TWI636547B - Semiconductor memory device and method of manufacturing the same - Google Patents
Semiconductor memory device and method of manufacturing the same Download PDFInfo
- Publication number
- TWI636547B TWI636547B TW106128844A TW106128844A TWI636547B TW I636547 B TWI636547 B TW I636547B TW 106128844 A TW106128844 A TW 106128844A TW 106128844 A TW106128844 A TW 106128844A TW I636547 B TWI636547 B TW I636547B
- Authority
- TW
- Taiwan
- Prior art keywords
- isolation
- trench
- substrate
- memory device
- semiconductor memory
- Prior art date
Links
Landscapes
- Element Separation (AREA)
- Semiconductor Memories (AREA)
Abstract
一種半導體記憶元件,包括基底、多個第一隔離結構以及多個第二隔離結構。基底包括周邊區與陣列區。第一隔離結構位於周邊區的基底中。第二隔離結構位於陣列區的基底中。第一隔離結構的材料與第二隔離結構的材料不同。各第一隔離結構的寬度大於各第二隔離結構的寬度。A semiconductor memory device includes a substrate, a plurality of first isolation structures, and a plurality of second isolation structures. The substrate includes a peripheral region and an array region. The first isolation structure is located in the substrate of the peripheral region. The second isolation structure is located in the substrate of the array region. The material of the first isolation structure is different from the material of the second isolation structure. The width of each of the first isolation structures is greater than the width of each of the second isolation structures.
Description
本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種半導體記憶元件及其製造方法。 The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a semiconductor memory device and a method of fabricating the same.
隨著半導體技術的進步,為了達到降低成本、簡化製程步驟以及節省晶片面積的需求,將記憶胞陣列區與周邊電路區的元件整合在同一晶片上已然逐漸成為一種趨勢。隨著元件的尺寸不斷地縮小,為了防止相鄰的元件之間發生短路的現象,因此元件與元件之間的隔離則變得相當重要。 With the advancement of semiconductor technology, in order to reduce the cost, simplify the process steps and save the wafer area, it has become a trend to integrate the elements of the memory cell array and the peripheral circuit area on the same wafer. As the size of components continues to shrink, isolation between components and components becomes quite important in order to prevent short circuits between adjacent components.
一般而言,常使用可流動性介電材料來當作隔離結構的材料。然而,在進行熱處理以移除可流動性介電材料中的溶劑時,由於可流動性介電材料的應力(stress)或縮小(shrinkage),而使得周邊電路區中的基底或隔離結構產生嚴重的錯位(dislocation)問題,更甚至造成裂紋(crack)或破裂情況。倘若在基底或隔離結構中具有裂紋或破裂,將會使得隔離結構的隔離能力劣化,進而造成元件的漏電流或元件的可靠度變差等問題。 In general, flowable dielectric materials are often used as materials for the isolation structure. However, when the heat treatment is performed to remove the solvent in the flowable dielectric material, the substrate or the isolation structure in the peripheral circuit region is severely affected due to the stress or shrinkage of the flowable dielectric material. Dislocation problems, and even cracks or cracks. If there is a crack or crack in the substrate or the isolation structure, the isolation capability of the isolation structure is deteriorated, which causes problems such as leakage current of the element or deterioration of reliability of the element.
本發明提供一種半導體記憶元件及其製造方法,其可避免周邊電路區中的基底或隔離結構產生錯位或裂紋,進而降低元件的漏電流並提升元件的可靠度。 The invention provides a semiconductor memory device and a manufacturing method thereof, which can avoid misalignment or cracking of a substrate or an isolation structure in a peripheral circuit region, thereby reducing leakage current of the component and improving reliability of the component.
本發明提供一種半導體記憶元件,包括基底、多個第一隔離結構以及多個第二隔離結構。基底包括周邊區與陣列區。第一隔離結構位於周邊區的基底中。第二隔離結構位於陣列區的基底中。第一隔離結構的材料與第二隔離結構的材料不同。各第一隔離結構的寬度大於各第二隔離結構的寬度。 The present invention provides a semiconductor memory device including a substrate, a plurality of first isolation structures, and a plurality of second isolation structures. The substrate includes a peripheral region and an array region. The first isolation structure is located in the substrate of the peripheral region. The second isolation structure is located in the substrate of the array region. The material of the first isolation structure is different from the material of the second isolation structure. The width of each of the first isolation structures is greater than the width of each of the second isolation structures.
本發明提供一種半導體記憶元件的製造方法,其步驟如下。提供基底,其包括周邊區與陣列區。於周邊區的基底上形成多個第一堆疊結構。於第一堆疊結構之間分別形成多個第一溝渠。第一溝渠自第一堆疊結構的頂面延伸至基底中。於陣列區的基底上形成多個第二堆疊結構。於第二堆疊結構之間分別形成多個第二溝渠。第二溝渠自第二堆疊結構的頂面延伸至基底中。第二溝渠的寬度小於第一溝渠的寬度。將第一隔離材料同時填入第一溝渠與第二溝渠中。於陣列區的基底上形成罩幕圖案。罩幕圖案暴露出第一溝渠中的第一隔離材料的頂面。以罩幕圖案為罩幕,移除第一溝渠中的第一隔離材料的至少一部分。於第一溝渠中形成第二隔離材料。進行熱處理。 The present invention provides a method of fabricating a semiconductor memory device, the steps of which are as follows. A substrate is provided that includes a peripheral region and an array region. A plurality of first stacked structures are formed on the substrate of the peripheral region. A plurality of first trenches are respectively formed between the first stacked structures. The first trench extends from the top surface of the first stacked structure into the substrate. A plurality of second stacked structures are formed on the substrate of the array region. A plurality of second trenches are respectively formed between the second stacked structures. The second trench extends from the top surface of the second stacked structure into the substrate. The width of the second trench is smaller than the width of the first trench. The first isolation material is simultaneously filled into the first trench and the second trench. A mask pattern is formed on the substrate of the array region. The mask pattern exposes a top surface of the first isolation material in the first trench. The mask pattern is used as a mask to remove at least a portion of the first isolation material in the first trench. A second isolation material is formed in the first trench. Heat treatment is performed.
基於上述,本發明藉由將可流動性介電材料同時填入周 邊區的第一溝渠與陣列區的第二溝渠中,使得可流動性介電材料可填滿具有高深寬比的第二溝渠。接著,移除第一溝渠中的可流動性介電材料的至少一部分。之後,將化學氣相沉積氧化物形成在第一溝渠中。在進行後續熱處理以移除可流動性介電材料的溶劑時,由於第一溝渠中的可流動性介電材料與基底之間的面積已降低,因此,周邊區的基底或隔離結構不易產生錯位與裂紋。如此一來,本發明的周邊區與陣列區的隔離結構皆具有較佳的隔離能力,進而降低元件的漏電流、增加元件的崩潰電壓並提升元件的可靠度。 Based on the above, the present invention fills in the week by simultaneously inserting a flowable dielectric material The first trench of the edge region and the second trench of the array region allow the flowable dielectric material to fill the second trench having a high aspect ratio. Next, at least a portion of the flowable dielectric material in the first trench is removed. Thereafter, a chemical vapor deposited oxide is formed in the first trench. When the subsequent heat treatment is performed to remove the solvent of the flowable dielectric material, since the area between the flowable dielectric material and the substrate in the first trench has been lowered, the substrate or the isolation structure of the peripheral region is less likely to be misaligned. With cracks. In this way, the isolation structure of the peripheral region and the array region of the present invention has better isolation capability, thereby reducing leakage current of the component, increasing the breakdown voltage of the component, and improving the reliability of the component.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
10‧‧‧第一溝渠 10‧‧‧First ditches
12‧‧‧第二溝渠 12‧‧‧Second ditches
100‧‧‧基底 100‧‧‧Base
100T‧‧‧最高頂面 100T‧‧‧top top
102‧‧‧第一閘介電層 102‧‧‧First gate dielectric layer
104‧‧‧第一閘極 104‧‧‧First Gate
106‧‧‧硬罩幕層 106‧‧‧hard mask layer
108‧‧‧介電材料 108‧‧‧Dielectric materials
108a、108b‧‧‧介電層 108a, 108b‧‧‧ dielectric layer
110、110a‧‧‧第一堆疊結構 110, 110a‧‧‧ first stack structure
110T、114T、114T’、210T、214T‧‧‧頂面 110T, 114T, 114T', 210T, 214T‧‧‧ top
112、114、114a、214‧‧‧第一隔離材料 112, 114, 114a, 214‧‧‧ first insulation material
114b‧‧‧下部結構 114b‧‧‧lower structure
118a‧‧‧上部結構 118a‧‧‧Superstructure
122‧‧‧第一隔離結構 122‧‧‧First isolation structure
116‧‧‧罩幕圖案 116‧‧‧ mask pattern
118‧‧‧第二隔離材料 118‧‧‧Second insulation material
120‧‧‧熱處理 120‧‧‧ heat treatment
210、210a‧‧‧第二堆疊結構 210, 210a‧‧‧ second stack structure
202‧‧‧第二閘介電層 202‧‧‧Second gate dielectric layer
204‧‧‧第二閘極 204‧‧‧second gate
206‧‧‧硬罩幕層 206‧‧‧hard mask layer
222‧‧‧第二隔離結構 222‧‧‧Second isolation structure
AR‧‧‧陣列區 AR‧‧‧Array area
PR‧‧‧周邊區 PR‧‧‧ surrounding area
S002、S004、S006、S008、S010、S012、S014、S016、S102、S104、S106、S108、S110、S112、S114、S116‧‧‧步驟 S002, S004, S006, S008, S010, S012, S014, S016, S102, S104, S106, S108, S110, S112, S114, S116‧‧
D1、D2‧‧‧深度 D1, D2‧‧ depth
D3‧‧‧距離 D3‧‧‧ distance
H1、H2‧‧‧高度 H1, H2‧‧‧ height
W1、W1’、W2、W2’‧‧‧寬度 W1, W1', W2, W2'‧‧‧ width
圖1是依照本發明第一實施例的一種半導體記憶元件的製造方法的流程圖。 1 is a flow chart of a method of fabricating a semiconductor memory device in accordance with a first embodiment of the present invention.
圖2A至圖2H是依照本發明第一實施例的一種半導體記憶元件的製造方法的剖面示意圖。 2A through 2H are schematic cross-sectional views showing a method of fabricating a semiconductor memory device in accordance with a first embodiment of the present invention.
圖3是依照本發明第二實施例的一種半導體記憶元件的製造方法的流程圖。 3 is a flow chart of a method of fabricating a semiconductor memory device in accordance with a second embodiment of the present invention.
參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之標號表示相同或相似之元件,以下段落將不再贅述。 The invention will be more fully described with reference to the drawings of the embodiments. However, the invention may be embodied in a variety of different forms and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings will be exaggerated for clarity. The same or similar reference numerals are used for the same or similar elements and will not be described again in the following paragraphs.
圖1是依照本發明第一實施例的一種半導體記憶元件的製造方法的流程圖。圖2A至圖2H是依照本發明第一實施例的一種半導體記憶元件的製造方法的剖面示意圖。 1 is a flow chart of a method of fabricating a semiconductor memory device in accordance with a first embodiment of the present invention. 2A through 2H are schematic cross-sectional views showing a method of fabricating a semiconductor memory device in accordance with a first embodiment of the present invention.
請參照圖1與圖2A,首先,進行步驟S002,提供基底100。在一實施例中,基底100可例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(Semiconductor Over Insulator,SOI)。半導體例如是IVA族的原子,例如矽或鍺。半導體化合物例如是IVA族的原子所形成之半導體化合物,例如是碳化矽或是矽化鍺,或是IIIA族原子與VA族原子所形成之半導體化合物,例如是砷化鎵。 Referring to FIG. 1 and FIG. 2A, first, step S002 is performed to provide the substrate 100. In one embodiment, the substrate 100 can be, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (Semiconductor Over Insulator (SOI)). The semiconductor is, for example, an atom of the IVA group, such as ruthenium or osmium. The semiconductor compound is, for example, a semiconductor compound formed of atoms of Group IVA, such as tantalum carbide or germanium telluride, or a semiconductor compound formed of a group IIIA atom and a group VA atom, such as gallium arsenide.
在本實施例中,基底100包括周邊區PR與陣列區AR。周邊區PR可例如是周邊電路區,其具有金氧半導體元件於其中。陣列區AR可例如是記憶胞陣列區,其具有記憶元件於其中。在其他實施例中,陣列區AR可以是元件密集區,其單位面積中的元件數量大於周邊區PR之單位面積中的元件數量。 In the present embodiment, the substrate 100 includes a peripheral region PR and an array region AR. The peripheral region PR may be, for example, a peripheral circuit region having a MOS device therein. The array area AR may be, for example, a memory cell array region having a memory element therein. In other embodiments, the array area AR may be a dense area of components whose number of elements per unit area is larger than the number of elements in the unit area of the peripheral area PR.
接著,進行步驟S004,於周邊區PR的基底100上形成多個第一堆疊結構110,並於陣列區AR的基底100上形成多個第二堆疊結構210。詳細地說,第一堆疊結構110包括自基底100的 頂面向上依序包括第一閘介電層102、第一閘極104以及硬罩幕層106。在一實施例中,第一閘介電層102的材料可例如是氧化矽、氮化矽或其組合,其形成方法可利用化學氣相沈積法來形成。第一閘極104材料可例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可利用化學氣相沈積法來形成。硬罩幕層106的材料可例如是氧化矽、氮化矽或其組合,其形成方法可利用化學氣相沈積法來形成。在本實施例中,第一閘介電層102與第一閘極104可構成金氧半導體元件的閘極結構,所述閘極結構的兩側的基底100中具有源極與汲極(未繪示)。 Next, in step S004, a plurality of first stacked structures 110 are formed on the substrate 100 of the peripheral region PR, and a plurality of second stacked structures 210 are formed on the substrate 100 of the array region AR. In detail, the first stacked structure 110 includes the self-substrate 100 The top facing up includes the first gate dielectric layer 102, the first gate 104, and the hard mask layer 106. In an embodiment, the material of the first gate dielectric layer 102 may be, for example, hafnium oxide, tantalum nitride or a combination thereof, and the formation method thereof may be formed by chemical vapor deposition. The first gate 104 material may be, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof may be formed by chemical vapor deposition. The material of the hard mask layer 106 may be, for example, hafnium oxide, tantalum nitride or a combination thereof, and the formation method thereof may be formed by chemical vapor deposition. In this embodiment, the first gate dielectric layer 102 and the first gate 104 may constitute a gate structure of a MOS device, and the substrate 100 on both sides of the gate structure has a source and a drain (not Painted).
另外,第二堆疊結構210包括自基底100的頂面向上依序包括第二閘介電層202、第二閘極204以及硬罩幕層206。第二閘介電層202、第二閘極204以及硬罩幕層206的材料與形成方法類似上述第一閘介電層102、第一閘極104以及硬罩幕層106的材料與形成方法,於此便不再贅述。在本實施例中,第二閘介電層202可用以當作記憶元件的穿隧介電層;第二閘極204可用以當作記憶元件的浮置閘極。在一實施例中,第二閘介電層202的厚度小於第一閘介電層102的厚度。第二閘介電層202的厚度可介於5奈米至10奈米之間;第一閘介電層102的厚度可介於5奈米至70奈米之間。 In addition, the second stacked structure 210 includes a second gate dielectric layer 202, a second gate 204, and a hard mask layer 206 sequentially from the top surface of the substrate 100. The material and formation method of the second gate dielectric layer 202, the second gate 204, and the hard mask layer 206 are similar to the materials and formation methods of the first gate dielectric layer 102, the first gate 104, and the hard mask layer 106. This will not be repeated here. In the present embodiment, the second gate dielectric layer 202 can be used as a tunneling dielectric layer of the memory element; the second gate 204 can be used as a floating gate of the memory element. In an embodiment, the thickness of the second gate dielectric layer 202 is less than the thickness of the first gate dielectric layer 102. The thickness of the second gate dielectric layer 202 may be between 5 nm and 10 nm; the thickness of the first gate dielectric layer 102 may be between 5 nm and 70 nm.
接著,進行步驟S006,於第一堆疊結構110之間分別形成多個第一溝渠10,並於第二堆疊結構210之間分別形成多個第二溝渠12。詳細地說,第一溝渠10與第二溝渠12的形成方法可 以是在第一堆疊結構110與第二堆疊結構210的頂面上形成罩幕圖案(未繪示),以暴露出欲形成第一溝渠10與第二溝渠12的位置或區域。移除部分硬罩幕層106、206、部分第一閘極104、部分第二閘極204、部分第一閘介電層102、部分第二閘介電層202以及部分基底100,使得第一溝渠10自第一堆疊結構110的頂面延伸至基底100中,而第二溝渠12則是自第二堆疊結構210的頂面延伸至基底100中(如圖2A所示)。也就是說,第一溝渠10與第二溝渠12可同時形成,且兩者的底面可實質上共平面。 Then, in step S006, a plurality of first trenches 10 are respectively formed between the first stacked structures 110, and a plurality of second trenches 12 are respectively formed between the second stacked structures 210. In detail, the method for forming the first trench 10 and the second trench 12 can be A mask pattern (not shown) is formed on the top surfaces of the first stack structure 110 and the second stack structure 210 to expose a position or an area where the first trench 10 and the second trench 12 are to be formed. Removing a portion of the hard mask layer 106, 206, a portion of the first gate 104, a portion of the second gate 204, a portion of the first gate dielectric layer 102, a portion of the second gate dielectric layer 202, and a portion of the substrate 100 such that the first The trench 10 extends from the top surface of the first stacked structure 110 into the substrate 100, and the second trench 12 extends from the top surface of the second stacked structure 210 into the substrate 100 (as shown in FIG. 2A). That is, the first trench 10 and the second trench 12 can be formed simultaneously, and the bottom surfaces of the two can be substantially coplanar.
在形成第一溝渠10與第二溝渠12之後,於基底100上形成介電材料108。如圖2A所示,介電材料108共形地覆蓋第一溝渠10的表面、第二溝渠12的表面以及硬罩幕層106、206的頂面。在一實施例中,介電材料108可以是氧化矽,其形成方法可例如是化學氣相沉積法(CVD)、原子層沉積法(ALD)或其組合。 After the first trench 10 and the second trench 12 are formed, a dielectric material 108 is formed on the substrate 100. As shown in FIG. 2A, dielectric material 108 conformally covers the surface of first trench 10, the surface of second trench 12, and the top surface of hard mask layers 106, 206. In an embodiment, the dielectric material 108 may be ruthenium oxide, and the formation method thereof may be, for example, chemical vapor deposition (CVD), atomic layer deposition (ALD), or a combination thereof.
值得注意的是,位於陣列區AR的第二溝渠12的寬度W2小於周邊區PR的第一溝渠10的寬度W1。另外,位於陣列區AR的第二溝渠12的深寬比大於周邊區PR的第一溝渠10的深寬比。在一實施例中,第一溝渠10的寬度W1可介於0.2微米至8微米之間;第二溝渠12的寬度W2可介於0.01微米至0.03微米之間。在一實施例中,第一溝渠10的深寬比(深度D1/寬度W1)可介於0.04至2之間;第二溝渠12的深寬比(深度D2/寬度W2)可介於10至35之間。 It is to be noted that the width W2 of the second trench 12 located in the array area AR is smaller than the width W1 of the first trench 10 of the peripheral area PR. In addition, the aspect ratio of the second trench 12 located in the array region AR is greater than the aspect ratio of the first trench 10 of the peripheral region PR. In an embodiment, the width W1 of the first trench 10 may be between 0.2 micrometers and 8 micrometers; and the width W2 of the second trench 12 may be between 0.01 micrometers and 0.03 micrometers. In an embodiment, the aspect ratio (depth D1/width W1) of the first trench 10 may be between 0.04 and 2; the aspect ratio (depth D2/width W2) of the second trench 12 may be between 10 and Between 35.
請參照圖1與圖2B,進行步驟S008,將第一隔離材料 112同時填入第一溝渠10與第二溝渠12中。第一隔離材料112不僅填滿第一溝渠10與第二溝渠12,還覆蓋第一堆疊結構110與第二堆疊結構210的頂面。在本實施例中,第一隔離材料112可以是可流動性介電材料,例如是旋塗式介電材料。所述可流動性介電材料具有較佳的填溝能力,其可填入具有高深寬比的第二溝渠12中,而不會形成孔洞,使得後續形成的第二隔離結構222(如圖2H所示)具有較佳的隔離能力。 Referring to FIG. 1 and FIG. 2B, step S008 is performed to apply the first isolation material. 112 is simultaneously filled into the first trench 10 and the second trench 12. The first isolation material 112 not only fills the first trench 10 and the second trench 12 but also covers the top surfaces of the first stacked structure 110 and the second stacked structure 210. In the present embodiment, the first isolation material 112 may be a flowable dielectric material such as a spin-on dielectric material. The flowable dielectric material has a better filling ability, which can be filled into the second trench 12 having a high aspect ratio without forming a hole, so that the second isolation structure 222 is formed later (see FIG. 2H). Shown) has better isolation capabilities.
在一實施例中,第一隔離材料112的形成方法包括旋塗式介電法(SOD)、可流動性化學氣相沉積法(flowable chemical vapor deposition,FCVD)或其組合。以旋塗式介電法為例,可將可流動性介電材料(例如是聚矽氮烷(polysilazane,PSZ))旋轉塗佈在基底100上,使得所述可流動性介電材料填入第一溝渠10與第二溝渠12中,而不會形成孔洞。 In one embodiment, the method of forming the first isolation material 112 includes spin-on dielectric (SOD), flowable chemical vapor deposition (FCVD), or a combination thereof. For example, in a spin-on dielectric method, a flowable dielectric material (for example, polysilazane (PSZ)) may be spin-coated on a substrate 100 such that the flowable dielectric material is filled in. The first trench 10 and the second trench 12 are formed without forming holes.
請參照圖2B與圖2C,進行平坦化製程,移除第一堆疊結構110與第二堆疊結構210的頂面上的第一隔離材料112、介電材料108以及硬罩幕層106、206。在一實施例中,所述平坦化製程可以是化學機械研磨製程(CMP)或回蝕刻製程。在所述平坦化製程後,殘留在第一溝渠10中的第一隔離材料可視為第一隔離材料114,而介電層108a位於第一隔離材料114與基底100(或第一堆疊結構110a)之間。殘留在第二溝渠12中的第一隔離材料可視為第一隔離材料214,而介電層108b位於第一隔離材料214與基底100(或第二堆疊結構210a)之間。在此情況下,如圖2C 所示,第二溝渠12中的第一隔離材料214的頂面214T與第二堆疊結構210a的頂面210T實質上共平面。另一方面,由於第一堆疊結構110a的頂面110T高於第二堆疊結構210a的頂面210T,因此,第一堆疊結構110a與第二堆疊結構210a之間的第一隔離材料114的頂面114T為一斜面。所述斜面的高度自靠近第一堆疊結構110a朝著靠近第二堆疊結構210a的方向漸減。 Referring to FIG. 2B and FIG. 2C , a planarization process is performed to remove the first isolation material 112 , the dielectric material 108 , and the hard mask layers 106 , 206 on the top surfaces of the first stacked structure 110 and the second stacked structure 210 . In an embodiment, the planarization process may be a chemical mechanical polishing process (CMP) or an etch back process. After the planarization process, the first isolation material remaining in the first trench 10 can be regarded as the first isolation material 114, and the dielectric layer 108a is located on the first isolation material 114 and the substrate 100 (or the first stacked structure 110a). between. The first isolation material remaining in the second trench 12 can be considered as the first isolation material 214, and the dielectric layer 108b is located between the first isolation material 214 and the substrate 100 (or the second stacked structure 210a). In this case, as shown in Figure 2C As shown, the top surface 214T of the first isolation material 214 in the second trench 12 is substantially coplanar with the top surface 210T of the second stacked structure 210a. On the other hand, since the top surface 110T of the first stacked structure 110a is higher than the top surface 210T of the second stacked structure 210a, the top surface of the first isolation material 114 between the first stacked structure 110a and the second stacked structure 210a 114T is a slope. The height of the slope decreases from the first stack structure 110a toward the second stack structure 210a.
請參照圖1與圖2D,進行步驟S010,於陣列區AR的基底100上形成罩幕圖案116。罩幕圖案116覆蓋陣列區AR的第二溝渠12中的第一隔離材料214,且暴露出周邊區PR的第一溝渠10中的第一隔離材料114的頂面114T。在一實施例中,罩幕圖案116可以是光阻類材料,其形成方法可例如是微影製程。 Referring to FIG. 1 and FIG. 2D, step S010 is performed to form a mask pattern 116 on the substrate 100 of the array area AR. The mask pattern 116 covers the first isolation material 214 in the second trench 12 of the array region AR and exposes the top surface 114T of the first isolation material 114 in the first trench 10 of the peripheral region PR. In an embodiment, the mask pattern 116 may be a photoresist type material, and the forming method thereof may be, for example, a lithography process.
請參照圖1與圖2D-2E,進行步驟S012,以罩幕圖案116為罩幕,移除第一溝渠10中的第一隔離材料114的一部分。在一實施例中,移除第一溝渠10中的第一隔離材料114的一部分的方法包括乾式蝕刻法、濕式蝕刻法或其組合。詳細地說,乾式蝕刻法包括使用具有氟代烴化合物混合氮氣與氧氣的反應氣體。所述氟代烴化合物可表示為CxFy(x為4-6,y為6-8)或CxHyFz(x為1-2,y為1-3,z為1-3)。濕式蝕刻法包括使用緩衝氫氟酸(BHF)、稀釋氫氟酸(DHF)或其組合的蝕刻液。所述反應氣體與所述蝕刻液對於第一隔離材料114與第一閘極104具有高蝕刻選擇性。 Referring to FIG. 1 and FIG. 2D-2E, step S012 is performed to remove a portion of the first isolation material 114 in the first trench 10 with the mask pattern 116 as a mask. In an embodiment, the method of removing a portion of the first isolation material 114 in the first trench 10 includes a dry etch process, a wet etch process, or a combination thereof. In detail, the dry etching method includes using a reaction gas having a fluorinated hydrocarbon compound mixed with nitrogen and oxygen. The fluorohydrocarbon compound can be represented as CxFy (x is 4-6, y is 6-8) or CxHyFz (x is 1-2, y is 1-3, z is 1-3). The wet etching method includes an etchant using buffered hydrofluoric acid (BHF), diluted hydrofluoric acid (DHF), or a combination thereof. The reactive gas and the etchant have high etch selectivity to the first isolation material 114 and the first gate 104.
值得注意的是,移除第一溝渠10中的第一隔離材料114 的一部分之後,剩餘的第一隔離材料114a的頂面114T’與基底100的最高頂面100T(亦即基底100與第一閘介電層102之間的界面)之間的距離D3至少大於500Å。此步驟可減少第一溝渠10中的第一隔離材料114a(亦即可流動性介電材料)與基底100之間的面積。如此一來,本實施例便可避免後續熱處理時由於可流動性介電材料的應力或縮小,而使得周邊區PR中的基底100或第一隔離結構122(如圖2H所示)中產生錯位或裂紋問題。在一實施例中,剩餘的第一隔離材料114a的頂面114T’與基底100的最高頂面100T之間的距離D3可介於500Å至3000Å之間。在替代實施例中,亦可完全移除第一溝渠10中的第一隔離材料114。 It is worth noting that the first isolation material 114 in the first trench 10 is removed. After a portion, the distance D3 between the top surface 114T' of the remaining first isolation material 114a and the highest top surface 100T of the substrate 100 (ie, the interface between the substrate 100 and the first gate dielectric layer 102) is at least greater than 500 Å. . This step reduces the area between the first isolation material 114a (i.e., the flowable dielectric material) in the first trench 10 and the substrate 100. In this way, the present embodiment can avoid misalignment in the substrate 100 or the first isolation structure 122 (shown in FIG. 2H) in the peripheral region PR due to stress or shrinkage of the flowable dielectric material during subsequent heat treatment. Or crack problem. In an embodiment, the distance D3 between the top surface 114T' of the remaining first isolation material 114a and the highest top surface 100T of the substrate 100 may be between 500 Å and 3000 Å. In an alternate embodiment, the first isolation material 114 in the first trench 10 can also be completely removed.
請參照圖1與圖2F,進行步驟S014,於第一溝渠10中形成第二隔離材料118。第二隔離材料118不僅填滿第一隔離材料114a上的空間,還覆蓋第一堆疊結構110a與第二堆疊結構210a的頂面。在一實施例中,第二隔離材料118可以是化學氣相沉積氧化物,其形成方法可例如是高密度電漿化學氣相沉積法(HDP CVD)、高深寬比填溝製程(e-HARP)或其組合。由於第二隔離材料118的緻密度與矽-氧鍵結強度大於第一隔離材料114a、214(亦即可流動性介電材料)的緻密度與矽-氧鍵結強度,因此,第二隔離材料118可填滿第一溝渠10中的大部分空間,而不會在後續熱處理後產生錯位或裂紋問題。 Referring to FIG. 1 and FIG. 2F, step S014 is performed to form a second isolation material 118 in the first trench 10. The second isolation material 118 not only fills the space on the first isolation material 114a, but also covers the top surfaces of the first stacked structure 110a and the second stacked structure 210a. In an embodiment, the second isolation material 118 may be a chemical vapor deposition oxide, and the formation method thereof may be, for example, high density plasma chemical vapor deposition (HDP CVD), high aspect ratio filling process (e-HARP). ) or a combination thereof. Since the density and the 矽-oxygen bond strength of the second isolation material 118 are greater than the density and the 矽-oxygen bond strength of the first isolation material 114a, 214 (ie, the flowable dielectric material), the second isolation Material 118 fills most of the space in first trench 10 without creating misalignment or cracking problems after subsequent heat treatment.
請參照圖1與圖2F-2G,進行步驟S016,進行熱處理120,以移除第一隔離材料114a、214(亦即可流動性介電材料)中的溶 劑,以固化所述可流動性介電材料。在一實施例中,熱處理120可以是爐管熱處理或快速熱處理。以爐管熱處理為例,可在H2O環境氣體下,在300℃至500℃溫度下進行30分鐘至60分鐘。然後在N2環境氣體下,在700℃至900℃溫度下進行30分鐘至60分鐘。 Referring to FIG. 1 and FIG. 2F-2G, step S016 is performed to perform heat treatment 120 to remove the solvent in the first isolation material 114a, 214 (ie, the fluid dielectric material) to cure the flowability. Electrical material. In an embodiment, the heat treatment 120 can be a furnace tube heat treatment or a rapid heat treatment. Taking the heat treatment of the furnace tube as an example, it can be carried out at a temperature of 300 ° C to 500 ° C for 30 minutes to 60 minutes under a H 2 O atmosphere. It is then carried out at a temperature of 700 ° C to 900 ° C for 30 minutes to 60 minutes under N 2 ambient gas.
值得注意的是,相較於整個第一溝渠10的空間,固化的第一隔離材料114b與基底100之間的面積較小。在熱處理120後,固化的第一隔離材料114b的應力也隨之減少,因此,可避免周邊區PR中的基底100或固化的第一隔離材料114b產生錯位或裂紋,進而降低元件的漏電流、增加元件的崩潰電壓並提升元件的可靠度。另外,將具有較佳的填溝能力的可流動性介電材料填入具有高深寬比的第二溝渠12中,其不會形成孔洞,使得固化後的第一隔離材料222(亦即第二隔離結構222)具有較佳的隔離能力。 It is to be noted that the area between the cured first isolation material 114b and the substrate 100 is smaller than the space of the entire first trench 10. After the heat treatment 120, the stress of the cured first isolating material 114b is also reduced. Therefore, misalignment or cracking of the substrate 100 or the cured first insulating material 114b in the peripheral region PR can be avoided, thereby reducing the leakage current of the device. Increase the component's breakdown voltage and increase component reliability. In addition, a flowable dielectric material having a better filling ability is filled into the second trench 12 having a high aspect ratio, which does not form a hole, so that the cured first insulating material 222 (ie, the second The isolation structure 222) has better isolation capabilities.
請參照圖2G與圖2H,在進行熱處理120後,更包括進行平坦化製程,移除第一堆疊結構110a與第二堆疊結構210a的頂面上的第二隔離材料118。在一實施例中,所述平坦化製程可以是化學機械研磨製程或回蝕刻製程。在所述平坦化製程後,殘留在第一溝渠10中的第二隔離材料118a可視為第一隔離結構122的上部結構118a;而固化的第一隔離材料114b可視為第一隔離結構122的下部結構114b。下部結構114b與位於下部結構114b上的上部結構118a可構成第一隔離結構122。在一實施例中,第一隔離結構122的下部結構114b與第二隔離結構222的材料相同且 同時形成;第一隔離結構122的上部結構118a與第二隔離結構222的材料不同。 Referring to FIG. 2G and FIG. 2H, after performing the heat treatment 120, a planarization process is further included to remove the second isolation material 118 on the top surface of the first stacked structure 110a and the second stacked structure 210a. In an embodiment, the planarization process may be a chemical mechanical polishing process or an etch back process. After the planarization process, the second isolation material 118a remaining in the first trench 10 can be regarded as the upper structure 118a of the first isolation structure 122; and the cured first isolation material 114b can be regarded as the lower portion of the first isolation structure 122. Structure 114b. The lower structure 114b and the upper structure 118a on the lower structure 114b may constitute the first isolation structure 122. In an embodiment, the lower structure 114b of the first isolation structure 122 is the same material as the second isolation structure 222 and At the same time, the upper structure 118a of the first isolation structure 122 is different from the material of the second isolation structure 222.
另外,在所述平坦化製程後,所述製造方法更包括在陣列區AR的第二堆疊結構210a上依序形成層間介電層與控制閘極(未繪示),以形成多個記憶元件。在一實施例中,所述記憶元件包括快閃記憶體,例如是反及(NAND)快閃記憶體。 In addition, after the planarization process, the manufacturing method further includes sequentially forming an interlayer dielectric layer and a control gate (not shown) on the second stacked structure 210a of the array region AR to form a plurality of memory components. . In one embodiment, the memory element comprises a flash memory, such as a reverse (NAND) flash memory.
如圖2H所示,本實施例之半導體記憶元件包括:基底100、多個第一堆疊結構110a、多個第二堆疊結構210a、多個第一隔離結構122以及多個第二隔離結構222。基底100包括周邊區PR與陣列區AR。第一堆疊結構110a位於周邊區PR的基底100上。第二堆疊結構210a位於陣列區AR的基底100上。第一隔離結構122位於第一堆疊結構110a之間,其自第一堆疊結構110a的頂面延伸至基底100中。第二隔離結構222位於第二堆疊結構210a之間,其自第二堆疊結構210a的頂面延伸至基底100中。 As shown in FIG. 2H, the semiconductor memory device of the present embodiment includes a substrate 100, a plurality of first stacked structures 110a, a plurality of second stacked structures 210a, a plurality of first isolation structures 122, and a plurality of second isolation structures 222. The substrate 100 includes a peripheral region PR and an array region AR. The first stack structure 110a is located on the substrate 100 of the peripheral region PR. The second stack structure 210a is located on the substrate 100 of the array area AR. The first isolation structure 122 is located between the first stacked structures 110a and extends from the top surface of the first stacked structure 110a into the substrate 100. The second isolation structure 222 is located between the second stacked structures 210a, which extends from the top surface of the second stacked structure 210a into the substrate 100.
值得注意的是,第一隔離結構122的寬度W1’大於第二隔離結構222的寬度W2’。另外,位於陣列區AR的第二隔離結構222的深寬比大於周邊區PR的第一隔離結構122的深寬比。在一實施例中,第一隔離結構122的寬度W1’可介於0.2微米至8微米之間;第二隔離結構222的寬度W2’可介於0.01微米至0.03微米之間。在一實施例中,第一隔離結構122的深寬比(高度H1/寬度W1’)可介於0.04至2之間;第二隔離結構222的深寬比(高度H2/寬度W2’)可介於10至35之間。 It is to be noted that the width W1' of the first isolation structure 122 is greater than the width W2' of the second isolation structure 222. In addition, the aspect ratio of the second isolation structure 222 located in the array area AR is greater than the aspect ratio of the first isolation structure 122 of the peripheral area PR. In one embodiment, the width W1' of the first isolation structure 122 may be between 0.2 microns and 8 microns; the width W2' of the second isolation structure 222 may be between 0.01 microns and 0.03 microns. In an embodiment, the aspect ratio (height H1/width W1') of the first isolation structure 122 may be between 0.04 and 2; the aspect ratio (height H2/width W2') of the second isolation structure 222 may be Between 10 and 35.
圖3是依照本發明第二實施例的一種半導體記憶元件的製造方法的流程圖。 3 is a flow chart of a method of fabricating a semiconductor memory device in accordance with a second embodiment of the present invention.
請參照圖3,基本上,本發明第二實施例的一種半導體記憶元件的製造方法與本發明第二實施例的一種半導體記憶元件的製造方法相似。也就是說,步驟S102、S104、S106、S108、S110與步驟S002、S004、S006、S008、S010相同。上述兩者不同之處在於:在步驟S112中,以罩幕圖案為罩幕,完全移除第一溝渠中的第一隔離材料,使得沒有任何第一隔離材料殘留在第一溝渠中。之後,進行步驟S114,於第一溝渠中形成第二隔離材料。也就是說,第二隔離材料完全填滿第一溝渠。然後,進行步驟S116,進行熱處理,以移除第二溝渠中的第一隔離材料(亦即可流動性介電材料)中的溶劑,以固化所述可流動性介電材料。 Referring to FIG. 3, basically, a method of fabricating a semiconductor memory device according to a second embodiment of the present invention is similar to a method of fabricating a semiconductor memory device according to a second embodiment of the present invention. That is, steps S102, S104, S106, S108, and S110 are the same as steps S002, S004, S006, S008, and S010. The difference between the two is that in step S112, the first isolation material in the first trench is completely removed by using the mask pattern as a mask, so that no first isolation material remains in the first trench. Thereafter, step S114 is performed to form a second isolation material in the first trench. That is, the second insulation material completely fills the first trench. Then, step S116 is performed to perform heat treatment to remove the solvent in the first insulating material (ie, the fluidizable dielectric material) in the second trench to cure the flowable dielectric material.
綜上所述,本發明藉由將可流動性介電材料同時填入周邊區的第一溝渠與陣列區的第二溝渠中,使得可流動性介電材料可填滿具有高深寬比的第二溝渠。接著,移除第一溝渠中的可流動性介電材料的至少一部分。之後,將化學氣相沉積氧化物形成在第一溝渠中。在進行後續熱處理以移除可流動性介電材料的溶劑時,由於第一溝渠中的可流動性介電材料與基底之間的面積已降低,因此,周邊區的基底或隔離結構不易產生錯位與裂紋。如此一來,本發明的周邊區與陣列區的隔離結構皆具有較佳的隔離能力,進而降低元件的漏電流、增加元件的崩潰電壓並提升元件的可靠度。 In summary, the present invention allows the flowable dielectric material to be filled with a high aspect ratio by simultaneously filling the flowable dielectric material into the first trench of the peripheral region and the second trench of the array region. Two ditches. Next, at least a portion of the flowable dielectric material in the first trench is removed. Thereafter, a chemical vapor deposited oxide is formed in the first trench. When the subsequent heat treatment is performed to remove the solvent of the flowable dielectric material, since the area between the flowable dielectric material and the substrate in the first trench has been lowered, the substrate or the isolation structure of the peripheral region is less likely to be misaligned. With cracks. In this way, the isolation structure of the peripheral region and the array region of the present invention has better isolation capability, thereby reducing leakage current of the component, increasing the breakdown voltage of the component, and improving the reliability of the component.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106128844A TWI636547B (en) | 2017-08-25 | 2017-08-25 | Semiconductor memory device and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106128844A TWI636547B (en) | 2017-08-25 | 2017-08-25 | Semiconductor memory device and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI636547B true TWI636547B (en) | 2018-09-21 |
TW201913950A TW201913950A (en) | 2019-04-01 |
Family
ID=64452853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106128844A TWI636547B (en) | 2017-08-25 | 2017-08-25 | Semiconductor memory device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI636547B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112436008A (en) * | 2019-08-06 | 2021-03-02 | 铠侠股份有限公司 | Semiconductor memory device and method of manufacturing the same |
TWI745919B (en) * | 2020-04-08 | 2021-11-11 | 旺宏電子股份有限公司 | Memory device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1571146A (en) * | 2003-07-24 | 2005-01-26 | 旺宏电子股份有限公司 | Manufacturing method of flash memory |
CN102543825A (en) * | 2010-12-29 | 2012-07-04 | 旺宏电子股份有限公司 | Manufacturing method of semiconductor channel and double channels and structure for isolating elements |
TW201633509A (en) * | 2015-03-03 | 2016-09-16 | 旺宏電子股份有限公司 | Memory device and method for fabricating the same |
-
2017
- 2017-08-25 TW TW106128844A patent/TWI636547B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1571146A (en) * | 2003-07-24 | 2005-01-26 | 旺宏电子股份有限公司 | Manufacturing method of flash memory |
CN102543825A (en) * | 2010-12-29 | 2012-07-04 | 旺宏电子股份有限公司 | Manufacturing method of semiconductor channel and double channels and structure for isolating elements |
TW201633509A (en) * | 2015-03-03 | 2016-09-16 | 旺宏電子股份有限公司 | Memory device and method for fabricating the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112436008A (en) * | 2019-08-06 | 2021-03-02 | 铠侠股份有限公司 | Semiconductor memory device and method of manufacturing the same |
CN112436008B (en) * | 2019-08-06 | 2023-12-05 | 铠侠股份有限公司 | Semiconductor memory device and method for manufacturing the same |
TWI745919B (en) * | 2020-04-08 | 2021-11-11 | 旺宏電子股份有限公司 | Memory device |
Also Published As
Publication number | Publication date |
---|---|
TW201913950A (en) | 2019-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8552526B2 (en) | Self-aligned semiconductor trench structures | |
JP2010263129A (en) | Semiconductor device and method of manufacturing the same | |
CN108074910A (en) | Semiconductor devices and its manufacturing method | |
JP2006156471A (en) | Semiconductor device and its manufacturing method | |
US20220139711A1 (en) | Manufacturing method for integrating gate dielectric layers of different thicknesses | |
KR100972881B1 (en) | Method of forming a flash memory device | |
KR100772554B1 (en) | Method for forming isolation layer in nonvolatile memory device | |
TWI636547B (en) | Semiconductor memory device and method of manufacturing the same | |
CN109427808B (en) | Semiconductor memory element and method for manufacturing the same | |
US10354924B2 (en) | Semiconductor memory device and method of manufacturing the same | |
US9437674B2 (en) | Insulating trench forming method | |
KR100772722B1 (en) | Method for fabricating isolation layer in flash memory device | |
KR101034950B1 (en) | Method of fabricating the trench isolation layer for semiconductor device | |
TWI833404B (en) | Method of forming memory structure | |
KR100912988B1 (en) | Method of manufacturing a semiconductor device | |
KR20100079753A (en) | Method of manufacturing a semiconductor device | |
KR100677990B1 (en) | Method for forming semiconductor device | |
KR0172240B1 (en) | Method of separating element from semiconductor device | |
KR20100079797A (en) | Semiconductor device with buried gate and method for fabricating the same | |
TWI629749B (en) | Semiconductor device, manufacturing method thereof and manufacturing method of memory | |
KR100567872B1 (en) | Method for forming isolation layer in a semiconductor manufacturing device | |
JP2000031489A (en) | Manufacturing semiconductor device | |
KR100578239B1 (en) | Method of forming shallow trench isolation layer in semiconductor device | |
US20070215875A1 (en) | Semiconductor device and method for fabricating the same | |
KR20110047820A (en) | Method for manufacturing semiconductor device using organic layer and oxide stacked hardmask |