TWI642272B - 具有加強線性之分離偏壓射頻功率放大器 - Google Patents

具有加強線性之分離偏壓射頻功率放大器 Download PDF

Info

Publication number
TWI642272B
TWI642272B TW103126353A TW103126353A TWI642272B TW I642272 B TWI642272 B TW I642272B TW 103126353 A TW103126353 A TW 103126353A TW 103126353 A TW103126353 A TW 103126353A TW I642272 B TWI642272 B TW I642272B
Authority
TW
Taiwan
Prior art keywords
transistor
coupled
power
transistors
power unit
Prior art date
Application number
TW103126353A
Other languages
English (en)
Other versions
TW201519574A (zh
Inventor
韓海林
艾利歐 貝羅尼
Original Assignee
三胞半導體公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三胞半導體公司 filed Critical 三胞半導體公司
Publication of TW201519574A publication Critical patent/TW201519574A/zh
Application granted granted Critical
Publication of TWI642272B publication Critical patent/TWI642272B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/191Tuned amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/432Two or more amplifiers of different type are coupled in parallel at the input or output, e.g. a class D and a linear amplifier, a class B and a class A amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21131Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers the input bias voltage of a power amplifier being controlled, e.g. by a potentiometer or an emitter follower

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一種射頻(RF)功率放大器(PA)可包括一第一電晶體與一第二電晶體。一第一功率單元可與第一電晶體為耦合,且一第二功率單元可與第二電晶體為耦合。在實施例中,第一電晶體可被定標(scaled)以第一電流密度來操作,而第二電晶體可被定標以第二電流密度來操作。

Description

具有加強線性之分離偏壓射頻功率放大器
本揭露內容的實施例概括關於射頻(RF,radio frequency)功率放大器(PA,power amplifier)的領域。
對於用在於無線通訊的RF PA而言,線性(linearity)可能是極為重要。概括而言,線性可以是當RF輸入訊號被增大時一RF PA的RF訊號輸出的線性程度之度量。換言之,線性可關於RF PA的增益(有時稱作為AM-AM失真,其中AM可指振幅調變)與相位移(有時稱作為AM-PM失真,其中PM可指相位調變),且值得注意的是增益與相位在一範圍的RF訊號輸入或輸出為一致,俾使在一訊號輸入處之RF PA的增益與相位為大約相同於另一訊號輸入處之RF PA的增益與相位。RF PA線性之關鍵測量的一者可為相鄰通道功率比(ACPR,Adjacent Channel Power Ratio),其可為總相鄰通道功率(有時稱作為一交互調變訊號(intermodulation signal))對於主通道功率(有時稱作為一有用訊號(useful signal))之間的比值之度量。
現存的RF PA可包括一種偏壓電路,其經設計以加偏壓於功率放大器來改良線性。該種偏壓電路可使用諸如異質接面雙極電晶體(HBT,hetero-junction bipolar transistor)的雙極電晶體、諸如金屬氧化物半導體 場效電晶體(MOSFET,metal-oxide-semiconductor field effect transistor)、金屬半導體場效電晶體(MESFET,metal-semiconductor field effect transistor)的場效電晶體、偽形高電子移動率電晶體(PHEMT,pseudomorphic high-electron mobility transistor)、或上述者的組合,諸如:一雙極場效電晶體(BiFET,bipolar field effect transistor)及/或一雙極高電子移動率電晶體(BiHEMT,bipolar high-electron mobility transistor)。然而,不論該種偏壓電路為何,現存的RF PA可能隨著該種RF PA的RF輸入訊號增大而仍然呈現該種RF PA的輸出訊號之非線性失真。
在一實施例中,一種功率放大器包含:一第一電晶體,其被定標以第一電流密度來操作;一第二電晶體,其被定標以第二電流密度來操作,第一電晶體與第二電晶體為耦合;一第一功率單元(cell),其包含與第一電晶體為耦合的一第三電晶體,第一電晶體被配置以加偏壓於該第一功率單元;以及,一第二功率單元,其包含與該第二電晶體為耦合的複數個電晶體,第二電晶體被配置以加偏壓於第二功率單元。
在另一實施例中,一種方法包含:將一第一電晶體的一輸入耦合到一電源,第一電晶體是基於第一電流密度而定標;將一第二電晶體的一輸入耦合到電源,第二電晶體是基於第二電流而定標;將第一電晶體的一第一端子與第二電晶體的一第一端子耦合;將其包括一第三電晶體之一第一功率單元的一輸入與第一電晶體的一第二端子耦合;且將其包括複數個電晶體之一第二功率單元的一輸入與第二電晶體的一第二端子耦合。
在另一實施例中,一種系統包含:一電源;以及,一功率放 大器,其與電源為耦合,該功率放大器包含:一第一電晶體,其被定標以第一電流密度來操作,該第一電晶體與電源為耦合;一第二電晶體,其被定標以第二電流來操作,該第一電晶體與電源為耦合;一第一功率單元,其包含與第一電晶體為耦合的一第三電晶體;以及一第二功率單元,其包含與第二電晶體為耦合的複數個電晶體。
100‧‧‧射頻功率放大器(RF PA)
102‧‧‧電源
104‧‧‧第一電晶體
106‧‧‧第二電晶體
108‧‧‧參考電阻器
110‧‧‧雙極電晶體
112‧‧‧反饋電阻器
114‧‧‧第一功率單元
116‧‧‧第一線路
118‧‧‧第一電阻器
120‧‧‧第一電容器
122‧‧‧第一雙極電晶體
124‧‧‧第二功率單元
126‧‧‧第二線路
128‧‧‧第二功率單元結構
130‧‧‧第二電阻器
132‧‧‧第二電容器
134‧‧‧第二雙極電晶體
136‧‧‧第三功率單元結構
138‧‧‧第十五功率單元結構
140‧‧‧射極-接地線路
142‧‧‧第一集極線路
144‧‧‧第三功率線路
146‧‧‧RF輸入
148‧‧‧操作功率或電壓輸入
150‧‧‧電感器
152‧‧‧RF輸出功率
200‧‧‧射頻功率放大器(RF PA)
204‧‧‧第一電晶體
206‧‧‧第二電晶體
214‧‧‧第一功率單元
216‧‧‧第一線路
224‧‧‧第二功率單元
226‧‧‧第二線路
300‧‧‧方法
302-310‧‧‧方法300的步驟
600‧‧‧第一線
605‧‧‧第二線
700‧‧‧第一線
705‧‧‧第二線
800‧‧‧系統
802‧‧‧PA模組
804‧‧‧收發器
806‧‧‧天線切換模組(ASM)
808‧‧‧天線結構
900‧‧‧射頻功率放大器(RFPA)
904‧‧‧第一電晶體
906‧‧‧第二電晶體
910‧‧‧參考電晶體
914‧‧‧第一功率單元
922‧‧‧第一電晶體
924‧‧‧第二功率單元
934‧‧‧第二電晶體
936‧‧‧第三功率單元結構
938‧‧‧第十五功率單元結構
1000‧‧‧第一線
1005‧‧‧第二線
實施例將由伴隨圖式的以下詳細說明而易於瞭解。為了利於此說明,同樣的參考符號標示同樣的結構元件。在伴隨圖式的諸圖之中的實施例是作為舉例且非作為限制。
圖1示意說明根據各種實施例之一RF PA的電路圖。
圖2示意說明根據各種實施例之一RF PA的電路圖。
圖3說明根據各種實施例之一構成RF PA的流程。
圖4是根據各種實施例之在一RF PA中的第一電壓相較於輸出功率之模擬結果。
圖5是根據各種實施例之在一RF PA中的第二電壓相較於輸出功率之模擬結果。
圖6是根據各種實施例之對於二個不同電路的增益相較於輸出功率之模擬結果。
圖7是根據各種實施例之對於二個不同電路的相鄰通道功率比(ACPR)相較於輸出功率之模擬結果。
圖8示意說明根據各種實施例之包括RF PA的一實例系統。
圖9示意說明根據各種實施例之一RF PA的電路圖。
圖10是根據各種實施例之對於二個不同電路的相位移相較於輸出功率之模擬結果。
本揭露內容的實施例提出一具有提高的RF訊號線性之RF PA的技術與組態。在實施例中,一第一電晶體可與一第一功率單元為耦合,且一第二電晶體可與一第二功率單元為耦合。第一電晶體與第二電晶體可被定標,俾使第二電晶體可比第一電晶體為較大許多。同理,第一功率單元與第二功率單元可被定標,俾使第二功率單元是比第一功率單元為較大許多。藉由以此方式來裝配RF PA,第二功率單元的輸出可被偏壓為升壓,俾使該RF PA的增益與相位呈現提高的線性響應。
在以下詳細說明中,參考構成其一部分的伴隨圖式,其中,同樣標號指出整個圖式中的同樣零件,且作為舉例說明來顯示本揭露內容之標的可經實現於其中的實施例。要瞭解的是,其他實施例可經利用,且結構或邏輯的變化可在沒有脫離本揭露內容的範疇之情況下而作出。因此,以下詳細說明並非被視為限制意義,且實施例的範疇是由隨附的申請專利範圍與其等效者所界定。
為了此揭露內容之目的,用語“A及/或B”意指(A)、(B)、或(A與B)。為了此揭露內容之目的,用語“A、B、及/或C”意指(A)、(B)、(C)、(A與B)、(A與C)、(B與C)、或(A、B、與C)。
描述可使用用語“在一實施例中”、或“在實施例中”,其可各自指稱為相同或不同實施例之中的一者或多者。再者,如關於此揭露內容之實施例所使用,術語“包含”、“包括”、“具有”、與類似者為 同義。術語“耦合”可指直接連接、間接連接、或間接連通。
術語“與…耦合”以及其衍生詞可被使用在本文。“耦合”可意指下列的一者或多者。“耦合”可意指二個或多個元件為直接實體或電氣接觸。然而,“耦合”還可意指二個或多個元件為彼此間接接觸,但仍然為彼此合作或互動,且可意指一或多個其他元件被耦合或連接在其稱為彼此耦合的元件之間。
如上文所指出,一RF PA可包括一或多個HBT、BiFET、BiHEMT、MOSFET、MESFET、或PHEMT。然而,該RF PA可能呈現非線性的特性。圖1描繪一RF PA 100,其可呈現提高的線性特性。在實施例中,RF PA 100可與一電源102為耦合,電源102為諸如:電池或一些其他電源,其可提供在RF PA 100之內的固定參考電壓(VDD)。RF PA 100可包括:一第一電晶體104與一第二電晶體106。如在圖1所示,第一電晶體104與第二電晶體106的閘極可為彼此耦合。在實施例中,第一電晶體104及/或第二電晶體106可為MESFET。第一電晶體104與第二電晶體106均可具有一源極端子(在圖1以字母“S”來標出)與一汲極端子。如在圖1所示,第一電晶體104與第二電晶體106的汲極端子可為彼此耦合。第一電晶體104與第二電晶體106的閘極可透過一參考電阻器108而與電源102為耦合。第一電晶體104的源極端子可經由一反饋電阻器112而與一雙極電晶體110的基極端子為耦合。同理,第一與第二電晶體104與106的閘極端子可與該雙極電晶體的集極端子為耦合。在一些實施例中,雙極電晶體110可為一異質接面的雙極電晶體。在一些實施例中,雙極電晶體110可為一BiFET或BiHEMT電晶體,如圖所顯示。在其他實施例中,雙極電晶體110可能非為雙極性, 而是可能為一MOSFET、MESFET、或PHEMT電晶體。雙極電晶體110的射極端子可與接地為耦合,如在圖1所示。
在實施例中,第一電晶體104的源極端子可經由一第一線路116而與一第一功率單元114為耦合。第一功率單元114係由虛線所指出,如在圖1所示。在實施例中,第一功率單元114可包括一第一功率單元結構,該結構包括與一第一雙極電晶體122的基極端子為耦合的一第一電阻器118與一第一電容器120,如在圖1所示。在一些實施例中,第一雙極電晶體122可為一異質接面的雙極電晶體。在一些實施例中,第一雙極電晶體122可為一BiFET或BiHEMT。
第二電晶體106的源極端子可經由一第二線路126而與一第二功率單元124為耦合。第二功率單元124係由在圖1之中的虛線所指出。在實施例中,第二功率單元124可包括類似於第一功率單元114的彼等者之複數個功率單元結構。明確而言,第二功率單元124可包括一第二功率單元結構128,其包括一第二電阻器130、一第二電容器132、與一第二雙極電晶體134。第二功率單元124可另外包括一或多個其他的功率單元結構,諸如:第三功率單元結構136。在一些實施例中,第二功率單元124可具有高達十五個功率單元結構,如由圖1之中的虛線與第十五功率單元結構138所指出。在一些實施例中,第二雙極電晶體134可為一異質接面的雙極電晶體。在一些實施例中,第二雙極電晶體134可為一BiFET或BiHEMT。在一些實施例中,第一功率單元114可具有增加數目的功率單元結構。在一些實施例中,第二功率單元124可具有多於或少於十五個功率單元結構。
在實施例中,在第二功率單元124之中的功率單元結構 128、136與138之各者的電阻器可經由第二線路126而與第二電晶體106的源極端子為耦合。在實施例中,在第二功率單元124之中的雙極電晶體之各者(例如:第二雙極電晶體134)的射極可為彼此耦合且經由一射極-接地線路140而耦合到接地。如圖所顯示,在第一功率單元114之中的第一雙極電晶體122的射極可同樣地與接地為耦合。
在第二功率單元124之中的雙極電晶體之各者(例如:第二雙極電晶體134)的集極可為彼此耦合且經由第一集極線路142而耦合到在第一功率單元114之中的第一雙極電晶體122的集極。同理,各個功率單元結構的電容器(例如:第一功率單元114的第一電容器120與第二功率單元124的第二電容器132)可經由一第三功率線路144而為彼此耦合。
第三功率線路144可與一RF輸入146為耦合,RF輸入146被配置以將一輸入電壓或功率提供到RF PA 100。第一集極線路142可與一操作功率或電壓輸入148為耦合,操作功率或電壓輸入148被配置以將一操作電壓提供到RF PA 100。在實施例中,操作功率輸入148可與一電感器150為耦合。在一些實施例中,第一集極線路還可與RF輸出功率152為耦合。在一些實施例中,RF輸出功率152可與一匹配網路(未顯示)為耦合。
在圖1所描繪的RF PA 100呈現優於其他現存RF PA之提高的線性。明確而言,第一電晶體104與第二電晶體106二者之使用可被視為將一現存RF PA的MOSFET、MESFET、PHEMT、BiFET或BiHEMT分為二個電晶體。第一電晶體104的元件尺寸可為小於第二電晶體106。舉例來說,在一實施例中,第一電晶體104的元件尺寸可為40μm2之等級,而第二電晶體106的元件尺寸可為1200μm2之等級。此差異之結果可能在於:第一 電晶體104可被定標以運作於相當高的電流密度,而第二電晶體106可被定標以運作於相當低的電流密度。電流密度可被定義為通過電晶體的電流除以電晶體的元件尺寸。
在實施例中,定標第一電晶體104與第二電晶體106以運作於不同電流密度可能涉及選擇第一電晶體104與第二電晶體106的元件尺寸之比值、以及第一功率單元114與第二功率單元124的功率單元尺寸之比值。若第一電晶體104與第二電晶體106的元件尺寸之比值為不同於第一功率單元114與第二功率單元124的功率單元尺寸之比值,則第一電晶體104與第二電晶體106可被稱為運作於不同電流密度。
此外,現存RF PA之RF功率單元可被分為二個部分,第一功率單元114與第二功率單元124。如可在圖1所看出,第一功率單元114可為小於第二功率單元124。舉例來說,第一功率單元114可僅含有單一功率單元結構,而第二功率單元124可含有複數個功率單元結構。如所指出,在一些實施例中,第二功率單元124可含有多達十五個功率單元結構,而在其他實施例中,第二功率單元124可包括較多或較少個功率單元結構。
在實施例中,參考電阻器108可用以設定對於雙極電晶體110的集極之一參考電流。此外,反饋電阻器112可感測在第一線路116的電壓變化。第一線路116的電壓可被描述為Vb1。第二線路126的電壓可被描述為Vb2
如可在圖1所看出,第一功率單元114、反饋電阻器112、雙極電晶體110、與第一電晶體104可形成其具有如同一電流鏡的閉迴路偏壓電路之一PA。換言之,電晶體112的靜態電流可由在電晶體110的集極 之參考電流所設定,其可為通過電阻器108的相同電流。反之,第二功率單元124、與第二電晶體106可形成其具有開迴路偏壓電路之一PA。換言之,在功率單元124之中的電晶體的靜態電流可能並非由在電晶體110的集極之參考電流所直接設定。替代而言,在功率單元124之中的電晶體的靜態電流可由通過電晶體106的電流所直接設定。因為電晶體104與106的個別閘極可被耦合;電晶體106的閘極電壓可為電晶體104的閘極電壓之相同電壓,其可為由上述的閉迴路電流鏡偏壓所設定。電晶體106的源極端子電壓可為接近於在功率單元124之中的電晶體(例如:電晶體134)的基極-射極接面電壓Vbe。此外,功率單元124的基極-射極接面電壓Vbe可為極接近於在功率單元114之中的電晶體122的基極-射極接面電壓Vbe,因為電晶體134與電晶體122可為具有相同製程之相同型式的雙極電晶體。因為電晶體104與電晶體106的閘極電壓可為相同,電晶體104與電晶體106的源極電壓可為相同或很接近,於是通過電晶體106的電流與通過電晶體104的電流之比值可為接近正比於電晶體104與電晶體106的元件尺寸,若關於通過電晶體106的電流之電晶體106的源極端子電壓的變化不作考慮。在此情形,電晶體104與電晶體106的電流密度可因此為相同。
然而,當電晶體104與電晶體106的尺寸、以及功率單元114與功率單元124的尺寸被定標,相較於電晶體104,通過電晶體106的電流可能致使在電晶體106的一不同源極端子電壓。接著,電晶體106的不同源極端子電壓可改變通過電晶體106的電流而且也改變電晶體106的電流密度。
舉例來說,若電晶體104與電晶體106的元件尺寸比值為約 1:30,通過電晶體106的電流可為通過電晶體104的電流之約30倍,因為電晶體104與電晶體106的源極端子電壓可為接近彼此。此外,若功率單元124的尺寸被定標為功率單元114的尺寸之約15倍,則通過功率單元124之各個電晶體的基極的電流可為通過功率單元114之電晶體的基極的電流之大約二倍。
此外,在各個電晶體的基極可能有相同值的一基極鎮流電阻器,例如:電阻器118與電阻器130。故,跨於功率單元124的基極鎮流電阻器之電壓降可為功率單元114者的大約二倍。如上所述,功率單元114與功率單元124的電晶體的基極射極接面電壓Vbe可歸因於相同型式的電晶體之相同製程而為相同。在功率單元124的基極鎮流電阻器之較高的電壓降可能致使電晶體106的源極端子電壓為高於電晶體104的源極端子電壓。較高的源極端子電壓可能致使通過電晶體106的實際電流為小於通過電晶體106的電流之二倍,即使電晶體106的尺寸可能仍為電晶體104的尺寸之二倍,如上文所論述,當閘極電壓與電晶體型式為相同。
因此,在此實例中,電晶體106可具有比電晶體104為低的電流密度。在其他實例中,電晶體104與電晶體106的不同比值可能造成其通過電晶體106的不同電流為具有不同的電流密度。概括而言,當電晶體104與電晶體106的元件尺寸被定標且功率單元114與功率單元124的元件尺寸被定標,電晶體104與電晶體106的電流密度可被控制。
在操作中,隨著由RF輸入146所提供的RF輸入訊號增大,第一線路116的電壓可能下降。通常,第二線路126的電壓可能具有亦為下降的傾向。第一線路116與第二線路126的電壓降可能致使第一功率單元 114與第二功率單元124的偏壓點為隨著在RF輸入146的輸入功率之增大而下降。然而,當第一線路116的電壓下降,對於雙極電晶體110的基極之電流可能亦為下降。在對於雙極電晶體110的基極之電流的下降可能致使雙極電晶體110的集極端子之電流為同樣下降。如可看出,在雙極電晶體110的集極端子之電流可能為通過參考電阻器108的相同電流,故跨於參考電阻器108的電壓降可能減小。
如稍早所指出,電源102可提供一固定參考電壓VDD。在實施例中,VDD可被視為將在RF PA100之外部所產生。如上文所指出,在由RF輸入146所提供之RF輸入訊號中的增大可造成跨於參考電阻器108之減小的電壓降。因為VDD是一固定電壓,跨於參考電阻器108的電壓降之減小可造成在第一電晶體104與第二電晶體106的閘極端子之電壓增大。
如上文所指出,第一電晶體104與第二電晶體106可被定標以運作於不同的電流密度。明確而言,當假定靜止運作點被選擇時,第一電晶體104可被定標以運作於較高的電流密度,而第二電晶體106可被定標以運作於較低的電流密度。因為電流密度差異,跨於第一電晶體104的閘極端子與源極端子之電壓可為大於跨於第二電晶體106的閘極端子與源極端子之電壓。因為第一電晶體104與第二電晶體106的閘極被電氣耦合,此電壓差異可將第二線路126的電壓拉高為高於第一線路116的電壓。將第二線路126的電壓拉高為高於第一線路116的電壓可抵消對於第二線路126的電壓下降之上文所述的傾向。
在第二線路126之此提高的電壓可藉由適當調整第一電晶體104或第二電晶體106的元件尺寸而被控制或定標。同理,調整第一功率 單元的構件(例如:第一雙極電晶體122)的尺度或尺寸、或第二功率單元的構件(例如:第二雙極電晶體134)的尺度及/或尺寸可同樣影響在第二線路126之提高的電壓。此外,調整在第一功率單元114或第二功率單元124之中的功率單元結構的數目比率可同樣影響在第二線路126之提高的電壓。在實施例中,第一電晶體104、第二電晶體106、第一功率單元114、及/或第二功率單元124可經選擇以提供第二線路126之期望的電壓變化而具有來自RF輸入146的RF輸入訊號功率增大。在實施例中,提供第二線路126之期望的電壓變化可致使第二線路126的電壓維持大約相同而不管在來自RF輸入146的RF輸入訊號功率之增大為何。在其他實施例中,提供第二線路126之期望的電壓變化可致使第二線路126的電壓以隨著來自RF輸入146的RF輸入訊號功率增大而增大,此可被稱作為“偏壓升壓(boosting)”。如關於圖4與5之下文所述,第二線路126之期望的電壓變化可在當第二線路126的電壓為隨著來自RF輸入146的RF輸入訊號功率增大而稍微增大時而發生。
如在本文所使用,訊號功率或功率可指以瓦特、毫瓦、dBm為單位之測量、或一些其他功率測量。對於訊號功率的變化可指以毫瓦或一些其他單位之變化。在一些其他實施例中,對於訊號功率的變化可指在電壓及/或電流的變化。
概括而言,可看出的是,第二線路126可提供對於第二功率單元124的偏壓電流,第二功率單元124可為顯著大於第一功率單元114,如上文所述。因為第二功率單元124可為顯著大於第一功率單元114,第二功率單元124可放大用於RF PA 100之大多數的RF輸入訊號。因此,即使 第一線路116的電壓可能隨著RF輸入訊號功率增大而減小,RF PA 100之整體的線性可歸因於在第二線路126之偏壓升壓效應而改善。
圖2描繪一RF PA 200,其可為類似於圖1的RF PA 100。在圖1的RF PA 100與圖2的RF PA 200之間的主要差異可為在於,第一電晶體204可為一雙極電晶體而非為一MESFET型式的電晶體。同理,圖2的RF PA 200的第二電晶體206可為一雙極電晶體。在其他實施例中,一RF PA的第一電晶體(例如:第一電晶體104或204)可為一MESFET型式的電晶體而該RF PA的第二電晶體(例如:第二電晶體106或206)可為一雙極型式的電晶體(或反之亦然)。在其他實施例中,一RF PA的第一電晶體與第二電晶體之一者或二者可為一金屬氧化物半導體場效電晶體(MOSFET)或一些其他型式的場效電晶體(FET)或一些其他型式的雙極電晶體。
如在圖2所示,第一電晶體204的射極端子可與一第一線路216為耦合,第一線路216可接著與一第一功率單元214為耦合。同理,第二電晶體206的射極端子可與一第二線路226為耦合,第二線路226可接著與一第二功率單元224為耦合。
圖9描繪一RF PA 900,其可為類似於圖1的RF PA 100或圖2的RF PA 200。然而,在RF PA 900之中,第一功率單元914與第二功率單元924的電晶體可能並非為雙極電晶體,而可能為一不同型式的電晶體,諸如:MOSFET、MESFET、PHEMT、或一些其他型式的電晶體。明確而言,第一電晶體922與第二電晶體934可能為非雙極電晶體,且可能替代為MOSFET、MESFET或PHEMT。同理,第三功率單元結構936到第十五功率單元結構938的電晶體可能並非為雙極電晶體。如在圖9所示,第一電 晶體904、第二電晶體906、與參考電晶體910可能並非為雙極電晶體,而可能為一不同型式的電晶體,諸如:MOSFET、MESFET、PHEMT、或一些其他型式的電晶體。
將被瞭解的是,RF PA 100、200、與900是不同實施例的實例,且在其他實施例中,不同的電晶體可能為雙極或非雙極的電晶體。舉例來說,在一些實施例中,第一與第二功率單元的電晶體可為雙極電晶體而第一與第二電晶體為非雙極的電晶體。在一些實施例中,參考電晶體可為雙極(例如:雙極電晶體110)或非雙極(例如:參考電晶體910)。
圖3描繪用於構成諸如RF PA 100、200、或900的一RF PA之一實例的方法300。在實施例中,於302,例如第一電晶體104、204、或904的一第一電晶體可與例如電源102、202、或902的一電流/電壓源為耦合。於304,例如第二電晶體106、206、或906的一第二電晶體可接著與該電流/電壓源為耦合。於306,第一電晶體可與第二電晶體為耦合。舉例來說,如在圖1、2、或9所示,第一電晶體與第二電晶體的閘極或基極可為彼此耦合。替代而言,集極端子及/或汲極端子可為彼此耦合。
於308,第一電晶體可與例如第一功率單元114、214、或914的一第一功率單元為耦合。同理,於310,第二電晶體可與例如第二功率單元124、224、或924的一第二功率單元為耦合。
各種的操作是以最有助於瞭解所主張標的之方式而被依序描述為多個分離的操作。然而,描述的順序不應構成以暗指此等操作必須為順序相依。尤其,此等操作可能並非為以呈現的順序而實行。已述的操作可能以不同於已述的實施例之順序來實行。在另外的實施例中,各種附 加的操作可經實行且/或已述的操作可被省略。
圖4與5描繪針對於一RF PA(諸如:RF PA 100)之歸因於提高RF輸入訊號功率而提高RF輸出訊號功率的模擬結果。明確而言,圖4描繪隨著RF輸出訊號功率被提高而在第一線路116的模擬電壓,舉例來說,RF輸出訊號功率是藉由提高在RF輸入146的RF輸入訊號功率且使用RF PA 100來將其放大而提高。對照而言,圖5描繪隨著RF輸出訊號功率被提高而在第二線路126的模擬電壓。如可在圖4所看出,第一線路的電壓可保持為相當水平,直到在25與30dBm(有時稱為dBmW)之間的輸出訊號功率,在此點,第一線路的電壓可能開始顯著減小。對比之下,如可在圖5所看出,第二線路的電壓可隨著輸出訊號功率增大而稍微增大,直到輸出訊號功率達到大約33dBm,在此點,第二線路的電壓可能顯著增大。第一或第二線路的電壓於其為開始較劇烈改變之此等轉折點(inflection point)可為基於關聯於第一電晶體104、第二電晶體106、第一功率單元114、及/或第二功率單元124的特定值或規格之一者或多者。還可在圖5所看出的是,第二線路的電壓可隨著輸出訊號功率增大而稍微增大,直到輸出訊號功率達到在大約33dBm的一轉折點。在第二線路的電壓之此增大可為基於關於圖1之上述的偏壓升壓效應。如所指出,圖4與5的模擬結果僅為實例,且在其他的實施例中,使用的值可能為不同,歸因於在第一電晶體104、第二電晶體106、第一功率單元114、及/或第二功率單元124之一者或多者的差異。
圖6可描繪在一RF PA之提高RF輸出訊號功率的模擬結果。明確而言,圖6可描繪針對於一現存電路與一RF PA(諸如:RF PA 100) 之在RF PA的訊號增益對比輸出訊號功率之模擬比較。第一條線600可描繪一現存RF PA的輸出訊號增益,其對比該現存RF PA的輸出訊號功率(dBm)。對照而言,第二條線605可描繪諸如RF PA 100之一RF PA的輸出訊號增益,其對比諸如RF PA 100之一RF PA的輸出訊號功率(dBm)。在圖6,當輸出訊號功率為介於17dBm到21dBm之間,一現存RF PA可具有相當線性的訊號增益,在21dBm此點,現存RF PA可能開始呈現出非線性的特性。明確而言,在大約為21dBm的輸出訊號功率之後,訊號增益可能隨著輸出訊號功率增大而變化。非線性的訊號增益特性可隨著輸出訊號功率增大到31dBm而增大,在此點,該種RF PA可能呈現顯著非線性的訊號增益特性。即,訊號增益可能隨著輸出訊號功率增大而顯著變化。
對照而言,本揭露內容的RF PA(例如:RF PA 100)可呈現出隨著輸出訊號功率從17dBm增大到25dBm而為強的線性增益特性,即,以第一輸出訊號功率的訊號增益可為大約類似於以另一輸出訊號功率的訊號增益。隨著輸出訊號功率達到且通過大約25dBm,諸如RF PA 100的RF PA可能開始呈現出稍微非線性的訊號增益特性。因此,如可在圖6所看出,本揭露內容的RF PA可呈現出顯著提高的線性特性。
圖10可描繪在根據本揭露內容的一RF PA之提高RF輸出訊號功率的模擬結果。明確而言,圖10可描繪在一RF PA的訊號相位移對比輸出訊號功率之模擬比較,針對於一現存電路(線1000)與諸如RF PA 100、200、或900的一RF PA(線1005)。如在圖10所示,根據本揭露內容的一RF PA的相位(線1005)可能為顯著小於一現存RF PA的相位,如在線1000所示。圖7描繪一現存電路與諸如RF PA 100之一RF PA的ACPR對 個別電路的輸出訊號功率之模擬比較。明確而言,第一條線700可代表一現存電路的ACPR相較於該種電路的輸出訊號功率。第二條線705可代表諸如RF PA 100之一RF PA的ACPR對該種RF PA的輸出訊號功率。在實施例中,對於ACPR值得注意的是隨著輸出訊號功率增大而維持低。尤其,例如:在EDGE通訊標準中,對於ACPR值得注意的是隨著輸出訊號功率增大達到在29與30dBm之間(由圖7的垂直虛線所代表)的PA的輸出功率而概括維持低於-57dBc(由圖7的水平虛線所代表)。此相當低的ACPR是值得注意的,因為低ACPR可造成對於相鄰通道的使用者之較少干擾。如可在圖7所看出,一現存電路的ACPR可能在29與30dBm之間的輸出訊號功率為高於期望的ACPR。對照而言,諸如RF PA 100之一RF PA的ACPR可維持低於-57dBc的ACPR臨限,直到該種RF PA的輸出訊號功率達到大約31.5dBm。將瞭解的是,此等實例是針對於諸如RF PA 100之一RF PA的一實施例與一現存電路之模擬結果。在其他實施例中,線700或705之不同的ACPR斜率或截取可能為不同。此外,在其他實施例中,對於ACPR之大約-57dBc與對於輸出功率之29.7dBm的臨限值可能為不同。
本文所述之一RF PA的實施例(例如:RF PA 100或200)、以及包括此類RF PA的裝置可被納入在各種其他的裝置及系統。一實例的系統800之方塊圖被圖示在圖8之中。如圖所示,系統800包括一PA模組802,其在一些實施例中可為一RF PA模組。系統800可包括一收發器804,其與PA模組802為耦合,如圖所示。PA模組802可包括本文所述的一或多個RF PA(例如:RF PA 100或200)。
PA模組802可從收發器804接收一RF輸入訊號RFin。PA 模組802可放大RF輸入訊號RFin以提供RF輸出訊號RFout。RF輸入訊號RFin與RF輸出訊號RFout可均為一發送鏈路的一部分,在圖8之中為分別由Tx-RFin與Tx-RFout所指明。
經放大的RF輸出訊號RFout可被提供到一天線切換模組(ASM,antenna switch module)806,其經由一天線結構808來實行RF輸出訊號RFout之一無線(OTA,over-the-air)傳輸。ASM 806還可經由天線結構808來接收RF訊號且沿著一接收鏈路而將所接收的RF訊號Rx耦合到收發器804。
在各種實施例中,天線結構808可包括一或多個定向性及/或全向性天線,包括例如:雙極天線、單極天線、塊狀天線、環形天線、微帶天線、或適用於OTA傳輸/接收RF訊號之任何其他型式的天線。
系統800可為包括功率放大的任何系統。RF PA(例如:RF PA 100或200)可提供用於功率切換應用之一有效的切換裝置,功率切換應用可包括功率調節應用,諸如例如:交流(AC,Alternate Current)-直流(DC,Direct Current)轉換器、DC-DC轉換器、DC-AC轉換器、與類似者。在各種實施例中,系統800可為特別有用於高射頻功率與頻率的功率放大。舉例來說,系統800可為適用於地面與衛星通訊、雷達系統、且可能在各種的工業與醫療應用之中的任何一者或多者。更明確而言,系統800可為雷達裝置、衛星通訊裝置、行動手機、行動電話基地台、廣播收音機、或電視放大器系統之中的一選定者。
雖然某些實施例是為了描述目的而已經說明且敘述在本文,預計達成相同目的之廣泛的各種替代及/或等效實施例或實施可在沒有 脫離本揭露內容的範疇之情況下而取代已顯示且描述的實施例。此申請案有意涵蓋在本文所論述的實施例之任何的修改或變化。因此,顯然有意的是,本文所述的實施例僅為由申請專利範圍與其等效者所限定。

Claims (19)

  1. 一種功率放大器,其包含:一第一電晶體,其被定標(scaled)以第一電流密度來操作;一第二電晶體,其被定標以第二電流密度來操作,該第一電晶體與該第二電晶體為耦合;一第一功率單元,其包含與該第一電晶體為耦合的一第三電晶體,該第一電晶體被配置以加偏壓於該第一功率單元;及一第二功率單元,其包含與該第二電晶體為耦合的複數個電晶體,該第二電晶體被配置以加偏壓於該第二功率單元;其中該第三電晶體包括一第一集極,且在該複數個電晶體之中的個別電晶體包括各自的集極,且該第一集極與該等各自的集極為耦合,且其中該第三電晶體進一步包括一第一射極,且在該複數個電晶體之中的個別電晶體包括各自的射極,且該第一射極與該等各自的射極為耦合並且直接耦合到接地。
  2. 如申請專利範圍第1項之功率放大器,其中該第一電晶體是一雙極電晶體。
  3. 如申請專利範圍第2項之功率放大器,其中該第一電晶體包括一第一基極;且其中該第二電晶體是一雙極電晶體,其包括與該第一基極為耦合的一第二基極。
  4. 如申請專利範圍第1項之功率放大器,其中該第一電晶體是一場效電晶體。
  5. 如申請專利範圍第4項之功率放大器,其中該第一電晶體包括一第一閘極;且其中該第二電晶體是一場效電晶體,其包括與該第一閘極為耦合的一第二閘極。
  6. 如申請專利範圍第1項之功率放大器,其中該複數個電晶體包含十五個電晶體。
  7. 一種方法,其包含:將一第一電晶體的一輸入耦合到一電源,該第一電晶體是基於第一電流密度而定標;將一第二電晶體的一輸入耦合到該電源,該第二電晶體是基於第二電流密度而定標;將該第一電晶體的一第一端子與該第二電晶體的一第一端子耦合;將其包括一第三電晶體之一第一功率單元的一輸入與該第一電晶體的一第二端子耦合;且將其包括複數個電晶體之一第二功率單元的一輸入與該第二電晶體的一第二端子耦合;其中該第三電晶體包括一第一集極,且在該複數個電晶體之中的各個電晶體分別包括各自的集極,該方法進一步包含將該第一集極與該等各自的集極耦合;且其中該第三電晶體進一步包括一第一射極,且在該複數個電晶體之中的各個電晶體分別包括各自的射極,該方法進一步包含將該第一射極與該等各自的射極耦合並且直接耦合 到接地。
  8. 如申請專利範圍第7項之方法,其中該第一電晶體是一雙極電晶體。
  9. 如申請專利範圍第8項之方法,其中該第一電晶體的輸入是一第一基極;其中該第二電晶體是一雙極電晶體;且其中該第二電晶體的輸入是一第二基極。
  10. 如申請專利範圍第7項之方法,其中該第一電晶體是一場效電晶體。
  11. 如申請專利範圍第10項之方法,其中該第一電晶體的輸入是一第一閘極;其中該第二電晶體是一場效電晶體;且其中該第二電晶體的輸入是一第二閘極。
  12. 如申請專利範圍第7項之方法,其中該複數個電晶體包含十五個電晶體。
  13. 一種系統,其包含:一電源;及一功率放大器,其與該電源為耦合,其中該功率放大器包含:一第一電晶體,其被定標以第一電流密度來操作,該第一電晶體與該電源為耦合;一第二電晶體,其被定標以第二電流密度來操作,該第一電晶體與該電源為耦合;一第一功率單元,其包含與該第一電晶體為耦合的一第三電晶體;及 一第二功率單元,其包含與該第二電晶體為耦合的複數個電晶體;其中該第三電晶體包括一第一集極,且在該複數個電晶體之中的各個電晶體分別包括各自的集極,且該第一集極與該等各自的集極為耦合;且其中該第三電晶體進一步包括一第一射極,且在該複數個電晶體之中的各個電晶體分別包括各自的射極,且該第一射極與該等各自的射極為耦合並且直接耦合到接地。
  14. 如申請專利範圍第13項之系統,其中該第一電晶體是一雙極電晶體。
  15. 如申請專利範圍第14項之系統,其中該第一電晶體包括一第一基極,且其中該第二電晶體是一雙極電晶體,其包括與該第一基極為耦合的一第二基極。
  16. 如申請專利範圍第13項之系統,其中該第一電晶體是一場效電晶體。
  17. 如申請專利範圍第16項之系統,其中該第一電晶體包括一第一閘極,且其中該第二電晶體是一場效電晶體,其包括與該第一閘極為耦合的一第二閘極。
  18. 如申請專利範圍第13項之系統,其中該複數個電晶體包含十五個電晶體。
  19. 如申請專利範圍第13項之系統,其更包含:一收發器,其與該功率放大器為耦合。
TW103126353A 2013-08-05 2014-08-01 具有加強線性之分離偏壓射頻功率放大器 TWI642272B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/959,398 2013-08-05
US13/959,398 US9077296B2 (en) 2013-08-05 2013-08-05 Split biased radio frequency power amplifier with enhanced linearity

Publications (2)

Publication Number Publication Date
TW201519574A TW201519574A (zh) 2015-05-16
TWI642272B true TWI642272B (zh) 2018-11-21

Family

ID=52427116

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103126353A TWI642272B (zh) 2013-08-05 2014-08-01 具有加強線性之分離偏壓射頻功率放大器

Country Status (3)

Country Link
US (1) US9077296B2 (zh)
CN (1) CN104348424B (zh)
TW (1) TWI642272B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900529B (zh) * 2015-04-23 2018-02-06 中国电子科技集团公司第十三研究所 一种提高栅控晶体管线性度的方法及其结构
CN105375884A (zh) * 2015-11-24 2016-03-02 宁波柏人艾电子有限公司 一种音箱功放电路
CN105337580A (zh) * 2015-11-26 2016-02-17 宁波柏人艾电子有限公司 一种音频功率放大控制电路
CN113328708B (zh) * 2021-06-08 2024-08-23 维沃移动通信有限公司 射频功放电路的控制电路、控制方法、装置和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050176399A1 (en) * 2004-02-11 2005-08-11 Vladimir Aparin Field effect transistor amplifier with linearization
US20050270103A1 (en) * 2004-04-09 2005-12-08 Nicolas Constantin Dynamic biasing system for an amplifier
US20070229154A1 (en) * 2005-08-02 2007-10-04 Namsoo Kim Differential amplifier with active post-distortion linearization
US7319364B2 (en) * 2004-12-20 2008-01-15 Integrant Technologies Inc. Amplifier circuit having improved linearity and frequency band using multiple gated transistor
US7345547B2 (en) * 2005-10-17 2008-03-18 Wj Communications, Inc. Bias circuit for BJT amplifier
US7362183B2 (en) * 2005-08-17 2008-04-22 Integrant Technologies, Inc. Amplifier circuit improved in linearity and frequency band
US20130038384A1 (en) * 2011-08-11 2013-02-14 Qualcomm Incorporated Canceling third order non-linearity in current mirror-based circuits

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130008A (ja) * 1988-11-09 1990-05-18 Toshiba Corp 高周波電力増幅回路
US6791407B2 (en) * 2002-01-15 2004-09-14 Mia-Com Eurotec B.V. Switchable power amplifier
US7157966B2 (en) * 2004-12-17 2007-01-02 Fairchild Semiconductor Corporation Multi-mode power amplifier
CN102111113B (zh) * 2009-12-28 2012-09-26 中国科学院微电子研究所 一种串联级联的多级射频功率放大器及前端发射机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050176399A1 (en) * 2004-02-11 2005-08-11 Vladimir Aparin Field effect transistor amplifier with linearization
US20050270103A1 (en) * 2004-04-09 2005-12-08 Nicolas Constantin Dynamic biasing system for an amplifier
US7319364B2 (en) * 2004-12-20 2008-01-15 Integrant Technologies Inc. Amplifier circuit having improved linearity and frequency band using multiple gated transistor
US20070229154A1 (en) * 2005-08-02 2007-10-04 Namsoo Kim Differential amplifier with active post-distortion linearization
US7362183B2 (en) * 2005-08-17 2008-04-22 Integrant Technologies, Inc. Amplifier circuit improved in linearity and frequency band
US7345547B2 (en) * 2005-10-17 2008-03-18 Wj Communications, Inc. Bias circuit for BJT amplifier
US20130038384A1 (en) * 2011-08-11 2013-02-14 Qualcomm Incorporated Canceling third order non-linearity in current mirror-based circuits

Also Published As

Publication number Publication date
CN104348424A (zh) 2015-02-11
US9077296B2 (en) 2015-07-07
TW201519574A (zh) 2015-05-16
US20150035601A1 (en) 2015-02-05
CN104348424B (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
US10491168B2 (en) Power amplification circuit
US10256778B2 (en) Power amplifier module
JP2010278521A (ja) 電力増幅器
US9148097B2 (en) Electronic system—radio frequency power amplifier and method for dynamic adjusting bias point
Son et al. A 109 GHz CMOS power amplifier with 15.2 dBm Psat and 20.3 dB gain in 65-nm CMOS technology
US10476454B2 (en) Power amplifier module
Kang et al. Highly efficient 5.15-to 5.85-GHz neutralized HBT power amplifier for LTE applications
Baek et al. A linear InGaP/GaAs HBT power amplifier using parallel-combined transistors with IMD3 cancellation
US9722546B2 (en) Bias circuit for low quiescent current amplifier
TWI642272B (zh) 具有加強線性之分離偏壓射頻功率放大器
WO2016195859A1 (en) Linear power amplifier
US9024689B2 (en) Electronic system—radio frequency power amplifier and method for self-adjusting bias point
Kawai et al. A high-efficiency low-distortion GaN HEMT Doherty power amplifier with a series-connected load
US11070176B2 (en) Amplifier linearization and related apparatus thereof
Shen et al. A monolithic 3.5-to-6.5 GHz GaAs HBT-HEMT/common-emitter and common-gate stacked power amplifier
Lee et al. A 28-GHz CMOS power amplifier linearized by dynamic conductance control and body carrier injection
Lee et al. A 18 GHz broadband stacked FET power amplifier using 130 nm metamorphic HEMTs
Tasaki et al. A 1.2–2.0 GHz-band GaAs pHEMT cascode power amplifier MMIC consisting of independently biased transistors
US9641130B2 (en) Low noise amplifier with noise and linearity improvement
Kim et al. Supply modulator for envelope-tracking operation of dual-mode handset power amplifier
Choupan et al. Millimeter-wave Power Amplifier with Linearization Technique in $0.18-\mu\mathrm {m} $ CMOS Process
Scuderi et al. A high performance silicon bipolar monolithic RF linear power amplifier for W-LAN IEEE 802.11 g applications
Liu et al. A single-supply Ku-band 1-W power amplifier MMIC with compact self-bias PHEMTs
Lin et al. Variable gain active predistorter with linearity enhancement for a 2.4 GHz SiGe HBT power amplifier design
Shanthi et al. Linearization of class E power amplifier using diode-based techniques