TWI642092B - Deep junction electronic device and process for manufacturing thereof - Google Patents

Deep junction electronic device and process for manufacturing thereof Download PDF

Info

Publication number
TWI642092B
TWI642092B TW106123081A TW106123081A TWI642092B TW I642092 B TWI642092 B TW I642092B TW 106123081 A TW106123081 A TW 106123081A TW 106123081 A TW106123081 A TW 106123081A TW I642092 B TWI642092 B TW I642092B
Authority
TW
Taiwan
Prior art keywords
layer
single crystal
crystal semiconductor
substrate
semiconductor material
Prior art date
Application number
TW106123081A
Other languages
Chinese (zh)
Other versions
TW201909251A (en
Inventor
富爾維 瑪札姆
Original Assignee
歐洲雷射系統與方案解決公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歐洲雷射系統與方案解決公司 filed Critical 歐洲雷射系統與方案解決公司
Priority to TW106123081A priority Critical patent/TWI642092B/en
Application granted granted Critical
Publication of TWI642092B publication Critical patent/TWI642092B/en
Publication of TW201909251A publication Critical patent/TW201909251A/en

Links

Abstract

本發明有關深接面電子裝置之製造方法,包含以下步驟:b)沉積非單晶半導體材料之層(5)於單晶半導體材料之基板(1)的平面表面(9)上;c)分別地,在步驟b)之前,將非活化的摻雜物元素結合至該基板(1)內,及/或在步驟b)之期間或之後,結合至該層(5)內,以便形成非活化的摻雜層(7,27);d)將步驟b)所形成之該層(5)的外部表面(19)曝射至雷射熱退火光束(30),以便使該層(5)熔化至該基板(1),並激活在步驟c)所結合的該摻雜物元素;以及e)停止對該雷射光束的曝射,以便誘導出該熔化之層(5)的外延式結晶,使得該基板(1)及/或該外延式單晶半導體材料(15)分別包含活化的摻雜單晶半導體材料之層(17,27)。 The invention relates to a method for manufacturing a deep junction electronic device, comprising the steps of: b) depositing a layer (5) of a non-single-crystal semiconductor material on a planar surface (9) of a substrate (1) of a single crystal semiconductor material; c) respectively , prior to step b), incorporating a non-activated dopant element into the substrate (1), and/or during or after step b), bonding into the layer (5) to form a non-activated a doped layer (7, 27); d) exposing the outer surface (19) of the layer (5) formed in step b) to a laser thermal annealing beam (30) to melt the layer (5) To the substrate (1) and activating the dopant element combined in step c); and e) stopping the exposure of the laser beam to induce epitaxial crystallization of the molten layer (5), The substrate (1) and/or the epitaxial single crystal semiconductor material (15) are each comprised of a layer (17, 27) of activated doped single crystal semiconductor material.

Description

深接面電子裝置及其製造方法 Deep junction electronic device and manufacturing method thereof

本發明關於包含深電子接面之積體電路(IC)的製造方法。 The present invention relates to a method of manufacturing an integrated circuit (IC) including a deep electron junction.

更確切地,本發明有關用於以低的熱預算在深電子接面裝置中形成緩衝層的裝置及方法。 More specifically, the present invention relates to apparatus and methods for forming a buffer layer in a deep electronic junction device with a low thermal budget.

深接面裝置係特別有用於製造諸如IGBT(絕緣閘極雙極性電晶體),或功率金氧半場效應電晶體(MOS,亦即,MOSFET、MOS-FET、或MOS FET)的垂直功率裝置。 The deep junction device is particularly useful for fabricating vertical power devices such as IGBTs (Insulated Gate Bipolar Transistors), or Power Golden Oxide Half Field Effect Transistors (MOS, ie, MOSFETs, MOS-FETs, or MOS FETs).

許許多多的文獻描述用以形成深電子接面裝置的裝置及方法。IC製造係藉由首先完成前段處理步驟,且然後,追隨有後段處理步驟,而被達成。該前段處理係IC製造的第一部分,其中深接面裝置的第一部件係在半導體晶圓的正面上圖案化,以及該後段處理係IC製造的第二部分,其中該深接面裝置的相對部件係在該晶圓的背面上形成。當 前段處理係以金屬化步驟完成時,則通常,後段處理才開始。 Numerous documents describe devices and methods for forming deep electronic junction devices. The IC manufacturing is achieved by first completing the previous processing steps and then following the subsequent processing steps. The first stage processing is a first part of the IC fabrication, wherein the first component of the deep junction device is patterned on the front side of the semiconductor wafer, and the second portion of the back processing IC is fabricated, wherein the opposite of the deep junction device The components are formed on the back side of the wafer. when When the front-end processing is completed by the metallization step, usually, the latter processing starts.

因此,為了要保存形成於基板之正面上的電性接面及IC金屬化結構,該等後段處理步驟必須在低於大約450℃的溫度處被執行。此外,該後段處理係較佳地以低熱預算達成,用以降低處理成本。 Therefore, in order to preserve the electrical junctions and IC metallization structures formed on the front side of the substrate, the subsequent processing steps must be performed at temperatures below about 450 °C. In addition, the latter processing is preferably achieved with a low thermal budget to reduce processing costs.

在本發明內,處理步驟的熱預算係界定為溫度與在該溫度時之處理步驟的持續時間之乘積。例如,在超過1000℃之溫度的烤爐中,用於數分鐘之處理步驟的熱預算係非常地高,且與後段處理不相容。 Within the present invention, the thermal budget of the processing step is defined as the product of the temperature and the duration of the processing step at that temperature. For example, in an oven at temperatures in excess of 1000 ° C, the thermal budget for the processing steps of a few minutes is very high and incompatible with the subsequent processing.

垂直功率裝置特別需要積體電路的背面上之深摻雜緩衝層的形成。在本發明內,深層意指被埋置在包含於從基板的背面起之500奈米至大約5微米間的範圍中之距離處的層。 Vertical power devices in particular require the formation of a deep doped buffer layer on the back side of the integrated circuit. Within the present invention, deep means a layer embedded at a distance included in a range from 500 nm to about 5 μm from the back surface of the substrate.

用以形成深摻雜層的已知技術依賴標準佈植器的使用,隨後之熱擴散及激活的進行。標準佈植器係根據加速器系統,且可以以下文的兩個類別分類。中等電流加速器系統產生10微安(μA)與2毫安(mA)之間的離子束電流,而具有包含於3千電子伏特(KeV)與數百KeV之間的能量範圍。高電流加速器系統產生直至大約30毫安(mA)的離子束電流,用於直至0.2KeV到180KeV的能量。佈植深度取決於所佈植之物種的質量。熱擴散包含將基板放置在高於700℃之烤爐中數分鐘或數小時,其意指高的熱預算。熱擴散致能所深入佈植在整塊基板中之摻雜 物的激活。惟,此技術無法被應用以在IC的背面上形成深摻雜緩衝層,因為熱擴散會將取樣的正面暴露於高溫,且因為它的長持續時間(數分鐘或數小時)會變成高的熱預算。 Known techniques for forming deep doped layers rely on the use of standard implanters, followed by thermal diffusion and activation. Standard implanters are based on the accelerator system and can be categorized in two categories below. The medium current accelerator system produces an ion beam current between 10 microamps (μA) and 2 milliamps (mA) with an energy range comprised between 3 kiloelectron volts (KeV) and hundreds of KeV. The high current accelerator system produces ion beam currents up to about 30 milliamps (mA) for energies up to 0.2 KeV to 180 KeV. The depth of planting depends on the quality of the species being planted. Thermal diffusion involves placing the substrate in an oven above 700 ° C for a few minutes or hours, which means a high thermal budget. Thermal diffusion energy is deeply implanted in the bulk of the substrate Activation of the object. However, this technique cannot be applied to form a deep doped buffer layer on the back side of the IC because thermal diffusion exposes the front side of the sample to high temperatures and because its long duration (minutes or hours) becomes high. Hot budget.

現今之用以在IC基板的背面上形成深摻雜緩衝層之標準技術係以兩個個別的步驟執行:第一步驟,使用高能量佈植器以佈植摻雜物元素至通常係單晶矽晶圓的基板內;以及第二步驟,使用雷射熱退火(LTA)以激活所佈植的摻雜物。高能量佈植隨後進行LTA的方法通常在前段處理的最後步驟之後,積體電路(IC)生產線的背面處理步驟之期間被完成。在本發明內,高能量佈植意指使用包含於200千電子伏特(KeV)與數百萬電子伏特(MeV)間之範圍中的能量之離子佈植器或離子槍的摻雜物離子佈植。佈植深度取決於所佈植之物種的質量。高能量佈植係用以直接佈植摻雜物元素至整塊中之埋置層內所必需的。 The standard technology used today to form a deep doped buffer layer on the back side of an IC substrate is performed in two separate steps: a first step, using a high energy implanter to implant dopant elements to a typical single crystal Inside the substrate of the germanium wafer; and a second step, using laser thermal annealing (LTA) to activate the implanted dopant. The method of high energy implantation followed by the LTA is usually completed during the back processing step of the integrated circuit (IC) production line after the last step of the previous stage processing. Within the present invention, high energy implant means a dopant ion cloth using an ion implanter or ion gun containing energy in the range between 200 kiloelectron volts (KeV) and millions of electron volts (MeV). plant. The depth of planting depends on the quality of the species being planted. High energy implants are necessary to directly implant dopant elements into the buried layer in the monolith.

然而,高能量佈植係昂貴的,且強烈地依賴摻雜物元素。此外,通常以低的熱預算執行之雷射熱退火係受限於具有限制的及物種相依的擴散之一些摻雜物元素的激活。 However, high energy implants are expensive and strongly dependent on dopant elements. In addition, laser thermal annealing, which is typically performed with a low thermal budget, is limited by the activation of some dopant elements with limited and species-dependent diffusion.

其他的方法依賴雙重佈植方案:在從表面起1至2微米的距離處高能量佈植第一摻雜物元素,隨後在從該表面起大約500奈米的距離處進行第二摻雜物元素的淺佈植,以便形成p-n電子接面。 Other methods rely on a dual implant scheme: high energy implantation of the first dopant element at a distance of 1 to 2 microns from the surface, followed by a second dopant at a distance of approximately 500 nm from the surface The light of the elements is implanted to form a pn junction.

專利文獻DE 10 2006 053182 A1有關藉由小於500奈米(nm)深度,隨後進行第一雷射退火步驟,帽蓋層之沉 積,另一雷射退火步驟,及在高於750℃的溫度之趨入步驟的步驟,而在矽中佈植鋁或鍺摻雜物的方法。Ong等人之出版刊物“藉由雷射退火而在矽基板上形成外延SiGe的低成本方法”APL,第94冊第8號,2009年,第82104至82104頁。 Patent document DE 10 2006 053182 A1 relates to the deposition of a cap layer by a first laser annealing step by a depth of less than 500 nanometers (nm) The product, another laser annealing step, and a step of the step of stepping at a temperature higher than 750 ° C, and a method of implanting aluminum or antimony dopant in the crucible. Ong et al., "A Low Cost Method for Forming Epitaxial SiGe on a Germanium Substrate by Laser Annealing" APL, Vol. 94, No. 8, 2009, pp. 82104 to 82104.

有需要用以形成深電子接面裝置及/或垂直功率裝置,而維持前段在相對低的溫度(小於大約450℃)之較簡單的後段方法。尤其,有需要用於以低的熱預算在積體電路的背面上形成深摻雜緩衝層。 There is a need for a relatively simple back-end method for forming deep electronic junction devices and/or vertical power devices while maintaining the front section at relatively low temperatures (less than about 450 ° C). In particular, there is a need to form a deep doped buffer layer on the back side of an integrated circuit with a low thermal budget.

本發明之一目的在於提供低的熱預算技術,用以在積體電路的背面上形成深摻雜緩衝層。 It is an object of the present invention to provide a low thermal budgeting technique for forming a deep doped buffer layer on the back side of an integrated circuit.

上述目的係依據本發明而藉由提供深接面電子裝置的製造方法來達成,該方法包含以下步驟:a)提供單晶半導體材料之基板,該基板具有平面表面;b)沉積非單晶半導體材料之層於該平面表面上,該非單晶半導體材料之層具有外部表面;c)分別地,在該步驟b)之前,結合非活化的摻雜物元素至該基板內,及/或在該步驟b)之期間或之後,結合該等非活化的摻雜物元素至該非單晶半導體材料之層內,以便分別形成單晶半導體材料之非活化的摻雜層及/或非單晶半導體材料之非活化的摻雜層; d)在該步驟c)之後,將該步驟b)所形成之該外部表面的區域曝射至具有高於所決定的臨限值之能量密度的雷射熱退火光束,以便使藉由該雷射熱退火光束所界定之體積內的該非單晶半導體材料之層熔化成與該基板的介面,並激活在該步驟c)所結合的該等摻雜物元素;以及e)停止對該雷射熱退火光束之該區域的曝射,以便從與該基板的該介面誘導出該非單晶半導體材料之層的外延式結晶,直至該外部表面,並誘導延伸在該介面與該外部表面間的該體積上之外延式單晶半導體材料的形成,且其中該基板及/或該外延式單晶半導體材料分別包含活化的摻雜單晶半導體材料之層。 The above object is achieved in accordance with the present invention by providing a method of manufacturing a deep junction electronic device comprising the steps of: a) providing a substrate of a single crystal semiconductor material having a planar surface; b) depositing a non-single crystal semiconductor a layer of material on the planar surface, the layer of non-single crystal semiconductor material having an outer surface; c) separately, prior to step b), bonding a non-activated dopant element into the substrate, and/or During or after step b), the non-activated dopant elements are combined into the layer of the non-single-crystal semiconductor material to form an inactive doped layer and/or a non-single-crystal semiconductor material of the single crystal semiconductor material, respectively. a non-activated doped layer; d) after the step c), exposing the region of the outer surface formed by the step b) to a laser thermal annealing beam having an energy density higher than the determined threshold value, so as to a layer of the non-single crystal semiconductor material within the volume defined by the thermal annealing beam is melted into an interface with the substrate and activating the dopant elements combined in step c); and e) stopping the laser Exposing the region of the thermally annealed beam to induce epitaxial crystallization of the layer of non-single crystal semiconductor material from the interface with the substrate, up to the outer surface, and inducing the extension between the interface and the outer surface The formation of a bulky extended single crystal semiconductor material, and wherein the substrate and/or the epitaxial single crystal semiconductor material respectively comprise a layer of activated doped single crystal semiconductor material.

因而,外延式單晶半導體材料及摻雜單晶半導體材料之層具有與單晶半導體材料之基板相同的晶格及晶體取向。 Thus, the epitaxial single crystal semiconductor material and the layer doped with the single crystal semiconductor material have the same lattice and crystal orientation as the substrate of the single crystal semiconductor material.

步驟b)可以以一般小於500℃,及較佳地小於300℃,或甚至小於250℃的低溫執行。步驟c)可藉由標準或低的能量佈植,且以受限的佈植劑量,以及在因為摻雜物元素摻入的淺深度而不能在高能量之任何情況中,被執行。因此,步驟c)並不需要高能量佈植器,也不需要高劑量的佈植。 Step b) can be carried out at a low temperature generally less than 500 ° C, and preferably less than 300 ° C, or even less than 250 ° C. Step c) can be performed by standard or low energy implantation, and in a limited implant dose, and in any case where high energy is not possible due to the shallow depth of dopant element incorporation. Therefore, step c) does not require a high energy implanter and does not require high dose implants.

在本發明中所詳細描述的特殊實施例中,步驟c)可在步驟b)之期間被執行,該等摻雜物係以精確的化學劑量與該非單晶半導體材料沉積在一起。 In a particular embodiment described in detail in the present invention, step c) can be performed during step b), the dopants being deposited with the non-single crystalline semiconductor material at a precise chemical dose.

步驟d)產生該非單晶層的全熔化,且此熔化係空間 地受限於由雷射光束尺寸所決定的區域上,並受限於深度中,以便將該非單晶層熔化成與該基板的介面。該熔化並不會在基板之本身內實質地蔓延,且因此,不會影響到該基板的相對面,其係電子裝置的正面。此外,步驟d)係藉由雷射脈衝持續時間而被暫時地限制,因而此步驟通常持續小於1秒鐘。再者,該雷射光束同時地產生局部的外延式結晶和有效率的摻雜物激活。 Step d) producing full melting of the non-single crystal layer, and the melting space The ground is limited by the area determined by the size of the laser beam and is limited by the depth to melt the non-single crystal layer into an interface with the substrate. This melting does not substantially propagate within the substrate itself and, therefore, does not affect the opposing faces of the substrate, which is the front side of the electronic device. Furthermore, step d) is temporarily limited by the duration of the laser pulse, so this step typically lasts less than one second. Furthermore, the laser beam simultaneously produces localized epitaxial crystallization and efficient dopant activation.

總之,在單晶基板中所埋置之單晶半導體材料的深摻雜層之形成係因而以極受限的熱預算獲得,且同時將正面維持在低溫處。此方法係比先前技藝的後段處理更簡單,因為它並不需要高能量佈植器。 In summary, the formation of a deep doped layer of a single crystal semiconductor material embedded in a single crystal substrate is thus obtained with a very limited thermal budget while maintaining the front side at a low temperature. This method is simpler than the post-processing of the prior art because it does not require a high energy implanter.

再者,此方法致能摻雜位準及摻雜輪廓的較佳控制。它使具有摻雜物輪廓的摻雜層能夠形成,此係無法使用先前技藝方法達成的。 Furthermore, this method enables better control of doping levels and doping profiles. It enables the formation of a doped layer with a dopant profile that cannot be achieved using prior art methods.

因而,此方法使摻雜單晶半導體材料之深緩衝層能夠以低的熱預算形成。 Thus, this method enables a deep buffer layer of doped single crystal semiconductor material to be formed with a low thermal budget.

此方法可被應用在具有圖案化正面之基板的背面表面上,例如,用以形成IGBT或MOSFET裝置。 This method can be applied to the back surface of a substrate having a patterned front side, for example, to form an IGBT or MOSFET device.

此方法係局部地應用在藉由雷射光束之區域而被限制的表面區域上,且可使用一步驟及重複的方法而被應用在相同基板的相鄰區域。較佳地,以雷射光束照射背面表面的步驟包含以僅一雷射脈衝用於各個選擇的區,而照射背面表面之至少兩個選擇的區,該兩個選擇的區重疊最多1%。 This method is applied locally to the surface area that is limited by the area of the laser beam, and can be applied to adjacent areas of the same substrate using a one-step and repeated method. Preferably, the step of illuminating the back surface with a laser beam comprises illuminating at least two selected regions of the back surface with only one laser pulse for each selected region, the two selected regions overlapping by at most 1%.

本發明之方法提供深摻雜緩衝層之輪廓的較佳控制。 The method of the present invention provides better control of the profile of the deep doped buffer layer.

依據本發明之特殊及有利的觀點,在該步驟d)之期間,該雷射光束係準分子雷射光束,具有在該非單晶半導體材料之吸收範圍中的雷射波長。 According to a particular and advantageous aspect of the invention, during this step d), the laser beam is an excimer laser beam having a laser wavelength in the absorption range of the non-single crystal semiconductor material.

依據另一特殊的觀點,該步驟c)包含在步驟a)之後及在步驟b)之前被執行的步驟c1),該步驟c1)包含對具有低於數百千電子伏特(KeV)之能量的離子佈植射束(如由標準佈植器之能力所界定的)之該基板的該表面之曝射,以便將該等非活化的摻雜物元素佈植至該單晶半導體基板內,且形成由該等非活化的摻雜物元素所摻雜,並從該平面表面延伸至該單晶半導體基板內之單晶半導體材料的層。 According to another particular point of view, this step c) comprises a step c1) which is carried out after step a) and before step b), the step c1) comprising an energy having a energy lower than several hundred kiloelectron volts (KeV) Exposing the surface of the substrate of the ion implant beam (as defined by the capabilities of a standard implanter) to implant the non-activated dopant elements into the single crystal semiconductor substrate, and A layer of single crystal semiconductor material doped with the non-activated dopant elements and extending from the planar surface to the single crystal semiconductor substrate is formed.

依據另一特殊的觀點,該步驟c)包含在步驟b)之期間被執行的步驟c2),該步驟c2)包含該等摻雜物元素至該非單晶半導體材料之層內的該結合。 According to another particular point of view, the step c) comprises a step c2) performed during the step b), the step c2) comprising the bonding of the dopant elements into the layer of the non-single-crystal semiconductor material.

依據仍另一特殊的觀點,該步驟c)包含在該等步驟a)及b)之後被執行的步驟c3),該步驟c3)包含對離子佈植射束之該非單晶半導體材料之層的曝射,以便將該等非活化的摻雜物元素佈植至該非單晶半導體材料之層內,且形成由該等非活化的摻雜物元素所摻雜之非單晶半導體材料的層。 According to still another particular point of view, the step c) comprises a step c3) performed after the steps a) and b), the step c3) comprising a layer of the non-single-crystal semiconductor material that is ion beam implanted Exposure to implant the non-activated dopant elements into a layer of the non-single crystalline semiconductor material and forming a layer of non-single crystalline semiconductor material doped with the non-activated dopant elements.

依據特殊的實施例,該活化的摻雜單晶半導體之層係摻雜有第一摻雜物類型,以及該活化的摻雜外延式單晶半導體之層係摻雜有第二摻雜物類型。 According to a particular embodiment, the layer of the activated doped single crystal semiconductor is doped with a first dopant type, and the layer of the activated doped epitaxial single crystal semiconductor is doped with a second dopant type .

依據較佳的實施例,該方法進一步包含在步驟b)之前清潔該基板之該表面的另一步驟,以便從該表面去除任何氧化物層。 According to a preferred embodiment, the method further comprises the further step of cleaning the surface of the substrate prior to step b) to remove any oxide layer from the surface.

依據本發明之特殊及有利的觀點,該基板係由晶體矽所製成及/或該非單晶層係由非晶或多晶矽所製成,及/或該半導體材料係在矽及鍺之中選出。 According to a particular and advantageous aspect of the invention, the substrate is made of crystalline germanium and/or the non-single crystal layer is made of amorphous or polycrystalline germanium, and/or the semiconductor material is selected among the germanium and germanium. .

依據本發明之另一特殊及有利的觀點,結合非活化的摻雜物元素之該步驟c)被完成,以便沿著與該基板的該平面表面橫切之方向的梯度輪廓結合摻雜物元素。 According to another particular and advantageous aspect of the invention, this step c) in combination with the non-activated dopant element is completed in order to combine dopant elements along a gradient profile in a direction transverse to the planar surface of the substrate .

依據實施例,該外延式晶體半導體層係n摻雜的,以及該晶體半導體基板係在與該外延式晶體半導體層的介面處p摻雜。 According to an embodiment, the epitaxial crystalline semiconductor layer is n-doped, and the crystalline semiconductor substrate is p-doped at the interface with the epitaxial crystalline semiconductor layer.

依據另一實施例,該外延式晶體半導體層係p摻雜的,以及該晶體半導體基板係在與該外延式晶體半導體層的介面處n摻雜。 According to another embodiment, the epitaxial crystalline semiconductor layer is p-doped, and the crystalline semiconductor substrate is n-doped at the interface with the epitaxial crystalline semiconductor layer.

依據較佳的實施例,該外延式單晶半導體材料之層具有包含於500奈米與3微米之間的厚度。 According to a preferred embodiment, the layer of epitaxial single crystal semiconductor material has a thickness comprised between 500 nm and 3 microns.

依據本發明之另一特殊及有利的觀點,步驟d)包含將該非單晶半導體材料之層曝射至準分子雷射光束,該準分子雷射光束具有在從0.1到10焦耳/平方公分之範圍中的能量密度及低於600奈米的雷射波長。 According to another particular and advantageous aspect of the invention, step d) comprises exposing the layer of non-single-crystal semiconductor material to an excimer laser beam having a refractive index of from 0.1 to 10 joules per square centimeter Energy density in the range and laser wavelengths below 600 nm.

較佳地,該等步驟d)及e)係在氣體的氛圍中且在控制的壓力及溫度下執行,該氣體氛圍係在惰性氣體、空氣、或真空之中選出。 Preferably, the steps d) and e) are carried out in a gas atmosphere and at a controlled pressure and temperature, the gas atmosphere being selected among inert gases, air, or vacuum.

做為選項,該方法進一步包含測量在該非單晶半導體材料之層的該外部表面上所反射之光束的步驟,以便控制該步驟d)之期間的該非單晶半導體材料之層的全熔化,及該步驟e)期間之該層的外延式結晶化。 Alternatively, the method further comprises the step of measuring a beam reflected on the outer surface of the layer of non-single crystal semiconductor material to control the total melting of the layer of non-single-crystal semiconductor material during step d), and Epitaxial crystallization of the layer during this step e).

本發明之進一步的目的在於使用本發明之方法,以供形成在絕緣閘極雙極性電晶體或功率金氧半場效應電晶體之中所選擇的垂直電晶體裝置之用。 It is a further object of the present invention to use the method of the present invention for forming a vertical transistor device selected among an insulated gate bipolar transistor or a power MOS field effect transistor.

本發明之進一步的目的在於提供包含單晶半導體基板的深接面電子裝置,其包含具有外部表面及與該單晶半導體基板之介面的外延式單晶半導體材料之層,以及其中該單晶半導體基板及/或該外延式單晶半導體材料之層分別包含活化的摻雜單晶半導體材料之層,其中該介面係位於包含在從該外部表面起之1與5微米間的深度處,且其中該活化的摻雜單晶半導體材料之層的摻雜輪廓係非高斯輪廓(non-Gaussian profile)。做為實例,摻雜半導體材料之該單晶層的厚度係包含在數百奈米與2微米之間。較佳地,摻雜半導體材料的該單晶層具有以下之中所選擇之控制的摻雜位準輪廓:階梯狀輪廓、三角形輪廓、梯度輪廓、高斯輪廓(Gaussian profile)。 It is a further object of the present invention to provide a deep junction electronic device comprising a single crystal semiconductor substrate comprising a layer having an outer surface and an epitaxial single crystal semiconductor material interfacing with the single crystal semiconductor substrate, and wherein the single crystal semiconductor The substrate and/or the layer of the epitaxial single crystal semiconductor material respectively comprise a layer of activated doped single crystal semiconductor material, wherein the interface is located at a depth comprised between 1 and 5 microns from the outer surface, and wherein The doped profile of the layer of activated doped single crystal semiconductor material is a non-Gaussian profile. As an example, the thickness of the single crystal layer doped with the semiconductor material is comprised between hundreds of nanometers and 2 microns. Preferably, the single crystal layer doped with a semiconductor material has a selected doped level profile selected from the group consisting of a stepped profile, a triangular profile, a gradient profile, and a Gaussian profile.

本發明亦有關在下文說明中所揭示之特徵,且其將被單獨地考慮或依據任何可能的技術組合而予以考慮。 The invention also relates to the features disclosed in the following description, and which will be considered separately or in accordance with any possible combination of techniques.

1‧‧‧單晶基板 1‧‧‧ single crystal substrate

2‧‧‧埋置層 2‧‧‧buried layer

3、6、8、11‧‧‧介面 3, 6, 8, 11‧‧ interface

4‧‧‧摻雜層 4‧‧‧Doped layer

5‧‧‧非單晶半導體層 5‧‧‧Non-single crystal semiconductor layer

7‧‧‧內部摻雜層 7‧‧‧Internal doping layer

9‧‧‧平面表面 9‧‧‧ planar surface

10‧‧‧高能量佈植射束 10‧‧‧High energy implant beam

15‧‧‧外延式單晶半導體層 15‧‧‧ Epitaxial single crystal semiconductor layer

17、27、37‧‧‧埋置之摻雜的半導體外延式單晶層 17, 27, 37‧‧‧ embedded doped semiconductor epitaxial single crystal layer

19‧‧‧外部表面 19‧‧‧External surface

20‧‧‧雷射光束 20‧‧‧Laser beam

30‧‧‧雷射熱退火光束 30‧‧‧Laser thermal annealing beam

40‧‧‧離子佈植射束 40‧‧‧Ion Beam

此說明僅係用於非限制的描繪性目的,且當參考附圖 時,將被較佳地瞭解,其中:第1圖描繪依據先前技藝之單晶半導體基板的橫剖面視圖;第2圖描繪依據先前技藝之高能量佈植摻雜物元素至半導體基板內的步驟;第3圖描繪依據先前技藝之雷射熱退火的步驟;第4圖以橫剖面描繪由於第1至3圖上所描繪的處理步驟所導致之晶體矽晶圓中的深摻雜緩衝層;第5圖以橫剖面描繪依據在晶體基板上沉積非單晶半導體層之第一實施例的處理步驟b)或步驟b)及c)的組合;第6圖描繪依據藉由標準或低的能量佈植而結合摻雜物元素至非單晶半導體層內的第一實施例之變化例的步驟c);第7圖描繪依據本發明第一實施例之雷射熱退火的步驟d);第8圖以橫剖面描繪由於第5及7圖上,或第5、6、及7圖上所描繪的處理步驟所導致之單晶基板的背面上之外延式單晶摻雜半導體的層;第9圖描繪依據本發明另一特殊實施例之標準或低能量佈植摻雜物元素至半導體基板內的步驟c);第10圖以橫剖面描繪在第9圖上所描繪的步驟c)之後,在基板上沉積非單晶半導體層的另一步驟b);第11圖描繪在第10圖上所描繪的步驟c)之後的雷射 熱退火之步驟d);以及第12圖以橫剖面描繪由於第9至11圖上所描繪之處理步驟所導致的晶體基板之背面上的深緩衝層; This description is for non-limiting illustrative purposes only, and when reference is made to the accompanying drawings It will be better understood, wherein: Figure 1 depicts a cross-sectional view of a single crystal semiconductor substrate in accordance with the prior art; and Figure 2 depicts the steps of implanting a dopant element into a semiconductor substrate in accordance with prior art high energy. Figure 3 depicts the steps of laser thermal annealing in accordance with the prior art; and Figure 4 depicts, in cross section, the deep doped buffer layer in the wafer wafer due to the processing steps depicted in Figures 1 through 3; Figure 5 is a cross-sectional view depicting a combination of process step b) or steps b) and c) of a first embodiment for depositing a non-single crystalline semiconductor layer on a crystalline substrate; Figure 6 depicts a basis for energy by standard or low Step c) of a variation of the first embodiment in which the dopant element is incorporated into the non-single-crystal semiconductor layer; FIG. 7 depicts a step d) of the laser thermal annealing according to the first embodiment of the present invention; 8 is a cross-sectional view depicting a layer of a monolithic doped semiconductor on the back side of a single crystal substrate resulting from the processing steps depicted on pages 5 and 7, or 5, 6, and 7; Figure 9 depicts standard or low energy in accordance with another particular embodiment of the present invention Step c) of implanting dopant elements into the semiconductor substrate; FIG. 10 is a cross-sectional view of another step b) of depositing a non-single-crystal semiconductor layer on the substrate after step c) depicted on FIG. Figure 11 depicts the laser after step c) depicted on Figure 10. Thermal annealing step d); and FIG. 12 depicts, in cross section, a deep buffer layer on the back side of the crystal substrate resulting from the processing steps depicted in Figures 9 through 11;

處理 deal with

第1至3圖示意地描繪依據先前技藝之用以在例如,單晶矽晶圓之晶體基板1中形成深摻雜緩衝層的方法。 1 to 3 schematically depict a method for forming a deep doped buffer layer in a crystal substrate 1 of, for example, a single crystal germanium wafer according to the prior art.

單晶基板1係使用以形成具有垂直電子接面的功率電子裝置,其中電晶體具有例如,在基板的正面上之柵極及射極的兩個接觸區,以及例如,在基板的背面上之集極的至少另一個接點。垂直功率裝置需要在基板1的正面表面上及在背面上之不同摻雜層的形成。 The single crystal substrate 1 is used to form a power electronic device having a vertical electron junction, wherein the transistor has, for example, two contact regions of the gate and the emitter on the front side of the substrate, and, for example, on the back surface of the substrate At least one other junction of the collector. Vertical power devices require the formation of different doped layers on the front surface of the substrate 1 and on the back side.

基板1通常係由單晶半導體材料,較佳地係由晶體矽(c-Si)或鍺(c-Ge)所製成。基板1具有具備例如,(111)或(100)之所決定的晶體取向之扁平表面9。例如,該扁平表面9表示具有IC特徵於相對的正面上之圖案化晶圓的背面表面。 The substrate 1 is typically made of a single crystal semiconductor material, preferably crystalline germanium (c-Si) or germanium (c-Ge). The substrate 1 has a flat surface 9 having, for example, a crystal orientation determined by (111) or (100). For example, the flat surface 9 represents the back surface of a patterned wafer having IC features on opposite sides.

第1至3圖描繪用以在晶體基板1的表面9上形成深摻雜緩衝層之習知方法。現今,該習知技術包含高能量佈植的第一步驟(第2圖),及用於以低的熱預算激活摻雜物之雷射退火的第二步驟(第3圖)。 FIGS. 1 to 3 depict a conventional method for forming a deep doped buffer layer on the surface 9 of the crystal substrate 1. Today, this prior art technique includes a first step of high energy implantation (Fig. 2) and a second step (Fig. 3) for laser annealing to activate dopants with a low thermal budget.

在第2圖上,高能量佈植步驟包含將晶體基板1的背面表面9曝射於高能量佈植射束10,用以佈植摻雜物元素的 離子至該基板內。例如,在單晶矽基板1中,高能量佈植係使用以根據應用而佈植在硼、磷、砷、鋁、鎵、銦、鉈、銻、及鉍之中所選擇的摻雜物元素。摻雜層2係埋置且延伸於自背面表面9起之大約2至5微米的距離處。因而所形成的埋置層2包含非活化的摻雜物元素,且具有包含在大致以高斯(Gaussian)摻雜位準輪廓之2與5微米間的厚度d2。惟,高能量佈植係昂貴的,且強烈地依賴摻雜物元素。例如,磷原子的佈植係使用以形成n摻雜的緩衝層。磷離子的高能量佈植意指佈植具有包含在500千電子伏特(KeV)與數百萬電子伏特(MeV)間的範圍中之能量的磷離子。高斯輪廓(西格瑪(sigma)及峯值)取決於離子射束佈植器的特徵。控制離子射束之入射的角度使高斯摻雜輪廓(Gaussian doping profile)之峯值位置的調整能夠在相當有限的範圍內進行。而且,所佈植的離子係非活化的。 In Fig. 2, the high energy implantation step comprises exposing the back surface 9 of the crystal substrate 1 to the high energy implant beam 10 for implanting dopant elements. Ions are implanted into the substrate. For example, in the single crystal germanium substrate 1, the high energy implant system uses dopant elements selected to be implanted among boron, phosphorus, arsenic, aluminum, gallium, indium, antimony, bismuth, and antimony depending on the application. . The doped layer 2 is embedded and extends at a distance of about 2 to 5 microns from the back surface 9. The buried layer 2 thus formed comprises an inactive dopant element and has a thickness d2 comprised between 2 and 5 microns substantially in a Gaussian doped profile. However, high energy implants are expensive and strongly dependent on dopant elements. For example, implants of phosphorus atoms are used to form an n-doped buffer layer. High energy implantation of phosphorus ions means implanting phosphorus ions having an energy in the range between 500 kiloelectron volts (KeV) and millions of electron volts (MeV). The Gaussian profile (sigma and peak) depends on the characteristics of the ion beam implanter. Controlling the angle of incidence of the ion beam enables adjustment of the peak position of the Gaussian doping profile to be performed over a relatively limited range. Moreover, the implanted ions are not activated.

在第3圖上,第二步驟包含激活所佈植的摻雜物元素。第3圖描繪例如,使用雷射之熱退火的步驟。雷射光束20被指引朝向基板1的背面表面9。雷射光束20具有決定的功率密度,以便將埋置層2中之佈植的摻雜物元素激活,而藉以形成摻雜半導體材料的單晶層4。例如,雷射光束20係準分子雷射光束,其具有在可見光或紫外線(UV)範圍中,較佳地在250奈米(nm)與355奈米(nm)之間的波長,以及在奈秒至次微秒範圍中,通常在50奈秒(ns)與200奈秒(ns)之間,且較佳地在130奈 秒(ns)與180奈秒(ns)之間的脈衝持續時間。該雷射脈衝呈現大於25平方毫米(mm2),較佳地大於200平方毫米(mm2)的幾何橫剖面。準分子雷射光束產生限制於UV雷射光束的大約10奈米至可見光雷射光束的大約1微米之深度的淺加熱。該等操作條件避免在基板內的熱擴散。無論如何,準分子雷射光束並不會透過晶體基板而產生直至正面的熔化,以便防止正面之層的劣化。根據摻雜物元素,雷射光束20可誘導直至與基板1的介面3之摻雜物元素的受限擴散。確切地,光係根據雷射波長而在第一層中被吸收,且所曝射的材料則幾乎與該等摻雜物無關。真正控制退火槽之穿透的熔化深度係所施加的雷射能量密度。因此,該等摻雜物亦應在該熔化深度內或與該熔化區相鄰,以便將被激活。 In Figure 3, the second step involves activating the implanted dopant elements. Figure 3 depicts, for example, the step of thermal annealing using a laser. The laser beam 20 is directed toward the back surface 9 of the substrate 1. The laser beam 20 has a determined power density to activate the implanted dopant elements in the buried layer 2 to form a single crystal layer 4 of doped semiconductor material. For example, the laser beam 20 is a quasi-molecular laser beam having a wavelength in the visible or ultraviolet (UV) range, preferably between 250 nanometers (nm) and 355 nanometers (nm), and In the second to sub-microsecond range, typically between 50 nanoseconds (ns) and 200 nanoseconds (ns), and preferably between 130 nanoseconds (ns) and 180 nanoseconds (ns) . The laser pulse exhibits a geometric cross-section of greater than 25 square millimeters (mm 2 ), preferably greater than 200 square millimeters (mm 2 ). The excimer laser beam produces a shallow heating that is limited to a depth of about 10 nanometers from the UV laser beam to a depth of about 1 micrometer of the visible laser beam. These operating conditions avoid thermal diffusion within the substrate. In any event, the excimer laser beam does not pass through the crystal substrate until the front side is melted in order to prevent deterioration of the front layer. Depending on the dopant element, the laser beam 20 can induce a limited diffusion of dopant elements up to the interface 3 of the substrate 1. Specifically, the light system is absorbed in the first layer according to the laser wavelength, and the exposed material is almost independent of the dopants. The depth of fusion that truly controls the penetration of the annealing bath is the laser energy density applied. Therefore, the dopants should also be within the melting depth or adjacent to the melting zone so as to be activated.

第4圖描繪基板1的橫剖面視圖,包含由於在第2及3圖上所描繪的高能量佈植及雷射熱退火步驟之結果所獲得的摻雜半導體材料之單晶層4。摻雜半導體材料之該單晶層4具有包含在幾百奈米至5微米之範圍中的厚度。在摻雜層4與基板1之間的介面3係在從基板1的背面表面9起之大約1至5微米的距離處。 Figure 4 depicts a cross-sectional view of substrate 1 comprising a single crystal layer 4 of doped semiconductor material obtained as a result of the high energy implantation and laser thermal annealing steps depicted on Figures 2 and 3. The single crystal layer 4 doped with a semiconductor material has a thickness comprised in the range of several hundred nanometers to 5 micrometers. The interface 3 between the doped layer 4 and the substrate 1 is at a distance of about 1 to 5 μm from the back surface 9 of the substrate 1.

惟,高能量佈植係昂貴的,且強烈地依賴摻雜物元素。此外,低熱預算退火僅能夠以限制的及物種相依的擴散來激活該等摻雜物。 However, high energy implants are expensive and strongly dependent on dopant elements. In addition, low thermal budget annealing can only activate the dopants with limited and species dependent diffusion.

此方法通常係在後段處理步驟期間完成於積體電路(IC)的生產線中。此方法係在前段處理的最後步驟之後 完成。後段處理步驟係因而以低的熱預算執行,以便保存已在基板之正面上形成的IC結構。 This method is typically completed in the production line of the integrated circuit (IC) during the post-processing steps. This method is after the last step of the previous paragraph carry out. The post-processing steps are thus performed with a low thermal budget to preserve the IC structure that has been formed on the front side of the substrate.

儘管如此,深摻雜緩衝層無法藉由使用標準佈植器及隨後進行的熱擴散而在背面上被形成,因為熱擴散隱含高的熱預算(數分鐘直至數小時的持續時間之700℃以上的溫度),而超過所致力於後段處理的熱預算限制。在本發明內,標準能量佈植意指以包含在數百電子伏特(eV)與數百千電子伏特(KeV)間的能量範圍佈植摻雜物元素。 Nevertheless, deep doped buffer layers cannot be formed on the back side by using standard implanters and subsequent thermal diffusion because thermal diffusion implies a high thermal budget (700 ° C for a few minutes up to several hours duration) Above temperature), and exceeds the thermal budget limit for the post-processing. Within the present invention, standard energy implantation means implanting dopant elements in an energy range comprised between hundreds of electron volts (eV) and hundreds of electron volts (KeV).

本發明提出用於以低的熱預算來形成深摻雜埋置層的替代方法。 The present invention proposes an alternative method for forming a deep doped buried layer with a low thermal budget.

第一實施例 First embodiment

第5至7圖描繪依據第一實施例之用以形成摻雜埋置層的方法,以及第8圖描繪生成的結構。 Figures 5 through 7 depict a method for forming a doped buried layer in accordance with a first embodiment, and Figure 8 depicts the resulting structure.

在第5至7圖上所描繪的該等步驟之前,係提供具有平面表面9的單晶半導體基板1(如第1圖上所描繪地)。單晶半導體基板1係例如,晶體矽(c-Si)基板或晶體鍺(c-Ge)基板。平面表面9係例如,藉由化學機械研磨法或任何其他已知的技術而被獲得。平面表面9具有例如,(111)或(100)之所決定的晶體取向。 Prior to the steps depicted on Figures 5 through 7, a single crystal semiconductor substrate 1 having a planar surface 9 (as depicted on Figure 1) is provided. The single crystal semiconductor substrate 1 is, for example, a crystal germanium (c-Si) substrate or a crystal germanium (c-Ge) substrate. The planar surface 9 is obtained, for example, by chemical mechanical milling or any other known technique. The planar surface 9 has, for example, a crystal orientation determined by (111) or (100).

第5圖描繪單晶半導體基板1的平面表面9上之非單晶半導體材料的層5之沉積的步驟。層5及基板1之半導體材料具有相同的晶格。較佳地,層5及基板1係由例如,矽或鍺之相同的半導體材料所製成。例如,非單晶半導體材料 的層5係由非晶矽或多晶矽所製成。層5的沉積步驟可使用諸如濺鍍法、化學氣相沉積法(CVD)、或電漿輔助化學氣相沉積法(PECVD)之薄膜沉積的已知方法,而予以執行。 Figure 5 depicts the step of depositing a layer 5 of non-single crystalline semiconductor material on the planar surface 9 of the single crystal semiconductor substrate 1. The semiconductor materials of layer 5 and substrate 1 have the same crystal lattice. Preferably, layer 5 and substrate 1 are made of the same semiconductor material, for example, tantalum or niobium. For example, non-single crystal semiconductor materials Layer 5 is made of amorphous germanium or polycrystalline germanium. The deposition step of layer 5 can be performed using known methods of thin film deposition such as sputtering, chemical vapor deposition (CVD), or plasma assisted chemical vapor deposition (PECVD).

非單晶半導體材料的層5具有在幾百奈米至幾微米(3微米(μm)可係上限)之範圍中的厚度d5。層5具有外部表面19。基板1之表面9現在形成與非單晶半導體材料的層5之介面。 The layer 5 of the non-single-crystal semiconductor material has a thickness d5 in the range of several hundred nanometers to several micrometers (the upper limit of 3 micrometers (μm)). Layer 5 has an outer surface 19. The surface 9 of the substrate 1 now forms an interface with the layer 5 of the non-single crystal semiconductor material.

第6圖描繪使用標準能量離子佈植射束40之摻雜的替代或選項步驟。在其中層5在沉積期間被摻雜的情況中,離子佈植之步驟係選項的。離子佈植之步驟包含在非單晶半導體層5的外部表面19上指引離子佈植射束40。摻雜物元素被佈植在非單晶半導體層5中,而藉以形成位在非單晶半導體材料內及/或位在單晶基板1內部之包含非活化摻雜物元素的層7。非活化的摻雜半導體非單晶層7具有包含在幾百奈米與幾微米之間的厚度d7。在摻雜半導體非單晶層7之內,摻雜物濃度輪廓可係約略恆定的,或可特殊地根據摻雜物物種及根據離子佈植能量而遵循梯度曲線。 Figure 6 depicts an alternative or option step of doping with a standard energy ion implant beam 40. In the case where layer 5 is doped during deposition, the steps of ion implantation are optional. The step of ion implantation comprises directing the ion implantation beam 40 on the outer surface 19 of the non-single crystalline semiconductor layer 5. The dopant elements are implanted in the non-single-crystal semiconductor layer 5, thereby forming a layer 7 comprising non-activated dopant elements in the non-single-crystal semiconductor material and/or in the interior of the single crystal substrate 1. The non-activated doped semiconductor non-single crystal layer 7 has a thickness d7 comprised between several hundred nanometers and several micrometers. Within the doped semiconductor non-single crystal layer 7, the dopant concentration profile may be approximately constant, or may specifically follow a gradient profile depending on the dopant species and depending on the ion implantation energy.

應注意的是,在離子佈植的步驟之後被結合於非單晶半導體層5中的摻雜物元素係非活化的。 It should be noted that the dopant elements incorporated in the non-single-crystal semiconductor layer 5 after the ion implantation step are inactivated.

標準能量佈植可以比高能量佈植更降低成本,可以與許許多多的摻雜物元素相容,且提供與摻雜物元素物種的穩定性。 Standard energy implants can reduce cost over high energy implants, are compatible with many dopant elements, and provide stability with dopant species species.

在該等摻雜物元素的結合之後,第7圖描繪所施加至 非單晶半導體材料的層5之雷射熱退火的步驟。更確切地,雷射光束30被指引朝向非單晶半導體層5的外部表面19,此層被均勻地摻雜或包含內部摻雜層7。 After the combination of the dopant elements, Figure 7 depicts the application to The step of laser thermal annealing of layer 5 of a non-single crystal semiconductor material. More precisely, the laser beam 30 is directed towards the outer surface 19 of the non-single-crystal semiconductor layer 5, which layer is uniformly doped or comprises an inner doped layer 7.

雷射光束30係例如,脈衝式準分子雷射光束,具有選擇的波長、脈衝持續時間、及能量,以便將由非單晶半導體層5所吸收。雷射光束30具有高於決定之臨限值的能量密度,以便在從外部表面19延伸至單晶基板1內之介面6的深度d6上,產生非單晶層5的全熔化。同時,雷射光束30誘導存在於摻雜層5中及/或被佈植在摻雜非單晶層7中之該等摻雜物元素的激活。無論如何,雷射光束30並不會誘導單晶基板1之實質深入的熔化,而藉以保存基板的相對面。此外,雷射熱退火光束在藉由雷射光束尺寸而被空間限制的區域上,產生熔化及摻雜物激活。當作實例,具有小於1050奈米(nm)之波長的單一雷射脈衝30以比1414℃之矽的熔點更高的溫度誘導局部加熱。因而,該雷射脈衝係適用以使直至數微米,例如,直至5微米的厚度上之非晶矽或多晶矽的層5熔化。該雷射脈衝具有可根據層5之厚度而被調整的能量密度,以致使熔化發生於與單晶基板的介面或稍微在此介面之下,而不會實質延伸到該單晶基板內。 The laser beam 30 is, for example, a pulsed excimer laser beam having a selected wavelength, pulse duration, and energy for absorption by the non-single crystal semiconductor layer 5. The laser beam 30 has an energy density above a determined threshold to produce full melting of the non-single crystal layer 5 over a depth d6 extending from the outer surface 19 to the interface 6 in the single crystal substrate 1. At the same time, the laser beam 30 induces activation of the dopant elements present in the doped layer 5 and/or implanted in the doped non-single crystal layer 7. In any event, the laser beam 30 does not induce substantial deep melting of the single crystal substrate 1, thereby preserving the opposite side of the substrate. In addition, the laser thermal annealing beam produces melting and dopant activation over a region that is spatially constrained by the size of the laser beam. As an example, a single laser pulse 30 having a wavelength of less than 1050 nanometers (nm) induces localized heating at a temperature higher than the melting point of 1414 °C. Thus, the laser pulse is suitable for melting a layer 5 of amorphous germanium or polycrystalline silicon up to a thickness of a few microns, for example up to 5 microns. The laser pulse has an energy density that can be adjusted according to the thickness of the layer 5 such that the melting occurs at or slightly below the interface with the single crystal substrate without substantially extending into the single crystal substrate.

雷射熱退火步驟d)係在當非單晶半導體層5被全熔化至與單晶基板1的介面9時,停止。雷射熱退火的深度可藉由測量摻雜物輪廓來控制後驗,因為雷射熱退火亦用作摻雜物激活。在深度中,摻雜物元素在尚未被照射之塊矽材 料中保持非活化。反射儀可被使用以控制外延式層的實體狀態(固態或液態)。 The laser thermal annealing step d) is stopped when the non-single-crystal semiconductor layer 5 is completely melted to the interface 9 with the single crystal substrate 1. The depth of the laser thermal anneal can be controlled by measuring the dopant profile since laser thermal annealing is also used as dopant activation. In depth, the dopant element is in a piece of coffin that has not been illuminated yet The material remains non-activated. A reflectometer can be used to control the physical state (solid or liquid) of the epitaxial layer.

雷射熱退火步驟係以受限之熱預算來執行,因為該等雷射脈衝係以持續時間來限制,以及因為熔化深度係受限於非單晶層5的厚度,且亦藉由雷射光束30之尺寸而被側向地限制。 The laser thermal annealing step is performed with a limited thermal budget because the laser pulses are limited in duration and because the depth of fusion is limited by the thickness of the non-single crystal layer 5 and also by laser The size of the beam 30 is laterally limited.

在停止雷射熱退火步驟之後,所熔化的半導體層立即地,且更確切地說,在小於幾百奈秒直至小於1秒之中冷卻下來。溫度的降低藉由與周遭氛圍之自然對流及/或藉由與基板之傳導而發生。較佳地,基板係安置在取樣台上,該取樣台包含能夠控制基板溫度及與晶圓接觸之溫度的系統。一旦熔化層之溫度降低到半導體材料的固相線以下,該層藉由使結晶化而固態化。結晶化起源於單晶基板。單晶基板1的扁平表面9用作外延式結晶化的晶種。更確切地,非單晶層5結晶化為外延式單晶半導體層15。此外延式單晶半導體層15係摻雜有活化的摻雜物,及/或包含具有活化的摻雜物之埋置摻雜層17。 After the laser thermal annealing step is stopped, the molten semiconductor layer cools down immediately, and more specifically, in less than several hundred nanoseconds up to less than one second. The decrease in temperature occurs by natural convection with the surrounding atmosphere and/or by conduction to the substrate. Preferably, the substrate is disposed on a sampling station that includes a system that is capable of controlling the temperature of the substrate and the temperature in contact with the wafer. Once the temperature of the molten layer drops below the solidus of the semiconductor material, the layer solidifies by crystallization. Crystallization originates from a single crystal substrate. The flat surface 9 of the single crystal substrate 1 serves as a seed crystal for epitaxial crystallization. More specifically, the non-single crystal layer 5 is crystallized into the epitaxial single crystal semiconductor layer 15. Furthermore, the extended single crystal semiconductor layer 15 is doped with an activated dopant and/or comprises a buried doped layer 17 having an activated dopant.

非單晶半導體層之沉積的步驟b)係根據所使用的沉積技術,而在沉積室中被達成。當摻雜物結合的步驟c)在沉積的步驟b)期間被達成時,該步驟c)亦在沉積室中被達成。雷射熱退火的步驟d)及外延式結晶化的步驟e)通常係在另一反應室中或在空氣中進行。較佳地,處理步驟d)及e)係在控制的溫度及壓力下執行,例如,在低壓的情形中及/或在包含惰性氣體的氛圍中。 The step b) of depositing the non-single-crystal semiconductor layer is achieved in the deposition chamber depending on the deposition technique used. When step c) of dopant bonding is achieved during step b) of the deposition, this step c) is also achieved in the deposition chamber. The step d) of the laser thermal annealing and the step e) of the epitaxial crystallization are usually carried out in another reaction chamber or in air. Preferably, the processing steps d) and e) are carried out at controlled temperatures and pressures, for example, in the case of low pressure and/or in an atmosphere containing an inert gas.

用以在單晶基板中形成深摻雜層之方法的第一實施例避免高能量佈植器的使用,且從而,避免諸如範圍末端缺陷之衝擊缺陷的產生。 The first embodiment of the method for forming a deep doped layer in a single crystal substrate avoids the use of a high energy implanter and, thus, avoids the generation of impact defects such as end defects in the range.

此外,雷射熱退火致能全摻雜激活。因而,此方法提供垂直裝置結構的較佳輪廓控制。 In addition, laser thermal annealing enables full doping activation. Thus, this method provides better contour control of the vertical device structure.

依據第一實施例之變化例,在非單晶半導體材料的層5內之摻雜物元素的結合係在沉積步驟之期間完成(第5圖上所描繪的)。例如,層5係在濺鍍、CVD、或PECVD沉積步驟期間,使用先質氣體的混合物而被摻雜。在層5的沉積期間之摻雜的優點在於使層5內部之摻雜輪廓能夠控制。此外,對於佈植摻雜物元素,第一實施例之此變化例避免離子佈植器的使用,即使是標準或低能量的,而藉以降低製造成本。在實例中,層5的摻雜在此層5的整體厚度d5上係均勻的,因而形成非單晶半導體材料之n摻雜或p摻雜的層5。在另一實例中,摻雜物物種濃度在沉積步驟期間變化,因而在層5之內以與基板1之平面表面9垂直的方向產生摻雜物濃度的梯度。做為實例之結果,在該沉積步驟之後,層5包含未摻雜之非單晶半導體材料的層及摻雜之非單晶半導體材料的另一內部層7。在完成非單晶半導體材料之層5的沉積之後,層5具有包含在幾百奈米與大約5微米間之範圍中的厚度d5。然後,處理以雷射熱退火之步驟再繼續(第7圖)。雷射光束30被指引朝向非單晶半導體之層5的外部表面19,此層被均勻地摻雜或包含內部摻雜層7。 According to a variant of the first embodiment, the bonding of the dopant elements in the layer 5 of the non-single-crystal semiconductor material is completed during the deposition step (as depicted on Figure 5). For example, layer 5 is doped during the sputtering, CVD, or PECVD deposition step using a mixture of precursor gases. The advantage of doping during the deposition of layer 5 is that the doping profile inside layer 5 can be controlled. Furthermore, this variant of the first embodiment avoids the use of ion implanters, even standard or low energy, for implanting dopant elements, thereby reducing manufacturing costs. In an example, the doping of layer 5 is uniform over the overall thickness d5 of this layer 5, thus forming an n-doped or p-doped layer 5 of non-single crystal semiconductor material. In another example, the dopant species concentration varies during the deposition step, thereby creating a gradient of dopant concentration within the layer 5 in a direction perpendicular to the planar surface 9 of the substrate 1. As a result of the example, after the deposition step, layer 5 comprises a layer of undoped non-single crystalline semiconductor material and another inner layer 7 of doped non-single crystalline semiconductor material. After the deposition of the layer 5 of the non-single-crystal semiconductor material is completed, the layer 5 has a thickness d5 comprised in the range between several hundred nanometers and about 5 micrometers. Then, the process is continued with the step of laser thermal annealing (Fig. 7). The laser beam 30 is directed towards the outer surface 19 of the layer 5 of non-single crystal semiconductor, which layer is uniformly doped or comprises an inner doped layer 7.

同樣地,如關於第7圖所描述地,雷射光束30係選擇用以具有波長、脈衝持續時間、及能量,以便將由非單晶半導體層5所吸收。例如,雷射光束30係脈衝式準分子雷射光束。雷射光束30在從外部表面19延伸至與單晶基板1之介面6的深度d6上,產生非單晶層5的全熔化。同時,雷射光束30誘導存在於摻雜層5中及/或在內部摻雜非單晶層7中之該等摻雜物元素的激活。通常,雷射光束30並不會誘導單晶基板1之實質深入的熔化。此外,雷射熱退火光束在藉由諸如,尺寸及能量密度之雷射光束特徵而被空間限制在側向及深度中的區域上,產生熔化及摻雜物激活。在單一雷射脈衝照射之後,非單晶半導體層5被全熔化至與單晶基板1的介面9。在停止雷射熱退火步驟之後,所熔化的半導體層冷卻且藉由使結晶化而固態化。單晶基板1用作外延式結晶化的晶種。更確切地,非單晶層5結晶化為外延式單晶半導體層15。此外延式單晶半導體層15係摻雜有活化的摻雜物,或包含具有活化的摻雜物之內部摻雜層17。 Similarly, as described with respect to Figure 7, the laser beam 30 is selected to have wavelength, pulse duration, and energy for absorption by the non-single crystalline semiconductor layer 5. For example, the laser beam 30 is a pulsed excimer laser beam. The laser beam 30 is totally melted from the outer surface 19 to a depth d6 of the interface 6 with the single crystal substrate 1, resulting in complete melting of the non-single crystal layer 5. At the same time, the laser beam 30 induces activation of the dopant elements present in the doped layer 5 and/or internally doped in the non-single crystal layer 7. In general, the laser beam 30 does not induce substantial deep melting of the single crystal substrate 1. In addition, the laser thermal annealing beam produces melting and dopant activation on regions that are spatially confined laterally and in depth by laser beam characteristics such as size and energy density. After the single laser pulse irradiation, the non-single-crystal semiconductor layer 5 is completely melted to the interface 9 with the single crystal substrate 1. After the laser thermal annealing step is stopped, the molten semiconductor layer is cooled and solidified by crystallization. The single crystal substrate 1 is used as a seed crystal for epitaxial crystallization. More specifically, the non-single crystal layer 5 is crystallized into the epitaxial single crystal semiconductor layer 15. Further, the extended single crystal semiconductor layer 15 is doped with an activated dopant or an internal doped layer 17 having an activated dopant.

如第8圖上所描繪地,因而所獲得的垂直結構包含單晶半導體基板1及摻雜的外延式單晶半導體層15。替代地,該堆疊包含未摻雜的外延式單晶半導體層15,其包括埋置之摻雜的半導體外延式單晶層17。外延式單晶半導體層15具有與單晶半導體基板1的介面。摻雜的外延式單晶半導體材料之層15,17具有與基板1相同的晶格和晶體取向。 As depicted on Fig. 8, the vertical structure thus obtained comprises a single crystal semiconductor substrate 1 and a doped epitaxial single crystal semiconductor layer 15. Alternatively, the stack comprises an undoped epitaxial single crystal semiconductor layer 15 comprising a buried doped semiconductor epitaxial single crystal layer 17. The epitaxial single crystal semiconductor layer 15 has an interface with the single crystal semiconductor substrate 1. The layers 15, 17 of the doped epitaxial single crystal semiconductor material have the same lattice and crystal orientation as the substrate 1.

此結構具有優異的導電率性質。 This structure has excellent conductivity properties.

在基板之正面上,其他的摻雜區域可能已在正面處理步驟之期間被形成,從而使能夠獲得具有諸如低的接面漏電之優異電子性質的接面裝置。 On the front side of the substrate, other doped regions may have been formed during the front side processing steps, thereby enabling junction devices having excellent electronic properties such as low junction leakage.

做為替代例,雷射退火可誘導較深的熔化到單晶基板內,例如,從幾十奈米到3微米(μm)的深度。此可被使用以擴散非單晶中之現有的摻雜物至單晶基板的熔化層內。 As an alternative, laser annealing can induce deeper melting into the single crystal substrate, for example, from a few tens of nanometers to a depth of 3 micrometers (μm). This can be used to diffuse existing dopants in non-single crystals into the molten layer of the single crystal substrate.

第二實施例 Second embodiment

第9至11圖描繪依據第二實施例之用以形成摻雜埋置層的方法,以及第12圖描繪生成的結構。 Figures 9 through 11 depict a method for forming a doped buried layer in accordance with a second embodiment, and Figure 12 depicts the resulting structure.

在第9至11圖上所描繪的該等步驟之前,係提供具有平面表面9的單晶半導體基板1(如第1圖上所描繪地)。 Prior to the steps depicted on Figures 9 through 11, a single crystal semiconductor substrate 1 having a planar surface 9 (as depicted on Figure 1) is provided.

在第9圖上,標準能量佈植器係使用以在單晶基板1中佈植摻雜物離子。如本項技藝中所已知之實例,磷離子係佈植用以在矽中產生n型摻雜,或硼離子係佈植用以在矽中產生p型摻雜。離子佈植射束40被指引在基板1的背面表面9上。較佳地,該表面9係扁平的,且被研磨。摻雜物物種被佈植在單晶基板1中,而藉以形成包含非活化的摻雜物元素之單晶半導體材料的層27。層27具有包含在幾百奈米(亦即,500nm)與幾微米(亦即,3μm)之間的厚度d7。換言之,層27自背面表面9延伸包含在幾百奈米(亦即,500nm)與幾微米(亦即,3μm)之間的深度。在此 層27之內,非活化的摻雜物濃度輪廓可係約略恆定的,或可特殊地根據摻雜物物種及根據離子佈植能量,而自背面表面9起遵循梯度曲線,直至該深度d7。 In Fig. 9, a standard energy implanter is used to implant dopant ions in the single crystal substrate 1. As is known in the art, phosphorus ion implants are used to create n-type doping in the crucible, or boron ion implants are used to create p-type doping in the crucible. The ion implant beam 40 is directed onto the back surface 9 of the substrate 1. Preferably, the surface 9 is flat and ground. The dopant species are implanted in the single crystal substrate 1 to form a layer 27 of a single crystal semiconductor material comprising non-activated dopant elements. Layer 27 has a thickness d7 comprised between a few hundred nanometers (i.e., 500 nm) and a few microns (i.e., 3 μm). In other words, the layer 27 extends from the back surface 9 to a depth comprised between a few hundred nanometers (i.e., 500 nm) and a few microns (i.e., 3 μm). here Within the layer 27, the non-activated dopant concentration profile may be approximately constant, or may follow a gradient curve from the back surface 9 up to the depth d7, depending on the dopant species and depending on the ion implantation energy.

第10圖描繪沉積步驟,其係在第9圖上所描繪之標準能量佈植的步驟之後,施加在表面9之上。非單晶半導體材料的層5係沉積在單晶基板1之扁平表面9上。層5及基板1的半導體材料具有相同的晶格,且較佳地,係由相同的半導體材料所製成。例如,單晶基板1係由晶體矽所製成,以及非單晶層5係由非晶或多晶矽所製成。非單晶層5係藉由例如,濺鍍法、化學氣相沉積法、或電漿輔助化學氣相沉積法,而以低溫,較佳地,以低於500℃的溫度沉積。非單晶層5通常係本徵的或未摻雜的。替代地,如與具有非活化的摻雜物元素之單晶半導體的層27相比之下,非單晶層5可被摻雜有相同的或另一種摻雜物元素,及/或另一摻雜物元素濃度(請參閱以下之第三實施例)。 Figure 10 depicts a deposition step applied over surface 9 after the step of standard energy implantation depicted on Figure 9. A layer 5 of a non-single crystal semiconductor material is deposited on the flat surface 9 of the single crystal substrate 1. The semiconductor materials of layer 5 and substrate 1 have the same crystal lattice and are preferably made of the same semiconductor material. For example, the single crystal substrate 1 is made of crystalline germanium, and the non-single crystal layer 5 is made of amorphous or polycrystalline germanium. The non-single crystal layer 5 is deposited at a low temperature, preferably at a temperature lower than 500 ° C, by, for example, sputtering, chemical vapor deposition, or plasma-assisted chemical vapor deposition. The non-single crystal layer 5 is typically intrinsic or undoped. Alternatively, the non-single crystal layer 5 may be doped with the same or another dopant element, and/or another, as compared to the layer 27 of a single crystal semiconductor having a non-activated dopant element. Doping element concentration (see the third embodiment below).

所獲得的堆疊包含包括具有非活化的摻雜物元素之單晶半導體的層27之單晶基板1以及非單晶半導體的層5。非單晶層5具有包含在1微米與3微米之間的厚度d5。單晶基板1的表面形成與非單晶層5的介面11。非單晶層5具有大致平行於與基板1之介面11的外部表面19。 The obtained stack comprises a single crystal substrate 1 comprising a layer 27 of a single crystal semiconductor having a non-activated dopant element and a layer 5 of a non-single crystal semiconductor. The non-single crystal layer 5 has a thickness d5 comprised between 1 micrometer and 3 micrometers. The surface of the single crystal substrate 1 is formed with the interface 11 of the non-single crystal layer 5. The non-single crystal layer 5 has an outer surface 19 that is substantially parallel to the interface 11 with the substrate 1.

第11圖描繪雷射照射,其係在第10圖上所描繪的沉積步驟之後,施加在基板1的背面上。雷射光束30被指引至非單晶層5的外部表面19上。較佳地,雷射光束30係單一脈衝準分子雷射光束,具有所選擇的波長、脈衝持續時 間、及能量,以便將由非單晶半導體層5所吸收。雷射光束30具有高於決定之臨限值的能量密度,以便從外部表面19至與基板1之介面11,產生非單晶層5之空間限制的熔化。同時,雷射光束30在對單晶基板1內之介面8的深度d8上,誘導佈植在單晶層27中之該等摻雜物元素的激活。厚度d8係包含在幾奈米(例如,10nm)與5微米(μm)之間,且較佳地,在500nm與5μm之間。無論如何,雷射光束30並不會誘導單晶層27或單晶基板1的熔化。此外,雷射熱退火光束在藉由雷射光束尺寸而被空間限制的區域上,產生熔化及摻雜物激活。 Figure 11 depicts laser illumination applied to the back side of substrate 1 after the deposition step depicted on Figure 10. The laser beam 30 is directed onto the outer surface 19 of the non-single crystal layer 5. Preferably, the laser beam 30 is a single pulsed excimer laser beam having a selected wavelength and pulse duration The energy and the energy are absorbed by the non-single-crystal semiconductor layer 5. The laser beam 30 has an energy density above the determined threshold to produce a space-limited melting of the non-single crystal layer 5 from the outer surface 19 to the interface 11 with the substrate 1. At the same time, the laser beam 30 induces activation of the dopant elements implanted in the single crystal layer 27 at a depth d8 of the interface 8 in the single crystal substrate 1. The thickness d8 is comprised between a few nanometers (eg, 10 nm) and 5 micrometers (μm), and preferably between 500 nm and 5 μm. In any event, the laser beam 30 does not induce melting of the single crystal layer 27 or the single crystal substrate 1. In addition, the laser thermal annealing beam produces melting and dopant activation over a region that is spatially constrained by the size of the laser beam.

雷射熱退火步驟係在當非單晶半導體層5被全熔化至與介面11時,中斷。反射儀可被使用以控制非單晶層5的實體狀態(固態或液態)。 The laser thermal annealing step is interrupted when the non-single crystal semiconductor layer 5 is completely melted to the interface 11. A reflectometer can be used to control the physical state (solid or liquid) of the non-single crystal layer 5.

雷射熱退火步驟係以受限之熱預算來執行,因為該等雷射脈衝係以持續時間來限制,以及因為熔化深度係受限於非單晶層5的厚度,且亦藉由雷射光束30之尺寸而被側向地限制。 The laser thermal annealing step is performed with a limited thermal budget because the laser pulses are limited in duration and because the depth of fusion is limited by the thickness of the non-single crystal layer 5 and also by laser The size of the beam 30 is laterally limited.

在停止雷射熱退火步驟之後,所熔化的半導體層冷卻且藉由使結晶化而固態化。介面11具有例如,(111)之所界定的晶體取向,因為在下面的基板亦係單晶的。此介面11用作外延式結晶化的晶種。更確切地,非單晶層5結晶化為外延式結晶化的半導體層15。 After the laser thermal annealing step is stopped, the molten semiconductor layer is cooled and solidified by crystallization. The interface 11 has, for example, the crystal orientation defined by (111) because the underlying substrate is also monocrystalline. This interface 11 serves as a seed crystal for epitaxial crystallization. More specifically, the non-single crystal layer 5 is crystallized into the epitaxially crystallized semiconductor layer 15.

如第12圖上所描繪地,因而所獲得的堆疊結構包含單晶半導體基板1、具有與單晶半導體基板1之第一介面8及 與外延式結晶化的半導體層15之第二介面6的埋置之摻雜的半導體單晶層37,其係安置在外延式結晶化的半導體層15與單晶半導體基板1之間。 As shown in FIG. 12, the obtained stacked structure thus comprises a single crystal semiconductor substrate 1 having a first interface 8 with the single crystal semiconductor substrate 1 and The doped semiconductor single crystal layer 37, which is buried with the second interface 6 of the epitaxially crystallized semiconductor layer 15, is disposed between the epitaxially crystallized semiconductor layer 15 and the single crystal semiconductor substrate 1.

此結構具有優異的導電率性質。 This structure has excellent conductivity properties.

第三實施例 Third embodiment

第三實施例包含第一及第二實施例的組合。在第三實施例的第一步驟中,與關於第9圖中之說明相似地,標準能量佈植被施加至單晶基板1的扁平表面9,用以在該基板佈植摻雜物元素,而藉以形成具有第一摻雜類型之非活化的摻雜元素之單晶半導體材料的層27。然後,非單晶半導體材料的層5係沉積在基板1的扁平表面9上。在此第三實施例中,層5可係本徵的,未摻雜的,或摻雜有相同摻雜類型或第二摻雜類型之非活化的摻雜物元素。層5的此摻雜可在層5的沉積期間被執行,或在層5的沉積之後,使用另一標準能量佈植步驟而予以執行(如在第6圖上所描繪的)。 The third embodiment includes a combination of the first and second embodiments. In a first step of the third embodiment, similar to the description in Fig. 9, a standard energy cloth vegetation is applied to the flat surface 9 of the single crystal substrate 1 for implanting dopant elements on the substrate, and A layer 27 of a single crystal semiconductor material having a non-activated doping element of a first doping type is formed. Then, a layer 5 of non-single crystal semiconductor material is deposited on the flat surface 9 of the substrate 1. In this third embodiment, layer 5 can be intrinsic, undoped, or doped with an inactive dopant element of the same doping type or second doping type. This doping of layer 5 can be performed during deposition of layer 5, or after deposition of layer 5, using another standard energy implantation step (as depicted on Figure 6).

然後,將雷射熱退火光束30施加至摻雜有第二摻雜類型之非活化的摻雜物元素之非單晶半導體材料之層5的外部表面19。雷射熱退火光束30的能量密度係選擇以便產生直至與基板1的介面11之層5的全熔化。此外,雷射熱退火光束30誘導層5中的第二摻雜類型之摻雜物元素,及層27中的第一摻雜類型之摻雜物元素的同時激活。 The laser thermal annealing beam 30 is then applied to the outer surface 19 of the layer 5 of non-single crystalline semiconductor material doped with a non-activated dopant element of the second doping type. The energy density of the laser thermal annealing beam 30 is selected to produce full melting up to the layer 5 with the interface 11 of the substrate 1. Furthermore, the laser thermal annealing beam 30 induces simultaneous activation of the dopant elements of the second doping type in layer 5, and the dopant elements of the first doping type in layer 27.

在該層的全熔化之後,雷射熱退火光束30被中斷,以 便誘導非單晶層的外延式結晶化。因而,所獲得的堆疊結構包含整塊單晶半導體基板1、埋置之第一類型摻雜的單晶半導體層37、及第二類型摻雜的外延式單晶半導體層15。第一類型摻雜的單晶半導體層37係安置在整塊基板1與第二類型摻雜的外延式單晶半導體層15之間。 After the full melting of the layer, the laser thermal annealing beam 30 is interrupted to The epitaxial crystallization of the non-single crystal layer is induced. Thus, the obtained stacked structure includes a monolithic single crystal semiconductor substrate 1, a buried first type doped single crystal semiconductor layer 37, and a second type doped epitaxial single crystal semiconductor layer 15. The first type doped single crystal semiconductor layer 37 is disposed between the monolith substrate 1 and the second type doped epitaxial single crystal semiconductor layer 15.

垂直電子接面裝置係因而以低的熱預算形成。 The vertical electronic junction device is thus formed with a low thermal budget.

熟習本項技藝之該等人士應考慮到如在此所揭示的一或若干個步驟之可能的重複及/或組合。例如,方法可包含在基板內的第一摻雜物元素之佈植的步驟c1);以及在基板中所佈植的第一摻雜物元素之雷射熱退火的步驟d1);以及包含摻雜有第二摻雜物元素的層5之沉積的步驟b)和c2),及在非晶或多晶層5內的第二摻雜物元素之雷射熱退火的步驟d2)LTA;以及外延式結晶化的步驟e)。 Those skilled in the art will recognize possible repetitions and/or combinations of one or several steps as disclosed herein. For example, the method may comprise the step c1) of implanting the first dopant element in the substrate; and the step d1) of laser thermal annealing of the first dopant element implanted in the substrate; Steps b) and c2) of deposition of layer 5 mixed with a second dopant element, and step d2) LTA of laser thermal annealing of a second dopant element in amorphous or polycrystalline layer 5; Step e) of epitaxial crystallization.

裝置 Device

本發明應用於諸如IGBT、功率MOS、二極體、及其他微電子裝置之深接面裝置的製造。 The invention is applied to the fabrication of deep junction devices such as IGBTs, power MOS, diodes, and other microelectronic devices.

本發明使深電子接面裝置能夠以低的熱預算製造。 The invention enables the deep electronic junction device to be manufactured with a low thermal budget.

在第一實施例中,該裝置包含單晶半導體材料的基板1及摻雜之外延式單晶半導體材料的層15。 In a first embodiment, the device comprises a substrate 1 of a single crystalline semiconductor material and a layer 15 of doped extended single crystal semiconductor material.

在該第一實施例中,摻雜之外延式單晶半導體材料的層15具有包含在500奈米(nm)至3微米(μm)之範圍中的厚度。 In this first embodiment, the layer 15 of the doped epitaxial single crystal semiconductor material has a thickness comprised in the range of 500 nanometers (nm) to 3 micrometers (μm).

在該第一實施例的變化例中,該裝置包含單晶半導體材料的基板1、未摻雜之外延式單晶半導體材料的層15、及摻雜之外延式單晶半導體材料的層17,其係安置在基板1的扁平表面與層15之間。各個層15及17具有包含在500奈米(nm)至3微米(μm)之範圍中的厚度。 In a variation of the first embodiment, the apparatus comprises a substrate of single crystal semiconductor material, a layer 15 of undoped extended single crystal semiconductor material, and a layer 17 of doped extended single crystal semiconductor material, It is disposed between the flat surface of the substrate 1 and the layer 15. Each of the layers 15 and 17 has a thickness comprised in the range of 500 nanometers (nm) to 3 micrometers (μm).

依據一實施例,外延式單晶半導體材料的摻雜層15或17具有空間均勻的摻雜物密度。依據另一實施例,外延式單晶半導體材料的摻雜層15或17具有與基板1的平面表面橫切之方向中的梯度摻雜物輪廓。 According to an embodiment, the doped layer 15 or 17 of the epitaxial single crystal semiconductor material has a spatially uniform dopant density. According to another embodiment, the doped layer 15 or 17 of the epitaxial single crystal semiconductor material has a gradient dopant profile in a direction transverse to the planar surface of the substrate 1.

在第二實施例中,該裝置包含單晶半導體材料的基板1,其包括安置在基板1之扁平表面下面的摻雜之單晶半導體材料的層37;以及外延式單晶半導體材料的層15。各個層15及37具有包含在500奈米(nm)至3微米(μm)之範圍中的厚度。 In a second embodiment, the apparatus comprises a substrate 1 of single crystal semiconductor material comprising a layer 37 of doped single crystal semiconductor material disposed beneath the flat surface of the substrate 1; and a layer 15 of epitaxial single crystal semiconductor material . Each of the layers 15 and 37 has a thickness comprised in the range of 500 nanometers (nm) to 3 micrometers (μm).

在第二實施例的變化例中,摻雜之單晶半導體材料的層37係摻雜有第一摻雜物類型,以及外延式單晶半導體材料的層15係摻雜有第二摻雜物類型。 In a variation of the second embodiment, the layer 37 of the doped single crystal semiconductor material is doped with a first dopant type, and the layer 15 of the epitaxial single crystal semiconductor material is doped with a second dopant Types of.

依據第二實施例的種種實例中,摻雜層15及/或摻雜層37個別地具有空間均勻的摻雜物密度,或具有與基板1的平面表面橫切之方向中的梯度摻雜物輪廓。 In various examples according to the second embodiment, the doped layer 15 and/or the doped layer 37 individually have a spatially uniform dopant density, or have a gradient dopant in a direction transverse to the planar surface of the substrate 1. profile.

本發明致能埋置於單晶半導體材料內之深摻雜層的製造。進而,本發明使深電子接面裝置能夠以低的熱預算製造。 The invention enables the fabrication of deep doped layers embedded in a single crystal semiconductor material. Further, the present invention enables the deep electronic junction device to be manufactured with a low thermal budget.

Claims (13)

一種深接面電子裝置的製造方法,包含前段處理步驟及後段處理步驟,其中在完成該前段處理步驟後執行該後段處理步驟,且其中後段處理在將正面保持在低於450℃的溫度的同時達成,且其中該後段處理包含以下步驟:a)提供單晶半導體材料之基板(1),該基板在背面具有平面表面(9);b)在低於500℃的溫度下,沉積非單晶半導體材料之層(5)於單晶矽之該基板(1)的該平面表面(9)上,非單晶半導體材料之該層(5)具有包含於1微米和3微米之間的厚度,該非單晶半導體材料之層(5)具有外部表面(19);c)在該步驟b)之前,結合非活化的摻雜物元素至該基板(1)內,以便形成單晶半導體材料之非活化的摻雜層(27);d)在該步驟c)之後,將該步驟b)所形成之該外部表面(19)的區域曝射至具有在從0.1到10焦耳/平方公分之範圍中高於所決定的臨限值之能量密度的單一雷射熱退火光束(30),及低於600奈米的雷射波長,以便使藉由該雷射熱退火光束所界定之體積內的該非單晶半導體材料之層(5)熔化成該基板(1)內部的介面,並激活在該步驟c)所結合的該等摻雜物元素;以及e)停止對該雷射熱退火光束之該區域的曝射,以便 從該基板(1)內部的該介面(6,8)誘導出該非單晶半導體材料之層(5)的外延式結晶,並誘導延伸在該介面與該外部表面(19)間的該體積上之外延式單晶半導體材料(15)的形成,其中該基板(1)包含活化的摻雜單晶半導體材料之層(17,27)。 A method of manufacturing a deep junction electronic device, comprising a front processing step and a back processing step, wherein the back processing step is performed after the front processing step is completed, and wherein the back processing is while maintaining the front side at a temperature lower than 450 ° C Achieved, and wherein the subsequent processing comprises the steps of: a) providing a substrate (1) of a single crystal semiconductor material having a planar surface (9) on the back side; b) depositing a non-single crystal at a temperature below 500 ° C a layer (5) of a semiconductor material on the planar surface (9) of the substrate (1) of the single crystal germanium, the layer (5) of the non-single crystal semiconductor material having a thickness comprised between 1 micrometer and 3 micrometers, The layer (5) of the non-single-crystal semiconductor material has an outer surface (19); c) before the step b), bonding a non-activated dopant element into the substrate (1) to form a non-single semiconductor material The activated doped layer (27); d) after this step c), exposing the region of the outer surface (19) formed in step b) to have a high range from 0.1 to 10 joules per square centimeter Single laser thermal annealing beam at the energy density of the determined threshold (30), and a laser wavelength of less than 600 nm, such that the layer (5) of the non-single-crystal semiconductor material within the volume defined by the laser thermal annealing beam is melted into the interior of the substrate (1) Interfacing and activating the dopant elements combined in step c); and e) stopping exposure of the region of the laser thermal annealing beam so that Epitaxial crystallization of the layer (5) of the non-single-crystal semiconductor material is induced from the interface (6, 8) inside the substrate (1) and induced to extend over the volume between the interface and the outer surface (19) The formation of an epitaxial single crystal semiconductor material (15), wherein the substrate (1) comprises a layer (17, 27) of activated doped single crystal semiconductor material. 如申請專利範圍第1項之深接面電子裝置的製造方法,其中在該步驟d)之期間,該雷射光束(30)係準分子雷射光束,其具有在該非單晶半導體材料之吸收範圍中的雷射波長。 The method of manufacturing a deep junction electronic device according to claim 1, wherein during the step d), the laser beam (30) is an excimer laser beam having absorption in the non-single crystal semiconductor material. The wavelength of the laser in the range. 如申請專利範圍第1項之深接面電子裝置的製造方法,其中該步驟c)包含,其係在步驟a)之後及在步驟b)之前被執行的步驟c1),該步驟c1)包含對離子佈植射束(40)之該基板(1)的該表面(9)之曝射,以便將該等非活化的摻雜物元素佈植至該單晶半導體基板(1)內,且形成由該等非活化的摻雜物元素所摻雜,並從該平面表面(9)延伸至該單晶半導體基板(1)內之單晶半導體材料的層(27)。 The method of manufacturing a deep junction electronic device according to claim 1, wherein the step c) comprises a step c1) performed after the step a) and before the step b), the step c1) comprising Exposing the surface (9) of the substrate (1) of the ion implant beam (40) to implant the non-activated dopant elements into the single crystal semiconductor substrate (1), and forming Doped with the non-activated dopant elements and extending from the planar surface (9) to the layer (27) of single crystalline semiconductor material within the single crystal semiconductor substrate (1). 如申請專利範圍第1項之深接面電子裝置的製造方法,其中該步驟c)進一步包含步驟c2),其係在步驟b)之期間被執行,該步驟c2)包含該等摻雜物元素至該非單晶半導體材料之層(5)內的該結合。 The method of manufacturing a deep junction electronic device according to claim 1, wherein the step c) further comprises the step c2) being performed during the step b), wherein the step c2) comprises the dopant elements The bonding into the layer (5) of the non-single crystalline semiconductor material. 如申請專利範圍第1項之深接面電子裝置的製造方法,其中該步驟c)進一步包含步驟c3),其係在該等步驟a)及b)之後被執行,該步驟c3)包含對離子佈植射束(40)之該非單晶半導體材料之層(5)的曝射,以便將該等非活化的摻雜物元素佈植至該非單晶半導體材料之層(5)內,且形成由該等非活化的摻雜物元素所摻雜之非單晶半導體材料的層(7)。 The method of manufacturing a deep junction electronic device according to claim 1, wherein the step c) further comprises a step c3) performed after the steps a) and b), the step c3) comprising a counter ion Exposing the layer (5) of the non-single-crystal semiconductor material of the implant beam (40) to implant the non-activated dopant elements into the layer (5) of the non-single-crystal semiconductor material, and forming A layer (7) of non-single crystal semiconductor material doped with such non-activated dopant elements. 如申請專利範圍第3-5項之深接面電子裝置的製造方法,其中該活化的摻雜單晶半導體之層(37)係摻雜有第一摻雜物類型,以及該活化的摻雜外延式單晶半導體之層(17)係摻雜有第二摻雜物類型。 The method of manufacturing a deep junction electronic device according to claim 3-5, wherein the activated doped single crystal semiconductor layer (37) is doped with a first dopant type, and the activated doping The layer (17) of the epitaxial single crystal semiconductor is doped with a second dopant type. 如申請專利範圍第1項之深接面電子裝置的製造方法,進一步包含在步驟b)之前清潔該基板(1)之該表面(9)的另一步驟,以便從該表面(9)去除任何氧化物層。 A method of manufacturing a deep junction electronic device according to claim 1 further comprising the further step of cleaning the surface (9) of the substrate (1) prior to step b) to remove any surface from the surface (9) Oxide layer. 如申請專利範圍第1項之深接面電子裝置的製造方法,其中該半導體材料係在矽及鍺之中選出。 The method of manufacturing a deep junction electronic device according to claim 1, wherein the semiconductor material is selected from the group consisting of ruthenium and iridium. 如申請專利範圍第1項之深接面電子裝置的製造方法,其中結合非活化的摻雜物元素之該步驟c)被完成, 以便沿著與該基板(1)的該平面表面(9)橫切之方向,結合摻雜物元素與梯度輪廓。 The method of manufacturing a deep junction electronic device according to claim 1, wherein the step c) of combining the non-activated dopant element is completed, The dopant element and the gradient profile are combined in a direction transverse to the planar surface (9) of the substrate (1). 如申請專利範圍第1項之深接面電子裝置的製造方法,其中在步驟d),該雷射光束係準分子雷射光束。 The method of manufacturing a deep junction electronic device according to claim 1, wherein in the step d), the laser beam is an excimer laser beam. 如申請專利範圍第1項之深接面電子裝置的製造方法,其中該等步驟d)及e)係在氣體的氛圍中且在控制的壓力及溫度下執行,該氣體氛圍係在惰性氣體、空氣、或真空之中選出。 The method of manufacturing a deep junction electronic device according to claim 1, wherein the steps d) and e) are performed in a gas atmosphere at a controlled pressure and temperature, the gas atmosphere being in an inert gas, Choose from air or vacuum. 如申請專利範圍第1項之深接面電子裝置的製造方法,進一步包含測量在該非單晶半導體材料之層(5)的該外部表面上所反射之光束的步驟,以便控制該步驟d)之期間的非單晶半導體材料之該層(5)的全熔化,及用以控制該步驟e)期間之該層(15)的外延式結晶化。 The method of manufacturing a deep junction electronic device according to claim 1, further comprising the step of measuring a light beam reflected on the outer surface of the layer (5) of the non-single crystal semiconductor material to control the step d) The complete melting of the layer (5) of the non-single crystal semiconductor material during the period and the epitaxial crystallization of the layer (15) during the step e). 一種深接面電子裝置,包含單晶半導體基板(1),其包含具有在該基板(1)背面之外部表面(19)及與該單晶半導體基板(1)之介面(6,8)的外延式單晶半導體材料(15)之單一層(15),以及其中該單晶半導體基板(1)包含活化的摻雜單晶半導體材料之層(17,27),其中該介面(6,8)係位於包含在從該基板(1)背面之該外部表面起之1與5微米間的深度處,且其中該活 化的摻雜單晶半導體材料之層(17,27)的摻雜輪廓係非高斯輪廓(non-Gaussian profile)。 A deep junction electronic device comprising a single crystal semiconductor substrate (1) comprising an outer surface (19) on a back surface of the substrate (1) and an interface (6, 8) with the single crystal semiconductor substrate (1) a single layer (15) of epitaxial single crystal semiconductor material (15), and wherein the single crystal semiconductor substrate (1) comprises a layer (17, 27) of activated doped single crystal semiconductor material, wherein the interface (6, 8) Is located at a depth between 1 and 5 microns from the outer surface of the back surface of the substrate (1), and wherein the The doped profile of the layer (17, 27) of the doped single crystal semiconductor material is a non-Gaussian profile.
TW106123081A 2017-07-10 2017-07-10 Deep junction electronic device and process for manufacturing thereof TWI642092B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106123081A TWI642092B (en) 2017-07-10 2017-07-10 Deep junction electronic device and process for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106123081A TWI642092B (en) 2017-07-10 2017-07-10 Deep junction electronic device and process for manufacturing thereof

Publications (2)

Publication Number Publication Date
TWI642092B true TWI642092B (en) 2018-11-21
TW201909251A TW201909251A (en) 2019-03-01

Family

ID=65034344

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106123081A TWI642092B (en) 2017-07-10 2017-07-10 Deep junction electronic device and process for manufacturing thereof

Country Status (1)

Country Link
TW (1) TWI642092B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148342A (en) * 1981-03-11 1982-09-13 Toshiba Corp Recrystal method of semiconductor element
DE102006053182A1 (en) * 2006-11-09 2008-05-29 Infineon Technologies Ag Silicon p-doping method for e.g. manufacturing p-conducting base regions of thyristor, involves separating outdiffusion layer, collecting atoms into wafer under recrystallisation of defects, and placing atoms at space locations
US9558948B1 (en) * 2016-06-02 2017-01-31 Infineon Technologies Austria Ag Laser thermal annealing of deep doped region using structured antireflective coating
US20170133482A1 (en) * 2015-11-11 2017-05-11 Rohm Co., Ltd. Semiconductor device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148342A (en) * 1981-03-11 1982-09-13 Toshiba Corp Recrystal method of semiconductor element
DE102006053182A1 (en) * 2006-11-09 2008-05-29 Infineon Technologies Ag Silicon p-doping method for e.g. manufacturing p-conducting base regions of thyristor, involves separating outdiffusion layer, collecting atoms into wafer under recrystallisation of defects, and placing atoms at space locations
US20170133482A1 (en) * 2015-11-11 2017-05-11 Rohm Co., Ltd. Semiconductor device and manufacturing method thereof
US9558948B1 (en) * 2016-06-02 2017-01-31 Infineon Technologies Austria Ag Laser thermal annealing of deep doped region using structured antireflective coating

Also Published As

Publication number Publication date
TW201909251A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
US5399506A (en) Semiconductor fabricating process
TW409293B (en) Gas immersion laser annealing method suitable for use in the fabrication of reduced-dimension integrated circuits
KR102478873B1 (en) DIP junction electronic device and its manufacturing process
US6645838B1 (en) Selective absorption process for forming an activated doped region in a semiconductor
KR20040029423A (en) Method for semiconductor gate doping
JP2006351659A (en) Method of manufacturing semiconductor device
US20120178223A1 (en) Method of Manufacturing High Breakdown Voltage Semiconductor Device
US10998402B2 (en) Semiconductor devices with steep junctions and methods of manufacturing thereof
US7135387B2 (en) Method of manufacturing semiconductor element
US20160329398A1 (en) Semiconductor Wafer and Method of Manufacturing Semiconductor Devices in a Semiconductor Wafer
Alba et al. Nanosecond laser annealing for phosphorous activation in ultra-thin implanted silicon-on-insulator substrates
JP5201305B2 (en) Manufacturing method of semiconductor device
US6372585B1 (en) Semiconductor device method
TWI642092B (en) Deep junction electronic device and process for manufacturing thereof
JP2008270243A (en) Manufacturing method of semiconductor device
US10153168B2 (en) Method of manufacturing semiconductor device
US20140363986A1 (en) Laser scanning for thermal processing
US7091097B1 (en) End-of-range defect minimization in semiconductor device
KR20100085943A (en) Method for heating a plate with a light stream
US7659187B2 (en) Method of forming PN junctions including a post-ion implant dynamic surface anneal process with minimum interface trap density at the gate insulator-silicon interface
JPH0677155A (en) Heat treatment method for semiconductor substrate
US20220293414A1 (en) Method for modifying a strain state of at least one semiconductor layer
JPH01256124A (en) Manufacture of mos type semiconductor device
JP2922918B2 (en) Ion implantation method
JPS60182132A (en) Manufacture of semiconductor device