在以H2O2洗滌之前被添加之外。最後,細胞以PBS予以徹底地洗滌以及被進行免疫螢光分析(immunofluorescence assays)。
實施例8:免疫沉澱(IP)
細胞被血清剝奪(serum-deprived)歷時隔夜並且被處理以RA(10μM)歷時30分鐘。在以蛋白質G-瓊脂糖(protein G-agarose)(Minipore)預-清除歷時30分鐘之後,特定的抗體或IgG被添加並且被培育隔夜。藉由培育以蛋白質G-瓊脂糖歷時2小時,珠粒以RIPA溶解緩衝液予以洗滌3次、在緩衝液中被煮沸、藉由8% SDS-PAGE被解析並且供用於有如所指示的各種不同的標的物的免疫墨點分析。
實施例9:流動式細胞測量術
細胞(5×106細胞/mL)被培育以各種不同的一次抗體歷時30分鐘並且接著在4℃下被培育以在經調節的稀釋下適當的螢光素異硫氰酸鹽(fluorescein isothiocyanate, FITC)-、藻紅素(phycoerythrin,PE)-或Rho-綴合的二次抗體(Jackson ImmunoResearch,West Grove,PA)歷時1小時。在徹底洗滌之後,細胞被再-散浮於PBS(1mL)中接著被進行流動式細胞測量術(FACScan,BD Biosciences,San Jose,CA)。數據是以Cell-Quest軟體(BD Biosciences)而被分析。
實施例10:微陣列
hTS細胞是藉由有或沒有使用RA(10μM)而各自被處理歷時1-與5-天。總RNAs是使用TRIzol試劑被抽取以及依據製造商的操作程序(Santa Clara,CA,http://www.affymetrix.com)使用Affymetrix人類基因體U133 plus 2.0基因晶片(Affymetrix Human Genome U133 plus 2.0 GeneChip)而被進行Affymetrix微陣列[在國立台灣大學醫學院的基因體醫學研究中心(台北,台灣)中被執行]。
實施例11:雙免疫金電子穿透顯微術(Double immunogold electron transmission microscopy,IEM)
細胞,有或沒有使用RA(10μM)的處理,是如先前所描述的被檢測(Tsai et al)。簡言之,經固定的超薄切片被預處理以一為5%偏過碘酸鈉(sodium metaperiodate)的水性溶液(10分鐘)並且以蒸餾水予以洗滌。載網被培育以抗RXR α(1:50)或G α q/11(C-19;sc-392;1:50)的IgG抗體的一整分部分(aliquot)並且繼而以一二級抗-小鼠的6nm金粒子(1:10;AB Chem,Dorval,Canada)或抗-兔子IgG的20 nm金粒子(1:10;BB International,UK)來探測。載網在培育步驟之間以PBS予以洗滌以及切片藉由將格子放置在1滴具有1%卵白蛋白(ovalbumin)的PBS上而被封阻(15分鐘)。在IgG金之後,載網以PBS繼而蒸餾水予以噴射-洗滌。全部的步驟是在室溫下被執行。切片接著以醋酸鈾醯(uranyl acetate)以及檸檬酸鉛(lead citrate)予以染色並且在一Hitachi H-700模型穿透電子顯微術(Hitachi Ltd.,Japan)上被觀測。
實施例12:共焦免疫螢光顯微術
細胞被培養在被塗覆以2%明膠(gelatin)的蓋玻片上隔夜並且被處理以或不處理以RA(10μM)各個歷時5、15以及30分鐘。接著,細胞以PBS予以潤洗3次、以配於PBS中的4%三聚甲醛予以固定歷時5分鐘以及以配於PBS中含有0.4% Triton X-100的2% FBS予以通透化(permeabilized)歷時15分鐘。此反應是在4℃下以5% FBS予以封阻隔夜繼而在4℃下培育以配於PBS中的一次抗體RXR α(1:100)或G α q/11(1:100)隔夜。在洗滌之後,細胞被培育以綴合有Dye Light 488或Dye Light 549的二次抗體(1:50;Rockland Immunochemicals Inc.,Gilbertsville,PA)歷時1小時。藉由培育以DAPI(1:5,000)歷時5分鐘,蓋玻片被風乾並且被密封供用於共焦免疫螢光顯微術(Olympus,Tokyo)。
實施例13:被定義為hTS細胞的人類滋胚內層的唯一族群的分析
得自於異位絨毛膜絨毛(ectopic chorionic villi)的細胞被培養;群落最初形成以及隨後增生成為附著的似纖維母細胞細胞(fibroblast-like cells)。免疫細胞化學上,這些細胞表現階段-特異性胚胎抗原(SSEA)-1、-3以及-4[stage-specific embryonic antigen(SSEA)-1,-3,and-4](圖1b)。這些SSEAs-陽性的細胞呈現與組織學上在異位絨毛膜絨毛中的滋胚內層相同。然而,在術語胎盤絨毛(placental villi)中,它們主要出現在絨毛核心的隔室之處。
為了判斷幹細胞的特性,流動式細胞測量分析顯示:這些細胞表現高位準的間質幹細胞標記:CD90、CD44、中間絲蛋白與神經絲,以及滋養層標記細胞角質蛋白(cytokeratin)(CK)-7。它們不會表現造血幹細胞標記:CD34與CD45以及上皮細胞標記:E-鈣黏素、α 6-整合蛋白以及L-選擇素。它們亦表現微弱的巢蛋白以及CD9。這些事實顯示:這些滋胚內層是不同於從成熟的胎盤組織中所分離的滋養層亞族群(Aboagye-Mathiesen et al.,1996;Baczyk et al.,2006)。此外,其它的支持性證據包括:1)使用全-反式視黃酸(RA)處理這些細胞致使相似於先前所描述的巨細胞的一形成(圖1d)(Yan et al.,2001);2)一系列的染色體分析顯示未經改變的核型(圖11);3)隨後的端粒長度的測量證實染色體穩定性(圖1c);以及4)植入細胞在重度合併免疫不全小鼠(severe combined immunodeficient mice)上產生一陽性免疫嵌合反應(positive immune chimeric reaction)。綜觀來說,這些經分離的細胞可能代表一高度同質性的滋胚 內層的族群,展現出間質幹細胞的特性。因此,這些細胞被視為hTS細胞。
實施例14:在hTS與hES細胞之間的基因以及生物學特性上的相似性
為了研究hTS細胞的基因剖析(gene profiling),反轉錄-聚合酶鏈反應(RT-PCR)是使用各種不同的引子而被執行(圖13)。結果顯示hTS細胞不僅表現TS細胞標記(Cdx2BMP4Eomes以及Fgfr-2)並且亦表現ES細胞標記(Oct4NanogSox2以及FGF4)(圖1a)。透過比較藉由使用Affymetrix人類基因體U133plus 2.0基因晶片(Santa Clara,CA,http://www.affymetrix.com)所分析的總體基因檔案(global gene profiles),hTS細胞在基因分布上是不同於PDMS細胞(Dr.C.-P.Chen的贈與)(圖1i)。
有趣地,hTS細胞展現出ES細胞的3種胚層的基因表現,包括:中胚層的骨橋蛋白、骨鈣素、串珠素(perlecan)、第Π型膠原蛋白、肌細胞生成素、myo D1、PPAR γ-2以及降脂蛋白;外胚層的神經絲、神經元素NgN3、CD133、MAP-2、Neo-D以及巢蛋白;以及內胚層的胰島素、Pdx-1(圖7)、CK-19、體抑素(somatostatin)、Isl-1、Nkx-2.2、Nkx-6.1以及Pax-6(數據未顯示)。功能上,hTS細胞能藉由使用具有修飾(圖12)之適當的攝生法(In't Anker et al.,2004;Fukuchi et al.,2004;Yen et al.,2005)而分化成為具有特化表現型的中胚層譜系(如在hTS細胞中所看到的),它包括骨細胞(osteocytes)、軟骨細胞(chondrocytes)、肌 原細胞(myocytes)以及脂肪細胞(adipocytes)(圖9)。hTS細胞被選擇性地誘導分化成為多巴胺NSCs以及胰島素-生成的胰島祖細胞(insulin-producing islet progenitor cells)(參見下面),有如代表性的那些分別衍生自外胚層以及內胚層者。這些結果證明:hTS細胞具有hES細胞(它能分化成為具有特化表現型的3種胚層)的基因以及生物學這兩者的特性。
實施例15:Nanog藉由LIF撤除維持人類滋養層幹細胞的多能性
由於hTS細胞表現胚胎幹(ES)細胞以及滋養層幹(TS)細胞這兩者的多潛能基因標記(諸如Oct4、Nanog、Sox2以及Cdx2)(圖1a),LIF撤除在人類滋養層幹(hTS)細胞上的效用被檢測。hTS細胞分別被處理以不同劑量的LIF[亦即500(模擬在壺腹之處)、250(模擬在中間-部分之處)以及125單位(模擬在峽部之處)]歷時3天,顯示:LIF以一劑量-依賴的方式促進Oct4表現但抑制Cdx2Nanog以及Sox2表現(圖1e)。定量PCR分析支持這些發現(圖1f)。因為Oct4相對於Cdx2的相對表現比值能在早期胚胎分化中決定細胞命運(Niwa et al.,2000),Oct4/Cdx2比值(0.4-倍)在壺腹之處似乎是最高的,它在中間-部分之處減少至0.2-倍並且變得接近在峽的部分之處者(圖1g)。此Oct4/Cdx2比值的減少趨勢實質地促進朝向滋養外胚層命運的分化(Niwa et al.,2005)。令人注目地,一較高的Nanog/Cdx2比值(2-倍)出現於被處理以125單位LIF的細 胞,而0.1-倍是在500單位LIF下被觀察到。這些結果強烈地暗示:作為一相對經減少的Oct4表現的回復者的Nanog對於hTS細胞去維持多能性是一重要的決定因子。此回復者的角色是藉由與使用500單位之LIF的比例相較之下使用125單位之LIF的顯著高的Nanog/Oct4比例以及在使用125單位之LIF下Cdx2/Oct4比例之明顯的增加而進一步被支持(圖1e)。Sox2/Cdx2沒有明顯的改變被發現到。
共同地,這些結果證明:從人類輸卵管的壺腹朝向峽的部分之LIF濃度的逐漸撤除主要地誘導在hTS細胞中Nanog的提升,藉此它維持hTS細胞的自我-更新以及多潛能特性,模擬在沒有餵養細胞下在小鼠ES(mES)細胞以及人類ES細胞生長中所具者。結果指示:Nanog扮演一維持hTS細胞的多能性的角色。
實施例16:RA增強Nanog表現
RA是一神經元分化的有效調節子並且通常藉由結合至與標的基因的調節區域中之視黃酸反應元(RAREs)交互作用的核受體(Maden)。已被顯示的是:視黃醇(維生素A)(一細胞中RA生成的供給者)在ES細胞中抑制由Nanog的上升調節所調控的細胞分化(Chen)。無論RA是否展現在hTS細胞中之Nanog上的一相似的效用被檢測。hTS細胞被處理以RA歷時1天接著被進行流動式細胞測量術。結果顯示:RA促進Nanog、Oct4以及Sox2的表現但沒有Cdx2,它與藉由Affymetrix基因晶片寡核苷酸微陣列 的微陣列mRNA表現分析(microarray mRNA expression profiling)是一致的。此外,使用siRNA剔除Nanog抑制RA-誘導的Nanog,但增加Cdx2的表現。相反地,藉由流動式細胞測量術,Cdx2 siRNA在RA-誘導的hTS細胞中促進Nanog以及抑制Cdx2(圖1h)。綜上所述,這些結果顯示:RA誘導hTS細胞中Nanog的過度表現,藉此RA在決定細胞命運時不會改變Nanog/Cdx2比值。
實施例17:RA促進它的受體RXR α活化
藉由西方墨點分析,RA在5分鐘內首先促進它的受體RXR α活化,然而,此作用僅持續歷時30分鐘。反而,一經增加的RAR β生成在60分鐘內被觀察到(圖3b)。RA是藉由免疫沉澱分析被觀察到直接地與RXR α以及RAR β交互作用(圖3c)。此外,藉由免疫螢光顯微術,經活化的RXR α在第15分鐘之時轉位朝向核呈一波峰並且由此之後後,核強度(nuclear intensity)下降(圖3a)。蛋白質G α q/11次單元在30分鐘內亦被活化(圖21a)。為此,可能的是:RA在最初反應階段與RARs交互作用而沒有細胞視黃酸-結合蛋白2(cellular retinoic acid-binding protein 2,CRABP-2)的輔助。
實施例18:RXR α/RAR β可能屬於G蛋白質-偶合受體(G protein-couple receptors,GPCRs)超家族的成員
此概念是藉由透過雙免疫金電子顯微鏡(double immunogold electron microscopy)的觀察在RXR α以及 G α q/11次單元之間的直接交互作用而被確認(圖26e)。然後,為了連接在RXR α/RAR β以及Nanog之間的關係,免疫沉澱測定分析暗示:RXR α,而非RAR β,直接地作用於Nanog的啟動子上(圖3g)。此外,不同於ES細胞,hTS細胞含有主要的RA生成酵素:第2以及第3型的視網醛去氫酶(RALDH-2以及-3),它能夠使hTS細胞將視黃醇(retinol)代謝成為RA。被證明的是:RA是藉由與與GPCRs締合的RXR α/RAR β複合體的直接交互作用以與Nanog的啟動子結合而作用於hTS細胞上俾以生成Nanog。
實施例19:在hTS細胞中之RA-誘導的Nanog表現是藉由輸卵管中的梯度LIF含量而被影響
藉由流動式細胞測量術,LIF的撤除在hTS細胞中能顯著地增強RA-誘導的Nanog表現(圖18),暗示:hTS細胞-衍生的NSCs處於一在LIF的缺乏下能藉由RA誘導而表現有如祖細胞的地位,維持用於在一適當的微環境條件下的神經亞型特化之多潛能特性。
實施例20:RA經由一非-RARE途徑促進TH表現
這些結果顯示:藉由西方墨點法所測量的,基於RA在上達至120分鐘內刺激hTS細胞中RXR-α、RAR-β以及c-Src表現的最初結果,RA誘導一非基因信號傳遞途徑(圖3a以及3b)。為了決定RXR-α/RAR-β交互作用是否屬於G蛋白質-偶合的受體(GPCRs)的超家族,雙免疫金電子顯微鏡被使用來研究G-蛋白質G α q/11以及RXR-α之間的交互作用。結果顯示:RXR-α具有一與在細胞膜之處 的G α q/11結合交互作用以及隨後,經分解的G α q/11刺激膜磷脂酶C β(membrane-bound phospholipase C beta,PLC β)去切割PIP2[一次要的膜磷酸肌醇(membrane phosphoinositol)]成為2種次級傳訊子:IP3以及二酸甘油脂(DAG)。
隨後,藉由免疫沉澱分析以及使用一特定的c-Src抑制劑PP1類似物,RA誘導一RXR α、RAR β以及[c-Src]的支架形成(圖3c)。
實施例21:RA活化Wnt2B/Fzd6/β-連接素途徑
西方墨點分析證明:藉由西方墨點法,在4小時以及24小時培育之後RA顯著地上升調節Wnt2B以及原致癌基因(proto-oncogene)FRAT1(圖24a)。hTS細胞是使用或沒有使用抗Wnt2B的siRNA而被培育以RA隔夜。流動式細胞測量分析顯示:RA顯著地上升調節Wnt2B以及它的下游標的物[包括媒介蛋白質Dishevelled 3(Dvl3)以及原致癌基因FRAT1]導致抑制肝醣合成酶激酶-3 β(glycogen synthase kinase-3 β,GSK3 β),它可以藉由siRNA減弱Wnt2B而被抑制(圖24b以及24c)。一相似的結果亦藉由RT-PCR分析而被觀察到(圖27)。RA亦促進Fzd6 mRNA(7次跨膜受體的卷曲蛋白家族的成員)的過度表現(圖24d)。為了證實RA在Wnt2B-調控的Fzd6的表現中的角色,我們亦分析Dvl3以及它的下游效應子FRAT1的表現位準並且顯示:RA-調控的Fzd6的增強可能藉由抗Wnt2B的siRNA的存在與一伴隨在GSK3 β上的減少而被取消(圖24b以及 24c)。隨後,西方墨點分析顯示:RA在介於30分鐘以及24小時之間內顯著地活化β-連接素(圖24e)。RA在hTS細胞中誘導一新穎的典型Wnt2B/Fzd6/β-連接素信號傳遞途徑,允許抑制性GSK3 β穩定以及活化細胞質β-連接素。
實施例22:RA調節組織蛋白去乙醯酶6(HDAC6)
西方墨點分析顯示:藉由免疫共沉澱(co-immunoprecipitation)(IP),RA在2小時內促進一組織蛋白去乙醯酶6(HDAC6)(一轉錄調節酵素)的上升,它在RA處理歷時24小時之後能夠與β-連接素直接地交互作用(圖24f)。此外,我們顯示:藉由細胞分離測定,一β-連接素的核轉位發生(圖24g),支持在RA處理歷時24小時之後在hTS細胞中一典型Wnt2B/Fzd6/β-連接素信號傳遞途徑的存在。這些觀察是藉由共焦免疫螢光顯微鏡而進一步被確認。在抗HDAC6的siRNA的存在下,β-連接素的核定位被阻斷(圖25)。有趣地,我們發現到:β-連接素的一非常早的表現可能在RA處理之後的第5分鐘內在hTS細胞-衍生的似神經元細胞中的細胞膜(突觸)之處出現。在核中,β-連接素藉由與TCF/LEF家族的轉錄因子相締合而涉及轉錄調節。細胞分離測定分析顯示:此交互作用導致β-連接素的核轉位(圖24e)。
實施例23:RAR β與G β之間以及RXR α與G α q/11 之間的交互作用
在hTS細胞中的西方墨點分析證明:RA在第30分鐘之時誘導G α q/11以及G β這兩者的快速生成以及亦 分別在第30分鐘以及第4小時之時誘導類視色素X受體α(RXR α)以及視黃酸受體β(RAR β)的快速生成(圖26a)。即時共焦螢光顯微鏡的分析顯示:GFP-標誌的RXR α藉由RA刺激在數分鐘內從細胞溶質隔室快速地移動朝向次細胞區域(圖26b以及26c),在該處它與G α q/11免疫細胞化學地共-表現(圖26d)。此現象是藉由雙免疫金穿透電子顯微鏡而進一步被支持,其中RA刺激小的金-標誌的RXR α以及大的金-標誌的G α q/11在細胞膜之處的結合(圖26e)。藉由IP分析,生物化學上,RXR α實質地與G α q/11交互作用並且該作用是藉由使用RXR α siRNA而被抑制(圖26f)。藉由IP分析,一相似的事件在RAR β以及G β之間發生並且此作用亦藉由使用RAR β siRNA而被抑制(圖26g)。IP分析顯示一選擇性c-Src抑制劑PP1類似物能防止RXR α-RAR β異型二聚物的形成(圖26h),暗示一允許RXR α以及RAR β個別地作用之未知的機制的存在。此概念是進一步藉由透過雙免疫金穿透電子顯微鏡所觀察到的在內質網(ER)中定錨的RA-誘導的金粒子-標誌的RXR α而被支持(圖26i)。綜上所述,數據暗示:RA-誘導的RXR α以及RAR β在細胞膜上分別獨立地與G α q/11以及G β交互作用。
實施例24:Akt3/mTOR信號傳遞以及mRNA轉譯
即時PCR(RT-PCR)分析以及發現到:RA誘導RXR α mRNA以及RAR β mRNA這兩者的快速短暫的提升僅歷時15分鐘(圖28a),以及在1小時內RAR β以及RXR α的快速的生成(圖26a)。基於下面的事實:有在軸突生長 核心中的mRNA的增富以及它與神經元中mRNA定位的關聯以及RA-增強的RAR α位準調控樹突RNA顆粒中的局部GluR1合成,促使有關在神經元膜之處的突觸形成的RAR α-修飾的轉譯,著重於檢測RXR α的次細胞mRNA定位是否涉及這些細胞過程。隨後,IP分析顯示:藉由西方墨點分析,RA誘導G β以及磷脂肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)之間的結合(圖26g)並且在30分鐘以及4小時之間內活化PI3K與它的下游效應子全部的Akt異構型,包括Akt1以及Akt2以及在1小時內一短暫的Akt3(圖28b)。在處理以RA歷時24小時之後,藉由流動式細胞測量術(圖28c)以及RT-PCR分析(圖29a),Akt異構型的全部表現是藉由預處理PI3K抑制劑渥曼青黴素(Wortmannin)而被抑制,顯示G β/PI3K/Akt信號傳遞的存在。值得注意地,Akt最近已被顯露為一來促進神經元存活之軸突外生(neurite outgrowth)的重要調節子,RA-誘導的Akt3(4小時)可能結合至雷帕黴素的機械標的物(mTOR),藉由使用特定的抗體(Cell Signaling Technology)所偵測,它藉由抗Akt3的siRNA而被抑制(圖28d),導致在4小時內mTOR在絲胺酸2448位址處的的一短暫的磷酸化。然而,此作用在培育24小時之後消失(圖28e)。藉由西方墨點法(圖28f)以及藉由流動式細胞測量術(圖29c),此功能藉由使用siRNA的Akt3減弱(knockdown)而被抑制。直接地,西方墨點分析顯示:藉由RA處理歷時4小時,經磷酸化的mTOR與真核轉譯起始因子-4E結合蛋白1 (eIF4EBP1)直接地交互作用(圖28g)並且活化eIF4EBP1(圖28h)。藉由使用siRNA減弱經磷酸化的mTOR,eIF4EBP1的磷酸化被抑制;而延長起始因子4E(elongation initiation factor 4E,eIF4E)的磷酸化被活化(圖28h),意味著:eIF4E自eIF4E/eIF4EBP1複合體分離發生。eIF4E的磷酸化能造成mRNA的帽蓋-依賴的轉譯。大體上,這些觀察解釋RA如何能透過RXR α mRNA以及RAR β mRNA的活化來誘導次細胞mRNA轉譯以分別局部地生成RXR α以及RAR β,藉由IP分析,因為藉由siRNA所造成的eIF4E的減弱,在RXR α與G α q/11之間以及在RAR β與G β之間的這兩者的交互作用被抑制(圖28i)。這些結果支持Akt3/mTOR信號傳遞扮演有如一RXR α以及RAR β的局部合成的起始者。雖然RA刺激延長起始因子4B(eIF4B)的升高,此作用不是由抗mTOR或4EBP1的siRNAs所影響,暗示在調節eIF4B表現上的另一個機制(圖28h)。
時空的Akt3經由mTOR信號傳遞促進用於RXR α以及RAR β生成的次細胞定位。
實施例25:CREB1在多巴胺特化中的主要傾向上
G β/PI3K下游效應子Akt1透過在絲胺酸133位址處的磷酸化直接地結合以及活化cAMP反應結合蛋白1(cAMP responsive element binding protein 1,CREB1)(圖30a)。Akt1與CREB1的交互作用藉由Akt1 siRNA而被抑制(圖30c)。藉由染色質免疫沉澱(ChIP)分析,經磷酸化的CREB1標靶並且轉錄多巴胺前驅物酪胺酸羥酶(TH)基因( 圖30b),它是藉由CREB1 siRNA而被抑制(圖30d)。為此,結果暗示:RA-誘導的RAR β/G β/PI3K/Akt1/CREB1途徑在多巴胺神經生成(dopaminergic neurogenesis)中於TH轉錄上扮演一角色。為了支持此活體內的概念,一在經損傷的紋狀體處接受hTS細胞-衍生的tNSCs的顱內移植之帶有6-OHDA-誘導的PD大鼠的模型被使用。在植入後的第12-週之時的腦切片的檢測顯示:藉由免疫螢光組織分析,在黑質緻密中,CREB1以及TH的共-表現是在治療側中的新生多巴胺(DA)神經元(可與在正常側中所具者並立的)中被觀察到(圖30e)。在經再生的DA神經元中的TH以及CREB1這兩者的活性相較於在正常者中所具者是較高的(圖30f)。有趣地,一明顯的CREB1表現在DA神經元的核中被觀察到。這些發現可以解釋為何CREB1-缺失的小鼠易罹神經退化(neurodegeneration)。
實施例26:RXR α/G α q/11 在ER鈣調節上的研究
西方墨點分析在30分鐘與4小時之間內顯示:RA誘導觸發膜磷脂酶C(PLC-β)的催化的G α q/11的逐漸活化,導致膜磷酸肌醇PIP2的降解(圖21a)以生成與先前所描述之習知的G α信號傳遞一致的次級傳訊子肌醇(1,4,5)三磷酸鹽[inositol(1,4,5)triphosphate,IP3]。IP3活化它的位於ER之處的受體IP3R(圖21a),造成細胞內的鈣升高(圖21b)。為了確定細胞內鈣的起源,細胞被培養於沒有鈣的培養基中,其中藉由即時活細胞免疫螢光顯微鏡,RA誘導一短暫細胞內Ca2+釋放(圖21b)。ER鈣位準的耗竭可能 藉由添加用於體內恆定(homeostasis)以及細胞保護(cell protection)的外部CaCl2而被回復,展現出一鈣池調控的鈣離子流入(store-operated calcium entry,SOCE)的型態。在ER中之鈣釋放的過程是藉由IP3R專一性抑制劑2-APB以一劑量-依賴的方式而被抑制(圖21b)。這些結果顯示:ER-釋放的細胞內鈣升高是由於在hTS細胞中RA-誘導的G α q/11信號傳遞途徑。
在沒有鈣的培養基中之RA-誘導的ER鈣的耗竭之後KCl在hTS細胞中可活化L-型鈣離子通道(圖21b)。L-型鈣離子通道拮抗劑硝苯地平能阻斷此信號傳遞(圖21b)。細胞內ER鈣的RA調節是與L-型鈣離子通道有關聯的。
實施例27:CaMKII在激發-神經生成偶合上的研究
西方墨點分析顯示:RA在1-2小時內誘導一CaMKII的時空活化(圖21a)。免疫沉澱測定分析證明:CaMKII直接地磷酸化以及活化CREB1(圖21c),與先前研究是相容的:CaMKII在激發-轉錄偶合上局部地將L-型鈣離子通道活性編碼成針對核的CREB的訊號。西方墨點分析顯示:真核起始因子4B eIF4B siRNA抑制CaMKII、鈣調去磷酸酶以及eIF4B的表現(圖21d)。軸突含有局部地編碼特定的蛋白質合成的各種不同的mRNA,包括在發育的神經元中之CaMKII、鈣調去磷酸酶以及CREB1。CREB1能夠回向運輸以供用於核中負有末梢軸突的信號之責任的特定的轉錄過程。外部的RA-觸發之CaMKII的局部蛋白質合成會藉由hTS細胞中的eIF4B siRNA而被抑制。因此, 此局部經活化的CaMKII信號作用相似於CREB1,暗示一關於細胞外信號的快速誘導型基因轉錄。
短暫的CaMKII結合以及活化真核起始因子4B(eIF4B)(圖21c)經由一帽蓋-獨立的機制來起始mRNA轉譯方法。西方墨點分析暗示:此作用是在RA處理之後藉由一選擇性CaMKII抑制劑KN93而被抑制(圖21e)。此CaMKII/eIF4B信號傳遞接著整合eIF4B/c-Src/Nanog信號傳遞途徑以完成用於tNSCs的自我-更新以及增生之從RXR α/G α q/11至Nanog的信號傳遞途徑。這些結果首次探究G α q/11信號-衍生的CaMKII激發涉及tNSCs的自我-更新的維持。
西方墨點分析以及免疫沉澱測定分析證明:CaMKII結合至並且活化巴金森蛋白2(parkinson protein 2)(parkin)(圖21a以及21f)。依次地,parkin直接地與微管-關聯性蛋白tau(MAPT)交互作用並且活化微管-關聯性蛋白tau(圖21a以及21f),它優先地位於軸突中並且刺激微管組合。因此,MAPT直接地結合至SNCA(圖21a以及21g)去形成一parkin/MAPT/SNCA複合體。當MAPT與微管蛋白交互作用並且活化它時(圖21a以及21h),一微管要素(microtubule element)專有地在穩定以及促進微管組合的神經元中表現。同時,這些結果暗示軸突行為在早期神經生成上的重要性。
實施例28:鈣調去磷酸酶/NFAT1信號傳遞的活化
西方墨點測定分析證明:RA誘導鈣調去磷酸酶 的生成(圖21a)。預處理以2-APB抑制鈣調去磷酸酶、NFAT1以及MEF2A表現(圖21i),連接ER鈣與鈣調去磷酸酶分子。鈣調去磷酸酶立即去磷酸化NFAT1(一T細胞活化以及乏力的關鍵調節子),顯示在30分鐘至2小時內的一短暫方式(圖21a)。如由免疫沉澱測定分析所證明的,此作用亦藉由2-APB被抑制(圖21h),將ER鈣連接至鈣調去磷酸酶/NFAT1信號傳遞。此外,藉由細胞分離測定,RA誘導NFAT1以及內輸蛋白(一核質細胞質轉運蛋白)的一短暫的交互作用(圖21a以及21j),導致NFAT1核轉位(圖21k)。此NFAT1的短暫效用被認為是一細胞可藉此在持續的以及短暫的鈣信號之間作區隔的機制。
實施例29:Wnt以及G蛋白質信號傳遞途徑的研究
典型Wnt信號傳遞的抑制的GSK3 β(在絲胺酸/蘇胺酸位址之處)在處理RA隔夜之後維持細胞質β-連接素的穩定但在30-120分鐘內具有一稍微減少的位準。意外地,在Akt異構型中Akt2能在4小時內結合GSK3 β(圖21l);然而,流動式細胞測量分析顯示:藉由RA處理隔夜,GSK3 β最初在4小時內被活化但之後被轉變成為抑制的(圖21m)。此現象是藉由使用Akt2 siRNA而進一步被確認(圖21n)。為了解釋此功能性趨異,被確認的是:GSK3 β的最初活化是由於由Akt2所造成的在Tyr 216位址處的磷酸化繼而的抑制是由於在絲胺酸/蘇胺酸位址處的磷酸化(圖21m)。這些結果證明:由各種不同的蛋白激酶所造成的GSK3 β的位址-特異性磷酸化決定下游效應子的命運。此 外,活性的GSK3β經由直接的交互作用磷酸化MAPT(圖21h)。依次地,MAPT與微管蛋白交互作用並且活化它(圖21a以及21h)來促進微管組合。特別地,在Wnt2B、G β以及G α q/11信號傳遞途徑中的溝通橋樑是在早期神經生成的期間被建立。
實施例30:用於多巴胺神經生成的轉錄因子的研究
在核中,β-連接素以及CREB1的交互作用代表一在TH轉錄上的主要傾向(圖30a以及30b)。活性的β-連接素,依次地,結合至淋巴增強子因子1/T細胞因子1(LEF1)(圖22a),導致LEF1從轉錄的抑制子轉換至活化子。LEF1接著募集並且與Pitx2(bicoid-相關的因子的一超家族的成員)交互作用(圖22a)。而藉由染色質免疫沉澱(ChIP)分析,LEF1促進Pitx2基因轉錄而非Pitx3基因(圖22b),與β-連接素、Pitx2以及LEF1交互作用以協同地調節LEF-1啟動子是相容的。
此外,短暫的核活性NFAT1扮演有如轉錄因子以生成供用於免疫反應的細胞激素以及TNF-α。然而,因為經磷酸化的GSK3 β能夠去抑制鈣調去磷酸酶-誘導的NFAT1在核中的DNA結合並且去促進核輸出,此作用在本案中不可能發生。因此,由於此作用是藉由NFAT1 siRNA而被抑制(圖22e),活性的細胞質NFAT1將會交互作用並且活化細胞質轉錄因子肌原細胞增強子因子2A(MEF2A)(圖22c以及22d)。特別地,快速誘導型CREB1進入核內並且轉錄生成MEF2A蛋白質的MEF2A基因(圖22f)。MEF2A 可能在基因轉錄上以多種方式而作用(圖22g),包括經由自動-調節的自身轉錄以生成更多MEF2A、轉錄TH基因以供多巴胺特化、轉錄SNCA基因以供SNCA/MAPT/parkin複合體形成,以及與EP300和Pitx2交互作用(它是藉由MEF2A siRNA而被抑制)(圖22h)。
藉由ChIP分析,活性的EP300不僅標靶HDAC6基因而且TH基因(圖22i)。HDAC6接著能夠去攜帶β-連接素用於核轉位(圖24e以及24f)。綜上所述,一執行的轉錄複合體被形成並且被指定以供TH基因轉錄。在它們之中,CREB1、EP300以及MEF2A能直接地標靶TH基因的啟動子,而β-連接素、LEF1以及Pitx2在轉錄過程期間執行作為增強子的共活化子。西方墨點分析顯示在第4小時以及第24小時之時的各種不同的分子活性(圖22j)。
實施例31:動物研究
有關動物研究,報導子細胞是藉由將F1B(-540)-GFP以及pSV2neo質體轉染至hTS細胞中繼而以G418選擇而被製備。超過95%的hTS細胞顯示F1B以及TH-2的共-表現。其次,於“年輕的”Spraque-Dawley大鼠(Spraque-Dawley rats)(n=12,體重,225-250gm)中的巴金森氏症是有如下面所描述的藉由將神經毒素6-羥基多巴胺(6-hydroxydopamine,6-OHDA)單側地注射至大鼠腦中而被誘發。
全部的實驗是依據高雄醫學大學附設醫院之醫院的人體試驗委員會的倫理委員會(ethical board of the Institutional Review Boards of the Hospital,Kaohsiung Medical University Hospital)以及國立成功大學醫學院倫理委員會(Ethical Committee at Medical College of National Chung Kong University)(台南,台灣)的規範而被實施以及被執行。
巴金森氏症的誘發
12隻Spraque-Dawley大鼠[560+65g(前)、548+46g(後)的體重]被使用作為有關6-OHDA-損傷的類巴金森氏症的模型(Javoy et al.,Brain Research,102:201-15,1976)。有關手術,在藉由水合氯醛(chloral hydrate)(4%,1cc/100g的體重)所造成的麻醉(anesthesia)之後,立體定向損傷(stereotaxic lesions)是藉由將6-羥基多巴胺(Sigma)以一為1μg/0.5μL/分鐘的速率注入至右內側前腦束(right median forebrain bundle)(AP 2.8/Lat 2.2/Dep 8.0mm)中歷時8分鐘(注射泵:CMA 100)。在10分鐘之後,管被移除。2週之後,去水嗎啡-誘導的旋轉在接受去水嗎啡皮下注射(25mg/kg)之後的20分鐘在一塑膠碗(呈36cm的直徑)中被測試。對側的轉動旋轉是使用一攝影機而被監測以及被記錄歷時20分鐘。具有每5分鐘超過25次旋轉數的大鼠是合格用於研究。有關細胞移植,細胞被移植至右邊單側的紋狀體內的2位址中(各個位址:3×106/4μL)(1st位址:AP+1/Lat+2.7/Dep 6.4mm;2nd位址:AP+0/Lat+2.7/Dep 6.4mm)。對照組使用相同的方法而被給予PBS。去水嗎啡-誘導的旋轉在細胞注射之後的第0、3、6、9以及 12週之時被測量。結果被表現有如對側的轉動/5分鐘(圖5a)。
為了檢測由不同時間的RA所誘導之NSCs的效用,合格的大鼠被隨機地分為3組:1-以及5-天RA-誘導組以及對照組。在移植之前,hTS細胞被轉染以F1B-(-540)-綠螢光蛋白(GFP)以及pSV2neo重組型質體DNA繼而G418選擇來達到一超過95%的產量。各個大鼠接受以總共6×106細胞之GFP-標誌的NSCs,而對照組者接受作為載劑的磷酸緩衝的鹽水溶液。治療效用是在植入之後每3週藉由去水嗎啡-誘導的旋轉測試而被評估(Iancu et al.,2005)。
實驗1:成年的Spraque-Dawley大鼠(BW:225-250g)被使用作為移植接受者並且在一為12h光/暗循環下任意採食地(ad libitum)使用食物以及水而被飼養。經損傷的大鼠首先被分為3組:(a)經損傷的並且被移植以1-天RA-誘導的NSCs(n=4),(b)經損傷的並且被移植5-天RA-誘導的NSCs(n=4)以及(c)經損傷的並且非-經移植的對照組(n=4)。大鼠是藉由舒泰(Zoletil)(50mg/kg,s.c.,Virbac Lab.Carros,France)而被麻醉以及經損傷的大鼠是依據呈mm的前囟以及硬膜(bregma and dura)而被單側地注射以6-OHDA(8μg/4μL配於0.1% 1-抗壞血酸-鹽水中;Sigma-Aldrich,Mo)至左邊的MFB(AP 2.8,Lat 2.0,Dep 8.0mm)以及SN(AP 5.0,Lat 2.2,Dep 7.5mm)中並且在該位址等待歷時10分鐘。將hTS細胞-衍生的NSCs(1×106細胞/5μL/5分鐘)移植至DA-耗竭的紋狀體中的2個位址(AP+1.0, Lat+2.7,Dep 6.4以及AP+0,Lat+2.7,Dep 6.4)並且插管在緩慢地收回它之前被留在位置歷時5分鐘。細胞可活性在植入操作程序期間維持穩定的在在96以及98%之間。假手術大鼠接受沒有細胞的載劑。損傷是在6-OHDA損傷之後的每一週以去水嗎啡-誘導的旋轉而被評估俾以達到一穩定的類巴金森氏症狀態(>300次旋轉/小時)。移植效用每3週藉由去水嗎啡-誘導的旋轉測試而被評估直到第12週為止。在植入後的第18週之時,大鼠被犧牲以及大腦切片被進行TH-DAB免疫染色。
實驗2:PD大鼠在體重上被控制在預-測試之時具有560 +/- 65g以及後-測試在548 +/- 46g。經損傷的大鼠(n=16)是有如在實驗1中所建立並且藉由移植以1-天RA-誘導的NSCs而被分為2組:(a)經損傷的並且被移植以細胞(n=8)以及(b)經損傷的並且沒有被移植以細胞的作為對照組(n=8)。細胞是藉由注射在AP+1.0,Lat+2.7,Dep 6.4之處而被移植。行為評估是有如下面所描述的每3週被執行直到植入後的12週為止。在第13週之時,全部的大鼠被犧牲並且大腦切片被進行TH-DAB免疫染色以及TH-陽性細胞是藉由密度測定法而被分析。
行為評估
動作行為活性分析(Locomotor Activity Assays):有關大鼠,自發性動作行為活性是在一環狀通道(10cm寬以及呈60cm的直徑具有30cm高的牆;Med Associates Inc.,St Albans,VT)中而被監測。等距離地位於 圓的牆周圍的4個光電元件經由光束中斷來偵測一動物的水平移動活性(horizontal ambulatory activity)。數據是經由一配備有客製化軟體(Med Associates)的PC而被記錄。個別組的動物是使用10mg/kg(每組n=6)以及20mg/kg(每組n=12)古柯鹼(cocaine)而被測試。動物被隨機分為治療組(HSV-LacZ以及HSV-RGS9-2)並且習慣於運動設備歷時2小時。在隔天,動物在一立體定位儀(stereotaxic frame)上接受HSV載體於積核殼(nucleus accumbens shell)中。接著2天的復原,動物在動作行為活性上被測試以古柯鹼歷時2小時。數據是藉由雙因子變異數分析(two-way ANOVA)(HSV×時間)偕同邦弗朗尼事後檢測(Bonferroni post hoc test)而被分析。
有關小鼠,動作行為活性是在一自動化系統中被測定,其中活性室是具有10對將該室分為11個矩形範圍的光電管光束(photocell beams)的塑膠籠(12×18×33cm)(Hiroi et al.,1997)。小鼠每天是在相同的時間由一不知道小鼠的基因型的實驗者所測試。有關急性實驗,動物習慣於室歷時30分鐘,在此時間之後牠們接受鹽水或多樣化劑量的安非他命(amphetamine)、古柯鹼或去水嗎啡的i.p.注射,以及運動活性被評估歷時一額外的30分鐘。有關慢性實驗,動物在一前3天的i.p.鹽水注射之後被立即置放於室中。水平活性接著被測量歷時10分鐘。在第4-8天之時(C1-C5),動物被給予古柯鹼(7.5mg/kg i.p.)以及活性被測量歷時10分鐘。被使用於大鼠以及小鼠的短時間週期已被 顯示於先前研究中以在移動動作行為活性的測量上避免重復運動(stereotypy)的潛在混淆效應(confounding effects)。
3種行為測試被執行:(i)藥物-誘導的旋轉來評估損傷以及移植效應,(ii)足跡分析來評估後肢步態模式,以及(iii)梯子橫檔步行測試(ladder rung walking test)來評估熟練的步行表現(後肢/前肢協調以及腳掌置放準確度)。
去水嗎啡-誘導的旋轉測試:簡言之,大鼠在去水嗎啡皮下投藥(0.5mg去水嗎啡配於0.01%抗壞血酸配於0.9%生理鹽水中/kg體重,Sigma-Aldrich)之後被置放於一大的圓形室(呈16cm的直徑)中歷時一為40分鐘的時期。全部的旋轉被記錄在錄影帶中以及淨旋轉不對稱性被計算。數據被計算為在30分鐘內的總旋轉數。數據是藉由使用Matlab軟體而被分析。
去水嗎啡-誘導的旋轉(apo)在0.5mg/kg去水嗎啡溶液(Sigma-Aldrich,0.5mg去水嗎啡配於0.01%抗壞血酸的0.9%生理鹽水中)的腹膜內注射之後亦被觀察歷時60分鐘。如先前所描述的([59];圖6a),旋轉偏移是在損傷之後(在損傷之後2以及3週)以及在移植之後(在移植之後3以及6週)在旋轉流量計箱中被評估。在損傷之後2週以及在移植之後3週藥物-誘導的旋轉的數據沒有被顯示。3天後安非他命-誘導的旋轉(amph)在1mL/kg安非他命溶液(Sigma-Aldrich,Steinheim,Germany:每1.0mL鹽水2.5mg d-安非他命)的腹膜內注射之後被執行歷時90分鐘。5隻動物由研究中被排除,因為牠們在去水嗎啡注射之後顯 示<4.0之對側地對於經損傷側的全身轉動以及在安非他命注射之後<6.0之同側地對於經損傷側的全身轉動。去水嗎啡-誘導的旋轉是被呈現為呈負值的淨旋轉,以及安非他命-誘導的旋轉是被呈現為呈正值的淨旋轉。
在去水嗎啡(A)的注射以及安非他命(B)的注射之後的藥物-誘導的旋轉。旋轉偏移被顯示為全身旋轉的總量。錢符號($)表示一介於sham以及移植大鼠之間的顯著的差異。預-移植=在損傷之後的6週,後-移植=在移植之後的6週。注意有顯著的移植效應[減少在去水嗎啡注射之後的旋轉偏移;在安非他命注射之後的過度補償(overcompensation)]。
針對運動失能症的槓測試:有關槓測試,大鼠以一對側的以及同側的這兩者的前腳掌被可選擇地置放於一具有呈0.7×9cm大小的水平丙烯酸塑膠槓上的姿勢而被輕輕地置放於一檯上。從置放前腳掌至它們各個從槓上首次完全移除的時間被記錄。由在區塊上的各個腳掌所花費的總時間是如先前所描述的而被記錄(Fantin)。
足跡分析(時空步態分析):足跡分析(包括步行速度、步伐長度、跨步長度以及支撐的基礎)如先前所描述的而被執行來評估後肢步行模式(Klein)。大鼠必須於一塑膠板上步行穿經一通道(50cm長,8cm寬)。參數[包括跨步長度、四肢旋轉(介於一通過第3趾與掌心的虛擬線以及一平行於步行方向的虛擬線之間的角度)以及介於以5個連續步伐的腳之間的距離(介於左以及右腳步進循環之間的 距離)]是藉由一攝影機(Casio EX-F1,Japan)而被記錄以及藉由Matlab軟體而被分析。
踝關節堅硬度評估是使用適合的方法被評估。適合的電生理學分析(Electrophysiological assays)被使用來決定大腦中的多巴胺神經元復原%。
免疫組織化學
有關TH免疫組織化學,動物i.p.接受一為60mg/kg戊巴比妥鈉(sodium pentobarbitone)(Apoteksbolaget,Sweden)的終端劑量並且穿-心臟地(trans-cardially)被灌注以50mL鹽水(0.9% w/v),繼而200mL冰-冷的三聚甲醛(4% w/v配於0.1M磷酸緩衝的鹽水溶液中)。大腦被移除,被後-固定於4%三聚甲醛中歷時2小時並且於一冷凍切片機(freezing microtome)(Leica)上被切片之前被冷凍-保護於蔗糖(25% w/v配於0.1M磷酸緩衝的鹽水溶液中)中隔夜。冠狀切片在一為20μm的厚度下以6系列被收集。
免疫組織化學操作程序被執行如下。自由-漂浮的切片在室溫下被培育以配於一含有5%標準血清(normal serum)以及0.25% Triton X-100(Amresco,USA)的具有鉀的0.1M磷酸緩衝的鹽水溶液的培育溶液中的一次抗體隔夜。二次抗體被稀釋於含有2%標準血清以及0.25% Triton X-100的具有鉀的磷酸緩衝的鹽水溶液中並且在室溫下被施用於原始溶液歷時2小時。一次-二次抗體複合體的偵測是藉由過氧化酶驅使的二-胺基-聯苯胺(di-amino-benzidine)的沉澱或者一螢光團(fluorophore)的 綴合(直接對二次抗體或者當必要時使用一鏈黴抗生物素蛋白-生物素擴增步驟)而被達成。為了進行c-Fos的偵測,硫酸鎳(nickel sulphate)(2.5mg/mL)被使用來增強染色。被標記以螢光標記的經載玻片封固的切片是使用聚乙烯醇-1,4-二氮雙環[2.2.2]辛烷(polyvinyl alcohol-1,4-diazabicyclo[2.2.2]octane)而被蓋上蓋玻片而經二-胺基-聯苯胺標記的切片是在醇以及二甲苯(xylene)中被脫水並且使用DePeX封固劑(DePeX mounting media)(BDH Chemicals,UK)被蓋上蓋玻片。一次抗體以及稀釋因子如下:小鼠抗-鈣結合蛋白28KD(mouse anti-Calbindin28KD)(1:1000;Sigma)、兔子抗-c-Fos(1:5000;Calbiochem)、雞抗-GFP(1:1000;Abcam)、兔子抗-GFP(1:20000;Abcam)、兔子抗-GIRK2(1:100;Alomone Labs,Jerusalem,Israel)、兔子抗-PITX3(1:100;Invitrogen)以及小鼠抗-酪胺酸羥酶(TH:1:4000;Chemicon)。二次抗體(在一為1:200的稀釋下被使用)如下:(i)直接偵測一經青色素3或青色素5綴合的驢抗-小鼠(cyanine 3 or cyanine 5 conjugated donkey anti-mouse)、經青色素2綴合的驢抗-雞(cyanine 2 conjugated donkey anti-chicken)、經青色素5綴合的驢-抗小鼠(cyanine 5 conjugated donkey anti-mouse)(Jackson ImmunoResearch);以及(ii)間接使用鏈黴抗生物素蛋白-生物素擴增一經生物素綴合的山羊抗-兔子或馬抗-小鼠(Vector Laboratories)繼而經過氧化酶綴合的鏈黴抗生物素蛋白(Vectastain ABC套組,Vector laboratories)或經青色素2/青色素5綴合的鏈黴抗生物素蛋白(Jackson ImmunoResearch)。
在多巴胺特化中CREB1表現上的活體內研究
為了得到大腦切片,大鼠是藉由戊巴比妥鈉(60mg/kg i.p.,Apoteksbolaget,Sweden)而被麻醉以及穿-心臟地被灌注以鹽水(50mL,0.9% w/v)繼而冰-冷的三聚甲醛(200mL,10% w/v配於0.02M PBS中),分別在第18-以及12-週之時於急性以及慢性PD大鼠中被執行。大腦切片有如所指示的被進行免疫細胞化學、免疫組織化學以及免疫螢光組織分析。
在經損傷的紋狀體處接受hTS細胞-衍生的滋養層NSCs(tNSCs)的顱內移植的6-OHDA-誘發的PD大鼠被檢測來研究CREB1表現。在植入後的第12-週之時的大腦切片的檢測顯示:藉由免疫螢光組織分析,在黑質緻密中,CREB1以及酪胺酸羥酶(TH)的共-表現在治療側中的新生多巴胺(DA)神經元(在正常側中所具者並立的)中被觀察到(圖30e,插入物)。在經再生的DA神經元中的TH以及CREB1這兩者的活性相較於在正常者中所具者是較高的(圖30f)。一明顯的CREB1表現在DA神經元的核中被觀察到。這些發現可以幫助解釋為何CREB1-缺失的小鼠易罹神經退化。
多巴胺黑質紋狀體途徑的再生上的活體內研究
為了進一步證實在細胞治療之後多巴胺黑質紋狀體途徑的再生,免疫螢光組織分析被執行(TissueGnostics Gmbh,Vienna,Austria)。大腦切片被研究,包括14隻急性 PD大鼠(亦即,2隻在損傷後的第1-週之時以及2隻在損傷後的第6-週之時以及2隻對照組,6隻在細胞移植之後的第12-週之時以及2隻對照組)以及4隻慢性PD大鼠(亦即,2隻在細胞治療之後的第12-週之時以及2隻對照組)。在SNC中,6-OHDA造成進行性神經退化,在損傷後的第6週之時致使各種不同大小的空腔(圖31)。有趣地,在tNSCs治療之後,許多DA神經元帶有突出至空腔中的TH-陽性神經末梢出現在空腔壁(圖31,插入物)。定量分析顯示:相較於無損傷側,DA神經元的數目在損傷後的第1以及第6週之時在SNC中分別明顯地減少至48%以及13%(圖32a以及32b)。令人注目地,DA神經元的損失在tNSCs治療之後可被減少達至67%。
當在紋狀體中,DA神經元分別在損傷後的第1以及第6週之時減少至78%以及4%(圖32a)。相似地,損失的DA神經元在tNSCs治療之後可能被再生達至73%。與先前觀察一致的(圖5),DA神經元迴路是在SNC的治療側中在免疫組織化學上相似於無損傷側而被良好地建立(圖32b)。DA神經元的復原率在SNC中計算為78.4±8.3%(平均值±SEM;n=4)(圖32c),與在免疫螢光分析中的67%是相容的。
由於神經膠細胞在引導神經元的移動至它們的目的地上扮演作為媒介者或作為神經再生的來源,6-OHDA不僅造成DA神經元以及GFAP(+)細胞這兩者的退化而且亦造成在紋狀體中的紋狀蒼白黑質體軸突 (striato-pallido-nigral axons)的擾亂(Wilson束)。這些現象在tNSC治療之後被明確地改善,顯示許多的GFAP(+)細胞被包埋於纖細的髓鞘神經纖維(myelinated fiber)中(圖32d)。有如被觀察到的,在經損傷的紋狀體中的GFAP(+)細胞從在損傷後的第6週之時的65.5%再生至在tNSC治療之後的93.9%(圖32e)。此事實可能反映出星狀細胞活化(astrocytic activation),可歸因於經植入的tNSCs亞型,亦即GRP以及星狀細胞。這些結果顯示:在慢性PD大鼠中tNSCs的移植使多巴胺黑質紋狀體途徑再生,藉此解釋行為缺陷的改善。基於在經損傷的途徑中tNSCs的滯留,最適化的DA神經元的再生將會持續歷時至少植入後的18週(圖5)。
在活體內,hTS細胞被肌肉內地植入至雄性的嚴重複合型免疫缺乏症(SCID)小鼠中歷時6-8週。組織學上,沒有畸胎瘤被發現到;但具有類-黏液樣的奇異型細胞的輕微嵌合反應在肌肉纖維之間被觀察到(圖10)。這些結果顯示hTS細胞以及tNSCs相較於有關畸胎瘤形成的hES細胞在轉譯藥物上的優點。
統計學
全部的數據被表示為平均值±SEM。差異是藉由使用重複測量分析的變異數(ANOVA)檢定(SPSS Release 12.0軟體)以及有關去水嗎啡-誘導的旋轉分析在重複測量介於2組之間的ANOVA檢定之後應用最小顯著差檢定(LSD)事後比較而被評估。史徒登氏t試驗、配對的t試驗 是當適當時而被使用。p-值<0.05是被認為是顯著的。
動物實驗顯示:藉由GFP-標誌的免疫螢光研究所證明,被注射至經損傷的紋狀體中的tNSCs在18週植入之後能經由黑質紋狀體途徑移動上游至黑質緻密部。其次,在改善行為缺陷上的效能是高於所預期的,例如,在植入後的第12週多巴胺神經元的復原是28.2%。第三,沒有免疫抑制或腫瘤形成被觀察到。進一步地,在28.2%多巴胺神經元以及行為缺陷上的改善是在6-OHDA誘導之後在一慢性PD大鼠中被維持超過1年。這些結果指示:tNSCs的移植能再生多巴胺黑質紋狀體途徑以及功能上改善急性PD大鼠中的行為障礙。
慢性PD動物模型
為了更貼近地模仿PD病患的病理學漸進性質,一慢性PD大鼠模型是藉由超過1年(平均計12.3月)的育種方法(breeding methods)而被發展。去水嗎啡-誘導的旋轉測試是每個月被執行俾以確定大鼠的PD狀態貫穿實驗。第I組(n=6)接受tNSCs而第II組是對照組(n=6)。行為評估是每3週被執行,包括去水嗎啡-誘導的旋轉測試、針對運動失能症的槓測試、針對僵硬的步進測驗(stepping test)以及針對姿勢不平衡以及步態病變的足跡分析。
在第I組中,一去水嗎啡-誘導的對側旋轉的顯著改善是從植入後的第3週至12週而被達到,相似於先前在急性PD大鼠中的研究(圖6a)。槓測試顯示:受影響的前肢的抓握時間在第3週之時被顯著地縮短,並且在第12週 之時持續改善(圖6b)。藉由步伐長度(圖6c)、跨步長度(圖6d)、步行速度(圖6e)以及支撐的基礎(圖6f)的全部的評估顯示從植入後的第3週至12週的顯著的改善。這些研究是在一經良好設計的通道上被執行(圖6g)。這些結果顯示:tNSCs的移植能夠使多巴胺黑質紋狀體途徑再生並且功能上改善慢性PD大鼠中的行為障礙。
實施例32:拉與推機制
G蛋白質-偶合的受體(GPCRs)在內部以及外界環境之間溝通並且在細胞膜之處與異型三聚G蛋白質(heterotrimeric G proteins)偶合。然而,闡明經活化的GPCRs如何起始此過程的機制是較不清楚的。一近來的報導已顯示:當引入配位子時,G α 13以及G α q/11次單元這兩者與AhR-交互作用蛋白(AhR-interacting protein)進行交互作用,其中G α 13導致細胞溶質AhR的去穩定化、轉位以及泛素化(ubiquitination)。G蛋白質信號傳遞在非基因AhR途徑中的角色被探究。BBP被選定作為一外源性配位子(exogenous ligand)以及COX-2作為一經活化的標的物,因為COX-2在各種不同的人類細胞(包括肝癌細胞)中造成發炎、代謝以及致癌作用(carcinogenesis)。
通過免疫螢光研究具有拍攝細胞中的分子變化(molecular change)之快照的能力,它們被認為對於訊息傳遞的動態研究是重要的。人類肝Huh-7癌細胞是藉由使用LT1轉染試劑(Mirus Bio LLC,WI)而被預-轉染以pGFP-C1-AhR,而全內反射螢光顯微術(total internal reflection fluorescence microscopy)用以選擇性地立即觀察在細胞膜之下的細胞質區域中的分子事件。當BBP被引入時,經GFP標誌的AhR的一快速但短暫的募集以及轉位在次細胞膜區域之處發生,這顯示在AhR上於115秒內的一快速升高並達到波峰繼而一逐漸減少發生超過數分鐘(圖14a)。這種在次細胞膜之處的memAhR的快速動態移動令人聯想到間接的訊息傳遞(soft-wired signal transduction)的概念。AhR已被發現通過它的生物變換酵素(biotransformation enzymes)的調節以及在細胞內的定位上的改變來供應一適應性功能(adaptive function),這會觸發它自身的活化。
然後,BBP以及AhR之間的關聯性是藉由反轉錄聚合酶鏈反應(RT-PCR)而被檢測。BBP在5分鐘內顯著地誘導mAhR表現,而在第15分鐘之時達到波峰並且逐漸地回復至一輕微地較高的組成性穩定狀態(圖14b)。有趣地,西方墨點分析顯示在第15分鐘之時BBP-誘導的在AhR生成上的升高,在第30分鐘之時輕微地減少的生成,以及在第1小時之時的一再升高(圖14c)。在這2個分析中所發現到的在這些時間點AhR表現的不同態樣可以藉由次細胞mRNAs活化以及組成性合成之間的差異而被解釋,這支持了“在mRNA運輸中的細胞骨架”的概念。因此,有可能的是:Huh-7細胞含有對於在反應外源性刺激上的局部蛋白質轉譯而言所需要的mRNA的結構機器,並且在之後被稱為memAhR。較低的mRNA位準可能代表在細胞的差別穩定性 的維持上的組成性AhR活性。當配位子活化時,異型三聚G蛋白質會解離成為G β γ二聚物以及G α次單元(包括各自執行不同功能的Gs、Gi、Gq/11以及G12/13)。BBP在30分鐘內誘導G α q/11以及G β這兩者的生成(圖14d)。G α q/11的升高是由於memAhR以及G α q/11之間的直接交互作用(圖14e)。這些結果進一步藉由在細胞中使用siRNA來剔除AhR而被確認(圖14f)。這些數據清楚地指出:藉由BBP刺激,GPCR被激發並且致使異型三聚G α β γ解離成為G α以及G β γ次單元,而使得G α q/11能夠去與它們的上游活化子memAhR交互作用。因為AhR已與G α 13以及G α q/11活性有關聯,並且在肝腫瘤(hepatoma)細胞中,AhR活性可以激動細胞命運過程,藉此AhR的一持續表現可促進腫瘤細胞生長。該實驗被引導至涉及G α q/11信號傳遞的分子事件。
在一個具體例中,AhR活性的調節可抑制或減少細胞生長。在另一個具體例中,AhR活性的調節可殺死一細胞。在一個具體例中,調節包含有在一細胞中之AhR蛋白質活性的向下調節。在另一個具體例中,調節包含有在一細胞中之AhR蛋白質活性的抑制。在另一個具體例中,調節包含有在一細胞中抑制AhR蛋白質與一G蛋白質的締合。在另一個具體例中,調節包含有在一細胞中之AhR基因表現的向下調節。在一個具體例中,該細胞是一腫瘤細胞。在一個具體例中,該腫瘤是一肺、乳房、結腸、腦、骨、肝、前列腺、胃、食道、皮膚或白血病腫瘤細胞。 在一個具體例中,該腫瘤是一固態腫瘤。在另一個具體例中,該腫瘤是一液態腫瘤。在一個具體例中,AhR活性被調節以一AhR促效劑(agonist)。在另一個具體例中,AhR活性被調節以一AhR拮抗劑(antagonist)。在另一個具體例中,AhR活性被調節以一具有抗-雌激素的活性的化合物。在另一個具體例中,AhR活性被調節以一具有抗-雄激素的活性的化合物。在一個具體例中,該腫瘤細胞是存在於一哺乳動物中。在另一個具體例中,該腫瘤細胞是存在於一人類中。在另一個具體例中,一種用於治療一存在於人類中之腫瘤的方法是藉由將一抑制或減少在該腫瘤中之一AhR蛋白質的活性的化合物投藥至該人類而被提供。在另一個具體例中,一種用於治療一存在於人類中之腫瘤的方法是藉由將一抑制或減少在該腫瘤中之一AhR蛋白質的基因表現的化合物投藥至該人類而被提供。
為了進行共焦免疫螢光成像顯微術,細胞各自被處理以BBP歷時5以及15分鐘,繼而進行AhR以及G α q/11這兩者的免疫螢光染色。在BBP的缺少下,AhR以及G α q/11這兩者在細胞質中相較於在核中的較少表現被觀察到(圖15a)。在藉由BBP所刺激的細胞中,在核以及核-周區域中之AhR的表現上於第5分鐘之時有一清楚的增加,繼而於第15分鐘之時有AhR的一向外擴張被觀察到(圖15b,第1行)。這些結果顯示一組成性AhR活性以及細胞溶質轉位。有關於G α q/11的表現,它在第5分鐘之時呈現出以一相似於AhR所具者的方式而被刺激(圖15b,第2行 )。然而,G α q/11已在第15分鐘之時從細胞溶質隔室轉位朝向細胞膜,這支持了基於個體發生(ontogenetic)觀點,一GPCR-G蛋白質複合體的成熟具有達成一正確運輸至細胞膜的能力,雖然確切的機制是不清楚的。隨後,AhR的siRNA剔除抑制核的AhR但不是細胞溶質AhR的表現,這是藉由使用零亂的siRNA(scrambled siRNA)來剔除AhR而被確認(圖15c)。然而,當BBP被添加時,AhR表現在第5分鐘之時於核以及核-周區域這兩者中被增加,而在第15分鐘時在細胞溶質中達到一恆定狀態(homeostatic state)(圖15d,第1行)。明顯地,G α q/11是藉由AhR siRNA而被抑制(圖15d,第2行),它是藉由BBP的添加在第5分鐘之時被部分地恢復,並且在第15分鐘之時被全部地恢復而在細胞膜之處顯示出G α q/11的一明顯累積(圖15d,第2行)。這些結果顯示:G α q/11是memAhR的一下游效應子。AhR以及G α q/11這兩者的動態移動以及組成性活性進一步暗示一補償效應(compensatory effect),這涉及它們在細胞中的活化、轉位以及成熟。
因為時空動力學(spatio-temporal dynamics),雙免疫金穿透電子顯微鏡(IEM)被使用來顯示memAhR在細胞膜之處的交互作用。細胞被處理以BBP歷時20分鐘,並且使用大的金粒子-標誌的G α q/11(呈一為20nm的大小)以及小的金粒子-標誌的AhR(呈一為6nm的大小)的專一性一次抗體與二次抗體來進行免疫細胞化學。樣品被立即地包埋於LR白色樹脂(LR White Resin)(Ted Pella,Redding, CA)並且被製備以供用於IEM。在配位子的缺少下,3種個別的經免疫金-標誌的G α q/11實體(包括單、雙以及三群落)被顯示在細胞膜之處(圖16a),這反映不同GPCR-G蛋白質複合體的實體的存在。以BBP來處理細胞,數個小的金-標誌的AhR被黏著至大的金-標誌的G α q/11被觀察到要在細胞膜之處形成一AhR-G α q/11複合體(圖16b)。除了典型單體以及近來被接受的二聚體之外,聚合型GPCR-G α q/11的存在在細胞膜之處被觀察到。這暗示了在GPCRs上各種不同的構形改變(conformational changes),包括單體、二聚體以及多聚體(圖16c)。AhR-G α q/11複合體主要地在細胞膜之處被發現到。在細胞溶質中有少數,但在核的隔室(大量的AhR以及G α q/11獨立地存在其中)中沒有。在對照組細胞中沒有此種AhR-G α q/11交互作用被看見。數據顯示:memAhR以及GPCRs-G α q/11複合體的群落在配位子活化之前沒有被預-偶合。GPCRs的聚合作用[同型-或異型-多聚體(homo-or hetero-multimers)]是有意義的,因為它對於調節交互作用分子的功能、次細胞定位以及生物物理性質是一有效的模式。它可能地能創造更多的空間對接位址(spatial docking sites)以供外源性配位子(諸如促效劑以及拮抗劑)的篩選或在細胞表面之處的協同結合。另擇地,它為生物學影響的最困惑的方面之一者提供一線索,特別是環境中的多環芳香烴化合物(polycyclic aromatic hydrocarbon compounds)是如何有關聯於在細胞中的毒性、代謝以及致癌反應。
為了研究G蛋白質信號傳遞的生化過程,所證實的是:當藉由BBP來活化時,memAhR可如先前所描述的與G α q/11交互作用。隨後,在磷脂肌醇(PIP2)位準上的一減少被觀察到是起因於切割PIP2成為下列2種次級傳訊子(secondary messengers):二酸甘油脂(DAG)以及IP3(圖17a,第1區)。IP3被知曉要在內質網之處去誘導細胞內鈣通過它的受體IP3R而釋放(圖17a,第2區)。因為G蛋白質活化通常伴隨著發生一鈣離子的流入,BBP-引起的細胞內fluo-4-標誌的Ca2+位準的起源是藉由即時活細胞免疫螢光成像顯微術(real-time live cell immunofluorescence imaging microscopy)而被檢測(圖17b,中間上面)。該等細胞被培養於無鈣培養基中以及被發現到有細胞內鈣的釋放(圖17b,中間下面),這顯示來自於內部鈣池(internal calcium store)的釋放。此結果進一步藉由添加IP3R阻斷劑2-APB而被確認,並且2-APB被發現到劑量-依賴地去抑制細胞內鈣位準(圖17b,右行)。然而,一異常的鈣釋放會誘導發炎反應以及腫瘤形成。因此,BBP被觀察到在15分鐘內誘導COX-2的生成,並且可藉由添加2-APB而被阻斷(圖17c),這將在細胞內鈣上的增加與COX-2的活化作連結。此外,BBP誘導一細胞外信號-調節的蛋白激酶ERK的磷酸化以及COX-2的活化(圖17d),它是藉由化學品PD98059[MAPK途徑之一有效能的以及選擇性非競爭性抑制劑(noncompetitive inhibitor)]而被阻斷(圖17e),這顯示ERK是COX-2的上游活化子。為此目的,BBP被顯示在分子過 程中經由memAhR-活化的G α q/11信號傳遞去誘導COX-2的活化。此顯示一非基因AhR途徑的存在,因為BBP顯著地抑制ARNT[一編碼AhR核轉位蛋白(AhR nuclear translocator protein)的基因]表現(圖17f)。此抑制效用可以被解釋為如先前所描述的共-活化的G α 13的作用。
被證明的是:AhR可成為一針對外部信號作反應的訊息傳遞者,而致使GPCR-G蛋白質信號傳遞的激發。被提議的是:信號將鄰近的細胞溶質memAhR(作為活化子)“拉動”至細胞膜以結合並且活化經解離的G α q/11(作為效應子),而“推動”下游分子級聯以供在人類肝Huh-7癌細胞中作用。如在圖17g中所例示說明的,此種“拉與推”模型,極力地促進理解GPCR-G蛋白質信號傳遞是如何被起始以及AhR-調節的訊息傳遞是如何在典型AhR途徑之外被控制。該等發現可進一步在發展聚焦於GPCRs以及G蛋白質的機制調節的治療劑上產生一影響。
細胞培養物以及化學品:Huh-7細胞是得自於台灣國家衛生研究院並且被培養於DMEM(Gibco)[補充有10%胎牛血清(fetal bovine serum)(Gibco)、1%盤尼西林(100U/mL)、鏈黴素(10μg)、雙性黴素-B(amphotericin-B)(0.25mg)]中以及生長在37℃下、5% CO2中。培養基包括含有CaCl2(2mM)、D-葡萄糖(5.5mM)、NaCl(130mM)、KCl(5.4mM)、HEPES(20mM,pH 7.4)以及MgSO4(1mM)的BSS。無鈣培養基含有D-葡萄糖(5.5mM)、NaCl(130mM)、KCl(5.4mM)、HEPES(20mM,pH 7.4)以及MgSO4(3mM)。所 包括的化學品是Fluo-4(Invitrogen)、鄰苯二甲酸丁酯苄酯(Benzyl butyl phthalate,BBP)(Sigma)、硼酸(2-胺基乙氧二苯)酯(2-aminoethoxydiphenyl borate,2-APB)(Sigma)、ERK1/2抑制劑[PD98059(Calbiochem)]、6-二脒基-2-苯基吲哚(6-diamidino-2-phenylindole,DAPI)(Sigma)。所包括的抗體是AhR(Santa Cruz)、Cox-2(Minipore)、G α q/11(sc-392)以及G β(sc-378,Santa Cruz)、β-肌動蛋白(Sigma)、p44/42 MAPK(Erk1/2)(Cell Signaling)、磷酸-p44/42 MAPK(Cell Signaling)、辣根過氧化酶(HRP)-標記的抗-小鼠以及抗-兔子二次抗體[Horseradish peroxidase(HRP)-labeled anti-mouse and anti-rabbit secondary antibodies](Santa Cruz)、Dye Light 488-綴合的二次抗體(綠色)以及Dye Light 549-綴合的二次抗體(紅色)(Rockland)。
得自於帶有早期輸卵管子宮外孕(early tubal ectopic pregnancy)之婦女的著床前胚胎中的hTS細胞是先前所描述者。附著的hTS細胞是在37℃、5% CO2下被培養於條件α-MEM(conditioned α-MEM)[含有10μg/mL bFGF(JRH,Biosciences,San Jose,CA)、10% FBS以及1%盤尼西林-鏈黴素]中。細胞是藉由RA(10μM)來進行處理歷時各種不同的時間間隔(視實驗而定)。
RNA分離以及RT-PCR:Huh-7細胞(3×105)被接種至一為6-井的皿中並且被培育歷時24小時。被培養於無血清培養基隔夜的細胞被處理以BBP(1μM)歷時各種不 同的時間間隔。在BBP刺激之後,細胞以PBS予以洗滌2次。總RNAs是藉由TRIzol方法(Invitrogen)而被抽取。RNA(2μg)是藉由反轉錄系統(Promega)而被用來合成cDNA。該等c-DNAs是藉由特定的引子而被擴增。引子對被設計如下:AhR,前向5’-TACTCTGCCGCCCAAACTGG-3’,反向5’-GCTCTGCAACCTCCGATTCC-3’;β-肌動蛋白,前向5’-CTCGCTGTCCACCTTCCA-3’,反向5’-GCTGTCACCTTCACCGTTC-3’。PCR條件被設定在95℃下歷時5分鐘以及95℃歷時30秒,54℃歷時30秒,72℃歷時1分鐘,繼而72℃歷時10分鐘(36個循環)。產物是藉由2%瓊脂糖凝膠而被分離以及藉由溴化乙錠而被顯影。
西方墨點分析:Huh-7細胞(1×106)被接種至10cm皿中以及被培養隔夜。培養基被轉換至無血清培養基歷時再一夜。細胞被處理以BBP(1μM)歷時各種不同的時間間隔。為了進行其它研究,細胞被預處理以化學品PD98059(20μM)或2-APB(30μM)歷時1小時繼而處理以BBP。細胞接著以冰-冷的PBS予以洗滌2次並且藉由RIPA溶解緩衝液(Minipore)予以溶解。蛋白質濃度是藉由BCA蛋白質分析套組(Thermo)而被測量。相等數量的蛋白質(30μg蛋白質)是藉由8% SDS-PAGE來進行解析,予以轉印至PVDF膜上並且在室溫下以5%脫脂奶粉予以封阻歷時1小時。在封阻之後,該膜是在4℃下被培育以一次抗體[包括AhR(1:1000)、Cox-2(1:1000)、G α q/11(1:100)、G β(1:100)、β-肌動蛋白(1:5000)、p44/42 MAP激酶(1:1000)或磷酸 -p44/42 MAP激酶(1:1000)]隔夜。細胞以PBST予以洗滌3次並且接而在室溫下被培育以經HRP綴合的二次抗體歷時1小時。在洗滌之後,墨點是使用一增強的化學發光套組(ECL)(Amersham)而被顯影。
ChIP:藉由使用ChIP套組(Upstate Biotechnology,Lake Placid,NY),細胞被血清剝奪(serum-deprived)歷時隔夜並且被處理以RA(10μM)歷時4小時。為了分析,簡言之,溶胞產物(lysate)是在冰上被音波處理,俾以剪切DNA。經交聯的染色質被培育以蛋白質G瓊脂糖,外加抗-RNA聚合酶II(正對照組)或者一般小鼠IgG(負對照組)或經指明的一次抗體。在以5M NaCl、RNase A、EDTA、Tris以及蛋白酶K相繼處理之後,DNA混合物是藉由旋轉過濾器而被獲得並且被進行聚合酶鏈反應(PCR)。
免疫沉澱:Huh-7細胞被血清剝奪隔夜以及被處理以BBP(1μM)歷時30分鐘。在預-清除以蛋白質G-瓊脂糖(Minipore)歷時30分鐘之後,專一性抗體G α q/11或兔子IgG被添加至培養物,並且再次被培育隔夜。在培育以蛋白質G-瓊脂糖歷時2小時之後,珠粒以RIPA溶解緩衝液予以洗滌3次,在樣品緩衝液中予以煮沸,藉由8% SDS-PAGE予以解析並且進行AhR免疫墨點分析。
細胞被血清剝奪隔夜以及被處理以RA(10μM)歷時4小時。該等細胞是藉由RIPA溶解緩衝液(Millipore)予以溶解。溶胞產物以及蛋白質A或蛋白質G瓊脂糖 (Minipore)的混合物是在4℃下以搖動的方式予以培育歷時2小時。專一性一次抗體或兔子IgG(對照組)被添加以及被培育隔夜。免疫蛋白質複合體接著被捕獲於具有蛋白質A或蛋白質G的珠粒上。抗體-結合的蛋白質是藉由搖動歷時隔夜而被沉澱。經免疫沉澱的蛋白質被洗滌以RIPA溶解緩衝液,繼而以SDS-PAGE來進行分析以及使用另一種專一性抗體來進行免疫墨點法以測量交互作用。
免疫螢光:為了進行免疫細胞化學,細胞以4%三聚甲醛(配於PBS中)予以固定,繼而以2% FBS/0.4% Triton X-100(配於PBS中)來進行通透化(permeabilization)(15分鐘)。藉由5% FBS封阻溶液(2小時)以及被潤洗3次,細胞在4℃下被培育以專一性一次抗體(配於PBS中)隔夜。適當的FITC或PE或德州紅(Texas Red)綴合的二次抗體被添加歷時1小時,繼而針對核進行DAPI染色(5分鐘)以及進行顯微術。
全內反射螢光(TIRF)顯微術:Huh-7細胞是藉由使用LT1轉染試劑(Mirus Bio LLC,Madison,WI)而被預-轉染以pGFP-C1-AhR(H.Li的一贈與物)歷時24小時。為了進行TIRF顯微術,細胞是被培養在蓋玻片上的無血清培養基中,繼而藉由BBP(1μM,Sigma)來進行刺激。GFP-標誌的AhR在細胞膜之處的動態活性是藉由使用具有Axio Vision Rel.4.8軟體的Zeiss TIRF顯微鏡而被觀察以及分析。
即時活細胞成像顯微術:在處理以BBP(1μM) 之前,細胞在37℃下被預-處理以配於BSS緩衝液中的Fluo-4(1μM)[一種Ca2+-特異性染料]歷時20分鐘。相對的細胞內鈣強度的測量是藉由即時細胞成像顯微術而被執行並且藉由Cell-R軟體系統(Olympus)而被分析。無鈣培養基或者在各種不同的濃度下所使用的一IP3R抑制劑2-APB被使用來測試細胞培養物中的細胞內鈣反應。
共焦免疫螢光成像顯微術:有或沒有藉由AhR siRNA來進行轉染的細胞各自被培養並且被處理以BBP(1μM)歷時5以及15分鐘。在處理以針對AhR以及G α q/11的一次以及二次抗體之後,細胞被進行共焦免疫螢光顯微術,俾以分析在細胞隔室中的動態移動。
雙免疫金穿透電子顯微術:藉由微波固定以及加工處理所得到之經塑膠包埋的細胞的超薄切片被預處理以5%偏過碘酸鈉(sodium metaperiodate)(10分鐘)。載網被培育以抗AhR或G α q/11(C-19,sc-392,Santa Cruz)之IgG抗體的一整分部分,繼而分別以一種二次抗-小鼠IgG金粒子(呈一為6nm的大小)或抗-兔子IgG金粒子(呈一為20nm的大小)來進行探測。在洗滌之後,該等切片是藉由將載網放置在1滴具有1%卵白蛋白的PBS上而被封阻(15分鐘)。切片接著以醋酸鈾醯以及檸檬酸鉛予以染色並且藉由穿透電子顯微鏡(Hitachi H-700model,Japan)而被觀察。
在本說明書中所提及的所有公開案、專利案以及專利申請案在此以參考相同範圍而被併入,如同各個個別的公開案、專利案或專利申請案被特定地以及個別地指 明要被併入以作為參考資料。
參考文獻
[1] Olanow, C. W. The scientific basis for the current treatment of Parkinson’s disease. An. Rev. Med. 55, 41-60 (2004).
[2] Freed, C. R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344, 710-719 (2001).
[3] Lindvall, O. & Kokaia, Z. Stem cells for the treatment of neurological disorders. Nature 441, 1094-1096 (2006).
[4] Kim, J. H. et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418, 50-56 (2002).
[5] Bjorklund, L. M. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA 99, 2344-2349 (2002).
[6] Reubinoff, B. E., Itsykson, P., Turetsky T, Pera MF, Reinhartz E, Itzik, A. & Ben-Hur, T. Neural progenitors from human embryonic stem cells. Nat Biotechnol. 19, 1134-1140 (2001).
[7] Roy, N. S., Cleren, C., Singh, S. K., Yang, L., Beal, M. F. & Goldman, S. A. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by co culture with telomerase-immortalized midbrain astrocytes. Nat. Med. 12, 1259-1268 (2006).
[8] Dunnett, S. B., Björklund A. & Lindvall, O. Cell therapy in Parkinson's disease: stop or go? Nat. Rev. Neurosci. 2, 365-369 (2001).
[9] Parolini, O. et al. Concise review: Isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26, 300-311 (2008).
[10] Ilancheran. S. & Moodley, Y. & Manuelpillai, U. Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta 30, 2-10 (2009).
[11] Surani, M. A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell 128, 747-762 (2007).
[12] Yamanaka, Y., Ralston, A., Stephenson, R. O., & Rossant, J. Cell and molecular regulation of the mouse blastocyst. Dev. Dyn. 235, 2301-2314 (2006).
[13] Chen, H. F., Chao, K. H., Shew, J. Y., Yang, Y. S. & Ho, H. N. Expression of leukemia inhibitory factor and its receptor is not altered in the decidua and chorionic villi of human anembryonic pregnancy. Hum. Reprod. 19, 1647-1654 (2004).
[14] Wånggren, K., Lalitkumar, P. G., Hambiliki, F., Ståbi, B., Gemzell-Danielsson, K. & Stavreus-Evers, A. Leukaemia inhibitory factor receptor and gp130 in the human fallopian tube and endometrium before and after mifepristone treatment and in the human preimplantation embryo. Mol. Hum. Reprod. 13, 391-397 (2007).
[15] Keltz, M., Attar, E., Buradagunta, S., Olive, D., Kliman, H. & Arici, A. Modulation of leukemia inhibitory factor gene expression and protein biosynthesis in the human fallopian tube. Am. J. Obs. Gyn. 175, 1611-1619 (1996).
[16] Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M. & Rogers, D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688-690 (1998).
[17] Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., Gearing, D. P., Wagner, E. F., Metcalf, D., Nicola, N. A. & Gough, N. M. Myeloid leukemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684-687 (1988).
[18] Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S. & Smith, A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643-655 (2003).
[19] Boiani, L. A. & Scholer, H. R. Regulatory networks in embryo-derived pluripotent stem cell. Nat. Rev. Mol. Cell Biol. 6, 872-884 (2005).
[20] Adjaye, J. et al. Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells 23, 1514-1525 (2005).
[21] He, S., Pant, D., Schiffmacher, A., Meece, A. & Keefer, C. L. Lymphoid enhancer factor 1-mediated Wnt signaling promotes the initiation of trophoblast lineage differentiation in mouse embryonic stem cells. Stem Cells 26, 842-849 (2008).
[22] Maden, M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat. Rev. Neurosci. 8, 755-765 (2007).
[23] Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell. 110, 385-397 (2002).
[24] Li, X. J., Du, Z. W., Zarnowska, E. D., Pankratz, M., Hansen, L. O., Pearce, R. A. & Zhang, S. C. Specification of motorneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215-221 (2005).
[25] Zhang, X., Klueber, K. M., Guo, Z., Cai, J., Lu, C., Winstead, W. I., Qiu, M. & Roisen, F. J. Induction of neuronal differentiation of adult human olfactory neuroepithelial-derived progenitors. Brain Res. 1073-1074, 109-119 (2006).
[26] Jacobs, S., Lie, D. C., DeCicco, K. L., Shi, Y., DeLuca, L. M., Gage, F. H. & Evans, R. M. Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc. Natl. Acad. Sci. USA. 103, 3902-3907 (2006).
[27] Tsai, Y.-L., Tseng, S.-F., Chang, S.-H., Lin, C.-C. & Teng, S.-C. Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination. Mol. Cell. Biol. 22, 5679-5687 (2002).
[28] Niwa, H., Toyooka, Y., Shimosato, D., Strumpf, D., Takahashi, K., Yagi, R. & Rossant, J. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917-929 (2005).
[29] Cavaleri, F. & Scholer, H. R. (2003). Nanog: a new recruit to the embryonic stem cell orchestra. Cell 113, 551-552 (2003).
[30] Martín-Ibáñez, R, Urbán, N., Sergent-Tanguy, S., Pineda, J. R., Garrido-Clua, N., Alberch, J. & Canals, J. M. Interplay of leukemia inhibitory factor and retinoic acid on neural differentiation of mouse embryonic stem cells. J. Neuron. Res. 85, 2686-2710 (2007).
[31] Bain, G., Kitchens, D., Yao, M., Huettner, J. E. & Gottlieb, D. I. Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342-357 (1995).
[32] Tropepe, V., Hitoshi, S., Sirard, C., Mak, T. W., Rossant, J. & van der Kooy, D. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65-78 (2001).
[33] Smith, C. R., Chan, H. S. & deSa, D. J. Placental involvement in congenital neuroblastoma. J. Clin. Pathol. 34, 785-789 (1981).
[34] Panicker, M. M. & Rao, M. Stem cells and neurogenesis. in Stem Cell Biology (eds Msrshak, D.R., Gardner, R. L. & Gottlieb, D.) 399-438 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).
[35] Yan, J., Tanaka, S., Oda, M., Makino, T., Ohgane, J. & Shiota, K. Retinoic acid promotes differentiation of trophoblast stem cells to a giant cell fate. Dev. Biol. 235, 422-432 (2001).
[36] Chen, L. & Khillan, J. S. Promotion of feeder-independent self-renewal of embryonic stem cells by retinol (vitamin A). Stem Cells 26,1858-1864 (2008).
[37] Li, L. et al. Human Embryonic Stem Cells Possess Immune-Privileged Properties. Stem Cells 22, 448-456 (2004).
[38] Swijnenburg, R. J. et al. Immunosuppresive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc. Natl. Acad. Sci. USA. 105, 12991-12996 (2008).
[39] Bavaresco, L., Bernardi, A., Braganhol, E., Cappellari, A. R., Rockenbach, L., Farias, P. F., Wink, M. R., Delgado-Cañedo, A. & Battastini, A. M. The role of ecto-5'-nucleotidase/CD73 in glioma cell line proliferation. Mol. Cell Biochem. 319, 61-68 (2008).
[40] Napoli, I. & Neumann, H. Microglial clearance function in health and disease. Neuroscience 158, 1030-1038 (2009).
[41] Song, H., Stevens, C.F. & Gage, F.H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39-44 (2002).
[42] Annerén, C., Cowan, C. A & Melton, D. A. The Src family of tyrosine kinases is important for embryonic stem cell self-renewal. J. Biol. Chem. 279, 590-598 (2004).
[43] Torres, J. & Watt, F. M. Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFkappaB and cooperating with Stat3. Nat. Cell Biol. 10, 194-201 (2008).
[44] Myers, R., L., Ray, S. K., Eldridge, R., Chotani, M. A., Chiu, I-M. Functional characterization of the brain-specific FGF-1 promoter, FGF-1B. J. Biol. Chem. 270, 8257-8266 (1995).
[45] Wu, R. M., Murphy, D. L. & Chiueh, C. C. Suppression of hydroxyl radical formation and protection of nigral neurons by l-deprenyl (Selegiline). Ann. N. Y. Acad. Sci. 786, 379-389 (1996).
[46] Götz, M. Glial cells generate neurons--master control within CNS regions: developmental perspectives on neural stem cells. Neuroscientist 9, 379-97 (2003).
[47] Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D. & Dirks, P. B. Identification of human brain tumour initiating cells. Nature 432, 396-401 (2004).
[48] Zhu, Q. F., Ma, J., Yu, L. I. & Yuan, C. G. Grafted neural stem cells migrate to substantia nigra and improve behavior in Parkinsonian rats. Neurosci. Lett. 462, 213-218 (2009).
[49] Lindvall O, Kokaia Z. & Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat. Med. 10 (Suppl), S42-50 (2004).
[50] Wagner, J. et al. Induction of a midbrain dopaminergic phenotype in Nurrl-overexpressing neural stem cells by type 1 astrocytes. Nat. Biotechnol. 17, 653-659 (1999).
雖然某些具體例已在此處被顯示以及描述,對於那些熟習此技藝者而言會是明顯的是:該等具體例僅作為實施例而被提供。在不背離本發明之下,許多變化、改變以及取代對於那些熟習此技藝者而言將會立刻想到。應被瞭解的是:此處所描述之本發明的具體例之各種不同的替代方式可以在實施本發明上被採用。所欲的是:下列申請專利範圍定義本發明的範疇並且在這些申請專利範圍的範疇內的方法與結構以及它們的等效物因此而被涵蓋。

Claims (6)

  1. 一種維持一哺乳動物的滋養層幹細胞之自我-更新的增生能力的方法,該方法是藉由於活體外令該哺乳動物的滋養層幹細胞與逐漸撤除的白血病抑制因子接觸,其中,白血病抑制因子的逐漸撤除能夠誘導在該哺乳動物的滋養層幹細胞中的Nanog的提升,藉此維持該哺乳動物的滋養層幹細胞的自我-更新的增生能力。
  2. 如請求項1的方法,其中該白血病抑制因子的濃度是介於1-1000U/ML之間。
  3. 如請求項1的方法,其中該白血病抑制因子的濃度是大約125至大約250U/ML。
  4. 如請求項1的方法,其中該白血病抑制因子的濃度是大約125至大約500U/ML。
  5. 如請求項1的方法,其中該白血病抑制因子的濃度是大約125至大約1000U/ML。
  6. 如請求項1至5中任一項的方法,其中該哺乳動物的滋養層幹細胞是一人類、一小鼠、大鼠、黑猩猩、大猩猩、犬、豬、山羊、海豚或母牛的滋養層幹細胞。
TW104108091A 2010-11-15 2011-11-15 從人類滋養層幹細胞中生成神經幹細胞 TWI642780B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41389210P 2010-11-15 2010-11-15
US61/413892 2010-11-15

Publications (2)

Publication Number Publication Date
TW201534723A TW201534723A (zh) 2015-09-16
TWI642780B true TWI642780B (zh) 2018-12-01

Family

ID=48137943

Family Applications (3)

Application Number Title Priority Date Filing Date
TW104108091A TWI642780B (zh) 2010-11-15 2011-11-15 從人類滋養層幹細胞中生成神經幹細胞
TW100141617A TWI481715B (zh) 2010-11-15 2011-11-15 從人類滋養層幹細胞中生成神經幹細胞
TW104108089A TWI582234B (zh) 2010-11-15 2011-11-15 從人類滋養層幹細胞中生成神經幹細胞

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW100141617A TWI481715B (zh) 2010-11-15 2011-11-15 從人類滋養層幹細胞中生成神經幹細胞
TW104108089A TWI582234B (zh) 2010-11-15 2011-11-15 從人類滋養層幹細胞中生成神經幹細胞

Country Status (1)

Country Link
TW (3) TWI642780B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11099181B2 (en) 2019-03-28 2021-08-24 Alentic Microscience Inc. Bead-based analysis of a sample
US11255850B2 (en) 2019-03-28 2022-02-22 Alentic Microscience Inc. Bead-based analysis of a sample
US11609233B2 (en) 2019-03-28 2023-03-21 Alentic Microscience Inc. Indicator-based analysis of a sample
US11719700B2 (en) 2019-03-28 2023-08-08 Alentic Microscience Inc. Upconversion for microscopy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230014181A1 (en) * 2021-06-17 2023-01-19 Genentech, Inc. Culture system and methods for improved modeling of neurological conditions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1257282A4 (en) * 1999-12-06 2003-05-02 Gen Hospital Corp PANCREATIC STEM CELLS AND THEIR USE IN TRANSPLANTATION
US20060233771A1 (en) * 2002-09-24 2006-10-19 Ernesto Arenas Methods for promoting dopaminergic neuronal development by using ng4a-subfamily and wnt-ligands
US7642091B2 (en) * 2005-02-24 2010-01-05 Jau-Nan Lee Human trophoblast stem cells and use thereof
JP2009508650A (ja) * 2005-09-21 2009-03-05 ダスク テクノロジーズ, エルエルシー 臓器および組織機能のための方法および組成

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
2003年05月30日,Nanog: a new recruit to the embryonic stem cell orchestra,Cell. 2003 May 30;113(5):551-2 *
2003年05月30日,Nanog: a new recruit to the embryonic stem cell orchestra,Cell. 2003 May 30;113(5):551-2.
2006年01月,Effect of leukemia inhibitory factor on embryonic stem cell differentiation: implications for supporting neuronal differentiation,Acta Pharmacol Sin. 2006 Jan;27(1):80-90.
2006年01月,Effect of leukemia inhibitory factor on embryonic stem cell differentiation: implications for supporting neuronal differentiation,Acta Pharmacol Sin. 2006 Jan;27(1):80-90. . *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11099181B2 (en) 2019-03-28 2021-08-24 Alentic Microscience Inc. Bead-based analysis of a sample
TWI740432B (zh) * 2019-03-28 2021-09-21 加拿大商亞蘭提克微科學有限公司 一種用於識別樣本中的化學組分之方法及裝置
US11255850B2 (en) 2019-03-28 2022-02-22 Alentic Microscience Inc. Bead-based analysis of a sample
US11609233B2 (en) 2019-03-28 2023-03-21 Alentic Microscience Inc. Indicator-based analysis of a sample
US11719700B2 (en) 2019-03-28 2023-08-08 Alentic Microscience Inc. Upconversion for microscopy
US11733239B2 (en) 2019-03-28 2023-08-22 Alentic Microscience Inc. Bead-based analysis of a sample

Also Published As

Publication number Publication date
TW201536918A (zh) 2015-10-01
TWI582234B (zh) 2017-05-11
TW201534723A (zh) 2015-09-16
TW201303021A (zh) 2013-01-16
TWI481715B (zh) 2015-04-21

Similar Documents

Publication Publication Date Title
US11891623B2 (en) Generation of neural stem cells from human trophoblast stem cells
Fukuda et al. Fluorescence-activated cell sorting–based purification of embryonic stem cell–derived neural precursors averts tumor formation after transplantation
Coyle et al. Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons
JP2014532440A (ja) 移植用中脳ドーパミン(da)ニューロン
TWI642780B (zh) 從人類滋養層幹細胞中生成神經幹細胞
US20230233617A1 (en) Methods for differentiating stem cells into dopaminergic progenitor cells
US20220251504A1 (en) Functional astrocytes derived from pluripotent stem cells and methods of making and using the same
US20200003757A1 (en) Method of identifying agents that affect maturation, survival and myelination
Biehl Uncovering the role of notch signaling in development of hypothalamic nuclei in vivo and using in vitro microenvironments
HONG IDENTIFICATION OF MOUSE EMBRYONIC NEURAL STEM CELL SURFACE MARKERS
Saxena Neural crest-derived sympathoadrenergic-like progenitors of the postnatal murine adrenal gland
EA041083B1 (ru) Способ индукции дифференцировки плюрипотентных стволовых клеток in vitro