TWI634590B - Methods for fabricating semiconductor structures - Google Patents

Methods for fabricating semiconductor structures Download PDF

Info

Publication number
TWI634590B
TWI634590B TW106137367A TW106137367A TWI634590B TW I634590 B TWI634590 B TW I634590B TW 106137367 A TW106137367 A TW 106137367A TW 106137367 A TW106137367 A TW 106137367A TW I634590 B TWI634590 B TW I634590B
Authority
TW
Taiwan
Prior art keywords
photoresist layer
focus
lens
opening
semiconductor structure
Prior art date
Application number
TW106137367A
Other languages
Chinese (zh)
Other versions
TW201917772A (en
Inventor
許明甥
陳立哲
楊曉瑩
劉興潮
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW106137367A priority Critical patent/TWI634590B/en
Application granted granted Critical
Publication of TWI634590B publication Critical patent/TWI634590B/en
Publication of TW201917772A publication Critical patent/TW201917772A/en

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

半導體結構的製造方法包含在基底上的介電層上塗佈光阻層,以及對光阻層實施微影製程。微影製程包含測量光阻層的聚焦位置,將透鏡的焦點設定在位於聚焦位置正下方的散焦位置,在透鏡的焦點設定在散焦位置的情況下,將光阻層曝光,以及將曝光後的光阻層顯影以形成開口在光阻層中,開口的寬度從開口的頂部朝著開口的底部漸減。此方法還包含通過開口蝕刻介電層以形成通孔,以及在通孔中填充導電材料以形成導孔。 A method of fabricating a semiconductor structure includes coating a photoresist layer on a dielectric layer on a substrate, and performing a lithography process on the photoresist layer. The lithography process includes measuring the focus position of the photoresist layer, setting the focus of the lens to a defocus position directly below the focus position, exposing the photoresist layer, and exposing the exposure if the focus of the lens is set at the defocus position The subsequent photoresist layer is developed to form an opening in the photoresist layer, the width of the opening decreasing from the top of the opening toward the bottom of the opening. The method also includes etching the dielectric layer through the opening to form a via, and filling the via with a conductive material to form the via.

Description

半導體結構的製造方法 Semiconductor structure manufacturing method

本發明實施例係有關於半導體製造技術,且特別係有關於半導體結構具有傾斜側壁的通孔之製造方法。 Embodiments of the present invention relate to semiconductor fabrication techniques, and in particular to methods of fabricating vias having tapered sidewalls for semiconductor structures.

半導體積體電路工業在過去數十年間經歷了快速的成長。半導體材料與製造技術的進步使得元件尺寸越來越小,其製造也越來越複雜。由於半導體製程技術的進步,使得半導體元件微縮化和效能提升方面的進步得以實現。在半導體製造發展的歷程中,由於能夠可靠地製造出的最小元件的尺寸越來越小,所以單位面積上可互連的元件數量越來越多。 The semiconductor integrated circuit industry has experienced rapid growth over the past few decades. Advances in semiconductor materials and manufacturing technology have made components smaller and smaller, and their manufacturing has become more complex. Advances in semiconductor device miniaturization and performance improvement have been realized due to advances in semiconductor process technology. In the course of the development of semiconductor manufacturing, the number of components that can be interconnected per unit area is increasing due to the smaller and smaller size of the smallest components that can be reliably manufactured.

半導體積體電路工業藉由微影技術將光罩圖案轉移至晶圓的光阻層,接著藉由蝕刻製程、沉積製程及離子植入等製程形成各種不同的功能部件或電路元件於晶圓上。微影技術的步驟通常包含光阻塗佈、烘烤、對準、曝光以及顯影。為了精準地定義各個半導體元件的位置、尺寸以及不同材料層之間的疊對關係,需透過複雜的製程參數來控制這些微影步驟的實施。 The semiconductor integrated circuit industry transfers the mask pattern to the photoresist layer of the wafer by lithography, and then forms various functional components or circuit components on the wafer by processes such as etching process, deposition process and ion implantation. . The steps of lithography generally involve photoresist coating, baking, alignment, exposure, and development. In order to accurately define the position and size of individual semiconductor components and the overlapping relationship between different material layers, complex process parameters are required to control the implementation of these lithography steps.

雖然半導體積體電路工業已做出了許多發展以致力於元件尺寸的縮小,然而,當最小元件的尺寸持續縮小時,許多挑戰隨之而生。舉例而言,隨著溝槽及/或通孔的深寬比(aspect ratio)增加,缺陷例如空隙(void)或通管(pipeline)可能 會形成於溝槽及/或通孔內的材料中,這導致半導體裝置的可靠度下降。因此,業界仍需要改進半導體裝置的製造方法,以克服元件尺寸縮小所產生的問題。 Although the semiconductor integrated circuit industry has made many developments in order to reduce the size of components, many challenges have arisen as the size of the smallest components continues to shrink. For example, as the aspect ratio of trenches and/or vias increases, defects such as voids or pipelines may This may be formed in the material in the trenches and/or vias, which results in a decrease in the reliability of the semiconductor device. Therefore, there is still a need in the industry to improve the manufacturing method of a semiconductor device to overcome the problems caused by the downsizing of components.

本發明的一些實施例提供半導體結構的製造方法,此方法包含在基底上形成介電層,在介電層上塗佈光阻層,對光阻層實施微影製程。此微影製程包含將基底放置於透鏡下方,測量光阻層的聚焦位置,其中透鏡與聚焦位置之間具有第一聚焦長度,將透鏡的焦點設定在位於聚焦位置正下方的散焦位置,其中透鏡與散焦位置之間具有大於第一聚焦長度的第二聚焦長度,在將透鏡的焦點設定在散焦位置後,將光阻層曝光,以及將曝光後的光阻層顯影,以形成開口於光阻層中,其中開口的寬度從開口的頂部朝著開口的底部漸減。此方法更包含通過開口蝕刻介電層,以形成通孔,以及在通孔中填充導電材料,以形成導孔。 Some embodiments of the present invention provide a method of fabricating a semiconductor structure, the method comprising forming a dielectric layer on a substrate, coating a photoresist layer on the dielectric layer, and performing a lithography process on the photoresist layer. The lithography process includes placing a substrate under the lens, measuring a focus position of the photoresist layer, wherein the lens has a first focus length between the focus position and the focus position of the lens is set at a defocus position directly below the focus position, wherein Between the lens and the defocusing position, having a second focusing length greater than the first focusing length, after setting the focus of the lens to the defocusing position, exposing the photoresist layer, and developing the exposed photoresist layer to form an opening In the photoresist layer, wherein the width of the opening tapers from the top of the opening toward the bottom of the opening. The method further includes etching the dielectric layer through the opening to form a via hole, and filling the via hole with a conductive material to form the via hole.

本發明的另一些實施例提供半導體結構的製造方法,此方法包含在半導體基底上塗佈光阻層,對光阻層實施微影製程,此微影製程包含將半導體基底放置於透鏡下方,測量光阻層的聚焦位置,其中透鏡與聚焦位置之間具有第一聚焦長度,將透鏡的焦點設定在位於聚焦位置正下方的散焦位置,其中透鏡與散焦位置之間具有大於第一聚焦長度的第二聚焦長度,在將透鏡的焦點設定在散焦位置後,將光阻層曝光,以及將曝光後的光阻層顯影,以形成開口於光阻層中,其中開口的寬度從開口的頂部朝著開口的底部漸減。此方法更包含通過開 口蝕刻半導體基底以形成溝槽,以及在溝槽中填充材料層。 Further embodiments of the present invention provide a method of fabricating a semiconductor structure, the method comprising applying a photoresist layer on a semiconductor substrate, and performing a lithography process on the photoresist layer, the lithography process comprising placing the semiconductor substrate under the lens, measuring a focus position of the photoresist layer, wherein the lens has a first focus length between the focus position and the focus position, and the focus of the lens is set at a defocus position directly below the focus position, wherein the lens and the defocus position have a greater than the first focus length a second focus length, after the focus of the lens is set at the defocus position, exposing the photoresist layer, and developing the exposed photoresist layer to form an opening in the photoresist layer, wherein the width of the opening is from the opening The top gradually decreases toward the bottom of the opening. This method is more included by opening The semiconductor substrate is etched to form a trench, and a layer of material is filled in the trench.

90、201‧‧‧半導體基底 90, 201‧‧‧ semiconductor substrate

91‧‧‧源極區 91‧‧‧ source area

92‧‧‧汲極區 92‧‧‧Bungee Area

93‧‧‧閘極電極 93‧‧‧gate electrode

94‧‧‧接觸件 94‧‧‧Contacts

95‧‧‧第一介電層 95‧‧‧First dielectric layer

96‧‧‧金屬層 96‧‧‧metal layer

100、200‧‧‧半導體結構 100, 200‧‧‧ semiconductor structure

101‧‧‧基底 101‧‧‧Base

102‧‧‧第二介電層 102‧‧‧Second dielectric layer

104、2041、2042‧‧‧光阻層 104, 204 1 , 204 2 ‧‧‧ photoresist layer

104’‧‧‧曝光部分 104’‧‧‧Exposure section

106、2061、2062‧‧‧開口 106, 206 1 , 206 2 ‧ ‧ openings

108‧‧‧通孔 108‧‧‧through hole

110‧‧‧導孔 110‧‧‧Guide

2081‧‧‧第一溝槽 208 1 ‧‧‧First groove

2082‧‧‧第二溝槽 208 2 ‧‧‧Second trench

210‧‧‧隔離結構 210‧‧‧Isolation structure

212‧‧‧閘極電極 212‧‧‧gate electrode

300‧‧‧曝光步驟 300‧‧‧Exposure steps

301、303‧‧‧微影製程 301, 303‧‧‧ lithography process

302‧‧‧曝光設備 302‧‧‧Exposure equipment

304‧‧‧光源 304‧‧‧Light source

306‧‧‧光罩 306‧‧‧Photomask

306A‧‧‧透光區 306A‧‧‧Lighting area

306B‧‧‧非透光區 306B‧‧‧ Non-transparent area

308‧‧‧透鏡 308‧‧‧ lens

308A‧‧‧水平面 308A‧‧‧ horizontal plane

308B‧‧‧光軸 308B‧‧‧ optical axis

310‧‧‧晶圓載台 310‧‧‧ Wafer stage

312‧‧‧光線 312‧‧‧Light

400‧‧‧顯影步驟 400‧‧‧Development steps

500、501、502‧‧‧蝕刻製程 500, 501, 502‧ ‧ etching process

D1、D2、D3‧‧‧深度 D1, D2, D3‧‧‧ Depth

DOF1、DOF2‧‧‧聚焦深度 DOF1, DOF2‧‧‧ Depth of focus

f1‧‧‧第一聚焦長度 F1‧‧‧first focus length

F1‧‧‧聚焦位置 F1‧‧‧ Focus position

f2‧‧‧第二聚焦長度 F2‧‧‧second focus length

F2‧‧‧散焦位置 F2‧‧‧ defocusing position

T1、T2‧‧‧厚度 T1, T2‧‧‧ thickness

W1、W2、W3、W4、W5、W6、W7、W8、W9、W10‧‧‧寬度 W1, W2, W3, W4, W5, W6, W7, W8, W9, W10‧‧‧ width

θ1、θ2、θ3‧‧‧角度 Θ1, θ2, θ3‧‧‧ angle

藉由以下的詳述配合所附圖式,可以更加理解本發明實施例的觀點。值得注意的是,根據本產業的標準慣例,各個不同部件(feature)未必按照比例繪製。事實上,為了清楚地討論,各個不同部件的尺寸可隨意被增加或減少。 The views of the embodiments of the present invention can be more fully understood from the following detailed description. It is worth noting that, depending on the standard practice of the industry, various features are not necessarily drawn to scale. In fact, the dimensions of the various components may be arbitrarily increased or decreased for clarity of discussion.

第1A至1G圖是根據本發明的一些實施例說明形成半導體結構的方法之各個中間階段的剖面示意圖。 1A through 1G are cross-sectional schematic views illustrating various intermediate stages of a method of forming a semiconductor structure in accordance with some embodiments of the present invention.

第2A至2H圖係根據本發明的另一些實施例說明形成半導體結構的方法之各個中間階段的剖面示意圖。 2A through 2H are cross-sectional schematic views illustrating various intermediate stages of a method of forming a semiconductor structure in accordance with further embodiments of the present invention.

以下敘述提供了許多不同的實施例或範例,用於實施本發明實施例的不同部件。以下面描述組件和配置的具體範例,以簡化本發明實施例。當然,這些僅僅是範例,並非意圖限制本發明實施例。舉例而言,敘述中若提及第一部件形成於第二部件之上,可能包含形成第一和第二部件直接接觸的實施例,也可能包含額外的部件形成於第一和第二部件之間,使得第一和第二部件不會直接接觸的實施例。另外,本發明實施例可能在許多範例中重複參照的標號及/或字母。這些重複的目的是為了簡化和清楚,其本身並非用於表示各種實施例及/或所討論的配置之間的關係。 The following description provides many different embodiments or examples for implementing the various components of the embodiments of the invention. Specific examples of components and configurations are described below to simplify embodiments of the present invention. Of course, these are merely examples and are not intended to limit the embodiments of the invention. For example, reference to a first component formed on a second component in the description may include forming an embodiment in which the first and second components are in direct contact, and may also include additional components formed in the first and second components. An embodiment in which the first and second components are not in direct contact. In addition, the embodiments of the present invention may repeat reference numerals and/or letters in many examples. The purpose of these repetitions is for simplicity and clarity, and is not intended to represent the relationship between the various embodiments and/or the configurations discussed.

再者,在以下敘述中可使用空間上相關措辭,例如「在......之下」、「在......下方」、「下方的」、「在......上方」、「上方的」和其他類似的用語,以簡化一元件或部件與其他元 件或其他部件之間如圖所示之關係的陳述。此空間相關措辭除了包含圖式所描繪之方向,還包含裝置在使用或操作中的不同方位。裝置可以朝其他方向定位(旋轉90度或在其他方向),且在此使用的空間相關描述可依此相應地解讀。 Furthermore, spatially relevant terms can be used in the following descriptions, such as "under", "below", "below", "at..... "above", "above" and other similar terms to simplify a component or component and other elements A statement of the relationship between a piece or other component as shown. This spatially relevant wording encompasses different orientations of the device in use or operation, in addition to the orientation depicted in the drawings. The device can be positioned in other directions (rotated 90 degrees or in other directions), and the spatially related descriptions used herein can be interpreted accordingly accordingly.

第1A至1G圖是根據本發明的一些實施例說明形成第1G圖所示之半導體結構100的方法之各個中間階段的剖面示意圖。參考第1A圖,提供基底101。在一些實施例中,基底101是已完成前段製程的半導體結構的一部分,基底101包含半導體基底90,以及形成於半導體基底90中的源極區91和汲極區92。基底101還包含形成於半導體基底90上的閘極電極93和第一介電層95,以及位於第一介電層95中的接觸件(contact)94和金屬層96,其中閘極電極93透過接觸件94與金屬層96電性連接。在本發明的一些實施例中,基底101還包含未顯示於第1A圖的其他元件,例如位於半導體基底90中的淺溝槽隔離結構、介於閘極電極93與半導體基底90之間的閘極介電層,以及位於第一介電層95中的其他金屬層。為了圖式簡潔,在第1B至1F圖中僅以簡單方塊表示基底101。 1A through 1G are cross-sectional views illustrating various intermediate stages of a method of forming the semiconductor structure 100 shown in Fig. 1G, in accordance with some embodiments of the present invention. Referring to Figure 1A, a substrate 101 is provided. In some embodiments, substrate 101 is part of a semiconductor structure that has completed a front-end process, substrate 101 includes a semiconductor substrate 90, and a source region 91 and a drain region 92 formed in semiconductor substrate 90. The substrate 101 further includes a gate electrode 93 and a first dielectric layer 95 formed on the semiconductor substrate 90, and a contact 94 and a metal layer 96 in the first dielectric layer 95, wherein the gate electrode 93 is transparent. The contact member 94 is electrically connected to the metal layer 96. In some embodiments of the invention, substrate 101 further includes other components not shown in FIG. 1A, such as shallow trench isolation structures in semiconductor substrate 90, gates between gate electrodes 93 and semiconductor substrate 90. A very dielectric layer, as well as other metal layers located in the first dielectric layer 95. For the sake of simplicity of the drawing, the substrate 101 is represented by only simple squares in the 1B to 1F drawings.

參考第1A圖,在基底101上形成第二介電層102。在一些實施例中,第二介電層102可以是層間介電層(inter-layer dielectric layer,ILD layer)。在一些實施例中,第二介電層102的材料可以是氧化矽、氮化矽、氮氧化矽、SiCON、SiC、SiOC、前述之組合或類似材料。第二介電層102可由化學氣相沉積(chemical vapor deposition,CVD)形成,例如電漿增強化學氣相沉積(plasma enhanced CVD,PECVD)或低壓化學 氣相沉積(low pressure CVD,LPCVD)。在一些實施例中,第二介電層102的厚度T1可在約0.5微米至約10微米之間,可視後續所形成之半導體元件的電性需求而定,例如視半導體元件的崩潰電壓的大小而定。 Referring to FIG. 1A, a second dielectric layer 102 is formed on the substrate 101. In some embodiments, the second dielectric layer 102 can be an inter-layer dielectric layer (ILD layer). In some embodiments, the material of the second dielectric layer 102 may be tantalum oxide, tantalum nitride, hafnium oxynitride, SiCON, SiC, SiOC, combinations of the foregoing, or the like. The second dielectric layer 102 may be formed by chemical vapor deposition (CVD), such as plasma enhanced CVD (PECVD) or low pressure chemistry. Low pressure CVD (LPCVD). In some embodiments, the thickness T1 of the second dielectric layer 102 may be between about 0.5 micrometers and about 10 micrometers, depending on the electrical requirements of the subsequently formed semiconductor component, such as the breakdown voltage of the semiconductor component. And set.

繼續參考第1A圖,在第二介電層102上塗佈光阻層104。在一些實施例中,光阻層104可由旋轉塗佈(spin-on coating)製程形成。光阻層104的厚度T2可在約0.1微米至約5微米之間,可視第二介電層102之厚度T1做調整。舉例而言,隨著第二介電層102之厚度T1增加,可增加光阻層104的厚度T2。此外,在塗佈光阻層104於第二介電層102上之前,可在第二介電層102上選擇性地形成底部抗反射塗層(bottom anti-reflective coating,BARC),以降低後續曝光步驟300(第1C圖)中入射光與反射光相互干涉的現象。在塗佈光阻層104於第二介電層102上之後,可將光阻層104硬化(curing)及/或烘烤(baking)。 With continued reference to FIG. 1A, a photoresist layer 104 is applied over the second dielectric layer 102. In some embodiments, the photoresist layer 104 can be formed by a spin-on coating process. The thickness T2 of the photoresist layer 104 can be between about 0.1 micrometers and about 5 micrometers, and can be adjusted by the thickness T1 of the second dielectric layer 102. For example, as the thickness T1 of the second dielectric layer 102 increases, the thickness T2 of the photoresist layer 104 may be increased. In addition, a bottom anti-reflective coating (BARC) may be selectively formed on the second dielectric layer 102 before the photoresist layer 104 is coated on the second dielectric layer 102 to reduce the subsequent In the exposure step 300 (Fig. 1C), the incident light and the reflected light interfere with each other. After the photoresist layer 104 is coated on the second dielectric layer 102, the photoresist layer 104 can be cured and/or baked.

在形成光阻層104於第二介電層102之後,對光阻層104實施微影製程。如第1B和1C圖所示,在本發明實施例中,微影製程的步驟包含測量光阻層104的對焦位置F1,將曝光設備302的透鏡308的焦點設定於散焦位置F2後進行曝光,以及將光阻層104顯影,這些步驟將分別參照第1B、1C和1D圖詳細說明如後。參考第1B圖,將基底101放置於曝光設備302上,曝光設備302包含光源304、光罩306、透鏡308以及晶圓載台310。 After the photoresist layer 104 is formed on the second dielectric layer 102, the photoresist layer 104 is subjected to a lithography process. As shown in FIGS. 1B and 1C, in the embodiment of the present invention, the step of the lithography process includes measuring the focus position F1 of the photoresist layer 104, and setting the focus of the lens 308 of the exposure device 302 to the defocus position F2 for exposure. And developing the photoresist layer 104, these steps will be described in detail with reference to FIGS. 1B, 1C and 1D, respectively. Referring to FIG. 1B, substrate 101 is placed on exposure apparatus 302, which includes light source 304, reticle 306, lens 308, and wafer stage 310.

曝光設備302的光源304可使用汞燈管、激發雷射 或類似光源產生的可見光、紫外光(ultraviolet,UV)或深紫外光(deep ultraviolet,DUV)或類似光源,可依轉移至光阻層104之圖案的關鍵尺寸(critical dimension,CD)的大小,選擇光源304的波長範圍。 The light source 304 of the exposure device 302 can use a mercury lamp to excite the laser Or a visible light, ultraviolet (UV) or deep ultraviolet (DUV) light source or the like generated by a light source, depending on the size of the critical dimension (CD) transferred to the pattern of the photoresist layer 104. The wavelength range of light source 304 is selected.

曝光設備302的光罩306可使用遮罩(mask)或標線板(reticle,也稱作倍縮光罩)。在本發明的一些實施例中,光罩306可以採用縮影比例5倍的標線板。然而,本發明的實施例也可使用其他縮影比例的標線板,例如4倍或10倍,或者可使用遮罩(mask)。光罩306包含透光區306A和非透光區306B。在後續曝光的過程中,將光罩306的圖案轉移至光阻層104是藉由非透光區306B遮蔽光阻層104之不預期曝光的部分,且讓光源304發出的光線穿過透光區306A照射在光阻層104之預期曝光的部分。 The reticle 306 of the exposure device 302 can use a mask or a reticle (also known as a reticle). In some embodiments of the invention, the reticle 306 may employ a reticle that is 5 times the microcosm ratio. However, embodiments of the present invention may also use other reticle scales, such as 4 or 10 times, or a mask may be used. The mask 306 includes a light transmitting region 306A and a non-light transmitting region 306B. During the subsequent exposure, transferring the pattern of the mask 306 to the photoresist layer 104 is to shield the undesired portion of the photoresist layer 104 from the non-transmissive region 306B, and let the light emitted by the light source 304 pass through the light. Region 306A illuminates the portion of the photoresist layer 104 that is expected to be exposed.

曝光設備302的透鏡308可以是凸透鏡或一系列透鏡之組合。本發明實施例中,透鏡308為聚焦透鏡,光源304發出的光線穿過透光區306A被透鏡308聚焦於光軸308B上之一焦點(focal point)。在本發明的一些實施例中,透鏡308的聚焦長度(focal length)是可調整的,故可藉由調整透鏡308的聚焦長度,在光軸308B上調整光源304發出的光線被透鏡308聚焦的位置。在本發明的一些實施例中,可藉由調整透鏡308之水平面308A的高度來調整透鏡308與光阻層104之間的距離,以達到調整透鏡308的聚焦長度之目的。 The lens 308 of the exposure device 302 can be a convex lens or a combination of a series of lenses. In the embodiment of the present invention, the lens 308 is a focusing lens, and the light emitted by the light source 304 is focused by the lens 308 through a light transmitting area 306A on a focal point on the optical axis 308B. In some embodiments of the present invention, the focal length of the lens 308 is adjustable, so that the light emitted by the light source 304 can be adjusted by the lens 308 on the optical axis 308B by adjusting the focus length of the lens 308. position. In some embodiments of the invention, the distance between the lens 308 and the photoresist layer 104 can be adjusted by adjusting the height of the horizontal plane 308A of the lens 308 to achieve the purpose of adjusting the focus length of the lens 308.

曝光設備302的晶圓載台310是用來承載基底101。在本發明的一些實施例中,可藉由調整晶圓載台310的水平 高度來調整透鏡308與光阻層104之間的距離,以達到調整透鏡308的聚焦長度之目的。 The wafer stage 310 of the exposure apparatus 302 is used to carry the substrate 101. In some embodiments of the invention, the level of wafer stage 310 can be adjusted The height is adjusted to adjust the distance between the lens 308 and the photoresist layer 104 for the purpose of adjusting the focus length of the lens 308.

繼續參考第1B圖,將基底101放置於透鏡308下方,且固定於晶圓載台310上。為了讓光罩306的圖案可精準地轉移至光阻層104,可先透過曝光設備302的對準組件(未顯示)將光罩306與基底101對準,以達到最佳的疊對(overlay)。接著,透過曝光設備302的自動對焦組件測量光阻層104之聚焦位置F1,聚焦位置F1與透鏡308的水平面308A之間具有第一聚焦長度f1。 Continuing with reference to FIG. 1B, the substrate 101 is placed under the lens 308 and is fixed to the wafer stage 310. In order to allow the pattern of the reticle 306 to be accurately transferred to the photoresist layer 104, the reticle 306 can be aligned with the substrate 101 through an alignment assembly (not shown) of the exposure device 302 to achieve an optimal overlay (overlay). ). Next, the focus position F1 of the photoresist layer 104 is measured by the autofocus assembly of the exposure device 302, and the first focus length f1 is between the focus position F1 and the horizontal plane 308A of the lens 308.

若將透鏡308的聚焦長度設定為第一聚焦長度f1,透鏡308可將光源304發出的光線聚焦於聚焦位置F1,並且透鏡308可具有大於光阻層104的厚度T2且完全涵蓋光阻層104的全部厚度之聚焦深度(depth of focus,DOF,也可稱作景深)DOF1。聚焦位置F1位於聚焦深度DOF1的中心,且聚焦位置F1大致上位於光阻層104之厚度一半的位置。涵蓋光阻層104之全部厚度的聚焦深度DOF1可讓光阻層104之預定曝光的部分在深度上具有一致的曝光能量和尺寸。 If the focus length of the lens 308 is set to the first focus length f1, the lens 308 can focus the light emitted by the light source 304 to the focus position F1, and the lens 308 can have a thickness T2 greater than the photoresist layer 104 and completely cover the photoresist layer 104. The depth of focus (DOF, also known as depth of field) DOF1. The focus position F1 is located at the center of the depth of focus DOF1, and the focus position F1 is substantially at a position half the thickness of the photoresist layer 104. The depth of focus DOF1 covering the full thickness of the photoresist layer 104 allows the portion of the photoresist layer 104 to be exposed to have a uniform exposure energy and size in depth.

在本發明的一些實施例中,以曝光設備302的自動對焦組件測量光阻層104的聚焦位置F1時,可以伴隨著自動調整透鏡308的聚焦長度至第一聚焦長度f1。在另一些實施例中,以自動對焦組件測量光阻層104之聚焦位置時,透鏡308的聚焦長度可以不自動調整至第一聚焦長度f1,而維持透鏡308的聚焦長度之預先設定的值。此外,應注意的是,後續的曝光步驟300並未採用具有第一聚焦長度f1的透鏡308進行曝光,而是 採用具有大於第一聚焦長度f1的第二聚焦長度f2(顯示於第1C圖)的透鏡308進行曝光,詳細內容將於後文中描述。 In some embodiments of the present invention, when the focus position F1 of the photoresist layer 104 is measured by the autofocus assembly of the exposure device 302, the focus length of the lens 308 may be automatically adjusted to the first focus length f1. In other embodiments, when the focus position of the photoresist layer 104 is measured with the autofocus assembly, the focus length of the lens 308 may not be automatically adjusted to the first focus length f1 while maintaining a predetermined value of the focus length of the lens 308. In addition, it should be noted that the subsequent exposure step 300 does not employ the lens 308 having the first focus length f1 for exposure, but Exposure is performed using a lens 308 having a second focus length f2 (shown in FIG. 1C) greater than the first focus length f1, the details of which will be described later.

請參考第1C圖,在測量光阻層104的聚焦位置後F1之後,將透鏡308的焦點設定在聚焦位置F1正下方的散焦位置F2,其中透鏡308的水平面308A與散焦位置F2之間具有大於第一聚焦長度f1的第二聚焦長度f2。換言之,此時,透鏡308具有大於第一聚焦長度f1的第二聚焦長度f2。在本發明的一些實施例中,第二聚焦長度f2可為第一聚焦長度f1的1.1倍至1.3倍。在一些實施例中,將透鏡308的焦點設定在散焦位置F2可以透過縮減透鏡308與光阻層104之間的距離的方式達成,例如,在不改變晶圓載台310的水平高度的情況下,可降低透鏡308的水平高度;或者在不改變透鏡308的水平高度的情況下,升高晶圓載台310的水平高度。本發明實施例的微影製程是將透鏡308的焦點設定在聚焦位置F1正下方的散焦位置F2,在實施曝光時使光阻層104處於散焦狀態。 Referring to FIG. 1C, after measuring F1 of the focus position of the photoresist layer 104, the focus of the lens 308 is set at a defocus position F2 directly below the focus position F1, wherein between the horizontal plane 308A and the defocus position F2 of the lens 308. There is a second focus length f2 that is greater than the first focus length f1. In other words, at this time, the lens 308 has a second focus length f2 that is larger than the first focus length f1. In some embodiments of the invention, the second focus length f2 may be 1.1 to 1.3 times the first focus length f1. In some embodiments, setting the focus of the lens 308 at the defocus position F2 can be achieved by reducing the distance between the lens 308 and the photoresist layer 104, for example, without changing the level of the wafer stage 310. The level of the lens 308 can be lowered; or the level of the wafer stage 310 can be raised without changing the level of the lens 308. The lithography process of the embodiment of the present invention sets the focus of the lens 308 to the defocus position F2 directly below the focus position F1, and causes the photoresist layer 104 to be in a defocused state during exposure.

接著,如第1C圖所示,對光阻層104實施微影製程的曝光步驟300。光源304發出的光線312穿過光罩306的透光區306A並通過透鏡308將光阻層104曝光。光線312在穿過光罩306的透光區306A之後,會發生繞射(diffraction)而變得發散,之後經由透鏡308讓光線312聚焦於散焦位置F2。由於光線312聚焦於聚焦位置F1正下方的散焦位置F2,因此,對於光阻層104而言,光線312照射的面積在光阻層104的深度方向上是往下漸減的,而非是一致的。此外,在本發明實施例中,具有第二聚焦長度f2的透鏡308之聚焦深度DOF2會低於聚焦深度DOF1,聚 焦深度DOF2可能無法涵蓋光阻層104之全部厚度。為了讓光阻層104之曝光部分在深度上達到充分的曝光,可藉由補償光源304的曝光能量,使得後續顯影步驟400(第1D圖)可完全移除光阻層104之曝光部分。 Next, as shown in FIG. 1C, an exposure step 300 of the lithography process is performed on the photoresist layer 104. Light ray 312 from source 304 passes through light transmissive region 306A of reticle 306 and exposes photoresist layer 104 through lens 308. After the light ray 312 passes through the light transmissive region 306A of the reticle 306, a diffraction occurs to become divergent, and then the light ray 312 is focused to the defocus position F2 via the lens 308. Since the light ray 340 is focused on the defocusing position F2 directly below the focus position F1, the area illuminated by the light ray 312 is gradually decreased in the depth direction of the photoresist layer 104 instead of being uniform. of. In addition, in the embodiment of the present invention, the depth of focus DOF2 of the lens 308 having the second focus length f2 is lower than the depth of focus DOF1, The focal depth DOF2 may not cover the full thickness of the photoresist layer 104. In order to achieve sufficient exposure of the exposed portion of the photoresist layer 104 in depth, the exposure portion of the photoresist layer 104 can be completely removed by the subsequent development step 400 (Fig. 1D) by compensating for the exposure energy of the light source 304.

參考第1D圖,光阻層104之曝光部分104’的寬度在光阻層104的深度方向上是往下漸減的。在對光阻層104實施第1C圖的曝光步驟300之後,可先對光阻層104進行烘烤(未顯示),接著實施顯影步驟400將曝光後的光阻層104顯影,以移除光阻層104之曝光部分104’。 Referring to Fig. 1D, the width of the exposed portion 104' of the photoresist layer 104 is gradually decreased in the depth direction of the photoresist layer 104. After the exposure step 300 of FIG. 1C is performed on the photoresist layer 104, the photoresist layer 104 may be baked (not shown), and then the development step 400 is performed to develop the exposed photoresist layer 104 to remove the light. The exposed portion 104' of the resist layer 104.

參考第1E圖,在將曝光後的光阻層104顯影後,形成開口106於光阻層104中。開口106的寬度從開口106的頂部朝著開口106的底部漸減。在本發明的一些實施例中,開口106的頂部具有寬度W1,其可在約0.5微米至約5微米之間,開口106的底部具有寬度W2,其可在約0.2微米至約2微米之間,其中寬度W1大於寬度W2。 Referring to FIG. 1E, after the exposed photoresist layer 104 is developed, an opening 106 is formed in the photoresist layer 104. The width of the opening 106 tapers from the top of the opening 106 toward the bottom of the opening 106. In some embodiments of the invention, the top of the opening 106 has a width W1 that may be between about 0.5 microns and about 5 microns, and the bottom of the opening 106 has a width W2 that may be between about 0.2 microns and about 2 microns. Where width W1 is greater than width W2.

在本發明實施例中,開口106之頂部與開口106之底部具有形狀相同但尺寸不同的圖案。在一些實施例中,從上視角度觀之,開口106的底部和頂部皆為圓形。然而,本發明的實施例不限於此,開口106的底部和頂部可以是任何其他形狀,例如橢圓形、方形、長條、環形或其他形狀。 In an embodiment of the invention, the top of the opening 106 and the bottom of the opening 106 have a pattern of the same shape but different sizes. In some embodiments, the bottom and top of the opening 106 are both circular from a top view. However, embodiments of the invention are not limited thereto, and the bottom and top of the opening 106 may be any other shape, such as an elliptical, square, strip, ring, or other shape.

繼續參考第1E圖,在形成開口106於光阻層104之後,實施蝕刻製程500。通過開口106蝕刻第二介電層102,以形成通孔108(顯示於第1F圖)於第二介電層102中。蝕刻製程500可以是乾式蝕刻、濕式蝕刻或前述之組合。在一些實施例 中,蝕刻製程500為乾式蝕刻製程,例如反應性離子蝕刻(reactive ion etching,RIE)或類似乾式蝕刻製程。 Continuing with reference to FIG. 1E, after forming the opening 106 in the photoresist layer 104, an etching process 500 is performed. The second dielectric layer 102 is etched through the opening 106 to form a via 108 (shown in FIG. 1F) in the second dielectric layer 102. Etch process 500 can be dry etch, wet etch, or a combination of the foregoing. In some embodiments The etching process 500 is a dry etching process, such as reactive ion etching (RIE) or a similar dry etching process.

參考第1F圖,在蝕刻製程500之後,形成通孔108於第二介電層102中,通孔108自第二介電層102的頂面貫穿至第二介電層102的底面。值得注意的是,蝕刻製程500的蝕刻劑不僅蝕刻第二介電層102,蝕刻劑也會消耗光阻層106。如第1F圖所示,因為根據本發明實施例的微影製程,光阻層104在開口106周圍的部分越靠近開口106之底部其厚度越薄,所以在蝕刻製程500的過程中,光阻層104在開口106周圍的部分越靠近開口106之底部會越先被蝕刻劑耗盡。隨著蝕刻製程500持續進行,開口106會逐漸向外擴張且開口106的尺寸逐漸變大,因此,通過尺寸逐漸變大的開口106來蝕刻第二介電層102所形成的通孔108可具有傾斜於基底101之上表面的側壁。 Referring to FIG. 1F, after the etching process 500, vias 108 are formed in the second dielectric layer 102, and the vias 108 extend from the top surface of the second dielectric layer 102 to the bottom surface of the second dielectric layer 102. It is noted that the etchant of the etch process 500 not only etches the second dielectric layer 102, but also etches the photoresist layer 106. As shown in FIG. 1F, because the lithography process according to an embodiment of the present invention, the thinner the portion of the photoresist layer 104 around the opening 106 is closer to the bottom of the opening 106, the photoresist is resisted during the etching process 500. The closer the portion of layer 104 around opening 106 is to the bottom of opening 106, the more etchant is depleted. As the etching process 500 continues, the opening 106 gradually expands outward and the size of the opening 106 gradually becomes larger. Therefore, the through hole 108 formed by etching the second dielectric layer 102 through the opening 106 having a gradually increasing size may have It is inclined to the side wall of the upper surface of the substrate 101.

此外,在本發明的實施例中,在透鏡308的第二聚焦長度f2(參考第1C圖)之可調整的範圍內,例如在第二聚焦長度f2可調整為第一聚焦長度f1的1.1倍至1.3倍之間,隨著第二聚焦長度f2的值增加,所形成的開口106之頂部具有越大的寬度W1,且開口106之頂部的寬度W1與開口106之底部的寬度W2之間的比值越大,藉此可調整通孔108之側壁傾斜的角度。 Further, in the embodiment of the present invention, within the adjustable range of the second focus length f2 of the lens 308 (refer to FIG. 1C), for example, the second focus length f2 can be adjusted to 1.1 times the first focus length f1. Between 1.3 times, as the value of the second focus length f2 increases, the top of the formed opening 106 has a larger width W1, and the width W1 of the top of the opening 106 and the width W2 of the bottom of the opening 106 The larger the ratio, the angle at which the side walls of the through holes 108 are inclined can be adjusted.

如第1F圖所示,蝕刻製程500後之開口106的頂部具有寬度W3,寬度W3大於蝕刻製程500前之開口106的頂部寬度W1。蝕刻製程500後之開口106的底部具有寬度W4,寬度W4大於蝕刻製程500前之開口106的底部寬度W2,且寬度W3大於寬度W4。 As shown in FIG. 1F, the top of the opening 106 after the etching process 500 has a width W3 that is greater than the top width W1 of the opening 106 before the etching process 500. The bottom of the opening 106 after the etching process 500 has a width W4 that is greater than the bottom width W2 of the opening 106 before the etching process 500, and the width W3 is greater than the width W4.

如第1F圖所示,通孔108的寬度從通孔108的頂部朝著通孔108的底部的深度方向漸減。在一些實施例中,通孔108的頂部可具有在約1微米至約10微米之間的寬度W5,通孔108的底部可具有在約0.5微米至約5微米之間的寬度W6,且寬度W5大於寬度W6。通孔108的深度D1與第二介電層102的厚度T1大致上相同,其可在約1微米至約10微米之間。在一些實施例中,通孔108的深寬比(aspect ratio)可在約0.2至約20之間。在一些實施例中,通孔108的側壁與底面相交於角度θ1,角度θ1大於90°且小於110°。 As shown in FIG. 1F, the width of the through hole 108 gradually decreases from the top of the through hole 108 toward the depth of the bottom of the through hole 108. In some embodiments, the top of the via 108 can have a width W5 of between about 1 micron and about 10 microns, and the bottom of the via 108 can have a width W6 of between about 0.5 microns and about 5 microns, and the width. W5 is greater than the width W6. The depth D1 of the via 108 is substantially the same as the thickness T1 of the second dielectric layer 102, which may be between about 1 micrometer and about 10 micrometers. In some embodiments, the aspect ratio of the vias 108 can be between about 0.2 and about 20. In some embodiments, the sidewalls of the vias 108 intersect the bottom surface at an angle θ1 that is greater than 90° and less than 110°.

之後,可實施灰化(ash)製程(未顯示),移除第二介電層102上的光阻層104,且移除位於通孔108之側壁上的聚合物(polymer)(未顯示),此聚合物是在蝕刻製程500中被消耗的光阻層104及蝕刻副產物之混合物。 Thereafter, an ash process (not shown) may be performed, the photoresist layer 104 on the second dielectric layer 102 is removed, and a polymer on the sidewalls of the vias 108 is removed (not shown). This polymer is a mixture of the photoresist layer 104 and the etch by-products that are consumed in the etching process 500.

參考第1G圖,在通孔108中填充導電材料作為導孔110,形成半導體結構100。在本發明的一些實施例中,如第1G圖所示,導孔110可與基底101中的金屬層96電性連接。在一些實施例中,形成通孔108的導電材料可以是具有良好導電性的金屬,例如鋁、銅、鎢、前述之合金、前述之組合或類似金屬,且可藉由濺鍍(sputtering)、化學氣相沉積(CVD)、物理氣相沉積(physical vapor deposition,PVD)、電鍍、無電電鍍或類似製程,填充導電材料於通孔108中。在一些實施例中,在填充導電材料前,可在通孔108的側壁和底部上形成黏著層或阻障層。黏著層或阻障層的材料可以是鈦、氮化鈦、鉭、氮化鉭、前述之組合或前述之多層結構。 Referring to FIG. 1G, a conductive material is filled in the via hole 108 as a via hole 110 to form the semiconductor structure 100. In some embodiments of the present invention, as shown in FIG. 1G, the vias 110 may be electrically connected to the metal layer 96 in the substrate 101. In some embodiments, the conductive material forming the vias 108 may be a metal having good electrical conductivity, such as aluminum, copper, tungsten, alloys of the foregoing, combinations of the foregoing, or the like, and may be sputtered, A chemical vapor deposition (CVD), physical vapor deposition (PVD), electroplating, electroless plating or the like is performed to fill the conductive material in the via hole 108. In some embodiments, an adhesive layer or barrier layer can be formed on the sidewalls and bottom of the via 108 prior to filling the conductive material. The material of the adhesive layer or barrier layer may be titanium, titanium nitride, tantalum, tantalum nitride, a combination of the foregoing or a multilayer structure as described above.

在本發明實施例中,透過將導電材料填入具有傾斜側壁的通孔108中以形成導孔110,可避免空隙或通管形成於導孔110所引發的問題。因此,藉由本發明實施例之具有傾斜側壁的通孔之半導體結構的製造方法,可提升含有此半導體結構之半導體裝置的可靠度。 In the embodiment of the present invention, by forming the conductive material into the through hole 108 having the inclined side wall to form the via hole 110, the problem caused by the void or the via hole formed in the via hole 110 can be avoided. Therefore, the reliability of the semiconductor device including the semiconductor structure can be improved by the method of fabricating the semiconductor structure having the via holes of the inclined sidewalls according to the embodiment of the present invention.

此外,在本發明實施例中,透過設定透鏡308的焦點在不同的散焦位置F2(參考第1C圖),可調整通孔108之側壁的傾斜角度θ1。舉例而言,當填充於通孔108中的導電材料具有較低的階梯覆蓋(step coverage)率,或者預定形成之通孔108具有較大的深寬比時,透過將透鏡308的焦點設定在較下方的散焦位置F2,可形成具有較大的角度θ1之通孔108。在本發明的一實施例中,當導電材料是鎢(階梯覆蓋率約為70%)且通孔108的深寬比為約7時,可形成角度θ1為98°的通孔108。 Further, in the embodiment of the present invention, the inclination angle θ1 of the side wall of the through hole 108 can be adjusted by setting the focus of the lens 308 at a different defocus position F2 (refer to FIG. 1C). For example, when the conductive material filled in the via hole 108 has a lower step coverage ratio, or the predetermined via hole 108 has a large aspect ratio, the focus of the lens 308 is set by The through hole 108 having a larger angle θ1 can be formed than the lower defocus position F2. In an embodiment of the invention, when the conductive material is tungsten (step coverage is about 70%) and the aspect ratio of the via 108 is about 7, a via hole 108 having an angle θ1 of 98° can be formed.

應注意的是,第1A-1G圖所示之實施例僅為一範例,本發明實施例的範圍並不以此為限。除上述第1A-1G圖所示之實施例以外,本發明實施例的方法亦可應用於其他半導體結構。 It should be noted that the embodiment shown in FIG. 1A-1G is only an example, and the scope of the embodiment of the present invention is not limited thereto. The method of the embodiments of the present invention can be applied to other semiconductor structures in addition to the embodiments shown in the above FIGS. 1A-1G.

第2A-2H圖係根據本發明的另一些實施例說明形成如第2H圖所示之半導體結構200的方法之各個中間階段的剖面示意圖。參考第2A圖,提供半導體基底201。在一些實施例中,半導體基底201可以是矽基底、矽鍺基底、絕緣體上的半導體(semiconductor-on-insulator,SOI)基底或類似的半導體基底。在一些實施例中,半導體基底201也可以是摻雜的半導體基底,例如p型半導體基底或n型半導體基底。 2A-2H is a schematic cross-sectional view showing various intermediate stages of a method of forming a semiconductor structure 200 as shown in FIG. 2H, in accordance with further embodiments of the present invention. Referring to FIG. 2A, a semiconductor substrate 201 is provided. In some embodiments, the semiconductor substrate 201 can be a germanium substrate, a germanium substrate, a semiconductor-on-insulator (SOI) substrate, or a similar semiconductor substrate. In some embodiments, the semiconductor substrate 201 can also be a doped semiconductor substrate, such as a p-type semiconductor substrate or an n-type semiconductor substrate.

在半導體基底201上塗佈光阻層2041。接著,對光阻層2041實施微影製程301。微影製程301可與前述第1B-1D圖所示之微影製程相似,微影製程301的步驟包含測量光阻層2041的對焦位置,將曝光設備(未顯示)之透鏡的焦點設定在對焦位置正下方的散焦位置後進行曝光,以及將光阻層2041顯影。 A photoresist layer 204 1 is coated on the semiconductor substrate 201. Next, a lithography process 301 is performed on the photoresist layer 204 1 . The lithography process 301 can be similar to the lithography process shown in the above FIG. 1B-1D. The step of the lithography process 301 includes measuring the focus position of the photoresist layer 204 1 and setting the focus of the lens of the exposure device (not shown) at Exposure is performed after the defocus position directly below the focus position, and the photoresist layer 204 1 is developed.

參考第2B圖,在實施微影製程301後,形成開口2061於光阻層2041中,其中開口2061的寬度從開口2061的頂部朝著開口2061的底部漸減。接著,實施蝕刻製程501,通過開口2061蝕刻半導體基底201,以形成第一溝槽2081(顯示於第2C圖)於半導體基底201中。 Referring first to FIG 2B, in the embodiment lithography process 301, an opening is formed in photoresist layer 204 2,061 1, wherein the width of the opening 2061 from the top opening toward the bottom of the opening 2061 to 2061 decreasing. Next, an etching process 501 is performed to etch the semiconductor substrate 201 through the opening 206 1 to form a first trench 208 1 (shown in FIG. 2C) in the semiconductor substrate 201.

參考第2C圖,在蝕刻製程501之後,在半導體基底201中形成具有傾斜側壁的第一溝槽2081,其中第一溝槽2081的寬度從第一溝槽2081的頂部朝著第一溝槽2081的底部的深度方向漸減。在一些實施例中,第一溝槽2081的頂部具有寬度W7,第一溝槽2081的底部具有寬度W8,其中寬度W7大於寬度W8。第一溝槽2081具有深度D2,且第一溝槽2081的側壁與底面相交於角度θ2,角度θ2大於90°且小於110°。 Referring first to FIG 2C, after the etch process 501, forming a first trench having inclined sidewalls in the semiconductor substrate 201 2081, wherein the width of the first trench 2081 from the top of the first trench 2081 towards the first The depth direction of the bottom of the trench 208 1 is gradually reduced. In some embodiments, the top of the first trench 208 1 has a width W7, and the bottom of the first trench 208 1 has a width W8, wherein the width W7 is greater than the width W8. The first trench 208 1 has a depth D2, and the sidewall of the first trench 208 1 intersects the bottom surface at an angle θ2, and the angle θ2 is greater than 90° and less than 110°.

參考第2D圖,在一些實施例中,於第一溝槽2081中填充絕緣材料作為隔離結構210。在本發明的一些實施例中,絕緣材料可以是氧化矽、氮化矽、氮氧化矽、前述之組合或類似的絕緣材料。可藉由化學氣相沉積(CVD)、原子層沉積(atomic layer deposition,ALD)或任何其他適當的方法形成隔離結構210。 Referring to FIG. 2D, in some embodiments, an insulating material is filled in the first trench 208 1 as the isolation structure 210. In some embodiments of the invention, the insulating material may be yttria, tantalum nitride, ytterbium oxynitride, combinations of the foregoing, or similar insulating materials. The isolation structure 210 can be formed by chemical vapor deposition (CVD), atomic layer deposition (ALD), or any other suitable method.

參考第2E圖,在半導體基底201上塗佈光阻層2042。接著,對光阻層2042實施微影製程303。微影製程303可與前述第1B-1D圖之微影製程相似,微影製程303的步驟包括測量光阻層2042的對焦位置,將曝光設備(未顯示)的透鏡的焦點設定在對焦位置正下方的散焦位置後進行曝光,以及將光阻層2042顯影。 Referring to FIG. 2E, a photoresist layer 204 2 is coated on the semiconductor substrate 201. Next, a lithography process 303 is performed on the photoresist layer 204 2 . The lithography process 303 can be similar to the lithography process of the first B-1D image. The step of the lithography process 303 includes measuring the focus position of the photoresist layer 204 2 and setting the focus of the lens of the exposure device (not shown) to the focus position. Exposure is performed immediately below the defocus position, and the photoresist layer 204 2 is developed.

參考第2F圖,在實施微影製程303後,形成開口2062於光阻層2042中,其中開口2062的寬度從開口2062的頂部朝著開口2061的底部漸減。接著,實施蝕刻製程502,通過開口2062蝕刻半導體基底201,以形成第二溝槽2082(顯示於第2G圖)於半導體基底201中。 Referring first to FIG 2F, after the lithography process embodiment 303, is formed on the photoresist layer 2062 in the opening 2042, opening 2062 where the width of the opening 206 from the top toward the bottom of the opening 2 of the 2061 decreasing. Next, an etching process 502 is performed to etch the semiconductor substrate 201 through the opening 206 2 to form a second trench 208 2 (shown in FIG. 2G) in the semiconductor substrate 201.

參考第2G圖,在蝕刻製程502之後,在半導體基底201中形成具有傾斜側壁的第二溝槽2082,其中第二溝槽2082的寬度從第二溝槽2082的頂部朝著第二溝槽2082的底部的深度方向漸減。在本發明實施例中,第二溝槽2082的頂部具有寬度W9,第二溝槽2082的底部具有寬度W10,其中寬度W9大於寬度W10。第二溝槽2082具有深度D3。儘管第2G圖顯示第二溝槽2082的深度D3小於第一溝槽2081的深度D2,然而,第二溝槽2082的深度D3也可大於或等於第一溝槽2081的深度D2。第二溝槽2082的側壁與底面相交於角度θ3,角度θ3大於90°且小於110°。 Referring first to FIG 2G, after the etch process 502 to form a second trench having inclined sidewalls 2082 in the semiconductor substrate 201, wherein the width of the second trench 2082 from the top of the second trench 2082 toward the second The depth direction of the bottom of the trench 208 2 is gradually reduced. In the embodiment of the present invention, the top of the second trench 208 2 has a width W9, and the bottom of the second trench 208 2 has a width W10, wherein the width W9 is greater than the width W10. The second trench 208 2 has a depth D3. Although the 2G diagram shows that the depth D3 of the second trench 208 2 is smaller than the depth D2 of the first trench 208 1 , the depth D3 of the second trench 208 2 may also be greater than or equal to the depth D2 of the first trench 208 1 . . The sidewalls of the second trench 208 2 intersect the bottom surface at an angle θ3, and the angle θ3 is greater than 90° and less than 110°.

參考第2H圖,在形成第二溝槽2081後,可在第二溝槽2082中沉積介電質作為閘極介電層(未顯示)。此閘極介電層可順應性地延伸於第二溝槽2082的側壁和底面。接著,在第 二溝槽2082之剩餘部分中和在閘極介電層上填充導電材料作為閘極電極212,以形成半導體結構200。在本發明的一些實施例中,填充於第二溝槽2082中的導電材料可以是半導體材料,例如摻雜的多晶矽(polysilicon),或金屬材料,例如TiN、TaN、TaC、Co、Ru、Al、前述之組合或類似材料。藉由化學氣相沉積(CVD)、原子層沉積(ALD)或任何其他適當的方法可填充導電材料,以形成閘極電極212。 Referring to FIG. 2H, after the second trench 208 1 is formed, a dielectric can be deposited in the second trench 208 2 as a gate dielectric layer (not shown). The gate dielectric layer can conformally extend to the sidewalls and bottom surface of the second trench 208 2 . Next, a conductive material is filled as a gate electrode 212 in the remaining portion of the second trench 208 2 and on the gate dielectric layer to form the semiconductor structure 200. In some embodiments of the present invention, the conductive material filled in the second trench 208 2 may be a semiconductor material such as doped polysilicon, or a metal material such as TiN, TaN, TaC, Co, Ru, Al, a combination of the foregoing or a similar material. The conductive material may be filled by chemical vapor deposition (CVD), atomic layer deposition (ALD), or any other suitable method to form the gate electrode 212.

在本發明實施例中,透過將絕緣材料填入具有傾斜側壁的第一溝槽2081,且將導電材料填入具有傾斜側壁的第二溝槽2082,可避免空隙或通管形成於隔離結構210和閘極電極212中所引發的問題。因此,藉由本發明實施例之具有傾斜側壁的溝槽之半導體結構的製造方法,可提升含有此半導體結構的半導體裝置的可靠度。 In the embodiment of the present invention, the void or the tube is formed in the isolation by filling the insulating material with the first trench 208 1 having the inclined sidewall and filling the conductive material into the second trench 208 2 having the inclined sidewall. Problems posed in structure 210 and gate electrode 212. Therefore, the reliability of the semiconductor device including the semiconductor structure can be improved by the method of fabricating the semiconductor structure having the trenches with the inclined sidewalls of the embodiment of the present invention.

綜上所述,本發明實施例利用設定曝光設備之透鏡的焦點在聚焦位置正下方的散焦位置後對光阻層進行曝光,以在光阻層中形成開口,此開口的寬度從頂部朝底部漸減。本發明實施例更利用上述開口進行蝕刻製程,以形成具有傾斜側壁的通孔或溝槽。藉此,避免空隙或通管形成於通孔或溝槽內之材料中所引發的問題,進而提升半導體裝置的可靠度。 In summary, the embodiment of the present invention exposes the photoresist layer by setting the focus of the lens of the exposure device to a defocus position directly below the focus position to form an opening in the photoresist layer, the width of the opening being from the top toward The bottom is decreasing. The embodiment of the present invention further performs an etching process using the above openings to form via holes or trenches having inclined sidewalls. Thereby, problems caused by voids or tubes formed in the material in the via holes or trenches are avoided, thereby improving the reliability of the semiconductor device.

前述概述了一些實施例的部件,使得本發明所屬技術領域中具有通常知識者可以更加理解本發明實施例的觀點。本發明所屬技術領域中具有通常知識者應可理解,他們可以輕易使用本發明實施例作為基礎,設計或修改其他的製程或是結構,以達到與在此介紹的實施例相同的目的及/或優點。 本發明所屬技術領域中具有通常知識者也應理解,此類等效的結構並不悖離本發明的精神與範疇,並且不悖離本發明的精神與範疇的情況下,在此可以做各種的改變、取代和替換。因此,本發明之保護範圍當視後附之申請專利範圍所界定為準。 The foregoing has outlined some of the embodiments of the embodiments of the invention in the embodiments of the invention. It should be understood by those of ordinary skill in the art that they can readily use the embodiments of the present invention as a basis for designing or modifying other processes or structures to achieve the same objectives and/or embodiments as those described herein. advantage. It is also to be understood by those skilled in the art that the present invention is not to be construed as limited to the spirit and scope of the invention. Changes, substitutions and substitutions. Accordingly, the scope of the invention is defined by the scope of the appended claims.

Claims (13)

一種半導體結構的製造方法,包括:在一基底上形成一介電層;在該介電層上塗佈一光阻層;對該光阻層實施一微影製程,其中該微影製程包括:將該基底放置於一透鏡下方;測量該光阻層的一聚焦位置,其中該透鏡與該聚焦位置之間具有一第一聚焦長度;將該透鏡的一焦點設定在位於該聚焦位置正下方的一散焦位置,其中該透鏡與該散焦位置之間具有大於該第一聚焦長度的一第二聚焦長度;在將該透鏡的該焦點設定在該散焦位置後,將該光阻層曝光,其中該光阻層的曝光並未透過該透鏡設定於該聚焦位置執行;以及將曝光後的該光阻層顯影,以形成一開口於該光阻層中,其中該開口的寬度從該開口的頂部朝著該開口的底部漸減;通過該開口蝕刻該介電層,以形成一通孔;以及在該通孔中填充一導電材料,以形成一導孔。 A method of fabricating a semiconductor structure, comprising: forming a dielectric layer on a substrate; coating a photoresist layer on the dielectric layer; performing a lithography process on the photoresist layer, wherein the lithography process comprises: Placing the substrate under a lens; measuring a focus position of the photoresist layer, wherein the lens has a first focus length between the focus position; and setting a focus of the lens directly below the focus position a defocusing position, wherein the lens and the defocusing position have a second focusing length greater than the first focusing length; after the focus of the lens is set at the defocusing position, exposing the photoresist layer The exposure of the photoresist layer is not performed by the lens being set at the focus position; and the exposed photoresist layer is developed to form an opening in the photoresist layer, wherein the width of the opening is from the opening The top portion is tapered toward the bottom of the opening; the dielectric layer is etched through the opening to form a via hole; and a conductive material is filled in the via hole to form a via hole. 如申請專利範圍第1項所述之半導體結構的製造方法,其中該第二聚焦長度為該第一聚焦長度的1.1倍至1.3倍。 The method of fabricating a semiconductor structure according to claim 1, wherein the second focus length is 1.1 times to 1.3 times the first focus length. 如申請專利範圍第1項所述之半導體結構的製造方法,其中將該透鏡的該焦點設定在該散焦位置係透過縮減該透鏡與該光阻層之間的一距離。 The method of fabricating a semiconductor structure according to claim 1, wherein setting the focus of the lens at the defocus position transmits a distance between the lens and the photoresist layer. 如申請專利範圍第1項所述之半導體結構的製造方法,其中 該通孔的寬度從該通孔的頂部朝著該通孔的底部漸減。 The method of manufacturing a semiconductor structure according to claim 1, wherein The width of the through hole gradually decreases from the top of the through hole toward the bottom of the through hole. 如申請專利範圍第1項所述之半導體結構的製造方法,其中該通孔的側壁與底面相交的一角度大於90度且小於110度。 The method of fabricating a semiconductor structure according to claim 1, wherein an angle at which the sidewall of the through hole intersects the bottom surface is greater than 90 degrees and less than 110 degrees. 如申請專利範圍第1項所述之半導體結構的製造方法,其中該通孔的深度在2微米至10微米之間。 The method of fabricating a semiconductor structure according to claim 1, wherein the through hole has a depth of between 2 micrometers and 10 micrometers. 如請專利範圍第1項所述之半導體結構的製造方法,其中該通孔的深寬比值在0.2至20之間。 The method of fabricating a semiconductor structure according to claim 1, wherein the through hole has an aspect ratio of between 0.2 and 20. 一種半導體結構的製造方法,包括:在一半導體基底上塗佈一光阻層;對該光阻層實施一微影製程,其中該微影製程包括:將該半導體基底放置於一透鏡下方;測量該光阻層的一聚焦位置,其中該透鏡與該聚焦位置之間具有一第一聚焦長度;將該透鏡的一焦點設定在位於該聚焦位置正下方的一散焦位置,其中該透鏡與該散焦位置之間具有大於該第一聚焦長度的一第二聚焦長度;在將該透鏡的該焦點設定在該散焦位置後,將該光阻層曝光,其中該光阻層的曝光並未透過該透鏡設定於該聚焦位置執行;以及將曝光後的該光阻層顯影,以形成一開口於該光阻層中,其中該開口的寬度從該開口的頂部朝著該開口的底部漸減;通過該開口蝕刻該半導體基底以形成一溝槽;以及在該溝槽中填充一材料層。 A method of fabricating a semiconductor structure, comprising: coating a photoresist layer on a semiconductor substrate; performing a lithography process on the photoresist layer, wherein the lithography process comprises: placing the semiconductor substrate under a lens; measuring a focus position of the photoresist layer, wherein the lens and the focus position have a first focus length; a focus of the lens is set at a defocus position directly below the focus position, wherein the lens and the lens Having a second focus length greater than the first focus length between the defocus positions; after the focus of the lens is set at the defocus position, the photoresist layer is exposed, wherein the exposure of the photoresist layer is not Performing at the focus position through the lens; and developing the exposed photoresist layer to form an opening in the photoresist layer, wherein a width of the opening gradually decreases from a top of the opening toward a bottom of the opening; Etching the semiconductor substrate through the opening to form a trench; and filling a trench in the material layer. 如申請專利範圍第8項所述之半導體結構的製造方法,其中 該第二聚焦長度為該第一聚焦長度1.1倍至1.3倍。 A method of fabricating a semiconductor structure according to claim 8 wherein The second focus length is 1.1 times to 1.3 times the first focus length. 如申請專利範圍第8項所述之半導體結構的製造方法,其中該溝槽的寬度從該溝槽的頂部朝著該溝槽的底部漸減。 A method of fabricating a semiconductor structure according to claim 8 wherein the width of the trench decreases from the top of the trench toward the bottom of the trench. 如申請專利範圍第8項所述之半導體結構的製造方法,其中該溝槽的側壁與底面相交的一角度大於90度且小於110度。 The method of fabricating a semiconductor structure according to claim 8, wherein an angle at which the sidewall of the trench intersects the bottom surface is greater than 90 degrees and less than 110 degrees. 如申請專利範圍第8項所述之半導體結構的製造方法,其中該材料層為一絕緣材料,並且其中在該溝槽中填充該絕緣材料係作為一隔離結構。 The method of fabricating a semiconductor structure according to claim 8, wherein the material layer is an insulating material, and wherein the insulating material is filled in the trench as an isolation structure. 如申請專利範圍第8項所述之半導體結構的製造方法,其中該材料層為一導電材料,並且其中在該溝槽中填充該導電材料係作為一閘極電極。 The method of fabricating a semiconductor structure according to claim 8, wherein the material layer is a conductive material, and wherein the conductive material is filled in the trench as a gate electrode.
TW106137367A 2017-10-30 2017-10-30 Methods for fabricating semiconductor structures TWI634590B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106137367A TWI634590B (en) 2017-10-30 2017-10-30 Methods for fabricating semiconductor structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106137367A TWI634590B (en) 2017-10-30 2017-10-30 Methods for fabricating semiconductor structures

Publications (2)

Publication Number Publication Date
TWI634590B true TWI634590B (en) 2018-09-01
TW201917772A TW201917772A (en) 2019-05-01

Family

ID=64452899

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106137367A TWI634590B (en) 2017-10-30 2017-10-30 Methods for fabricating semiconductor structures

Country Status (1)

Country Link
TW (1) TWI634590B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140448A (en) * 2020-01-16 2021-07-20 芯恩(青岛)集成电路有限公司 Semiconductor structure and manufacturing method thereof
CN113363157A (en) * 2020-03-06 2021-09-07 华邦电子股份有限公司 Method for manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI707429B (en) * 2020-02-25 2020-10-11 華邦電子股份有限公司 Method of fabricating semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140342564A1 (en) * 2013-05-14 2014-11-20 Taiwan Semiconductor Manufacturing Company, Ltd. Photomask With Three States For Forming Multiple Layer Patterns With A Single Exposure
TW201543541A (en) * 2014-05-07 2015-11-16 Samsung Electro Mech Photosensitive insulating film for forming via hole, and method for forming via hole using the same
TW201736973A (en) * 2016-01-27 2017-10-16 台灣積體電路製造股份有限公司 Method of developing a photosensitive material and photolithography tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140342564A1 (en) * 2013-05-14 2014-11-20 Taiwan Semiconductor Manufacturing Company, Ltd. Photomask With Three States For Forming Multiple Layer Patterns With A Single Exposure
TW201543541A (en) * 2014-05-07 2015-11-16 Samsung Electro Mech Photosensitive insulating film for forming via hole, and method for forming via hole using the same
TW201736973A (en) * 2016-01-27 2017-10-16 台灣積體電路製造股份有限公司 Method of developing a photosensitive material and photolithography tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140448A (en) * 2020-01-16 2021-07-20 芯恩(青岛)集成电路有限公司 Semiconductor structure and manufacturing method thereof
CN113140448B (en) * 2020-01-16 2022-10-28 芯恩(青岛)集成电路有限公司 Semiconductor structure and manufacturing method thereof
CN113363157A (en) * 2020-03-06 2021-09-07 华邦电子股份有限公司 Method for manufacturing semiconductor device
CN113363157B (en) * 2020-03-06 2023-12-08 华邦电子股份有限公司 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW201917772A (en) 2019-05-01

Similar Documents

Publication Publication Date Title
US9099530B2 (en) Methods of patterning small via pitch dimensions
TWI634590B (en) Methods for fabricating semiconductor structures
US9229326B2 (en) Method for integrated circuit patterning
US10373826B2 (en) Metal interconnect structure
KR20170028817A (en) Different height of dummy fin
TWI612615B (en) Method for forming an integrated circuit structure, method for forming a semiconductor structure and method for lithography
WO2020258124A1 (en) Interconnect structure and method of forming the same
TW201824346A (en) Method of semiconductor device fabrication
US8409456B2 (en) Planarization method for high wafer topography
KR102595297B1 (en) Method for forming fine patterns
KR100726148B1 (en) Manufacturing method for semiconductor device
US9412612B2 (en) Method of forming semiconductor device
US11322362B2 (en) Landing metal etch process for improved overlay control
TW202018763A (en) Methods for manufacturing semiconductor devices and method for manufacturing contact plugs of the same
KR100475472B1 (en) Improved etching of contact holes
US20150187633A1 (en) Semiconductor device and fabrication method
TWI780581B (en) Method forming the semiconductor device
TWI772693B (en) Integrated circuit structure and the method for forming the same
TWI833601B (en) Method of processing a substrate
KR101113768B1 (en) Method for manufacturing semiconductor device using dual damascene process
KR20060114446A (en) Manufacturing method for semiconductor device
US8119334B2 (en) Method of making a semiconductor device using negative photoresist
KR20060113282A (en) Manufacturing method for semiconductor device
JP3880851B2 (en) Manufacturing method of semiconductor device
KR20010094004A (en) Method for fabricating stencil mask