TWI633114B - Preparation method of pcv2 capsid protein and pharmaceutical composition containing said capsid protein - Google Patents

Preparation method of pcv2 capsid protein and pharmaceutical composition containing said capsid protein Download PDF

Info

Publication number
TWI633114B
TWI633114B TW104144055A TW104144055A TWI633114B TW I633114 B TWI633114 B TW I633114B TW 104144055 A TW104144055 A TW 104144055A TW 104144055 A TW104144055 A TW 104144055A TW I633114 B TWI633114 B TW I633114B
Authority
TW
Taiwan
Prior art keywords
dna
protein
seq
porcine
aforementioned
Prior art date
Application number
TW104144055A
Other languages
Chinese (zh)
Other versions
TW201722983A (en
Inventor
林俊宏
陳正文
王志鵬
彭子庭
李蕙宇
黃文正
王仕蓉
楊程堯
Original Assignee
財團法人農業科技研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人農業科技研究院 filed Critical 財團法人農業科技研究院
Priority to TW104144055A priority Critical patent/TWI633114B/en
Publication of TW201722983A publication Critical patent/TW201722983A/en
Application granted granted Critical
Publication of TWI633114B publication Critical patent/TWI633114B/en

Links

Abstract

本發明提供一種豬第二型環狀病毒之外鞘蛋白質的製備方法及含該外鞘蛋白質的醫藥組合物。本發明方法係透過使用一新穎之阿拉伯糖誘導表現載體,從而提高豬第二型環狀病毒之外鞘蛋白質的合成效率。另一方面,本發明醫藥組合物以合適比例組合前述外鞘蛋白質及其他有利成分而取得優異的免疫誘發效果。 The present invention provides a method for preparing a porcine second type circovirus outer sheath protein and a pharmaceutical composition containing the outer sheath protein. The method of the present invention enhances the synthesis efficiency of the porcine second type circovirus outer sheath protein by using a novel arabinose-inducing expression vector. On the other hand, the pharmaceutical composition of the present invention combines the outer sheath protein and other advantageous components in an appropriate ratio to obtain an excellent immune-inducing effect.

Description

豬第二型環狀病毒之外鞘蛋白質的製備方法及含該外鞘蛋白 質的醫藥組合物 Method for preparing porcine second type circovirus outer sheath protein and containing the outer sheath protein Quality pharmaceutical composition

本發明關於一種豬第二型環狀病毒之外鞘蛋白質的製備方法;尤指一種使用原核細胞表現系統之豬第二型環狀病毒之外鞘蛋白質的製備方法。 The invention relates to a method for preparing a porcine second type circovirus outer sheath protein; in particular to a method for preparing a porcine second type circovirus outer sheath protein using a prokaryotic expression system.

第二型豬環狀病毒(porcine circovirus type 2;PCV2)為影響全球養豬產業甚鉅之病毒性病原,其主要造成豬離乳後多系統消耗症候群(post-weaning multisystemic wasting syndrome,PMWS),臨床症狀為發燒、淋巴結腫大、體重減輕或消弱、呼吸困難、下痢、蒼白及偶發黃疸等症狀。另可能引發豬皮膚炎腎病症候群(porcine dermatitis and nephropathy syndrome,PDNS)、先天性震顫(infectious congenital tremor,ICT)及繁殖障礙。此外,PCV2與其他病毒性或細菌性病原混合感染豬隻則會引起呼吸道疾病綜合症(porcine respiratory disease complex,PRDC)。豬隻感染PCV2所引發之疾病會造成育成率與飼料換肉率降低,進而造成養豬業者之嚴重經濟損失。 The second type of porcine circovirus type 2 (PCV2) is a viral pathogen that affects the global pig industry. It mainly causes post-weaning multisystemic wasting syndrome (PMWS). Symptoms include fever, swollen lymph nodes, weight loss or weakness, difficulty breathing, diarrhea, paleness, and occasional jaundice. It may also cause porcine dermatitis and nephropathy syndrome (PDNS), infectious congenital tremor (ICT) and reproductive disorders. In addition, PCV2 mixed with other viral or bacterial pathogens infecting pigs can cause porcine respiratory disease complex (PRDC). Diseases caused by pigs infected with PCV2 cause a lower rate of growth and feed change, which in turn causes serious economic losses for pig farmers.

領域中針對PCV2之預防與控制提出20點飼養管理要點,如統進統出、良好衛生管理、病情嚴重者淘汰或隔離及疫苗接種等。其中疫苗接種可有效降低PCV2感染率,進而提升育成率。目前 領域中的PCV2疫苗分為三類,包括不活化PCV2疫苗、不活化桿狀病毒次單位苗及不活化豬第一型與第二型環狀病毒(PCV1-PCV2)嵌合病毒疫苗(Beach and Meng,2012;Chanhee,2012)。 In the field, the prevention and control of PCV2 proposes 20 points of feeding management, such as unified management, good health management, obsolescence or isolation and vaccination. Among them, vaccination can effectively reduce the infection rate of PCV2, thereby increasing the breeding rate. Currently The PCV2 vaccines in the field are divided into three categories, including non-activated PCV2 vaccine, non-activated baculovirus subunit vaccine, and non-activated porcine type 1 and type 2 circovirus (PCV1-PCV2) chimeric virus vaccines (Beach and Meng, 2012; Chanhee, 2012).

不活化PCV2疫苗乃是將PCV2感染豬腎細胞株PK-15後,收取病毒液經不活化處理與混合佐劑所製成;不活化桿狀病毒次單位苗乃是將帶有PCV2外鞘蛋白質(capsid protein)ORF2基因之桿狀病毒轉染昆蟲細胞後,進行免疫原ORF2之表現。若抗原表現於細胞內,疫苗製備之方式乃是將含有細胞之培養液進行超音波破碎處理,再經不活化處理與混合佐劑製成。若抗原分泌至胞外,則進行細胞培養上清液之收集,再經病毒載體之不活化處理與混合佐劑製成疫苗;不活化PCV1-PCV2嵌合病毒疫苗乃是將PCV1中之ORF2置換為PCV2之ORF2並進行細胞感染、病毒液收取、病毒不活化及混合佐劑所製成。 The PCV2 vaccine is not activated. After PCV2 is infected with the porcine kidney cell line PK-15, the virus solution is prepared by inactivated treatment and mixed adjuvant. The non-activated baculovirus subunit seedling is to carry the PCV2 outer sheath protein. (Capsid protein) After the baculovirus of the ORF2 gene was transfected into insect cells, the expression of the immunogenic ORF2 was performed. If the antigen is expressed in a cell, the vaccine is prepared by ultrasonically disrupting the culture solution containing the cells, and then performing the inactivation treatment and the mixed adjuvant. If the antigen is secreted extracellularly, the cell culture supernatant is collected, and then the vaccine is inactivated by the viral vector and mixed with the adjuvant to make a vaccine; the non-activated PCV1-PCV2 chimeric virus vaccine is replaced by the ORF2 in PCV1. It is made up of ORF2 of PCV2 and is subjected to cell infection, viral fluid collection, virus inactivation and mixed adjuvant.

綜觀目前PCV2疫苗之生產方式皆是以培養病毒之方式進行,因而具有製備時間長且生產成本高的缺點。為降低疫苗成本,領域中研究人員嘗試利用培養成本較低之重組大腸桿菌進行疫苗抗原ORF2之生產,但仍遭遇ORF2產量低落、重組ORF2無法形成類病毒顆粒(virus-like particle)、製程複雜或免疫效果不佳之瓶頸。 Looking at the current production methods of PCV2 vaccines, the method of cultivating viruses is carried out, which has the disadvantages of long preparation time and high production cost. In order to reduce the cost of vaccines, researchers in the field tried to produce vaccine antigen ORF2 using recombinant E. coli with lower culture cost, but still suffered from low yield of ORF2, unable to form virus-like particles, complex process or The bottleneck of poor immune system.

爰是,本發明的一個目的為提供一種製備豬第二型環狀病毒之外鞘蛋白質的方法,以降低PCV2疫苗的生產時間及成本。 Accordingly, it is an object of the present invention to provide a method for preparing a porcine second type circovirus outer sheath protein to reduce the production time and cost of the PCV2 vaccine.

本發明的另一個目的為提供一種防治豬第二型環狀病毒感染的組合物,其以豬第二型環狀病毒之外鞘蛋白質作為活性成分,並包含合適之佐劑,從而提供產業一防治豬第二型環狀病毒感染的工具。 Another object of the present invention is to provide a composition for preventing infection of a porcine type 2 circovirus, which comprises a porcine second type circovirus outer sheath protein as an active ingredient and a suitable adjuvant to provide an industry one. A tool for the prevention and treatment of porcine type 2 circovirus infection.

本發明的又一個目的為提供一種製備豬干擾素的方法,以降低生產豬干擾素所需的時間及成本,而有利於應用豬干擾素於防治豬第二型環狀病毒感染之組合物。 It is still another object of the present invention to provide a method for preparing porcine interferon to reduce the time and cost required for the production of porcine interferon, and to facilitate the use of porcine interferon for the control of porcine type 2 circovirus infection.

為了達到上述目的,本發明提供一種表現一蛋白質的方法,其包含:(a)取得一阿拉伯糖誘導表現載體;其中前述阿拉伯糖誘導表現載體包含一表現元件及一目標蛋白質的核苷酸序列;其中前述表現元件包含:一啟動子;一T7噬菌體轉譯增強元件,其具有SEQ ID NO 01所示之序列;及一核糖體結合部位,其具有SEQ ID NO 02所示序列;(b)將前述阿拉伯糖誘導表現載體轉形至一大腸桿菌宿主中,並進行目標蛋白質之誘導表現;其中前述目標蛋白質為:豬第二型環狀病毒之外鞘蛋白質或豬干擾素。 In order to achieve the above object, the present invention provides a method for expressing a protein comprising: (a) obtaining an arabinose-inducing expression vector; wherein the arabinose-inducing expression vector comprises a nucleotide sequence of a expression element and a target protein; Wherein the aforementioned expression element comprises: a promoter; a T7 phage translation enhancing element having the sequence of SEQ ID NO 01; and a ribosome binding site having the sequence of SEQ ID NO 02; (b) The arabinose-inducing expression vector is transformed into an E. coli host and subjected to induction of expression of the target protein; wherein the aforementioned target protein is: porcine type 2 circovirus outer sheath protein or porcine interferon.

較佳地,前述啟動子的-16部位具有SEQ ID NO 03所示之序列。 Preferably, the -16 portion of the aforementioned promoter has the sequence set forth in SEQ ID NO:03.

較佳地,前述表現元件具有SEQ ID NO 04所示序列。 Preferably, the aforementioned expression element has the sequence shown in SEQ ID NO 04.

較佳地,前述阿拉伯糖誘導表現載體進一步包含一融合伴子的核苷酸序列、及/或一標記分子的核苷酸序列。較佳地,前述融合伴子為:大腸桿菌之MsyB、大腸桿菌之YjgD基因、Lambda噬菌體D蛋白質、麵包酵母菌SUMO蛋白質、或其組合。較佳地,前述標記分子為:His tag、Strep II tag、FLAG tag、或其組合。 Preferably, the aforementioned arabinose-inducing expression vector further comprises a nucleotide sequence of a fusion partner, and/or a nucleotide sequence of a marker molecule. Preferably, the fusion partner is: MsyB of Escherichia coli, YjgD gene of Escherichia coli, Lambda phage D protein, Baker's yeast SUMO protein, or a combination thereof. Preferably, the aforementioned labeling molecule is: His tag, Strep II tag, FLAG tag, or a combination thereof.

較佳地,前述目標蛋白質為豬第二型環狀病毒之外鞘蛋白質,且其核苷酸序列具有SEQ ID NO 09或SEQ ID NO 24所示序列。較佳地,前述阿拉伯糖誘導表現載體具有SEQ ID NO 46所示序列。 Preferably, the aforementioned target protein is a porcine second type circovirus outer sheath protein, and the nucleotide sequence thereof has the sequence shown by SEQ ID NO 09 or SEQ ID NO 24. Preferably, the aforementioned arabinose-inducing expression vector has the sequence shown in SEQ ID NO:46.

較佳地,前述豬干擾素為豬干擾素α或豬干擾素γ。較佳地,前述目標蛋白質為豬干擾素,且其核苷酸序列具有SEQ ID NO 64或SEQ ID NO 76所示序列。較佳地,前述阿拉伯糖誘導表現載體具有SEQ ID NO 80、SEQ ID NO 87、或SEQ ID NO 95所示序列。較佳地,前述方法不包含前述豬干擾素的折疊步驟。 Preferably, the aforementioned porcine interferon is porcine interferon alpha or porcine interferon gamma. Preferably, the aforementioned target protein is porcine interferon, and the nucleotide sequence thereof has the sequence of SEQ ID NO 64 or SEQ ID NO 76. Preferably, the aforementioned arabinose-inducing expression vector has the sequence of SEQ ID NO 80, SEQ ID NO 87, or SEQ ID NO 95. Preferably, the aforementioned method does not comprise the folding step of the aforementioned porcine interferon.

較佳地,前述步驟(b)之後進一步包含一步驟(c):純化前述目標蛋白質。較佳地,前述步驟(c)之後進一步包含一步驟(d):以一SUMO蛋白酶處理前述目標蛋白質。較佳地,步驟(d)之處理中,前述目標蛋白質與前述SUMO蛋白酶的重量比值為4至20。 Preferably, the aforementioned step (b) further comprises a step (c) of purifying the aforementioned target protein. Preferably, the aforementioned step (c) further comprises a step (d) of treating the aforementioned target protein with a SUMO protease. Preferably, in the treatment of the step (d), the weight ratio of the target protein to the SUMO protease is 4 to 20.

本發明提供又一種防治豬第二型環狀病毒感染的組合物,其包含:2.5至250μg/mL之豬第二型環狀病毒之外鞘蛋白質;2.5至25μg/mL之豬干擾素α;2.5至25μg/mL之豬干擾素γ;及一醫藥可接受之載劑。 The present invention provides yet another composition for preventing and treating porcine type 2 circovirus infection, comprising: 2.5 to 250 μg/mL of porcine second type circovirus outer sheath protein; 2.5 to 25 μg/mL of porcine interferon alpha; 2.5 to 25 μg/mL of porcine interferon gamma; and a pharmaceutically acceptable carrier.

較佳地,前述組合物進一步包含一醫藥可接受之佐劑。較佳地,前述醫藥可接受之佐劑為:MONTANIDETM ISA 563 VG佐劑、MONTANIDETM GEL 01佐劑、弗氏完全或不完全佐劑、鋁膠、界面活性劑、聚陰離子聚合物、肽、油乳液、或其組合。 Preferably, the aforementioned composition further comprises a pharmaceutically acceptable adjuvant. Preferably, the pharmaceutically acceptable adjuvant is: MONTANIDE TM ISA 563 VG adjuvant, MONTANIDE TM GEL 01 adjuvant, Freund's complete or incomplete adjuvant, aluminum gel, surface active agent, polyanionic polymers, peptides , oil emulsion, or a combination thereof.

較佳地,前述組合物包含:3.5至170μg/mL之豬第二型環狀病毒之外鞘蛋白質;5至20μg/mL之豬干擾素α;5至20μg/mL之豬干擾素γ;及一醫藥可接受之載劑。 Preferably, the aforementioned composition comprises: 3.5 to 170 μg/mL of porcine second type circovirus outer sheath protein; 5 to 20 μg/mL of porcine interferon alpha; 5 to 20 μg/mL of porcine interferon gamma; A pharmaceutically acceptable carrier.

綜上所述,本發明主要提供一種表現一蛋白質的方法,其透過使用一阿拉伯糖誘導表現載體。本發明方法有助於以更高的效率合成豬第二型環狀病毒之外鞘蛋白質及疫苗中作為佐劑使用的豬干擾素。另一方面,本發明醫藥組合物以合適比例組合前述外鞘蛋白質及其他有利成分而取得優異的免疫誘發效果。據此,本發明揭露內容對於領域中豬第二型環狀病毒的防治工作有顯著助益。 In summary, the present invention mainly provides a method for expressing a protein which induces expression vectors by using an arabinose. The method of the present invention contributes to the synthesis of porcine second type circovirus outer sheath protein and porcine interferon used as an adjuvant in vaccines with higher efficiency. On the other hand, the pharmaceutical composition of the present invention combines the outer sheath protein and other advantageous components in an appropriate ratio to obtain an excellent immune-inducing effect. Accordingly, the disclosure of the present invention is of significant benefit to the prevention and treatment of porcine type 2 circovirus in the field.

第一圖係實施例一所製得的5個豬第二型環狀病毒之外鞘蛋白質表現載體的示意圖。 The first panel is a schematic representation of five porcine second type circovirus outer sheath protein expression vectors prepared in Example 1.

第二圖顯示以蛋白質電泳及西方墨漬法觀察實施例一所製得的5個表現載體轉形至大腸桿菌宿主後的蛋白質誘導表現情形。 (A)蛋白質電泳結果。(B)西方墨漬法結果;第1行:BL21(DE3)/pET29a;第2行:BL21(DE3)/pET-SUMO-ORF2;第3行:BL21(DE3)/pET-OPTSUMO-ORF2;第4行:Rosetta2/pET-SUMO-ORF2;第5行:BL21(DE3)/pET-SUMO-OPTORF2;第6行:BL21(DE3)/pET-OPTSUMO-OPTORF2;第7行:BL21/pBA-OPTSUMO-OPTORF2。 The second panel shows the protein-induced expression of the five expression vectors prepared in Example 1 after transfection into E. coli hosts by protein electrophoresis and Western blotting. (A) Protein electrophoresis results. (B) Western blotting results; line 1: BL21(DE3)/pET29a; line 2: BL21(DE3)/pET-SUMO-ORF2; line 3: BL21(DE3)/pET-OPTSUMO-ORF2; Line 4: Rosetta2/pET-SUMO-ORF2; Line 5: BL21(DE3)/pET-SUMO-OPTORF2; Line 6: BL21(DE3)/pET-OPTSUMO-OPTORF2; Line 7: BL21/pBA- OPTSUMO-OPTORF2.

第三圖顯示利用蛋白質電泳觀察實施例一所製得的4個表現載體轉形至大腸桿菌宿主後的融合蛋白質可溶性表現情形。T:總細胞破碎物;S:可溶性蛋白質;IS:不可溶性蛋白質。箭頭標示處為目標蛋白質。 The third panel shows the performance of the fusion protein after transformation of the four expression vectors prepared in Example 1 into E. coli host by protein electrophoresis. T: total cell disruption; S: soluble protein; IS: insoluble protein. The arrow indicates the target protein.

第四圖係蛋白質電泳圖,其顯示利用固定化金屬離子親和性層析法純化pBA-OPTSUMO-OPTORF2於宿主細胞(E.coli BL21)表現之融合蛋白質的結果。第1行:E.coli BL21(pBA-OPTSUMO-OPTORF2)之總細胞破碎物;第2行:經純化之融合蛋白質。 The fourth panel is a protein electropherogram showing the results of purification of the fusion protein expressed by pBA-OPTSUMO-OPTORF2 in host cells ( E. coli BL21) by immobilized metal ion affinity chromatography. Line 1: Total cell disruption of E. coli BL21 (pBA-OPTSUMO-OPTORF2); line 2: purified fusion protein.

第五圖顯示以蛋白質電泳及西方墨漬法觀察實施例二中重組SUMO蛋白酶(SUMOPH)和重組D-SUMO蛋白酶(DSUMOPH)於宿主細胞【E.coli BL21(DE3)】中的表現情形。(A)蛋白質電泳結果。(B)西方墨漬法結果。T:總細胞破碎物;S:可溶性蛋白質;IS:不可溶性蛋白質。箭頭標示處為目標蛋白質。 The fifth panel shows the performance of recombinant SUMO protease (SUMOPH) and recombinant D-SUMO protease (DSUMOPH) in host cells [ E.coli BL21(DE3)] by protein electrophoresis and Western blotting. (A) Protein electrophoresis results. (B) Western blotting results. T: total cell disruption; S: soluble protein; IS: insoluble protein. The arrow indicates the target protein.

第六圖係蛋白質電泳圖,其顯示利用固定化金屬離子親和性層析法純化pET-SUMOPH及pET-D-SUMOPH於宿主細胞【E.coli BL21(DE3)】表現之重組蛋白酶的結果。第1行:經純化之SUMO蛋白酶(SUMOPH);第2行:經純化之D-SUMO蛋白酶(DSUMOPH)。 The sixth panel is a protein electropherogram showing the results of purification of recombinant proteases expressed by pET-SUMOPH and pET-D-SUMOPH in host cells [ E. coli BL21 (DE3)] by immobilized metal ion affinity chromatography. Line 1: Purified SUMO protease (SUMOPH); Line 2: purified D-SUMO protease (DSUMOPH).

第七圖係蛋白質電泳圖,其顯示重組SUMO-ORF2融合蛋白質之純化、剪切及過濾。第1行:純化之SUMO-ORF2融合蛋白 質。第2行:經剪切之SUMO-ORF2融合蛋白質。第3行:經剪切及過濾(100kDa過濾膜)後取得之ORF2融合蛋白質。 The seventh panel is a protein electropherogram showing purification, shearing and filtration of the recombinant SUMO-ORF2 fusion protein. Line 1: Purified SUMO-ORF2 fusion protein quality. Line 2: Sheared SUMO-ORF2 fusion protein. Line 3: ORF2 fusion protein obtained after shearing and filtration (100 kDa filter membrane).

第八圖係穿透式電子顯微鏡影像,其顯示SUMO-ORF2融合蛋白質(A)、經蛋白酶剪切的重組SUMO-ORF2融合蛋白質(B)、及經蛋白酶剪切再經過濾後所得之ORF2融合蛋白質(C)形成類病毒顆粒的影像。 The eighth image is a transmission electron microscope image showing the SUMO-ORF2 fusion protein (A), the protease-cleaved recombinant SUMO-ORF2 fusion protein (B), and the ORF2 fusion obtained by protease cleavage and filtration. Protein (C) forms an image of viroid-like particles.

第九圖係蛋白質電泳圖,其顯示實施例三之重組豬干擾素的表現情形;T:總細胞破碎物;S:可溶性蛋白質。(A)pET-OPTPIFNAH/E.coli Shuffle;(B)pBA-OPTPIFNAH/E.coli Shuffle;(C)pET-SUMO-OPTPIFNAH/E.coli Shuffle;(D)pET-OPTSUMO-OPTPIFNAH/E.coli Shuffle;(E)pBA-OPTSUMO-OPTPIFNAH-l/E.coli Shuffle;(F)pET-OPTPIFNRH/E.coli BL21(DE3);(G)pET-SUMO-OPTPIFNRH/E.coli BL21(DE3);(H)pET-OPTSUMO-OPTPIFNRH/E.coli BL21(DE3);(I)pBA-OPTSUMO-OPTPIFNRH/E.coli BL21(DE3)。箭頭標示處為目標蛋白質。 The ninth panel is a protein electropherogram showing the performance of recombinant porcine interferon of Example 3; T: total cell disruption; S: soluble protein. (A) pET-OPTPIFNAH/ E.coli Shuffle; (B) pBA-OPTPIFNAH/ E.coli Shuffle; (C) pET-SUMO-OPTPIFNAH/ E.coli Shuffle; (D) pET-OPTSUMO-OPTPIFNAH/ E.coli Shuffle; (E) pBA-OPTSUMO-OPTPIFNAH-l/ E.coli Shuffle; (F) pET-OPTPIFNRH/ E.coli BL21(DE3); (G) pET-SUMO-OPTPIFNRH/ E.coli BL21(DE3); (H) pET-OPTSUMO-OPTPIFNRH/ E.coli BL21(DE3); (I) pBA-OPTSUMO-OPTPIFNRH/ E.coli BL21 (DE3). The arrow indicates the target protein.

第十圖係蛋白質電泳圖,其顯示實施例三之重組豬干擾素經表現後的純化結果。第1行:E.coli Shuffle(pET-OPTPIFNAH)表現所得之融合蛋白質的純化結果;第2行:E.coli Shuffle(pBA-OPTSUMO-OPTPIFNAH)表現所得之融合蛋白質經D-SUMO蛋白酶【pET-D-SUMOP/E.coli BL21(DE3)細胞破碎物】剪切後再經純化的結果;第3行:E.coli BL21(DE3)(pET-OPTSUMO-OPTPIFNRH)表現所得之融合蛋白質經D-SUMO蛋白酶【pET-D-SUMOP/E.coli BL21(DE3)細胞破碎物】剪切後再經純化的結果。 The tenth panel is a protein electropherogram showing the results of purification of the recombinant porcine interferon of Example 3. Line 1: E. coli Shuffle (pET-OPTPIFNAH) shows the result of purification of the fusion protein; Line 2: E. coli Shuffle (pBA-OPTSUMO-OPTPIFNAH) shows the fusion protein obtained by D-SUMO protease [pET- D-SUMOP/ E.coli BL21 (DE3) cell disrupted product] the result of purification after cleavage; line 3: E. coli BL21 (DE3) (pET-OPTSUMO-OPTPIFNRH) expressed the fusion protein by D- SUMO protease [pET-D-SUMOP/ E.coli BL21 (DE3) cell disrupted material] was purified after shearing.

第十一圖係ELISA試驗結果,其顯示實施例4實驗3中各樣品於豬隻中產生的抗PCV2抗體力價。 The eleventh panel is the result of an ELISA test showing the anti-PCV2 antibody titer produced by each sample in the experiment of Example 4 in the pig.

第十二圖係顯示實施例4實驗3中各樣品降低豬隻病毒血症 的程度。 The twelfth figure shows that each sample in Example 3 of Experiment 4 reduces viremia in pigs. Degree.

第十三圖係ELISA試驗結果,其顯示實施例4實驗4中各樣品於豬隻中產生的抗PCV2抗體力價。 The thirteenth panel is the result of an ELISA test showing the anti-PCV2 antibody titer produced by each sample in the experiment 4 of Example 4.

第十四圖係顯示實施例4實驗4中各樣品降低豬隻病毒血症的程度。 The fourteenth graph shows the extent to which each sample in Example 4 of Example 4 reduced viremia in pigs.

第十五圖係ELISA試驗結果,其顯示實施例4實驗5中各樣品於豬隻中產生的抗PCV2抗體力價。 The fifteenth panel is the result of an ELISA test showing the anti-PCV2 antibody titer produced by each sample in the experiment of Example 4 in the pig.

如前所述,雖然領域中已嘗試透過大腸桿菌表現系統生產豬第二型環狀病毒的外鞘蛋白質,然而截至本發明申請時,仍未能克服產量過低的缺點,而阻礙豬第二型環狀病毒之防疫工作的精進。 As mentioned above, although the field has attempted to produce the outer sheath protein of the porcine type II circovirus through the E. coli expression system, as of the application of the present invention, the shortcomings of the low yield have not been overcome, and the pig second has been hindered. The improvement of the epidemic prevention work of the circovirus.

本發明方法係採用本發明之申請人於中華民國發明專利申請案第103146225號案(申請日:西元2014年12月30日)所揭露的阿拉伯糖誘導表現元件來製備豬第二型環狀病毒之外鞘蛋白質。前揭中華民國專利第103146225號案的全部內容係併入於本案中作為參考文獻。 The method of the present invention adopts the arabinose-inducing performance element disclosed in the applicant's invention patent application No. 103146225 (application date: December 30, 2014) to prepare a porcine type 2 circovirus. Outer sheath protein. The entire disclosure of the Chinese Patent No. 103146225 is incorporated herein by reference.

本文中所述「目標蛋白質」係指欲藉由原核細胞表現系統表現的蛋白質。於本發明中,前述目標蛋白質係為豬第二型環狀病毒之外鞘蛋白質、豬干擾素α、或豬干擾素γ。 As used herein, "target protein" refers to a protein to be expressed by a prokaryotic expression system. In the present invention, the aforementioned target protein is a porcine second type circovirus outer sheath protein, porcine interferon alpha, or porcine interferon gamma.

本文中所述「目標蛋白質的核苷酸序列」或其他類似之敘述係指一核苷酸序列,其透過活體內或活體外的轉錄/轉譯機制後,可形成前述目標蛋白質。據此,本發明所述「豬第二型環狀病毒之外鞘蛋白質的核苷酸序列」或「豬干擾素的核苷酸序列」亦定義如前。同理,本發明所述「融合伴子的核苷酸序列」或「標記分子的核苷酸序列」亦定義如前。 As used herein, "nucleotide sequence of a protein of interest" or other similar description refers to a nucleotide sequence which, upon in vivo or in vitro transcription/translation mechanisms, forms the aforementioned protein of interest. Accordingly, the "nucleotide sequence of the porcine second type circovirus outer sheath protein" or "the nucleotide sequence of porcine interferon" of the present invention is also defined as before. Similarly, the "nucleotide sequence of the fusion partner" or "the nucleotide sequence of the labeled molecule" of the present invention is also defined as before.

本發明所述「融合伴子」係指為利於提高合成之前述目標蛋白質的水溶性而使用的分子。為上述目的,將一融合伴子的核苷酸序列與前述目標蛋白質的核苷酸序列以遺傳工程的方式建構於同一表現載體上,從而使前述目標蛋白質與前述融合伴子合成為一融合蛋白質。前述融合伴子例如但不限於:大腸桿菌之MsyB、大腸桿菌之YjgD、Lambda噬菌體D蛋白質、麵包酵母菌SUMO蛋白質、或其組合。 The "fusion partner" as used in the present invention means a molecule which is used to enhance the water solubility of the aforementioned target protein for synthesis. For the above purpose, the nucleotide sequence of a fusion partner and the nucleotide sequence of the aforementioned target protein are genetically engineered on the same expression vector, thereby synthesizing the target protein and the fusion partner into a fusion protein. The aforementioned fusion partner is, for example but not limited to, MsyB of Escherichia coli, YjgD of Escherichia coli, Lambda phage D protein, Baker's yeast SUMO protein, or a combination thereof.

本發明所述「標記分子」係指為利於觀察前述目標蛋白質之合成或為利於純化前述目標蛋白質所使用的分子。為上述目的,將一標記分子的核苷酸序列與前述目標蛋白質的核苷酸序列以遺傳工程的方式建構於同一表現載體上,從而使前述目標蛋白質與前述標記分子合成為一融合蛋白質。前述標記分子例如但不限於:His tag、Strep II tag、FLAG tag、或其組合。 The "marker molecule" as used in the present invention refers to a molecule which is useful for observing the synthesis of the aforementioned target protein or for facilitating purification of the aforementioned target protein. For the above purpose, the nucleotide sequence of a labeled molecule and the nucleotide sequence of the aforementioned target protein are genetically engineered on the same expression vector, thereby synthesizing the target protein and the labeled molecule into a fusion protein. The aforementioned labeling molecules are for example but not limited to: His tag, Strep II tag, FLAG tag, or a combination thereof.

本發明的第一個面向為一種製備豬第二型環狀病毒之外鞘蛋白質、豬干擾素α、或豬干擾素γ的方法。前述方法包含(a)取得一阿拉伯糖誘導表現載體;其中前述阿拉伯糖誘導表現載體包含一表現元件及一目標蛋白質的核苷酸序列;及(b)將前述阿拉伯糖誘導表現載體轉形至一大腸桿菌宿主中進行目標蛋白質之表現。 The first aspect of the present invention is directed to a method for producing a porcine second type circovirus outer sheath protein, porcine interferon alpha, or porcine interferon gamma. The above method comprises (a) obtaining an arabinose-inducing expression vector; wherein the arabinose-inducing expression vector comprises a nucleotide sequence of a expression element and a target protein; and (b) translating the aforementioned arabinose-inducible expression vector into a The expression of the target protein is carried out in an E. coli host.

於一可行實施態樣中,前述目標蛋白質為豬第二型環狀病毒之外鞘蛋白質。於一可行實施態樣中,前述目標蛋白質為豬干擾素α或豬干擾素γ。 In a possible embodiment, the aforementioned target protein is a porcine second type circovirus outer sheath protein. In a possible embodiment, the aforementioned target protein is porcine interferon alpha or porcine interferon gamma.

於一較佳實施態樣中,前述表現元件係如本發明之申請人於中華民國發明專利申請案第103146225號案(申請日:西元2014年12月30日)中所述者。具體而言,前述表現元件包含:一啟動子;一T7噬菌體轉譯增強元件;及一核糖體結合部位。舉例來說,前述表現元件係中華民國發明專利申請案第103146225號案中所述araB-M11表現元件。 In a preferred embodiment, the foregoing performance component is as described in the applicant's invention patent application No. 103146225 (application date: December 30, 2014). Specifically, the aforementioned expression element comprises: a promoter; a T7 phage translation enhancing element; and a ribosome binding site. For example, the aforementioned performance component is the araB- M11 performance component described in the Chinese Patent Application No. 103146225.

在一較佳實施態樣中,前述T7噬菌體轉譯增強元件具有SEQ ID NO:01所示之序列。在一較佳實施態樣中,前述核糖體結合部位具有SEQ ID NO 02所示序列。在一較佳實施態樣中,前述啟動子的-16部位具有SEQ ID NO:03所示之序列。在一較佳實施態樣中,前述表現元件具有SEQ ID NO 04所示序列。 In a preferred embodiment, the aforementioned T7 phage translation enhancing element has SEQ ID NO: The sequence shown by 01. In a preferred embodiment, the ribosome binding site has the sequence set forth in SEQ ID NO 02. In a preferred embodiment, the -16 portion of the aforementioned promoter has the sequence set forth in SEQ ID NO:03. In a preferred embodiment, the aforementioned expression element has the sequence set forth in SEQ ID NO:04.

於一可行實施態樣中,其中前述步驟(b)之後進一步包含一步驟(c):純化前述目標蛋白質。當於本發明方法中使用His tag作為前述標記分子時,可採用固定化金屬離子親和性層析法(immobilized-metal ion affinity chromatography)純化前述目標蛋白質。 In a possible embodiment, the foregoing step (b) further comprises a step (c) of purifying the aforementioned target protein. When a His tag is used as the aforementioned labeling molecule in the method of the present invention, the aforementioned target protein can be purified by immobilized-metal ion affinity chromatography.

於一可行實施態樣中,當於本發明方法中使用SUMO蛋白質作為前述融合伴子時,於前述步驟(c)之後進一步包含一步驟(d):以一SUMO蛋白酶處理前述目標蛋白質。前述「處理」係指使前述SUMO蛋白酶剪切前述SUMO融合伴子,以使前述目標蛋白質與前述SUMO蛋白質分離。 In a possible embodiment, when the SUMO protein is used as the fusion partner in the method of the present invention, further comprising a step (d) after the step (c): treating the target protein with a SUMO protease. The above "treatment" means that the SUMO protease is cleaved by the SUMO fusion partner to separate the target protein from the SUMO protein.

於一可行實施態樣中,前述SUMO蛋白酶係透過T7表現載體而製得。於一較佳實施態樣中,於前述處理中,前述目標蛋白質與前述SUMO蛋白酶的重量比值為4至20。 In a possible embodiment, the aforementioned SUMO protease is produced by a T7 expression vector. In a preferred embodiment, in the foregoing treatment, the weight ratio of the target protein to the SUMO protease is 4 to 20.

於一較佳實施態樣中,前述方法不包含前述豬干擾素之折疊步驟。所屬領域具有通常知識者當可理解於一原核細胞表現系統中的「折疊步驟」係指透過使用尿素或鹽酸胍(guanidine hydrochloride)溶解包涵體,再經透析等步驟使所產出的胜肽折疊形成三級結構或四級結構的過程。從而所屬領域具有通常知識者當可理解本發明所述「不包含前述豬干擾素之折疊步驟」係指本發明方法中所製得的胜肽可自行折疊為所欲蛋白質,而無須前述使用尿素或鹽酸胍、及透析等人為步驟。 In a preferred embodiment, the foregoing method does not comprise the folding step of the aforementioned porcine interferon. A "folding step" in the art that can be understood in a prokaryotic cell expression system refers to the process of dissolving the inclusion body by using urea or guanidine hydrochloride, and then dialysis and folding the peptide obtained. The process of forming a tertiary structure or a quaternary structure. Therefore, those skilled in the art can understand that the "folding step without the aforementioned porcine interferon" as described in the present invention means that the peptide prepared in the method of the present invention can be self-folded into a desired protein without using the aforementioned urea. Or artificial steps such as guanidine hydrochloride and dialysis.

於一可行實施態樣中,前述宿主為一大腸桿菌。較佳地,前述大腸桿菌為BL21、BL21(DE3)、Rosetta2、或Shuffle。 In a possible embodiment, the aforementioned host is an Escherichia coli. Preferably, the aforementioned Escherichia coli is BL21, BL21 (DE3), Rosetta 2, or Shuffle.

本發明的第二個面向為一種防治豬第二型環狀病毒感染的組 合物,其包含:豬第二型環狀病毒之外鞘蛋白質、豬干擾素α、豬干擾素γ、及一醫藥可接受之載劑。 The second aspect of the present invention is a group for preventing and treating porcine type 2 circovirus infection A compound comprising: a porcine second type circovirus outer sheath protein, porcine interferon alpha, porcine interferon gamma, and a pharmaceutically acceptable carrier.

於一較佳實施態樣中,前述防治豬第二型環狀病毒感染的組合物包含:2.5至250μg/mL之豬第二型環狀病毒之外鞘蛋白質;2.5至25μg/mL之豬干擾素α;2.5至25μg/mL之豬干擾素γ;及一醫藥可接受之載劑。又於另一更佳實施態樣中,前述防治豬第二型環狀病毒感染的組合物包含:3.5至170μg/mL之豬第二型環狀病毒之外鞘蛋白質;5至20μg/mL之豬干擾素α;5至20μg/mL之豬干擾素γ;及一醫藥可接受之載劑。 In a preferred embodiment, the composition for preventing porcine second type circovirus infection comprises: porcine second type circovirus outer sheath protein of 2.5 to 250 μg/mL; and pig interference of 2.5 to 25 μg/mL; Αα; 2.5 to 25 μg/mL of porcine interferon gamma; and a pharmaceutically acceptable carrier. In yet another preferred embodiment, the aforementioned composition for controlling porcine type 2 circovirus infection comprises: 3.5 to 170 μg/mL of porcine second type circovirus outer sheath protein; 5 to 20 μg/mL Porcine interferon alpha; 5 to 20 μg/mL of porcine interferon gamma; and a pharmaceutically acceptable carrier.

於一較佳實施態樣中,前述豬第二型環狀病毒之外鞘蛋白質係如本發明方法所製得者。於一較佳實施態樣中,前述豬干擾素α、及/或前述豬干擾素γ係如本發明方法所製得者。 In a preferred embodiment, the porcine second type circovirus outer sheath protein is produced by the method of the present invention. In a preferred embodiment, the aforementioned porcine interferon alpha, and/or the aforementioned porcine interferon gamma is produced by the method of the present invention.

本發明所述「醫藥可接受之載劑」係指從醫學/藥學的觀點而論,不對前述豬第二型環狀病毒之外鞘蛋白質、前述豬干擾素α、及/或前述豬干擾素γ於前述組合物防治豬第二型環狀病毒感染的目的上產生負面影響的物質。於一可行實施態樣中,前述醫藥可接受之載劑例如,但不限於:水、磷酸緩衝食鹽水、醇、甘油、甲殼素、海藻酸鹽、軟骨素、維生素E、礦物質、或其組合。 The "pharmaceutically acceptable carrier" as used in the present invention means that the porcine second type circovirus outer sheath protein, the aforementioned porcine interferon alpha, and/or the aforementioned porcine interferon are not considered from the viewpoint of medicine/pharmacy. γ is a substance which adversely affects the purpose of the aforementioned composition against the infection of a porcine type 2 circovirus. In a possible embodiment, the aforementioned pharmaceutically acceptable carrier is, for example, but not limited to, water, phosphate buffered saline, alcohol, glycerin, chitin, alginate, chondroitin, vitamin E, minerals, or combination.

於一較佳實施態樣中,前述組合物進一步包含一醫藥可接受之佐劑。本發明所述「醫藥可接受之佐劑」係指從醫學/藥學的觀點而論,有助於前述豬第二型環狀病毒之外鞘蛋白質、前述豬干擾素α、及/或前述豬干擾素γ於前述組合物防治豬第二型環狀病毒感染的目的上產生免疫增強效果的物質。於一可行實施態樣中,前述醫藥可接受之載劑例如,但不限於:MONTANIDETM ISA 563 VG佐劑、MONTANIDETM GEL 01佐劑、弗氏完全或不完全佐劑、鋁膠、界面活性劑、聚陰離子聚合物、肽、油乳液、或其組合。於一較佳實施態樣中,前述醫藥可接受之載劑為MONTANIDETM ISA 563 VG佐劑、MONTANIDETM GEL 01佐劑、或其組合。 In a preferred embodiment, the aforementioned composition further comprises a pharmaceutically acceptable adjuvant. The "pharmaceutically acceptable adjuvant" as used in the present invention means that the porcine second type circovirus outer sheath protein, the aforementioned porcine interferon alpha, and/or the aforementioned pig are helpful from the viewpoint of medicine/pharmacy. Interferon gamma is a substance which produces an immunopotentiating effect on the purpose of preventing the infection of a porcine type 2 circovirus by the aforementioned composition. In one possible aspect of the embodiment, the pharmaceutically acceptable carrier such as, but not limited to: MONTANIDE TM ISA 563 VG adjuvant, MONTANIDE TM GEL 01 adjuvant, Freund's complete or incomplete adjuvant, aluminum gel, a surfactant Agents, polyanionic polymers, peptides, oil emulsions, or combinations thereof. In a preferred aspect of the embodiment, the pharmaceutically acceptable carrier is an adjuvant MONTANIDE TM ISA 563 VG, MONTANIDE TM GEL 01 adjuvant, or combinations thereof.

本發明之研究過程將進一步於下列實施例中詳述。惟以下內容僅例示性的說明本發明的特徵,以利理解。所屬領域具有通常知識者自可在不違背本發明精神的前題下參酌下列內容並基於領域中的通常知識加以變化,而仍屬於本發明的權利範圍。 The research process of the present invention will be further detailed in the following examples. However, the following is merely illustrative of the features of the invention in order to facilitate understanding. It is within the scope of the invention to be apparent to those of ordinary skill in the art that the present invention may be practiced without departing from the spirit and scope of the invention.

實施例一:建構豬第二型環狀病毒之外鞘蛋白質(PCV2 ORF2)表現載體。Example 1: Construction of a porcine second type circovirus outer sheath protein (PCV2 ORF2) expression vector. PCV2病毒之分離與基因體定序Isolation and genomic sequencing of PCV2 virus

由感染PCV2之豬場(雲林,台灣)取得病弱豬之脾臟與淋巴結等淋巴器官,以滅菌之剪刀剪碎後,再利用滅菌之研磨缽與研磨棒將淋巴器官磨碎,並加入適量之滅菌磷酸緩衝溶液混合均勻,製成乳劑。利用離心(6,000×g,20分鐘)方式收取上清液,再經濾網過濾去除組織碎片。利用DNA純化套組(DNeasy Blood & Tissue kit;Qiagen,USA)進行病毒DNA之抽取。取100μL的乳劑上清液,加入180μL的ATL Buffer與20μL的蛋白酶K(proteinase K;10mg/mL),於56℃下作用2小時。之後,加入200μL的絕對酒精並混合均勻。吸取所有溶液至離心分離小管(spin column),並將離心分離小管放置於收集小管(collection tube)中,於6,000×g下離心1分鐘。將離心分離小管放置於一新的收集小管中,再加入500μL的AW1 Buffer至分離小管中,於6,000×g下離心1分鐘。將離心分離小管放置於一新的收集小管中,再加入500μL的AW2 Buffer至離心分離小管中,於20,630×g下離心5分鐘。將離心分離小管放入一滅菌微量離心管中,加入適量無菌去離子水引流DNA。 The lymphoid organs such as the spleen and lymph nodes of the sick pigs were obtained from the pig farm infected with PCV2 (Yunlin, Taiwan), and then cut with sterile scissors, and the lymphatic organs were ground with a sterilized grinding pest and a grinding rod, and the appropriate amount was added. The sterilized phosphate buffer solution was uniformly mixed to prepare an emulsion. The supernatant was collected by centrifugation (6,000 x g, 20 minutes) and filtered through a sieve to remove tissue debris. Viral DNA extraction was performed using a DNA purification kit (DNeasy Blood & Tissue kit; Qiagen, USA). 100 μL of the emulsion supernatant was taken, and 180 μL of ATL Buffer and 20 μL of proteinase K (proteinase K; 10 mg/mL) were added and allowed to act at 56 ° C for 2 hours. After that, add 200 μL of absolute alcohol and mix well. All the solution was pipetted into a spin column, and the centrifuge tube was placed in a collection tube and centrifuged at 6,000 x g for 1 minute. The centrifuge tube was placed in a new collection tube, and 500 μL of AW1 Buffer was added to the separation tube and centrifuged at 6,000 × g for 1 minute. The centrifuge tube was placed in a new collection tube, and 500 μL of AW2 Buffer was added to the centrifuge tube and centrifuged at 20,630 × g for 5 minutes. Place the centrifuge tube into a sterile microcentrifuge tube and drain the DNA by adding appropriate amount of sterile deionized water.

設計引子PCVF(5’-ACCAGCGCACTTCGGCAGC-3’;SEQ ID NO 05)與PCVR(5’-AATACTTACAGCGCACTTCTTTCGT TTTC-3’;SEQ ID NO 06),並利用聚合酶連鎖反應(polymerase chain reaction,PCR)擴增PCV2基因體DNA。PCR反應混合物的 體積為100μL,其中包括10μL之前述由淋巴器官萃取之DNA,10μL 10X Taq buffer,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子及2.5U DreamTaq DNA Polymerase(Thermo,USA)。PCR反應條件為94℃反應5分鐘(1個步驟);94℃反應30秒、59℃反應30秒、72℃反應1分鐘30秒(35個循環);72℃反應7分鐘(1個步驟)。利用DNA電泳確認有無預估大小之DNA片段。 The primer PCVF (5'-ACCAGCGCACTTCGGCAGC-3'; SEQ ID NO 05) and PCVR (5'-AATACTTACAGCGCACTTCTTTCGT TTTC-3'; SEQ ID NO 06) were designed and amplified by polymerase chain reaction (PCR). PCV2 genomic DNA. PCR reaction mixture The volume was 100 μL, including 10 μL of the aforementioned DNA extracted from lymphoid organs, 10 μL of 10X Taq buffer, 200 μM of dATP, dTTP, dGTP and dCTP, 1 μM amplification primer and 2.5 U DreamTaq DNA Polymerase (Thermo, USA). The PCR reaction conditions were 94 ° C for 5 minutes (1 step); 94 ° C for 30 seconds, 59 ° C for 30 seconds, 72 ° C for 1 minute and 30 seconds (35 cycles); 72 ° C for 7 minutes (1 step) . DNA fragments were confirmed by DNA electrophoresis for the estimated size.

PCR產物經PCR-MTM Clean Up kit(GMbiolab,Taiwan)回收後,利用益生yT&A選殖載體試劑組(Yeastern,Taiwan)進行TA選殖。實驗步驟參考廠商提供之yT&A選殖載體試劑組操作手冊進行。取5μL回收純化之PCR產物與2μL yT&A載體、1μL接合緩衝液A(ligation buffer A)、1μL接合緩衝液B和1μL T4 DNA接合酶(2 unit/μL)混合均勻後,於22℃下作用30分鐘。取1μL接合混合物(ligation mixture)轉形入大腸桿菌ECOS 9-5(Yeastern,Taiwan)。轉形後之菌體加入1mL SOC再生培養液中,於37℃與250rpm之條件下震盪60分鐘。之後,取適量菌液塗佈於含氨苄西林(ampicillin)(最終濃度為100μg/mL)之固態培養基上,於37℃下培養16小時。 After the PCR product was recovered by PCR- MTM Clean Up kit (GMbiolab, Taiwan), TA selection was carried out using the probiotic yT&A selection vector reagent group (Yeastern, Taiwan). The experimental procedure is carried out by referring to the manufacturer's yT&A selection vector reagent set operation manual. 5 μL of the purified PCR product was mixed with 2 μL of yT&A vector, 1 μL of ligation buffer A, 1 μL of ligating buffer B, and 1 μL of T4 DNA ligase (2 unit/μL), and then applied at 22 ° C. minute. 1 μL of the ligation mixture was transformed into E. coli ECOS 9-5 (Yeastern, Taiwan). The transformed cells were added to 1 mL of SOC regeneration medium and shaken at 37 ° C for 60 minutes at 250 rpm. Thereafter, an appropriate amount of the bacterial solution was applied to a solid medium containing ampicillin (final concentration: 100 μg/mL), and cultured at 37 ° C for 16 hours.

之後,以菌落聚合酶連鎖反應挑選轉形株。菌落聚合酶連鎖反應實驗步驟如下所述。首先,先準備一微量離心管加入50μL的2倍Premix反應緩衝液(GMbiolab,Taiwan)、0.5μL的100mM PCVF引子、0.5μL的100mM PCVR引子及49μL的滅菌水,混合均勻後,再將PCR反應液分裝於PCR小管(10μL/管)中。以牙籤將菌落點至PCR小管後,即可進行PCR反應。PCR反應條件為95℃反應5分鐘(1個步驟);95℃反應30秒、59℃反應30秒、72℃,反應1分鐘30秒(25個循環);72℃反應7分鐘(1個步驟)。利用DNA電泳確認有無預估大小之DNA片段。確認轉形株中之重組質體帶有外插DNA(insert DNA)後,再抽取轉形株中之質體並進行DNA定序(源資國際生物科技股份有限公司),將含有PCV2 DNA之質體命名為pTA-PCV2。 Thereafter, the transformant strain was selected by colony polymerase chain reaction. The colony polymerase chain reaction reaction experimental procedure is as follows. First, prepare a microcentrifuge tube to add 50 μL of 2 times Premix reaction buffer (GMbiolab, Taiwan), 0.5 μL of 100 mM PCVF primer, 0.5 μL of 100 mM PCVR primer and 49 μL of sterilized water, mix well, and then carry out PCR reaction. The fraction was placed in a PCR vial (10 μL/tube). After the colony is spotted into the PCR vial with a toothpick, the PCR reaction can be performed. The PCR reaction conditions were 95 ° C for 5 minutes (1 step); 95 ° C reaction for 30 seconds, 59 ° C reaction for 30 seconds, 72 ° C, reaction for 1 minute and 30 seconds (25 cycles); 72 ° C reaction for 7 minutes (1 step) ). DNA fragments were confirmed by DNA electrophoresis for the estimated size. After confirming that the recombinant plastid in the transgenic strain carries the insert DNA, the plastid in the transgenic strain is extracted and subjected to DNA sequencing (Source International Biotechnology Co., Ltd.), which will contain PCV2 DNA. The plastid was named pTA-PCV2.

ORF2基因(即外鞘蛋白質之基因)擴增與密碼子最適化Amplification of ORF2 gene (the gene of outer sheath protein) and codon optimization (1)ORF2基因之擴增: (1) Amplification of the ORF2 gene:

以前述pTA-PCV2作為模板,利用ORF2F/ORF2R引子組合(ORF2F;5’-CAATATGGATCCATGA CGTATCCAAGGAGGCGT TTC-3’;SEQ ID NO 07與ORF2R;5’-GATATAGTCGACTTAGGGT TTAAGTGGGGGGTCTTTAAGATTAA-3’;SEQ ID NO 08)進行ORF2基因之擴增。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng pTA-PCV2及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、60℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。利用瓊脂醣膠體電泳確認PCR產物中是否含有預估大小的DNA片段。接著,利用PCR-MTM Clean Up kit進行PCR產物之回收。根據定序結果,前述ORF2基因的序列如SEQ ID NO 09所示。 Using the aforementioned pTA-PCV2 as a template, ORF2F/ORF2R primer combination (ORF2F; 5'-CAATATGGATCCATGA CGTATCCAAGGAGGCGT TTC-3'; SEQ ID NO 07 and ORF2R; 5'-GATATAGTCGTAGTAGGGT TTAAGTGGGGGGTCTTTAAGATTAA-3'; SEQ ID NO 08) Amplification of genes. The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 100 ng pTA-PCV2 and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 60 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). Agarose gel electrophoresis was used to confirm whether the PCR product contained a DNA fragment of a predetermined size. Next, the PCR product was recovered using the PCR- MTM Clean Up kit. According to the sequencing result, the sequence of the aforementioned ORF2 gene is shown as SEQ ID NO 09.

(2)密碼子最適化ORF2(OPTORF2)基因之合成: (2) Codon optimization of the synthesis of the ORF2 (OPTORF2) gene:

依據大腸桿菌的偏好密碼子(preferred codons)將ORF2之胺基酸序列反向推導為核苷酸序列。依據前述核苷酸序列設計引子:OPTORF2-T1、OPTORF2-T2、OPTORF2-T3、OPTORF2-T4、OPTORF2-T5、OPTORF2-T6、OPTORF2-T7、OPTORF2-T8、OPTORF2-T9、OPTORF2-T10、OPTORF2-T11、OPTORF2-T12、OPTORF2F及OPTORF2R,其序列如下表一所示。 The amino acid sequence of ORF2 is reverse deduced into a nucleotide sequence based on the preferred codons of E. coli. Design primers based on the aforementioned nucleotide sequence: OPTORF2-T1, OPTORF2-T2, OPTORF2-T3, OPTORF2-T4, OPTORF2-T5, OPTORF2-T6, OPTORF2-T7, OPTORF2-T8, OPTORF2-T9, OPTORF2-T10, OPTORF2 -T11, OPTORF2-T12, OPTORF2F and OPTORF2R, the sequences of which are shown in Table 1 below.

以OPTORF2-T1~OPTORF2-T12作為模板引子,OPTORF2與OPTORF2R則作為擴增引子。利用重疊延伸聚合酶連鎖反應(overlapping-extension polymerase chain reaction,OEPCR)大量擴增密碼子最適化之ORF2基因。在50μL的PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM的各引子及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。根據定序結果,前述密碼子最適化的ORF2基因的序列如SEQ ID NO 24所示。 OPTORF2-T1~OPTORF2-T12 was used as a template primer, and OPTORF2 and OPTORF2R were used as amplification primers. The codon-optimized ORF2 gene was amplified in a large amount by an overlay-extension polymerase chain reaction (OEPCR). The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM primer and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit. According to the sequencing result, the sequence of the aforementioned codon-optimized ORF2 gene is shown in SEQ ID NO 24.

SUMO基因之擴增與密碼子最適化Amplification of SUMO gene and codon optimization (1)SUMO基因之擴增: (1) Amplification of SUMO gene:

將由日正食品DIY速發酵母所分離之麵包酵母(Saccbaromyces cerevisiae)接種於YPD(20%peptone,10%yeast extract,20%glucose;pH 6.5)培養基中,於30℃與200rpm之條件下進行振盪培養16小時後,利用YeaStarTM Genomic DNA kit(Zymo Research,USA)進行酵母菌基因體之抽取。取1.5mL隔夜培養之菌液至微量離心管中,離心(2,000×g,5分鐘,室溫)收集菌體部分,並加入120μL YD Digestion Buffer與5μL R-Zymolase充分混合後,於37℃下作用一小時。接著加入120μL YD Lysis Buffer,緩和混合數次後,再加入250μL氯仿並進行震盪1分鐘。離心(10,000×g,2分鐘,室溫)收集上清液。將離心分離小管放置於收集小管上,並將上清液置入離心分離小管中,經離心(10,000×g,1分鐘,室溫)後,倒除濾液。加入300μL DNA清洗緩衝液至離心分離小管中,離 心(10,000×g,1分鐘,室溫)後,倒除濾液,並重複此步驟一次。將離心分離小管放入一滅菌微量離心管中,加入適量之溶離溶液(elution solution)至離心分離小管中並離心(10,000×g,2分鐘,室溫)以引流基因體DNA。 The baker's yeast ( Saccbaromyces cerevisiae ) isolated from the Japanese food DIY instant yeast was inoculated into YPD (20% yeast, 10% yeast, 20% glucose; pH 6.5) and oscillated at 30 ° C and 200 rpm. after incubation for 16 hours using YeaStar TM Genomic DNA kit (Zymo Research , USA) for extraction of the yeast genome. Take 1.5 mL of the overnight culture solution into a microcentrifuge tube, centrifuge (2,000 × g, 5 minutes, room temperature) to collect the bacterial part, and add 120 μL of YD Digestion Buffer and 5 μL of R-Zymolase, and mix at 37 ° C. For one hour. Then, 120 μL of YD Lysis Buffer was added, and the mixture was gently mixed for several times, and then 250 μL of chloroform was added thereto and shaken for 1 minute. The supernatant was collected by centrifugation (10,000 x g, 2 minutes, room temperature). The centrifuge tube was placed on a collection tube, and the supernatant was placed in a centrifuge tube, and after centrifugation (10,000 × g, 1 minute, room temperature), the filtrate was removed. 300 μL of DNA washing buffer was added to the centrifuge tube, centrifuged (10,000 × g, 1 minute, room temperature), the filtrate was removed, and this step was repeated once. The centrifuge tube was placed in a sterile microcentrifuge tube, and an appropriate amount of the elution solution was added to the centrifuge tube and centrifuged (10,000 x g, 2 minutes, room temperature) to drain the genomic DNA.

以前揭段落中獲得之麵包酵母基因體作為模板,利用SUMOF(5’-GATATAGGTACCATGTCGGACTCAGAAGTCAATCAAG-3’;SEQ ID NO 25)/SUMOR(5’-CAATATGGATCCACCACCAATCTG TTCTCTGTGAGC-3;SEQ ID NO 26)引子組合進行SUMO基因之擴增。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,200ng麵包酵母基因體及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應5分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 The SUBS gene was used as a template in the previous paragraph, using the SUMOF (5'-GATATAGGTACCATGTCGGACTCAGAAGTCAATCAAG-3'; SEQ ID NO 25)/SUMOR (5'-CAATATGGATCCACCACCAATCTG TTCTCTGTGAGC-3; SEQ ID NO 26) primer combination for SUMO gene Amplification. The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 200 ng baker's yeast genome and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 5 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

(2)密碼子最適化SUMO(OPTSUMO)基因之合成: (2) Codon-optimized synthesis of SUMO (OPTSUMO) gene:

依據大腸桿菌的偏好密碼子將SUMO之胺基酸序列反向推導為核苷酸序列。依據前述核苷酸序列設計引子:OPTSUMO-T1、OPTSUMO-T2、OPTSUMO-T3、OPTSUMO-T4、OPTSUMO-T5、OPTSUMO-T6、OPTSUMO-T7、OPTSUMO-T8、OPTSUMOF及OPTSUMOR,其序列如下表二所示。 The amino acid sequence of SUMO is reversely deduced into a nucleotide sequence according to the preferred codon of E. coli. According to the above nucleotide sequence design primers: OPTSUMO-T1, OPTSUMO-T2, OPTSUMO-T3, OPTSUMO-T4, OPTSUMO-T5, OPTSUMO-T6, OPTSUMO-T7, OPTSUMO-T8, OPTSUMOF and OPTSUMOR, the sequence is shown in Table 2 below. Shown.

以OPTSUMO-T1~OPTSUMO-T8作為模板引子,OPTSUMOF與OPTSUMOR則作為擴增引子。利用重疊延伸聚合酶連鎖反應大量擴增密碼子最適化之SUMO基因。在50μL的PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM的各引子及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。根據定序結果,前述密碼子最適化的SUMO基因的序列如SEQ ID NO 37所示。 OPTSUMO-T1~OPTSUMO-T8 was used as a template primer, and OPTSUMOF and OPTSUMOR were used as amplification primers. A large number of codon-optimized SUMO genes were amplified using the overlap extension polymerase chain reaction. The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM primer and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit. According to the sequencing result, the sequence of the aforementioned codon-optimized SUMO gene is shown in SEQ ID NO 37.

ORF2融合蛋白質表現載體之建構Construction of ORF2 fusion protein expression vector (1)pET-DRAHIS之建構: (1) Construction of pET-DRAHIS:

以pET29a作為模板,利用DRAF(5’-GATATACATATGAAAAAAAAATTCGTATCGCATCACCATCACCA TCACAGCGGTGGTGGTACCCCAGATCTGGGTACCCTGG-3’;SEQ ID NO 38)/T7 terminator(GCTAGTTATTGCTCAGCGG;SEQ ID NO 39)引子組合進行PCR反應。在50μL PCR反應混合物中包含1倍Ex TaqTM緩衝液,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng pET29a及1.25U TakaRa Ex TaqTM DNA聚合酶(Takara,Japan)。PCR之反應條件為94℃反應5分鐘(1個步驟);94℃反應30秒、55℃反應30秒、72℃反應50秒(35個循環);72℃反應7分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 Using pET29a as a template, PCR reaction was carried out using a combination of DRAF (5'-GATATACATATGAAAAAAAAATTCGTATCGCATCACCATCACCA TCACAGCGGTGGTGGTACCCCAGATCTGGGTACCCTGG-3'; SEQ ID NO 38)/T7 terminator (GCTAGTTATTGCTCAGCGG; SEQ ID NO 39) primer. 1 comprising double Ex Taq TM buffer 50μL PCR reaction mixture, 200μM of dATP, dTTP, dGTP and dCTP, 1μM amplification primer, 100ng pET29a and 1.25U TakaRa Ex Taq TM DNA polymerase (Takara, Japan). The reaction conditions of the PCR were 94 ° C for 5 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 50 seconds (35 cycles); 72 ° C for 7 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

PCR產物以NdeI與SalI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET29a中。將黏合產物轉形入大腸桿菌XL1-blue(Protech,Taiwan)中。隨機挑選轉形株進行DNA定序確認。將DNA序列正確無誤之質體命名為pET-DRAHIS。此質體之起始碼後帶有下游序列(downstream sequence,DS)AAAAAAAAATTCGTATCG(SEQ ID NO 40)與His tag之DNA序列CATCACCATCACCATCAC(SEQ ID NO 41)。 After the PCR product was cleaved with Nde I and Sal I, the DNA fragment was ligated into pET29a cleaved with the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli XL1-blue (Protech, Taiwan). The transgenic strains were randomly selected for DNA sequencing confirmation. The plastid with the correct DNA sequence was named pET-DRAHIS. The start code of this plastid is followed by a downstream sequence (DS) AAAAAAAAATTCGTATCG (SEQ ID NO 40) and a His tag DNA sequence CATCACCATCACCATCAC (SEQ ID NO 41).

(2)pET-SUMO-ORF2表現載體之建構: (2) Construction of pET-SUMO-ORF2 expression vector:

自麵包酵母基因體擴增之SUMO基因以KpnI與BamHI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET-DRAHIS中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-SUMO。 After the SUMO gene amplified from the baker's yeast gene was cleaved with Kpn I and BamH I, the DNA fragment was ligated into pET-DRAHIS which was cleaved by the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The correct quality of the DNA sequence was named pET-SUMO.

自PCV2雲林病毒基因體擴增之ORF2基因以BamHI與SalI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET-SUMO中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-SUMO-ORF2,其具有如SEQ ID NO 42所示序列。 The ORF2 gene amplified from the PCV2 Yunlin virus gene was cleaved with Bam HI and Sal I, and the DNA fragment was ligated into pET-SUMO which was cleaved by the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pET-SUMO-ORF2, which has the sequence shown as SEQ ID NO 42.

(3)pET-OPTSUMO-ORF2表現載體之建構: (3) Construction of pET-OPTSUMO-ORF2 expression vector:

將合成之OPTSUMO基因以KpnI與BamHI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET-DRAHIS中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-OPTSUMO。 After the synthetic OPTSUMO gene was cleaved with Kpn I and BamH I, the DNA fragment was ligated into pET-DRAHIS which was cleaved by the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plastid with the correct DNA sequence was named pET-OPTSUMO.

自PCV2雲林病毒基因體擴增之ORF2基因以BamHI與SalI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET-OPTSUMO中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-OPTSUMO-ORF2,其具有如SEQ ID NO 43所示序列。 The ORF2 gene amplified from the PCV2 Yunlin virus gene was cut with Bam HI and Sal I, and the DNA fragment was ligated into pET-OPTSUMO which was cleaved by the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plastid with the correct DNA sequence was named pET-OPTSUMO-ORF2, which has the sequence shown as SEQ ID NO:43.

(4)pET-SUMO-OPTORF2表現載體之建構: (4) Construction of pET-SUMO-OPTORF2 expression vector:

將合成之OPTORF2基因以BamHI與SalI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET-SUMO中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有 外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-SUMO-OPTORF2,其具有如SEQ ID NO 44所示序列。 After the synthetic OPTORF2 gene was cleaved with BamH I and Sal I, the DNA fragment was ligated into pET-SUMO cleaved with the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plastid with the correct DNA sequence was named pET-SUMO-OPTORF2, which has the sequence shown as SEQ ID NO:44.

(5)pET-OPTSUMO-OPTORF2表現載體之建構: (5) Construction of pET-OPTSUMO-OPTORF2 expression vector:

將合成之OPTORF2基因以BamHI與SalI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET-OPTSUMO中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-OPTSUMO-OPTORF2,其具有如SEQ ID NO 45所示序列。 After the synthetic OPTORF2 gene was cleaved with BamH I and Sal I, the DNA fragment was ligated into pET-OPTSUMO cleaved with the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pET-OPTSUMO-OPTORF2, which has the sequence shown as SEQ ID NO:45.

(6)pBA-OPTSUMO-OPTORF2表現載體之建構: (6) Construction of pBA-OPTSUMO-OPTORF2 expression vector:

本實驗中所建構之pBA-OPTSUMO-OPTORF2係將OPTSUMO-OPTORF2之DNA片段嵌入一新穎之阿拉伯糖誘導表現載體pBCM-araM11所得。pBCM-araM11係採用本發明之申請人於中華民國發明專利申請案第103146225號案(申請日:西元2014年12月30日)及第103142753號案(申請日:西元2014年12月9日)所揭露的阿拉伯糖誘導表現元件及pBRCMMCS(SEQ ID NO 100)進行建構。有關表現載體之建構過程描述如下。 The pBA-OPTSUMO-OPTORF2 constructed in this experiment was obtained by embedding the DNA fragment of OPTSUMO-OPTORF2 into a novel arabinose-inducing expression vector pBCM-araM11. pBCM-araM11 is the applicant of the invention in the Republic of China invention patent application No. 103146225 (application date: December 30, 2014) and 103142753 (application date: December 9, 2014) The disclosed arabinose-inducible expression element and pBRCMMCS (SEQ ID NO 100) were constructed. The construction process of the performance carrier is described below.

將pARABM11-GFPT以EcoRINdeI剪切後,利用Gel-MTM gel extraction system kit(GMbiolab,Taiwan)回收含有araCaraB-M11表現元件之DNA片段。利用T4 DNA連接酶將araCaraB-M11表現元件接入以相同限制酶剪切之pBRCMMCS中。將黏合產物轉形入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株並抽取質體進行DNA定序確認。將序列正確無誤之質體命名為pBCM-araM11,其具有SEQ ID NO 98所示序列。 After pARABM11-GFPT was cleaved with EcoRI and NdeI , a DNA fragment containing araC and araB- M11 expression elements was recovered using a Gel- MTM gel extraction system kit (GMbiolab, Taiwan). The araC and araB- M11 expression elements were ligated into the same restriction enzyme cleavage pBRCMMCS using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction and the plastids were extracted for DNA sequencing confirmation. The plasmid with the correct sequence was named pBCM-araM11, which has the sequence shown in SEQ ID NO 98.

pET-OPTSUMO-OPTORF2以NdeISalI剪切後,利用Gel-MTM gel extraction system kit回收含有OPTSUMO-OPTORF2之DNA片段。利用T4 DNA連接酶將OPTSUMO-OPTORF2接入以相同限制酶剪切之pBCM-araM11中。將黏合產物轉形入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株並抽取質體進行DNA定序確認。將序列正確無誤之質體命名為pBA-OPTSUMO-OPTORF2,其具有如SEQ ID NO 46所示序列。 After pET-OPTSUMO-OPTORF2 was cleaved with NdeI and SalI , the DNA fragment containing OPTSUMO-OPTORF2 was recovered using the Gel- MTM gel extraction system kit. OPTSUMO-OPTORF2 was inserted into pBCM-araM11 cut with the same restriction enzymes using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction and the plastids were extracted for DNA sequencing confirmation. The plastid with the correct sequence was named pBA-OPTSUMO-OPTORF2, which has the sequence shown as SEQ ID NO 46.

前述含有araB-M11表現元件之DNA片段即本發明之阿拉伯糖誘導表現元件,其包含一啟動子(其-16部位如SEQ ID NO 03所示)、一T7噬菌體轉譯增強元件(SEQ ID NO 01)、及一核糖體結合部位(SEQ ID NO 02)。前述阿拉伯糖誘導表現元件係如中華民國發明專利申請案第103146225號案(申請日:西元2014年12月30日)所示,其具有如SEQ ID NO 04所示序列。 The aforementioned DNA fragment containing the araB- M11 expression element, that is, the arabinose-inducing expression element of the present invention, comprising a promoter (the 16th portion thereof is represented by SEQ ID NO 03) and a T7 phage translation enhancing element (SEQ ID NO 01) And a ribosome binding site (SEQ ID NO 02). The aforementioned arabinose-inducing expression element is shown in the case of the Republic of China Invention Patent Application No. 103146225 (application date: December 30, 2014), which has the sequence shown in SEQ ID NO:04.

小結summary

綜上所述,本實施例共製得5個豬第二型環狀病毒之外鞘蛋白質表現載體,分別為:pET-SUMO-ORF2(SEQ ID NO 42)、pET-OPTSUMO-ORF2(SEQ ID NO 43)、pET-SUMO-OPTORF2(SEQ ID NO 44)、pET-OPTSUMO-OPTORF2(SEQ ID NO 45)、及pBA-OPTSUMO-OPTORF2(SEQ ID NO 46),並請參第一圖所載示意圖。 In summary, in this example, five porcine second type circovirus outer sheath protein expression vectors were prepared, respectively: pET-SUMO-ORF2 (SEQ ID NO 42), pET-OPTSUMO-ORF2 (SEQ ID) NO 43), pET-SUMO-OPTORF2 (SEQ ID NO 44), pET-OPTSUMO-OPTORF2 (SEQ ID NO 45), and pBA-OPTSUMO-OPTORF2 (SEQ ID NO 46), and refer to the schematic diagram contained in the first figure .

實施例二:製備本發明之豬第二型環狀病毒之外鞘蛋白質。Example 2: Preparation of the porcine second type circovirus outer sheath protein of the present invention.

如前所述,實施例一所製得之各個載體(SEQ ID NO 42至46)含有外鞘蛋白質ORF2之DNA,可應用於外鞘蛋白質之生產。並且,為了純化及水溶性表現的需要,該目標蛋白質係與SUMO蛋白質及His tag合成為融合蛋白質,本文中將此融合蛋白質稱之為SUMO-ORF2融合蛋白質,並不再贅述該融合蛋白質係帶有His tag。本實施例將利用實施例一中所述之表現載體進行本發明SUMO-ORF2融合蛋白質之製備。 As described above, each of the vectors (SEQ ID NOS 42 to 46) prepared in Example 1 contains the DNA of the outer sheath protein ORF2, and can be applied to the production of outer sheath proteins. Furthermore, for the purpose of purification and water-soluble performance, the target protein is synthesized as a fusion protein with SUMO protein and His tag, and the fusion protein is referred to herein as a SUMO-ORF2 fusion protein, and the fusion protein band is not described again. Has His Tag. In this example, the preparation of the SUMO-ORF2 fusion protein of the present invention will be carried out using the expression vector described in Example 1.

大腸桿菌之轉形與重組SUMO-ORF2融合蛋白質之誘導表現Induction of Escherichia coli and Recombinant SUMO-ORF2 Fusion Protein (1)實驗步驟: (1) Experimental steps:

將pET-SUMO-ORF2、pET-OPTSUMO-ORF2、pET-SUMO-OPTORF2及pET-OPTSUMO-OPTORF2等表現載體分別轉形入E.coli BL21(DE3)(Yeastern,Taiwan)中。將pET-SUMO-ORF2轉形至E.coli Rosetta2(EMD Millipore,USA)中。將pBA-OPTSUMO-OPTORF2轉形入E.coli BL21(New England Biolabs,USA)中。轉形之方法參照廠商提供之操作步驟進行。 Expression vectors such as pET-SUMO-ORF2, pET-OPTSUMO-ORF2, pET-SUMO-OPTORF2, and pET-OPTSUMO-OPTORF2 were transformed into E. coli BL21 (DE3) (Yeastern, Taiwan), respectively. pET-SUMO-ORF2 was transformed into E. coli Rosetta 2 (EMD Millipore, USA). pBA-OPTSUMO-OPTORF2 was transformed into E. coli BL21 (New England Biolabs, USA). The method of transformation is carried out by referring to the steps provided by the manufacturer.

E.coli BL21(DE3)轉形株接種於含有康那黴素(kanamycin)(最終濃度為30μg/mL)之LB培養基中,於37℃與180rpm之條件下進行振盪培養。經隔夜培養後,菌液以1:100之比例接種至含有康那黴素(kanamycin)(最終濃度為30μg/mL)之LB培養基中。於37℃與180rpm之條件下進行振盪培養。將細菌培養至以分光光度計量測細胞濃度達OD600約0.4~0.6,加入0.1mM異丙基-β-D-硫代半乳糖苷(isopropyl-β-D-thiogalactoside,IPTG)進行蛋白質之誘導表現。誘導4小時後,離心(8,000×g,30分鐘,4℃)收集菌體部分並以蛋白質電泳與西方墨漬法觀察SUMO-ORF2融合蛋白質之表現情形。西方墨漬法中所使用之一級抗體與二級抗體分別為兔抗His tag多株抗體(rabbit anti-6×His polyclonal antibody;Protech,Taiwan)與鹼性磷酸酵素共軛山羊抗兔抗體【alkaline phosphatase-conjugated goat anti-rabbit IgG(H+L)】;所使用之呈色劑為NBT/BCIP(Thermo,USA)。另亦針對菌體進行可溶性蛋白質與不可溶性蛋白質之劃分(即,可溶性與否)並以蛋白質電泳觀察SUMO-ORF2融合蛋白質之可溶性表現情形。 The E. coli BL21 (DE3) transformant was inoculated into LB medium containing kanamycin (final concentration: 30 μg/mL), and shake culture was carried out at 37 ° C and 180 rpm. After overnight incubation, the bacterial solution was inoculated at a ratio of 1:100 to LB medium containing kanamycin (final concentration 30 μg/mL). The shaking culture was carried out at 37 ° C and 180 rpm. The bacteria were cultured to measure the cell concentration by spectrophotometry to an OD 600 of about 0.4 to 0.6, and 0.1 mM isopropyl-β-D-thiogalactoside (IPTG) was added for proteinization. Inducing performance. Four hours after the induction, the cells were collected by centrifugation (8,000 × g, 30 minutes, 4 ° C) and the expression of the SUMO-ORF2 fusion protein was observed by protein electrophoresis and Western blotting. The primary antibody and the secondary antibody used in the Western blotting method are rabbit anti-His tag polyclonal antibody (rabbit anti-6×His polyclonal antibody; Protech, Taiwan) and alkaline phosphatase conjugate goat anti-rabbit antibody [alkaline] Phosphatase-conjugated goat anti-rabbit IgG (H+L)]; the coloring agent used was NBT/BCIP (Thermo, USA). In addition, the division of soluble protein and insoluble protein (ie, solubility) was carried out for the cells, and the soluble performance of the SUMO-ORF2 fusion protein was observed by protein electrophoresis.

E.coli Rosetta2轉形株接種於含有氯黴素(chloramphenicol)(最終濃度為34μg/mL)與康那黴素(最終濃度為30μg/mL)之LB培養基中,於37℃與180rpm之條件下進行振盪培養。經隔夜培養後,菌液以1:100之比例接種至含有氯黴素(最終濃度為34μg/mL)與康那黴素(最終濃度為30μg/mL)之LB培養基中。於37℃與180rpm之條件下進行振盪培養。將細菌培養至以分光光度計量測細胞濃度達OD600約0.4~0.6,加入0.1mM IPTG進行蛋白質之誘導表現。誘導4小時後,離心(8,000×g,30分鐘,4℃)收集菌體部分並以蛋白質電泳與西方墨漬法觀察SUMO-ORF2融合蛋白質之表現情形。另亦針對菌體進行可溶性蛋白質與不可溶性蛋白質之劃分並以蛋白質電泳觀察SUMO-ORF2融合蛋白質之可溶性表現情形。 The E. coli Rosetta 2 transformant was inoculated into LB medium containing chloramphenicol (final concentration 34 μg/mL) and connamycin (final concentration 30 μg/mL) at 37 ° C and 180 rpm. The shaking culture was carried out. After overnight incubation, the bacterial solution was inoculated at a ratio of 1:100 to LB medium containing chloramphenicol (final concentration 34 μg/mL) and connamycin (final concentration 30 μg/mL). The shaking culture was carried out at 37 ° C and 180 rpm. The bacteria were cultured to measure the cell concentration by spectrophotometry to an OD 600 of about 0.4 to 0.6, and 0.1 mM IPTG was added for protein induction. Four hours after the induction, the cells were collected by centrifugation (8,000 × g, 30 minutes, 4 ° C) and the expression of the SUMO-ORF2 fusion protein was observed by protein electrophoresis and Western blotting. The soluble protein and the insoluble protein were also divided into the cells, and the soluble performance of the SUMO-ORF2 fusion protein was observed by protein electrophoresis.

E.coli BL21轉形株接種於含氯黴素(25μg/mL)之LB培養基中,於37℃與180rpm之條件下進行振盪培養。經隔夜培養後,將菌液以1:100之比例接種至含有氯黴素(25μg/mL)之LB培養基中。於37℃與180rpm之條件下進行振盪培養。將細菌培養至以分光光度計量測細胞濃度達OD600約0.4~0.6,加入0.2%阿拉伯糖進行蛋白質誘導表現。誘導4小時後,離心(8,000×g,30分鐘,4℃)收集菌體部分並以蛋白質電泳與西方墨漬法觀察SUMO-ORF2融合蛋白質之表現情形。另亦針對菌體進行可溶性蛋白質與不可溶性蛋白質之劃分並以蛋白質電泳觀察SUMO-ORF2融合蛋白質之可溶性表現情形。 The E. coli BL21 transformant was inoculated into LB medium containing chloramphenicol (25 μg/mL), and shake culture was carried out at 37 ° C and 180 rpm. After overnight incubation, the bacterial solution was inoculated at a ratio of 1:100 to LB medium containing chloramphenicol (25 μg/mL). The shaking culture was carried out at 37 ° C and 180 rpm. The bacteria were cultured to measure the cell concentration by spectrophotometry to an OD 600 of about 0.4 to 0.6, and 0.2% arabinose was added for protein-induced expression. Four hours after the induction, the cells were collected by centrifugation (8,000 × g, 30 minutes, 4 ° C) and the expression of the SUMO-ORF2 fusion protein was observed by protein electrophoresis and Western blotting. The soluble protein and the insoluble protein were also divided into the cells, and the soluble performance of the SUMO-ORF2 fusion protein was observed by protein electrophoresis.

蛋白質電泳膠片經掃描後,使用Image Quant TL 7.0(GE Healthcare Life Sciences,USA)軟體估算重組SUMO-ORF2融合蛋白質之表現百分比,並進一步計算融合蛋白質之產量。 After scanning the protein electrophoresis film, the percentage of performance of the recombinant SUMO-ORF2 fusion protein was estimated using Image Quant TL 7.0 (GE Healthcare Life Sciences, USA) software, and the yield of the fusion protein was further calculated.

(2)實驗結果: (2) Experimental results:

結果顯示,將pET-SUMO-ORF2與pET-OPTSUMO-ORF2轉形入E.coli BL21(DE3)中並進行誘導,重組SUMO-ORF2融合蛋白質完全不表現(第二圖)。將pET-SUMO-ORF2轉形入可產生 對應罕見密碼子tRNA之E.coli Rosetta2中並進行誘導。結果顯示,重組SUMO-ORF2融合蛋白質可表現(第二圖),且主要為可溶性蛋白質(第三圖);可溶性重組SUMO-ORF2融合蛋白質之產量為46.81mg/L。上述ORF2基因無法於E.coli BL21(DE3)中表現之情形說明ORF2所帶有之密碼子嚴重影響SUMO-ORF2融合蛋白質於大腸桿菌中的表現。 The results showed that pET-SUMO-ORF2 and pET-OPTSUMO-ORF2 were transformed into E. coli BL21 (DE3) and induced, and the recombinant SUMO-ORF2 fusion protein did not show at all (second panel). pET-SUMO-ORF2 was transformed into E. coli Rosetta2 which produced the corresponding rare codon tRNA and induced. The results showed that the recombinant SUMO-ORF2 fusion protein could be expressed (Fig. 2) and was mainly soluble protein (Fig. 3); the yield of the soluble recombinant SUMO-ORF2 fusion protein was 46.81 mg/L. The fact that the above ORF2 gene cannot be expressed in E. coli BL21 (DE3) indicates that the codon contained in ORF2 seriously affects the expression of the SUMO-ORF2 fusion protein in Escherichia coli.

將帶有密碼子最適化ORF2基因之pET-SUMO-OPTORF2轉形入E.coli BL21(DE3)中並進行誘導。結果顯示,重組SUMO-ORF2融合蛋白質可順利被表現(第二圖),且主要為可溶性蛋白質(第三圖);可溶性重組SUMO-ORF2融合蛋白質之產量為54.62mg/L。此結果說明,ORF2密碼子經最適化後,可提升SUMO-ORF2融合蛋白質於E.coli BL21(DE3)中的表現。 pET-SUMO-OPTORF2 with the codon-optimized ORF2 gene was transformed into E. coli BL21 (DE3) and induced. The results showed that the recombinant SUMO-ORF2 fusion protein was successfully expressed (Fig. 2) and was mainly soluble protein (Fig. 3); the yield of the soluble recombinant SUMO-ORF2 fusion protein was 54.62 mg/L. This result indicates that the ORF2 codon is optimized to enhance the performance of the SUMO-ORF2 fusion protein in E. coli BL21 (DE3).

將帶有密碼子最適化之ORF2全長基因與密碼子最適化SUMO基因之pET-OPTSUMO-OPTORF2表現載體轉形入E.coli BL21(DE3)中並進行誘導。結果顯示,重組SUMO-ORF2融合蛋白質可順利被表現(第二圖),且主要為可溶性蛋白質(第三圖);可溶性重組SUMO-ORF2融合蛋白質之產量為81.66mg/L。此結果說明,融合伴子基因之密碼子經最適化後,亦可進一步提升ORF2融合蛋白質於大腸桿菌中之表現。過去之研究未有針對SUMO基因密碼子進行最適化以提升融合蛋白質表現量之實例。本發明證實SUMO基因之密碼子經最適化後,可提升SUMO-ORF2融合蛋白質之產量。 The pET-OPTSUMO-OPTORF2 expression vector with the codon-optimized ORF2 full-length gene and the codon-optimized SUMO gene was transformed into E. coli BL21 (DE3) and induced. The results showed that the recombinant SUMO-ORF2 fusion protein was successfully expressed (Fig. 2) and was mainly soluble protein (Fig. 3); the yield of the soluble recombinant SUMO-ORF2 fusion protein was 81.66 mg/L. This result indicates that the codons of the fusion partner gene can be further optimized to further enhance the expression of the ORF2 fusion protein in E. coli. Past studies have not exemplified the optimization of the SUMO codon to increase the amount of fusion protein expression. The present invention confirms that the codon of the SUMO gene is optimized to increase the yield of the SUMO-ORF2 fusion protein.

將帶有下游序列-His tag DNA-密碼子最適化之SUMO基因-密碼子最適化ORF2基因之DNA片段嵌入阿拉伯糖誘導表現載體pBCM-araM11中並轉形入E.coli BL21中進行重組SUMO-ORF2融合蛋白質之生產。結果顯示,利用阿拉伯糖誘導表現系統亦可生產重組SUMO-ORF2融合蛋白質(第二圖),且主要為可溶性蛋白質(第三圖)。利用此表現載體進行SUMO-ORF2融合蛋白質之生產,可獲得最高之產量(103.04mg/L);與T7表現系統之最高產 量(81.66mg/L)相較之下,產量約可提升1.27倍。本發明實施例一之各表現載體於此實驗中表現可溶性SUMO-ORF2融合蛋白質的產量統整於下表三。 The SUMO gene-codon optimized ORF2 gene-optimized DNA fragment with the downstream sequence-His tag DNA-codon was inserted into the arabinose-inducible expression vector pBCM-araM11 and transformed into E. coli BL21 for recombinant SUMO- Production of ORF2 fusion protein. The results show that the recombinant SUMO-ORF2 fusion protein can also be produced using the arabinose-inducible expression system (Fig. 2), and is mainly soluble protein (Fig. 3). Using this expression vector for the production of the SUMO-ORF2 fusion protein, the highest yield (103.04 mg/L) was obtained; compared with the highest yield of the T7 performance system (81.66 mg/L), the yield was increased by 1.27 times. Each of the performance vectors of Example 1 of the present invention showed that the yield of the soluble SUMO-ORF2 fusion protein in this experiment was summarized in Table 3 below.

利用固定化金屬離子親和性層析進行重組SUMO-ORF2融合蛋白質之純化Purification of recombinant SUMO-ORF2 fusion protein by immobilized metal ion affinity chromatography

利用重組SUMO-ORF2融合蛋白質之N端帶有His tag能與鎳或鈷離子形成配位共價鍵之特性,採用固定化金屬離子親和性層析法進行蛋白質純化。純化之方式係利用蛋白質液相層析系統ÄKTA prime plus(GE Healthcare,Sweden)搭配5mL HiTrapTM Ni excel管柱(GE Healthcare,Sweden)進行。 The N-terminus of the recombinant SUMO-ORF2 fusion protein was characterized by the His tag to form a coordinating covalent bond with nickel or cobalt ions, and the protein was purified by immobilized metal ion affinity chromatography. Purified using protein liquid chromatography manner based system ÄKTA prime plus (GE Healthcare, Sweden ) with 5mL HiTrap TM Ni excel column (GE Healthcare, Sweden) performed.

將菌體懸浮於Lysis buffer(50mM Tris-HCl,500mM NaCl,pH 8.0)中,並利用超音波破碎儀將菌體破碎後,離心(8,000×g,15分鐘)收集上清液部分。以25mL Lysis buffer平衡管柱後,將破菌上清液注入HiTrapTM Ni excel管柱。待樣品注入完成後,以100mL清洗緩衝液(50mM Tris-HCl,500mM NaCl,30mM imidazole,pH 8.0)洗除非特異性結合之蛋白質。最後以150mL Elution buffer(50mM Tris-HCl,500mM NaCl,250mM imidazole,pH 8.0)沖提樹 脂上的重組蛋白質,其係藉助高濃度的imidazole與重組蛋白質競爭樹脂結合部位,致使重組SUMO-ORF2融合蛋白質自樹脂上被沖提下來。利用蛋白質電泳觀察重組SUMO-ORF2融合蛋白質之純化情形。實驗結果如第四圖中所示。 The cells were suspended in a Lysis buffer (50 mM Tris-HCl, 500 mM NaCl, pH 8.0), and the cells were disrupted by an ultrasonic breaker, and the supernatant fraction was collected by centrifugation (8,000 × g, 15 minutes). In the column balance 25mL Lysis buffer, the supernatant of disrupted bacteria injection HiTrap TM Ni excel column. After the sample injection was completed, the specifically bound protein was washed with 100 mL of washing buffer (50 mM Tris-HCl, 500 mM NaCl, 30 mM imidazole, pH 8.0). Finally, the recombinant protein on the resin was extracted with 150 mL of Elution buffer (50 mM Tris-HCl, 500 mM NaCl, 250 mM imidazole, pH 8.0), which competed with the recombinant protein for the resin binding site by high concentration of imidazole, resulting in recombinant SUMO-ORF2 fusion protein. It was washed out from the resin. The purification of the recombinant SUMO-ORF2 fusion protein was observed by protein electrophoresis. The experimental results are shown in the fourth figure.

以SUMO蛋白酶剪切本發明之SUMO-ORF2融合蛋白質The SUMO-ORF2 fusion protein of the present invention is cleaved by SUMO protease

本實驗利用SUMO蛋白酶剪切由大腸桿菌表現系統所製得的ORF2融合蛋白質。經剪切後,將可獲得帶有His tag之SUMO融合伴子片段與外鞘蛋白質片段。於本實驗中將透過大腸桿菌表現系統生產SUMO蛋白酶並應用於前揭用途。所屬領域具有通常知識者亦可採用其他方式取得的SUMO蛋白酶進行此步驟。 This experiment used SUMO protease to cleave the ORF2 fusion protein produced by the E. coli expression system. After cleavage, a SUMO fusion partner fragment with a His tag and an outer sheath protein fragment will be obtained. In this experiment, SUMO protease will be produced through the E. coli expression system and used in the previous application. This step can be carried out by a person skilled in the art who can also obtain SUMO protease by other means.

(1)重組SUMO蛋白酶表現載體pET-SUMOPH之建構: (1) Construction of recombinant SUMO protease expression vector pET-SUMOPH:

以麵包酵母基因體作為模板,利用SUMOPF(5’-CAATATGGATCCCTTGTTCCTGAATTAAATGAAAAAGACG-3’;SEQ ID NO 47)/SUMOPENZHISR(5’-GATATACTCGAGT TAGTGATGGTGATGGTGATGACCACTGCCGCTACCTTTTAAAG CGTCGGTTAAAATCAAATG-3;SEQ ID NO 48)引子組合進行SUMO蛋白酶基因之擴增。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,200ng麵包酵母基因體及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應5分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 Amplification of SUMO protease gene using SUMPPF (5'-CAATATGGATCCCTTGTTCCTGAATTAAATGAAAAAGACG-3'; SEQ ID NO 47)/SUMOPENZHISR (5'-GATATACTCGAGT TAGTGATGGTGATGGTGATGACCACTGCCGCTACCTTTTAAAG CGTCGGTTAAAATCAAATG-3; SEQ ID NO 48) primer combination . The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 200 ng baker's yeast genome and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 5 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

自酵母菌基因體擴增之SUMO蛋白酶基因以BamHI與Xb 0 I剪切後,利用T4 DNA接合酶將DNA片段接入以BamHI與SalI 剪切之pET29a中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-SUMOPH,其具有SEQ ID NO 49所示序列。 After the SUMO protease gene amplified from the yeast genome was cleaved with BamH I and Xb 0 I, the DNA fragment was ligated into pET29a cleaved with BamH I and Sal I using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pET-SUMOPH, which has the sequence shown in SEQ ID NO:49.

(2)重組D-SUMO蛋白酶表現載體pET-D-SUMOPH之建構: (2) Construction of recombinant D-SUMO protease expression vector pET-D-SUMOPH:

以Lambda噬菌體DNA(Promega,USA)作為模板,利用DF(5’-GATATAGGTACCATGACGAGCAAAGAAACCTTTACC-3’;SEQ ID NO 50)與DR(5’-CAATATGGATCCAACGATGCTG ATTGCCGTTC-3’;SEQ ID NO 51)引子組合進行D蛋白質基因之擴增。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng Lambda噬菌體DNA及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應5分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 Using Lambda phage DNA (Promega, USA) as a template, D protein was synthesized using DF (5'-GATATAGGTACCATGACGAGCAAAGAAACCTTTACC-3'; SEQ ID NO 50) in combination with DR (5'-CAATATGGATCCAACGATGCTG ATTGCCGTTC-3'; SEQ ID NO 51) primer Amplification of genes. The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 100 ng Lambda phage DNA and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 5 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

自Lambda噬菌體DNA擴增之D蛋白質基因以KpnI與BamHI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET29a中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-D,其具有SEQ ID NO 99所示序列。 After the D protein gene amplified from Lambda phage DNA was cleaved with Kpn I and BamH I, the DNA fragment was ligated into pET29a cleaved with the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pET-D, which has the sequence shown in SEQ ID NO 99.

自酵母菌基因體擴增之SUMO蛋白酶基因以BamHI與Xb 0 I剪切後,利用T4 DNA接合酶將DNA片段接入以BamHI與SalI 剪切之pET-D中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-D-SUMOPH,其具有SEQ ID NO 52所示序列。 After the SUMO protease gene amplified from the yeast genome was cleaved with BamH I and Xb 0 I, the DNA fragment was ligated into pET-D cleaved with BamH I and Sal I using T4 DNA ligase . The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pET-D-SUMOPH, which has the sequence shown in SEQ ID NO 52.

(3)重組蛋白酶之誘導表現與純化: (3) Induction and purification of recombinant protease:

將pET-SUMOPH與pET-D-SUMOPH等表現載體分別轉形入E.coli BL21(DE3)中。將E.coli BL21(DE3)轉形株接種於含有康那黴素(kanamycin)(最終濃度為30μg/mL)之LB培養基中,於37℃與180rpm之條件下進行振盪培養。經隔夜培養後,菌液以1:100之比例接種至含有康那黴素(最終濃度為30μg/mL)之LB培養基中。於37℃與180rpm之條件下進行振盪培養。將細菌培養至以分光光度計量測細胞濃度達OD600約0.4~0.6,加入0.1mM IPTG進行蛋白質之誘導表現。誘導4小時後,離心(8,000×g,30分鐘,4℃)收集菌體部分進行可溶性蛋白質與不可溶性蛋白質之劃分並以蛋白質電泳與西方墨漬法觀察重組蛋白酶之可溶性表現情形。西方墨漬法中所使用之一級抗體與二級抗體分別為兔抗His tag多株抗體與鹼性磷酸酵素共軛山羊抗兔抗體;所使用之呈色劑為NBT/BCIP。重組蛋白酶之純化方法同重組ORF2融合蛋白質之純化方法。 Expression vectors such as pET-SUMOPH and pET-D-SUMOPH were transformed into E. coli BL21 (DE3), respectively. The E. coli BL21 (DE3) transformant was inoculated into LB medium containing kanamycin (final concentration: 30 μg/mL), and shake culture was carried out at 37 ° C and 180 rpm. After overnight incubation, the bacterial solution was inoculated at a ratio of 1:100 to LB medium containing connamycin (final concentration of 30 μg/mL). The shaking culture was carried out at 37 ° C and 180 rpm. The bacteria were cultured to measure the cell concentration by spectrophotometry to an OD 600 of about 0.4 to 0.6, and 0.1 mM IPTG was added for protein induction. Four hours after the induction, the cells were collected by centrifugation (8,000 × g, 30 minutes, 4 ° C) to separate the soluble protein and the insoluble protein, and the soluble performance of the recombinant protease was observed by protein electrophoresis and Western blotting. The primary antibody and secondary antibody used in the Western blotting method are rabbit anti-His tag multi-drug antibody and alkaline phosphatase conjugate goat anti-rabbit antibody; the coloring agent used is NBT/BCIP. The purification method of the recombinant protease is the same as the purification method of the recombinant ORF2 fusion protein.

結果顯示,SUMO蛋白酶與D-SUMO蛋白酶皆可於E.coli BL21(DE3)中表現(第五圖),產量分別為20.55mg/L與46.94mg/L;其中D-SUMO蛋白酶的產量較高,其莫耳數約為SUMO蛋白酶的2.2倍。此結果說明,利用融合表現之策略可增進SUMO蛋白酶於大腸桿菌中的表現量。 The results showed that both SUMO protease and D-SUMO protease were expressed in E.coli BL21(DE3) (figure 5), and the yields were 20.55 mg/L and 46.94 mg/L, respectively. The yield of D-SUMO protease was higher. Its molar number is about 2.2 times that of SUMO protease. This result demonstrates that the strategy of fusion performance can enhance the performance of SUMO protease in E. coli.

接著利用重組蛋白酶之C端帶有His tag之特性,採用固定化金屬離子親和性層析法進行蛋白質純化。結果顯示,利用固定化 金屬離子親和性管柱可進行胞內可溶性重組SUMO蛋白酶與D-SUMO蛋白酶之純化(第六圖);其中D-SUMO蛋白酶之純化產量較高,由1L培養液中可純化21.50mg之蛋白質,約為SUMO蛋白酶純化產量(15.33mg)的1.4倍。 Next, the protein was purified by immobilized metal ion affinity chromatography using the His tag of the C-terminus of the recombinant protease. The results show that the use of immobilization The metal ion affinity column can be used for purification of intracellular soluble recombinant SUMO protease and D-SUMO protease (Fig. 6); wherein the purification yield of D-SUMO protease is high, and 21.50 mg of protein can be purified from 1 L culture solution. It is about 1.4 times the purified yield of SUMO protease (15.33 mg).

(4)剪切重組SUMO-ORF2融合蛋白質,並觀察類病毒顆粒的形成: (4) Shearing the recombinant SUMO-ORF2 fusion protein and observing the formation of viroid-like particles:

將純化之重組SUMO-ORF2融合蛋白質與重組蛋白酶(SUMO蛋白酶或D-SUMO蛋白酶)以重量比為1:0.05之比例混合(例如1mg重組ORF2融合蛋白質與0.05mg重組蛋白酶),並使混合物於4℃下作用16小時。將剪切後之蛋白質溶液放入Amicon ultra-15 ultracel-100K離心管(Merck Millipore,USA)中,在4℃以2,600×g離心至適當體積。之後利用100kDa之再生纖維素(regeberated cellulose)過濾膜進行剪切蛋白質之過濾。結果顯示,利用100kDa之過濾膜可有效去除融合伴子,毋需利用管柱層析方法進行ORF2與融合伴子之分離,可有效節省抗原生產成本(第七圖)。 The purified recombinant SUMO-ORF2 fusion protein is mixed with a recombinant protease (SUMO protease or D-SUMO protease) at a weight ratio of 1:0.05 (for example, 1 mg of recombinant ORF2 fusion protein and 0.05 mg of recombinant protease), and the mixture is allowed to be 4 Act at °C for 16 hours. The sheared protein solution was placed in an Amicon ultra-15 ultracel-100K centrifuge tube (Merck Millipore, USA) and centrifuged at 2,600 x g to an appropriate volume at 4 °C. The filtered protein was then filtered using a 100 kDa regeberated cellulose filter membrane. The results show that the 100kDa filter membrane can effectively remove the fusion partner, and the separation of ORF2 and fusion partner is needed by column chromatography, which can effectively save the antigen production cost (seventh figure).

接著,分別將SUMO-ORF2融合蛋白質、經蛋白酶剪切的SUMO-ORF2融合蛋白質、及經蛋白酶剪切再經過濾後所得之ORF2融合蛋白質置於銅網(copper grid)上,於室溫下放置三分鐘。然後以濾紙(filter paper)將多餘水分吸乾後,加入醋酸鈾醯(uranyl acetate)染劑進行負染色(negative stain),染色時間約為40秒至1分鐘。之後利用濾紙將多餘染劑吸乾,以場發射穿透式電子顯微鏡JEM-2100F(JEOL,Japan)進行類病毒顆粒之觀察。 Next, the SUMO-ORF2 fusion protein, the protease-cleaved SUMO-ORF2 fusion protein, and the ORF2 fusion protein obtained by protease cleavage and filtration were placed on a copper grid and placed at room temperature. three minutes. Then, the excess water was blotted dry with a filter paper, and then a uranyl acetate dye was added for negative staining for about 40 seconds to 1 minute. Thereafter, the excess dye was blotted dry using a filter paper, and the virus-like particles were observed by a field emission transmission electron microscope JEM-2100F (JEOL, Japan).

結果顯示,SUMO-ORF2融合蛋白質無法形成類病毒顆粒,但經蛋白酶剪切的重組SUMO-ORF2融合蛋白質、及經蛋白酶剪切再經過濾後所得之ORF2融合蛋白質皆可形成類病毒顆粒(第八圖)。由穿透式電子顯微鏡圖形計算類病毒顆粒的平均粒徑約為19 nm。 The results showed that the SUMO-ORF2 fusion protein could not form viroid-like particles, but the recombinant SUMO-ORF2 fusion protein by protease cleavage and the ORF2 fusion protein obtained by protease cleavage and filtration could form viroid-like particles (eighth) Figure). The average particle size of the virus-like particles calculated by the transmission electron microscope pattern is about 19 Nm.

實施例三:製備豬干擾素。Example 3: Preparation of porcine interferon.

本發明揭露豬干擾素為特別合適作為豬第二型環狀病毒之次單位疫苗的佐劑。是故本實施例中以大腸桿菌宿主細胞生產本發明之次單位疫苗所需的豬干擾素α及豬干擾素γ。 The present invention discloses that porcine interferon is an adjuvant particularly suitable as a secondary unit vaccine for porcine second type circovirus. Therefore, in the present example, porcine interferon alpha and porcine interferon gamma required for producing the subunit vaccine of the present invention by E. coli host cells are used.

重組豬干擾素α(IFN-α)與γ(IFN-γ)基因之合成Synthesis of recombinant porcine interferon alpha (IFN-α) and γ (IFN-γ) genes (1)IFN-α基因之合成: (1) Synthesis of IFN-α gene:

依據大腸桿菌的偏好密碼子將熟成豬干擾素α-6之胺基酸序列反向推導為核苷酸序列。依據前述核苷酸序列設計引子:OPTIFNA-T1、OPTIFNA-T2、OPTIFNA-T3、OPTIFNA-T4、OPTIFNA-T5、OPTIFNA-T6、OPTIFNA-T7、OPTIFNA-T8、OPTIFNAF及OPTIFNAR,其序列如下表四所示。 The amino acid sequence of the mature porcine interferon alpha-6 was reversely deduced into a nucleotide sequence according to the preferred codon of E. coli. According to the above nucleotide sequence design primers: OPTIFNA-T1, OPTIFNA-T2, OPTIFNA-T3, OPTIFNA-T4, OPTIFNA-T5, OPTIFNA-T6, OPTIFNA-T7, OPTIFNA-T8, OPTIFNAF and OPTIFNAR, the sequence is shown in Table 4 below. Shown.

以OPTIFNA-T1~OPTIFNA-T8作為模板引子,OPTIFNAF與OPTIFNAR則作為擴增引子。利用重疊延伸聚合酶連鎖反應大量擴增密碼子最適化之IFN-α基因。在50μL的PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM的各引子及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、58℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 OPTIFNA-T1~OPTIFNA-T8 was used as a template primer, and OPTIFNAF and OPTIFNAR were used as amplification primers. The codon-optimized IFN-α gene was amplified in large numbers by overlapping extension polymerase chain reaction. The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM primer and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 58 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

利用CloneJET PCR Cloning Kit(Thermo,USA)進行基因之選殖,並將黏合混合物(ligation mixture)轉形入大腸桿菌ECOS 9-5。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pJET-IFNA-6,其具有如SEQ ID NO 63所示序列。經定序驗證,密碼子最適化之IFN-α 基因具有SEQ ID NO 64所示序列。 The genes were colonized using the CloneJET PCR Cloning Kit (Thermo, USA) and the ligation mixture was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pJET-IFNA-6, which has the sequence shown as SEQ ID NO 63. Codon-optimized IFN-α The gene has the sequence shown in SEQ ID NO: 64.

(2)IFN-γ之合成: (2) Synthesis of IFN-γ:

依據大腸桿菌的偏好密碼子將熟成豬干擾素γ之胺基酸序列反向推導為核苷酸序列。依據前述核苷酸序列設計引子:OPTIFNR-T1、OPTIFNR-T2、OPTIFNR-T3、OPTIFNR-T4、OPTIFNR-T5、OPTIFNR-T6、OPTIFNR-T7、OPTIFNR-T8、OPTIFNRF及OPTIFNRR,其序列如下表五所示。 The amino acid sequence of the mature porcine interferon gamma is reversely deduced into a nucleotide sequence according to the preferred codon of E. coli. According to the above nucleotide sequence design primers: OPTIFNR-T1, OPTIFNR-T2, OPTIFNR-T3, OPTIFNR-T4, OPTIFNR-T5, OPTIFNR-T6, OPTIFNR-T7, OPTIFNR-T8, OPTIFNRF and OPTIFNRR, the sequence is shown in Table 5 below Shown.

以OPTIFNR-T1~OPTIFNR-T8作為模板引子,OPTIFNRF與OPTIFNRR則作為擴增引子。利用重疊延伸聚合酶連鎖反應大量擴增密碼子最適化之IFN-γ基因。在50μL的PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM的各引子及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、57℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 OPTIFNR-T1~OPTIFNR-T8 was used as a template primer, and OPTIFNRF and OPTIFNRR were used as amplification primers. The codon-optimized IFN-γ gene was amplified in large numbers by overlapping extension polymerase chain reaction. The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM primer and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 57 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

利用CloneJET PCR Cloning Kit進行基因之選殖,並將黏合混合物轉形入大腸桿菌ECOS 9-5。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pJET-IFNR,其具有如SEQ ID NO 75所示序列。經定序驗證,密碼子最適化之IFN-γ基因具有SEQ ID NO 76所示序列。 Gene selection was performed using the CloneJET PCR Cloning Kit and the adhesive mixture was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pJET-IFNR, which has the sequence shown as SEQ ID NO:75. Upon sequencing verification, the codon-optimized IFN-γ gene has the sequence shown in SEQ ID NO 76.

豬干擾素α與γ表現載體之建構Construction of Porcine Interferon α and γ Expression Vector (1)pET-OPTPIFNAH表現載體之建構: (1) Construction of pET-OPTPIFNAH expression vector:

以pJET-IFNA-6質體作為模板,利用PIFNANDEIF(5’-CAATATCATATGTGCGATCTGCCGCAAACC-3’;SEQ ID NO 77)/PIFNAHISSALIR(5’-GATATAGTCGACTTATTAGTGATGGTG ATGGTGATGTTCCTTTTTACGCAGGCGGTC-3’;SEQ ID NO 78)引子組合進行IFN-α基因之擴增。在50μL PCR反應混合物中包 含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng pJET-IFNA-6及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 Using pJET-IFNA-6 plastid as a template, IFN-α was performed using PIFNANDEIF (5'-CAATATCATATGTGCGATCTGCCGCAAACC-3'; SEQ ID NO 77)/PIFNAHISSALIR (5'-GATATAGTCGACTTATTAGTGATGGTG ATGGTGATGTTCCTTTTTACGCAGGCGGTC-3'; SEQ ID NO 78) primer combination Amplification of genes. The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 100 ng pJET-IFNA-6 and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

PCR產物以NdeI與SalI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET29a中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-OPTPIFNAH,其具有SEQ ID NO 79所示序列。 After the PCR product was cleaved with Nde I and Sal I, the DNA fragment was ligated into pET29a cleaved with the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pET-OPTPIFNAH, which has the sequence shown in SEQ ID NO:79.

(2)pBA-OPTPIFNAH表現載體之建構: (2) Construction of pBA-OPTPIFNAH expression vector:

利用上述PCR擴增之IFN-α基因以NdeI與SalI剪切後,利用T4 DNA接合酶將DNA片段分別接入以相同限制酶剪切之pBCM-araM11中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體分別命名為pBA-OPTPIFNAH,其具有SEQ ID NO 80所示序列。 After the above-mentioned PCR-amplified IFN-α gene was cleaved with Nde I and Sal I, the DNA fragment was separately ligated into pBCM-araM11 which was cleaved by the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plastids with the correct DNA sequence were designated pBA-OPTPIFNAH, respectively, which has the sequence set forth in SEQ ID NO:80.

(3)pET-SUMO-OPTPIFNAH表現載體之建構: (3) Construction of pET-SUMO-OPTPIFNAH expression vector:

以麵包酵母基因體作為模板,利用SUMOF(SEQ ID NO 25)/SUMOR2(5’-ACCACCAATCTGTTCTCTGTGAGC-3’;SEQ ID NO 81)引子組合進行SUMO基因之擴增。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP 與dCTP,1μM擴增引子,200ng麵包酵母基因體及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應5分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用Gel-MTM gel extraction system kit進行PCR產物之回收。 Amplification of the SUMO gene was carried out using the Baker's yeast genome as a template and using the SUMOF (SEQ ID NO 25)/SUMOR2 (5'-ACCACCAATCTGTTCTCTGTGAGC-3'; SEQ ID NO 81) primer combination. The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 200 ng baker's yeast genome and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 5 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using a Gel- MTM gel extraction system kit.

以pJET-IFNA-6質體作為模板,利用SUMOIFNAF(5’-GCTCACAGAGAACAGATTGGTGGTTGCGATCTGCCGCAAACC-3’;SEQ ID NO 82)/PIFNAHISSALIR(SEQ ID NO 78)引子組合進行IFN-α基因之擴增。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng pJET-IFNA-6及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應5分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用Gel-MTM gel extraction system kit進行PCR產物之回收。 Amplification of the IFN-α gene was carried out using the pJET-IFNA-6 plastid as a template, using SUMOIFNAF (5'-GCTCACAGAGAACAGATTGGTGGTTGCGATCTGCCGCAAACC-3'; SEQ ID NO 82)/PIFNAHISSALIR (SEQ ID NO 78) primer combination. The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 100 ng pJET-IFNA-6 and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 5 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using a Gel- MTM gel extraction system kit.

以上述之兩個PCR產物作為模板,利用SUMOF(SEQ ID NO 25)/PIFNAHISSALIR(SEQ ID NO 78)引子組合進行聚合酶連鎖反應即可獲得SUMO-IFN-α融合基因。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng SUMO PCR產物,100ng IFN-α PCR產物及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應1分鐘(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 The SUMO-IFN-α fusion gene can be obtained by performing a polymerase chain reaction using the SUMOF (SEQ ID NO 25)/PIFNAHISSALIR (SEQ ID NO 78) primer combination using the above two PCR products as a template. 1X GDP-HiFi PCR Buffer B, 200μM dATP, dTTP, dGTP and dCTP, 1μM amplification primer, 100ng SUMO PCR product, 100ng IFN-α PCR product and 1U GDP-HiFi DNA polymerization in 50μL PCR reaction mixture Enzyme. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 1 minute (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

PCR產物以KpnI與SalI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET29a中。將黏合產物轉形進入大 腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-SUMO-OPTPIFNAH,其具有SEQ ID NO 83所示序列。 After the PCR product was cleaved with Kpn I and Sal I, the DNA fragment was ligated into pET29a cleaved with the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plastid with the correct DNA sequence was named pET-SUMO-OPTPIFNAH, which has the sequence shown in SEQ ID NO:83.

(4)pET-OPTSUMO-OPTPIFNAH表現載體之建構: (4) Construction of pET-OPTSUMO-OPTPIFNAH expression vector:

以pET-OPTSUMO-ORF2(SEQ ID NO 43)作為模板,利用OPTSUMOF(SEQ ID NO 35)/OPTSUMOR2(5’-GCCGCC GATTTGTTCACGG-3’;SEQ ID NO 84)引子組合進行OPTSUMO基因之擴增。 Amplification of the OPTSUMO gene was carried out using pET-OPTSUMO-ORF2 (SEQ ID NO 43) as a template using the primer combination of OPTSUMOF (SEQ ID NO 35)/OPTSUMOR2 (5'-GCCGCC GATTTGTTCACGG-3'; SEQ ID NO 84).

在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ngpET-OPTSUMO-ORF2及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用Gel-MTM gel extraction system kit進行PCR產物之回收。 One-fold GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 100 ng pET-OPTSUMO-ORF2 and 1 U GDP-HiFi DNA polymerase were included in the 50 μL PCR reaction mixture. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using a Gel- MTM gel extraction system kit.

以pJET-IFNA-6質體(SEQ ID NO 63)作為模板,利用OPTSUMOIFNAF(CCGTGAACAAATCGGCGGCTGCGATCTG CCGCAAACC;SEQ ID NO 85)/PIFNAHISSALIR(SEQ ID NO 78)引子組合進行IFN-α基因之擴增。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng pJET-IFNA-6及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用Gel-MTM gel extraction system kit進行PCR產物之回收。 Amplification of the IFN-α gene was carried out using the pJET-IFNA-6 plastid (SEQ ID NO 63) as a template using the OPTSUMOIFNAF (CCGTGAACAAATCGGCGGCTGCGATCTG CCGCAAACC; SEQ ID NO 85)/PIFNAHISSALIR (SEQ ID NO 78) primer combination. The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 100 ng pJET-IFNA-6 and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using a Gel- MTM gel extraction system kit.

以上述之兩個PCR產物作為模板,利用OPTSUMOF(SEQ ID NO 35)/PIFNAHISSALIR(SEQ ID NO 78)引子組合進行聚合酶連鎖反應即可獲得OPTSUMO-IFN-α融合基因。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng OPTSUMO PCR產物,100ng IFN-α PCR產物及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應1分鐘(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 The OPTSUMO-IFN-α fusion gene can be obtained by performing a polymerase chain reaction using a combination of OPTSUMOF (SEQ ID NO 35)/PIFNAHISSALIR (SEQ ID NO 78) primers using the above two PCR products as a template. 1x GDP-HiFi PCR buffer B, 200μM dATP, dTTP, dGTP and dCTP, 1μM amplification primer, 100ng OPTSUMO PCR product, 100ng IFN-α PCR product and 1U GDP-HiFi DNA polymerization in 50μL PCR reaction mixture Enzyme. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 1 minute (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

PCR產物以KpnI與SalI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET29a中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-OPTSUMO-OPTPIFNAH,其具有SEQ ID NO 86所示序列。 After the PCR product was cleaved with Kpn I and Sal I, the DNA fragment was ligated into pET29a cleaved with the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pET-OPTSUMO-OPTPIFNAH, which has the sequence shown in SEQ ID NO:86.

(5)pBA-OPTSUMO-OPTPIFNAH表現載體之建構: (5) Construction of pBA-OPTSUMO-OPTPIFNAH expression vector:

pET-OPTSUMO-OPTPIFNAH以NaeI與SalI剪切後,利用Gel-MTM gel extraction system kit回收含有OPTSUMO-IFN-α融合基因之DNA片段。利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pBCM-araM11中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pBA-OPTSUMO-OPTPIFNAH,其具有SEQ ID NO 87所示序列。 After pET-OPTSUMO-OPTPIFNAH was cleaved with Nae I and Sal I, a DNA fragment containing the OPTSUMO-IFN-α fusion gene was recovered using a Gel-M TM gel extraction system kit. The DNA fragment was ligated into pBCM-araM11 which was cleaved with the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plastid with the correct DNA sequence was named pBA-OPTSUMO-OPTPIFNAH, which has the sequence shown in SEQ ID NO:87.

(6)pET-OPTPIFNRH表現載體之建構: (6) Construction of pET-OPTPIFNRH expression vector:

以pJET-IFNR質體作為模板,利用PIFNRNDEIF(5’-CAATATCATATGCAAGCCCCGTTTTTCAAAGAA-3’;SEQ ID NO 88)/PIFNRHISSALIR(5’-GATATAGTCGACTTATTAGTGATG GTGATGGTGATGTTTGCTGGCACGCTGACC-3’;SEQ ID NO 89)引子組合進行IFN-γ基因之擴增。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng pJET-IFNR及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 Using the pJET-IFNR plastid as a template, the IFN-γ gene was carried out using the primer combination of PIFNRNDEIF (5'-CAATATCATATGCAAGCCCCGTTTTTCAAAGAA-3'; SEQ ID NO 88)/PIFNRHISSALIR (5'-GATATAGTCGACTTATTAGTGATG GTGATGGTGATGTTTGCTGGCACGCTGACC-3'; SEQ ID NO 89) Amplification. One-fold GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 100 ng pJET-IFNR and 1 U GDP-HiFi DNA polymerase were included in the 50 μL PCR reaction mixture. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

PCR產物以NdeI與SalI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET29a中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-OPTPIFNRH,其具有SEQ ID NO 90所示序列。 After the PCR product was cleaved with Nde I and Sal I, the DNA fragment was ligated into pET29a cleaved with the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pET-OPTPIFNRH, which has the sequence shown in SEQ ID NO 90.

(7)pET-SUMO-OPTPIFNRH表現載體之建構: (7) Construction of pET-SUMO-OPTPIFNRH expression vector:

以麵包酵母基因體作為模板,利用SUMOF(SEQ ID NO 25)/SUMOR2(SEQ ID NO 81)引子組合進行SUMO基因之擴增。擴增條件與PCR回收方式如前所述。 Amplification of the SUMO gene was carried out using the baker's yeast genome as a template and the SUMOF (SEQ ID NO 25)/SUMOR2 (SEQ ID NO 81) primer combination. The amplification conditions and PCR recovery methods are as described above.

以pJET-IFNR質體(SEQ ID NO 75)作為模板,利用SUMOIFNRF(5’-GCTCACAGAGAACAGATTGGTGGTCAAGCC CCGTTTTTCAAAGAA-3’;SEQ ID NO 91)/PIFNRHISSALIR(SEQ ID NO 89)引子組合進行IFN-γ基因之擴增。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng pJET-IFNR及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用Gel-MTM gel extraction system kit進行PCR產物之回收。 Amplification of IFN-γ gene using pJET-IFNR plastid (SEQ ID NO 75) as a template, using SUMOIFNRF (5'-GCTCACAGAGAACAGATTGGTGGTCAAGCC CCGTTTTTCAAAGAA-3'; SEQ ID NO 91) / PIFNRHISSALIR (SEQ ID NO 89) primer combination . One-fold GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 100 ng pJET-IFNR and 1 U GDP-HiFi DNA polymerase were included in the 50 μL PCR reaction mixture. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using a Gel- MTM gel extraction system kit.

以上述之兩個PCR產物作為模板,利用SUMOF(SEQ ID NO 25)/PIFNRHISSALIR(SEQ ID NO 89)引子組合進行聚合酶連鎖反應即可獲得SUMO-IFN-γ融合基因。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng SUMO PCR產物,100ng IFN-γ PCR產物及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應1分鐘(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 The SUMO-IFN-γ fusion gene can be obtained by performing a polymerase chain reaction using the SUMOF (SEQ ID NO 25)/PIFNRHISSALIR (SEQ ID NO 89) primer combination using the above two PCR products as a template. 1X GDP-HiFi PCR Buffer B, 200μM dATP, dTTP, dGTP and dCTP, 1μM amplification primer, 100ng SUMO PCR product, 100ng IFN-γ PCR product and 1U GDP-HiFi DNA polymerization in 50μL PCR reaction mixture Enzyme. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 1 minute (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

PCR產物以KpnI與SalI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET29a中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-SUMO-OPTPIFNRH,其具有SEQ ID NO 92所示序列。 After the PCR product was cleaved with Kpn I and Sal I, the DNA fragment was ligated into pET29a cleaved with the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pET-SUMO-OPTPIFNRH, which has the sequence shown in SEQ ID NO 92.

(8)pET-OPTSUMO-OPTPIFNRH表現載體之建構: (8) Construction of pET-OPTSUMO-OPTPIFNRH expression vector:

以pET-OPTSUMO-ORF2(SEQ ID NO 43)作為模板,利用OPTSUMOF(SEQ ID NO 35)/OPTSUMOR2(SEQ ID NO 84) 引子組合進行OPTSUMO基因之擴增。擴增條件與PCR回收方式如前所述。 Using pET-OPTSUMO-ORF2 (SEQ ID NO 43) as a template, using OPTSUMOF (SEQ ID NO 35)/OPTSUMOR2 (SEQ ID NO 84) A primer combination is used to amplify the OPTSUMO gene. The amplification conditions and PCR recovery methods are as described above.

以pJET-IFNR質體(SEQ ID NO 75)作為模板,利用OPTSUMOIFNRF(5’-CCGTGAACAAATCGGCGGCCAAGCCCC GTTTTTCAAAGAAATC-3’;SEQ ID NO 93)/PIFNRHISSALIR(SEQ ID NO 89)引子組合進行豬干擾素γ基因之擴增。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng pJET-IFNR及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用Gel-MTM gel extraction system kit進行PCR產物之回收。 Expansion of porcine interferon gamma gene using pJET-IFNR plastid (SEQ ID NO 75) as a template using OPTSUMOIFNRF (5'-CCGTGAACAAATCGGCGGCCAAGCCCC GTTTTTCAAAGAAATC-3'; SEQ ID NO 93)/PIFNRHISSALIR (SEQ ID NO 89) primer combination increase. One-fold GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 100 ng pJET-IFNR and 1 U GDP-HiFi DNA polymerase were included in the 50 μL PCR reaction mixture. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using a Gel- MTM gel extraction system kit.

以上述之兩個PCR產物作為模板,利用OPTSUMOF(SEQ ID NO 35)/PIFNRHISSALIR(SEQ ID NO 89)引子組合進行聚合酶連鎖反應即可獲得OPTSUMO-IFN-γ融合基因。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引子,100ng OPTSUMO PCR產物,100ng豬干擾素γ PCR產物及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應2分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應1分鐘(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 The OPTSUMO-IFN-γ fusion gene can be obtained by performing a polymerase chain reaction using a combination of OPTSUMOF (SEQ ID NO 35)/PIFNRHISSALIR (SEQ ID NO 89) primers using the above two PCR products as a template. Includes 1x GDP-HiFi PCR Buffer B, 200μM dATP, dTTP, dGTP and dCTP, 1μM amplification primer, 100ng OPTSUMO PCR product, 100ng porcine interferon gamma PCR product and 1U GDP-HiFi DNA in 50μL PCR reaction mixture Polymerase. The PCR reaction conditions were 96 ° C for 2 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 1 minute (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

PCR產物以KpnI與SalI剪切後,利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pET29a中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名 為pET-OPTSUMO-OPTPIFNRH,其具有SEQ ID NO 94所示序列。 After the PCR product was cleaved with Kpn I and Sal I, the DNA fragment was ligated into pET29a cleaved with the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pET-OPTSUMO-OPTPIFNRH, which has the sequence shown in SEQ ID NO:94.

(9)pBA-OPTSUMO-OPTPIFNRH表現載體之建構: (9) Construction of pBA-OPTSUMO-OPTPIFNRH expression vector:

pET-OPTSUMO-OPTPIFNRH以NdeI與SalI剪切後,利用Gel-MTM gel extraction system kit回收含有OPTSUMO-IFR-γ融合基因之DNA片段。利用T4 DNA接合酶將DNA片段接入以相同限制酶剪切之pBCM-araM11中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pBA-OPTSUMO-OPTPIFNRH,其具有SEQ ID NO 95所示序列。 After pET-OPTSUMO-OPTPIFNRH was cleaved with Nde I and Sal I, the DNA fragment containing the OPTSUMO-IFR-γ fusion gene was recovered using the Gel-M TM gel extraction system kit. The DNA fragment was ligated into pBCM-araM11 which was cleaved with the same restriction enzyme using T4 DNA ligase. The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pBA-OPTSUMO-OPTPIFNRH, which has the sequence shown in SEQ ID NO: 95.

重組豬干擾素之表現及純化Performance and purification of recombinant porcine interferon (1)重組豬干擾素之表現: (1) Performance of recombinant porcine interferon:

將pET-OPTPIFNAH(SEQ ID NO 79)、pBA-OPTPIFNAH(SEQ ID NO 80)、pET-SUMO-OPTPIFNAH(SEQ ID NO 83)、pET-OPTSUMO-OPTPIFNAH(SEQ ID NO 86)及pBA-OPTSUMO-OPTPIFNAH(SEQ ID NO 87)分別轉形至E.coli Shuffle(NEB,USA)中;將pET-OPTPIFNRH(SEQ ID NO 90)、pET-SUMO-OPTPIFNHR(SEQ ID NO 92)、pET-OPTSUMO-OPTPIFNRH(SEQ ID NO 94)及pBA-OPTSUMO-OPTPIFNRH(SEQ ID NO 95)分別轉形入E.coli BL21(DE3)中。將轉形株接種於含有康那黴素(最終濃度為30μg/mL)之LB培養基中,於37℃與180rpm之條件下進行振盪培養。經隔夜培養後,菌液以1:100之比例接種至含有康那黴素最終濃度為30μg/mL)之LB培養基中。於37℃與180rpm之條件下進行振盪培養。將細菌培養至以分光光度計量測細胞濃度達OD600約0.4~0.6,加入0.1mM IPTG於25℃與180rpm之條件下進行蛋白質之誘導表現。誘導4小時 後,離心(8,000×g,30分鐘,4℃)收集菌體部分並以蛋白質電泳觀察重組豬干擾素之表現情形。另亦針對菌體進行可溶性蛋白質與不可溶性蛋白質之劃分並以蛋白質電泳觀察重組豬干擾素之可溶性表現情形。 pET-OPTPIFNAH (SEQ ID NO 79), pBA-OPTPIFNAH (SEQ ID NO 80), pET-SUMO-OPTPIFNAH (SEQ ID NO 83), pET-OPTSUMO-OPTPIFNAH (SEQ ID NO 86), and pBA-OPTSUMO-OPTPIFNAH (SEQ ID NO 87) was transformed into E. coli Shuffle (NEB, USA), respectively; pET-OPTPIFNRH (SEQ ID NO 90), pET-SUMO-OPTPIFNHR (SEQ ID NO 92), pET-OPTSUMO-OPTPIFNRH ( SEQ ID NO 94) and pBA-OPTSUMO-OPTPIFNRH (SEQ ID NO 95) were transformed into E. coli BL21 (DE3), respectively. The transformed strain was inoculated into an LB medium containing connamycin (final concentration: 30 μg/mL), and shake culture was carried out at 37 ° C and 180 rpm. After overnight incubation, the bacterial solution was inoculated at a ratio of 1:100 to an LB medium containing a final concentration of kanamycin of 30 μg/mL. The shaking culture was carried out at 37 ° C and 180 rpm. The bacteria were cultured to measure the cell concentration by spectrophotometry to an OD600 of about 0.4 to 0.6, and the induction performance of the protein was carried out by adding 0.1 mM IPTG at 25 ° C and 180 rpm. Four hours after the induction, the cells were collected by centrifugation (8,000 × g, 30 minutes, 4 ° C) and the expression of recombinant porcine interferon was observed by protein electrophoresis. The soluble protein and insoluble protein were also divided into the cells, and the soluble performance of recombinant porcine interferon was observed by protein electrophoresis.

請參第九圖(A至E)的實驗結果。結果顯示本發明藉由E.coli Shuffle宿主成功生產可溶性重組豬IFN-α與SUMO-IFN-α融合蛋白質,可免除折疊步驟,以避免折疊效率不佳影響生物活性之問題。在SUMO-IFN-α融合蛋白質表現部分,將SUMO基因之密碼子經最適化後,可提升SUMO-IFN-α融合蛋白質之產量。不同表現系統對SUMO-IFN-α融合蛋白質表現之影響結果顯示,利用突變型阿拉伯糖誘導表現系統生產SUMO-IFN-α之產量較高(155.07mg/L;第九圖(E))。又請參第九圖(F至I)的實驗結果。結果顯示利用SUMO融合之策略可增進重組豬IFN-γ的可溶性。SUMO基因之密碼子經最適化後,可提升SUMO-IFN-γ融合蛋白質的產量。不同表現系統對SUMO-IFN-γ融合蛋白質表現之影響結果顯示,利用T7誘導表現系統及突變型阿拉伯糖誘導表現系統生產SUMO-IFN-γ之產量皆相當理想。 Please refer to the experimental results in Figure 9 (A to E). The results show that the present invention successfully produces soluble recombinant porcine IFN-α and SUMO-IFN-α fusion protein by E. coli Shuffle host, and the folding step can be eliminated to avoid the problem of poor folding efficiency affecting biological activity. In the expression part of the SUMO-IFN-α fusion protein, the SUMO-IFN-α fusion protein can be increased by optimizing the codon of the SUMO gene. The effect of different expression systems on the performance of SUMO-IFN-α fusion protein showed that the production of SUMO-IFN-α by the mutant arabinose-induced expression system was higher (155.07 mg/L; ninth (E)). Please also refer to the experimental results in the ninth figure (F to I). The results show that the strategy of SUMO fusion can improve the solubility of recombinant porcine IFN-γ. The SUMO gene codon is optimized to increase the yield of the SUMO-IFN-γ fusion protein. The effect of different expression systems on the performance of SUMO-IFN-γ fusion protein showed that the production of SUMO-IFN-γ by T7-induced expression system and mutant arabinose-induced expression system was quite satisfactory.

(2)重組SUMO蛋白酶表現載體pET-D-SUMOP之建構與表現: (2) Construction and performance of recombinant SUMO protease expression vector pET-D-SUMOP:

為了剪切前揭段落中所述於大腸桿菌表現系統中表現的豬干擾素,以取得不帶有SUMO蛋白質片段的豬干擾素,本實驗中將透過大腸桿菌表現系統生產SUMO蛋白酶。所屬領域具有通常知識者亦可採用其他方式取得的SUMO蛋白酶進行此步驟。 In order to cleave porcine interferon expressed in the E. coli expression system described in the previous paragraph to obtain porcine interferon without the SUMO protein fragment, SUMO protease was produced in this experiment through the E. coli expression system. This step can be carried out by a person skilled in the art who can also obtain SUMO protease by other means.

以麵包酵母基因體作為模板,利用SUMOPF(SEQ ID NO 47)/SUMOPENZR(5’-GATATACTCGAGTTATTTTAAAGCGTCGGT TAAAATCAAATG-3;SEQ ID NO 96)引子組合進行SUMO蛋白酶基因之擴增。在50μL PCR反應混合物中包含1倍GDP-HiFi PCR緩衝液B,200μM的dATP、dTTP、dGTP與dCTP,1μM擴增引 子,200ng麵包酵母基因體及1U GDP-HiFi DNA聚合酶。PCR反應條件為96℃反應5分鐘(1個步驟);94℃反應30秒、55℃反應30秒、68℃反應30秒(35個循環);68℃反應5分鐘(1個步驟)。PCR反應結束後,利用瓊脂醣膠體電泳確認有無預估大小之DNA片段。然後利用PCR-MTM Clean Up system kit進行PCR產物之回收。 Amplification of the SUMO protease gene was carried out using the baker's yeast genome as a template and using SUMOPF (SEQ ID NO 47) / SUMOPENZR (5'-GATATACTCGAGTTATTTTAAAGCGTCGGT TAAAATCAAATG-3; SEQ ID NO 96) primer combination. The 50 μL PCR reaction mixture contained 1×GDP-HiFi PCR buffer B, 200 μM dATP, dTTP, dGTP and dCTP, 1 μM amplification primer, 200 ng baker's yeast genome and 1 U GDP-HiFi DNA polymerase. The PCR reaction conditions were 96 ° C for 5 minutes (1 step); 94 ° C for 30 seconds, 55 ° C for 30 seconds, 68 ° C for 30 seconds (35 cycles); 68 ° C for 5 minutes (1 step). After the end of the PCR reaction, agarose gel electrophoresis was used to confirm the presence or absence of a DNA fragment of an estimated size. The PCR product was then recovered using the PCR- MTM Clean Up system kit.

自酵母菌基因體擴增之SUMO蛋白酶基因以BamHI與Xb 0 I剪切後,利用T4 DNA接合酶將DNA片段接入以BamHI與SalI剪切之pET-D中。將黏合產物轉形進入大腸桿菌ECOS 9-5中。以菌落聚合酶連鎖反應挑選轉形株。利用DNA電泳確認轉形株中的重組質體帶有外插DNA後,抽取轉形株中的質體並進行DNA定序。將DNA序列正確無誤的質體命名為pET-D-SUMOP,其具有SEQ ID NO 97所示序列。 After the SUMO protease gene amplified from the yeast genome was cleaved with BamH I and Xb 0 I, the DNA fragment was ligated into pET-D cut with BamH I and Sal I using T4 DNA ligase . The adhesive product was transformed into E. coli ECOS 9-5. The transgenic plants were selected by colony polymerase chain reaction. After confirming the recombinant plastid in the transformed strain with the extrapolated DNA by DNA electrophoresis, the plastid in the transformed strain was extracted and subjected to DNA sequencing. The plasmid with the correct DNA sequence was named pET-D-SUMOP, which has the sequence shown in SEQ ID NO:97.

將pET-D-SUMOP(SEQ ID NO 97)轉形入E.coli BL21(DE3)中。將E.coli BL21(DE3)轉形株接種於含有康那黴素(最終濃度為30μg/mL)之LB培養基中,於37℃與180rpm之條件下進行振盪培養。經隔夜培養後,菌液以1:100之比例接種至含有康那黴素(最終濃度為30μg/mL)之LB培養基中。於37℃與180rpm之條件下進行振盪培養。將細菌培養至以分光光度計量測細胞濃度達OD600約0.4~0.6,加入0.1mM IPTG於28℃與180rpm之條件下進行蛋白質之誘導表現。誘導4小時後,離心(8,000×g,30分鐘,4℃)收集菌體部分。 pET-D-SUMOP (SEQ ID NO 97) was transformed into E. coli BL21 (DE3). The E. coli BL21 (DE3) transformant was inoculated into LB medium containing connamycin (final concentration of 30 μg/mL), and shake culture was carried out at 37 ° C and 180 rpm. After overnight incubation, the bacterial solution was inoculated at a ratio of 1:100 to LB medium containing connamycin (final concentration of 30 μg/mL). The shaking culture was carried out at 37 ° C and 180 rpm. The bacteria were cultured to measure the cell concentration by spectrophotometry to an OD 600 of about 0.4 to 0.6, and the induction performance of the protein was carried out by adding 0.1 mM IPTG at 28 ° C and 180 rpm. After 4 hours of induction, the bacterial fraction was collected by centrifugation (8,000 × g, 30 minutes, 4 ° C).

(3)重組豬干擾素之剪切與純化: (3) Shearing and purification of recombinant porcine interferon:

將分別帶有SUMO-豬干擾素融合蛋白質表現載體與SUMO蛋白酶表現載體之轉形株經誘導表現後,離心(8,000×g,30分鐘,4℃)收集菌體部分。將收集之菌體懸浮於適量之Lysis buffet(20mM sodium phosphate,500mM NaCl,pH 7.4)中,使其於600nm 下之吸光值達50。利用超音波破碎儀將菌體破碎後,離心(8,000×g,15分鐘,4℃)收集上清液部分。將純化之重組SUMO-豬干擾素融合蛋白質與重組蛋白酶(SUMO蛋白酶)以重量比值為4之比例混合,於4℃靜置16小時;此階段中,SUMO-豬干擾素融合蛋白質會被SUMO蛋白酶剪切成SUMO蛋白質與C端帶有His-tag之豬干擾素。 The transformed strains carrying the SUMO-porcine interferon fusion protein expression vector and the SUMO protease expression vector were induced, and the bacterial fraction was collected by centrifugation (8,000 × g, 30 minutes, 4 ° C). The collected cells were suspended in an appropriate amount of Lysis buffet (20 mM sodium phosphate, 500 mM NaCl, pH 7.4) to make them at 600 nm. The absorbance value is up to 50. After the cells were disrupted by an ultrasonic breaker, the supernatant fraction was collected by centrifugation (8,000 × g, 15 minutes, 4 ° C). The purified recombinant SUMO-porcine interferon fusion protein was mixed with the recombinant protease (SUMO protease) at a weight ratio of 4, and allowed to stand at 4 ° C for 16 hours; in this stage, the SUMO-porcine interferon fusion protein was subjected to SUMO protease. Shear into SUMO protein and porcine interferon with His-tag at the C-terminus.

接著採用固定化金屬離子親和性層析法進行蛋白質純化。純化之方式係利用蛋白質液相層析系統ÄKTA prime plus搭配5mL HiTrapTM Ni excel管柱進行。以25mL Lysis buffer平衡管柱後,將融合蛋白質剪切溶液注入HiTtapTM Ni excel管柱。待樣品注入完成後,以100mL清洗緩衝液(20mM sodium phosphate,500mM NaCl,30mM imidazole,pH 7.4)洗除非特異性結合之蛋白質。最後以150mL Elution buffer(20mM sodium phosphate,500mM NaCl,250mM imidazole,pH 7.4)沖提樹脂上的重組豬干擾素並利用蛋白質電泳觀察純化情形(如第十圖中所示)。 Protein purification is then carried out using immobilized metal ion affinity chromatography. Purified using protein-based embodiment ÄKTA prime plus liquid chromatography system with 5mL HiTrap TM Ni excel column for. In the column balance 25mL Lysis buffer, the fusion protein solution was injected into the shear HiTtap TM Ni excel column. After the sample injection was completed, the specifically bound protein was washed with 100 mL of washing buffer (20 mM sodium phosphate, 500 mM NaCl, 30 mM imidazole, pH 7.4). Finally, recombinant porcine interferon on the resin was eluted with 150 mL of Elution buffer (20 mM sodium phosphate, 500 mM NaCl, 250 mM imidazole, pH 7.4) and the purification was observed by protein electrophoresis (as shown in the tenth panel).

實施例四:本發明之防治豬第二型環狀病毒感染的組合物的製備及應用。Example 4: Preparation and application of the composition for preventing and treating porcine type 2 circovirus infection of the present invention.

本實施例係使用前述實施例二及實施例三所製得的ORF2、SUMO-ORF2融合蛋白質、及豬干擾素製備防治豬第二型環狀病毒感染的組合物。在許多樣品中,該組合物進一步包含MONTANIDETM ISA 563 VG佐劑(SEPPIC,France)及/或MONTANIDETM GEL 01佐劑(SEPPIC,France)。將各項成分依下列各實驗設計混合,再接種於仔豬,以觀察誘發之免疫反應或是否產生不良反應(如,嘔吐、發抖、精神抑鬱、呼吸急促及施打部位腫脹情形;若出現3種以上的前揭症狀且症狀出現的比例高於50%,則判定該組合物的安全性較低)。 In the present embodiment, the ORF2, SUMO-ORF2 fusion protein prepared by the above-mentioned Example 2 and Example 3, and porcine interferon were used to prepare a composition for preventing and treating porcine type 2 circovirus infection. In many samples, the composition further comprises an adjuvant MONTANIDE TM ISA 563 VG (SEPPIC, France), and / or adjuvant MONTANIDE TM GEL 01 (SEPPIC, France). The ingredients were mixed according to the following experimental designs and then inoculated into piglets to observe the induced immune response or whether adverse reactions (such as vomiting, trembling, depression, shortness of breath, and swelling of the affected area were observed; The above pre-existing symptoms and the proportion of symptoms appearing above 50% determine that the composition is less safe).

(1)實驗1:豬干擾素含量對本發明組合物之安全性的影響: (1) Experiment 1: Effect of porcine interferon content on the safety of the composition of the present invention:

選擇3週齡田間仔豬14頭,以隨機方式進行分組,共分為A~G七組,每組豬隻數目為2頭。各組進行1次肌肉注射免疫,免疫劑量為2mL。有關各疫苗成分如下表六。於施打疫苗當天與隔天進行觀察並記錄不良臨床反應出現比例。 Fourteen-week-old field piglets were selected and grouped in a random manner. They were divided into seven groups of A~G, and the number of pigs in each group was two. Each group was intramuscularly immunized once, and the immunization dose was 2 mL. The relevant vaccine components are listed in Table 6 below. On the day of the vaccine, the next day was observed and the proportion of adverse clinical reactions was recorded.

實驗結果顯示(表七),經接種V-001樣品的豬隻呈現精神抑鬱之臨床症狀,但無其他不良反應。經接種V-002樣品的豬隻出現嘔吐與發抖的症狀。此外,V-003樣品的安全性較具疑慮,而經接種V-004樣品、V-005樣品、或V-006樣品的豬隻的不良反應較為輕微。據此後續試驗中豬干擾素的含量將維持於每劑量(2mL)為25μg。 The experimental results showed that (Table 7), the pigs inoculated with V-001 samples showed clinical symptoms of depression, but no other adverse reactions. Pigs inoculated with V-002 samples showed symptoms of vomiting and trembling. In addition, the safety of the V-003 sample was more doubtful, and the adverse reactions of pigs inoculated with V-004 samples, V-005 samples, or V-006 samples were mild. According to this follow-up test, the content of porcine interferon will be maintained at 25 μg per dose (2 mL).

(2)實驗2:佐劑含量對本發明組合物之安全性的影響: (2) Experiment 2: Effect of adjuvant content on the safety of the composition of the invention:

選擇3週齡田間仔豬73頭,以隨機方式進行分組,共分為A與B兩組;A組豬隻數目為38頭,B組則為35頭。各組進行1次肌肉注射免疫,免疫劑量為2mL。有關各疫苗成分如下表八。於施打疫苗當天與隔天進行觀察並記錄不良臨床反應出現比例。實驗結果顯示(表九),V-009樣品的安全性較高,但V-008樣品的安全性亦可接受。 Seventy-three-year-old field piglets were selected and grouped in a random manner, which were divided into two groups: A and B; the number of pigs in group A was 38, and that in group B was 35. Each group was intramuscularly immunized once, and the immunization dose was 2 mL. The relevant vaccine components are listed in Table VIII below. On the day of the vaccine, the next day was observed and the proportion of adverse clinical reactions was recorded. The experimental results show (Table 9) that the safety of the V-009 sample is higher, but the safety of the V-008 sample is also acceptable.

(3)實驗3:不同佐劑對本發明組合物之免疫誘發效果的影響: (3) Experiment 3: Effect of different adjuvants on the immune-inducing effect of the composition of the present invention:

本實驗於家畜衛生試驗所動物用藥品檢定分所基因改造產品(genetically modified organisms,GMOs)動物舍中進行。選擇4週齡無特定病原豬隻11頭,以隨機方式進行分組,共分為A~E五組;A~D為實驗組,每組豬隻數目為2頭,E組為控制組,豬隻 頭數為3頭。A~D組之豬隻於4與6週齡各進行1次肌肉注射免疫,免疫劑量為2mL;E組不進行免疫處理。有關各疫苗成分如下表十。 This experiment was carried out in animally certified organisms (GMOs) animal houses in the Animal Health Laboratory. 11 pigs with no specific pathogens at 4 weeks of age were randomly divided into five groups: A~E; A~D were experimental groups, each group had 2 pigs, and group E was control group, pig. only The number of heads is three. Pigs in group A~D were immunized with intramuscular injection at 4 and 6 weeks of age, and the immunization dose was 2 mL; group E was not treated with immunotherapy. The relevant vaccine components are listed in Table 10 below.

各組豬隻於8週齡時,進行PCV2攻毒,並於攻毒後4週,全數進行剖檢。於豬隻免疫前(4週齡)、免疫後(6與8週齡)及攻毒後(9、10、11、12週齡)進行血清與血漿樣品之收集。利用市售ELISA套組(BioCheck,Netherlands)測定血清中抗PCV2抗體之力價。利用即時定量聚合酶連鎖反應測定血漿中之病毒含量。 All groups of pigs were challenged with PCV2 at 8 weeks of age, and all were necropsy 4 weeks after challenge. Serum and plasma samples were collected before pig immunization (4 weeks old), after immunization (6 and 8 weeks old), and after challenge (9, 10, 11 and 12 weeks old). The titer of anti-PCV2 antibodies in serum was determined using a commercially available ELISA kit (BioCheck, Netherlands). The amount of virus in the plasma was determined using an instant quantitative polymerase chain reaction.

實驗結果顯示V-009、V-010、V-011、及V-012皆能誘發抗ORF2抗體產生(第十一圖),且能降低實驗豬隻的病毒血症(第十二圖)。從實驗結果亦可觀察到每劑量(2mL)含有67μg ORF2的含量即可產生足夠的免疫效果(V-011及V-012)。 The results showed that V-009, V-010, V-011, and V-012 all induced anti-ORF2 antibody production (Fig. 11) and reduced viremia in experimental pigs (Fig. 12). From the experimental results, it was also observed that each dose (2 mL) containing 67 μg of ORF2 produced sufficient immunological effects (V-011 and V-012).

(4)實驗4:採用SUMO-ORF2融合蛋白質或OFR2對本發明組合物之免疫誘發效果的影響: (4) Experiment 4: Effect of SUMO-ORF2 fusion protein or OFR2 on the immunostimulatory effect of the composition of the present invention:

本實驗於家畜衛生試驗所動物用藥品檢定分所基因改造產品動物舍中進行。選擇4週齡無特定病原豬隻16頭,以隨機方式進行分組,共分為A~E五組;A~D為實驗組,每組豬隻數目為3 頭,E組為控制組,豬隻頭數為4頭。A~D組之豬隻於4與6週齡各進行1次肌肉注射免疫,免疫劑量為2mL;E組不進行免疫處理。有關各疫苗成分如下表十一。 This experiment was carried out in the animal house of the genetic modification product of the animal drug testing branch of the Animal Health Laboratory. Sixteen pigs with no specific pathogens at 4 weeks of age were selected and grouped in a random manner, divided into five groups A~E; A~D were experimental groups, and the number of pigs in each group was 3 Head, group E is the control group, and the number of pigs is four. Pigs in group A~D were immunized with intramuscular injection at 4 and 6 weeks of age, and the immunization dose was 2 mL; group E was not treated with immunotherapy. The relevant vaccine components are shown in Table 11 below.

各組豬隻於8週齡時,進行PCV2攻毒,並於攻毒後5週,全數進行剖檢。在特定時間點下進行血清與血漿樣品之收集。利用市售ELISA套組測定血清中抗PCV2抗體之力價。利用即時定量聚合酶連鎖反應測定血漿中之病毒含量。 All groups of pigs were challenged with PCV2 at 8 weeks of age and all were necropsy 5 weeks after challenge. Collection of serum and plasma samples was performed at specific time points. The titer of anti-PCV2 antibodies in serum was determined using a commercially available ELISA kit. The amount of virus in the plasma was determined using an instant quantitative polymerase chain reaction.

實驗結果顯示各樣品都能誘發豬隻產生抗PCV2抗體,其中又以V-013樣品(含27μg之ORF2融合蛋白質)的效果最好(第十三圖)。此外,所有樣品都能降低豬隻的病毒血症(第十四圖)。 The results showed that each sample induced pigs to produce anti-PCV2 antibodies, and V-013 samples (containing 27 μg of ORF2 fusion protein) were the best (Fig. 13). In addition, all samples reduced viremia in pigs (Figure 14).

(5)實驗5:豬干擾素α與豬干擾素γ對本發明組合物之免疫誘發效果的影響: (5) Experiment 5: Effect of porcine interferon alpha and porcine interferon gamma on the immunogenic effect of the composition of the present invention:

本實驗於病原污染程度較低且無PCV2感染之牧場中進行。選用無感染PCV2之4週齡1代SPF豬隻20頭。以隨機方式進行分組,共分為A~E五組,每組豬隻數目為4頭;A~D為實驗組,E組為控制組。A~D組之豬隻於4與7週齡各進行1次肌肉注射 免疫,免疫劑量為2mL;E組不進行免疫處理。有關各疫苗成分如下表十二。在特定時間點下進行血清樣品之收集。利用市售ELISA套組測定血清中抗PCV2抗體之力價。 This experiment was conducted in a pasture with low pathogen contamination and no PCV2 infection. Twenty-two-year-old SPF pigs of 4 weeks old without PCV2 were selected. They were grouped in a random manner and divided into five groups of A~E. The number of pigs in each group was 4; A~D was the experimental group and E was the control group. Pigs in groups A~D were given intramuscular injections at 4 and 7 weeks of age. The immunization dose was 2 mL; the E group was not subjected to immunotherapy. The relevant vaccine components are shown in Table 12 below. The collection of serum samples was performed at specific time points. The titer of anti-PCV2 antibodies in serum was determined using a commercially available ELISA kit.

實驗結果顯示,單獨添加IFN-α(V-018)或IFN-γ(V-019)於本發明組合物中對於誘發免疫反應均有增強的效果;其中添加IFN-α的效果優於添加IFN-γ。另一方面,於本發明組合物中同時添加IFN-α與IFN-γ(V-020)可誘發更好的免疫反應,顯示在本發明組合物中,IFN-α與IFN-γ對於增強免疫反應具有協同效果(第十五圖)。 The experimental results show that the addition of IFN-α (V-018) or IFN-γ (V-019) alone has an enhanced effect on the induction of immune response in the composition of the present invention; the effect of adding IFN-α is better than adding IFN. - γ. On the other hand, the simultaneous addition of IFN-α and IFN-γ (V-020) to the composition of the present invention induces a better immune response, showing that IFN-α and IFN-γ enhance immunity in the composition of the present invention. The reaction has a synergistic effect (fifteenth map).

<110> 財團法人農業科技研究院 <110> Institute of Agricultural Science and Technology

<120> 豬第二型環狀病毒之外鞘蛋白質的製備方法及含該外鞘蛋白質的醫藥組合物 <120> Preparation method of porcine second type circovirus outer sheath protein and pharmaceutical composition containing the outer sheath protein

<130> <130>

<160> 99 <160> 99

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 10 <211> 10

<212> DNA <212> DNA

<213> ENTEROBACTERIA PHAGE T7 <213> ENTEROBACTERIA PHAGE T7

<400> 1 <400> 1

<210> 2 <210> 2

<211> 10 <211> 10

<212> DNA <212> DNA

<213> Escherichia coli <213> Escherichia coli

<400> 2 <400> 2

<210> 3 <210> 3

<211> 10 <211> 10

<212> DNA <212> DNA

<213> Escherichia coli <213> Escherichia coli

<400> 3 <400> 3

<210> 4 <210> 4

<211> 89 <211> 89

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> EXPRESSION CASSETTE <223> EXPRESSION CASSETTE

<400> 4 <400> 4

<210> 5 <210> 5

<211> 19 <211> 19

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 5 <400> 5

<210> 6 <210> 6

<211> 29 <211> 29

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 6 <400> 6

<210> 7 <210> 7

<211> 36 <211> 36

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 7 <400> 7

<210> 8 <210> 8

<211> 44 <211> 44

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 8 <400> 8

<210> 9 <210> 9

<211> 702 <211> 702

<212> DNA <212> DNA

<213> porcine circovirus <213> porcine circovirus

<400> 9 <400> 9

<210> 10 <210> 10

<211> 73 <211> 73

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 10 <400> 10

<210> 11 <210> 11

<211> 93 <211> 93

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 11 <400> 11

<210> 12 <210> 12

<211> 77 <211> 77

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 12 <400> 12

<210> 13 <210> 13

<211> 85 <211> 85

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 13 <400> 13

<210> 14 <210> 14

<211> 84 <211> 84

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 14 <400> 14

<210> 15 <210> 15

<211> 86 <211> 86

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 15 <400> 15

<210> 16 <210> 16

<211> 90 <211> 90

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 16 <400> 16

<210> 17 <210> 17

<211> 90 <211> 90

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 17 <400> 17

<210> 18 <210> 18

<211> 75 <211> 75

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 18 <400> 18

<210> 19 <210> 19

<211> 67 <211> 67

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 19 <400> 19

<210> 20 <210> 20

<211> 64 <211> 64

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 20 <400> 20

<210> 21 <210> 21

<211> 60 <211> 60

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 21 <400> 21

<210> 22 <210> 22

<211> 36 <211> 36

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 22 <400> 22

<210> 23 <210> 23

<211> 36 <211> 36

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 23 <400> 23

<210> 24 <210> 24

<211> 705 <211> 705

<212> DNA <212> DNA

<213> porcine circovirus <213> porcine circovirus

<400> 24 <400> 24

<210> 25 <210> 25

<211> 37 <211> 37

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 25 <400> 25

<210> 26 <210> 26

<211> 36 <211> 36

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 26 <400> 26

<210> 27 <210> 27

<211> 58 <211> 58

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 27 <400> 27

<210> 28 <210> 28

<211> 61 <211> 61

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 28 <400> 28

<210> 29 <210> 29

<211> 62 <211> 62

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 29 <400> 29

<210> 30 <210> 30

<211> 55 <211> 55

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 30 <400> 30

<210> 31 <210> 31

<211> 53 <211> 53

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 31 <400> 31

<210> 32 <210> 32

<211> 53 <211> 53

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 32 <400> 32

<210> 33 <210> 33

<211> 53 <211> 53

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 33 <400> 33

<210> 34 <210> 34

<211> 46 <211> 46

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 34 <400> 34

<210> 35 <210> 35

<211> 37 <211> 37

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 35 <400> 35

<210> 36 <210> 36

<211> 31 <211> 31

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 36 <400> 36

<210> 37 <210> 37

<211> 294 <211> 294

<212> DNA <212> DNA

<213> Escherichia coli <213> Escherichia coli

<400> 37 <400> 37

<210> 38 <210> 38

<211> 82 <211> 82

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 38 <400> 38

<210> 39 <210> 39

<211> 19 <211> 19

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 39 <400> 39

<210> 40 <210> 40

<211> 18 <211> 18

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 40 <400> 40

<210> 41 <210> 41

<211> 18 <211> 18

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 41 <400> 41

<210> 42 <210> 42

<211> 6315 <211> 6315

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 42 <400> 42

<210> 43 <210> 43

<211> 6315 <211> 6315

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 43 <400> 43

<210> 44 <210> 44

<211> 6318 <211> 6318

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 44 <400> 44

<210> 45 <210> 45

<211> 6318 <211> 6318

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 45 <400> 45

<210> 46 <210> 46

<211> 4688 <211> 4688

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 46 <400> 46

<210> 47 <210> 47

<211> 40 <211> 40

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 47 <400> 47

<210> 48 <210> 48

<211> 75 <211> 75

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 48 <400> 48

<210> 49 <210> 49

<211> 6051 <211> 6051

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 49 <400> 49

<210> 50 <210> 50

<211> 36 <211> 36

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 50 <400> 50

<210> 51 <210> 51

<211> 32 <211> 32

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 51 <400> 51

<210> 52 <210> 52

<211> 6351 <211> 6351

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 52 <400> 52

<210> 53 <210> 53

<211> 64 <211> 64

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 53 <400> 53

<210> 54 <210> 54

<211> 79 <211> 79

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 54 <400> 54

<210> 55 <210> 55

<211> 67 <211> 67

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 55 <400> 55

<210> 56 <210> 56

<211> 93 <211> 93

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 56 <400> 56

<210> 57 <210> 57

<211> 81 <211> 81

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 57 <400> 57

<210> 58 <210> 58

<211> 83 <211> 83

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 58 <400> 58

<210> 59 <210> 59

<211> 90 <211> 90

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 59 <400> 59

<210> 60 <210> 60

<211> 85 <211> 85

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 60 <400> 60

<210> 61 <210> 61

<211> 18 <211> 18

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 61 <400> 61

<210> 62 <210> 62

<211> 21 <211> 21

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 62 <400> 62

<210> 63 <210> 63

<211> 3472 <211> 3472

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 63 <400> 63

<210> 64 <210> 64

<211> 498 <211> 498

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> IFN-α GENE <223> IFN-α GENE

<400> 64 <400> 64

<210> 65 <210> 65

<211> 66 <211> 66

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 65 <400> 65

<210> 66 <210> 66

<211> 78 <211> 78

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 66 <400> 66

<210> 67 <210> 67

<211> 76 <211> 76

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 67 <400> 67

<210> 68 <210> 68

<211> 86 <211> 86

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 68 <400> 68

<210> 69 <210> 69

<211> 94 <211> 94

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 69 <400> 69

<210> 70 <210> 70

<211> 73 <211> 73

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 70 <400> 70

<210> 71 <210> 71

<211> 72 <211> 72

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 71 <400> 71

<210> 72 <210> 72

<211> 64 <211> 64

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 72 <400> 72

<210> 73 <210> 73

<211> 21 <211> 21

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 73 <400> 73

<210> 74 <210> 74

<211> 18 <211> 18

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 74 <400> 74

<210> 75 <210> 75

<211> 3403 <211> 3403

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 75 <400> 75

<210> 76 <210> 76

<211> 429 <211> 429

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> IFN-γ GENE <223> IFN-γ GENE

<400> 76 <400> 76

<210> 77 <210> 77

<211> 30 <211> 30

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 77 <400> 77

<210> 78 <210> 78

<211> 57 <211> 57

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 78 <400> 78

<210> 79 <210> 79

<211> 5784 <211> 5784

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 79 <400> 79

<210> 80 <210> 80

<211> 4154 <211> 4154

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 80 <400> 80

<210> 81 <210> 81

<211> 24 <211> 24

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 81 <400> 81

<210> 82 <210> 82

<211> 42 <211> 42

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 82 <400> 82

<210> 83 <210> 83

<211> 6138 <211> 6138

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 83 <400> 83

<210> 84 <210> 84

<211> 19 <211> 19

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 84 <400> 84

<210> 85 <210> 85

<211> 37 <211> 37

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 85 <400> 85

<210> 86 <210> 86

<211> 6138 <211> 6138

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 86 <400> 86

<210> 87 <210> 87

<211> 4508 <211> 4508

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 87 <400> 87

<210> 88 <210> 88

<211> 33 <211> 33

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 88 <400> 88

<210> 89 <210> 89

<211> 54 <211> 54

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 89 <400> 89

<210> 90 <210> 90

<211> 5715 <211> 5715

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 90 <400> 90

<210> 91 <210> 91

<211> 45 <211> 45

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 91 <400> 91

<210> 92 <210> 92

<211> 6069 <211> 6069

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 92 <400> 92

<210> 93 <210> 93

<211> 43 <211> 43

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 93 <400> 93

<210> 94 <210> 94

<211> 6069 <211> 6069

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 94 <400> 94

<210> 95 <210> 95

<211> 4439 <211> 4439

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 95 <400> 95

<210> 96 <210> 96

<211> 42 <211> 42

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PRIMER <223> PRIMER

<400> 96 <400> 96

<210> 97 <210> 97

<211> 6318 <211> 6318

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 97 <400> 97

<210> 98 <210> 98

<211> 3662 <211> 3662

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 98 <400> 98

<210> 99 <210> 99

<211> 5671 <211> 5671

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 99 <400> 99

<210> 100 <210> 100

<211> 2340 <211> 2340

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> PLASMID <223> PLASMID

<400> 100 <400> 100

Claims (19)

一種防治豬第二型環狀病毒感染的組合物,其包含:2.5至250μg/mL之豬第二型環狀病毒之外鞘蛋白質;2.5至25μg/mL之豬干擾素α;2.5至25μg/mL之豬干擾素γ;及一醫藥可接受之載劑。 A composition for preventing infection of a porcine type 2 circovirus comprising: porcine second type circovirus outer sheath protein of 2.5 to 250 μg/mL; porcine interferon alpha of 2.5 to 25 μg/mL; 2.5 to 25 μg/ Swine interferon gamma in mL; and a pharmaceutically acceptable carrier. 如請求項第1項所述之組合物,其包含:3.5至170μg/mL之豬第二型環狀病毒之外鞘蛋白質;2.5至20μg/mL之豬干擾素α;2.5至20μg/mL之豬干擾素γ;及一醫藥可接受之載劑。 The composition of claim 1, which comprises: 3.5 to 170 μg/mL of porcine second type circovirus outer sheath protein; 2.5 to 20 μg/mL of porcine interferon alpha; 2.5 to 20 μg/mL Porcine interferon gamma; and a pharmaceutically acceptable carrier. 如請求項第2項所述之組合物,其包含:3.5至170μg/mL之豬第二型環狀病毒之外鞘蛋白質;2.5至12.5μg/mL之豬干擾素α;2.5至12.5μg/mL之豬干擾素γ;及一醫藥可接受之載劑。 The composition of claim 2, which comprises: 3.5 to 170 μg/mL of porcine second type circovirus outer sheath protein; 2.5 to 12.5 μg/mL of porcine interferon alpha; 2.5 to 12.5 μg/ Swine interferon gamma in mL; and a pharmaceutically acceptable carrier. 如請求項第1至3項任一項所述之組合物,其進一步包含一醫藥可接受之佐劑,其中前述醫藥可接受之佐劑為:MONTANIDETM ISA 563 VG佐劑、MONTANIDETM GEL 01佐劑、弗氏完全或不完全佐劑、鋁膠、界面活性劑、聚陰離子聚合物、肽、油乳液、或其組合。 A composition according to any one of items 1 to request items, which further comprises a pharmaceutically acceptable adjuvant, wherein the adjuvant is pharmaceutically acceptable: MONTANIDE TM ISA 563 VG adjuvant, MONTANIDE TM GEL 01 Adjuvant, Freund's complete or incomplete adjuvant, aluminum gel, surfactant, polyanionic polymer, peptide, oil emulsion, or a combination thereof. 如請求項第1項所述之組合物,前述豬第二型環狀病毒之外鞘蛋白質、前述豬干擾素α及/或前述豬干擾素γ係由以下方法製得:(a)取得一阿拉伯糖誘導表現載體;其中前述阿拉伯糖誘導表現載體包含一表現元件及一目標蛋白質的核苷酸序列; 其中前述表現元件包含:一啟動子;一T7噬菌體轉譯增強元件,其具有SEQ ID NO 01所示之序列;及一核糖體結合部位,其具有SEQ ID NO 02所示序列;(b)將前述阿拉伯糖誘導表現載體轉形至一大腸桿菌宿主中,並進行目標蛋白質之誘導表現;其中前述目標蛋白質為前述豬第二型環狀病毒之外鞘蛋白質、前述豬干擾素α及/或前述豬干擾素γ。 The composition of claim 1, wherein the porcine second type circovirus outer sheath protein, the porcine interferon alpha and/or the porcine interferon gamma system are obtained by the following method: (a) obtaining one An arabinose-inducing expression vector; wherein the aforementioned arabinose-inducing expression vector comprises a nucleotide sequence of a expression element and a target protein; Wherein the aforementioned expression element comprises: a promoter; a T7 phage translation enhancing element having the sequence of SEQ ID NO 01; and a ribosome binding site having the sequence of SEQ ID NO 02; (b) The arabinose-inducing expression vector is transformed into an E. coli host and subjected to induction of expression of the target protein; wherein the target protein is the aforementioned porcine second type circovirus outer sheath protein, the aforementioned porcine interferon alpha and/or the aforementioned pig Interferon gamma. 如請求項第5項所述之組合物,前述啟動子的-16部位具有SEQ ID NO 03所示之序列。 The composition of claim 5, wherein the 16th portion of the promoter has the sequence of SEQ ID NO 03. 如請求項第5項所述之組合物,其中前述表現元件具有SEQ ID NO 04所示序列。 The composition of claim 5, wherein the aforementioned expression element has the sequence of SEQ ID NO 04. 如請求項第5項所述之組合物,其中前述阿拉伯糖誘導表現載體進一步包含一融合伴子的核苷酸序列、及/或一標記分子的核苷酸序列。 The composition of claim 5, wherein the arabinose-inducing expression vector further comprises a nucleotide sequence of a fusion partner, and/or a nucleotide sequence of a marker molecule. 如請求項第8項所述之組合物,其中前述融合伴子為:大腸桿菌之MsyB、大腸桿菌之YjgD基因、Lambda噬菌體D蛋白質、麵包酵母菌SUMO蛋白質、或其組合。 The composition of claim 8, wherein the fusion partner is: MsyB of Escherichia coli, YjgD gene of Escherichia coli, Lambda phage D protein, Baker's yeast SUMO protein, or a combination thereof. 如請求項第8項所述之組合物,其中前述標記分子為:His tag、Strep II tag、Flag tag、或其組合。 The composition of claim 8, wherein the aforementioned labeling molecule is: His tag, Strep II tag, Flag tag, or a combination thereof. 如請求項第5項所述之組合物,其中前述目標蛋白質為豬第二型環狀病毒之外鞘蛋白質,且其核苷酸序列具有SEQ ID NO 09或SEQ ID NO 24所示序列。 The composition of claim 5, wherein the target protein is a porcine second type circovirus outer sheath protein, and the nucleotide sequence thereof has the sequence of SEQ ID NO 09 or SEQ ID NO 24. 如請求項第11項所述之組合物,其中前述阿拉伯糖誘導表現載體具有SEQ ID NO 46所示序列。 The composition of claim 11, wherein the aforementioned arabinose-inducible expression vector has the sequence of SEQ ID NO 46. 如請求項第5項所述之組合物,其中前述目標蛋白質為豬干擾素α,且其核苷酸序列具有SEQ ID NO 64所示序列。 The composition of claim 5, wherein the aforementioned target protein is porcine interferon alpha, and the nucleotide sequence thereof has the sequence of SEQ ID NO: 64. 如請求項第5項所述之組合物,其中前述目標蛋白質為豬干擾素γ,且其核苷酸序列具有SEQ ID NO 76所示序列。 The composition of claim 5, wherein the aforementioned target protein is porcine interferon γ, and the nucleotide sequence thereof has the sequence of SEQ ID NO 76. 如請求項第5項所述之組合物,其中前述阿拉伯糖誘導表現載體具有SEQ ID NO 80、SEQ ID NO 87、或SEQ ID NO 95所示序列。 The composition of claim 5, wherein the aforementioned arabinose-inducible expression vector has the sequence of SEQ ID NO 80, SEQ ID NO 87, or SEQ ID NO 95. 如請求項第15項所述之組合物,其不包含前述豬干擾素的折疊步驟。 The composition of claim 15 which does not comprise the folding step of the aforementioned porcine interferon. 如請求項第12或15項所述之組合物,其中前述步驟(b)之後進一步包含一步驟(c):純化前述目標蛋白質。 The composition of claim 12, wherein the step (b) further comprises a step (c) of purifying the target protein. 如請求項第17項所述之組合物,其中前述步驟(c)之後進一步包含一步驟(d):以一SUMO蛋白酶處理前述目標蛋白質。 The composition of claim 17, wherein the step (c) further comprises a step (d) of treating the target protein with a SUMO protease. 如請求項第18項所述之組合物,其中前述步驟(d)之處理中,前述目標蛋白質與前述SUMO蛋白酶的重量比值為4至20。 The composition according to claim 18, wherein in the treatment of the aforementioned step (d), the weight ratio of the target protein to the SUMO protease is 4 to 20.
TW104144055A 2015-12-28 2015-12-28 Preparation method of pcv2 capsid protein and pharmaceutical composition containing said capsid protein TWI633114B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104144055A TWI633114B (en) 2015-12-28 2015-12-28 Preparation method of pcv2 capsid protein and pharmaceutical composition containing said capsid protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104144055A TWI633114B (en) 2015-12-28 2015-12-28 Preparation method of pcv2 capsid protein and pharmaceutical composition containing said capsid protein

Publications (2)

Publication Number Publication Date
TW201722983A TW201722983A (en) 2017-07-01
TWI633114B true TWI633114B (en) 2018-08-21

Family

ID=60047973

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104144055A TWI633114B (en) 2015-12-28 2015-12-28 Preparation method of pcv2 capsid protein and pharmaceutical composition containing said capsid protein

Country Status (1)

Country Link
TW (1) TWI633114B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1688485A1 (en) * 2005-02-03 2006-08-09 Universiteit Gent Culturing circular ssDNA viruses for the production of vaccines
CN101242427A (en) * 2007-02-09 2008-08-13 华为技术有限公司 A method, system and device for message push
US7829684B2 (en) * 2004-12-22 2010-11-09 Genentech, Inc. Methods for producing soluble membrane-spanning proteins
CN101845419B (en) * 2010-05-20 2011-08-17 广东大华农动物保健品股份有限公司 Recombinant adenovirus and application thereof
US8101378B2 (en) * 2004-01-12 2012-01-24 Vertex Pharmaceuticals Incorporated Dual expression vector system and screening methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101378B2 (en) * 2004-01-12 2012-01-24 Vertex Pharmaceuticals Incorporated Dual expression vector system and screening methods
US7829684B2 (en) * 2004-12-22 2010-11-09 Genentech, Inc. Methods for producing soluble membrane-spanning proteins
EP1688485A1 (en) * 2005-02-03 2006-08-09 Universiteit Gent Culturing circular ssDNA viruses for the production of vaccines
CN101242427A (en) * 2007-02-09 2008-08-13 华为技术有限公司 A method, system and device for message push
CN101845419B (en) * 2010-05-20 2011-08-17 广东大华农动物保健品股份有限公司 Recombinant adenovirus and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
2010年07月21日,Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli,Yin et al,Virol J. 2010 Jul 21;7:166.
年07月21日,Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli,Yin et al,Virol J. 2010 Jul 21;7:166. *

Also Published As

Publication number Publication date
TW201722983A (en) 2017-07-01

Similar Documents

Publication Publication Date Title
EP2061887B1 (en) Vlp based influenza vaccine delivery system
CN106399350B (en) Porcine circovirus type II virus-like particle vaccine and preparation method thereof
CA3216490A1 (en) Epstein-barr virus mrna vaccines
KR102640722B1 (en) Methods and compositions for inducing an immune response against Clostridium difficile
CN110256539B (en) Novel genetic engineering subunit vaccine of O-type foot-and-mouth disease virus
WO2017113050A1 (en) Method of preparing porcine circovirus type 2 capsid protein and pharmaceutical composition comprising same
WO2023092069A1 (en) Sars-cov-2 mrna domain vaccines and methods of use
CN113355287A (en) Bivalent vaccine for porcine circovirus type 2 and type 3 and preparation method thereof
US7201912B2 (en) Recombinant immunogenic compositions and methods for protecting against lethal infections from Bacillus anthracis
EP3299384B1 (en) Truncated rotavirus vp4 protein and application thereof
CN110891597B (en) Composition for preventing and treating poultry synovium infection
KR101765394B1 (en) Epitope protein of PEDV, Recombinant vector contaning genes encoding thereof, Transformnant expressing thereof, and Composition for preventing or treating PEDV comprising thereof
TWI633114B (en) Preparation method of pcv2 capsid protein and pharmaceutical composition containing said capsid protein
TWI659966B (en) Preparation method of pcv2 capsid protein and pharmaceutical composition containing said capsid protein
TWI750500B (en) Composition for the prevention of mycoplasma synoviae infection
CN115960265B (en) Long-acting multivalent swine foot-and-mouth disease and swine fever vaccine as well as preparation method and application thereof
CN112592410B (en) Canine adenovirus gene engineering subunit vaccine, preparation method and application thereof
CN111773384B (en) Brucella and foot-and-mouth disease bivalent vaccine as well as preparation method and application thereof
CN112439057B (en) Self-assembly ferritin nano-antigen particle, swine fever vaccine prepared from same and application of swine fever vaccine
CN110691609B (en) Methods and compositions for inducing an immune response against clostridium difficile
CN115737793A (en) Echinococcus granulosus and Echinococcus canadensis bigeminy subunit vaccine and preparation method thereof
BR112018013007B1 (en) METHOD FOR EXPRESSING A PROTEIN, AND COMPOSITION FOR PREVENTING INFECTION BY PORcine CIRCOVIRUS TYPE 2 (PCV2)
AU2012215180A1 (en) Antigenic gly1 polypeptides
CN115737792A (en) Echinococcus canadensis subunit vaccine and preparation method and application thereof