TWI642171B - Sensing device - Google Patents

Sensing device Download PDF

Info

Publication number
TWI642171B
TWI642171B TW106138787A TW106138787A TWI642171B TW I642171 B TWI642171 B TW I642171B TW 106138787 A TW106138787 A TW 106138787A TW 106138787 A TW106138787 A TW 106138787A TW I642171 B TWI642171 B TW I642171B
Authority
TW
Taiwan
Prior art keywords
sensing film
reference electrode
sensing
semiconductor pattern
pattern layer
Prior art date
Application number
TW106138787A
Other languages
Chinese (zh)
Other versions
TW201919211A (en
Inventor
游鎮宇
章鈞
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW106138787A priority Critical patent/TWI642171B/en
Priority to CN201711362532.XA priority patent/CN108107078A/en
Application granted granted Critical
Publication of TWI642171B publication Critical patent/TWI642171B/en
Publication of TW201919211A publication Critical patent/TW201919211A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thin Film Transistor (AREA)

Abstract

一種感測裝置,其係用以感測液體中之離子。感測裝置包括基板、半導體圖案層、源極、汲極、絕緣層、第一感測膜以及第一參考電極。半導體圖案層設置於基板上。半導體圖案層包含源極區、汲極區以及通道區。源極及汲極分別電性連接源極區以及汲極區。絕緣層至少覆蓋於通道區上。第一感測膜設置於半導體圖案層之第一側面上的部份絕緣層上。第一參考電極面對半導體圖案層之第一側面上的第一感測膜。第一感測膜位於半導體圖案層之第一側面與第一參考電極之間。第一感測膜與第一參考電極之間具有第一間隙,用以容納液體。A sensing device is used for sensing ions in a liquid. The sensing device includes a substrate, a semiconductor pattern layer, a source, a drain, an insulating layer, a first sensing film, and a first reference electrode. The semiconductor pattern layer is disposed on a substrate. The semiconductor pattern layer includes a source region, a drain region, and a channel region. The source and the drain are electrically connected to the source region and the drain region, respectively. The insulating layer covers at least the channel region. The first sensing film is disposed on a part of the insulating layer on the first side of the semiconductor pattern layer. The first reference electrode faces the first sensing film on the first side of the semiconductor pattern layer. The first sensing film is located between the first side of the semiconductor pattern layer and the first reference electrode. There is a first gap between the first sensing film and the first reference electrode for containing a liquid.

Description

感測裝置Sensing device

本發明是有關於一種感測裝置,且特別是有關於一種用以感測液體中之離子的感測裝置。 The present invention relates to a sensing device, and more particularly, to a sensing device for sensing ions in a liquid.

離子感測場效電晶體元件(Ion-Sensitive Field-Effect Transistor,ISFET)常被用來感測溶液中之酸、鹼或中性離子的濃度,由於溶液中之離子的濃度不同可以使離子感測場效電晶體元件產生不同的電位差,因此可以利用電位差計算出溶液中之離子的濃度。 Ion-Sensitive Field-Effect Transistor (ISFET) is often used to sense the concentration of acid, alkali or neutral ions in the solution. The difference in the concentration of ions in the solution can make the ion sense The field effect transistor element generates different potential differences, so the potential difference can be used to calculate the ion concentration in the solution.

然而,微小化離子感測場效電晶體元件是件有難度的事情,目前的離子感測場效電晶體元件具有體積大、敏感度低且需要消耗較多的能量及待測液體等缺點。因此,目前需要一種可以改善離子感測場效電晶體元件效能的方法。 However, it is difficult to miniaturize ion-sensing field-effect transistor elements. Current ion-sensing field-effect transistor elements have the disadvantages of large volume, low sensitivity, and need to consume more energy and liquid to be measured. Therefore, there is currently a need for a method that can improve the performance of ion-sensing field effect transistor elements.

本發明的一種感測裝置,其係用以感測液體中之離子,該感測裝置包括基板、半導體圖案層、源極、汲極、絕緣層、第 一感測膜以及第一參考電極。半導體圖案層設置於基板上,半導體圖案層包含源極區、汲極區以及通道區,通道區位於源極區與汲極區之間。源極及汲極分別電性連接半導體圖案層的源極區以及汲極區。絕緣層設置於基板上。絕緣層至少覆蓋於通道區上。第一感測膜設置於基板上。第一感測膜設置於半導體圖案層之第一側面上的部份絕緣層上。第一參考電極設置於基板上。第一參考電極面對半導體圖案層之第一側面上的第一感測膜。第一感測膜位於半導體圖案層之第一側面與第一參考電極之間。第一感測膜與第一參考電極之間具有第一間隙。第一間隙用以容納液體。 A sensing device of the present invention is used to sense ions in a liquid. The sensing device includes a substrate, a semiconductor pattern layer, a source, a drain, an insulating layer, a first A sensing film and a first reference electrode. The semiconductor pattern layer is disposed on the substrate. The semiconductor pattern layer includes a source region, a drain region, and a channel region. The channel region is located between the source region and the drain region. The source and the drain are respectively electrically connected to the source region and the drain region of the semiconductor pattern layer. The insulating layer is disposed on the substrate. The insulating layer covers at least the channel region. The first sensing film is disposed on the substrate. The first sensing film is disposed on a part of the insulating layer on the first side of the semiconductor pattern layer. The first reference electrode is disposed on the substrate. The first reference electrode faces the first sensing film on the first side of the semiconductor pattern layer. The first sensing film is located between the first side of the semiconductor pattern layer and the first reference electrode. There is a first gap between the first sensing film and the first reference electrode. The first gap is used to contain a liquid.

本發明之目的之一可較減少使用感測裝置時所需的待測液體量。 One of the objectives of the present invention is to reduce the amount of liquid to be measured when using the sensing device.

本發明之目的之一可較減小感測裝置的體積。 One of the objects of the present invention is to reduce the volume of the sensing device.

本發明之目的之一可較降低感測裝置所需消耗的能量。 One of the objectives of the present invention is to reduce the energy consumed by the sensing device.

本發明之目的之一可較提升感測裝置的敏感度。 One of the objectives of the present invention is to improve the sensitivity of the sensing device.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

10、20、30‧‧‧感測裝置 10, 20, 30‧‧‧ sensor devices

100‧‧‧半導體材料層 100‧‧‧Semiconductor material layer

102‧‧‧汲極區 102‧‧‧Drain

103、105‧‧‧輕摻雜區 103, 105‧‧‧ lightly doped regions

104‧‧‧通道區 104‧‧‧Channel area

106‧‧‧源極區 106‧‧‧Source area

110‧‧‧半導體圖案層 110‧‧‧Semiconductor pattern layer

120‧‧‧絕緣層 120‧‧‧ Insulation

130、130A‧‧‧第一感測膜 130, 130A‧‧‧first sensing film

130B‧‧‧第二感測膜 130B‧‧‧Second sensing film

142‧‧‧汲極 142‧‧‧Drain

144‧‧‧源極 144‧‧‧Source

150、150A‧‧‧第一參考電極 150, 150A‧‧‧First reference electrode

150B‧‧‧第二參考電極 150B‧‧‧Second reference electrode

152‧‧‧導電材料 152‧‧‧Conductive material

160‧‧‧保護層 160‧‧‧ protective layer

B‧‧‧底面 B‧‧‧ underside

D1‧‧‧側視方向 D1‧‧‧Side view direction

D2‧‧‧方向 D2‧‧‧ direction

L‧‧‧待測液體 L‧‧‧ liquid to be tested

O1、O2‧‧‧成開口 O1, O2‧‧‧‧open

S1‧‧‧第一側面 S1‧‧‧First side

S2‧‧‧第二側面 S2‧‧‧Second side

SB‧‧‧基板 SB‧‧‧ substrate

T‧‧‧頂面 T‧‧‧Top

W、WA‧‧‧第一間隙 W 、 WA‧‧‧First Clearance

WB‧‧‧第二間隙 WB‧‧‧Second Gap

圖1A~圖1H是依照本發明的一實施例的一種感測裝置的示意圖。 1A to 1H are schematic diagrams of a sensing device according to an embodiment of the present invention.

圖2是依照本發明的一實施例的一種感測裝置的示意圖。 FIG. 2 is a schematic diagram of a sensing device according to an embodiment of the invention.

圖3是依照本發明的一實施例的一種感測裝置的示意圖。 FIG. 3 is a schematic diagram of a sensing device according to an embodiment of the invention.

以下將以圖式揭露本發明之多個實施方式,為明確說明,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解的是,這些實務上的細節不應用被以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知的結構與元件在圖式中將省略或以簡單示意的方式為之。 In the following, a plurality of embodiments of the present invention will be disclosed graphically. For the sake of clarity, many practical details will be described in the following description. However, it should be understood that these practical details are not applied to limit the invention. That is, in some embodiments of the present invention, these practical details are unnecessary. In addition, in order to simplify the drawings, some conventional structures and elements will be omitted in the drawings or they will be simply illustrated.

在附圖中,為了清楚起見,放大了層、膜、面板、區域等的厚度。在整個說明書中,相同的附圖標記表示相同的元件。應當理解,當諸如層、膜、區域或基板的元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者中間元件可以也存在。相反,當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接。然而,電性連接係為二元件間存在其它元件。 In the drawings, the thicknesses of layers, films, panels, regions, etc. are exaggerated for clarity. Throughout the description, the same reference numerals denote the same elements. It will be understood that when an element such as a layer, film, region, or substrate is referred to as being "on" or "connected to" another element, it can be directly on or connected to the other element, or Intermediate elements may also be present. In contrast, when an element is referred to as being "directly on" or "directly connected to" another element, there are no intervening elements present. As used herein, "connected" may refer to a physical and / or electrical connection. However, the electrical connection is such that there are other elements between the two elements.

應當理解,儘管術語「第一」與「第二」等在本文中可以用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層或部分與另一個元件、部件、區域、層或部分區分開。 It should be understood that, although the terms "first" and "second" may be used herein to describe various elements, components, regions, layers and / or sections, these elements, components, regions, and / or sections should not be affected Limitations of these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section.

本文使用的術語僅僅是為了描述本發明特定的實施例,而不是用來限制本發明。舉例來說,本文使用的「一」、「一個」和「該」並非限制元件為單數形式或複數形式。本文使用的「或」表示「及/或」。如本文所使用的,術語「及/或」包括一個或多個相關所列項目的任何和所有組合。還應當理解,當在本說明書中使用時,術語「包括」或「包含」指定所述特徵、區域、整體、步驟、操作、元件的存在及/或部件,但不排除一個或多個其它特徵、區域、整體、步驟、操作、元件、部件及/或其組合的存在或添加。 The terminology used herein is for the purpose of describing particular embodiments of the invention and is not intended to limit the invention. For example, the use of "a," "an," and "the" in this article are not a limitation of the singular or plural form. As used herein, "or" means "and / or". As used herein, the term "and / or" includes any and all combinations of one or more of the associated listed items. It should also be understood that when used in this specification, the term "including" or "comprising" specifies the stated features, regions, wholes, steps, operations, presence of elements and / or components, but does not exclude one or more other features , Area, whole, step, operation, element, part, and / or combination thereof.

此外,諸如「下」或「底部」和「上」或「頂部」的相對術語可在本文中用於描述一個元件與另一元件的關係,如圖所示。應當理解,相對術語旨在包括除了圖中所示的方位之外的裝置的不同方位。例如,如果一個附圖中的裝置翻轉,則被描述為在其他元件的「下」側的元件將被定向在其他元件的「上」側。因此,示例性術語「下」可以包括「下」和“上」的取向,取決於附圖的特定取向。類似地,如果一個附圖中的裝置翻轉,則被描述為在其它元件「下」或「下方」的元件將被定向為在其它元件「上方」。因此,示例性術語「下」或「下方」可以包括上方和下方的取向。 In addition, relative terms such as "lower" or "bottom" and "upper" or "top" may be used herein to describe the relationship of one element to another element, as shown. It should be understood that relative terms are intended to include different orientations of the device in addition to the orientation shown in the figures. For example, if the device in one of the figures is turned over, elements described as being on the "lower" side of other elements would then be oriented on "upper" sides of the other elements. Thus, the exemplary term "down" may include orientations of "down" and "up", depending on the particular orientation of the drawings. Similarly, if the device in one of the figures is turned over, elements described as "below" or "beneath" other elements would then be oriented "above" the other elements. Thus, the exemplary terms "below" or "below" may include orientations above and below.

本文使用的「約」或「實質上」包括所述值和在本領域普通技術人員確定的特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統 的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的「約」或「實質上」可依光學性質、蝕刻性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。 As used herein, "about" or "substantially" includes the stated value and an average value within an acceptable deviation range of a particular value determined by one of ordinary skill in the art, taking into account the measurement in question and measurement-related errors. Specific quantity (i.e. measurement system limits). For example, "about" may mean within one or more standard deviations of the stated value, or within ± 30%, ± 20%, ± 10%, ± 5%. Furthermore, "about" or "substantially" used herein may select a more acceptable range of deviations or standard deviations according to optical properties, etching properties, or other properties, and all properties may not be applied without one standard deviation.

除非另有定義,本文使用的所有術語(包括技術和科學術語)具有與本發明所屬領域的普通技術人員通常理解的相同的含義。將進一步理解的是,諸如在通常使用的字典中定義的那些術語應當被解釋為具有與它們在相關技術和本發明的上下文中的含義一致的含義,並且將不被解釋為理想化的或過度正式的意義,除非本文中明確地這樣定義。 Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms such as those defined in commonly used dictionaries should be interpreted to have meanings consistent with their meanings in the context of the related art and the present invention, and will not be interpreted as idealized or excessive Formal meaning unless explicitly defined as such in this article.

圖1A~圖1H是依照本發明的一實施例的一種感測裝置的示意圖。 1A to 1H are schematic diagrams of a sensing device according to an embodiment of the present invention.

請參考圖1A,提供基板SB。在基板SB上形成半導體材料層100。在一些實施例中,半導體材料層100可為單層或多層結構,且其材料包括非晶矽、多晶矽、微晶矽、奈米晶矽、單晶矽、奈米碳管、氧化物半導體材料(例如:氧化銦鎵鋅(Indium-Gallium-Zinc Oxide,IGZO)、氧化鋅(ZnO)氧化錫(SnO)、氧化銦鋅(Indium-Zinc Oxide,IZO)、氧化鎵鋅(Gallium-Zinc Oxide,GZO)、氧化鋅錫(Zinc-Tin Oxide,ZTO)氧化銦錫(Indium-Tin Oxide,ITO)或其它合適的材料)、有機半導體材料或其他合適的材料或上述材料之組合。 Referring to FIG. 1A, a substrate SB is provided. A semiconductor material layer 100 is formed on the substrate SB. In some embodiments, the semiconductor material layer 100 may be a single-layer or multi-layer structure, and the material thereof includes amorphous silicon, polycrystalline silicon, microcrystalline silicon, nanocrystalline silicon, single crystal silicon, nanocarbon tubes, and oxide semiconductor materials. (For example: Indium-Gallium-Zinc Oxide (IGZO), Zinc Oxide (ZnO) Tin Oxide (SnO), Indium-Zinc Oxide (IZO), Gallium-Zinc Oxide, GZO), Zinc-Tin Oxide (ZTO), Indium-Tin Oxide (ITO) or other suitable materials), organic semiconductor materials or other suitable materials, or a combination of the foregoing materials.

請參考圖1B,將半導體材料層100圖案化以形成半導體圖案層110,形成半導體圖案層110的方法以包括微影蝕刻製程為範例,但不限於此。於其它實施例中,形成半導體圖案層110的方法包括網板印刷法、噴墨印刷法、曝光顯影法或其它合適的方法。於本實施例中,可選擇性的於半導體圖案層110中形成源極區106、汲極區102以及通道區104,通道區104位於源極區106與汲極區102之間。舉例而言,可選擇性的對半導體圖案層110進行N型摻雜製程,摻雜製程例如是於源極區106與汲極區102中植入摻雜物(dopant),使半導體圖案層110的源極區106與汲極區102形成N型摻雜的半導體,且通道區104位於源極區106與汲極區102之間。在一些實施例中,於垂直投影於基板SB的方向D2,源極區106、汲極區102與通道區104實質上不相互重疊,但不限於此。於部份實施例中,於垂直投影於基板SB的方向D2,源極區106及汲極區102其中至少一者可與通道區104部份重疊。於其它實施例中,源極區106與汲極區102可為P型摻雜的半導體。在一些實施例中,通道區104可包括本徵(intrinsic)半導體或是與源極區106/汲極區102相反極性的半導體(例如:P型摻雜的半導體),但本發明不以此為限。在一些實施例中,半導體圖案層110可為本質半導體,可較不用進行額外的摻雜製程就有足夠的導電率來使用。 Referring to FIG. 1B, the semiconductor material layer 100 is patterned to form a semiconductor pattern layer 110. A method of forming the semiconductor pattern layer 110 is exemplified by a lithography process, but is not limited thereto. In other embodiments, the method for forming the semiconductor pattern layer 110 includes a screen printing method, an inkjet printing method, an exposure and development method, or other suitable methods. In this embodiment, a source region 106, a drain region 102, and a channel region 104 can be selectively formed in the semiconductor pattern layer 110. The channel region 104 is located between the source region 106 and the drain region 102. For example, an N-type doping process may be selectively performed on the semiconductor pattern layer 110. For example, a dopant is implanted in the source region 106 and the drain region 102 to make the semiconductor pattern layer 110. The source region 106 and the drain region 102 form an N-type doped semiconductor, and the channel region 104 is located between the source region 106 and the drain region 102. In some embodiments, the source region 106, the drain region 102, and the channel region 104 do not substantially overlap each other in a direction D2 perpendicular to the substrate SB, but are not limited thereto. In some embodiments, at least one of the source region 106 and the drain region 102 may partially overlap the channel region 104 in a direction D2 perpendicular to the substrate SB. In other embodiments, the source region 106 and the drain region 102 may be P-doped semiconductors. In some embodiments, the channel region 104 may include an intrinsic semiconductor or a semiconductor of opposite polarity to the source region 106 / drain region 102 (for example, a P-type doped semiconductor), but the present invention is not limited thereto. Limited. In some embodiments, the semiconductor pattern layer 110 may be an intrinsic semiconductor, and may have sufficient conductivity to be used without performing an additional doping process.

請參考圖1C,可再選擇性的於半導體圖案層110形成輕摻雜區103、105,例如:於通道區104與汲極區102之間的位置 形成輕摻雜區103,並於通道區104與源極區106之間的位置形成輕摻雜區105。舉例而言,可再選擇性的對半導體圖案層110進行摻雜製程,以於通道區104與汲極區102之間的位置形成輕摻雜區103,並於通道區104與源極區106之間的位置形成輕摻雜區105,但不限於此。於其它實施例中,亦可不包含輕摻雜區103、105。輕摻雜區103、105例如包括N型摻雜的半導體,且輕摻雜區103、105中的摻雜物(dopant)濃度小於源極區106與汲極區102中的摻雜物(dopant)濃度。於其它實施例中,當源極區106與汲極區102可為P型摻雜的半導體,輕摻雜區103、105亦為P型摻雜的半導體,且輕摻雜區103、105中的摻雜物(dopant)濃度小於源極區106與汲極區102中的摻雜物(dopant)濃度。 Referring to FIG. 1C, lightly doped regions 103 and 105 can be selectively formed on the semiconductor pattern layer 110, for example, at a position between the channel region 104 and the drain region 102. A lightly doped region 103 is formed, and a lightly doped region 105 is formed at a position between the channel region 104 and the source region 106. For example, the semiconductor pattern layer 110 can be selectively doped again to form a lightly doped region 103 at a position between the channel region 104 and the drain region 102, and the channel region 104 and the source region 106 can be formed. The lightly doped regions 105 are formed at the positions therebetween, but are not limited thereto. In other embodiments, the lightly doped regions 103 and 105 may not be included. The lightly doped regions 103 and 105 include, for example, N-type doped semiconductors, and the dopant concentration in the lightly doped regions 103 and 105 is smaller than the dopant in the source region 106 and the drain region 102. )concentration. In other embodiments, when the source region 106 and the drain region 102 may be P-type doped semiconductors, the lightly doped regions 103 and 105 are also P-type doped semiconductors, and the lightly doped regions 103 and 105 are The dopant concentration is less than the dopant concentration in the source region 106 and the drain region 102.

在本實施例中,例如是先形成源極區106與汲極區102接著才形成輕摻雜區103與輕摻雜區105,但本發明不以此為限。在其他實施例中,可以先形成輕摻雜區103與輕摻雜區105,接著再分別於部分輕摻雜區103及輕摻雜區105中形成汲極區102與源極區106,或者是,一次摻雜步驟可形成輕摻雜區103、輕摻雜區105源極區106與汲極區102。於其它實施例中,前述摻雜製程亦可使用P型摻雜物或其它合適的摻雜物。 In this embodiment, for example, the source region 106 and the drain region 102 are formed first, and then the lightly doped region 103 and the lightly doped region 105 are formed, but the present invention is not limited thereto. In other embodiments, the lightly doped region 103 and the lightly doped region 105 may be formed first, and then the drain region 102 and the source region 106 may be formed in the lightly doped region 103 and the lightly doped region 105, respectively, or Yes, the lightly doped region 103, the lightly doped region 105, the source region 106, and the drain region 102 can be formed in a single doping step. In other embodiments, the aforementioned doping process may also use P-type dopants or other suitable dopants.

請參考圖1D,形成絕緣層120於基板SB上。絕緣層120至少覆蓋於半導體圖案層110的通道區104上。在本實施例中,絕緣層120還可覆蓋於半導體圖案層110的其它部份,例如:汲極區102、輕摻雜區(可選擇)103、輕摻雜區(可選擇)105與 源極區106中的其中至少一者。較佳地,絕緣層120完全覆蓋於半導體圖案層110。絕緣層120可為單層或多層結構,且其材料包括氧化矽、氮化矽、氮氧化矽、氧化鋁或其他合適的材料。 Referring to FIG. 1D, an insulating layer 120 is formed on the substrate SB. The insulating layer 120 covers at least the channel region 104 of the semiconductor pattern layer 110. In this embodiment, the insulating layer 120 may also cover other parts of the semiconductor pattern layer 110, such as: a drain region 102, a lightly doped region (optional) 103, a lightly doped region (optional) 105, and At least one of the source regions 106. Preferably, the insulating layer 120 completely covers the semiconductor pattern layer 110. The insulating layer 120 may be a single-layer or multi-layer structure, and the material thereof includes silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, or other suitable materials.

半導體圖案層110之底面B與半導體圖案層110之第一側面S1或第二側面S2之間的夾角可小於60度,但大於0度。在本實施例中,底面B與半導體圖案層110之第一側面S1及第二側面S2之間的夾角皆可小於60度,但大於0度,因此,位於半導體圖案層110的第一側面S1及第二側面S2上之絕緣層120的厚度可以與位於半導體圖案層110的頂面T上之絕緣層120的厚度較為接近,可較改善第一側面S1及第二側面S2上之絕緣層120厚度不足的問題。 The included angle between the bottom surface B of the semiconductor pattern layer 110 and the first side surface S1 or the second side surface S2 of the semiconductor pattern layer 110 may be less than 60 degrees, but greater than 0 degrees. In this embodiment, the included angle between the bottom surface B and the first side surface S1 and the second side surface S2 of the semiconductor pattern layer 110 may be less than 60 degrees, but greater than 0 degrees. Therefore, the first side surface S1 of the semiconductor pattern layer 110 is located And the thickness of the insulating layer 120 on the second side S2 can be close to the thickness of the insulating layer 120 on the top surface T of the semiconductor pattern layer 110, which can improve the insulating layer 120 on the first side S1 and the second side S2. The problem of insufficient thickness.

請參考圖1E,形成第一感測膜130於基板SB上。第一感測膜130設置於半導體圖案層110之第一側面S1上的部份絕緣層120上。第一感測膜130至少對應的位於半導體圖案層110之第一側面S1的通道區104上。在一些實施例中,第一感測膜130至少設置於通道區104上。舉例來說,第一感測膜130基本上位於通道區104上,第一感測膜130可針對待測液體L(標示於後續圖示)裡的載子(例如:正離子)作吸附(例如不對第一感測膜130施加電壓或對第一感測膜130施加電壓時),可將通道區104的載子(例如負離子,如:電子)吸引,進而影響感測裝置的閥值電壓(Vth)。由感測裝置的閥值電壓的變化可以計算待測液體中正離子的數量。 Referring to FIG. 1E, a first sensing film 130 is formed on the substrate SB. The first sensing film 130 is disposed on a part of the insulating layer 120 on the first side surface S1 of the semiconductor pattern layer 110. The first sensing film 130 is at least correspondingly located on the channel region 104 on the first side S1 of the semiconductor pattern layer 110. In some embodiments, the first sensing film 130 is disposed at least on the channel region 104. For example, the first sensing film 130 is basically located on the channel region 104, and the first sensing film 130 can adsorb carriers (for example, positive ions) in the liquid L to be measured (labeled in the subsequent figure) ( For example, when no voltage is applied to the first sensing film 130 or a voltage is applied to the first sensing film 130), carriers (for example, negative ions, such as electrons) in the channel region 104 can be attracted, thereby affecting the threshold voltage of the sensing device. (Vth). From the change of the threshold voltage of the sensing device, the number of positive ions in the liquid to be measured can be calculated.

在一些實施例中,部分的第一感測膜130可以更設置於輕摻雜區103及/或輕摻雜區105上,可使得後續製程偏移程度可較為降低或減少,因此感測裝置可以有較高的製程裕度。 In some embodiments, a portion of the first sensing film 130 may be further disposed on the lightly doped region 103 and / or the lightly doped region 105, so that the degree of subsequent process deviation can be reduced or reduced. Therefore, the sensing device Can have higher process margins.

在一些實施例中,第一感測膜130之一端往半導體圖案層110之頂面T延伸,且第一感測膜130可覆蓋半導體圖案層110之頂面T上的部份絕緣層120上。第一感測膜130可在感測裝置不加電壓的情況下,吸引待測液體中的載子(例如:正離子)。 In some embodiments, one end of the first sensing film 130 extends toward the top surface T of the semiconductor pattern layer 110, and the first sensing film 130 may cover a portion of the insulating layer 120 on the top surface T of the semiconductor pattern layer 110 . The first sensing film 130 can attract carriers (eg, positive ions) in the liquid to be measured without applying voltage to the sensing device.

在一些實施例中,第一感測膜130可為單層或多層結構,且其材料包括三氧化二釔、二氧化錫、二氧化鈦、氮化矽、五氧化二鉭、氧化鋁、三氧化二鐠、三氧化二釤、二氧化鋯、二氧化鉿或以上材料之組合。於不同實施例中,可藉由選擇前述不同材料的第一感測膜130,來調整對待測液體L(標示於後續圖示)不同載子(例如:正離子)的吸引能力。 In some embodiments, the first sensing film 130 may have a single-layer or multi-layer structure, and its material includes yttrium oxide, tin dioxide, titanium dioxide, silicon nitride, tantalum pentoxide, aluminum oxide, and titanium oxide. Hafnium, hafnium dioxide, zirconium dioxide, hafnium dioxide or a combination of the above materials. In different embodiments, the first sensing film 130 of different materials can be used to adjust the attracting capacity of different carriers (eg, positive ions) of the liquid L (labeled in the subsequent figure) to be measured.

接著請參考圖1F,以圖案化製程於絕緣層120中形成開口O1與開口O2。開口O1與開口O2分別暴露出部分汲極區102和部分源極區106。換言之,開口O1與開口O2分別與汲極區102和源極區106部分重疊。 Referring to FIG. 1F, an opening O1 and an opening O2 are formed in the insulating layer 120 by a patterning process. The opening O1 and the opening O2 respectively expose a part of the drain region 102 and a part of the source region 106. In other words, the openings O1 and O2 partially overlap the drain region 102 and the source region 106, respectively.

在本實施例中,先形成第一感測膜130,之後才於絕緣層120中形成開口O1與開口O2,但本發明不以此為限。在一些實施例中,先形成開口O1與開口O2,接著才形成第一感測膜130。 In this embodiment, the first sensing film 130 is formed first, and then the opening O1 and the opening O2 are formed in the insulating layer 120, but the present invention is not limited thereto. In some embodiments, the openings O1 and O2 are formed before the first sensing film 130 is formed.

開口O1與開口O2的形狀例如包括矩型、圓形、梯型、三角型或其他幾何形狀,本發明並不特別限制開口O1與開口O2 的形狀。 The shapes of the openings O1 and O2 include, for example, rectangular, circular, ladder, triangular, or other geometric shapes. The present invention does not specifically limit the openings O1 and O2. shape.

請參考圖1G,於開口O1與開口O2中分別形成汲極142與源極144。汲極142與源極144分別電性連接半導體圖案層110的汲極區102以及源極區106。在一些實施例中,部分的汲極142與源極144分別自開口O1與開口O2往外延伸,並連接至其他電路(未繪出)。 Referring to FIG. 1G, a drain electrode 142 and a source electrode 144 are formed in the opening O1 and the opening O2, respectively. The drain electrode 142 and the source electrode 144 are respectively electrically connected to the drain region 102 and the source region 106 of the semiconductor pattern layer 110. In some embodiments, part of the drain electrode 142 and the source electrode 144 respectively extend outward from the opening O1 and the opening O2 and are connected to other circuits (not shown).

請參考圖1G與圖1H,第一參考電極150設置於基板SB上。第一參考電極150面對半導體圖案層110之第一側面S1上的第一感測膜130。第一感測膜130位於半導體圖案層110之第一側面S1與第一參考電極150之間。第一感測膜130與第一參考電極150之間具有用以容納待測液體L(標示於後續圖示)的第一間隙W。在一些實施例中,第一參考電極150是由微影蝕刻製程所定義出來的,因此可以獲得較小的第一間隙W。在一些實施例中,第一間隙W例如小於100微米,這裡的100微米指的例如是第一感測膜130與第一參考電極150之間的最短距離。在一些實施例中,第一間隙W例如為3微米、10微米、20微米、30微米、40微米、50微米、60微米、70微米、80微米、90微米或其它合適小於100微米的合適間隙。第一間隙W較小不但能增加感測裝置的感測能力,還可減少使用感測裝置時所需的待測液體量。此外,第一間隙W較小還能減少感測裝置的尺寸。 Referring to FIGS. 1G and 1H, the first reference electrode 150 is disposed on the substrate SB. The first reference electrode 150 faces the first sensing film 130 on the first side S1 of the semiconductor pattern layer 110. The first sensing film 130 is located between the first side surface S1 of the semiconductor pattern layer 110 and the first reference electrode 150. There is a first gap W between the first sensing film 130 and the first reference electrode 150 to receive the liquid to be measured L (labeled in the subsequent figure). In some embodiments, the first reference electrode 150 is defined by a lithography process, so that a smaller first gap W can be obtained. In some embodiments, the first gap W is, for example, less than 100 micrometers. Here, 100 micrometers refers to, for example, the shortest distance between the first sensing film 130 and the first reference electrode 150. In some embodiments, the first gap W is, for example, 3 micrometers, 10 micrometers, 20 micrometers, 30 micrometers, 40 micrometers, 50 micrometers, 60 micrometers, 70 micrometers, 80 micrometers, 90 micrometers, or other suitable gaps smaller than 100 micrometers. . The smaller first gap W not only increases the sensing capability of the sensing device, but also reduces the amount of liquid to be measured when the sensing device is used. In addition, a smaller first gap W can also reduce the size of the sensing device.

在一些實施例中,於側視方向D1,第一參考電極150的面積較第一感測膜130的面積寬,可使得不同元件製程偏移程度 可較為降低或減少,可較提升感測裝置的良率。舉例而言,於側視方向D1上,第一參考電極150與第一感測膜130重疊至少50%,較佳地,第一參考電極150與第一感測膜130完全重疊,且第一參考電極150可選擇性的超過第一感測膜130尺寸,由於在側視方向D1上參考電極150需要與感測膜130以及通道區104對應,若有面積較寬或尺寸較大的參考電極150,則可以增加製作感測裝置的製程裕度,但不限於此。其中,側視方向D1例如是實質上平行於半導體圖案層110之底面B的方向且實質上平行於第一感測膜130與第一參考電極150之間最短連線的方向。 In some embodiments, in the side view direction D1, the area of the first reference electrode 150 is wider than the area of the first sensing film 130, which can cause the degree of deviation of different device processes. It can be reduced or reduced, and the yield of the sensing device can be improved. For example, in the side view direction D1, the first reference electrode 150 and the first sensing film 130 overlap at least 50%. Preferably, the first reference electrode 150 and the first sensing film 130 completely overlap, and the first The reference electrode 150 can selectively exceed the size of the first sensing film 130. Since the reference electrode 150 needs to correspond to the sensing film 130 and the channel region 104 in the side view direction D1, if there is a reference electrode with a larger area or a larger size, 150, the manufacturing margin of the sensing device can be increased, but it is not limited to this. The side view direction D1 is, for example, a direction substantially parallel to the bottom surface B of the semiconductor pattern layer 110 and a direction substantially parallel to the shortest connecting line between the first sensing film 130 and the first reference electrode 150.

在一些實施例中,第一參考電極150之材料包括鈦、鈀、銀、氯化銀、或其它合適的材料或前述至少兩種材料的堆疊結構。在一些實施例中,第一參考電極150表面之材料包括鈦、鈀、銀、氯化銀或其它合適的材料或前述至少兩種材料的堆疊結構,而第一參考電極150內部還具有其他種類的導電材料152,例如是銅、鋁、鉬、鈦或其他合適的導電材料或前述至少兩種材料的堆疊結構,藉此能降低材料所需的成本。在其它實施例中,在一些實施例中,第一參考電極150表面之材料包括鈦、鈀、銀、氯化銀至少兩種材料的堆疊結構,而第一參考電極150內部還具有其他種類的絕緣材料,例如:無機材料、有機材料、或其它合適的材料。 In some embodiments, the material of the first reference electrode 150 includes titanium, palladium, silver, silver chloride, or other suitable materials or a stacked structure of at least two of the foregoing materials. In some embodiments, the material of the surface of the first reference electrode 150 includes titanium, palladium, silver, silver chloride, or other suitable materials or a stacked structure of at least two of the foregoing materials, and the inside of the first reference electrode 150 has other types. The conductive material 152 is, for example, copper, aluminum, molybdenum, titanium, or other suitable conductive materials or a stacked structure of at least two of the foregoing materials, thereby reducing the cost required for the materials. In other embodiments, in some embodiments, the material of the surface of the first reference electrode 150 includes a stacked structure of at least two materials of titanium, palladium, silver, and silver chloride, and the inside of the first reference electrode 150 also has other types of Insulating materials, such as: inorganic materials, organic materials, or other suitable materials.

在本實施例中,汲極142與源極144例如是同時形成,並在形成汲極142與源極144之後或之前形成第一參考電極150。在一些實施例中,汲極142、源極144與導電材料152可同一道微 影蝕刻形成,並在形成汲極142、源極144與導電材料152之後,形成第一參考電極150表面之材料。於部份實施例中,考量到參考電極150內部之導電材料152對於待測液體L(標示於後續圖示)之離子(例如:正離子)的反應需求,會使用與汲極142與源極144不同材料。因此,製作汲極142、源極144後,才會再製作參考電極150表面材料與內部之導電材料152。 In this embodiment, the drain electrode 142 and the source electrode 144 are formed at the same time, and the first reference electrode 150 is formed after or before the drain electrode 142 and the source electrode 144 are formed. In some embodiments, the drain electrode 142, the source electrode 144, and the conductive material 152 may be the same. Shadow etching is performed, and after forming the drain electrode 142, the source electrode 144, and the conductive material 152, a material on the surface of the first reference electrode 150 is formed. In some embodiments, considering the response requirements of the conductive material 152 inside the reference electrode 150 to the ions (eg, positive ions) of the liquid L (labeled in the subsequent figure) to be measured, the drain electrode 142 and the source electrode are used. 144 different materials. Therefore, after the drain electrode 142 and the source electrode 144 are fabricated, the surface material of the reference electrode 150 and the conductive material 152 inside the reference electrode 150 are fabricated.

請再參考圖1H,可選擇性的形成保護層160覆蓋部份基板SB、絕緣層120、源極144及汲極142、部份第一感測膜130與部份第一參考電極150,可來保護感測裝置中大部份的元件,且可較為增加感測裝置的可靠度。保護層160未覆蓋另一部份第一感測膜130與另一部份第一參考電極150,例如:如圖1H所示,保護層160未覆蓋第一感測膜130與第一參考電極150面對的部份。保護層160可為單層或多層結構,且其材料包括有機材料(例如:環氧樹脂、光阻、聚亞醯胺或其它合適的材料)、無機材料(例如:氧化矽、氮化矽、氮氧化物、氧化鋁或其他合適的材料)。形成完保護層160後,感測裝置10以大致完成。於其它實施例中,若感測裝置10中所使用的材料,可讓感測裝置10較不需要考量到可靠度的問題,則感測裝置10也可不包含保護層160。 Please refer to FIG. 1H again, a protective layer 160 may be selectively formed to cover a part of the substrate SB, the insulating layer 120, the source 144 and the drain 142, a part of the first sensing film 130 and a part of the first reference electrode 150. This protects most of the components in the sensing device, and can increase the reliability of the sensing device. The protective layer 160 does not cover another part of the first sensing film 130 and another part of the first reference electrode 150. For example, as shown in FIG. 1H, the protective layer 160 does not cover the first sensing film 130 and the first reference electrode. 150 facing parts. The protective layer 160 may be a single-layer or multi-layer structure, and its material includes organic materials (for example: epoxy resin, photoresist, polyimide, or other suitable materials), inorganic materials (for example, silicon oxide, silicon nitride, Nitrogen oxides, alumina or other suitable materials). After the protective layer 160 is formed, the sensing device 10 is substantially completed. In other embodiments, if the materials used in the sensing device 10 can make the sensing device 10 less need to consider reliability issues, the sensing device 10 may not include the protective layer 160.

待測液體L填入第一感測膜130與第一參考電極150之間的第一間隙W。待測液體L中包括酸性、鹼性或中性離子,這些離子會與第一感測膜130的表面進行反應及或鍵結,使第一感測膜130的表面形成電位。第一感測膜130例如做為感測裝置10 的閘極端,第一感測膜130的電位可促使半導體圖案層110中的載子移動。再者,本實施例的感測裝置10結構中的半導體圖案層110、絕緣層120、第一感測膜130、源極144及汲極142類似於頂閘極電晶體,但是,第一感測膜130位於半導體圖案層110側邊。因此,本實施例的感測裝置10結構中半導體圖案層110、絕緣層120、第一感測膜130、源極144及汲極142亦可運用其它類型之頂閘極電晶體。 The liquid to be measured L is filled in the first gap W between the first sensing film 130 and the first reference electrode 150. The liquid L to be measured includes acidic, alkaline or neutral ions, and these ions will react with or bond with the surface of the first sensing film 130 to form a potential on the surface of the first sensing film 130. The first sensing film 130 is used as the sensing device 10, for example. The gate potential of the first sensing film 130 may cause carriers in the semiconductor pattern layer 110 to move. Furthermore, the semiconductor pattern layer 110, the insulating layer 120, the first sensing film 130, the source electrode 144, and the drain electrode 142 in the structure of the sensing device 10 of this embodiment are similar to a top gate transistor. The measurement film 130 is located on the side of the semiconductor pattern layer 110. Therefore, in the structure of the sensing device 10 of this embodiment, the semiconductor pattern layer 110, the insulating layer 120, the first sensing film 130, the source 144, and the drain 142 can also use other types of top gate transistors.

圖2是依照本發明的一實施例的一種感測裝置的示意圖。在此必須說明的是,圖2的實施例沿用圖1A~圖1H的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 FIG. 2 is a schematic diagram of a sensing device according to an embodiment of the invention. It must be noted here that the embodiment of FIG. 2 follows the component numbers and parts of the embodiments of FIGS. 1A to 1H, in which the same or similar reference numerals are used to indicate the same or similar components, and the same technical content is omitted. Instructions. For the description of the omitted parts, reference may be made to the foregoing embodiments, and details are not described herein.

請參考圖2,感測裝置20包括設置於基板SB上的第一感測膜130A與第二感測膜130B。第一感測膜130A設置於半導體圖案層110之第二側面S2上的部份絕緣層120上。第二感測膜130B設置於半導體圖案層110之第二側面S1上的部份絕緣層120上。第一感測膜130A與第二感測膜130B相互分離。 Please refer to FIG. 2, the sensing device 20 includes a first sensing film 130A and a second sensing film 130B disposed on a substrate SB. The first sensing film 130A is disposed on a part of the insulating layer 120 on the second side surface S2 of the semiconductor pattern layer 110. The second sensing film 130B is disposed on a part of the insulating layer 120 on the second side surface S1 of the semiconductor pattern layer 110. The first sensing film 130A and the second sensing film 130B are separated from each other.

第一感測膜130A至少對應的位於半導體圖案層110之第一側面S1的通道區104上。第二感測膜130B至少對應的位於半導體圖案層110之第二側面S2的通道區104上。在一些實施例中,第一感測膜130A之一端及/或第二感測膜130B之一端往半導體圖案層110之頂面T延伸,且第一感測膜130A及/或第二感測膜130B 覆蓋半導體圖案層110之頂面T上的部份絕緣層120上。 The first sensing film 130A is at least correspondingly located on the channel region 104 of the first side surface S1 of the semiconductor pattern layer 110. The second sensing film 130B is at least correspondingly located on the channel region 104 of the second side surface S2 of the semiconductor pattern layer 110. In some embodiments, one end of the first sensing film 130A and / or one end of the second sensing film 130B extends toward the top surface T of the semiconductor pattern layer 110, and the first sensing film 130A and / or the second sensing film 130A Film 130B A part of the insulating layer 120 on the top surface T of the semiconductor pattern layer 110 is covered.

第一參考電極150A與第二參考電極150B設置於基板SB上。第一參考電極150A面對半導體圖案層110之第一側面S1上的第一感測膜130A,第一感測膜130A位於半導體圖案層110之第一側面S1與第一參考電極150A之間。第二參考電極150B面對半導體圖案層110之第二側面S2上的第二感測膜130B,第二感測膜130B位於半導體圖案層110之第二側面S2與第二參考電極150B之間。第二參考電極150B與第一參考電極150A相互分離。在一些實施例中,第一參考電極150A與第二參考電極150B包括實質上相同的材料,且是於同一道微影蝕刻製程中所形成。在一些實施例中,第二參考電極150B之材料及/或製程,可選用前述第一參考電極150之材料與製程,且二者可實質上相同或不同。 The first reference electrode 150A and the second reference electrode 150B are disposed on the substrate SB. The first reference electrode 150A faces the first sensing film 130A on the first side surface S1 of the semiconductor pattern layer 110, and the first sensing film 130A is located between the first side surface S1 of the semiconductor pattern layer 110 and the first reference electrode 150A. The second reference electrode 150B faces the second sensing film 130B on the second side surface S2 of the semiconductor pattern layer 110, and the second sensing film 130B is located between the second side surface S2 of the semiconductor pattern layer 110 and the second reference electrode 150B. The second reference electrode 150B and the first reference electrode 150A are separated from each other. In some embodiments, the first reference electrode 150A and the second reference electrode 150B include substantially the same material and are formed in the same lithographic etching process. In some embodiments, the materials and / or processes of the second reference electrode 150B may be selected from the materials and processes of the first reference electrode 150, and the two may be substantially the same or different.

在一些實施例中,於側視方向D1上,第一參考電極150A的面積較第一感測膜130A的面積寬,第二參考電極130B的面積較第二感測膜130B的面積寬,可使得不同元件製程偏移程度可較為降低或減少,可較提升感測裝置的良率。舉例而言,於側視方向上D1,第一參考電極150A與第一感測膜130A重疊至少50%,第二參考電極150B與第二感測膜130B重疊至少50%,較佳地,第一參考電極150A與第一感測膜130A完全重疊,且第一參考電極150可選擇性的超過第一感測膜130尺寸及/或第二參考電極150B與第二感測膜130B完全重疊,且第二參考電極150B可選擇 性的超過第二感測膜130B尺寸,由於在側視方向D1上第一參考電極150A需要與第一感測膜130A以及通道區104之第一側面S1對應與第二參考電極150B需要與第二感測膜130B以及通道區104之第二側面S2對應,若有面積較寬或尺寸較大的第一參考電極150A與第二參考電極150B,則可以增加製作感測裝置的製程裕度,但不限於此。其中,側視方向D1例如是實質上平行於第一感測膜130A與第一參考電極150A之間最短連線的方向或實質上平行於第二感測膜130B與第二參考電極150B之間最短連線的方向。 In some embodiments, in the side view direction D1, the area of the first reference electrode 150A is wider than that of the first sensing film 130A, and the area of the second reference electrode 130B is wider than that of the second sensing film 130B. Therefore, the degree of process deviation of different components can be reduced or reduced, and the yield of the sensing device can be improved. For example, in the side view direction D1, the first reference electrode 150A and the first sensing film 130A overlap at least 50%, and the second reference electrode 150B and the second sensing film 130B overlap at least 50%. Preferably, the first A reference electrode 150A completely overlaps the first sensing film 130A, and the first reference electrode 150 can selectively exceed the size of the first sensing film 130 and / or the second reference electrode 150B and the second sensing film 130B completely overlap, And the second reference electrode 150B can be selected The size of the second sensing film 130B is larger than that of the second sensing film 130B. In the side view direction D1, the first reference electrode 150A needs to correspond to the first sensing film 130A and the first side S1 of the channel region 104. The two sensing films 130B and the second side S2 of the channel region 104 correspond to each other. If there are a first reference electrode 150A and a second reference electrode 150B with a wide area or a large size, the manufacturing margin of the sensing device can be increased. But it is not limited to this. The side view direction D1 is, for example, a direction substantially parallel to the shortest connection line between the first sensing film 130A and the first reference electrode 150A or substantially parallel to the direction between the second sensing film 130B and the second reference electrode 150B. The direction of the shortest connection.

第一感測膜130A與第一參考電極150A之間具有用以容納待測液體的第一間隙WA。第二感測膜130B與第二參考電極150B之間具有用以容納待測液體L的第二間隙WB。在一些實施例中,第一感測膜130A與第二感測膜130B能在不同的時間下進行感測,例如是待測液體L只填入第一間隙WA或只填入第二間隙WB。於部份實施例中,第一感測膜130A與第二感測膜130B能同時進行感測,例如是待測液體L填入第一間隙WA與填入第二間隙WB,可增加感測裝置20的感測能力。 There is a first gap WA between the first sensing film 130A and the first reference electrode 150A to receive the liquid to be measured. There is a second gap WB between the second sensing film 130B and the second reference electrode 150B to receive the liquid L to be measured. In some embodiments, the first sensing film 130A and the second sensing film 130B can perform sensing at different times, for example, the liquid to be measured L only fills the first gap WA or only fills the second gap WB. . In some embodiments, the first sensing film 130A and the second sensing film 130B can perform sensing at the same time. For example, the liquid L to be measured is filled in the first gap WA and the second gap WB, which can increase the sensing. The sensing capability of the device 20.

在一些實施例中,感測裝置20可選擇性的包括連接膜170,連接膜170可連接第一感測膜130A與第二感測膜130B,待測液體L填入第一間隙WA與第二間隙WB中,可以於第一感測膜130A與第二感測膜130B上形成電位,並同時促使半導體圖案層110中的載子移動,因此能增加感測強度(或靈敏度)。在一些 實施例中,連接膜170、第一感測膜130A與第二感測膜130B例如包括實質上同樣的材料,且是於同一道微影蝕刻製程中形成,但不限於此。於其它實施例中,連接膜170可使用與第一感測膜130A及第二感測膜130B不同材料及/或不同的微影蝕刻製程。 In some embodiments, the sensing device 20 may optionally include a connection film 170. The connection film 170 may connect the first sensing film 130A and the second sensing film 130B, and the liquid L to be measured fills the first gap WA and the first sensing film 130B. In the two-gap WB, a potential can be formed on the first sensing film 130A and the second sensing film 130B, and at the same time, the carriers in the semiconductor pattern layer 110 are moved, so that the sensing intensity (or sensitivity) can be increased. In some In the embodiment, the connection film 170, the first sensing film 130A, and the second sensing film 130B include, for example, substantially the same material and are formed in the same lithographic etching process, but are not limited thereto. In other embodiments, the connection film 170 may use a different material and / or a different lithographic etching process than the first sensing film 130A and the second sensing film 130B.

在一些實施例中,感測裝置20可選擇性的包括保護層160。保護層160覆蓋部份基板SB、絕緣層120、源極144及汲極142、部份第一感測膜130A、部份第一參考電極150A、部份第二感測膜130B與部份第二參考電極150B。保護層160未覆蓋另一部份第一感測膜130A、另一部份第一參考電極150A、另一部份第二感測膜130B與另一部份第二參考電極150B,例如:如圖2所示,保護層160未覆蓋第一感測膜130A與第一參考電極150A面對的部份與第二感測膜130B與第二參考電極150B面對的部份。 In some embodiments, the sensing device 20 may optionally include a protective layer 160. The protective layer 160 covers part of the substrate SB, the insulating layer 120, the source 144 and the drain 142, part of the first sensing film 130A, part of the first reference electrode 150A, part of the second sensing film 130B, and part of the first Two reference electrodes 150B. The protective layer 160 does not cover another part of the first sensing film 130A, another part of the first reference electrode 150A, another part of the second sensing film 130B, and another part of the second reference electrode 150B, such as: As shown in FIG. 2, the protective layer 160 does not cover a portion facing the first sensing film 130A and the first reference electrode 150A and a portion facing the second sensing film 130B and the second reference electrode 150B.

圖3是依照本發明的一實施例的一種感測裝置的示意圖。在此必須說明的是,圖3的實施例沿用圖2的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 FIG. 3 is a schematic diagram of a sensing device according to an embodiment of the invention. It must be noted here that the embodiment of FIG. 3 inherits the component numbers and parts of the embodiment of FIG. 2, in which the same or similar reference numerals are used to represent the same or similar components, and the description of the same technical content is omitted. For the description of the omitted parts, reference may be made to the foregoing embodiments, and details are not described herein.

請參考圖3,感測裝置30與圖2之感測裝置20的差異在於,感測裝置30是直立於基板SB上的。於垂直投影於基板SB的方向D2,源極區106、汲極區102與通道區104相互至少一部份重疊。再者,源極144可選擇性的不透過開口O1或開口O2與源極區106電性連接及/或汲極142可選擇性的不透過開口O1或 開口O2與汲極區102電性連接,但不限於此。 Please refer to FIG. 3. The difference between the sensing device 30 and the sensing device 20 in FIG. 2 is that the sensing device 30 is standing on the substrate SB. In the direction D2 perpendicular to the projection on the substrate SB, the source region 106, the drain region 102, and the channel region 104 at least partially overlap each other. Furthermore, the source electrode 144 may be selectively connected to the source region 106 through the opening O1 or the opening O2, and / or the drain electrode 142 may be selectively closed through the opening O1 or The opening O2 is electrically connected to the drain region 102, but is not limited thereto.

在本實施例中,源極區106可位於通道區104與基板SB之間,但本發明不以此為限。在其他實施例中,汲極區102可位於通道區104與基板SB之間。 In this embodiment, the source region 106 may be located between the channel region 104 and the substrate SB, but the present invention is not limited thereto. In other embodiments, the drain region 102 may be located between the channel region 104 and the substrate SB.

雖然在本實施例中,感測裝置30同時包括第一感測膜130A、第二感測膜130B、第一參考電極150A以及第二參考電極150B,但本發明不以此為限。感測裝置30也可以不包括第二感測膜130B與第二參考電極150B。對於,第一感測膜130A、第二感測膜130B、第一參考電極150A以及第二參考電極150B之材料及/或結構可參閱前述實施例之相關描述。 Although in this embodiment, the sensing device 30 includes the first sensing film 130A, the second sensing film 130B, the first reference electrode 150A, and the second reference electrode 150B, the invention is not limited thereto. The sensing device 30 may not include the second sensing film 130B and the second reference electrode 150B. For the materials and / or structures of the first sensing film 130A, the second sensing film 130B, the first reference electrode 150A, and the second reference electrode 150B, reference may be made to the related descriptions of the foregoing embodiments.

綜上所述,本發明之至少一實施例可以減少使用時所需的待測液體量。本發明之至少一實施例可以減小感測裝置的體積。本發明之至少一實施例可以降低感測裝置所需消耗的能量。本發明之至少一實施例可以提升感測裝置的敏感度。 In summary, at least one embodiment of the present invention can reduce the amount of liquid to be measured during use. At least one embodiment of the present invention can reduce the volume of the sensing device. At least one embodiment of the present invention can reduce the energy consumed by the sensing device. At least one embodiment of the present invention can improve the sensitivity of the sensing device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

Claims (14)

一種感測裝置,其係用以感測一液體中之離子,該感測裝置包括:一基板;一半導體圖案層,設置於該基板上,該半導體圖案層包含一源極區、一汲極區以及一通道區,該通道區位於該源極區與該汲極區之間;一源極及一汲極,分別電性連接該半導體圖案層的該源極區以及該汲極區;一絕緣層,設置於該基板上,其中,該絕緣層至少覆蓋於該通道區上;一第一感測膜,設置於該基板上,其中,該第一感測膜設置於該半導體圖案層之一第一側面上的部份該絕緣層上;以及一第一參考電極,設置於該基板上,其中,該第一參考電極面對該半導體圖案層之該第一側面上的該第一感測膜,且該第一感測膜位於該半導體圖案層之該第一側面與該第一參考電極之間,其中,該第一感測膜與該第一參考電極之間具有一第一間隙,用以容納該液體。A sensing device is used for sensing ions in a liquid. The sensing device includes: a substrate; a semiconductor pattern layer disposed on the substrate; the semiconductor pattern layer includes a source region and a drain electrode; And a channel region, the channel region is located between the source region and the drain region; a source and a drain electrode are electrically connected to the source region and the drain region of the semiconductor pattern layer, respectively; An insulating layer is disposed on the substrate, wherein the insulating layer covers at least the channel region; a first sensing film is disposed on the substrate, and the first sensing film is disposed on the semiconductor pattern layer. A portion of the insulating layer on a first side; and a first reference electrode disposed on the substrate, wherein the first reference electrode faces the first sense on the first side of the semiconductor pattern layer And a first sensing film is located between the first side of the semiconductor pattern layer and the first reference electrode, wherein there is a first gap between the first sensing film and the first reference electrode To hold the liquid. 如申請專利範圍第1項所述的感測裝置,其中,該第一感測膜之一端往該半導體圖案層之一頂面延伸,且該第一感測膜覆蓋該半導體圖案層之該頂面上的部份該絕緣層上。The sensing device according to item 1 of the patent application scope, wherein one end of the first sensing film extends to a top surface of the semiconductor pattern layer, and the first sensing film covers the top of the semiconductor pattern layer. Part of the surface is on the insulating layer. 如申請專利範圍第1項所述的感測裝置,更包括:一第二感測膜,設置於該基板上,其中,該第二感測膜設置於該半導體圖案層之一第二側面上的部份該絕緣層上,且該第一感測膜與該第二感測膜相互分離;以及一第二參考電極,設置於該基板上,其中,該第二參考電極面對該半導體圖案層之該第二側面上的該第二感測膜,該第二感測膜位於該半導體圖案層之該第二側面與該第二參考電極之間,其中,該第二參考電極與該第一參考電極相互分離,且該第二感測膜與該第二參考電極之間具有一第二間隙,以容納該液體。The sensing device according to item 1 of the scope of patent application, further comprising: a second sensing film disposed on the substrate, wherein the second sensing film is disposed on a second side surface of the semiconductor pattern layer Part of the insulating layer, and the first sensing film and the second sensing film are separated from each other; and a second reference electrode is disposed on the substrate, wherein the second reference electrode faces the semiconductor pattern The second sensing film on the second side of the layer, the second sensing film is located between the second side of the semiconductor pattern layer and the second reference electrode, wherein the second reference electrode and the first reference electrode A reference electrode is separated from each other, and there is a second gap between the second sensing film and the second reference electrode to accommodate the liquid. 如申請專利範圍第3項所述的感測裝置,其中,該第二感測膜之一端往該半導體圖案層之一頂面延伸,且該第二感測膜覆蓋該半導體圖案層之該頂面上的部份該絕緣層上。The sensing device according to item 3 of the scope of patent application, wherein one end of the second sensing film extends to a top surface of the semiconductor pattern layer, and the second sensing film covers the top of the semiconductor pattern layer. Part of the surface is on the insulating layer. 如申請專利範圍第1項所述的感測裝置,更包括一保護層,覆蓋部份該基板、該絕緣層、該源極及該汲極、部份該第一感測膜與部份該第一參考電極,且該保護層未覆蓋另一部份該第一感測膜與另一部份該第一參考電極。The sensing device according to item 1 of the patent application scope further includes a protective layer covering part of the substrate, the insulating layer, the source and the drain, part of the first sensing film and part of the The first reference electrode, and the protective layer does not cover another part of the first sensing film and another part of the first reference electrode. 如申請專利範圍第3項所述的感測裝置,更包括一保護層,覆蓋部份該基板、該絕緣層、該源極及該汲極、部份該第一感測膜、部份該第一參考電極、部份該第二感測膜與部份該第二參考電極,且該保護層未覆蓋另一部份該第一感測膜、另一部份該第一參考電極、另一部份該第二感測膜與另一部份該第二參考電極。The sensing device according to item 3 of the patent application scope further includes a protective layer covering part of the substrate, the insulating layer, the source and the drain, part of the first sensing film, and part of the The first reference electrode, part of the second sensing film and part of the second reference electrode, and the protective layer does not cover another part of the first sensing film, another part of the first reference electrode, another A part of the second sensing film and another part of the second reference electrode. 如申請專利範圍第1或3項所述的感測裝置,其中,於垂直投影於該基板的方向上,該源極區、該汲極區與該通道區不相互重疊。The sensing device according to item 1 or 3 of the scope of patent application, wherein the source region, the drain region, and the channel region do not overlap each other in a direction perpendicular to the substrate. 如申請專利範圍第1或3項所述的感測裝置,其中,於垂直投影於該基板的方向上,該源極區、該汲極區與該通道區相互重疊。The sensing device according to item 1 or 3 of the patent application scope, wherein the source region, the drain region and the channel region overlap each other in a direction perpendicular to the substrate. 如申請專利範圍第1項所述的感測裝置,其中,該第一感測膜至少對應的位於該半導體圖案層之該第一側面的該通道區上。The sensing device according to item 1 of the scope of patent application, wherein the first sensing film is at least correspondingly located on the channel region on the first side of the semiconductor pattern layer. 如申請專利範圍第3項所述的感測裝置,其中,該第二感測膜至少對應的位於該半導體圖案層之該第二側面的該通道區上。The sensing device according to item 3 of the patent application scope, wherein the second sensing film is at least correspondingly located on the channel region on the second side of the semiconductor pattern layer. 如申請專利範圍第1項所述的感測裝置,其中,於側視方向上,該第一參考電極與該第一感測膜重疊至少50%。The sensing device according to item 1 of the scope of patent application, wherein the first reference electrode overlaps the first sensing film by at least 50% in a side view direction. 如申請專利範圍第3項所述的感測裝置,其中,於側視方向上,該第二參考電極與該第二感測膜重疊至少50%。The sensing device according to item 3 of the scope of patent application, wherein the second reference electrode overlaps the second sensing film by at least 50% in a side view direction. 如申請專利範圍第3項所述的感測裝置,更包含一連接膜,連接該第一感測膜與該第二感測膜。The sensing device according to item 3 of the scope of patent application, further comprising a connecting film, connecting the first sensing film and the second sensing film. 如申請專利範圍第3項所述的感測裝置,其中該半導體圖案層之一底面與該半導體圖案層之該第一側面及該第二側面其中一者之間的夾角小於60度,但大於0度。The sensing device according to item 3 of the patent application scope, wherein an angle between a bottom surface of the semiconductor pattern layer and one of the first side surface and the second side surface of the semiconductor pattern layer is less than 60 degrees, but greater than 0 degree.
TW106138787A 2017-11-09 2017-11-09 Sensing device TWI642171B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106138787A TWI642171B (en) 2017-11-09 2017-11-09 Sensing device
CN201711362532.XA CN108107078A (en) 2017-11-09 2017-12-18 Sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106138787A TWI642171B (en) 2017-11-09 2017-11-09 Sensing device

Publications (2)

Publication Number Publication Date
TWI642171B true TWI642171B (en) 2018-11-21
TW201919211A TW201919211A (en) 2019-05-16

Family

ID=62209878

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106138787A TWI642171B (en) 2017-11-09 2017-11-09 Sensing device

Country Status (2)

Country Link
CN (1) CN108107078A (en)
TW (1) TWI642171B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069327A1 (en) * 2002-02-11 2003-08-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Ion-sensitive field effect transistor and a method for producing a transistor of this type
TW200726972A (en) * 2006-01-04 2007-07-16 Univ Nat Yunlin Sci & Tech Reference pH sensor, the preparation and application thereof
US20080265985A1 (en) * 2004-07-13 2008-10-30 Dna Electronics Ltd. Signal Processing Circuit Comprising Ion Sensitive Field Effect Transistor and Method of Monitoring a Property of a Fluid
WO2009081291A2 (en) * 2007-12-19 2009-07-02 Kimberly-Clark Worldwide, Inc. Field effect transistors for detection of nosocomial infection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855990B2 (en) * 2002-11-26 2005-02-15 Taiwan Semiconductor Manufacturing Co., Ltd Strained-channel multiple-gate transistor
TWI253174B (en) * 2003-05-09 2006-04-11 Au Optronics Corp Ion sensitive field effect transistor and fabrication method of the same
US8536626B2 (en) * 2011-04-28 2013-09-17 Honeywell International Inc. Electronic pH sensor die packaging
CN104487834B (en) * 2011-12-22 2018-07-17 Bd公司 Method and apparatus for quickly detecting infectious microorganism
WO2014098566A1 (en) * 2012-12-21 2014-06-26 Mimos Berhad An ion sensitive field effect transistor
US9570288B2 (en) * 2014-03-19 2017-02-14 Ecole Polytechnique Federale De Lausanne (Epfl) Method to fabricate FinFET sensors, in particular, FinFET sensors for ionic, chemical and biological applications on Si-Bulk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069327A1 (en) * 2002-02-11 2003-08-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Ion-sensitive field effect transistor and a method for producing a transistor of this type
US20080265985A1 (en) * 2004-07-13 2008-10-30 Dna Electronics Ltd. Signal Processing Circuit Comprising Ion Sensitive Field Effect Transistor and Method of Monitoring a Property of a Fluid
TW200726972A (en) * 2006-01-04 2007-07-16 Univ Nat Yunlin Sci & Tech Reference pH sensor, the preparation and application thereof
WO2009081291A2 (en) * 2007-12-19 2009-07-02 Kimberly-Clark Worldwide, Inc. Field effect transistors for detection of nosocomial infection

Also Published As

Publication number Publication date
CN108107078A (en) 2018-06-01
TW201919211A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
US10192992B2 (en) Display device
US12087865B2 (en) Thin film transistor and thin film transistor array panel including the same
US9048163B2 (en) Transistor, electronic device including transistor, and manufacturing methods thereof
CN103972298B (en) Thin Film Transistor And Method For Fabricating The Same
US10340392B2 (en) Semiconductor device including mark portion and production method for same
TWI572020B (en) Array substrate and manufacturing method thereof
WO2019095546A1 (en) Thin film transistor and manufacturing method therefor, and tft substrate
WO2017008347A1 (en) Array substrate, manufacturing method for array substrate, and display device
WO2017008331A1 (en) Tft substrate structure and manufacturing method therefor
GB2498253A (en) Nanowire Floating Gate Transistor
KR102623624B1 (en) Transistor array panel and manufacturing method thereof
US20140339562A1 (en) Thin-Film Transistor Sensor and Method of Manufacturing the TFT Sensor
US9012910B2 (en) Semiconductor device, display device, and semiconductor device manufacturing method
US10424672B2 (en) Oxide semiconductor transistor
US20180197974A1 (en) Oxide semiconductor film etching method and semiconductor device manufacturing method
TWI581436B (en) Substrate structure and manufacturing method thereof
TWI642171B (en) Sensing device
TWI828142B (en) Semiconductor device
KR20150045761A (en) Thin film transistor and method of manufacturing the same
WO2019071824A1 (en) Display panel and fabrication method therefor
KR20140078190A (en) Transistor and method of manufacturing the same
CN109613065B (en) Semiconductor humidity sensor and preparation method thereof
CN110137203A (en) The forming method of pixel sensing arrangement, sensing device and pixel sensing arrangement
US9209313B2 (en) Thin film transistor array panel having double-layered oxide semiconductor structure and method for manufacturing the same
WO2023134161A1 (en) Transistor and manufacturing method therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees