TWI634701B - Dynamic polarization and coupling control for a steerable cylindrically fed holographic antenna - Google Patents

Dynamic polarization and coupling control for a steerable cylindrically fed holographic antenna Download PDF

Info

Publication number
TWI634701B
TWI634701B TW104102522A TW104102522A TWI634701B TW I634701 B TWI634701 B TW I634701B TW 104102522 A TW104102522 A TW 104102522A TW 104102522 A TW104102522 A TW 104102522A TW I634701 B TWI634701 B TW I634701B
Authority
TW
Taiwan
Prior art keywords
antenna
feed
wave
patch
slots
Prior art date
Application number
TW104102522A
Other languages
Chinese (zh)
Other versions
TW201541714A (en
Inventor
亞當 比利
內森 康德茲
米卡拉 強森
Original Assignee
美商凱米塔公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/550,178 external-priority patent/US9887456B2/en
Application filed by 美商凱米塔公司 filed Critical 美商凱米塔公司
Publication of TW201541714A publication Critical patent/TW201541714A/en
Application granted granted Critical
Publication of TWI634701B publication Critical patent/TWI634701B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0012Radial guide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0031Parallel-plate fed arrays; Lens-fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

此處揭示用於一圓筒式饋入天線之設備及使用該設備之方法。於一個實施例中,該天線包含一天線饋入以輸入一圓筒式饋入波及耦接至該天線饋入之一可調諧開槽陣列。 Apparatus for a cylindrical feed antenna and methods of using the same are disclosed herein. In one embodiment, the antenna includes an antenna feed to input a cylindrical feed wave and a tunable slot array coupled to the antenna feed.

Description

用於可操縱圓筒式饋入全像天線之動態極化及耦合控制技術 Dynamic polarization and coupling control technique for steerable cylindrical feed hologram antenna 優先權 priority

本專利申請案請求對應臨時專利申請案第61/941,801號,名稱「自圓筒式饋入全像天線之極化及耦合控制」申請日2014年2月19日以及對應臨時專利申請案第62/012,897號,名稱「用於通訊衛星地面站台之超材料天線」申請日2014年月日之優先權,該等二案係爰引於此並融入本說明書之揭示。 This patent application claims the provisional patent application No. 61/941,801, entitled "Polarization and Coupling Control of Self-Cylinder Feeding Holographic Antenna" on February 19, 2014 and the corresponding provisional patent application No. 62 /012,897, entitled "Supermaterial Antenna for Communication Satellite Ground Stations", the priority date of the application date of 2014, which is hereby incorporated by reference.

發明領域 Field of invention

本發明之實施例係有關於天線領域;更明確言之,本發明之實施例係有關於圓筒式饋入天線。 Embodiments of the invention relate to the field of antennas; more specifically, embodiments of the invention relate to cylindrical feedthrough antennas.

發明背景 Background of the invention

使用以印刷電路板(PCB)為基礎之辦法辛肯氏(Thinkom)產品達成在Ka-頻帶的雙重圓極化,通常使用可變式傾斜橫向殘幹或「VICTS」辦法,有兩型機械旋轉。第一型相對於一個陣列旋轉另一個陣列,及第二型於方位角旋轉兩者。主要限制為掃描範圍(仰角20度至70度,不可 能側面相對)及波束效能(偶爾只限於接收)。 Using a printed circuit board (PCB)-based approach, Thinkom products achieve double circular polarization in the Ka-band, usually using a variable tilt lateral residual or "VICTS" approach, with two types of mechanical rotation . The first type rotates the other array relative to one array, and the second type rotates both in azimuthal rotation. The main limitation is the scanning range (elevation angle 20 degrees to 70 degrees, not Can be side-to-side) and beam performance (occasionally limited to reception).

Ando等人,「用於12GHz DBS衛星接收之徑向線槽式天線」及Yuan等人,「用於高功率微波應用之新穎徑向線槽式天線之設計及實驗」討論各種天線。此等二文中描述的天線之限制為波束只在一個靜態角形成。文章中描述之饋入結構為摺疊雙層,於該處第一層接收該接腳饋入及向外發射信號至邊緣,向上彎曲該信號至頂層,及然後該頂層自周邊至中心一路激勵固定式開槽。開槽典型地係定向為正交對,獲得發射模式之固定圓極化,及對側為接收模式。最後,吸收器終結任何剩餘能量。 Ando et al., "Radline Slot Antennas for 12 GHz DBS Satellite Receiving" and Yuan et al., "Design and Experiment of Novel Radial Trunk Antennas for High Power Microwave Applications" discuss various antennas. The limitation of the antennas described in these two articles is that the beam is formed only at one static angle. The feed structure described in the article is a folded double layer where the first layer receives the pin feed and outwardly emits a signal to the edge, bends the signal upward to the top layer, and then the top layer is energized and fixed from the periphery to the center. Slotted. Slotting is typically oriented as an orthogonal pair, obtaining a fixed circular polarization of the emission mode, and the opposite side being the receiving mode. Finally, the absorber terminates any remaining energy.

「純量及張量全像人工阻抗表面」,作者Fong、Coburn、Ottusch、Visher、Sievenpiper。雖然Sievenpiper已經顯示如何達成一動態掃描天線,但掃描期間該極化保真度仍然存疑。此點之原因在於要求的極化控制係取決於在各個發射元件所要求的張量阻抗。此點最簡單地係藉逐一元件旋轉達成。但當天線掃描時,在各個元件之極化改變,及因而要求的旋轉也改變。由於此等元件為固定,無法動態旋轉,故沒有辦法掃描及維持極化控制。 "The scalar and tensor full-image artificial impedance surface" by Fong, Coburn, Ottusch, Visher, Sievenpiper. Although Sievenpiper has shown how to achieve a dynamic scan antenna, the polarization fidelity remains questionable during the scan. The reason for this is that the required polarization control depends on the tensor impedance required at each of the radiating elements. This is most simply achieved by one-by-one component rotation. However, as the antenna scans, the polarization at each element changes, and thus the required rotation also changes. Since these components are fixed and cannot be rotated dynamically, there is no way to scan and maintain polarization control.

為了達成具有極化控制之波束掃描天線之工業標準辦法通常係使用機械旋轉碟或某型機械式移動組合電子束操縱。最昂貴的選項類別為全相位陣列天線。碟片可同時接收多個極化,但需要一平衡環以掃描。更為晚近,組合在一軸的機械移動與在正交軸的電子掃描,結果獲得具有高縱橫比的結構,其需要的體積較少,但犧牲了束效 能或動態極化控制,諸如辛肯氏(Thinkom)產品。 In order to achieve an industry standard approach to beam-controlled antennas with polarization control, mechanically rotating disks or some type of mechanically moving combined electron beam manipulation are typically used. The most expensive option category is the all-phase array antenna. The disc can receive multiple polarizations at the same time, but requires a balance ring to scan. More recently, combining mechanical movements on one axis with electronic scanning on orthogonal axes results in a structure with a high aspect ratio that requires less volume but sacrifices beam efficiency. Capable or dynamic polarization control, such as Thinkom products.

先前技術辦法使用一波導及分束器饋入結構以饋入天線。但該等波導設計具有接近舷側阻抗擺動(由l-波長週期性結構產生一帶隙);要求與相異CTE結合;具有該饋入結構相聯結的歐姆損耗;及/或數以千計的通孔以延伸至該接地平面。 Prior art approaches use a waveguide and beam splitter feed structure to feed the antenna. However, the waveguide designs have near-side impedance swings (a band gap created by the 1-wavelength periodic structure); are required to be combined with dissimilar CTE; have ohmic losses associated with the feed structure; and/or thousands of passes The holes extend to the ground plane.

發明概要 Summary of invention

此處揭示用於圓筒式饋入天線之設備及使用該設備之方法。於一個實施例中,該天線包含一天線饋入以輸入一圓筒式饋入波及耦接至該天線饋入之一可調諧槽式陣列。 Apparatus for a cylindrical feed antenna and methods of using the same are disclosed herein. In one embodiment, the antenna includes an antenna feed to input a cylindrical feed wave and a tunable trough array coupled to the antenna feed.

201、215‧‧‧同軸接腳 201, 215‧‧‧ coaxial pins

202‧‧‧接地平面 202‧‧‧ Ground plane

203、1203、2003‧‧‧間隙導體 203, 1203, 2003‧‧‧ gap conductor

204、1204、2004‧‧‧間隔體、間隔層 204, 1204, 2004‧‧‧ spacers, spacers

205、212、1702、2005‧‧‧介電層 205, 212, 1702, 2005‧‧‧ dielectric layer

206、216、1801‧‧‧RF陣列 206, 216, 1801‧‧‧RF array

207、208‧‧‧側邊 207, 208‧‧‧ side

209‧‧‧終端 209‧‧‧ Terminal

210、211‧‧‧接地平面 210, 211‧‧‧ ground plane

213、214‧‧‧RF吸收器 213, 214‧‧‧RF absorber

2001、2002‧‧‧階 2001, 2002‧‧‧

300、405a、1710‧‧‧補片 300, 405a, 1710‧‧ ‧ patches

302、403a‧‧‧開槽 302, 403a‧‧‧ slotting

303‧‧‧液晶(LC) 303‧‧‧Liquid Crystal (LC)

402、1802‧‧‧電介質 402, 1802‧‧‧ dielectric

403、1703‧‧‧虹膜板、電路板 403, 1703‧‧ ‧ iris board, circuit board

403b‧‧‧圓形開口 403b‧‧‧round opening

404、1704‧‧‧液晶基體層 404, 1704‧‧‧ liquid crystal substrate layer

405‧‧‧補片板 405‧‧‧ Patch Plate

1701‧‧‧傳導基底層或底層 1701‧‧‧ Conductive basal or bottom layer

1705‧‧‧玻璃層 1705‧‧‧ glass layer

1800‧‧‧同軸饋入 1800‧‧‧ coaxial feed

1900‧‧‧環 1900‧‧‧ Ring

1901、1905‧‧‧箭頭 1901, 1905‧‧‧ arrows

1903‧‧‧相位波前 1903‧‧‧ Phase wavefront

1904‧‧‧TEM波 1904‧‧‧TEM wave

A、B‧‧‧高度 A, B‧‧‧ height

從後文詳細說明部分及各個本發明之實施例之附圖將更完整地瞭解本發明,但不應解譯為本發明囿限於該等特定實施例,反而僅用於解釋及瞭解目的。 The invention will be more fully understood from the following detailed description of the embodiments of the invention.

圖1例示用以提供一柱面波饋入之一同軸饋入之一個實施例之頂視圖。 Figure 1 illustrates a top view of one embodiment of a coaxial feed to provide a cylindrical wave feed.

圖2A及2B例示一圓筒式饋入天線結構之實施例之側視圖。 2A and 2B illustrate side views of an embodiment of a cylindrical feed antenna structure.

圖3例示一個開槽耦合片型天線或散射器之一個實施例之頂視圖。 Figure 3 illustrates a top view of one embodiment of a slotted coupling chip antenna or diffuser.

圖4例示屬於一圓筒式饋入天線系統之部件的一槽式饋入片型天線之側視圖。 Figure 4 illustrates a side view of a slotted feed-in chip antenna belonging to a component of a cylindrical feed antenna system.

圖5例示發射一饋入波至其中之介電材料之一實施例。 Figure 5 illustrates an embodiment of a dielectric material that emits a feed wave thereto.

圖6例示一虹膜板之一個實施例,顯示開槽及其配向。 Figure 6 illustrates an embodiment of an iris plate showing the slots and their alignment.

圖7例示一個虹膜/補片組合之配向之決定方式。 Figure 7 illustrates the manner in which the alignment of an iris/patch combination is determined.

圖8例示虹膜分組成兩個集合,第一集合相對於該功率饋入向量旋轉-45度,及第二集合相對於該功率饋入向量旋轉+45度。 Figure 8 illustrates the iris grouping into two sets, the first set rotated -45 degrees relative to the power feed vector, and the second set rotated +45 degrees relative to the power feed vector.

圖9例示一補片板之一實施例。 Figure 9 illustrates an embodiment of a patch panel.

圖10例示具有圖9之補片的元件之一實施例,其經決定於操作頻率時為關閉。 Figure 10 illustrates an embodiment of an element having the patch of Figure 9 that is closed when determined at the operating frequency.

圖11例示具有圖9之補片的元件之一實施例,其經決定於操作頻率時為啟動。 Figure 11 illustrates an embodiment of an element having the patch of Figure 9 that is activated upon decision of the operating frequency.

圖12例示全波模型化之結果,就圖10及11之元件顯示對開關控制/調變樣式之一電場響應。 Figure 12 illustrates the results of full wave modeling, showing the electric field response to one of the switch control/modulation patterns with respect to the elements of Figures 10 and 11.

圖13例示使用一圓筒式饋入天線之一實施例之束形成。 Figure 13 illustrates beam formation using one embodiment of a cylindrical feed antenna.

圖14A及14B例示配置成蜂巢樣式之補片及開槽。 Figures 14A and 14B illustrate patches and slots configured in a honeycomb style.

圖15A-C例示配置成環之補片及相聯結開槽以產生一徑向布局、一相聯結的控制樣式、及所得天線響應。 15A-C illustrate a patch configured as a loop and an associated slot to create a radial layout, a phased control pattern, and resulting antenna response.

圖16A及16B分別地例示右旋圓極化及左旋圓極化。 16A and 16B illustrate right-handed circular polarization and left-handed circular polarization, respectively.

圖17例示包括一玻璃層其含有該等補片之一圓筒式饋入天線之一部分。 Figure 17 illustrates a portion of a cylindrical feed antenna including a glass layer containing one of the patches.

圖18例示一電介質之線性遞減。 Figure 18 illustrates a linear decrease in a dielectric.

圖19A例示一參考波之一實施例。 Figure 19A illustrates an embodiment of a reference wave.

圖19B例示一產生的物體波。 Fig. 19B illustrates a generated object wave.

圖19C例示所得正弦波調變樣式之一實施例。 Figure 19C illustrates one embodiment of the resulting sinusoidal modulation pattern.

圖20例示另一天線實施例其中該等側邊各自包括一階以使得移行波自底層發射至頂層。 Figure 20 illustrates another antenna embodiment wherein the sides each include a first order such that a traveling wave is emitted from the bottom layer to the top layer.

較佳實施例之詳細說明 Detailed description of the preferred embodiment

本發明之實施例包括一天線設計架構,其自一中心點以一激勵(饋入波)饋入該天線,該激勵係以圓筒式或同心方式自該饋入點向外擴展。該天線係藉以饋入波配置多個圓筒式饋入子孔徑天線(片型天線)發揮功效。於替代實施例中,該天線係從周邊朝內饋入,而非自中心向外饋送。此點為有助益,原因在於其抗衡了因孔徑散射能所造成的幅值激勵衰減。散射的出現在兩個方向為類似,但當饋入波自周邊向內行進時由能量聚焦所造成的自然遞減錐形,抗衡了由蓄意散射所造成的遞減錐形。 Embodiments of the present invention include an antenna design architecture that feeds an antenna from a center point with an excitation (feeding wave) that expands outwardly from the feed point in a cylindrical or concentric manner. The antenna functions by arranging a plurality of cylindrical feed sub-aperture antennas (chip antennas) with feed waves. In an alternate embodiment, the antenna is fed inwardly from the periphery rather than from the center. This is helpful because it counteracts the amplitude excitation attenuation caused by the aperture scattering energy. The appearance of scattering is similar in both directions, but the natural decreasing cone caused by energy focusing as the feeding wave travels inward from the periphery counterbalances the decreasing cone caused by intentional scattering.

本發明之實施例包括一全像天線,該天線係基於倍增典型地要求達成全像術之密度,及以兩型正交元件集合填補該孔徑。於一個實施例中,一個集合之元件係線性定向於相對於該饋入波+45度,及第二集合之元件係定向於相對於該饋入波-45度。兩型係由相同饋入波照明,一個形式中,該饋入波為由一同軸接腳饋入發射之平行板模型。 Embodiments of the present invention include a holographic antenna that is typically required to achieve a holographic density based on multiplication, and to fill the aperture with a set of two orthogonal elements. In one embodiment, a set of components is linearly oriented +45 degrees with respect to the feed wave, and the second set of components is oriented at -45 degrees relative to the feed wave. The two types are illuminated by the same feed wave. In one form, the feed wave is a parallel plate model fed by a coaxial pin.

於後文詳細說明部分中,陳述無數細節以供更徹底解釋本發明。但熟諳技藝人士將瞭解可無此等特定細節而實施本發明。於其它情況下,眾所周知之結構及裝置係以方塊圖形式而非以細節顯示,以免遮掩了本發明。 In the following detailed description, numerous details are set forth to provide a more thorough explanation of the invention. It will be appreciated by those skilled in the art that the present invention may be practiced without the specific details. In other instances, well-known structures and devices are shown in block diagrams and not in detail, so as not to obscure the invention.

後文詳細說明部分之某些部分係以電腦記憶體中在資料位元上操作的演算法及符號表示型態呈示。此等演算法說明描述及表示型態乃熟諳資料處理技藝人士用以傳遞其工作實質給其它熟諳技藝人士的最有效手段。概略言之,一演算法須認知為結果導致一期望結果的一前後對照串列之步驟。該等步驟為要求實體量之實體操縱之步驟。通常地但非必要地,此等數量呈能被儲存、轉移、組合、比較、及以其它方式操縱的電氣信號或磁信號形式。業已證實主要為了常用理由,偶爾可將此等信號稱作為位元、數值、元件、符元、字元、項、數目等。 Some of the sections in the following detailed description are presented in terms of algorithms and symbolic representations that operate on the data bits in computer memory. These algorithmic descriptions and representations are the most effective means by which data processing professionals can pass on the essence of their work to other skilled practitioners. In summary, an algorithm must be recognized as a result of a series of steps leading to a desired result. These steps are steps that require entity manipulation of the entity quantity. Typically, but not necessarily, such quantities are in the form of electrical or magnetic signals that can be stored, transferred, combined, compared, and otherwise manipulated. It has been proven that, for common reasons, such signals may occasionally be referred to as bits, values, elements, symbols, characters, terms, numbers, and the like.

但須牢記全部此等相似術語係與適當實體量相聯結且只是應用於此等數量的便利標記。除非自後文討論另行特定陳述,否則須瞭解於全文詳細說明部分中運用術語諸如「處理」或「運算」或「計算」或「決定」或「顯示」等之討論係指一電腦系統或類似電子計算裝置之動作及處理,其將在該電腦系統的暫存器及記憶體內部之表示為實體(電子)量之資料,操縱及變換成在該電腦系統的記憶體或暫存器或其它此等資訊儲存、傳輸或顯示裝置內部類似地表示為實體量之其它資料。 It is to be borne in mind, however, that all such similar terms are associated with the appropriate quantities and are applied to the number of the convenience. Unless otherwise stated in the following discussion, it is necessary to understand that the use of terms such as "processing" or "operation" or "calculation" or "decision" or "display" in the detailed description of the full text refers to a computer system or similar The operation and processing of the electronic computing device, which is represented in the scratchpad of the computer system and the data represented by the physical (electronic) amount, manipulated and converted into a memory or a temporary storage device or other in the computer system Such information storage, transmission or display devices are similarly represented internally as other quantities of material.

天線系統之實施例之綜論 Overview of embodiments of antenna systems

描述用於通訊衛星地面站台之超材料天線系統之實施例。於一個實施例中,該天線系統乃在一行動平台(例如航空、航海、陸地等)上操作的一衛星地面站台之一組件或一子系統,該行動平台係運用民用商業衛星通訊之Ka- 頻帶頻率或Ku-頻帶頻率操作。注意該天線系統之實施例也能夠用於非在行動平台上之地面站台(例如固定式或可轉運式地面站台)。 An embodiment of a metamaterial antenna system for a communication satellite ground station is described. In one embodiment, the antenna system is a component or a subsystem of a satellite ground station operating on a mobile platform (eg, aeronautical, marine, terrestrial, etc.) using a commercial commercial satellite communication Ka- Band frequency or Ku-band frequency operation. Note that embodiments of the antenna system can also be used for ground stations that are not on the mobile platform (eg, fixed or transportable ground stations).

於一個實施例中,該天線系統使用表面散射超材料技術以形成與操縱經由分開天線發射及接收波束。於一個實施例中,與採用數位信號處理以電氣方式形成與操縱束之天線系統(諸如相位陣列天線)相反,該等天線系統為類比系統。 In one embodiment, the antenna system uses surface scattering metamaterial technology to form and manipulate beams transmitted and received via separate antennas. In one embodiment, as opposed to antenna systems that employ digital signal processing to electrically form and manipulate beams, such as phased array antennas, the antenna systems are analog systems.

於一個實施例中,該天線系統係包含三個功能子系統:(1)由一柱面波饋入架構組成的波傳播結構;(2)波散射超材料單元晶胞之陣列;及(3)一控制結構以命令使用全像術原理自超材料散射元件形成一可調式徑向場(束)。 In one embodiment, the antenna system comprises three functional subsystems: (1) a wave propagation structure consisting of a cylindrical wave feed architecture; (2) an array of wave scattering metamaterial unit cells; and (3) A control structure commands the use of a holographic principle to form an adjustable radial field (beam) from the metamaterial scattering element.

波傳播結構之實施例 Wave propagation structure embodiment

圖1例示用以提供一柱面波饋入之一同軸饋入之一個實施例之頂視圖。參考圖1,該同軸饋入包括一中心導體及一外導體。於一個實施例中,該柱面波饋入架構自一中心點以一激勵饋入該天線,該激勵係以圓筒式自該饋入點向外擴展。換言之,一圓筒式饋入天線產生一向外行進的同心饋入波。即便如此,環繞該圓筒式饋入的該圓筒式饋入天線之形狀可為圓形、方形或任何形狀。於另一個實施例中,一圓筒式饋入天線產生一向內行進的饋入波。於此種情況下,該饋入波大半自然地來自一圓形結構。 Figure 1 illustrates a top view of one embodiment of a coaxial feed to provide a cylindrical wave feed. Referring to Figure 1, the coaxial feed includes a center conductor and an outer conductor. In one embodiment, the cylindrical wave feed-in architecture feeds the antenna from a center point with an excitation that expands outwardly from the feed point in a cylindrical shape. In other words, a cylindrical feed antenna produces a concentric feed wave that travels outward. Even so, the cylindrical feed antenna surrounding the cylindrical feed can be circular, square or any shape. In another embodiment, a cylindrical feed antenna produces a feed wave that travels inward. In this case, the feed wave is largely from a circular structure.

圖2A例示一圓筒式饋入天線結構之一個實施例之側視圖。該天線使用雙層饋入結構(一饋入結構的兩層) 產生向內行進的波。於一個實施例中,該天線包括圓形外形,但非必要。換言之,可使用非圓形向內行進結構。於一個實施例中,圖2A之天線結構包括圖1之同軸饋入。 Figure 2A illustrates a side view of one embodiment of a cylindrical feed antenna structure. The antenna uses a two-layer feed structure (two layers of a feed structure) Produces waves that travel inward. In one embodiment, the antenna includes a circular shape, but is not necessary. In other words, a non-circular inwardly traveling structure can be used. In one embodiment, the antenna structure of FIG. 2A includes the coaxial feed of FIG.

參考圖2A,一同軸接腳201係用以激勵在該天線之較低層級上的該場。於一個實施例中,同軸接腳201為方便易得的50歐姆(Ω)同軸接腳。同軸接腳201係耦合(例如栓接)至該天線結構之底部,該底部為傳導接地平面202。 Referring to Figure 2A, a coaxial pin 201 is used to excite the field at a lower level of the antenna. In one embodiment, the coaxial pin 201 is a convenient 50 ohm (Ω) coaxial pin. The coaxial pin 201 is coupled (e.g., bolted) to the bottom of the antenna structure, the bottom being a conductive ground plane 202.

與傳導接地平面202分開者為間隙導體203,其為內部導體。於一個實施例中,傳導接地平面202與間隙導體203彼此平行。於一個實施例中,接地平面202與間隙導體203間之距離為0.1-0.15吋。於另一個實施例中,此種距離可為λ/2,於該處λ為於操作頻率,該移行波之波長。 Separated from the conductive ground plane 202 is a gap conductor 203, which is an inner conductor. In one embodiment, the conductive ground plane 202 and the gap conductor 203 are parallel to each other. In one embodiment, the distance between the ground plane 202 and the gap conductor 203 is between 0.1 and 0.15 吋. In another embodiment, the distance may be λ/2, where λ is the operating frequency, the wavelength of the traveling wave.

接地平面202透過一間隔體204而與間隙導體203分開。於一個實施例中,間隔體204為泡沫體狀或空氣狀間隔體。於一個實施例中,間隔體204包含塑膠間隔體。 The ground plane 202 is separated from the gap conductor 203 by a spacer 204. In one embodiment, the spacer 204 is a foam or air spacer. In one embodiment, the spacer 204 comprises a plastic spacer.

在間隙導體203頂上有介電層205。於一個實施例中,介電層205為塑膠。圖5例示於其中發射一饋入波之介電材料之一實施例。介電層205之目的係相對於自由空間速度,減慢該移行波。於一個實施例中,介電層205相對於自由空間速度,減慢該移行波達30%。於一個實施例中,適用於波束形成之折射率之範圍為1.2-1.8,於該處就定義上,自由空間具有折射率等於1。其它介電間隔體材料諸如塑膠可用以達成此項效果。注意塑膠以外的材料也可使用,只要其達成期望的波減慢效果即可。另外,可使用具 有分散式結構之材料作為電介質205,例如可經切削或光刻術界定之週期性次波長金屬結構。 A dielectric layer 205 is placed on top of the gap conductor 203. In one embodiment, the dielectric layer 205 is a plastic. Figure 5 illustrates an embodiment of a dielectric material in which a feed wave is emitted. The purpose of the dielectric layer 205 is to slow the transitional wave relative to the free space velocity. In one embodiment, the dielectric layer 205 slows the transition wave by up to 30% relative to the free space velocity. In one embodiment, the refractive index suitable for beamforming ranges from 1.2 to 1.8, as defined herein, the free space has a refractive index equal to one. Other dielectric spacer materials such as plastic can be used to achieve this effect. Note that materials other than plastic can also be used as long as they achieve the desired wave slowing effect. In addition, it can be used A material having a dispersed structure acts as a dielectric 205, such as a periodic sub-wavelength metal structure that can be defined by cutting or photolithography.

RF陣列206係在電介質205頂上。於一個實施例中,間隙導體203與RF陣列206間之距離為0.1-0.15吋。於另一個實施例中,此一距離可為λeff/2,於該處λeff為於該設計頻率於該介質內之有效波長。 The RF array 206 is on top of the dielectric 205. In one embodiment, the distance between the gap conductor 203 and the RF array 206 is between 0.1 and 0.15 吋. In another embodiment, the distance may be λ eff /2 where λ eff is the effective wavelength of the design frequency within the medium.

該天線包括側邊207及208。側邊207及208係彎角使得自同軸接腳201之一移行波饋入透過反射而自間隙導體203下方區域(間隔層)傳播至間隙導體203上方區域(電介體層)。於一個實施例中,側邊207及208之彎角為45度角。於替代實施例中,側邊207及208由一連續半徑置換以達成反射。雖然圖2A顯示具有45度角之彎角側邊,但可使用能夠完成信號自較低層級饋入傳輸至較高層級饋入的其它角度。換言之,假設在較低饋入之有效波長通常與在較高饋入之有效波長不同,略為偏離理想45度角可用以協助自較低層級饋入傳輸至較高層級饋入。舉例言之,於另一個實施例中,該45度角可以單一階替代,諸如圖20顯示。參考圖20,階2001及2002顯示在該天線之一端上環繞介電層2005、間隙導體2003、及間隔層2004。同樣兩階係在此等層之另一端上。 The antenna includes sides 207 and 208. The sides 207 and 208 are curved so that the traveling wave from one of the coaxial pins 201 is transmitted through the reflection and propagates from the lower region (spacer layer) of the gap conductor 203 to the region above the gap conductor 203 (the dielectric layer). In one embodiment, the corners of the sides 207 and 208 are at an angle of 45 degrees. In an alternate embodiment, sides 207 and 208 are replaced by a continuous radius to achieve reflection. Although Figure 2A shows a curved side with a 45 degree angle, other angles can be used to enable signal transmission from lower level feeds to higher level feeds. In other words, assuming that the effective wavelength at the lower feed is typically different from the effective wavelength at the higher feed, a slight deviation from the ideal 45 degree angle can be used to assist in the transmission from the lower level feed to the higher level feed. For example, in another embodiment, the 45 degree angle can be replaced by a single order, such as shown in FIG. Referring to Figure 20, steps 2001 and 2002 show a surrounding dielectric layer 2005, a gap conductor 2003, and a spacer layer 2004 on one end of the antenna. The same two orders are on the other end of the layers.

於操作中,當一饋入波係自同軸接腳201饋入時,該波在接地平面202與間隙導體203間之該區,自同軸接腳201同心取向朝外行進。同心輸出之波被側邊207及208反射,及在間隙導體203與RF陣列206間之該區向內行進。 自該圓形周邊之邊緣反射造成該波維持同相位(亦即屬於同相位反射)。該移行波被介電層205減慢。此時,該移行波開始於RF陣列206中之元件互動及激勵而獲得期望的散射。 In operation, when a feed wave is fed from the coaxial pin 201, the wave travels concentrically from the coaxial pin 201 in the region between the ground plane 202 and the gap conductor 203. The concentric output waves are reflected by sides 207 and 208 and travel inwardly between the gap conductor 203 and RF array 206. Reflection from the edge of the circular perimeter causes the waves to remain in phase (i.e., belong to the same phase reflection). The transition wave is slowed down by the dielectric layer 205. At this point, the transition wave begins with component interaction and excitation in the RF array 206 to achieve the desired scatter.

為了終結該移行波,一終端209含括於該天線在該天線之幾何中心。於一個實施例中,終端209包含一接腳終端(例如50歐姆接腳)。於另一個實施例中,終端209包含一RF吸收器,其終結未使用能量,以防止該未使用能量反向反射通過該天線之饋入結構。此等可用在RF陣列206之頂部。 To terminate the transition wave, a terminal 209 is included in the geometric center of the antenna. In one embodiment, terminal 209 includes a pin terminal (eg, a 50 ohm pin). In another embodiment, terminal 209 includes an RF absorber that terminates unused energy to prevent the unused energy from being reflected back through the feed structure of the antenna. These can be used at the top of the RF array 206.

圖2B例示具有一輸出波之該天線系統之另一實施例。參考圖2B,兩個接地平面210及211為實質上彼此平行,有一介電層212(例如塑膠層等)在接地平面210及211間。RF吸收器213及214(例如電阻器)將兩個接地平面210及211耦合在一起。一同軸接腳215(例如50歐姆)饋至該天線。一RF陣列216係在介電層212頂上。 Figure 2B illustrates another embodiment of the antenna system having an output wave. Referring to FIG. 2B, the two ground planes 210 and 211 are substantially parallel to each other with a dielectric layer 212 (eg, a plastic layer, etc.) between the ground planes 210 and 211. RF absorbers 213 and 214 (e.g., resistors) couple the two ground planes 210 and 211 together. A coaxial pin 215 (e.g., 50 ohms) is fed to the antenna. An RF array 216 is attached on top of the dielectric layer 212.

於操作中,一饋入波係經由同軸接腳215饋入,及同心地向外行進,且與RF陣列216之元件互動。 In operation, a feed wave is fed via coaxial pin 215 and travels concentrically outwardly and interacts with components of RF array 216.

於圖2A及2B之天線兩者中之該圓筒式饋入改良了該天線之服務角。替代正或負45度方位角(±45° Az)及正或負25度仰角(±25° El)之一服務角,於一個實施例中,該天線系統於全部方向自該瞄準線具有75度(75°)之一服務角。如同包含許多個別發射器的任何波束形成天線,總天線增益係取決於組成元件之增益,而組成元件其本身又為角度 相依性。當使用共用發射元件時,隨著波束之進一步指向偏離瞄準線,總天線增益典型地減低。偏離瞄準線75度時,預期有約6分貝(dB)之顯著增益降級。 The cylindrical feed in both the antennas of Figures 2A and 2B improves the service angle of the antenna. Substituting a positive or negative 45 degree azimuth (±45° Az) and a positive or negative 25 degree elevation (±25° El) service angle, in one embodiment, the antenna system has 75 from all of the line of sight in all directions Degree of service (75°). Like any beamforming antenna that contains many individual transmitters, the total antenna gain is dependent on the gain of the constituent elements, which in turn are angled Dependency. When a common transmit element is used, the total antenna gain is typically reduced as the beam is further directed away from the line of sight. A significant gain degradation of approximately 6 decibels (dB) is expected when deviating from the line of sight by 75 degrees.

具有一圓筒式饋入之天線之實施例解決了一或多個問題。此等解決包括比起以一協作分隔器網路饋入的天線,動態簡化了饋入結構,及因而減少了總要求天線及天線饋入體積;藉使用較為粗糙之控制(一路延伸至單純二進位控制)維持高波束效能而減低了對製造錯誤及控制錯誤之敏感度;比起直線饋入,獲得更優異的旁瓣樣式,原因在於圓筒式取向之饋入波結果導致於遠場之空間分集旁瓣;又允許極化為動態,包括允許左旋圓極化、右旋圓極化、及線極化,而不需要極化器。 Embodiments having a cylindrical feed antenna solve one or more problems. These solutions include dynamically simplifying the feed structure compared to antennas fed in a cooperative divider network, and thus reducing the total required antenna and antenna feed volume; using coarser control (one way to two Carry control) maintains high beam performance while reducing sensitivity to manufacturing errors and control errors; a superior sidelobe pattern is obtained over linear feeds because the cylindrically oriented feed wave results in the far field Space-diversity side lobes; again allow polarization to be dynamic, including allowing left-hand circular polarization, right-hand circular polarization, and linear polarization without the need for a polarizer.

波散射元件之陣列 Array of wave scattering elements

圖2A之RF陣列206及圖2B之RF陣列216包括含一組片型天線(亦即散射器)作為輻射器之一波散射子系統。此組片型天線包含一陣列之散射超材料元件。 The RF array 206 of Figure 2A and the RF array 216 of Figure 2B include a wave scattering subsystem comprising a set of patch antennas (i.e., diffusers) as one of the radiators. The set of chip antennas comprises an array of scattering metamaterial elements.

於一個實施例中,於天線系統中之各個散射元件乃一單元晶胞的一部分,該單元晶胞係由一下導體、一介電基體及一上導體組成,其嵌置一互補電氣電感-電容諧振器(「互補電氣LC」或「CELC」),其係蝕刻入或沈積在上導體上。 In one embodiment, each of the scattering elements in the antenna system is a portion of a unit cell consisting of a lower conductor, a dielectric substrate, and an upper conductor embedded with a complementary electrical inductor-capacitor. A resonator ("complementary electrical LC" or "CELC") that is etched or deposited on the upper conductor.

於一個實施例中,一液晶(LC)注入包圍該散射元件之間隙內。液晶係封裝於各個單元晶胞內,及分開與一開槽相聯結的該下導體及與其補片相聯結的一上導體。液 晶具有一介電係數,其為組成液晶之該等分子之配向之函數,及該等分子之配向(及因而該介電常數)可藉調整橫過液晶之偏壓電壓加以控制。使用此種性質,該液晶作為能量自該導波傳輸至該CELC之on/off開關。當開關on時,該CELC類似電氣小型雙極天線而發射電磁波。 In one embodiment, a liquid crystal (LC) is implanted into the gap surrounding the scattering element. The liquid crystal is encapsulated in each unit cell, and the lower conductor and the upper conductor connected to a patch are separated from a slot. liquid The crystal has a dielectric coefficient which is a function of the alignment of the molecules constituting the liquid crystal, and the alignment of the molecules (and thus the dielectric constant) can be controlled by adjusting the bias voltage across the liquid crystal. Using this property, the liquid crystal is transmitted as energy from the guided wave to the on/off switch of the CELC. When the switch is on, the CELC emits electromagnetic waves similar to an electrical small dipole antenna.

控制LC之厚度增加了束切換速度。下導體與上導體間之該間隙(液晶之厚度)減少50百分比(50%)導致速度增加四倍。於另一個實施例中,液晶之厚度導致約14毫秒(14ms)之束切換速度。於一個實施例中,液晶以技藝界眾所周知之方式摻雜以改良響應度,故可滿足7毫秒(7ms)的要求。 Controlling the thickness of the LC increases the beam switching speed. A 50% (50%) reduction in the gap between the lower conductor and the upper conductor (thickness of the liquid crystal) results in a fourfold increase in speed. In another embodiment, the thickness of the liquid crystal results in a beam switching speed of about 14 milliseconds (14 ms). In one embodiment, the liquid crystal is doped in a manner well known in the art to improve responsiveness and thus meets the requirements of 7 milliseconds (7 ms).

該CELC係響應一磁場,該磁場係平行於該CELC元件之平面及垂直於該CELC間隙補體施加。當一電壓施加至在該超材料散射單元晶胞內的該液晶時,該導波之該磁場成分感應了該CELC之磁性激勵,其又轉而產生了與該導波相同頻率之一電磁波。 The CELC is responsive to a magnetic field that is applied parallel to the plane of the CELC element and perpendicular to the CELC gap complement. When a voltage is applied to the liquid crystal in the cell of the metamaterial scattering unit, the magnetic field component of the guided wave induces magnetic excitation of the CELC, which in turn produces an electromagnetic wave of the same frequency as the guided wave.

由單一CELC產生的該電磁波之相位可由在該導波之向量上的該CELC之位置加以選擇。各個晶胞產生與平行該CELC之該導波同相位的一波。因該CELC係小於該波長,故該輸出波當其通過該CELC下方時具有與該導波之相位的相同相位。 The phase of the electromagnetic wave generated by a single CELC can be selected by the location of the CELC on the vector of the guided wave. Each unit cell produces a wave that is in phase with the waveguide parallel to the CELC. Since the CELC system is smaller than the wavelength, the output wave has the same phase as the phase of the guided wave when it passes under the CELC.

於一個實施例中,此種天線系統之圓筒式饋入幾何形狀允許該CELC元件定位在與該波饋入中之該波的向量夾角45度(45°)角。該等元件之位置允許控制自該等元件 產生的或由該等元件接收的該自由空間波之極化。於一個實施例中,該CELC被配置以一元件間間隔,其係小於該天線之操作頻率之自由空間波長。舉例言之,若每個波長有4個散射元件,則在30GHz發射天線中之該等元件將為約2.5毫米(亦即30GHz之10毫米自由空間波長之1/4)。 In one embodiment, the cylindrical feed geometry of such an antenna system allows the CELC component to be positioned at an angle of 45 degrees (45[deg.]) to the vector of the wave in the wave feed. The location of these components allows control of such components The polarization of the free space wave generated or received by the elements. In one embodiment, the CELC is configured with an inter-element spacing that is less than the free-space wavelength of the operating frequency of the antenna. For example, if there are 4 scattering elements per wavelength, then the elements in the 30 GHz transmit antenna will be about 2.5 mm (i.e., 1/4 of a 10 mm free space wavelength of 30 GHz).

於一個實施例中,該等CELC係以片型天線具現,該天線包括一補片共同定位在一開槽上方而有液晶在兩者之間。就此方面而言,該超材料天線用作類似開槽(散射)波導。使用一開槽波導,該輸出波之相位取決於該開槽相對於該導波之位置。 In one embodiment, the CELCs are implemented with a chip antenna that includes a patch that is co-located over a slot and has a liquid crystal therebetween. In this regard, the metamaterial antenna is used as a slotted (scattering) waveguide. Using a slotted waveguide, the phase of the output wave depends on the position of the slot relative to the guided wave.

圖3例示一個片型天線或散射元件之一個實施例之頂視圖。參考圖3,該片型天線包含一補片301共同定位在一開槽302上方,有液晶(LC)303在補片301與開槽302間。 Figure 3 illustrates a top view of one embodiment of a chip antenna or scattering element. Referring to FIG. 3, the patch antenna includes a patch 301 co-located over a slot 302 with a liquid crystal (LC) 303 between the patch 301 and the slot 302.

圖4例示屬於一圓筒式饋入天線系統之部件的一片型天線之側視圖。參考圖4,該片型天線係在電介質402(例如塑膠插入件等)上方,其係在圖2A之間隙導體203(或接地導體,諸如以圖2B之天線為例)上方。 Figure 4 illustrates a side view of a one-piece antenna belonging to a component of a cylindrical feed antenna system. Referring to Figure 4, the patch antenna is mounted over a dielectric 402 (e.g., a plastic insert, etc.) over the gap conductor 203 (or ground conductor, such as the antenna of Figure 2B) of Figure 2A.

一虹膜板403為有多個開槽之一接地平面(導體),諸如電介質402頂上及上方的開槽403a。一開槽於此處可稱作為虹膜。於一個實施例中,於虹膜板403中之開槽係藉蝕刻產生。注意於一個實施例中,開槽或開槽屬於其部件之該等晶胞之最高密度為λ/2。於一個實施例中,開槽/晶胞之密度為λ/3(亦即每個λ有3個晶胞)。注意可使用晶胞之其它密度。 An iris plate 403 is a ground plane (conductor) having a plurality of slots, such as a slot 403a above and above the dielectric 402. A slot can be referred to herein as an iris. In one embodiment, the grooving in the iris plate 403 is created by etching. Note that in one embodiment, the highest density of the cells that are slotted or slotted to their component is λ/2. In one embodiment, the slot/cell density is λ/3 (ie, there are 3 cells per λ). Note that other densities of the unit cell can be used.

含有多個補片諸如補片405a之一補片板405係位在虹膜板403上方,藉一中間介電層隔開。該等補片各自諸如補片405a係與虹膜板403中之開槽中之一者共同定位。於一個實施例中,虹膜板403與補片板405間之該中間介電層為一液晶基體層404。該液晶作為各個補片與其共同定位開槽間之一介電層。注意可使用液晶以外之基體層。 A patch plate 405 containing a plurality of patches, such as patch 405a, is positioned over the iris plate 403, separated by an intermediate dielectric layer. Each of the patches, such as patch 405a, is co-located with one of the slots in iris plate 403. In one embodiment, the intermediate dielectric layer between the iris plate 403 and the patch plate 405 is a liquid crystal base layer 404. The liquid crystal acts as a dielectric layer between the respective patches and the slots therebetween. Note that a base layer other than liquid crystal can be used.

於一個實施例中,補片板405包含一印刷電路板(PCB),各補片包含在PCB上的金屬,於該處包圍該補片之金屬已被去除。 In one embodiment, the patch panel 405 includes a printed circuit board (PCB), each patch containing metal on the PCB where the metal surrounding the patch has been removed.

於一個實施例中,補片板405包括針對各補片之通孔,該等通孔係在該補片板的與該補片面對其共同定位開槽之該側的對側。該等通孔係用以連結一或多個線跡至一補片以提供電壓給該補片。於一個實施例中,矩陣驅動器係用以施加電壓給補片以控制之。該電壓係用以調諧或解調諧個別元件以實現波束形成。 In one embodiment, the patch panel 405 includes through-holes for each patch that are on opposite sides of the side of the patch panel that face the co-located slot of the patch. The vias are used to connect one or more traces to a patch to provide a voltage to the patch. In one embodiment, the matrix driver is used to apply a voltage to the patch to control it. This voltage is used to tune or de-tune individual components to achieve beamforming.

於一個實施例中,補片可沈積在玻璃層(例如典型用於液晶顯示器(LCD)之玻璃,諸如康寧鷹(Corning Eagle)玻璃)上,而非使用電路補片板。圖17例示包括含有該等補片之一玻璃層的圓筒式饋入天線之一部分。參考圖17,該天線包括傳導基底層或底層1701、介電層1702(例如塑膠)、含開槽之虹膜板1703(例如電路板)、液晶基體層1704、及含補片1710之玻璃層1705。於一個實施例中,補片1710具有矩形。於一個實施例中,開槽及補片係定位成列及成行,及補片之配向針對各列或各行為相同,而該等 共同定位開槽之配向針對列或行分別相對於彼此為相同定向。 In one embodiment, the patch may be deposited on a glass layer, such as a glass typically used in liquid crystal displays (LCDs, such as Corning Eagle glass), rather than using a circuit patch board. Figure 17 illustrates a portion of a cylindrical feed antenna including a glass layer containing one of the patches. Referring to FIG. 17, the antenna includes a conductive base layer or bottom layer 1701, a dielectric layer 1702 (eg, plastic), a slotted iris plate 1703 (eg, a circuit board), a liquid crystal base layer 1704, and a glass layer 1705 including a patch 1710. . In one embodiment, the patch 1710 has a rectangular shape. In one embodiment, the slots and patches are positioned in rows and rows, and the alignment of the patches is the same for each column or behavior, and such The alignment of the co-located slots is the same orientation relative to each other for the columns or rows.

於一個實施例中,一罩(例如雷達天線罩)蓋住片型天線堆疊體頂上以提供保護。 In one embodiment, a cover (eg, a radome) covers the top of the patch antenna stack to provide protection.

圖6例示虹膜板403之一個實施例。此乃CELC之下導體。參考圖6,虹膜板包括一陣列之開槽。於一個實施例中,各個開槽相對於撞擊開槽中心位置的饋入波為+45度或-45度定向。換言之,散射元件(CELC)之布局圖樣係相對於該波之向量±45度排列。在各個開槽下方為一圓形開口403b,其大體為另一開槽。該開槽係在虹膜板頂上,及圓形開口或橢圓開口係在虹膜板底部。注意此等開口為選擇性,深度可為約0.001吋或25毫米。 FIG. 6 illustrates an embodiment of an iris plate 403. This is the conductor under the CELC. Referring to Figure 6, the iris plate includes an array of slots. In one embodiment, the individual slots are oriented at +45 degrees or -45 degrees with respect to the feed wave at the center of the impact slot. In other words, the layout pattern of the scattering element (CELC) is arranged at ±45 degrees with respect to the vector of the wave. Below each of the slots is a circular opening 403b which is generally another slot. The slot is attached to the top of the iris plate, and a circular opening or elliptical opening is attached to the bottom of the iris plate. Note that these openings are selective and may have a depth of about 0.001 吋 or 25 mm.

有開槽陣列係可調諧地定向負載。藉開關調諧個別開槽,各個開槽係經調諧以提供在該天線之操作頻率之期望散射(亦即經調諧以在一給定頻率操作)。 A slotted array is tunably oriented to load. Each slot is tuned by a switch that is tuned to provide a desired scatter at the operating frequency of the antenna (i.e., tuned to operate at a given frequency).

圖7例示一個虹膜(開槽)/補片組合之配向之決定方式。參考圖7,字母A表示實心黑箭頭,指示自圓筒式饋入位置至一元件中心的功率饋入向量。字母B表示虛線正交線顯示相對於「A」之垂直軸,及字母C表示虛線矩形包圍相對於「B」旋轉45度開槽。 Figure 7 illustrates the manner in which the alignment of an iris (grooving)/patch combination is determined. Referring to Figure 7, the letter A indicates a solid black arrow indicating the power feed vector from the cylindrical feed position to the center of a component. The letter B indicates that the dotted orthogonal line shows the vertical axis with respect to "A", and the letter C indicates that the dotted rectangle surrounds the 45 degree groove with respect to "B".

圖8例示分組成二集合的虹膜(開槽),第一集合相對於功率饋入向量旋轉-45度,及第二集合相對於功率饋入向量旋轉+45度。參考圖8,A組包括開槽其相對於饋入向量旋轉-45度,而B組包括開槽其相對於饋入向量旋轉+45 度。 Figure 8 illustrates an iris (grooving) grouped into two sets, the first set rotated -45 degrees with respect to the power feed vector, and the second set rotated +45 degrees relative to the power feed vector. Referring to Figure 8, Group A includes a slot that rotates -45 degrees with respect to the feed vector, and Group B includes a slot that rotates +45 with respect to the feed vector. degree.

注意整體座標系之標示不重要,如此負角及正角之旋轉唯有其描述元件相對彼此及相對於饋入波方向之相對旋轉時才要緊。為了自兩集合之線極化元件產生圓極化,兩集合之元件彼此垂直且同時具有相等幅值激勵。相對於饋入波激勵,旋轉±45度一次達成兩個期望特性。一個集合旋轉0度及另一集合旋轉90度將達成垂直目標,但非相等幅值激勵目標。 Note that the indication of the overall coordinate system is not important, so that the rotation of the negative and positive angles is only necessary when describing the relative rotation of the elements relative to each other and to the direction of the feed wave. In order to produce circular polarization from the two sets of linear polarization elements, the elements of the two sets are perpendicular to each other and have equal amplitude excitations at the same time. Two desired characteristics are achieved by rotating ±45 degrees at a time relative to the feed wave excitation. A set rotates 0 degrees and another set rotates 90 degrees to achieve a vertical target, but a non-equal amplitude excitation target.

圖9例示補片板405之一實施例。此乃CELC之上導體。參考圖9,補片板包括矩形補片覆蓋開槽及完成欲被關閉及啟動的線極化補片/開槽共振對。該對藉使用控制器施加電壓至補片而關閉及啟動。要求的電壓係取決於欲使用的液晶混合物,要求所得臨界電壓開始調諧液晶,及最大飽和電壓(超過此電壓並無更高電壓產生任何效果,但最終通過液晶降級或短路)。於一個實施例中,矩陣驅動裝置係用以施加電壓至補片以控制耦合。 FIG. 9 illustrates one embodiment of a patch panel 405. This is the conductor above CELC. Referring to Figure 9, the patch panel includes a rectangular patch covering the slot and completing a linearly polarized patch/grooved resonant pair to be turned off and activated. The pair is turned off and on by applying a voltage to the patch using the controller. The required voltage depends on the liquid crystal mixture to be used, the resulting threshold voltage is required to start tuning the liquid crystal, and the maximum saturation voltage (no higher voltage than this voltage produces any effect, but eventually degrades or shorts through the liquid crystal). In one embodiment, the matrix drive is used to apply a voltage to the patch to control the coupling.

天線系統控制 Antenna system control

控制結構有兩大組件:包括驅動電子電路之天線系統控制器位在波散射結構下方,而矩陣驅動裝置切換陣列係分散遍布該發射RF陣列因而不干涉輻射。於一個實施例中,該天線系統之驅動電子電路包含用在商業電視設施的商業現貨LCD控制器,其藉調整至該元件之AC偏壓信號幅值而調整用於各個散射元件之偏壓電壓。 The control structure has two major components: the antenna system controller including the drive electronics is located below the wave scattering structure, and the matrix drive switching array is dispersed throughout the transmit RF array so as not to interfere with the radiation. In one embodiment, the drive electronics of the antenna system includes a commercial off-the-shelf LCD controller for use in a commercial television facility that adjusts the bias voltage for each of the scattering elements by adjusting the amplitude of the AC bias signal to the component. .

於一個實施例中,該控制器使用軟體控制而控制 電子電路。於一個實施例中,極化之控制為天線之軟體控制部分,及極化係經預先程式規劃以匹配來自與地面站台通訊的衛星服務之信號之極化,或係經預先程式規劃以匹配衛星服務上的接收天線之極化。 In one embodiment, the controller is controlled using software control electronic circuit. In one embodiment, the control of polarization is the software control portion of the antenna, and the polarization is pre-programmed to match the polarization of signals from satellite services communicating with the ground station, or is pre-programmed to match the satellite The polarization of the receiving antenna on the service.

於一個實施例中,控制器也含有微處理器以執行軟體。控制結構也可結合感測器(名目上包括一GPS接收器、三軸羅盤及加速度器)以提供位置及配向資訊給處理器。位置及配向資訊可藉地面站台中之其它系統提供給處理器及/或可能非為天線系統之部件。 In one embodiment, the controller also contains a microprocessor to execute the software. The control structure can also incorporate a sensor (including a GPS receiver, a three-axis compass, and an accelerometer) to provide position and alignment information to the processor. Location and alignment information may be provided to the processor by other systems in the ground station and/or may not be part of the antenna system.

更明確言之,控制器在操作頻率時哪些元件被關及哪些元件被開。該等元件藉施加電壓而選擇性地解調用於頻率操作。控制器供給一陣列之電壓信號給RF發射補片以產生調變或控制樣式。該控制樣式造成該等元件被啟動或關。於一個實施例中,該控制樣式類似一方波,其中沿一個螺旋之元件(LHCP或RHCP)為「開」及遠離螺旋之該等元件為「關」(亦即二進制調變樣式)。於另一個實施例中,使用多態控制,其中各個元件被關閉及啟動至不等位準,相對於方波,更近似正弦波控制樣式(亦即正弦波灰影調變樣式)。有些元件比其它者的發射更強,而非有些元件發射而有些則否。藉施用特定電壓位準,達成可變輻射,其調整液晶介電係數至不等量,藉此以可變方式解調元件及使得某些元件比其它者輻射更強。 More specifically, which components are turned off and which components are turned on when the controller operates. These components are selectively demodulated for frequency operation by applying a voltage. The controller supplies an array of voltage signals to the RF transmit patch to produce a modulation or control pattern. This control pattern causes the components to be activated or deactivated. In one embodiment, the control pattern is similar to a square wave in which the elements along a spiral (LHCP or RHCP) are "on" and the elements away from the spiral are "off" (ie, a binary modulation pattern). In another embodiment, polymorphic control is used in which each element is turned off and activated to an unequal level, more closely related to a square wave, a sine wave control pattern (ie, a sine wave gray tone modulation pattern). Some components are stronger than others, and some are not emitted and some are not. Variable radiation is achieved by applying a specific voltage level that adjusts the liquid crystal dielectric constant to unequal amounts, thereby demodulating the elements in a variable manner and making certain elements more intense than others.

由元件之超材料陣列產生聚焦波束可由相長干涉及相消干涉現象作解釋。個別電磁波若有相同相位,則 當其在自由空間相會時加總(相長干涉);及若有相反相位,則當其在自由空間相會時抵消(相消干涉)。若在槽式天線中之開槽的定位使得各個連續開槽位置距導波之激勵點的不同距離,來自該元件之散射波將具有與前一開槽之散射波不同的相位。若開槽間隔導波長的1/4,則各個開槽將散射一波具有與前一開槽之散射波延遲1/4相位。 The generation of a focused beam from the element's metamaterial array can be explained by the constructive interference involving destructive interference phenomena. If individual electromagnetic waves have the same phase, then When they meet in free space, they add up (consistent interference); and if they have opposite phases, they cancel out when they meet in free space (destructive interference). If the slots in the slot antenna are positioned such that each successive slot position is at a different distance from the excitation point of the guided wave, the scattered wave from the element will have a different phase than the scattered wave of the previous slot. If the slot spacing is 1/4 of the wavelength, each slot will scatter a wave with a 1/4 phase delay from the previous slot.

使用該陣列,可產生的相長干涉及相消干涉之樣式數目可增加,使得運用全像術原理,波束理論上可指向距天線陣列之瞄準線正或負90度(90°)之任何方向。如此,藉控制哪些超材料單元晶胞被啟動或關閉(亦即藉改變哪些晶胞被啟動及哪些晶胞被關閉之樣式),可產生的相長干涉及相消干涉之不同樣式,及天線可改變波前方向。單元晶胞被啟動及關閉所需時間決定了波束可從一個位置切換至另一位置的速度。 Using this array, the number of patterns that can be produced with destructive interference can be increased, so that using the holographic principle, the beam can theoretically point in any direction that is plus or minus 90 degrees (90°) from the line of sight of the antenna array. . Thus, by controlling which metamaterial unit cells are activated or deactivated (ie, by changing which cell is activated and which cells are turned off), the resulting phase stems involve different patterns of destructive interference, and the antenna The wavefront direction can be changed. The time required for the unit cell to be turned on and off determines the speed at which the beam can be switched from one location to another.

極化及波束瞄準角皆由調變界定,或控制樣式載明哪些元件被啟動或關閉。換言之,瞄準波束及以期望方式極化之頻率係取決於控制樣式。因控制樣式為可規劃,故極化可針對天線系統規劃。對大部分應用而言期望的極化態為圓或線。針對自中心饋入及朝外行進的一饋入波,圓極化態包括螺旋極化態,亦即左旋圓極化及右旋圓極化,其分別顯示於圖16A及16B。注意為了獲得相同波束同時切換饋入方向(例如自饋入至饋出)、配向或感測或螺旋調變樣式逆轉。注意當陳述開及關元件之一給定螺旋樣式導致左旋或右旋圓極化時,該饋入波之方向(亦即中心饋入或 緣饋入)也經載明。 Both the polarization and the beam aiming angle are defined by modulation, or the control pattern indicates which components are activated or deactivated. In other words, the frequency of the aiming beam and polarization in a desired manner depends on the control pattern. Since the control pattern is programmable, polarization can be planned for the antenna system. The desired polarization state for most applications is a circle or a line. For a feed wave that feeds in and out of the center, the circularly polarized state includes a helically polarized state, that is, a left-handed circular polarization and a right-handed circular polarization, which are shown in Figures 16A and 16B, respectively. Note that in order to obtain the same beam, the feed direction is switched at the same time (for example, from feed-in to feed-out), alignment or sensing, or spiral modulation pattern reversal. Note that when one of the open and closed elements is given a given spiral pattern resulting in a left-hand or right-hand circular polarization, the direction of the feed wave (ie, the center feed or The edge is also included.

針對各波束之控制樣式將儲存於控制器或在飛行中計算,或其某種組合。當該天線控制系統決定天線定位何處及指向何處時,則參考該天線之瞄準線決定目標衛星定位何處。然後控制器命令在該陣列中之該等個別單元晶胞之一開及關樣式,其相對應於針對在該天線視野中衛星位置之預選波束樣式。 The control pattern for each beam will be stored in the controller or calculated in flight, or some combination thereof. When the antenna control system determines where and where the antenna is located, then the line of sight of the antenna is used to determine where the target satellite is located. The controller then commands one of the individual unit cells in the array to open and close the pattern, which corresponds to a preselected beam pattern for the satellite position in the antenna field of view.

於一個實施例中,該天線系統產生針對上行鏈路天線之一個可操縱波束及針對下行鏈路天線之一個可操縱波束。 In one embodiment, the antenna system produces a steerable beam for the uplink antenna and a steerable beam for the downlink antenna.

圖10例示圖9中具有補片之元件其決定於操作頻率時為off的一實施例,及圖11例示圖9中具有補片之元件其決定於操作頻率時為on的一實施例。圖12例示全波模型化之結果,其顯示就圖10及11之元件而言對開及關調變樣式之一電場響應。 Fig. 10 illustrates an embodiment in which the component having the patch of Fig. 9 is off when the operating frequency is determined, and Fig. 11 illustrates an embodiment in which the component having the patch of Fig. 9 is determined to be on the operating frequency. Figure 12 illustrates the results of full wave modeling showing the electric field response of one of the on and off modulation modes for the components of Figures 10 and 11.

圖13例示波束形成。參考圖13,干涉樣式可經調整以提供任意天線發射樣式,調整方式係藉識別相對應於一選定波束樣式的一干涉樣式,及然後調整橫跨散射元件之電壓以產生根據全像術原理之一波束。全像術之基本原理,包括如連結此等原理常用的「物體波束」及「參考波束」等術語為眾所周知。使用一移行波作為一「參考波束」,於形成一期望「物體波束」之情境中的RF全像術進行如下。 Figure 13 illustrates beamforming. Referring to Figure 13, the interference pattern can be adjusted to provide any antenna emission pattern by identifying an interference pattern corresponding to a selected beam pattern and then adjusting the voltage across the scattering element to produce a holographic principle. a beam. The basic principles of holographic techniques, including the terms "object beam" and "reference beam" commonly used in connection with such principles, are well known. Using a transitional wave as a "reference beam", the RF hologram in the context of forming a desired "object beam" proceeds as follows.

調變樣式決定如下。首先,產生一參考波(束),偶爾稱作為饋入波。圖19A例示參考波之一實施例。參考圖 19A,環1900為一參考波之電場及磁場之相位波前。其具有正弦波時間變化。箭頭1901例示該參考波之向外傳播。 The modulation style is determined as follows. First, a reference wave (beam) is generated, occasionally referred to as a feed wave. Figure 19A illustrates one embodiment of a reference wave. Reference map 19A, ring 1900 is the phase wavefront of the electric field and magnetic field of a reference wave. It has a sine wave time variation. Arrow 1901 illustrates the outward propagation of the reference wave.

於本實施例中,一TEM波或橫電磁波向內或向外行進。傳播方向也經界定,及用於本實施例,選擇自一中心饋入點向外傳播。傳播平面係沿天線表面。 In the present embodiment, a TEM wave or a transverse electromagnetic wave travels inward or outward. The direction of propagation is also defined and used in this embodiment to select for propagation from a central feed point. The propagation plane is along the antenna surface.

產生一物體波,偶爾稱物體束。於此一實施例中,該物體波為正交天線表面於偏離30度方向行進的TEM波,方位角設定為0度。極化也經界定,及用於本實施例,選擇右旋圓極化。圖19B例示產生的物體波。參考圖19B,顯示傳播中之TEM波1904之電場及磁場之相位波前1903。箭頭1905為在各相位波前之電場向量,以90度間隔表示。於此一實施例中,其遵照右旋圓極化選擇。 Generate a wave of objects, occasionally called a bundle of objects. In this embodiment, the object wave is a TEM wave whose orthogonal antenna surface travels in a direction deviating from 30 degrees, and the azimuth angle is set to 0 degrees. Polarization is also defined, and for this embodiment, right-hand circular polarization is selected. Fig. 19B illustrates the generated object wave. Referring to Figure 19B, the phase wavefront 1903 of the electric and magnetic fields of the TEM wave 1904 in propagation is shown. Arrow 1905 is the electric field vector at each phase wavefront, and is represented by an interval of 90 degrees. In this embodiment, it is selected in accordance with right circular polarization.

干涉或調變樣式=Re{[A]x[B]*} Interference or modulation pattern = Re{[A]x[B]*}

當一正弦波乘以另一正弦波之共軛複數及取實數部分時,所得調變樣式也是正弦波。空間上,參考波之最大量會合物體波之最大量(皆為正弦波時間變化量)時,調變樣式為最大量,或強力發射位置。實際上,此種干涉係在各個散射位置計算,且係不僅取決於元件位置,同時基於其旋轉也取決於元件極化及在該元件位置之該物體波之極化。圖19C為所得正弦波調變樣式之一實施例。 When a sine wave is multiplied by the conjugate complex of another sine wave and the real part is taken, the resulting modulation pattern is also a sine wave. In space, when the maximum amount of the reference wave is the maximum amount of the body wave (both sine wave time variation), the modulation pattern is the maximum amount, or the strong emission position. In fact, such interference is calculated at each scattering position and depends not only on the position of the element, but also on the polarization of the element and the polarization of the object wave at the position of the element based on its rotation. Figure 19C is an embodiment of the resulting sinusoidal modulation pattern.

注意可進一步選擇以將所得所得正弦波灰影調變樣式簡化成方波調變樣式。 Note that it can be further selected to simplify the resulting sine wave gray-shadow modulation pattern into a square wave modulation pattern.

注意橫過散射元件之電壓係藉調整補片與接地平面間施加之電壓控制,於本情境中為虹膜板頂上之金屬 化。 Note that the voltage across the scattering element is controlled by the voltage applied between the patch and the ground plane. In this case, the metal on the top of the iris plate. Chemical.

其它實施例 Other embodiments

於一個實施例中,補片及開槽係以蜂巢樣式定位。此種樣式之實施例顯示於圖14A及14B。參考圖14A及14B,蜂巢結構為每隔一列左移或右移半個元件間隔,或另外,每隔一行上移或下移半個元件間隔。 In one embodiment, the patch and slot are positioned in a honeycomb pattern. An embodiment of this style is shown in Figures 14A and 14B. Referring to Figures 14A and 14B, the honeycomb structure is shifted left or right by half a component interval every other column, or alternatively, every other row is shifted up or down by half a component interval.

於一個實施例中,補片及相聯結的開槽係定位成環以產生徑向布局。於此種情況下,開槽中心係位在環上。圖15A例示定位成環之補片(及其共同定位開槽)之一實施例。參考圖15A,補片及開槽之中心係在環上,及該等環相對於天線陣列之饋入點或終結點係同心定位。注意位在同一環的相鄰開槽相對於彼此取向幾乎90度(於其中心評估時)。更明確言之,其係配向於等於90度加沿含該二元件之幾何中心的該環之角向位移之一角。 In one embodiment, the patch and the associated slotted system are positioned in a loop to create a radial layout. In this case, the center of the slot is tied to the ring. Figure 15A illustrates one embodiment of a patch positioned in a loop (and its co-located slots). Referring to Figure 15A, the centers of the patches and slots are attached to the loop, and the loops are concentrically positioned relative to the feed or termination points of the antenna array. Note that adjacent slots located in the same ring are oriented approximately 90 degrees relative to each other (as evaluated at their center). More specifically, it is oriented at an angle equal to 90 degrees plus an angular displacement of the ring along the geometric center containing the two elements.

圖15B為針對如圖15A描繪基於環之開槽陣列之一控制樣式之一實施例。針對LHCP指向之30度波束的所得近場及遠場分別顯示於圖15C。 Figure 15B is an illustration of one of the control styles for a slot-based slotted array as depicted in Figure 15A. The resulting near-field and far-field for the 30-degree beam pointed to by the LHCP are shown in Figure 15C, respectively.

於一個實施例中,饋入結構係經整形以控制耦合,以確保橫跨完整2D孔徑被發射或被散射的功率為粗略恆定。此點係藉在電介質使用線性厚度遞減,或於脊狀饋入網路之情況下類似的遞減達成,造成接近饋入點較少耦合及遠離饋入點較多耦合。對饋入高度使用線性遞減,當移行波遠離饋入點傳播時,藉於較小體積含有該能量而抗衡移行波之l/r衰減,結果導致自各個元件散射之饋入中剩 餘能量之一較大百分比。此點對橫跨孔徑產生一致幅值激勵為要緊。用於非徑向對稱饋入結構,諸如具有方形或矩形外維度者,此種遞減可以非徑向對稱方式應用以造成橫跨孔徑之散射功率粗略為恆定。補償技術要求基於陣列中的元件距饋入點多遠而差異地調諧元件。 In one embodiment, the feed structure is shaped to control coupling to ensure that the power transmitted or scattered across the full 2D aperture is substantially constant. This is achieved by a linear decrease in the thickness of the dielectric, or a similar decrease in the case of a ridge feed into the network, resulting in less coupling near the feed point and more coupling away from the feed point. Linear decrement is used for the feed height. When the travel wave propagates away from the feed point, the smaller volume contains the energy and counteracts the l/r attenuation of the travel wave. As a result, the feed from the scattering of each component remains. A large percentage of the remaining energy. This point is important for producing a uniform amplitude excitation across the aperture. For non-radially symmetric feed structures, such as those having a square or rectangular outer dimension, such decrement can be applied in a non-radially symmetric manner to cause the scattering power across the aperture to be roughly constant. The compensation technique requires different tuning of the components based on how far the components in the array are from the feed point.

遞減之一個實施例係使用呈麥斯威爾(Maxwell)魚眼鏡頭形狀之電介質具現,產生發射強度之反比增加以抗衡l/r衰減。 One embodiment of the decrement is to use a dielectric in the shape of a Maxwell fisheye lens to produce an inverse increase in emission intensity to counteract l/r attenuation.

圖18例示電介質之線性遞減。參考圖18,顯示遞減電介質1802,具有一同軸饋入1800以提供一同心饋入波以執行RF陣列1801之元件(補片/虹膜對)。電介質1802(例如塑膠)之高度遞減,從接近同軸饋入1800之最大高度至最遠離同軸饋入1800該點的較低高度。舉例言之,高度B係大於高度A,原因在於高度B較為接近同軸饋入1800故。 Figure 18 illustrates the linear decrease of the dielectric. Referring to Figure 18, a decreasing dielectric 1802 is shown having a coaxial feed 1800 to provide a concentric feed wave to perform the components (patch/iris pair) of the RF array 1801. The height of the dielectric 1802 (e.g., plastic) decreases from a maximum height near the coaxial feed 1800 to a lower height that is farthest from the point of the coaxial feed 1800. For example, the height B is greater than the height A because the height B is closer to the coaxial feed 1800.

記住此點,於一個實施例中,電介質形成非徑向對稱形狀以聚焦能量於需要之處。舉例言之,以如此處描述自單一饋入點饋入之方形天線為例,自中心至方形一角的路徑長度比自中心至方形一邊中心的路徑長度長1.4倍。因此,比較方形四邊的4個中間點,須有較多能量聚焦朝向四角,及能量散射率也須不同。饋入結構及其它結構之非徑向對稱形狀可達成此等要求。 With this in mind, in one embodiment, the dielectric forms a non-radially symmetric shape to focus energy where needed. For example, taking a square antenna fed from a single feed point as described herein, the path length from the center to the square is 1.4 times longer than the path length from the center to the center of the square side. Therefore, comparing the four intermediate points on the four sides of the square requires more energy to focus toward the four corners, and the energy scattering rate must also be different. Non-radial symmetrical shapes of the feed structure and other structures can meet these requirements.

於一個實施例中,相異的電介質堆疊於一給定饋入結構以控制當波向外射出時自饋入至孔徑的功率散射。舉例言之,當有多於一種相異的電介質向上堆疊時,電能 或磁能強度可集中在一特定電介質。一個特定實施例係使用塑膠層及空氣狀泡沫體層,於操作頻率其總厚度係小於λeff/2,結果導致塑膠比空氣狀泡沫體之磁場能濃度更高。 In one embodiment, the distinct dielectrics are stacked in a given feed structure to control power dissipation from the feed to the aperture as the waves exit outward. For example, when more than one distinct dielectric is stacked up, the electrical energy or magnetic energy intensity can be concentrated in a particular dielectric. In a particular embodiment, a plastic layer and an air-like foam layer are used, the total thickness of which is less than λ eff /2 at the operating frequency, resulting in a higher magnetic field energy concentration of the plastic than the air foam.

於一個實施例中,用於補片/虹膜解調,控制樣式係經空間控制(例如開始時啟動的元件較少)以控制孔徑上方耦合,取決於饋入方向及期望孔徑激勵權值,散射更多或更少能量。舉例言之,於一個實施例中,開始時使用的控制樣式比其餘時間啟動的元件較少。舉例言之,開始時,只有即將在第一階段期間被啟動以形成一波束的接近該圓筒式饋入之中心的該等元件中之某個百分比(例如40%、50%)(補片/虹膜開槽對)被啟動,然後較遠離該圓筒式饋入之其餘元件被啟動。於替代實施例中,當該波傳播遠離該饋入時,元件須自圓筒式饋入連續地被啟動。於另一個實施例中,一脊狀饋入網路替代介電間隔體(例如間隔體205之塑膠)及允許傳播饋入波之配向的進一步控制。脊可用以在饋入產生非對稱傳播(亦即帕印亭(Poynting)向量不平行波向量)以對抗該l/r衰減。藉此方式,在該饋入內部之脊的使用輔助導引能量至需要之處。藉由導引更多脊及/或可變高度脊至低能區,在該孔徑產生更一致的照明。如此許可偏離純粹徑向饋入組態,原因在於該饋入波之傳播方向可能不再於徑向取向。在一脊上方之開槽強力耦合,而在脊間之該等開槽之耦合力弱。如此,取決於期望的耦合(以獲得期望波束),脊的使用及開槽之設置允許控制耦合。 In one embodiment, for patch/iris demodulation, the control pattern is spatially controlled (eg, fewer components are activated at the beginning) to control the coupling above the aperture, depending on the feed direction and the desired aperture excitation weight, scattering More or less energy. For example, in one embodiment, the control style used at the beginning is less than the number of components that are activated at the other time. For example, at the beginning, there is only a certain percentage (eg 40%, 50%) of the elements that are to be activated during the first phase to form a beam close to the center of the cylindrical feed (patch) / Iris slotted pair) is activated and then activated from the remaining components farther away from the cylindrical feed. In an alternate embodiment, when the wave propagates away from the feed, the component must be continuously activated from the cylindrical feed. In another embodiment, a ridge feed network replaces the dielectric spacer (e.g., the plastic of spacer 205) and further controls that allow for the propagation of the feed wave alignment. The ridges can be used to produce asymmetric propagation (i.e., Poynting vector non-parallel wave vectors) at the feed to counter the l/r attenuation. In this way, the use of the ridges inside the feed assists in guiding energy to where it is needed. By directing more ridges and/or variable height ridges to the low energy zone, a more consistent illumination is produced at the aperture. Such a deviation from the purely radial feed configuration is that the direction of propagation of the feed wave may no longer be in a radial orientation. The slots above a ridge are strongly coupled, and the coupling forces between the ridges are weak. As such, depending on the desired coupling (to achieve the desired beam), the use of the ridges and the setting of the slots allow control coupling.

於又另一個實施例中,使用提供非圓對稱的一孔徑照明之一複雜饋入結構。此種應用可為非均勻照明之方形孔徑或大致非圓形孔徑。於一個實施例中,使用非徑向對稱電介質其傳遞更多能給某些區域而非其它區域。換言之,該電介質可具有不同介電控制的各區。其中一個實施例為看起來像麥斯威爾(Maxwell)魚眼鏡頭之電介質分布。此種鏡頭可傳遞不等量功率至該陣列之不同部分。於另一個實施例中,一脊狀饋入結構係用以傳遞更多能給某些區域而非其它區域。 In yet another embodiment, a complex feed structure that provides one aperture illumination that is not circularly symmetric is used. Such an application may be a square aperture or a substantially non-circular aperture that is non-uniformly illuminated. In one embodiment, a non-radially symmetric dielectric is used which delivers more energy to certain regions than to other regions. In other words, the dielectric can have regions of different dielectric control. One such embodiment is a dielectric distribution that looks like a Maxwell fisheye lens. Such lenses can deliver unequal amounts of power to different parts of the array. In another embodiment, a ridge feed structure is used to deliver more energy to certain areas than to other areas.

於一個實施例中,多個此處描述的該型圓筒式饋入子孔徑天線排列成陣列。於一個實施例中,使用一或多個額外饋入結構。也於一個實施例中,含括分散式增幅點。舉例言之,一天線系統可包括在一陣列中的多根天線,諸如圖2A或2B顯示。該陣列小系統可為3x3(共9天線)、4x4、5x5等,但其它組態亦屬可能。於此等配置中,各個天線可有一分開饋入。於替代實施例中,增幅點之數目可少於饋入數目。 In one embodiment, a plurality of the cylindrical feed sub-aperture antennas described herein are arranged in an array. In one embodiment, one or more additional feed structures are used. Also in one embodiment, a discrete amplification point is included. For example, an antenna system can include multiple antennas in an array, such as shown in Figures 2A or 2B. The array small system can be 3x3 (9 antennas total), 4x4, 5x5, etc., but other configurations are also possible. In such configurations, each antenna can have a separate feed. In an alternate embodiment, the number of boost points may be less than the number of feeds.

優點與效益 Advantages and benefits 改進波束效能 Improved beam performance

本發明架構之實施例的一項優勢為比線性饋入的波束效能優異。在邊緣的自然內建遞減有助於達成良好波束效能。 An advantage of embodiments of the inventive architecture is that it is superior to linearly fed beam performance. The natural built-in decrement at the edges helps achieve good beam performance.

於陣列因子計算中,只使用開及關元件自40厘米孔徑可符合該聯邦通訊委員會(FCC)遮罩。 In the array factor calculation, only the opening and closing elements from the 40 cm aperture can conform to the Federal Communications Commission (FCC) mask.

使用該圓筒式饋入,本發明之實施例沒有接近側面的阻抗擺盪,由1-波長週期性結構未產生帶隙。 With this cylindrical feed, embodiments of the present invention do not have near-side impedance swings, and no band gap is created by the 1-wavelength periodic structure.

本發明之實施例當掃描偏離側面時無繞射模式問題。 Embodiments of the present invention have no diffraction mode problems when scanning off-side.

動態極化 Dynamic polarization

有(至少)兩種元件設計可用於此處描述之架構:圓極化元件及成對線極化元件。運用成對線極化元件,藉施用相位延遲或提前調變至一集合之元件而非第二集合,可動態改變圓極化感。為了達成線極化,一個集合相對於第二集合(實體正交集合)之相位提前將為180度。線極化也可只使用元件樣式的改變合成,提供了用以追蹤線極化的機制。 There are (at least) two component designs that can be used for the architecture described herein: circularly polarized components and paired linearly polarized components. The use of paired linearly polarized elements can dynamically change the sense of circular polarization by applying a phase delay or pre-adjusting to a set of elements rather than a second set. To achieve linear polarization, the phase advance of a set relative to the second set (solid set of entities) will be 180 degrees. Linear polarization can also be synthesized using only component pattern changes, providing a mechanism to track line polarization.

操作頻寬 Operating bandwidth

開關操作模式有機會延長動態及瞬時頻寬,原因在於該開關操作模式不要求各個元件被調諧至其共振曲線之一特定部分。該天線可連續地操作通過其操作範圍之幅值及相位全像圖部分而不會顯著地影響效能。如此使得該操作範圍遠更接近總可調諧範圍。 The switch mode of operation has the opportunity to extend the dynamic and instantaneous bandwidth because the switch mode of operation does not require individual components to be tuned to a particular portion of their resonant curve. The antenna can be continuously operated through the amplitude and phase hologram portions of its operating range without significantly affecting performance. This makes the operating range much closer to the total tunable range.

與石英/玻璃基體之間隙可能較小 The gap with the quartz/glass substrate may be small

該圓筒式饋入結構可利用薄膜電晶體(TFT)架構,意味著可在石英或玻璃上發揮功能。此等基板比電路板遠更硬,及有更佳的已知技術用以達成約3微米之間隙大小。3微米之間隙大小將導致14毫秒(ms)之切換速度。 The cylindrical feed structure can utilize a thin film transistor (TFT) architecture, meaning that it can function on quartz or glass. These substrates are much harder than the board and there are better known techniques for achieving a gap size of about 3 microns. A gap size of 3 microns will result in a switching speed of 14 milliseconds (ms).

複雜度減低 Reduced complexity

此處描述之揭示架構不需任何切削工作,製造中只需單一連結階段。此種架構組合切換至TFT驅動電子電路,免除了昂貴的材料及某些艱難的要求。 The disclosed architecture described herein does not require any cutting work and requires only a single joining phase in manufacturing. This combination of architectures switches to TFT drive electronics, eliminating expensive materials and some tough requirements.

雖然對熟諳技藝人士於研讀前文詳細說明部分之後無疑地顯然易知本發明之許多變化及修改,但須瞭解藉由例示目的顯示及描述的任何特定實施例絕非考慮為限制性。因此述及各種實施例之細節絕非意圖限制申請專利範圍各項之範圍,申請專利範圍各項本身只引述被視為本發明所必要的該等特徵。 Although many variations and modifications of the present invention are apparent to those skilled in the art in the <RTIgt; Therefore, the details of the various embodiments are not intended to limit the scope of the scope of the invention, and the scope of the patent application itself recites only those features that are deemed necessary for the present invention.

Claims (24)

一種天線,包含:一天線饋入部,用以輸入一圓筒式饋入波,該圓筒式饋入波係自該饋入部同心地向外傳播;及耦接至該天線饋入部之多個表面散射天線元件的一射頻(RF)可調諧開槽陣列,其中該圓筒式饋入波與該開槽陣列互相作用以產生一波束,其中該開槽陣列包含多個開槽,該等多個開槽係相對於撞擊在該各個開槽之一中心位置的圓筒式饋入波的一傳播方向成一角度定向。 An antenna includes: an antenna feeding portion for inputting a cylindrical feed wave, the cylindrical feed wave system is concentrically propagated outward from the feed portion; and coupled to the plurality of surfaces of the antenna feed portion a radio frequency (RF) tunable slot array of the scatter antenna element, wherein the cylindrical feed wave interacts with the slot array to generate a beam, wherein the slot array includes a plurality of slots, the plurality The slotting is oriented at an angle relative to a direction of propagation of the cylindrical feed wave impinging on a central location of the respective slot. 如請求項1之天線,其中該開槽陣列係經介電地加載。 The antenna of claim 1, wherein the slotted array is dielectrically loaded. 如請求項1之天線,進一步其中各個開槽係經調諧以在一給定頻率提供一期望的散射。 The antenna of claim 1, further wherein each slot is tuned to provide a desired scatter at a given frequency. 如請求項3之天線,其中該等多個開槽中之各個開槽係相對於撞擊在該各個開槽之該中心位置的該圓筒式饋入波為+45度或-45度定向,使得該開槽陣列包括一相對於該圓筒式饋入波傳播方向旋轉+45度之第一組開槽及一相對於該圓筒式饋入波之該傳播方向旋轉-45度之第二組開槽。 The antenna of claim 3, wherein each of the plurality of slots is oriented at +45 degrees or -45 degrees with respect to the cylindrical feed wave impinging at the center of the respective slots. Having the slotted array include a first set of slots rotated +45 degrees with respect to the direction of propagation of the cylindrical feed wave and a second of -45 degrees relative to the direction of propagation of the cylindrical feed wave The group is slotted. 如請求項1之天線,其中該開槽陣列更包含:多個補片,其中該等補片中之各者係共同定位在該等多個開槽中之一開槽上方且與該一開槽隔開而形成一補片/開槽對,各個補片/開槽對係基於施加一電壓至 該補片/開槽對中之該補片而被關閉或啟動。 The antenna of claim 1, wherein the slotted array further comprises: a plurality of patches, wherein each of the patches is co-located above one of the plurality of slots and is open The slots are spaced apart to form a patch/groove pair, each patch/groove pair being based on applying a voltage to The patch in the patch/slot pair is turned off or activated. 如請求項5之天線,其中在該等多個開槽中之各個開槽和該等多個補片中與其相關聯的補片之間有一電介質。 The antenna of claim 5, wherein a dielectric is present between each of the plurality of slots and a patch associated therewith of the plurality of patches. 如請求項6之天線,其中該電介質包含液晶。 The antenna of claim 6, wherein the dielectric comprises a liquid crystal. 如請求項6之天線,其進一步包含一控制器,該控制器施加一控制樣式,該控制樣式控制哪些補片/開槽對被啟動及關閉,藉此造成一波束的產生。 The antenna of claim 6 further comprising a controller that applies a control pattern that controls which of the patch/groove pairs are activated and deactivated thereby causing a beam to be generated. 如請求項8之天線,其中該控制樣式只啟動用以於一第一階段期間產生該波束之該等補片/開槽對之一子集,然後啟動用以於一第二階段期間產生該波束之其餘補片/開槽對。 The antenna of claim 8, wherein the control pattern activates only a subset of the patches/groove pairs used to generate the beam during a first phase, and then initiates to generate the second phase The remaining patch/grooved pairs of the beam. 如請求項5之天線,其中該等多個補片係放置成多個環,該等多個環係相對於該開槽陣列之該天線饋入部同心地定位。 The antenna of claim 5, wherein the plurality of patches are placed in a plurality of loops that are concentrically positioned relative to the antenna feed of the slot array. 如請求項5之天線,其中該等多個補片係包括於一補片板中。 The antenna of claim 5, wherein the plurality of patches are included in a patch panel. 如請求項5之天線,其中該等多個補片係包括於一玻璃層中。 The antenna of claim 5, wherein the plurality of patches are included in a glass layer. 如請求項1之天線,進一步包含該圓筒式饋入波行進進入其中之一介電層。 The antenna of claim 1, further comprising the cylindrical feed wave traveling into one of the dielectric layers. 如請求項13之天線,進一步包含:一接地平面;耦接至該接地平面之一同軸接腳,用以將該饋入波輸入該天線,其中該介電層係在該接地平面與該開槽陣 列之間。 The antenna of claim 13, further comprising: a ground plane; a coaxial pin coupled to the ground plane for inputting the feed wave to the antenna, wherein the dielectric layer is coupled to the ground plane Slot array Between the columns. 如請求項14之天線,進一步包含耦接至該接地平面及該開槽陣列之至少一個RF吸收器,用以終結未使用能量以防止未使用能量透過該天線反射回來。 The antenna of claim 14 further comprising at least one RF absorber coupled to the ground plane and the array of slots for terminating unused energy to prevent unused energy from being reflected back through the antenna. 如請求項14之天線,進一步包含:一間隙導體,其中該介電層係在該間隙導體與該開槽陣列之間;在該間隙導體與該接地平面之間的一間隔體;及耦合該接地平面至該開槽陣列之一旁側區域。 The antenna of claim 14, further comprising: a gap conductor, wherein the dielectric layer is between the gap conductor and the slot array; a spacer between the gap conductor and the ground plane; and coupling The ground plane is to a side area of one of the slot arrays. 如請求項16之天線,其中該旁側區域包含兩側,該等兩個旁側區域中之各者形成彎角以使得該饋入波自該饋入部之該間隔層傳播至該饋入部之該介電層。 The antenna of claim 16, wherein the side region includes two sides, each of the two side regions forming an angle such that the feed wave propagates from the spacer layer of the feed portion to the feed portion The dielectric layer. 如請求項16之天線,其中該間隔體包含泡沫體。 The antenna of claim 16, wherein the spacer comprises a foam. 如請求項13之天線,其中該介電層包含塑膠。 The antenna of claim 13, wherein the dielectric layer comprises plastic. 如請求項13之天線,其中該介電層為錐形。 The antenna of claim 13, wherein the dielectric layer is tapered. 如請求項13之天線,其中該介電層包括具有不同介電常數之多個區域。 The antenna of claim 13, wherein the dielectric layer comprises a plurality of regions having different dielectric constants. 如請求項13之天線,其中該介電層包括影響該饋入波之傳播的多個分散式結構。 The antenna of claim 13, wherein the dielectric layer comprises a plurality of discrete structures that affect propagation of the feed wave. 如請求項1之天線,其進一步包含該圓筒式饋入波行進進入其中之一脊狀饋入網路。 The antenna of claim 1, further comprising the cylindrical feed wave traveling into one of the ridge feed networks. 一種天線,其包含:一天線饋入部,用以輸入自該饋入部同心地傳播之一圓筒式饋入波; 該饋入波行進通過之一介電層;多個開槽,其係相對於圓筒式饋入波的一傳播方向成一角度定向;多個補片,其中該等補片中之各者係共同定位在該等多個開槽中之一開槽上方且使用一液晶層與該一開槽隔開並形成一補片/開槽對,各個補片/開槽對係基於施加一電壓至由一控制樣式所指定之補片/開槽對中之該補片而被關閉或啟動,其中當該圓筒式饋入波撞擊在該各個開槽之一中心位置時,該圓筒式饋入波與補片/開槽對互相作用以產生一波束。 An antenna comprising: an antenna feeding portion for inputting a cylindrical feeding wave concentrically from the feeding portion; The feed wave travels through a dielectric layer; a plurality of slots that are oriented at an angle relative to a direction of propagation of the cylindrical feed wave; a plurality of patches, wherein each of the patches Co-locating over one of the plurality of slots and using a liquid crystal layer spaced apart from the slot to form a patch/groove pair, each patch/groove pair being based on applying a voltage to The patch is turned off or activated by a patch/slot pair designated by a control pattern, wherein the cylindrical feed wave impinges upon a center position of each of the slots The incoming wave interacts with the patch/grooving pair to produce a beam.
TW104102522A 2014-02-19 2015-01-26 Dynamic polarization and coupling control for a steerable cylindrically fed holographic antenna TWI634701B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461941801P 2014-02-19 2014-02-19
US61/941,801 2014-02-19
US14/550,178 2014-11-21
US14/550,178 US9887456B2 (en) 2014-02-19 2014-11-21 Dynamic polarization and coupling control from a steerable cylindrically fed holographic antenna

Publications (2)

Publication Number Publication Date
TW201541714A TW201541714A (en) 2015-11-01
TWI634701B true TWI634701B (en) 2018-09-01

Family

ID=53878795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104102522A TWI634701B (en) 2014-02-19 2015-01-26 Dynamic polarization and coupling control for a steerable cylindrically fed holographic antenna

Country Status (8)

Country Link
EP (3) EP3800735B1 (en)
JP (1) JP6339215B2 (en)
KR (1) KR101864052B1 (en)
CN (2) CN105960735B (en)
BR (1) BR112016018882B1 (en)
ES (2) ES2935284T3 (en)
TW (1) TWI634701B (en)
WO (1) WO2015126550A1 (en)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10720701B2 (en) 2015-10-09 2020-07-21 Sharp Kabushiki Kaisha Scanning antenna and method for driving same
JP6139043B1 (en) 2015-10-09 2017-05-31 シャープ株式会社 TFT substrate, scanning antenna using the same, and method for manufacturing TFT substrate
WO2017065088A1 (en) 2015-10-15 2017-04-20 シャープ株式会社 Scanning antenna and method for manufacturing same
CN108174620B (en) 2015-10-15 2020-08-28 夏普株式会社 Scanning antenna and manufacturing method thereof
US10153550B2 (en) 2015-10-15 2018-12-11 Sharp Kabushiki Kaisha Scanning antenna comprising a liquid crystal layer and method for manufacturing the same
US10903247B2 (en) 2015-12-28 2021-01-26 Sharp Kabushiki Kaisha Scanning antenna and method for manufacturing same
CN108496277B (en) 2016-01-29 2020-09-08 夏普株式会社 Scanning antenna
US10177444B2 (en) 2016-01-29 2019-01-08 Sharp Kabushiki Kaisha Scanning antenna
WO2017141874A1 (en) 2016-02-16 2017-08-24 シャープ株式会社 Scanning antenna
US10985469B2 (en) 2016-02-19 2021-04-20 Sharp Kabushiki Kaisha Scanning antenna and method for manufacturing same
US11081790B2 (en) 2016-03-11 2021-08-03 Sharp Kabushiki Kaisha Scanned antenna and method of inspecting scanned antenna
WO2017170133A1 (en) 2016-03-29 2017-10-05 シャープ株式会社 Scanning antenna, method for inspecting scanning antenna, and method for manufacturing scanning antenna
US10763583B2 (en) * 2016-05-10 2020-09-01 Kymeta Corporation Method to assemble aperture segments of a cylindrical feed antenna
WO2017199777A1 (en) 2016-05-16 2017-11-23 シャープ株式会社 Tft substrate, scanning antenna provided with tft substrate, and method for producing tft substrate
US10637156B2 (en) 2016-05-27 2020-04-28 Sharp Kabushiki Kaisha Scanning antenna and method for manufacturing scanning antenna
WO2017208996A1 (en) 2016-05-30 2017-12-07 シャープ株式会社 Scanning antenna
WO2017213084A1 (en) 2016-06-09 2017-12-14 シャープ株式会社 Tft substrate, scanning antenna provided with tft substrate, and method for producing tft substrate
JP6598998B2 (en) 2016-06-10 2019-10-30 シャープ株式会社 Scanning antenna
US10847875B2 (en) 2016-07-19 2020-11-24 Sharp Kabushiki Kaisha TFT substrate, scanning antenna provided with TFT substrate and method for producing TFT substrate
WO2018021093A1 (en) 2016-07-26 2018-02-01 シャープ株式会社 Scanning antenna and scanning antenna production method
CN109478719B (en) 2016-07-27 2020-12-08 夏普株式会社 Scanning antenna, driving method of scanning antenna, and liquid crystal device
CN109478718B (en) 2016-07-28 2021-01-15 夏普株式会社 Scanning antenna
CN109690870B (en) 2016-08-08 2021-04-06 夏普株式会社 Scanning antenna
CN109643848B (en) 2016-08-12 2021-04-13 夏普株式会社 Scanning antenna
US10815426B2 (en) * 2016-08-17 2020-10-27 Sharp Kabushiki Kaisha Liquid crystal cell for scanning antenna and method of producing liquid crystal cell for scanning antenna
US10756440B2 (en) 2016-08-26 2020-08-25 Sharp Kabushiki Kaisha Scanning antenna and method of manufacturing scanning antenna
WO2018056393A1 (en) * 2016-09-26 2018-03-29 シャープ株式会社 Liquid crystal cell, and scanning antenna
CN109844626A (en) * 2016-10-06 2019-06-04 夏普株式会社 The manufacturing method and liquid crystal cells of liquid crystal cells
CN109891598B (en) 2016-10-27 2021-09-28 夏普株式会社 TFT substrate, scanning antenna provided with TFT substrate, and method for manufacturing TFT substrate
JP6717970B2 (en) 2016-11-09 2020-07-08 シャープ株式会社 TFT substrate, scanning antenna provided with TFT substrate, and method for manufacturing TFT substrate
CN109997071B (en) 2016-11-29 2022-03-29 夏普株式会社 Liquid crystal device, method for determining residual DC voltage value of liquid crystal device, method for driving liquid crystal device, and method for manufacturing liquid crystal device
US10748862B2 (en) 2016-12-08 2020-08-18 Sharp Kabushiki Kaisha TFT substrate, scanning antenna comprising TFT substrate, and TFT substrate production method
WO2018105589A1 (en) * 2016-12-09 2018-06-14 シャープ株式会社 Tft substrate, scanning antenna comprising tft substrate, and tft substrate production method
US11049658B2 (en) * 2016-12-22 2021-06-29 Kymeta Corporation Storage capacitor for use in an antenna aperture
WO2018123696A1 (en) * 2016-12-28 2018-07-05 シャープ株式会社 Tft substrate, scanning antenna comprising tft substrate, and method for producing tft substrate
CN110192306B (en) 2017-01-13 2021-02-05 夏普株式会社 Scanning antenna and method for manufacturing scanning antenna
KR20180096280A (en) 2017-02-21 2018-08-29 삼성전자주식회사 Antenna apparatus and electronic device including the same
US11342666B2 (en) 2017-02-28 2022-05-24 Sharp Kabushiki Kaisha TFT substrate, scanning antenna provided with TFT substrate, and method for manufacturing TFT substrate
WO2018159607A1 (en) * 2017-03-03 2018-09-07 シャープ株式会社 Tft substrate and scanning antenna provided with tft substrate
WO2018173941A1 (en) 2017-03-23 2018-09-27 シャープ株式会社 Liquid crystal cell and scanning antenna
US11201411B2 (en) 2017-03-30 2021-12-14 Sharp Kabushiki Kaisha Liquid crystal cell and scanning antenna
US10811443B2 (en) 2017-04-06 2020-10-20 Sharp Kabushiki Kaisha TFT substrate, and scanning antenna provided with TFT substrate
WO2018186311A1 (en) 2017-04-07 2018-10-11 シャープ株式会社 Tft substrate, scanning antenna provided with tft substrate, and method for producing tft substrate
CN110462841B (en) 2017-04-07 2023-06-02 夏普株式会社 TFT substrate, scanning antenna provided with TFT substrate, and method for manufacturing TFT substrate
CN107275805B (en) * 2017-04-27 2018-08-03 北京华镁钛科技有限公司 A kind of phased array antenna based on Meta Materials electromagnetic property
CN108879112B (en) * 2017-05-12 2021-02-09 华为技术有限公司 Antenna array and terminal
WO2018221327A1 (en) 2017-05-31 2018-12-06 シャープ株式会社 Tft substrate and scanning antenna provided with tft substrate
CN110770882B (en) 2017-06-15 2023-12-01 夏普株式会社 TFT substrate and scanning antenna provided with same
CN109119756B (en) * 2017-06-22 2020-06-23 北京机电工程研究所 Wide-angle scanning microstrip phased array antenna
CN109216887A (en) * 2017-06-30 2019-01-15 群创光电股份有限公司 Liquid crystal antenna assembly
US10811769B2 (en) * 2017-06-30 2020-10-20 Innolux Corporation Liquid-crystal antenna apparatus and method for tracking wireless apparatus using the same
US11387260B2 (en) 2017-07-12 2022-07-12 Sharp Kabushiki Kaisha TFT substrate, scanning antenna provided with TFT substrate, and manufacturing method of TFT substrate
CN110998965B (en) 2017-08-09 2021-09-07 夏普株式会社 Scanning antenna and method for manufacturing scanning antenna
WO2019031395A1 (en) 2017-08-10 2019-02-14 シャープ株式会社 Tft module, scanning antenna provided with tft module, method for driving device provided with tft module, and method for producing device provided with tft module
JP6578334B2 (en) 2017-09-27 2019-09-18 シャープ株式会社 TFT substrate and scanning antenna equipped with TFT substrate
JP2019062090A (en) 2017-09-27 2019-04-18 シャープ株式会社 Tft substrate, scanning antenna comprising the same, and method of manufacturing tft substrate
JP2019087852A (en) 2017-11-06 2019-06-06 シャープ株式会社 Scanning antenna and liquid crystal device
JP2019091835A (en) 2017-11-16 2019-06-13 シャープ株式会社 Tft substrate, scanning antenna comprising the same, and method of manufacturing tft substrate
JP2019125908A (en) 2018-01-16 2019-07-25 シャープ株式会社 Liquid crystal cell, and sweep antenna
JP2019128541A (en) 2018-01-26 2019-08-01 シャープ株式会社 Liquid crystal cell and scanning antenna
JP2019134032A (en) 2018-01-30 2019-08-08 シャープ株式会社 Tft substrate, scanning antenna comprising the same, and method of manufacturing tft substrate
US11139695B2 (en) 2018-02-12 2021-10-05 Ossia Inc. Flat panel substrate with integrated antennas and wireless power transmission system
JPWO2019181707A1 (en) 2018-03-20 2021-03-25 Agc株式会社 Glass substrate, LCD antenna and high frequency device
WO2019181706A1 (en) 2018-03-20 2019-09-26 Agc株式会社 Substrate, liquid crystal antenna and high-frequency device
CN109088177B (en) * 2018-08-07 2021-07-02 江西师范大学 Double-circular polarization waveguide array antenna and manufacturing method thereof
JP2020053759A (en) 2018-09-25 2020-04-02 シャープ株式会社 Scanning antenna and TFT substrate
JP7055900B2 (en) 2018-12-12 2022-04-18 シャープ株式会社 Manufacturing method of scanning antenna and scanning antenna
JP7027571B2 (en) 2018-12-12 2022-03-01 シャープ株式会社 Manufacturing method of scanning antenna and scanning antenna
CN113196569A (en) 2018-12-12 2021-07-30 夏普株式会社 Scanning antenna and method for manufacturing scanning antenna
US11217611B2 (en) 2019-04-09 2022-01-04 Sharp Kabushiki Kaisha Scanned antenna and method for manufacturing same
US11258176B2 (en) * 2019-04-12 2022-02-22 Kymeta Corporation Non-circular center-fed antenna and method for using the same
US11502408B2 (en) 2019-04-25 2022-11-15 Sharp Kabushiki Kaisha Scanned antenna and liquid crystal device
US11431106B2 (en) 2019-06-04 2022-08-30 Sharp Kabushiki Kaisha TFT substrate, method for manufacturing TFT substrate, and scanned antenna
WO2021000137A1 (en) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 Antenna oscillator
CN111146572B (en) * 2019-12-20 2021-12-24 中国电波传播研究所(中国电子科技集团公司第二十二研究所) Folding circular polarization reflective array antenna
US11837785B2 (en) 2020-08-04 2023-12-05 Sony Group Corporation Holographic antenna and holographic antenna arrangement
CN112582784B (en) * 2020-11-23 2022-03-15 华南理工大学 Broadband base station antenna based on ring loading and slotting and wireless communication equipment
CN113764894B (en) * 2021-09-10 2022-10-18 西安电子科技大学 Three-beam independent polarization holographic artificial impedance surface antenna
GB2616670A (en) * 2022-03-18 2023-09-20 Univ Birmingham Metamaterial-engabled beam scanning antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122009A1 (en) * 2000-10-02 2002-09-05 Mark Winebrand Slot spiral miniaturized antenna
US7071888B2 (en) * 2003-05-12 2006-07-04 Hrl Laboratories, Llc Steerable leaky wave antenna capable of both forward and backward radiation
JP2008187631A (en) * 2007-01-31 2008-08-14 Casio Comput Co Ltd Plane polarized wave antenna and electronic device
CN102057536A (en) * 2008-04-04 2011-05-11 雷斯潘公司 Single-feed multi-cell metamaterial antenna devices
US20120194399A1 (en) * 2010-10-15 2012-08-02 Adam Bily Surface scattering antennas
US20130207859A1 (en) * 2010-04-30 2013-08-15 Centre National De La Recherche Scientifique Compact radiating element having resonant cavities

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199201A (en) * 1984-03-24 1985-10-08 Arimura Giken Kk Circular waveguide line
JPH02164108A (en) * 1988-12-19 1990-06-25 Tokyo Inst Of Technol Plane antenna
JP3021752B2 (en) * 1991-04-26 2000-03-15 凸版印刷株式会社 Composite structure radial line slot antenna
JPH06209214A (en) * 1992-03-30 1994-07-26 Toppan Printing Co Ltd Linear polarization radial line slot antenna
JP3247155B2 (en) * 1992-08-28 2002-01-15 凸版印刷株式会社 Radial line slot antenna with parasitic element
WO2004082073A1 (en) * 1992-12-18 2004-09-23 Naohisa Goto Radial line slot antenna for different polarizations
JPH06314925A (en) * 1993-04-30 1994-11-08 Toppan Printing Co Ltd Radial line slot antenna with parasitic element and manufacture of slot plate thereof
JPH088640A (en) * 1994-06-20 1996-01-12 Toshiba Corp Radial line patch antenna
JP3356653B2 (en) * 1997-06-26 2002-12-16 日本電気株式会社 Phased array antenna device
JP2000341027A (en) * 1999-05-27 2000-12-08 Nippon Hoso Kyokai <Nhk> Patch antenna system
AU2001256962A1 (en) * 2000-03-20 2001-10-03 Sarnoff Corporation Reconfigurable antenna
JP2003008341A (en) * 2001-06-22 2003-01-10 Mitsubishi Electric Corp Planar array antenna
US6674408B1 (en) * 2002-07-19 2004-01-06 Paratek Microwave, Inc. Antenna apparatus
US6842140B2 (en) * 2002-12-03 2005-01-11 Harris Corporation High efficiency slot fed microstrip patch antenna
JP2007295044A (en) * 2006-04-20 2007-11-08 Matsushita Electric Ind Co Ltd Phased array antenna
WO2007114391A1 (en) * 2006-03-31 2007-10-11 Kyocera Corporation Dielectric waveguide device; phase shifter, high frequency switch, and attenuator provided with dielectric waveguide device; and method of manufacturing high frequency transmitter, high frequency receiver, high frequency transmitter/receiver and radar device, array antenna, and dielectric waveguide device
JP2010068085A (en) * 2008-09-09 2010-03-25 Toshiba Corp Antenna device
JP5655487B2 (en) * 2010-10-13 2015-01-21 日本電気株式会社 Antenna device
CN202949040U (en) * 2012-10-25 2013-05-22 中国传媒大学 Circular polarization radial slot antenna with distance from starting gap to center smaller than one waveguide wavelength
US9385435B2 (en) * 2013-03-15 2016-07-05 The Invention Science Fund I, Llc Surface scattering antenna improvements
CN103474775B (en) * 2013-09-06 2015-03-11 中国科学院光电技术研究所 Phased-array antenna based on dynamic-regulating artificial electromagnetic structural materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122009A1 (en) * 2000-10-02 2002-09-05 Mark Winebrand Slot spiral miniaturized antenna
US7071888B2 (en) * 2003-05-12 2006-07-04 Hrl Laboratories, Llc Steerable leaky wave antenna capable of both forward and backward radiation
JP2008187631A (en) * 2007-01-31 2008-08-14 Casio Comput Co Ltd Plane polarized wave antenna and electronic device
CN102057536A (en) * 2008-04-04 2011-05-11 雷斯潘公司 Single-feed multi-cell metamaterial antenna devices
US20130207859A1 (en) * 2010-04-30 2013-08-15 Centre National De La Recherche Scientifique Compact radiating element having resonant cavities
US20120194399A1 (en) * 2010-10-15 2012-08-02 Adam Bily Surface scattering antennas

Also Published As

Publication number Publication date
EP3108538A1 (en) 2016-12-28
ES2935284T3 (en) 2023-03-03
JP6339215B2 (en) 2018-06-06
JP2017506471A (en) 2017-03-02
CN110492238B (en) 2021-02-09
EP3800735B1 (en) 2022-11-16
EP4191794A1 (en) 2023-06-07
CN105960735A (en) 2016-09-21
BR112016018882B1 (en) 2022-02-22
KR101864052B1 (en) 2018-06-01
EP3800735A1 (en) 2021-04-07
KR20160130975A (en) 2016-11-15
EP3108538B1 (en) 2020-12-23
ES2856220T3 (en) 2021-09-27
CN105960735B (en) 2019-09-17
WO2015126550A1 (en) 2015-08-27
BR112016018882A2 (en) 2020-10-27
CN110492238A (en) 2019-11-22
TW201541714A (en) 2015-11-01
EP3108538A4 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
TWI634701B (en) Dynamic polarization and coupling control for a steerable cylindrically fed holographic antenna
US11545747B2 (en) Dynamic polarization and coupling control from a steerable cylindrically fed holographic antenna
JP6980768B2 (en) Impedance matching for open surface antennas
US11528170B2 (en) Restricted euclidean modulation
JP2023511840A (en) Radiation-fed segmentation using a wedge plate radial waveguide