TWI641223B - Pseudo random bit sequence generation method and device, and integrated circuit generation system for generating pseudo random bit sequence generation device - Google Patents

Pseudo random bit sequence generation method and device, and integrated circuit generation system for generating pseudo random bit sequence generation device Download PDF

Info

Publication number
TWI641223B
TWI641223B TW107104293A TW107104293A TWI641223B TW I641223 B TWI641223 B TW I641223B TW 107104293 A TW107104293 A TW 107104293A TW 107104293 A TW107104293 A TW 107104293A TW I641223 B TWI641223 B TW I641223B
Authority
TW
Taiwan
Prior art keywords
bits
unknown
bit
clock signal
random bit
Prior art date
Application number
TW107104293A
Other languages
Chinese (zh)
Other versions
TW201935847A (en
Inventor
馮洋
李士達
Original Assignee
大陸商北京集創北方科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商北京集創北方科技股份有限公司 filed Critical 大陸商北京集創北方科技股份有限公司
Priority to TW107104293A priority Critical patent/TWI641223B/en
Application granted granted Critical
Publication of TWI641223B publication Critical patent/TWI641223B/en
Publication of TW201935847A publication Critical patent/TW201935847A/en

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

一種由積體電路生成系統執行的偽隨機位元序列生成方法包含:根據該偽隨機位元序列的一總位元數得到一分段值;根據該分段值將該K個位元分成N個各自具有一未知位元數的位元部分;根據一時脈信號輸入及第一至第N-1個未知位元數產生N個時脈信號輸出;根據該N個未知位元數及每一時脈信號輸出來決定一相關於計算相鄰偽隨機位元序列間位元翻轉的一總翻轉次數的函數;根據該函數來計算使該總翻轉次數具有最小值時,每一未知位元數的數值;及根據該總位元數、該分段值、每一未知位元數的數值,及該N個時脈信號輸出來產生偽隨機位元序列。A pseudo random bit sequence generation method executed by an integrated circuit generation system includes: obtaining a segment value according to a total number of bits of the pseudo random bit sequence; and dividing the K bits into N according to the segment value Each of the bit portions having an unknown number of bits; generating N clock signals according to a clock signal input and the first to N-1th unknown bit numbers; according to the N unknown bit numbers and each time The pulse signal output determines a function associated with calculating a total number of flips of bit flip between adjacent pseudo-random bit sequences; calculating, based on the function, the number of each unknown bit when the total number of flips has a minimum value a value; and generating a pseudo-random bit sequence based on the total number of bits, the segment value, the value of each unknown bit number, and the N clock signal outputs.

Description

偽隨機位元序列生成方法與裝置及用來產生偽隨機位元序列生成裝置之積體電路生成系統Pseudo random bit sequence generation method and device, and integrated circuit generation system for generating pseudo random bit sequence generation device

本發明是有關於一種位元序列生成方法與裝置及產生位元序列生成裝置之積體電路生成系統,特別是指一種偽隨機位元序列生成方法與裝置及用來產生偽隨機位元序列生成裝置之積體電路生成系統。 The invention relates to a bit sequence generation method and device and an integrated circuit generation system for generating a bit sequence generation device, in particular to a pseudo random bit sequence generation method and device and for generating pseudo random bit sequence generation. The integrated circuit generation system of the device.

隨著半導體生產尺寸的不斷縮小,製程電路存在的故障越來越多。因此,需要藉由一偽隨機位元序列(Pseudo Random Bit Sequence,PRBS)生成裝置根據一PRBS生成方法來產生多個PRBS(每一PRBS具有多個位元),以測試製作完成之晶片的功能是否正常。 As the size of semiconductor production continues to shrink, there are more and more failures in the process circuit. Therefore, a Pseudo Random Bit Sequence (PRBS) generating apparatus is required to generate a plurality of PRBSs (each PRBS has a plurality of bits) according to a PRBS generating method to test the function of the completed wafer. Is it normal?

然而,根據該PRBS生成方法所產生的該等PRBS中,任二相鄰PRBS間的翻轉次數多(翻轉次數定義為:例如,該PRBS生成裝置當前產生的PRBS是00111111,而下一次產生的PRBS是01000000,也就是說,從當前的PRBS變成下一次產生的PRBS 時,當前PRBS中共有七個位元(即,第二個至第八個位元)發生翻轉(指位元由0變1或由1變0),因此相鄰PRBS間的翻轉次數為七次),導致該等PRBS的所有相鄰PRBS間的總翻轉次數也較多。如此一來,會造成待測晶片在測試過程中其內部電路節點的翻轉率也跟著提高,導致待測晶片的測試功耗較高。因此,習知該PRBS生成方法仍有改進的空間。 However, according to the PRBS generation method, the number of inversions between any two adjacent PRBSs is large (the number of inversions is defined as: for example, the PRBS currently generated by the PRBS generating apparatus is 00111111, and the next generated PRBS Is 01000000, that is, from the current PRBS to the next generated PRBS When there are seven bits (ie, the second to the eighth bit) in the current PRBS, the flipping occurs (the bit changes from 0 to 1 or from 1 to 0), so the number of flips between adjacent PRBSs is seven. Times), resulting in a total number of inversions between all adjacent PRBSs of the PRBS. As a result, the flip rate of the internal circuit nodes of the wafer under test is also increased during the test, resulting in higher test power consumption of the wafer to be tested. Therefore, it is known that there is still room for improvement in the PRBS generation method.

因此,本發明的一個目的,即在提供一種能夠降低所有相鄰偽隨機位元序列間總翻轉次數的偽隨機位元序列生成方法。 Accordingly, it is an object of the present invention to provide a pseudo-random bit sequence generation method capable of reducing the total number of flips between all adjacent pseudo-random bit sequences.

於是,本發明偽隨機位元序列生成方法,由一積體電路生成系統所執行,每一偽隨機位元序列具有K個位元,K>2,K為正整數,該偽隨機位元序列生成方法包含以下步驟:(A)根據該偽隨機位元序列的一總位元數K得到一分段值n,2≦n<K,n為正整數;(B)根據該分段值n將該偽隨機位元序列中的該K個位元分成N個位元部分,每一位元部分具有一未知位元數,且N個未知位元數滿足其總和等於該總位元數K之關係,N=n; (C)根據一時脈信號輸入及第一個未知位元數至第N-1個未知位元數,產生N個分別相關於生成該N個位元部分的時脈信號輸出;(D)根據該N個未知位元數,及每一時脈信號輸出的一切換週期來決定一函數,該函數相關於計算所有偽隨機位元序列中相鄰偽隨機位元序列間位元發生翻轉的一總翻轉次數;(E)根據該函數來計算使該總翻轉次數具有最小值時,每一未知位元數的一數值;及(F)根據該總位元數K、該分段值n、每一未知位元數的該數值,及該N個時脈信號輸出來產生每一偽隨機位元序列。 Therefore, the pseudo random bit sequence generation method of the present invention is executed by an integrated circuit generation system, each pseudo random bit sequence has K bits, K>2, K is a positive integer, and the pseudo random bit sequence The generating method comprises the following steps: (A) obtaining a segment value n, 2≦n<K, n is a positive integer according to a total number of bits K of the pseudo random bit sequence; (B) according to the segment value n The K bits in the pseudo-random bit sequence are divided into N bit parts, each bit part has an unknown number of bits, and the number of N unknown bits satisfies the sum thereof equal to the total number of bits K Relationship, N=n; (C) generating, according to a clock signal input and the first number of unknown bits to the number of N-1 unknown bits, generating N clock signals respectively associated with generating the N bit portions; (D) according to The N unknown number of bits and a switching period of each clock signal output determine a function related to calculating a total of the inversion of bits between adjacent pseudo-random bit sequences in all pseudo-random bit sequences (E) calculating a value of each unknown number of bits when the total number of inversions has a minimum value according to the function; and (F) according to the total number of bits K, the segmentation value n, each The value of an unknown bit number, and the N clock signals are output to generate each pseudo random bit sequence.

因此,本發明的另一個目的,即在提供一種能夠降低所有相鄰偽隨機位元序列間總翻轉次數的偽隨機位元序列生成裝置。 Accordingly, it is another object of the present invention to provide a pseudo-random bit sequence generating apparatus capable of reducing the total number of flips between all adjacent pseudo-random bit sequences.

於是,本發明偽隨機位元序列生成裝置包含一時脈信號產生器、一第一個位元部分產生器,及一第二個位元部分產生器。 Thus, the pseudo random bit sequence generating apparatus of the present invention comprises a clock signal generator, a first bit portion generator, and a second bit portion generator.

該時脈信號產生器接收一時脈信號輸入及一第一個未知位元數,並將該時脈信號輸入直接輸出作為一第一個時脈信號輸出,且根據該第一個未知位元數對該時脈信號輸入進行除頻,以產生一第二個時脈信號輸出。 The clock signal generator receives a clock signal input and a first unknown bit number, and outputs the clock signal input as a first clock signal output, and according to the first unknown bit number The clock signal input is divided to generate a second clock signal output.

該第一個位元部分產生器接收一切換信號,且電連接該時脈信號產生器以接收該第一個時脈信號輸出,並根據該切換信號 及該第一個時脈信號輸出產生多個各自具有多個位元的第一個位元部分。 The first bit portion generator receives a switching signal and electrically connects the clock signal generator to receive the first clock signal output, and according to the switching signal And the first clock signal output generates a plurality of first bit portions each having a plurality of bits.

該第二個位元部分產生器接收該切換信號,且電連接該時脈信號產生器以接收該第二個時脈信號輸出,並根據該切換信號及該第二個時脈信號輸出產生多個各自具有多個位元的第二個位元部分,每一第二個位元部分與該等第一個位元部分中相對應的一者組合成一偽隨機位元序列。 The second bit portion generator receives the switching signal, and electrically connects the clock signal generator to receive the second clock signal output, and generates an output according to the switching signal and the second clock signal output. A second bit portion each having a plurality of bits, each second bit portion being combined with a corresponding one of the first bit portions into a pseudo random bit sequence.

因此,本發明的又一個目的,即在提供一種用來產生偽隨機位元序列生成裝置之積體電路生成系統。 Accordingly, it is still another object of the present invention to provide an integrated circuit generating system for generating a pseudo random bit sequence generating device.

本發明之功效在於:藉由根據該N個未知位元數及每一時脈信號輸出來獲得該函數及計算使該總翻轉次數具有最小值時,每一未知位元數的一數值,如此一來,當該積體電路生成系統根據已知的該總位元數K、該分段值n、每一未知位元數的該數值、該N個時脈信號輸出來產生所有偽隨機位元序列時,可有效降低所有相鄰偽隨機位元序列間的該總翻轉次數。 The effect of the present invention is: by obtaining the function according to the number of N unknown bits and the output of each clock signal, and calculating a value of each unknown number of bits when the total number of inversions has a minimum value, such a And when the integrated circuit generating system generates all pseudorandom bits according to the known total number of bits K, the segmentation value n, the value of each unknown number of bits, and the output of the N clock signals. In the sequence, the total number of flips between all adjacent pseudo-random bit sequences can be effectively reduced.

2‧‧‧偽隨機位元序列生成裝置 2‧‧‧Pseudo-random bit sequence generation device

BS1、BS2‧‧‧位元部分 BS1, BS2‧‧‧ bit parts

Cs‧‧‧切換信號 Cs‧‧‧Switching signal

21‧‧‧時脈信號產生器 21‧‧‧ clock signal generator

CLK1‧‧‧時脈信號輸出 CLK1‧‧‧ clock signal output

211‧‧‧除頻電路 211‧‧‧ Frequency dividing circuit

CLK2‧‧‧時脈信號輸出 CLK2‧‧‧ clock signal output

22‧‧‧第一個位元部分產生器 22‧‧‧The first bit part generator

K‧‧‧總位元數 K‧‧‧ total number of bits

221‧‧‧線性反饋移位暫存器 221‧‧‧Linear Feedback Shift Register

L、H‧‧‧未知位元數 L, H‧‧‧ Unknown number of bits

222‧‧‧線性反饋移位暫存器 222‧‧‧Linear Feedback Shift Register

PRBS‧‧‧偽隨機位元序列 PRBS‧‧‧ pseudorandom bit sequence

223‧‧‧線性反饋移位暫存器 223‧‧‧Linear Feedback Shift Register

T1、T2‧‧‧切換週期 T 1 , T 2 ‧‧‧ switching cycle

23‧‧‧第二個位元部分產生器 23‧‧‧Second bit part generator

11~16‧‧‧步驟 11~16‧‧‧Steps

230‧‧‧異或閘 230‧‧‧ XOR gate

131、132‧‧‧子步驟 131, 132‧‧‧ substeps

231~242‧‧‧線性反饋移位暫存器 231~242‧‧‧Linear Feedback Shift Register

151~154‧‧‧子步驟 151~154‧‧‧ substeps

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一流程圖,說明本發明偽隨機位元序列生成方法之一實施例;圖2是一示意圖,說明該實施例的一偽隨機位元序列被分割成二個位元部分;圖3是一時序圖,說明該實施例的二個時脈信號輸出;圖4是一電路方塊圖,說明該實施例用來產生偽隨機位元序列的一偽隨機位元序列生成裝置;及圖5是一量測圖,說明該實施例與習知偽隨機位元序列生成方法的所有相鄰偽隨機位元序列間的總翻轉次數對總位元數的變化。 Other features and effects of the present invention will be apparent from the embodiments of the drawings, in which: 1 is a flow chart illustrating an embodiment of a pseudo random bit sequence generation method of the present invention; FIG. 2 is a schematic diagram showing a pseudo random bit sequence of the embodiment divided into two bit portions; FIG. Is a timing diagram illustrating two clock signal outputs of the embodiment; FIG. 4 is a circuit block diagram illustrating a pseudo random bit sequence generation apparatus for generating a pseudo random bit sequence in the embodiment; and FIG. Is a measure of the total number of flips to the total number of bits between all adjacent pseudo-random bit sequences of this embodiment and the conventional pseudo-random bit sequence generation method.

參閱圖1,本發明偽隨機位元序列生成方法的一實施例由一積體電路生成系統(圖未示)所執行,用來產生多個偽隨機位元序列(Pseudo Random Bit Sequence,PRBS)來測試製作完成之晶片的功能是否正常。操作時,測試人員會先根據待測晶片的測試需求來設定單一個PRBS所具有的一總位元數K,當所設定的單一個PRBS具有K個位元(bit)時,則該積體電路生成系統總共會產生2K個各自具有K個位元的PRBS,K>2,K為正整數。舉例來說,若單一個PRBS的該總位元數K等於八,則該積體電路生成系統總 共會產生28個從00000000-11111111變化的PRBS。在本實施例中,該積體電路生成系統所執行的該PRBS生成方法包含以下步驟。 Referring to FIG. 1, an embodiment of a pseudo-random bit sequence generation method of the present invention is executed by an integrated circuit generation system (not shown) for generating a plurality of pseudo-random bit sequences (PRBS). To test whether the function of the finished wafer is normal. During operation, the tester first sets a total number of bits K of a single PRBS according to the test requirements of the wafer to be tested. When the set single PRBS has K bits, the integrated body The circuit generation system generates a total of 2 K PRBS each having K bits, K>2, where K is a positive integer. For example, if the total number of bits K of a single PRBS is equal to eight, the integrated circuit generating system generates a total of 28 PRBSs varying from 00000000-11111111. In this embodiment, the PRBS generation method performed by the integrated circuit generation system includes the following steps.

步驟11:根據該PRBS的該總位元數K得到一分段值n,2≦n<K,n為正整數。 Step 11: Obtain a segment value n, 2 ≦ n < K, n is a positive integer according to the total number of bits K of the PRBS.

需說明的是,在此實施例中,可利用一含有多個不同的總位元數及多個分段值之間的關係資訊的查找表來獲得該分段值n。該查找表是由測試人員將每一總位元數進行不同分段後,統計每一分段下所對應的所有相鄰PRBS間的總翻轉次數來預先建立該查找表,當K≦20時,該分段值n較佳的等於二。需補充說明的是,當n=2時,總翻轉次數並非最少,實際上,n=3時的總翻轉次數比n=2時的總翻轉次數還少,但因n=3時會使電路設計較複雜,因此,將總翻轉次數與電路設計複雜度綜合評估後,較佳的將該分段值n設為二比較合適。 It should be noted that, in this embodiment, the segmentation value n can be obtained by using a lookup table containing a plurality of different total number of bits and relationship information between the plurality of segment values. The lookup table is that the tester pre-establishes the lookup table by counting the total number of flips between all adjacent PRBSs corresponding to each segment after the tester divides each total number of bits differently, when K≦20 The segment value n is preferably equal to two. It should be added that when n=2, the total number of inversions is not the least. In fact, the total number of inversions when n=3 is less than the total number of inversions when n=2, but the circuit will be caused by n=3. The design is more complicated. Therefore, after comprehensively evaluating the total number of inversions and the circuit design complexity, it is preferable to set the segmentation value n to two.

步驟12:根據該分段值n將該PRBS中的該K個位元分成N個位元部分,每一位元部分具有一未知位元數,且N個未知位元數滿足其總和等於該總位元數K之關係,N=n,第i個未知位元數小於第i+1個未知位元數,i<N,i為正整數。 Step 12: Divide the K bits in the PRBS into N bit parts according to the segment value n, each bit part has an unknown number of bits, and the number of N unknown bits satisfies the sum thereof is equal to The relationship of the total number of bits K, N = n, the number of the i-th unknown bits is smaller than the number of the i+1th unknown bits, i < N, i is a positive integer.

進一步參閱圖2,舉例來說,當n=2時,將該PRBS中的該K個位元分成二個位元部分BS1、BS2,第一個位元部分BS1具有一未知位元數L(即,該第一個位元部分BS1具有L個位元),第二 個位元部分BS2具有一未知位元數H(即,該第二個位元部分BS2具有H個位元),該二個未知位元數L、H之和等於該總位元數K(即,L+H=K),該未知位元數L小於該未知位元數H,L、H各自為正整數。 Referring further to FIG. 2, for example, when n=2, the K bits in the PRBS are divided into two bit portions BS1, BS2, and the first bit portion BS1 has an unknown bit number L ( That is, the first bit portion BS1 has L bits), the second The bit unit portion BS2 has an unknown number of bits H (i.e., the second bit portion BS2 has H bits), and the sum of the two unknown bit numbers L, H is equal to the total number of bits K ( That is, L+H=K), the number of unknown bits L is smaller than the number H of unknown bits, and L and H are each a positive integer.

步驟13:根據一時脈信號輸入及第一個未知位元數至第N-1個未知位元數,產生N個分別相關於生成該N個位元部分的時脈信號輸出。詳細來說,步驟13包括以下子步驟131、132。 Step 13: According to a clock signal input and the first unknown bit number to the N-1th unknown bit number, N pieces of clock signals respectively outputting the N bit parts are generated. In detail, step 13 includes the following sub-steps 131, 132.

子步驟131:將該時脈信號輸入作為第一個時脈信號輸出,該第一個時脈信號輸出相關於生成第一個位元部分。 Sub-step 131: The clock signal input is output as a first clock signal, the first clock signal output being related to generating a first bit portion.

子步驟132:根據該第一個未知位元數至該第N-1個未知位元數各自對該時脈信號輸入進行除頻,以產生第二個時脈信號輸出至第N個時脈信號輸出,該第二個至該第N個時脈信號輸出分別相關於生成第二個位元部分至第N個位元部分。 Sub-step 132: De-frequencying the clock signal input according to the first unknown bit number to the N-1th unknown bit number to generate a second clock signal output to the Nth clock Signal output, the second to the Nth clock signal outputs are respectively associated with generating a second bit portion to an Nth bit portion.

第j個時脈信號輸出的一切換週期如式(1),2≦j≦N,j為正整數:Tj=2P×T(j-1) 式(1)其中,Tj代表該第j個時脈信號輸出的該切換週期,P代表第(j-1)個未知位元數,T(j-1)代表第(j-1)個時脈信號輸出的一切換週期。舉例來說,當n=N=2時,第一個及第二個未知位元數分別為L、H,則第二個時脈信號輸出的一切換週期T2=2L×T1,T1代表該第一個 時脈信號輸出(即,該時脈信號輸入)的一切換週期。當n=N=3時,該PRBS被分成三個位元部分,該三個位元部分各自所具有的未知位元數為L、M、H(L<M<H),且該三個位元部分各自所對應的時脈信號輸出的一切換週期為TL=T1、TM=T2=2L×T1、TH=T3=2M×T2,M為正整數。 A switching period of the output of the jth clock signal is as shown in the formula (1), 2≦j≦N, j is a positive integer: T j = 2 P × T (j-1) Formula (1), where T j represents the The switching period of the jth clock signal output, P represents the (j-1)th unknown number of bits, and T (j-1) represents a switching period of the (j-1)th clock signal output. For example, when n=N=2, the first and second unknown bit numbers are L and H, respectively, and a switching period of the second clock signal output is T 2 = 2 L × T 1 . T 1 represents a switching period of the first clock signal output (i.e., the clock signal input). When n=N=3, the PRBS is divided into three bit parts, and each of the three bit parts has an unknown number of bits L, M, H (L<M<H), and the three A switching period of the clock signal output corresponding to each of the bit portions is T L = T 1 , T M = T 2 = 2 L × T 1 , T H = T 3 = 2 M × T 2 , and M is a positive integer .

步驟14:根據該N個未知位元數,及每一時脈信號輸出的一切換週期來決定一函數,該函數相關於計算所有PRBS中相鄰PRBS間位元發生翻轉的一總翻轉次數(翻轉次數的定義同先前技術之翻轉次數的定義,故於此不贅述)。 Step 14: Determine a function according to the number of N unknown bits and a switching period of each clock signal output, the function is related to calculating a total number of times of flipping between adjacent PRBSs in all PRBSs (flip) The definition of the number of times is the same as the definition of the number of times of flipping of the prior art, so it will not be described here.

詳細來說,對具有K位元的單一PRBS,該積體電路生成系統產生所有序列(2k個PRBS)的生成過程中,相鄰PRBS間的該總翻轉次數可表示為K×2K-1(此表示方式是由測試人員藉由對具有任意的K位元的PRBS生成過程中所有相鄰序列間的總翻轉次數進行統計分析,進而推導出的表示方式,可用於近似表達生成2k個各自具有K位元的PRBS過程中,所有相鄰PRBS間的總翻轉次數)。因此,若將該PRBS進行二分段(即,該分段值n等於二)後得到該二個位元部分(分別對應該二個未知位元數L、H),則生成所有第二個位元部分的相鄰序列間的總翻轉次數可表示為H×2H-1,而生成所有第一個位元部分的相鄰序列間的總翻轉次數可表示為L×2L-1In detail, for a single PRBS with K bits, the total number of inversions between adjacent PRBSs can be expressed as K×2 K- in the process of generating all sequences (2 k PRBS) by the integrated circuit generation system. 1 (This representation is a statistical analysis by the tester by statistical analysis of the total number of inversions between all adjacent sequences in the PRBS generation process with arbitrary K bits, which can be used to approximate expression generation 2 k The total number of inversions between all adjacent PRBSs in a PRBS process with K bits each). Therefore, if the PRBS is subjected to two segments (that is, the segment value n is equal to two) to obtain the two bit portions (corresponding to the two unknown bit numbers L, H respectively), all the second ones are generated. the total number of inverted bits between adjacent portions of the sequence can be expressed as H × 2 H-1, the total number of generated sequences of all inverted between adjacent first bit portion can be expressed as L × 2 L-1.

進一步參閱圖3,參數CLK1代表相關於用來生成該第一個位元部分的該第一個時脈信號輸出,於該第一個時脈信號輸出的每一切換週期T1內會對應產生一個該第一個位元部分,參數CLK2代表相關於用來生成該第二個位元部分的該第二個時脈信號輸出,於該第二個時脈信號輸出的每一切換週期T2內會對應產生一個該第二個位元部分。若單一PRBS具有八個位元(K=8),該二個位元部分所分別對應的該二個未知位元數L、H分別為三跟五(L=3、H=5),且經該步驟13後,T2=2L×T1,因此該第二個位元部分從當前序列(10101)變到下一個序列(00100)前,該第一個位元部分的內部序列已經變動八(2L)次(111、110、101、010、100、000、001、011),也就是說,根據圖3可知每生成一個該第二個位元部分就會生成2L個該第一個位元部分(其相鄰序列間的總翻轉次數為L×2L-1),又該積體電路生成系統根據該第二個時脈信號輸出總共會生成2H個該第二個位元部分(其相鄰序列間的總翻轉次數為H×2H-1),進而該第一個位元部分總共會生成2H×2L個,且生成所有該第一個位元部分的過程中,其相鄰序列間的總翻轉次數為2H×L×2L-1,如此一來,當n=2時,該積體電路生成系統根據該二個未知位元數L、H,及每一時脈信號輸出的該切換週期所決定出用來計算產生所有序列(2k個PRBS)的生成過程中,所有相鄰PRBS間的該總翻轉次數的函數可表示成式(2): Y=H×2H-1+2H×L×2L-1 式(2)其中,Y代表該總翻轉次數,L、H分別代表該等第一個及第二個未知位元數。 With further reference to FIG. 3, the parameters associated with the representative CLK1 to generate the first bit of the first portion of a clock signal output, will be generated in the corresponding one of each switching period in the first clock signal output from a T a first bit portion, the parameter CLK2 representing the second clock signal output associated with the second bit portion for each switching period T 2 of the second clock signal output A second bit portion is generated correspondingly. If a single PRBS has eight bits (K=8), the two unknown bit numbers L and H corresponding to the two bit portions are respectively three and five (L=3, H=5), and After the step 13, T 2 = 2 L × T 1 , so the internal sequence of the first bit portion has been changed from the current sequence (10101) to the next sequence (00100). Change eight (2 L ) times (111, 110, 101, 010, 100, 000, 001, 011), that is, according to Figure 3, each time the second bit is generated, 2 L of this will be generated. The first bit portion (the total number of inversions between adjacent sequences is L × 2 L-1 ), and the integrated circuit generating system generates a total of 2 H of the second according to the second clock signal output a bit portion (the total number of flips between adjacent sequences is H × 2 H-1 ), and the first bit portion will generate 2 H × 2 L in total, and all the first bits are generated In part of the process, the total number of inversions between adjacent sequences is 2 H × L × 2 L-1 , so that when n = 2, the integrated circuit generation system is based on the number of the two unknown bits L , H, and each clock signal output The switching cycle is used to calculate the determined sequence to generate all the (2 k th PRBS) generation process, the function of the total number of turns between all neighboring PRBS can be expressed as the formula (2): Y = H × 2 H- 1 + 2 H × L × 2 L-1 (2) where Y represents the total number of inversions, and L and H represent the number of the first and second unknown bits, respectively.

同理,當n=3時,該積體電路生成系統根據三個未知位元數L、M、H(L<M<H),及每一時脈信號輸出的該切換週期可決定出該函數為式(3):Y=H×2H-1+2H×M×2M-1+2H×2M×L×2L-1 式(3)其中,L、M、H分別代表第一個未知位元數、第二個未知位元數,及第三個未知位元數,L+M+H=K,但不限於此。當n>3時,也可依相同方式推導出相關的該函數。 Similarly, when n=3, the integrated circuit generating system can determine the function according to the three unknown bit numbers L, M, H (L<M<H), and the switching period of each clock signal output. Let formula (3): Y = H × 2 H-1 + 2 H × M × 2 M-1 + 2 H × 2 M × L × 2 L-1 (3) where L, M, and H represent The first unknown number of bits, the second number of unknown bits, and the third number of unknown bits, L+M+H=K, but are not limited thereto. When n>3, the relevant function can also be derived in the same way.

步驟15:根據該函數來計算使該總翻轉次數具有最小值時,每一未知位元數的一數值。詳細來說,以式(2)舉例說明,但不限於此,且步驟15包括以下子步驟151、152、153、154。 Step 15: Calculate a value of each unknown number of bits when the total number of inversions has a minimum value according to the function. In detail, the formula (2) is exemplified, but is not limited thereto, and the step 15 includes the following sub-steps 151, 152, 153, and 154.

子步驟151:根據L=K-H將該函數式(2)調整為Y=H×2H-1+2H×(K-H)×2K-H-1Sub-step 151: The function (2) is adjusted to Y = H × 2 H-1 + 2 H × (KH) × 2 KH-1 according to L = KH.

子步驟152:對子步驟151之該函數的該第二個未知位元數H求導數,並得到該函數在2K=2H×(1+H×ln 2)時(例如,對該函數H進行微分並使微分後的式子等於零來得知K、H間的關係),該總翻轉次數具有最小值。 Sub-step 152: Deriving the second unknown number of bits H of the function of sub-step 151 and obtaining the function at 2 K = 2 H × (1 + H × ln 2) (for example, the function H differentiates and differentiates the differential expression to zero to know the relationship between K and H. The total number of flips has a minimum value.

子步驟153:根據子步驟152之2K=2H×(1+H×ln 2)及該總位元數K的數值(為一已知數,由測試人員於一開始就先設定好)來得到該第二個未知位元數H的數值。 Sub-step 153: According to sub-step 152, 2 K = 2 H × (1 + H × ln 2) and the value of the total number of bits K (for a known number, the tester sets it first) To get the value of the second unknown bit number H.

子步驟154:根據該總位元數K、子步驟153所得的該第二個未知位元數H的數值,及L=K-H來得到該第一個未知位元數L的數值。 Sub-step 154: obtain the value of the first unknown bit number L according to the total number of bits K, the value of the second unknown bit number H obtained in sub-step 153, and L=K-H.

步驟16:根據已知的該總位元數K、該分段值n、每一未知位元數的該數值、該N個時脈信號輸出,及一切換信號來產生每一PRBS。當該切換信號具有一高邏輯準位時,每一PRBS為一逆向序列,當該切換信號具有一低邏輯準位時,每一PRBS為一正向序列。 Step 16: Generate each PRBS according to the known total number of bits K, the segmentation value n, the value of each unknown bit number, the N clock signal outputs, and a switching signal. When the switching signal has a high logic level, each PRBS is a reverse sequence, and when the switching signal has a low logic level, each PRBS is a forward sequence.

詳細來說,該積體電路生成系統可用軟體生成的方式,藉由一現有的PRBS生成程式來根據已知的該總位元數K、該分段值n、每一未知位元數的該數值、該N個時脈信號輸出,及該切換信號來生成2k個PRBS,或者以硬體生成方式來生成2k個PRBS。當以硬體方式來生成2k個PRBS時,該積體電路生成系統利用一現有的數位電路合成程式來根據已知的該總位元數K、該分段值n、每一未知位元數的該數值,獲得一用以製造一PRBS生成裝置的電路設計圖,並由根據該電路設計圖所製成的該PRBS生成裝置,根據該N個時脈信號輸出及該切換信號產生2k個PRBS。需說明的 是,本實施例的特點在於將該總位元數K先進行分段,然後將該時脈信號輸入進行除頻,並據以獲得該函數來計算使該總翻轉次數具有最小值時,每一未知位元數的一數值,以使得該積體電路生成系統在產生所有PRBS時,所有相鄰PRBS間的該總翻轉次數可以減少,而該積體電路生成系統如何生成該等PRBS的方式為熟悉本技術領域之通常知識者所熟知,為求簡潔起見,以下僅舉根據該電路設計圖製造出的該PRBS生成裝置產生2k個PRBS為例,但不限於此。 In detail, the integrated circuit generating system can generate the software by means of an existing PRBS generating program according to the known total number of bits K, the segment value n, and the number of each unknown bit. value, of the N output clock signal, and said switching signal generating the PRBS two 2 k, or in hardware generation mode to generate the 2 k th PRBS. When the hard body 2 k two ways to generate the PRBS, the integrated circuit generating system using a conventional digital circuit synthesis program to K according to the total number of bits known, the segment value is n, each of the unknown bits The value of the number obtains a circuit design diagram for manufacturing a PRBS generating device, and the PRBS generating device according to the circuit design diagram generates 2 k according to the N clock signal output and the switching signal. PRBS. It should be noted that the feature of the embodiment is that the total number of bits K is segmented first, and then the clock signal is input for frequency division, and the function is obtained to calculate that the total number of times of flipping has a minimum value. a value of each unknown bit number such that the total number of inversions between all adjacent PRBSs can be reduced when the integrated circuit generating system generates all PRBSs, and how the integrated circuit generating system generates such The manner of the PRBS is well known to those skilled in the art. For the sake of brevity, only the PRBS generating apparatus manufactured according to the circuit design diagram generates 2 k PRBS as an example, but is not limited thereto.

參閱圖4,舉例來說,當該總位元數K等於十五、該分段值n等於二,利用本實施例該偽隨機位元序列生成方法求得的該等未知位元數L、H的數值分別為三、十二時,該積體電路生成系統所生成的該電路設計圖所製成的該PRBS生成裝置2如圖4所示。 Referring to FIG. 4, for example, when the total number of bits K is equal to fifteen, and the segmentation value n is equal to two, the number of the unknown bits L obtained by the pseudo random bit sequence generation method in this embodiment is used. The value of H is three or twelve, respectively, and the PRBS generating device 2 made by the circuit design diagram generated by the integrated circuit generating system is as shown in FIG.

該PRBS生成裝置2包括一時脈信號產生器21,及第一個及第二個位元部分產生器22、23。 The PRBS generating device 2 includes a clock signal generator 21, and first and second bit portion generators 22, 23.

該時脈信號產生器21接收該時脈信號輸入及該第一個未知位元數L,且包括一除頻電路211。該除頻電路211根據該第一個未知位元數L對該時脈信號輸入進行除頻,以產生該第二個時脈信號輸出CLK2,且該時脈信號產生器21將該時脈信號輸入直接輸出並作為該第一個時脈信號輸出CLK1。 The clock signal generator 21 receives the clock signal input and the first unknown bit number L, and includes a frequency dividing circuit 211. The frequency dividing circuit 211 divides the clock signal input according to the first unknown bit number L to generate the second clock signal output CLK2, and the clock signal generator 21 sets the clock signal. The direct output is input and CLK1 is output as the first clock signal.

該第一個位元部分產生器22包括三個線性反饋移位暫存器(Linear feedback shift register,LFSR)221、222、223。該第一個位元部分產生器22接收該切換信號Cs,且電連接該時脈信號產生器21以接收該第一個時脈信號輸出CLK1,並根據該切換信號Cs及該第一個時脈信號輸出CLK1產生多個各自具有三個位元的第一個位元部分BS1。 The first bit portion generator 22 includes three linear feedback shift registers (LFSR) 221, 222, 223. The first bit portion generator 22 receives the switching signal Cs, and electrically connects the clock signal generator 21 to receive the first clock signal output CLK1, and according to the switching signal Cs and the first time The pulse signal output CLK1 generates a plurality of first bit portions BS1 each having three bits.

該第二個位元部分產生器23包括十二個LFSR 231~239、240~242。該第二個位元部分產生器23接收該切換信號Cs,且電連接該時脈信號產生器21以接收該第二個時脈信號輸出CLK2,並根據該切換信號Cs及該第二個時脈信號輸出CLK2產生多個各自具有十二個位元的第二個位元部分BS2。每一第二個位元部分BS2與其所對應的第一個位元部分BS1相組合成具有十五個位元的該PRBS。 The second bit portion generator 23 includes twelve LFSRs 231 to 239, 240 to 242. The second bit portion generator 23 receives the switching signal Cs and is electrically connected to the clock signal generator 21 to receive the second clock signal output CLK2, and according to the switching signal Cs and the second time The pulse signal output CLK2 generates a plurality of second bit portions BS2 each having twelve bits. Each second bit portion BS2 is combined with its corresponding first bit portion BS1 into the PRBS having fifteen bits.

需說明的是,從該第二個位元部分產生器23的規格書中可得知其本原多項式為H(X,12)=X0+X3+X4+X7+X12,且對H(X,12)求逆可得該第二個位元部分產生器23產生逆序列之該第二個位元部分BS2的逆本原多項式為G(X,12)=X12+X9+X8+X5+X0。當該切換信號Cs具有該低邏輯準位(即,0)時,異或閘230會接收到來自該等LFSR233、234、237、242的位元(每一LFSR233、234、237、242作為一反饋抽頭,其會影響該 第二個位元部分產生器23下一次所輸出的第二個位元部分BS2),即對應本原多項式H(X,12),因此,該第二個位元部分產生器23所產生的每一第二個位元部分BS2為一正向序列。當該切換信號Cs具有該高邏輯準位(即,1)時,該異或閘230會接收到來自該等LFSR231、235、238、234(其作為反饋抽頭)的位元,即對應逆本原多項式G(X,12),因此,該第二個位元部分產生器23所產生的每一第二個位元部分BS2為一逆向序列。同理,該第一個位元部分產生器22也受該切換信號Cs控制,使得該第一個位元部分產生器22所產生的每一第一個位元部分BS1為一正向序列或一逆向序列。因此,由每一第二個位元部分BS2與其所對應的第一個位元部分BS1相組合而成的該PRBS也可為一正向序列或一逆向序列。 It should be noted that, from the specification of the second bit portion generator 23, the primitive polynomial is H(X, 12)=X 0 +X 3 +X 4 +X 7 +X 12 . And inverting H(X, 12), the second primitive part generator 23 generates an inverse sequence. The inverse primitive polynomial of the second bit part BS2 is G(X, 12)=X 12 + X 9 +X 8 +X 5 +X 0 . When the switching signal Cs has the low logic level (ie, 0), the exclusive OR gate 230 receives the bits from the LFSRs 233, 234, 237, 242 (each LFSR 233, 234, 237, 242 as one) a feedback tap that affects the second bit portion BS2) that the second bit portion generator 23 outputs next, that is, corresponds to the primitive polynomial H(X, 12), and therefore, the second bit Each second bit portion BS2 generated by the partial generator 23 is a forward sequence. When the switching signal Cs has the high logic level (ie, 1), the XOR gate 230 receives the bits from the LFSRs 231, 235, 238, 234 (which are feedback taps), ie, the corresponding reverse The original polynomial G(X, 12), therefore, each second bit portion BS2 generated by the second bit portion generator 23 is a reverse sequence. Similarly, the first bit portion generator 22 is also controlled by the switching signal Cs such that each first bit portion BS1 generated by the first bit portion generator 22 is a forward sequence or A reverse sequence. Therefore, the PRBS formed by combining each second bit portion BS2 with its corresponding first bit portion BS1 may also be a forward sequence or a reverse sequence.

此外,該時脈信號產生器21,該等第一個及第二個位元部分產生器22、23的配置與操作及如何產生每一第一個及第二個位元部分BS1、BS2,此為熟悉本技術領域之通常知識者所熟知,為求簡潔起見,於此不贅述。 In addition, the clock signal generator 21, the configuration and operation of the first and second bit portion generators 22, 23 and how each of the first and second bit portions BS1, BS2 are generated, This is well known to those of ordinary skill in the art and will not be described herein for the sake of brevity.

參閱圖5,其說明該實施例與習知偽隨機位元序列生成方法的所有相鄰偽隨機位元序列間的總翻轉次數對具有不同總位元數之偽隨機位元序列的變化的比較圖。圖5顯示該實施例的總翻轉次數明顯小於習知偽隨機位元序列生成方法的總翻轉次數,驗證該實施例確實具有降低總翻轉次數的功效。 Referring to FIG. 5, a comparison of the total number of flips between all adjacent pseudo-random bit sequences of the conventional pseudo-random bit sequence generation method and the pseudo-random bit sequence with different total number of bits is compared. Figure. Figure 5 shows that the total number of flips for this embodiment is significantly less than the total number of flips of the conventional pseudo-random bit sequence generation method, verifying that this embodiment does have the effect of reducing the total number of flips.

綜上所述,本發明PRBS生成方法,藉由將該總位元數K先進行分段,然後將該時脈信號輸入進行除頻以獲得該N個時脈信號輸出,並根據該N個未知位元數及每一時脈信號輸出來獲得該函數及計算使該總翻轉次數具有最小值時,每一未知位元數的該數值,如此一來,當該積體電路生成系統根據已知的該總位元數K、該分段值n、每一未知位元數的該數值、該N個時脈信號輸出來產生所有PRBS時,所有相鄰PRBS間的該總翻轉次數最少,使得待測晶片在測試過程中所需的測試功耗也隨著降低,故確實能達成本發明之目的。 In summary, the PRBS generating method of the present invention, by segmenting the total number of bits K first, and then dividing the clock signal input to obtain the output of the N clock signals, and according to the N The number of unknown bits and each clock signal output to obtain the function and calculate the value of each unknown number of bits when the total number of inversions has a minimum value, such that when the integrated circuit generation system is known The total number of bits K, the segmentation value n, the value of each unknown number of bits, and the output of the N clock signals to generate all PRBSs, the total number of times of inversion between all adjacent PRBSs is the smallest, so that The test power consumption required for the wafer to be tested during the test is also reduced, so that the object of the present invention can be achieved.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the equivalent equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still The scope of the invention is covered.

Claims (8)

一種偽隨機位元序列生成方法,由一積體電路生成系統所執行,每一偽隨機位元序列具有K個位元,K>2,K為正整數,該偽隨機位元序列生成方法包含以下步驟:(A)根據該偽隨機位元序列的一總位元數K得到一分段值n,2≦n<K,n為正整數;(B)根據該分段值n將該偽隨機位元序列中的該K個位元分成N個位元部分,每一位元部分具有一未知位元數,且N個未知位元數滿足其總和等於該總位元數K之關係,N=n;(C)根據一時脈信號輸入及第一個未知位元數至第N-1個未知位元數,產生N個分別相關於生成該N個位元部分的時脈信號輸出;(D)根據該N個未知位元數,及每一時脈信號輸出的一切換週期來決定一函數,該函數相關於計算所有偽隨機位元序列中相鄰偽隨機位元序列間位元發生翻轉的一總翻轉次數;(E)根據該函數來計算使該總翻轉次數具有最小值時,每一未知位元數的一數值;及(F)根據該總位元數K、該分段值n、每一未知位元數的該數值,及該N個時脈信號輸出來產生每一偽隨機位元序列。A pseudo-random bit sequence generation method is performed by an integrated circuit generation system, each pseudo-random bit sequence has K bits, K>2, and K is a positive integer, and the pseudo-random bit sequence generation method includes The following steps: (A) obtaining a segment value n, 2 ≦ n < K, n is a positive integer according to a total number of bits K of the pseudo random bit sequence; (B) the pseudo value according to the segment value n The K bits in the random bit sequence are divided into N bit parts, each bit part has an unknown number of bits, and the number of N unknown bits satisfies the relationship that the sum is equal to the total number of bits K. N=n; (C) generating, according to a clock signal input and the first unknown bit number to the N-1th unknown bit number, generating N clock signal outputs respectively associated with generating the N bit parts; (D) determining a function according to the number of N unknown bits and a switching period of each clock signal output, the function being related to calculating the occurrence of bits between adjacent pseudo-random bit sequences in all pseudo-random bit sequences The total number of flips of the flip; (E) Calculate according to the function, the total number of flips has a minimum value, each unknown bit A value; and (F) based on the total number of bits K, the segment value n, the value of each of the number of unknown bits, and the N output clock signal to generate a pseudo-random sequence of bits each. 如請求項1所述的偽隨機位元序列生成方法,其中,在步驟(B)中,第i個未知位元數小於第i+1個未知位元數,i<N,i為正整數。The pseudo random bit sequence generation method according to claim 1, wherein in the step (B), the i-th unknown bit number is smaller than the i+1th unknown bit number, i<N, i is a positive integer . 如請求項1所述的偽隨機位元序列生成方法,其中,步驟(C)包括以下子步驟(C1)將該時脈信號輸入作為第一個時脈信號輸出,該第一個時脈信號輸出相關於生成第一個位元部分,及(C2)根據該第一個未知位元數至該第N-1個未知位元數各自對該時脈信號輸入進行除頻,以產生第二個時脈信號輸出至第N個時脈信號輸出。The pseudo random bit sequence generation method of claim 1, wherein the step (C) comprises the following substep (C1) of inputting the clock signal as a first clock signal, the first clock signal The output is related to generating a first bit portion, and (C2) is respectively frequency-divided according to the first unknown bit number to the N-1th unknown bit number to generate a second The clock signal is output to the Nth clock signal output. 如請求項3所述的偽隨機位元序列生成方法,其中,在步驟(C2)中,第j個時脈信號輸出的一切換週期,2≦j≦N,j為正整數,Tj=2P×T(j-1),其中,Tj代表該第j個時脈信號輸出的該切換週期,P代表第(j-1)個未知位元數,T(j-1)代表第(j-1)個時脈信號輸出的一切換週期。The pseudo random bit sequence generation method according to claim 3, wherein in the step (C2), a switching period of the jth clock signal output, 2≦j≦N,j is a positive integer, T j = 2 P ×T (j-1) , where T j represents the switching period of the j-th clock signal output, P represents the number of (j-1) unknown bits, and T (j-1) represents the first (j-1) One switching period of the clock signal output. 如請求項1所述的偽隨機位元序列生成方法,其中,n=3,在步驟(D)中,該積體電路生成系統決定出該函數為Y=H×2H-1+2H×M×2M-1+2H×2M×L×2L-1,其中,Y代表該總翻轉次數,L、M、H分別代表第一個未知位元數、第二個未知位元數,及第三個未知位元數,L、M、H各自為正整數,L+M+H=K。The pseudo random bit sequence generation method according to claim 1, wherein n=3, in step (D), the integrated circuit generation system determines that the function is Y=H×2 H-1 +2 H ×M×2 M-1 +2 H ×2 M ×L×2 L-1 , where Y represents the total number of inversions, and L, M, and H represent the first unknown number of bits and the second unknown bit, respectively. The number of elements, and the third number of unknown bits, L, M, and H are each a positive integer, L+M+H=K. 如請求項1所述的偽隨機位元序列生成方法,其中,n=2,在步驟(D)中,該積體電路生成系統決定出該函數為Y=H×2H-1+2H×L×2L-1,其中,Y代表該總翻轉次數,L、H分別代表第一個未知位元數及第二個未知位元數,L、H各自為正整數,L+H=K。The pseudo random bit sequence generating method according to claim 1, wherein n=2, in step (D), the integrated circuit generating system determines that the function is Y=H×2 H-1 +2 H ×L×2 L-1 , where Y represents the total number of inversions, L and H represent the first unknown number of bits and the second unknown number of bits, respectively, L and H are positive integers, L+H= K. 如請求項6所述的偽隨機位元序列生成方法,其中,步驟(E)包括以下子步驟(E1)根據L=K-H將該函數調整為Y=H×2H-1+2H×(K-H)×2K-H-1,(E2)對子步驟(E1)之該函數的該第二個未知位元數H求導數,並得到該函數在2K=2H×(1+H×ln 2)時,該總翻轉次數具有最小值,(E3)根據子步驟(E2)之2K=2H×(1+H×ln 2)及該總位元數K的數值來得到該第二個未知位元數H的數值,及(E4)根據該總位元數K、該第二個未知位元數H的數值,及L=K-H來得到該第一個未知位元數L的數值。The pseudo random bit sequence generation method according to claim 6, wherein the step (E) comprises the following substep (E1) adjusting the function to Y=H×2 H-1 +2 H × according to L=KH ( KH) × 2 KH-1, the second number of unknown bits H (E2) sub-step (E1) of the derivative of the function, and the function obtained in the 2 K = 2 H × (1 + H × ln 2), the total number of inversions has a minimum value, and (E3) obtains the second number according to the value of 2 K = 2 H × (1 + H × ln 2) of the sub-step (E2) and the total number of bits K The value of the number of unknown bits H, and (E4) the value of the number of the first unknown bit L based on the total number of bits K, the value of the second number of unknown bits H, and L=KH . 如請求項1所述的偽隨機位元序列生成方法,其中,在步驟(F)中,該積體電路生成系統還根據一切換信號產生每一偽隨機位元序列,當該切換信號具有一高邏輯準位時,每一偽隨機位元序列為一逆向序列,當該切換信號具有一低邏輯準位時,每一偽隨機位元序列為一正向序列。The pseudo random bit sequence generating method according to claim 1, wherein in the step (F), the integrated circuit generating system further generates each pseudo random bit sequence according to a switching signal, when the switching signal has a When the logic level is high, each pseudo random bit sequence is an inverse sequence. When the switching signal has a low logic level, each pseudo random bit sequence is a forward sequence.
TW107104293A 2018-02-07 2018-02-07 Pseudo random bit sequence generation method and device, and integrated circuit generation system for generating pseudo random bit sequence generation device TWI641223B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107104293A TWI641223B (en) 2018-02-07 2018-02-07 Pseudo random bit sequence generation method and device, and integrated circuit generation system for generating pseudo random bit sequence generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107104293A TWI641223B (en) 2018-02-07 2018-02-07 Pseudo random bit sequence generation method and device, and integrated circuit generation system for generating pseudo random bit sequence generation device

Publications (2)

Publication Number Publication Date
TWI641223B true TWI641223B (en) 2018-11-11
TW201935847A TW201935847A (en) 2019-09-01

Family

ID=65034597

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107104293A TWI641223B (en) 2018-02-07 2018-02-07 Pseudo random bit sequence generation method and device, and integrated circuit generation system for generating pseudo random bit sequence generation device

Country Status (1)

Country Link
TW (1) TWI641223B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351300A (en) * 1992-07-29 1994-09-27 U.S. Philips Corporation Method of modifying pseudo-random sequences and device for scrambling or descrambling information components
US20110142226A1 (en) * 2007-05-11 2011-06-16 Thales Method of generating pseudo-random bit strings
TWI354447B (en) * 2007-07-13 2011-12-11 Leadtrend Tech Corp Pseudo random clock generator and pseudo random cl
CN102318007B (en) * 2007-09-07 2015-02-18 桑迪士克科技股份有限公司 Nonvolatile memory and method for on-chip pseudo-randomization of data within a page and between pages
CN103399726B (en) * 2013-07-15 2017-02-01 哈尔滨工程大学 Streamlined combined-type pseudo-random number generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351300A (en) * 1992-07-29 1994-09-27 U.S. Philips Corporation Method of modifying pseudo-random sequences and device for scrambling or descrambling information components
US20110142226A1 (en) * 2007-05-11 2011-06-16 Thales Method of generating pseudo-random bit strings
TWI354447B (en) * 2007-07-13 2011-12-11 Leadtrend Tech Corp Pseudo random clock generator and pseudo random cl
CN102318007B (en) * 2007-09-07 2015-02-18 桑迪士克科技股份有限公司 Nonvolatile memory and method for on-chip pseudo-randomization of data within a page and between pages
CN103399726B (en) * 2013-07-15 2017-02-01 哈尔滨工程大学 Streamlined combined-type pseudo-random number generator

Also Published As

Publication number Publication date
TW201935847A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
JP5296352B2 (en) Method and apparatus for in-line measurement of switching delay history effect in PD-SOI technology
Zheng et al. DScanPUF: A delay-based physical unclonable function built into scan chain
Shivakumar et al. A low-power and area-efficient design of a weighted pseudorandom test-pattern generator for a test-per-scan built-in self-test architecture
US8901917B2 (en) Element measurement circuit and method thereof
Uzzaman et al. Not all delay tests are the same-SDQL model shows true-time
TWI641223B (en) Pseudo random bit sequence generation method and device, and integrated circuit generation system for generating pseudo random bit sequence generation device
US7222277B2 (en) Test output compaction using response shaper
Gojman et al. GROK-INT: Generating real on-chip knowledge for interconnect delays using timing extraction
Lin et al. On generating high quality tests based on cell functions
Vannal et al. Design and testing of combinational Logic circuits using built in self test scheme for FPGAs
Madhulatha et al. Reconfigurable and Parameterizable Pseudorandom Pattern Generators for Built-in Self Test
JP2002261587A (en) Pseudo-random signal generating circuit
US20030140286A1 (en) Pulse generation circuit and semiconductor tester that uses the pulse generation circuit
Shabaz et al. Design of reconfigurable 2-D linear feedback shift register for built-in-self-testing of multiple system-on-chip cores
TWI815410B (en) Chip power consumption analyzer and analyzing method thereof
Wang et al. A BIST scheme for FPGA interconnect delay faults
Nisha et al. VLSI implementation of an efficient MBIST architecture using RLFSR
Shailaja et al. Automatic Seed Generation for Weighted Test Pattern Generation
Motamarri et al. On-chip Generation of Functional Tests with Reduced Delay and Power
Shailaja et al. Weighted test pattern generator (TPG) for built-in self-test (BIST)
Malini et al. 22nm 0.8 V strained silicon based programmable MISR under various temperature ranges
Jimenéz et al. Implementation of 32nm MD5 Crypto-Processor using Different Topographical Synthesis Techniques and Comparison with 500nm Node
JP2008275337A (en) Testing device and method
JP2004040037A (en) Inspection device for semiconductor integrated circuit
Balaji et al. Arbitrary Density Pattern (ADP) Based Reduction of Testing Time in Scan-BIST VLSI Circuits