TWI632678B - High electron mobility transistor - Google Patents
High electron mobility transistor Download PDFInfo
- Publication number
- TWI632678B TWI632678B TW106123451A TW106123451A TWI632678B TW I632678 B TWI632678 B TW I632678B TW 106123451 A TW106123451 A TW 106123451A TW 106123451 A TW106123451 A TW 106123451A TW I632678 B TWI632678 B TW I632678B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- electron mobility
- mobility transistor
- high electron
- gate electrode
- Prior art date
Links
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本發明實施例提供一種高電子移動率電晶體,包括:緩衝層,位於基板上;阻障層,位於緩衝層上;通道層,位於緩衝層中,並鄰近緩衝層與阻障層之介面;閘極電極,位於阻障層上;汲極電極,位於阻障層上,且位於閘極電極之第一側;源極電極,位於阻障層上,且位於閘極電極之第二側,第一側與第二側互為相反側;及第一增強層,位於阻障層及通道層上,且位於閘極電極與汲極電極之間,並未與閘極電極、源極電極、及汲極電極直接接觸;其中第一增強層為N型摻雜三五族半導體。 Embodiments of the present invention provide a high electron mobility transistor, comprising: a buffer layer on a substrate; a barrier layer on the buffer layer; and a channel layer in the buffer layer adjacent to the interface between the buffer layer and the barrier layer; a gate electrode on the barrier layer; a drain electrode on the barrier layer and on the first side of the gate electrode; and a source electrode on the barrier layer and on the second side of the gate electrode The first side and the second side are opposite sides of each other; and the first reinforcing layer is located on the barrier layer and the channel layer, and is located between the gate electrode and the drain electrode, and is not connected to the gate electrode and the source electrode, And the drain electrode is in direct contact; wherein the first enhancement layer is an N-type doped tri-five semiconductor.
Description
本發明實施例係有關於一種高電子移動率電晶體,特別是有關於一種增強導通電流的高電子移動率電晶體。 Embodiments of the present invention relate to a high electron mobility transistor, and more particularly to a high electron mobility transistor that enhances the on current.
高電子移動率電晶體(High Electron Mobility Transistor,HEMT)因具有高崩潰電壓、高輸出電壓等優點,廣泛應用於高功率半導體裝置當中。 High Electron Mobility Transistor (HEMT) is widely used in high-power semiconductor devices due to its high breakdown voltage and high output voltage.
傳統上,為增強二維電子氣(two-dimensional electron gas,2DEG)濃度,可改變高電子移動率電晶體材質的濃度,或是增加間隔物結構,藉由能帶改變來增強二維電子氣。然而上述方法亦同時加強了庫倫散射,使得電子移動率(mobility)下降,整體電流未必上升。此外,製程均勻性控制亦是一大挑戰。 Traditionally, in order to enhance the two-dimensional electron gas (2DEG) concentration, the concentration of the high electron mobility transistor material can be changed, or the spacer structure can be increased, and the two-dimensional electron gas can be enhanced by band change. . However, the above method also enhances the Coulomb scattering, so that the electron mobility is lowered, and the overall current does not necessarily rise. In addition, process uniformity control is also a major challenge.
雖然現有的高電子移動率電晶體大致符合需求,但並非各方面皆令人滿意,特別是高電子移動率電晶體的導通電流仍需進一步改善。 Although the existing high electron mobility transistor generally meets the requirements, it is not satisfactory in all aspects, and in particular, the conduction current of the high electron mobility transistor needs to be further improved.
本發明實施例提供一種高電子移動率電晶體,包括:緩衝層,位於基板上;阻障層,位於緩衝層上;通道層,位於緩衝層中,並鄰近緩衝層與阻障層之介面;閘極電極,位於阻障層上;汲極電極,位於阻障層上,且位於閘極電極之第 一側;源極電極,位於阻障層上,且位於閘極電極之第二側,第一側與第二側互為相反側;及第一增強層,位於阻障層及通道層上,且位於閘極電極與汲極電極之間,並未與閘極電極、源極電極、及汲極電極直接接觸;其中第一增強層為N型摻雜三五族半導體。 Embodiments of the present invention provide a high electron mobility transistor, comprising: a buffer layer on a substrate; a barrier layer on the buffer layer; and a channel layer in the buffer layer adjacent to the interface between the buffer layer and the barrier layer; a gate electrode on the barrier layer; a drain electrode on the barrier layer and located at the gate electrode a source electrode, located on the barrier layer, on the second side of the gate electrode, the first side and the second side are opposite sides of each other; and the first reinforcement layer is located on the barrier layer and the channel layer And located between the gate electrode and the drain electrode, and is not in direct contact with the gate electrode, the source electrode, and the drain electrode; wherein the first enhancement layer is an N-type doped tri-five semiconductor.
為讓本發明之上述目的、特徵及優點能更明顯易懂,下文特舉一較佳實施例,並配合所附的圖式,作詳細說明如下。 The above described objects, features and advantages of the present invention will become more apparent and understood.
100、200、300、400‧‧‧高電子移動率電晶體 100, 200, 300, 400‧‧‧ high electron mobility transistor
102‧‧‧基板 102‧‧‧Substrate
104‧‧‧緩衝層 104‧‧‧buffer layer
106‧‧‧阻障層 106‧‧‧Barrier layer
108‧‧‧通道層 108‧‧‧Channel layer
110‧‧‧閘極電極 110‧‧‧gate electrode
112‧‧‧源極電極 112‧‧‧Source electrode
114‧‧‧汲極電極 114‧‧‧汲electrode
116、116a‧‧‧增強層 116, 116a‧‧‧ reinforcement layer
118C、218C‧‧‧導帶 118C, 218C‧‧‧ Guide belt
118V、218V‧‧‧價帶 118V, 218V‧‧ ‧ price belt
118F、218F‧‧‧費米能階 118F, 218F‧‧‧ Fermi level
120‧‧‧內連結構 120‧‧‧Interconnected structure
122‧‧‧層間介電層/金屬層間介電層 122‧‧‧Interlayer dielectric layer/metal interlayer dielectric layer
210‧‧‧能帶調整層 210‧‧‧With adjustment layer
310‧‧‧閘極電極 310‧‧‧gate electrode
312‧‧‧介電層 312‧‧‧ dielectric layer
410‧‧‧摻雜層 410‧‧‧Doped layer
AA’、BB’‧‧‧線段 AA’, BB’‧‧‧ segments
T‧‧‧厚度 T‧‧‧ thickness
以下將配合所附圖式詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 The embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, the various features are not drawn to scale and are merely illustrative. In fact, the dimensions of the elements may be arbitrarily enlarged or reduced to clearly show the features of the embodiments of the invention.
第1圖係根據一些實施例繪示出高電子移動率電晶體之剖面示意圖。 1 is a schematic cross-sectional view of a high electron mobility transistor, in accordance with some embodiments.
第2圖係根據一些實施例繪示出高電子移動率電晶體之能帶圖。 Figure 2 illustrates an energy band diagram of a high electron mobility transistor in accordance with some embodiments.
第3圖係根據一些實施例繪示出高電子移動率電晶體之剖面示意圖。 Figure 3 is a schematic cross-sectional view of a high electron mobility transistor, in accordance with some embodiments.
第4圖係根據一些實施例繪示出高電子移動率電晶體之能帶圖。 Figure 4 illustrates an energy band diagram of a high electron mobility transistor in accordance with some embodiments.
第5圖係根據一些實施例繪示出高電子移動率電晶體之剖面示意圖。 Figure 5 is a schematic cross-sectional view of a high electron mobility transistor, in accordance with some embodiments.
第6圖係根據一些實施例繪示出高電子移動率電晶體之剖 面示意圖。 Figure 6 is a cross-sectional view showing a high electron mobility transistor according to some embodiments. Schematic diagram.
第7圖係根據一些實施例繪示出高電子移動率電晶體之剖面示意圖。 Figure 7 is a schematic cross-sectional view of a high electron mobility transistor, in accordance with some embodiments.
以下公開許多不同的實施方法或是例子來實行本發明實施例之不同特徵,以下描述具體的元件及其排列的實施例以闡述本發明實施例。當然這些實施例僅用以例示,且不該以此限定本發明實施例的範圍。例如,在說明書中提到第一特徵形成於第二特徵之上,其包括第一特徵與第二特徵是直接接觸的實施例,另外也包括於第一特徵與第二特徵之間另外有其他特徵的實施例,亦即,第一特徵與第二特徵並非直接接觸。此外,在不同實施例中可能使用重複的標號或標示,這些重複僅為了簡單清楚地敘述本發明實施例,不代表所討論的不同實施例及/或結構之間有特定的關係。 The various features of the embodiments of the invention are set forth in the description of the invention. The embodiments are for illustrative purposes only, and are not intended to limit the scope of the embodiments of the invention. For example, it is mentioned in the specification that the first feature is formed on the second feature, including an embodiment in which the first feature is in direct contact with the second feature, and additionally includes another feature between the first feature and the second feature. An embodiment of the feature, that is, the first feature is not in direct contact with the second feature. In addition, the various embodiments may be used in the various embodiments of the present invention, and are not to be construed as a limitation of the various embodiments and/or structures discussed.
此外,其中可能用到與空間相關用詞,例如「在...下方」、「下方」、「較低的」、「上方」、「較高的」及類似的用詞,這些空間相關用詞係為了便於描述圖示中一個(些)元件或特徵與另一個(些)元件或特徵之間的關係,這些空間相關用詞包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),則其中所使用的空間相關形容詞也將依轉向後的方位來解釋。 In addition, space-related terms such as "below", "below", "lower", "above", "higher" and similar terms may be used. Words used to describe the relationship between one element or feature(s) in the drawing and another element or feature(s), such spatially related terms include different orientations of the device in operation or operation, and in the drawings The orientation described. When the device is turned to a different orientation (rotated 90 degrees or other orientation), the spatially related adjectives used therein will also be interpreted in terms of the orientation after the turn.
在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意 的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。 Here, the terms "about", "about" and "major" generally mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or 3 Within %, or within 2%, or within 1%, or within 0.5%. Should pay attention The quantity provided in the description is approximate, that is, in the absence of specific descriptions of "about", "about" and "major", "about", "about" and "major" may still be implied. The meaning.
本發明實施例提供一種高電子移動率電晶體(high electron mobility transistor,HEMT),其於閘極電極與汲極電極間形成增強層,將量子井(quantum well)的能帶深度拉深,以提高通道層中的二維電子氣(two-dimensional electron gas,2DEG)濃度,進而提升導通電流。 Embodiments of the present invention provide a high electron mobility transistor (HEMT) that forms a reinforcement layer between a gate electrode and a drain electrode, and deepens the energy band of the quantum well. Increase the concentration of two-dimensional electron gas (2DEG) in the channel layer to increase the on-current.
第1圖繪示出本發明一些實施例之高電子移動率電晶體100之剖面圖。如第1圖所繪示,提供一基板102。基板102可包括Si、SiC、或Al2O3(sapphire),可為單層基板、多層基板、梯度基板、其他適當之基板或上述之組合。在一些實施例中,基板102亦可包括絕緣層覆半導體(semiconductor on insulator,SOI)基板,上述絕緣層覆半導體基板可包括底板、設置於底板上之埋藏氧化層、或設置於埋藏氧化層上之半導體層。 1 is a cross-sectional view of a high electron mobility transistor 100 in accordance with some embodiments of the present invention. As shown in FIG. 1, a substrate 102 is provided. The substrate 102 may comprise Si, SiC, or Al 2 O 3 (sapphire), and may be a single layer substrate, a multilayer substrate, a gradient substrate, other suitable substrates, or a combination thereof. In some embodiments, the substrate 102 may further include a semiconductor-on-insulator (SOI) substrate, and the insulating layer-covered semiconductor substrate may include a bottom plate, a buried oxide layer disposed on the substrate, or disposed on the buried oxide layer. The semiconductor layer.
接著,在基板102上形成緩衝層104。在一些實施例中,緩衝層104包括未摻雜的III-V族半導體,例如未摻雜的GaN。在一些實施例中,緩衝層104厚度介於1μm至20μm之間。在一些實施例中,可使用分子束磊晶法(molecular-beam epitaxy,MBE)、有機金屬氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、化學氣相沉積法(chemical vapor deposition,CVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、其他適當之方法、或上述之組合在基板102 上形成緩衝層104。 Next, a buffer layer 104 is formed on the substrate 102. In some embodiments, buffer layer 104 includes an undoped III-V semiconductor, such as undoped GaN. In some embodiments, the buffer layer 104 has a thickness between 1 μm and 20 μm. In some embodiments, molecular-beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), chemical vapor deposition (CVD), Hydride vapor phase epitaxy (HVPE), other suitable methods, or combinations thereof, on substrate 102 A buffer layer 104 is formed thereon.
接著,在緩衝層104上形成阻障層106。在一些實施例中,阻障層106包括未摻雜的III-V族半導體,例如未摻雜的AlGaN。在一些實施例中,阻障層106厚度介於0.1μm至5μm之間。在一些實施例中,可使用分子束磊晶法(molecular-beam epitaxy,MBE)、有機金屬氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、化學氣相沉積法(chemical vapor deposition,CVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、其他適當之方法、或上述之組合在緩衝層104上形成阻障層106。 Next, a barrier layer 106 is formed on the buffer layer 104. In some embodiments, barrier layer 106 comprises an undoped III-V semiconductor, such as undoped AlGaN. In some embodiments, the barrier layer 106 has a thickness between 0.1 μm and 5 μm. In some embodiments, molecular-beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), chemical vapor deposition (CVD), A barrier layer 106 is formed on the buffer layer 104 by a hydride vapor phase epitaxy (HVPE), other suitable methods, or a combination thereof.
由於緩衝層104與阻障層106材料能帶間隙(band gap)不同之故,緩衝層104與阻障層106的介面處形成異質接面(heterojunction),因異質接面處能帶彎曲,導帶(conduction band)彎曲深處形成量子井(quantum well),將壓電效應(Piezoelectricity)所產生的電子約束於量子井中,因此在緩衝層104與阻障層106的介面處形成二維電子氣(two-dimensional electron gas,2DEG),進而形成導通電流。如第1圖所示,在緩衝層104與阻障層106的介面處形成通道層108,通道層108即為二維電子氣形成導通電流之處。通道層108厚度介於0.1μm至1μm之間。 Since the buffer layer 104 and the barrier layer 106 have different material band gaps, a heterojunction is formed at the interface between the buffer layer 104 and the barrier layer 106, because the energy band at the heterojunction is curved. A quantum well is formed deep in the bending of the conduction band, and electrons generated by the piezoelectric effect are confined in the quantum well, thereby forming a two-dimensional electron gas at the interface between the buffer layer 104 and the barrier layer 106. (two-dimensional electron gas, 2DEG), which in turn forms an on current. As shown in FIG. 1, a channel layer 108 is formed at the interface of the buffer layer 104 and the barrier layer 106, and the channel layer 108 is where the two-dimensional electron gas forms an on current. The channel layer 108 has a thickness between 0.1 μm and 1 μm.
接著,在阻障層106上形成閘極電極110、源極電極112、及汲極電極114。源極電極112與汲極電極114分別位於閘極電極110的相反側。在一些實施例中,閘極電極110可包括金屬材料、多晶矽、金屬矽化物、其他適當之導電材料、或上 述之組合。在一些實施例中,源極電極112與汲極電極114各自可包括Ti、Al、Au、Pd、其他適當之金屬材料、其合金或上述之組合。在一些實施例中,先以電鍍法、濺鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、物理氣相沉積製程(physical vapor deposition,PVD)、化學氣相沉積法(chemical vapor deposition,CVD)、原子層沉積製程(atomic layer deposition,ALD)、其他適當之方法、或上述之組合於阻障層106上形成電極材料,再以微影與蝕刻製程將之圖案化形成閘極電極110、源極電極112、及汲極電極114。 Next, a gate electrode 110, a source electrode 112, and a drain electrode 114 are formed on the barrier layer 106. The source electrode 112 and the drain electrode 114 are located on opposite sides of the gate electrode 110, respectively. In some embodiments, the gate electrode 110 can comprise a metal material, a polysilicon, a metal halide, other suitable conductive material, or The combination described. In some embodiments, source electrode 112 and drain electrode 114 can each comprise Ti, Al, Au, Pd, other suitable metallic materials, alloys thereof, or combinations thereof. In some embodiments, the electroplating method, the sputtering method, the resistance heating evaporation method, the electron beam evaporation method, the physical vapor deposition (PVD), and the chemical vapor deposition (chemical vapor deposition, CVD), atomic layer deposition (ALD), other suitable methods, or combinations thereof, are formed on the barrier layer 106 to form an electrode material, and then patterned by a photolithography and etching process to form the gate electrode 110. The source electrode 112 and the drain electrode 114.
接著,在阻障層106上閘極電極110與汲極電極114間形成增強層(enhancement layer)116。在一些實施例中,增強層116為N型摻雜三五族半導體,包括N型摻雜之GaN、AlGaN、AlN、GaAs、AlGaAs、InP、InAlAs、或InGaAs,其N型摻雜濃度介於1e17/cm3至1e20/cm3之間。增強層116厚度介於0.1μm至1μm之間。在一些實施例中,可使用分子束磊晶法(molecular-beam epitaxy,MBE)、有機金屬氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、化學氣相沉積法(chemical vapor deposition,CVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)在阻障層106上形成N型摻雜三五族半導體,再經由圖案化製程(例如:微影製程、蝕刻製程、或上述之組合)於閘極電極110與汲極電極114間定義出增強層(enhancement layer)116。 Next, an enhancement layer 116 is formed between the gate electrode 110 and the drain electrode 114 on the barrier layer 106. In some embodiments, the enhancement layer 116 is an N-type doped Group III semiconductor, including N-doped GaN, AlGaN, AlN, GaAs, AlGaAs, InP, InAlAs, or InGaAs, the N-type doping concentration is between 1e17/cm 3 to 1e20/cm 3 . The reinforcing layer 116 has a thickness of between 0.1 μm and 1 μm. In some embodiments, molecular-beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), chemical vapor deposition (CVD), A hydride vapor phase epitaxy (HVPE) forms an N-type doped Group III semiconductor on the barrier layer 106, and then passes through a patterning process (eg, a lithography process, an etching process, or a combination thereof) An enhancement layer 116 is defined between the gate electrode 110 and the drain electrode 114.
值得注意的是,在此實施例中,先形成閘極電極110、源極電極112、及汲極電極114再形成增強層116,,然而 此實施例中形成順序並不限定,亦可先形成增強層116再形成閘極電極110、源極電極112、及汲極電極114。 It should be noted that in this embodiment, the gate electrode 110, the source electrode 112, and the drain electrode 114 are formed first to form the enhancement layer 116, however, The order of formation in this embodiment is not limited, and the enhancement layer 116 may be formed first to form the gate electrode 110, the source electrode 112, and the drain electrode 114.
第2圖為第1圖中沿線段AA’之剖面方向的能帶圖,包括導帶118C、價帶118V、及費米能階(fermi level)118F。由於增強層116為N型摻雜三五族半導體之故,N型摻雜導致導帶118C在緩衝層104與阻障層106的介面處量子井深度變深,因此在通道層108中的費米能階(fermi level)118F以下的二維電子氣濃度變高,進一步使導通電流變大。 Fig. 2 is an energy band diagram in the cross-sectional direction along the line AA' in Fig. 1, including a conduction band 118C, a valence band 118V, and a fermi level 118F. Since the enhancement layer 116 is an N-type doped Group III semiconductor, the N-type doping causes the conduction band 118C to deepen the depth of the quantum well at the interface between the buffer layer 104 and the barrier layer 106, and thus the fee in the channel layer 108 The two-dimensional electron gas concentration at a fermi level of 118 F or less becomes higher, and the on-current is further increased.
上述實施例中,由於緩衝層104與阻障層106材料能帶間隙不同,在其介面處形成二維電子氣,形成通道層108中的導通電流。此時不須外加閘極電壓,高電子移動率電晶體100便為導通狀態,因此高電子移動率電晶體100為空乏型(depletion mode,D-mode)高電子移動率電晶體。 In the above embodiment, since the buffer layer 104 and the barrier layer 106 have different material band gaps, a two-dimensional electron gas is formed at the interface thereof to form an on current in the channel layer 108. At this time, the gate voltage is not required to be applied, and the high electron mobility transistor 100 is turned on. Therefore, the high electron mobility transistor 100 is a depletion mode (D-mode) high electron mobility transistor.
如上所述,本發明在高電子移動率電晶體的阻障層上設置增強層,由於N型摻雜改變能帶差之故,可使量子井深度變深,其中的二維電子氣濃度變高,進一步使通道層中導通電流變大。 As described above, the present invention provides a reinforcing layer on the barrier layer of the high electron mobility transistor. Since the N-type doping changes the band difference, the quantum well depth can be deepened, and the two-dimensional electron gas concentration is changed. High, further increasing the conduction current in the channel layer.
第3圖繪示出本發明另一些實施例之高電子移動率電晶體200之剖面圖。其中與前述實施例相同或相似的製程或元件將沿用相同的元件符號,其詳細內容將不再贅述。與前述實施例的差別在於,在阻障層106上進一步設置了能帶調整層(band adjustment layer)210,並使其與閘極電極110電性連接。能帶調整層210為P型摻雜三五族半導體,包括P型摻雜之GaN、AlGaN、AlN、GaAs、AlGaAs、InP、InAlAs、或InGaAs,其P 型摻雜濃度介於1e17/cm3至1e20/cm3之間。能帶調整層210厚度介於0.1μm至1μm之間。在一些實施例中,在形成閘極電極110、源極電極112、及汲極電極114之前,可使用分子束磊晶法(molecular-beam epitaxy,MBE)、有機金屬氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、化學氣相沉積法(chemical vapor deposition,CVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE),經由例如微影製程與蝕刻製程,沉積P型摻雜三五族半導體,再將之圖案化形成能帶調整層210。形成能帶調整層210後,依前述實施例方式,形成閘極電極110、源極電極112、及汲極電極114,並使能帶調整層210與閘極電極110電性連接。 3 is a cross-sectional view of a high electron mobility transistor 200 in accordance with further embodiments of the present invention. Processes or elements that are the same as or similar to the previous embodiments will be given the same reference numerals, and the detailed description thereof will not be repeated. The difference from the foregoing embodiment is that a band adjustment layer 210 is further disposed on the barrier layer 106 and electrically connected to the gate electrode 110. The energy band adjustment layer 210 is a P-type doped tri-five semiconductor, including P-doped GaN, AlGaN, AlN, GaAs, AlGaAs, InP, InAlAs, or InGaAs, and has a P-type doping concentration of 1e17/cm 3 . It is between 1e20/cm 3 . The band adjustment layer 210 has a thickness of between 0.1 μm and 1 μm. In some embodiments, before the formation of the gate electrode 110, the source electrode 112, and the drain electrode 114, molecular-beam epitaxy (MBE), metalorganic chemical (metalorganic chemical) may be used. Vapor deposition (MOCVD), chemical vapor deposition (CVD), hydride vapor phase epitaxy (HVPE), deposition of P-type doping via, for example, lithography process and etching process The Group 5 semiconductor is then patterned to form an energy band adjustment layer 210. After the energy band adjustment layer 210 is formed, the gate electrode 110, the source electrode 112, and the drain electrode 114 are formed in the above-described embodiment, and the band adjustment layer 210 is electrically connected to the gate electrode 110.
第4圖為第3圖中沿線段BB’之剖面方向的能帶圖,包括導帶218C、價帶218V、及費米能階(fermi level)218F。由於能帶調整層210為P型摻雜三五族半導體,P型摻雜造成能帶提高,緩衝層104與阻障層106的介面處量子井能量高於費米能階(fermi level)218F,導致通道層108中無二維電子氣產生,因而無導通電流。 Fig. 4 is an energy band diagram in the cross-sectional direction of the line segment BB' in Fig. 3, including a conduction band 218C, a valence band 218V, and a fermi level 218F. Since the band adjustment layer 210 is a P-type doped Group III semiconductor, the P-type doping causes an energy band to be increased, and the quantum well energy at the interface between the buffer layer 104 and the barrier layer 106 is higher than the Fermi level 218F. As a result, no two-dimensional electron gas is generated in the channel layer 108, and thus there is no conduction current.
上述實施例中,由於能帶調整層210拉高能帶,未外加閘極電壓時,高電子移動率電晶體200為截止狀態,因此高電子移動率電晶體200為增強型(enhancement mode,E-mode)高電子移動率電晶體。 In the above embodiment, since the energy band adjustment layer 210 pulls up the energy band, when the gate voltage is not applied, the high electron mobility transistor 200 is in an off state, so the high electron mobility transistor 200 is an enhancement mode (E- Mode) High electron mobility transistor.
與空乏型(D-mode)高電子移動率電晶體相較之下,增強型(E-mode)高電子移動率電晶體較為安全,待機功耗(standby power dissipation)較低,由於不須供給負偏壓,亦可 降低電路複雜性以及製作成本。 Compared with the D-mode high electron mobility transistor, the enhanced (E-mode) high electron mobility transistor is safer, and the standby power dissipation is lower, since no supply is required. Negative bias, too Reduce circuit complexity and manufacturing costs.
如第3圖所示之實施例中,同時具有能帶調整層210及增強層116,利用不同半導體材料形成異質接面,調整能帶結構,在增強型(enhancement mode,E-mode)高電子移動率電晶體200導通時,可有效提升導通電流。 In the embodiment shown in FIG. 3, the energy band adjustment layer 210 and the enhancement layer 116 are simultaneously provided, and the heterojunction is formed by using different semiconductor materials, and the energy band structure is adjusted, and the enhancement mode (E-mode) high electrons are used. When the mobility transistor 200 is turned on, the on current can be effectively increased.
第5圖繪示出本發明又一些實施例高電子移動率電晶體300之剖面圖。其中與前述實施例相同或相似的製程或元件將沿用相同的元件符號,其詳細內容將不再贅述。與前述實施例的差別在於,閘極電極310係內嵌於阻障層106中。可於製作閘極電極310前,進行一或多個蝕刻製程在阻障層106中形成溝槽,接著以濺鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、物理氣相沉積製程(physical vapor deposition,PVD)、化學氣相沉積法(chemical vapor deposition,CVD)、原子層沉積製程(atomic layer deposition,ALD)、其他適當之方法、或上述之組合於溝槽中填入導電材料,並經圖案化以形成內嵌於阻障層106中之閘極電極310。 Figure 5 is a cross-sectional view of a high electron mobility transistor 300 in accordance with yet another embodiment of the present invention. Processes or elements that are the same as or similar to the previous embodiments will be given the same reference numerals, and the detailed description thereof will not be repeated. The difference from the foregoing embodiment is that the gate electrode 310 is embedded in the barrier layer 106. Before the gate electrode 310 is formed, one or more etching processes may be performed to form a trench in the barrier layer 106, followed by sputtering, resistance heating evaporation, electron beam evaporation, and physical vapor deposition ( Physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), other suitable methods, or combinations thereof, filled with a conductive material in the trench, And patterned to form a gate electrode 310 embedded in the barrier layer 106.
如第5圖所示,閘極電極310與阻障層106間可設有介電層312。介電層312厚度介於0.1μm至1μm之間。介電層312包括氧化矽、HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、LaO、ZrO、Ta2O5、上述之組合、或類似的材料。在一些實施例中,可使用化學氣相沉積法(chemical vapor deposition,CVD)、有機金屬氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、電漿強化化學氣相沉積(plasma enhanced CVD,PECVD)、高密度電漿化學氣相沉積(high density plasma CVD, HDPCVD)、原子層沉積製程(atomic layer deposition,ALD)、及/或其他合適技術在形成閘極電極310前形成介電層312。介電層312可降低閘極漏電電流,若介電層312厚度太厚,則可能影響元件速度,若介電層312厚度太薄,則可能增加閘極漏電電流。 As shown in FIG. 5, a dielectric layer 312 may be disposed between the gate electrode 310 and the barrier layer 106. The dielectric layer 312 has a thickness between 0.1 μm and 1 μm. The dielectric layer 312 includes hafnium oxide, HfO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, LaO, ZrO, Ta 2 O 5 , a combination of the above, or the like. In some embodiments, chemical vapor deposition (CVD), metalorganic chemical vapor deposition (MOCVD), plasma enhanced CVD (PECVD) may be used. A high density plasma CVD (HDPCVD), atomic layer deposition (ALD), and/or other suitable technique forms a dielectric layer 312 prior to forming the gate electrode 310. The dielectric layer 312 can reduce the gate leakage current. If the thickness of the dielectric layer 312 is too thick, the component speed may be affected. If the thickness of the dielectric layer 312 is too thin, the gate leakage current may be increased.
如第5圖所示,由於閘極電極310內嵌於阻障層106中,與如第1圖所示之實施例相較之下,位於閘極電極310下方的阻障層106相較於其他部分較薄,壓電效應(Piezoelectricity)變小,改變了阻障層106與緩衝層104異質接面(heterojunction)的能帶結構,因而在通道層108的二維電子氣減少。在合適的閘極電極310之材料選擇下,可使未外加閘極電壓時,高電子移動率電晶體300為截止狀態,因此高電子移動率電晶體300為增強型(enhancement mode,E-mode)高電子移動率電晶體。在一實施例中,位於閘極電極310下方的阻障層106之厚度為T,厚度T介於0.1μm至5μm之間。厚度T若太厚,則無法有效減少在通道層108的二維電子氣,無法形成增強型(E-mode)高電子移動率電晶體,厚度T若太薄,其能帶結構易受厚度均勻度影響。 As shown in FIG. 5, since the gate electrode 310 is embedded in the barrier layer 106, the barrier layer 106 under the gate electrode 310 is compared with the embodiment shown in FIG. The other portions are thinner, the piezoelectric effect becomes smaller, and the energy band structure of the heterojunction of the barrier layer 106 and the buffer layer 104 is changed, so that the two-dimensional electron gas in the channel layer 108 is reduced. Under the material selection of the appropriate gate electrode 310, the high electron mobility transistor 300 can be turned off when no gate voltage is applied, so the high electron mobility transistor 300 is enhanced (enhancement mode, E-mode). High electron mobility transistor. In one embodiment, the barrier layer 106 under the gate electrode 310 has a thickness T and a thickness T between 0.1 μm and 5 μm. If the thickness T is too thick, the two-dimensional electron gas in the channel layer 108 cannot be effectively reduced, and an enhanced (E-mode) high electron mobility transistor cannot be formed. If the thickness T is too thin, the band structure is susceptible to uniform thickness. Degree impact.
如第5圖所示之實施例中,除增強層116外,同時使閘極電極310內嵌於阻障層106中,如此調整能帶結構,使增強型(enhancement mode,E-mode)高電子移動率電晶體300導通時,可有效提升導通電流。 In the embodiment shown in FIG. 5, in addition to the enhancement layer 116, the gate electrode 310 is embedded in the barrier layer 106 at the same time, so that the energy band structure is adjusted, so that the enhancement mode (E-mode) is high. When the electron mobility transistor 300 is turned on, the on current can be effectively increased.
第6圖繪示出本發明又另一些實施例之高電子移動率電晶體400之剖面圖。其中與前述實施例相同或相似的製 程或元件將沿用相同的元件符號,其詳細內容將不再贅述。與前述實施例的差別在於,閘極電極110下方的阻障層106中更設置有摻雜層410。在一些實施例中,摻雜層410可藉由離子佈植步驟形成。例如,可在形成閘極電極110之前,使用圖案化罩幕(圖未示)於閘極電極110預定區下方之阻障層106中佈植F2、CF4、或其他氟基離子以形成摻雜層410,摻雜層410之摻雜濃度介於1e18/cm3至1e20/cm3之間。 Figure 6 is a cross-sectional view of a high electron mobility transistor 400 of still other embodiments of the present invention. Processes or elements that are the same as or similar to the previous embodiments will be given the same reference numerals, and the detailed description thereof will not be repeated. The difference from the foregoing embodiment is that a doping layer 410 is further disposed in the barrier layer 106 under the gate electrode 110. In some embodiments, the doped layer 410 can be formed by an ion implantation step. For example, F 2 , CF 4 , or other fluorine-based ions may be implanted in the barrier layer 106 below the predetermined region of the gate electrode 110 using a patterned mask (not shown) prior to forming the gate electrode 110. The doping layer 410 has a doping concentration of between 1e18/cm 3 and 1e20/cm 3 .
如第6圖所示,在閘極電極110下方的阻障層106中設置摻雜層410,可使阻障層106與緩衝層104異質接面(heterojunction)的能帶結構提升,因而減少在通道層108的二維電子氣。在一些實施例中,未外加閘極電壓時,高電子移動率電晶體400為截止狀態,因此高電子移動率電晶體400為增強型(enhancement mode,E-mode)高電子移動率電晶體。 As shown in FIG. 6, the doping layer 410 is disposed in the barrier layer 106 under the gate electrode 110, so that the energy band structure of the heterojunction of the barrier layer 106 and the buffer layer 104 can be improved, thereby reducing The two-dimensional electron gas of the channel layer 108. In some embodiments, the high electron mobility transistor 400 is in an off state when no gate voltage is applied, and thus the high electron mobility transistor 400 is an enhancement mode (E-mode) high electron mobility transistor.
如第6圖所示之實施例中,除增強層116外,同時在閘極電極110下方的阻障層106中設置摻雜層410,如此調整能帶結構,使增強型(enhancement mode,E-mode)高電子移動率電晶體400導通時,可有效提升導通電流。 In the embodiment shown in FIG. 6, in addition to the enhancement layer 116, a doping layer 410 is disposed in the barrier layer 106 under the gate electrode 110, so that the energy band structure is adjusted to enhance the enhancement mode (E). -mode) When the high electron mobility transistor 400 is turned on, the on current can be effectively increased.
根據一些實施例,第7圖繪示出高電子移動率電晶體500之剖面圖。其中與前述實施例相同或相似的製程或元件將沿用相同的元件符號,其詳細內容將不再贅述。與前述實施例的差別在於,除了位於閘極電極110與汲極電極114間的增強層116外,另可於形成增強層116時,以同一製程步驟在阻障層106上形成額外的增強層116a,之後進行內連線製程,形成層間介電層(inter-layer dielectric,ILD)/金屬層間介電層 (inter-metal dielectric,IMD)122及形成於其中/其上的內連結構120,並以內連結構120將增強層116a與汲極電極114電性連接。可經由圖案化罩幕(圖未示)搭配蝕刻及沉積製程形成內連結構120。蝕刻製程可包括選擇性濕蝕刻、選擇性乾蝕刻、及/或上述之組合。沉積製程可包括濺鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、物理氣相沉積製程(physical vapor deposition,PVD)、或其它適合的沉積方式、及/或上述之組合。內連結構120之材料可為Al、Ag、Cu、AlCu、Pt、W、Ru、Ni、TaN、TiN、TiAlN、TiW、及/或上述之組合。內連結構120包括:各種金屬線、接點(contact)、及導孔(via)、及/或上述之組合。 In accordance with some embodiments, FIG. 7 depicts a cross-sectional view of high electron mobility transistor 500. Processes or elements that are the same as or similar to the previous embodiments will be given the same reference numerals, and the detailed description thereof will not be repeated. The difference from the foregoing embodiment is that, in addition to the enhancement layer 116 between the gate electrode 110 and the gate electrode 114, an additional enhancement layer may be formed on the barrier layer 106 in the same process step when the enhancement layer 116 is formed. 116a, followed by an interconnect process to form an inter-layer dielectric (ILD)/intermetal dielectric layer An inter-metal dielectric (IMD) 122 and an interconnect structure 120 formed thereon/and electrically connected to the drain electrode 114 by the interconnect structure 120. The interconnect structure 120 can be formed via a patterned mask (not shown) in conjunction with an etch and deposition process. The etching process can include selective wet etching, selective dry etching, and/or combinations thereof. The deposition process may include sputtering, resistance heating evaporation, electron beam evaporation, physical vapor deposition (PVD), or other suitable deposition methods, and/or combinations thereof. The material of the interconnect structure 120 may be Al, Ag, Cu, AlCu, Pt, W, Ru, Ni, TaN, TiN, TiAlN, TiW, and/or combinations thereof. The interconnect structure 120 includes various metal lines, contacts, vias, and/or combinations thereof.
值得注意的是,第7圖僅為一示例性剖面圖,本發明實施例並不僅限於增強層116a與汲極電極114電性連接,亦可視電路設計需求,將增強層116a與閘極電極110或源極電極112電性連接,抑或任何將增強層116a作為電阻使用的電性連接方式。 It is to be noted that the seventh embodiment is only an exemplary cross-sectional view. The embodiment of the present invention is not limited to the electrical connection between the enhancement layer 116a and the drain electrode 114, and the enhancement layer 116a and the gate electrode 110 may also be required according to circuit design requirements. Or the source electrode 112 is electrically connected, or any electrical connection method in which the reinforcing layer 116a is used as a resistor.
在一些實施例中,將增強層116a與閘極電極110、或汲極電極114、或源極電極112電性連接,此時增強層116a作為電阻使用。在空乏型(D-mode)高電子移動率電晶體500中,增強導通電流的增強層116及做為電阻的增強層116a由同一製程形成。如此一來,可節省製程成本及時間。 In some embodiments, the enhancement layer 116a is electrically coupled to the gate electrode 110, or the drain electrode 114, or the source electrode 112, at which point the enhancement layer 116a is used as a resistor. In the D-mode high electron mobility transistor 500, the enhancement layer 116 that enhances the on current and the enhancement layer 116a that acts as a resistor are formed by the same process. In this way, process cost and time can be saved.
值得注意的是,增強層116a亦可形成於如第3圖、第5圖、第6圖所示之增強型(E-mode)高電子移動率電晶體200、300、400中,增強導通電流的增強層116及做為電阻的增強層116a由同一製程形成。如此一來,可節省製程成本及時間。 It should be noted that the enhancement layer 116a may also be formed in the enhanced (E-mode) high electron mobility transistors 200, 300, 400 as shown in FIGS. 3, 5, and 6 to enhance the on current. The enhancement layer 116 and the enhancement layer 116a as a resistor are formed by the same process. In this way, process cost and time can be saved.
綜上所述,本發明實施例提供一種高電子移動率電晶體(high electron mobility transistor,HEMT)結構,於通道層上方形成增強層,藉由能帶結構改變,提高二維電子氣(two-dimensional electron gas,2DEG)濃度,進而提升空乏型(D-mode)高電子移動率電晶體與增強型(E-mode)高電子移動率電晶體的導通電流,並可於同一製程中形成電阻供電路設計使用。 In summary, the embodiment of the present invention provides a high electron mobility transistor (HEMT) structure, forming a reinforcement layer above the channel layer, and improving the two-dimensional electron gas by changing the energy band structure (two- Dimensional electron gas (2DEG) concentration, which in turn increases the on-current of the D-mode high electron mobility transistor and the enhanced (E-mode) high electron mobility transistor, and can form a resistor for the same process. Circuit design is used.
上述內容概述許多實施例的特徵,因此任何所屬技術領域中具有通常知識者,可更加理解本發明實施例之各面向。任何所屬技術領域中具有通常知識者,可能無困難地以本發明實施例為基礎,設計或修改其他製程及結構,以達到與本發明實施例相同的目的及/或得到相同的優點。任何所屬技術領域中具有通常知識者也應了解,在不脫離本發明實施例之精神和範圍內做不同改變、代替及修改,如此等效的創造並沒有超出本發明實施例的精神及範圍。 The above summary is a summary of the features of the various embodiments, and thus, the various aspects of the embodiments of the invention may be understood. Other processes and structures may be designed or modified based on the embodiments of the present invention without departing from the scope of the present invention to achieve the same objectives and/or the same advantages as the embodiments of the present invention. It is to be understood by those skilled in the art that the present invention is not limited to the spirit and scope of the embodiments of the present invention without departing from the spirit and scope of the invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106123451A TWI632678B (en) | 2017-07-13 | 2017-07-13 | High electron mobility transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106123451A TWI632678B (en) | 2017-07-13 | 2017-07-13 | High electron mobility transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI632678B true TWI632678B (en) | 2018-08-11 |
TW201909412A TW201909412A (en) | 2019-03-01 |
Family
ID=63959639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106123451A TWI632678B (en) | 2017-07-13 | 2017-07-13 | High electron mobility transistor |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI632678B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201145403A (en) * | 2010-03-31 | 2011-12-16 | Triquint Semiconductor Inc | High electron mobility transistor with recessed barrier layer |
TWM529274U (en) * | 2016-03-07 | 2016-09-21 | 廣鎵光電股份有限公司 | Normally-off cascode high electron mobility transistor |
-
2017
- 2017-07-13 TW TW106123451A patent/TWI632678B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201145403A (en) * | 2010-03-31 | 2011-12-16 | Triquint Semiconductor Inc | High electron mobility transistor with recessed barrier layer |
TWM529274U (en) * | 2016-03-07 | 2016-09-21 | 廣鎵光電股份有限公司 | Normally-off cascode high electron mobility transistor |
Also Published As
Publication number | Publication date |
---|---|
TW201909412A (en) | 2019-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10002956B1 (en) | High electron mobility transistor | |
TWI608568B (en) | Semiconductor device and method for fabricating the same | |
US11929406B2 (en) | Semiconductor device and method for manufacturing the same | |
CN110071173B (en) | Semiconductor device and method for manufacturing the same | |
CN109524460B (en) | High hole mobility transistor | |
TW201547018A (en) | Semiconductor device and manufacturing method thereof | |
US10256332B1 (en) | High hole mobility transistor | |
US11600708B2 (en) | Semiconductor device and manufacturing method thereof | |
US20130092947A1 (en) | Semiconductor device and method of making | |
CN110754001A (en) | Enhancement mode gallium nitride transistors with selective and non-selective etch layers to improve uniformity of gallium nitride spacer thickness | |
US10573734B1 (en) | High electron mobility transistor and method for forming the same | |
TW201838175A (en) | High electron mobility transistor | |
US20220376074A1 (en) | Nitride-based semiconductor device and method for manufacturing the same | |
US20240038887A1 (en) | Semiconductor device and method for manufacturing the same | |
JP2016174140A (en) | High electron mobility transistor device and method of manufacturing the same | |
TW202044356A (en) | Manufacturing method of semiconductor device | |
US8558242B2 (en) | Vertical GaN-based metal insulator semiconductor FET | |
CN110875383B (en) | Semiconductor device and method for manufacturing the same | |
TWI676290B (en) | High electron mobility transistor and method for forming the same | |
CN116344586A (en) | Folded channel gallium nitride-based field effect transistor and preparation method thereof | |
TWI632678B (en) | High electron mobility transistor | |
US20240222423A1 (en) | GaN-BASED SEMICONDUCTOR DEVICE WITH REDUCED LEAKAGE CURRENT AND METHOD FOR MANUFACTURING THE SAME | |
US11588047B2 (en) | Semiconductor component and manufacturing method thereof | |
US20220123106A1 (en) | Semiconductor device and fabrication method thereof | |
CN110034171B (en) | High electron mobility transistor |