TWI631705B - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
TWI631705B
TWI631705B TW106129041A TW106129041A TWI631705B TW I631705 B TWI631705 B TW I631705B TW 106129041 A TW106129041 A TW 106129041A TW 106129041 A TW106129041 A TW 106129041A TW I631705 B TWI631705 B TW I631705B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
layer
doped region
gate
semiconductor device
Prior art date
Application number
TW106129041A
Other languages
Chinese (zh)
Other versions
TW201914004A (en
Inventor
許修文
葉俊瑩
倪君偉
羅振達
Original Assignee
帥群微電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帥群微電子股份有限公司 filed Critical 帥群微電子股份有限公司
Priority to TW106129041A priority Critical patent/TWI631705B/en
Application granted granted Critical
Publication of TWI631705B publication Critical patent/TWI631705B/en
Publication of TW201914004A publication Critical patent/TW201914004A/en

Links

Abstract

一種半導體元件包含基板、磊晶層、第三介電層、屏蔽層、第四介電層、閘極、多個摻雜區以及第五介電層。磊晶層位於基板上。第三介電層設置於磊晶層的第一溝渠中,並形成第二溝渠於第一溝渠中。屏蔽層具有上半部分與下半部分,其中下半部分設置於第二溝渠中,上半部分凸出於第三介電層。閘極設置於磊晶層中與第三介電層上,其中第四介電層設置於屏蔽層與閘極之間。摻雜區設置於位於閘極之四周的磊晶層中。第五介電層設置於摻雜區與閘極之間。 A semiconductor device includes a substrate, an epitaxial layer, a third dielectric layer, a shielding layer, a fourth dielectric layer, a gate, a plurality of doped regions, and a fifth dielectric layer. The epitaxial layer is on the substrate. The third dielectric layer is disposed in the first trench of the epitaxial layer and forms a second trench in the first trench. The shielding layer has an upper half and a lower half, wherein the lower half is disposed in the second trench, and the upper half protrudes from the third dielectric layer. The gate is disposed in the epitaxial layer and the third dielectric layer, wherein the fourth dielectric layer is disposed between the shielding layer and the gate. The doped region is disposed in an epitaxial layer located around the gate. The fifth dielectric layer is disposed between the doped region and the gate.

Description

半導體元件與其製造方法 Semiconductor component and method of manufacturing same

本發明是有關於一種半導體元件與其製造方法。 The present invention relates to a semiconductor device and a method of fabricating the same.

功率半導體仍是許多電力電子系統的主要元件。在現今功率半導體的應用領域中,低導通電壓與逆向電壓的高乘載能力是非常重要的能力指標。 Power semiconductors remain the main components of many power electronics systems. In today's power semiconductor applications, the high on-load capability of low on-voltage and reverse voltage is a very important capability indicator.

為了進一步改善功率半導體的各項特性,相關領域莫不費盡心思開發。如何能提供一種具有較佳特性的半導體,實屬當前重要研發課題之一,亦成為當前相關領域亟需改進的目標。 In order to further improve the various characteristics of power semiconductors, the related fields have not been exhausted. How to provide a semiconductor with better characteristics is one of the current important research and development topics, and it has become an urgent target for improvement in related fields.

本發明之一技術態樣是在提供一種半導體元件與其製造方法,藉由適當的結構設計,使半導體元件具有較低的導通電壓且可以承載較高的逆向電壓。另外,利用特殊的製程設計,將能有效降低製造成本。 One aspect of the present invention provides a semiconductor device and a method of fabricating the same that allows a semiconductor device to have a lower turn-on voltage and can carry a higher reverse voltage by a suitable structural design. In addition, the use of special process design will effectively reduce manufacturing costs.

根據本發明一實施方式,一種半導體元件的製造方法包含以下步驟。首先,形成磊晶層於基板上。然後,形成 第一溝渠於磊晶層中。之後,依序形成第一介電層、第二介電層以及第三介電層於磊晶層上,其中第三介電層形成第二溝渠,第二溝渠位於第一溝渠中。再來,形成屏蔽層於第二溝渠中。然後,移除第三介電層的上半部分,以使屏蔽層的上半部分凸出於第三介電層。之後,形成第四介電層於屏蔽層的上半部分。再來,移除未被第三介電層覆蓋的第二介電層與第一介電層,以裸露磊晶層。然後,形成第五介電層。之後,形成閘極於第三介電層上,並使第五介電層介於閘極與磊晶層之間。最後,形成多個摻雜區於閘極之四周的磊晶層中。 According to an embodiment of the present invention, a method of fabricating a semiconductor device includes the following steps. First, an epitaxial layer is formed on the substrate. Then, form The first trench is in the epitaxial layer. Thereafter, a first dielectric layer, a second dielectric layer, and a third dielectric layer are sequentially formed on the epitaxial layer, wherein the third dielectric layer forms a second trench, and the second trench is located in the first trench. Then, a shielding layer is formed in the second trench. Then, the upper half of the third dielectric layer is removed such that the upper half of the shield protrudes from the third dielectric layer. Thereafter, a fourth dielectric layer is formed on the upper half of the shield layer. Then, the second dielectric layer and the first dielectric layer not covered by the third dielectric layer are removed to expose the epitaxial layer. Then, a fifth dielectric layer is formed. Thereafter, a gate is formed on the third dielectric layer, and the fifth dielectric layer is interposed between the gate and the epitaxial layer. Finally, a plurality of doped regions are formed in the epitaxial layer around the gate.

根據本發明另一實施方式,一種半導體元件包含基板、磊晶層、第三介電層、屏蔽層、第四介電層、閘極、多個摻雜區以及第五介電層。磊晶層位於基板上。第三介電層設置於磊晶層的第一溝渠中,並形成第二溝渠於第一溝渠中。屏蔽層具有上半部分與下半部分,其中下半部分設置於第二溝渠中,上半部分凸出於第三介電層。第四介電層設置於上半部分上。閘極設置於磊晶層中與第三介電層上,其中第四介電層設置於屏蔽層與閘極之間。摻雜區設置於位於閘極之四周的磊晶層中。第五介電層設置於摻雜區與閘極之間。 According to another embodiment of the present invention, a semiconductor device includes a substrate, an epitaxial layer, a third dielectric layer, a shielding layer, a fourth dielectric layer, a gate, a plurality of doped regions, and a fifth dielectric layer. The epitaxial layer is on the substrate. The third dielectric layer is disposed in the first trench of the epitaxial layer and forms a second trench in the first trench. The shielding layer has an upper half and a lower half, wherein the lower half is disposed in the second trench, and the upper half protrudes from the third dielectric layer. The fourth dielectric layer is disposed on the upper half. The gate is disposed in the epitaxial layer and the third dielectric layer, wherein the fourth dielectric layer is disposed between the shielding layer and the gate. The doped region is disposed in an epitaxial layer located around the gate. The fifth dielectric layer is disposed between the doped region and the gate.

在半導體元件中,因為閘極可以產生的短通道效應,所以半導體元件將可以產生類似於蕭特基二極體的低導通電壓。於是,半導體元件的導通效能損失將能降低,同時可以具有高溫時優良的可靠度表現。進一步來說,因為位於閘極旁邊的介電層的厚度較薄,所以半導體元件的導通電壓可以進一步降低。 In a semiconductor device, a semiconductor device can produce a low on-voltage similar to a Schottky diode because of the short channel effect that the gate can produce. As a result, the conduction efficiency loss of the semiconductor element can be reduced, and at the same time, it can have excellent reliability performance at a high temperature. Further, since the thickness of the dielectric layer located beside the gate is thin, the on-voltage of the semiconductor element can be further lowered.

本製造方法可以相容於傳統功率半導體元件的相關製程,因此僅需微調原有製程即可製造半導體元件。另外,在閘極下方的介電層的厚度夠厚,所以使半導體元件在具有低導通電壓的同時可以承載較高的逆向電壓。 The manufacturing method can be compatible with the related processes of the conventional power semiconductor device, so that the semiconductor device can be manufactured only by fine-tuning the original process. In addition, the thickness of the dielectric layer under the gate is sufficiently thick, so that the semiconductor element can carry a high reverse voltage while having a low on-voltage.

進一步來說,利用熱氧化屏蔽層的方式,僅需要使用一個製程就可以形成設置於閘極與屏蔽層之間的介電層。於是,相較於傳統製程,製造半導體元件所需的製程將能大幅減少,進而有效降低製造成本。 Further, by thermally oxidizing the shielding layer, it is only necessary to use one process to form a dielectric layer disposed between the gate and the shielding layer. Thus, the process required to fabricate semiconductor components can be substantially reduced compared to conventional processes, thereby effectively reducing manufacturing costs.

100‧‧‧半導體元件 100‧‧‧Semiconductor components

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧磊晶層 120‧‧‧ epitaxial layer

120t、140t‧‧‧頂面 120t, 140t‧‧‧ top

121、134、138‧‧‧溝渠 121, 134, 138‧‧‧ Ditch

122‧‧‧第一摻雜區 122‧‧‧First doped area

123‧‧‧第二摻雜區 123‧‧‧Second doped area

124‧‧‧第三摻雜區 124‧‧‧ Third doped area

129‧‧‧凹槽 129‧‧‧ Groove

131‧‧‧第一介電層 131‧‧‧First dielectric layer

132‧‧‧第二介電層 132‧‧‧Second dielectric layer

133‧‧‧第三介電層 133‧‧‧ Third dielectric layer

135‧‧‧第四介電層 135‧‧‧fourth dielectric layer

137‧‧‧第五介電層 137‧‧‧ fifth dielectric layer

140‧‧‧屏蔽層 140‧‧‧Shield

140d‧‧‧下半部分 140d‧‧‧ lower half

140u‧‧‧上半部分 Upper part of 140u‧‧‧

150‧‧‧閘極 150‧‧‧ gate

171‧‧‧金屬矽化層 171‧‧‧metal layer

172‧‧‧金屬層 172‧‧‧metal layer

第1A圖至第1G圖繪示依照本發明一實施方式之半導體元件的製造方法各步驟的剖面圖。 1A to 1G are cross-sectional views showing respective steps of a method of manufacturing a semiconductor device in accordance with an embodiment of the present invention.

第2圖繪示依照本發明另一實施方式之半導體元件的製造方法各步驟的剖面圖。 2 is a cross-sectional view showing steps of a method of fabricating a semiconductor device in accordance with another embodiment of the present invention.

第3圖繪示依照本發明又一實施方式之半導體元件的製造方法各步驟的剖面圖。 3 is a cross-sectional view showing the steps of a method of fabricating a semiconductor device in accordance with still another embodiment of the present invention.

第4A圖至第4C圖繪示依照本發明又一實施方式之半導體元件的製造方法各步驟的剖面圖。 4A to 4C are cross-sectional views showing respective steps of a method of fabricating a semiconductor device in accordance with still another embodiment of the present invention.

第5圖繪示依照本發明再一實施方式之半導體元件的製造方法各步驟的剖面圖。 Fig. 5 is a cross-sectional view showing the steps of a method of fabricating a semiconductor device in accordance with still another embodiment of the present invention.

第6圖繪示依照本發明再一實施方式之半導體元件的製造方法各步驟的剖面圖。 Figure 6 is a cross-sectional view showing the steps of a method of fabricating a semiconductor device in accordance with still another embodiment of the present invention.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。 The embodiments of the present invention are disclosed in the following drawings, and the details of However, it should be understood that these practical details are not intended to limit the invention. That is, in some embodiments of the invention, these practical details are not necessary. In addition, some of the conventional structures and elements are shown in the drawings in a simplified schematic manner in order to simplify the drawings.

第1A圖至第1G圖繪示依照本發明一實施方式之半導體元件100的製造方法各步驟的剖面圖。 1A to 1G are cross-sectional views showing respective steps of a method of manufacturing the semiconductor device 100 according to an embodiment of the present invention.

如第1A圖所繪示,首先,形成磊晶層120於基板110上。具體而言,基板110之材質可為單晶矽。磊晶層120之材質可為單晶矽。 As shown in FIG. 1A, first, an epitaxial layer 120 is formed on the substrate 110. Specifically, the material of the substrate 110 may be a single crystal germanium. The material of the epitaxial layer 120 may be a single crystal germanium.

接著,形成第一溝渠121於磊晶層120中。具體而言,溝渠121的形成方法例如為蝕刻。 Next, a first trench 121 is formed in the epitaxial layer 120. Specifically, the method of forming the trench 121 is, for example, etching.

然後,依序形成第一介電層131、第二介電層132、第三介電層133於磊晶層120上,其中第三介電層133形成第二溝渠134,第二溝渠134位於第一溝渠121中。具體而言,第一介電層131之材質可為二氧化矽。第二介電層132之材質可為氮化矽。第三介電層133之材質可為四乙氧基矽烷(Tetraethoxysilane,TEOS)。第一介電層131可藉由熱氧化磊晶層120而形成。第二介電層132、第三介電層133可分別藉由物理氣相沉積、化學氣相沉積或其組合而形成。 Then, the first dielectric layer 131, the second dielectric layer 132, and the third dielectric layer 133 are sequentially formed on the epitaxial layer 120, wherein the third dielectric layer 133 forms a second trench 134, and the second trench 134 is located In the first trench 121. Specifically, the material of the first dielectric layer 131 may be cerium oxide. The material of the second dielectric layer 132 may be tantalum nitride. The material of the third dielectric layer 133 may be Tetraethoxysilane (TEOS). The first dielectric layer 131 can be formed by thermally oxidizing the epitaxial layer 120. The second dielectric layer 132 and the third dielectric layer 133 may be formed by physical vapor deposition, chemical vapor deposition, or a combination thereof, respectively.

如第1B圖所繪示,形成屏蔽層140於第二溝渠134中。具體而言,首先形成屏蔽層140於第三介電層133上(即溝渠134中與介電層133的頂面上)。然後,移除部分屏蔽層 140,僅留下位於第二溝渠134中的屏蔽層140。屏蔽層140之材質可為多晶矽。屏蔽層140可藉由物理氣相沉積、化學氣相沉積或其組合而形成。屏蔽層140的移除方法可為蝕刻。另外,屏蔽層140的頂面的高度低於磊晶層120的頂面的高度。 As shown in FIG. 1B, a shielding layer 140 is formed in the second trench 134. Specifically, the shielding layer 140 is first formed on the third dielectric layer 133 (ie, in the trench 134 and the top surface of the dielectric layer 133). Then remove some of the shield 140, leaving only the shielding layer 140 located in the second trench 134. The material of the shielding layer 140 may be polysilicon. The shielding layer 140 can be formed by physical vapor deposition, chemical vapor deposition, or a combination thereof. The method of removing the shielding layer 140 may be etching. In addition, the height of the top surface of the shielding layer 140 is lower than the height of the top surface of the epitaxial layer 120.

如第1C圖所繪示,移除第三介電層133的上半部分而留下位於第一溝渠121中的第三介電層133,以使屏蔽層140的上半部分140u凸出於第三介電層133。具體而言,第三介電層133的移除方法可為濕蝕刻。 As shown in FIG. 1C, the upper half of the third dielectric layer 133 is removed leaving the third dielectric layer 133 in the first trench 121 such that the upper half 140u of the shield layer 140 protrudes. The third dielectric layer 133. Specifically, the method of removing the third dielectric layer 133 may be wet etching.

如第1D圖所繪示,形成第四介電層135於屏蔽層140的上半部分140u上,因而使第四介電層135覆蓋屏蔽層140的上半部分140u。具體而言,第四介電層135之材質可為二氧化矽。第四介電層135為藉由熱氧化屏蔽層140而形成。此處需要注意的是,第二介電層132可以在熱氧化屏蔽層140的時候保護位於其下的其他結構(例如第一介電層131)不受影響。 As shown in FIG. 1D, a fourth dielectric layer 135 is formed on the upper half 140u of the shield layer 140, thereby allowing the fourth dielectric layer 135 to cover the upper half 140u of the shield layer 140. Specifically, the material of the fourth dielectric layer 135 may be cerium oxide. The fourth dielectric layer 135 is formed by thermally oxidizing the shielding layer 140. It should be noted here that the second dielectric layer 132 can protect other structures underneath (eg, the first dielectric layer 131) from being affected when thermally oxidizing the shielding layer 140.

如第1D圖與第1E圖所繪示,移除未被第三介電層133覆蓋的第二介電層132的上半部分(即設置高度大於第三介電層133的頂面高度的部分),以使第二介電層132的頂面高度與第三介電層133的頂面高度大致相同。具體而言,第二介電層132的移除方法可為濕蝕刻。 As shown in FIG. 1D and FIG. 1E , the upper half of the second dielectric layer 132 not covered by the third dielectric layer 133 is removed (ie, the height of the top surface of the third dielectric layer 133 is greater than the height of the top surface of the third dielectric layer 133 . Partly) such that the top surface height of the second dielectric layer 132 is substantially the same as the top surface height of the third dielectric layer 133. Specifically, the method of removing the second dielectric layer 132 may be wet etching.

然後,移除未被第三介電層133覆蓋的第一介電層131的上半部分(即設置高度大於第三介電層133的頂面的設置高度的部分),以使第一介電層131的頂面高度與第三介電 層133的頂面高度大致相同,並裸露磊晶層120的上半部分。具體而言,第一介電層131的移除方法可為濕蝕刻。 Then, the upper half of the first dielectric layer 131 not covered by the third dielectric layer 133 (ie, a portion having a height greater than the set height of the top surface of the third dielectric layer 133) is removed to make the first dielectric layer The top surface height of the electrical layer 131 and the third dielectric The top surface of layer 133 is substantially the same height and the upper half of epitaxial layer 120 is exposed. Specifically, the method of removing the first dielectric layer 131 may be wet etching.

再來,形成第五介電層137於裸露的磊晶層120上面。具體而言,第五介電層137之材質可為二氧化矽。第五介電層137可藉由熱氧化磊晶層120而形成。 Then, a fifth dielectric layer 137 is formed on the exposed epitaxial layer 120. Specifically, the material of the fifth dielectric layer 137 may be cerium oxide. The fifth dielectric layer 137 can be formed by thermally oxidizing the epitaxial layer 120.

之後,形成閘極150於溝渠138中和第三介電層133上,並使第五介電層137介於閘極150與磊晶層120之間。具體而言,首先形成閘極150於溝渠138中與第三介電層133的頂面上。然後,移除閘極150的上半部分,僅留下位於溝渠138中的閘極150。於是,閘極150設置於第一介電層131、第二介電層132、第三介電層133上且直接接觸第五介電層137。閘極150之材質可為多晶矽。閘極150可藉由物理氣相沉積、化學氣相沉積或其組合而形成。閘極150的移除方法可為蝕刻。 Thereafter, a gate 150 is formed in the trench 138 and the third dielectric layer 133, and the fifth dielectric layer 137 is interposed between the gate 150 and the epitaxial layer 120. Specifically, the gate 150 is first formed on the top surface of the trench 138 and the third dielectric layer 133. Then, the upper half of the gate 150 is removed leaving only the gate 150 located in the trench 138. Thus, the gate 150 is disposed on the first dielectric layer 131, the second dielectric layer 132, and the third dielectric layer 133 and directly contacts the fifth dielectric layer 137. The material of the gate 150 may be polysilicon. The gate 150 can be formed by physical vapor deposition, chemical vapor deposition, or a combination thereof. The method of removing the gate 150 may be etching.

如第1F圖所繪示,形成第一摻雜區122於位於閘極150(溝渠138)之四周的磊晶層120中,以做為基體區(Body)。第一摻雜區122的形成方法為離子佈植(Ion Implantation)與驅入擴散(Drive In)。 As shown in FIG. 1F, the first doping region 122 is formed in the epitaxial layer 120 located around the gate 150 (ditch 138) to serve as a body region. The first doping region 122 is formed by ion implantation (Ion Implantation) and drive infiltration (Drive In).

然後,形成第二摻雜區123於位於閘極150(溝渠138)之四周的第一摻雜區122(磊晶層120)的上面部份中,以做為源極區(Source)。具體而言,第二摻雜區123的形成方法為離子佈植與驅入擴散。 Then, a second doping region 123 is formed in the upper portion of the first doping region 122 (the epitaxial layer 120) located around the gate 150 (ditch 138) as a source region. Specifically, the second doping region 123 is formed by ion implantation and drive-in diffusion.

如第1F圖與第1G圖所繪示,形成凹槽129於第二摻雜區123中。具體而言,凹槽129的形成方法可為蝕刻。 As shown in FIG. 1F and FIG. 1G, the recess 129 is formed in the second doping region 123. Specifically, the method of forming the recess 129 may be etching.

然後,根據凹槽129位置,進行離子佈植與驅入擴散,以形成第三摻雜區124於位於閘極150(溝渠138)之四周的第一摻雜區122(磊晶層120)中。 Then, according to the position of the groove 129, ion implantation and drive-in diffusion are performed to form a third doping region 124 in the first doping region 122 (the epitaxial layer 120) located around the gate 150 (ditch 138). .

再來,移除位於第二摻雜區123的頂面上的介電層137,並形成金屬矽化層171於第二摻雜區123、第三摻雜區124及閘極150上。具體而言,在移除介電層137後(可藉由蝕刻移除),首先形成金屬層於第二摻雜區123、第三摻雜區124與閘極150上。在一些實施方式中,金屬層之材質可為鈦。金屬層的形成方式可為物理氣相沉積、化學氣相沉積、或其組合而形成。然後,溫度提升至適當溫度。於是,金屬層將與位於其下的第二摻雜區123、第三摻雜區124及與閘極150結合而形成金屬矽化層171。金屬矽化層171電性連接第二摻雜區123、第三摻雜區124與閘極150。在一些實施方式中,金屬矽化層171之材質可為矽化鈦。 Then, the dielectric layer 137 on the top surface of the second doping region 123 is removed, and the metal deuteration layer 171 is formed on the second doping region 123, the third doping region 124, and the gate 150. Specifically, after removing the dielectric layer 137 (which can be removed by etching), a metal layer is first formed on the second doping region 123, the third doping region 124, and the gate 150. In some embodiments, the material of the metal layer can be titanium. The metal layer may be formed by physical vapor deposition, chemical vapor deposition, or a combination thereof. Then, the temperature is raised to the appropriate temperature. Thus, the metal layer will combine with the second doped region 123, the third doped region 124, and the gate 150 underneath to form the metal germanide layer 171. The metal deuteration layer 171 is electrically connected to the second doping region 123, the third doping region 124, and the gate 150. In some embodiments, the material of the metal deuteration layer 171 may be titanium telluride.

最後,形成金屬層172於金屬矽化層171上。具體而言,金屬層172之材質可為鋁或銅。金屬層172可藉由電化學沉積製程(Electrochemical Deposition)、物理氣相沉積製程、化學氣相沉積製程或其組合形成。 Finally, a metal layer 172 is formed on the metal deuteration layer 171. Specifically, the material of the metal layer 172 may be aluminum or copper. The metal layer 172 can be formed by an electrochemical deposition process, a physical vapor deposition process, a chemical vapor deposition process, or a combination thereof.

在本實施方式中,第一摻雜區122為P-型。第二摻雜區123為N+型。第三摻雜區124為P+型。應了解到,以上所舉第一摻雜區122、第二摻雜區123與第三摻雜區124的具體實施方式僅為例示,並非用以限制本發明,本發明所屬技術領域中具有通常知識者,應視實際需要,彈性選擇第一摻雜區122、第二摻雜區123與第三摻雜區124的具體實施方式。 In the present embodiment, the first doping region 122 is P-type. The second doping region 123 is of the N+ type. The third doping region 124 is of the P+ type. It should be understood that the specific embodiments of the first doping region 122, the second doping region 123, and the third doping region 124 are merely illustrative and are not intended to limit the present invention, and are generally in the technical field of the present invention. The knowledgeer should flexibly select the specific embodiments of the first doping region 122, the second doping region 123 and the third doping region 124 according to actual needs.

在半導體元件100中,因為閘極150可以產生的短通道效應(Short Channel Effect),所以半導體元件100將可以產生類似於蕭特基二極體的低導通電壓。於是,半導體元件100的導通效能損失將能降低,同時可以具有高溫時優良的可靠度表現。進一步來說,因為位於閘極150旁邊的介電層137的厚度較薄,所以半導體元件100的導通電壓可以進一步降低。 In the semiconductor device 100, the semiconductor device 100 will be able to generate a low on-voltage similar to a Schottky diode because of the short channel effect that the gate 150 can generate. Thus, the conduction efficiency loss of the semiconductor element 100 can be reduced, and at the same time, it can have excellent reliability performance at a high temperature. Further, since the thickness of the dielectric layer 137 located beside the gate 150 is thin, the on-voltage of the semiconductor element 100 can be further lowered.

本製造方法可以相容於傳統功率半導體元件的相關製程,因此僅需微調原有製程即可製造半導體元件100。另外,在閘極150下方的第一介電層131、第二介電層132、第三介電層133的厚度夠厚,所以使半導體元件100在具有低導通電壓的同時可以承載較高的逆向電壓。 The manufacturing method can be compatible with the related processes of the conventional power semiconductor device, and thus the semiconductor device 100 can be manufactured only by fine-tuning the original process. In addition, the thicknesses of the first dielectric layer 131, the second dielectric layer 132, and the third dielectric layer 133 under the gate 150 are sufficiently thick, so that the semiconductor device 100 can carry a high voltage while having a low on-voltage. Reverse voltage.

進一步來說,利用熱氧化屏蔽層140的方式,僅需要使用一個製程就可以形成設置於閘極150與屏蔽層140之間的第四介電層135。於是,相較於傳統製程,製造半導體元件100所需的製程將能大幅減少,進而有效降低製造成本。 Further, by thermally oxidizing the shielding layer 140, only the fourth dielectric layer 135 disposed between the gate 150 and the shielding layer 140 can be formed by using one process. Thus, the process required to fabricate the semiconductor device 100 can be greatly reduced compared to the conventional process, thereby effectively reducing the manufacturing cost.

第2圖繪示依照本發明另一實施方式之半導體元件100的製造方法各步驟的剖面圖。如第2圖所繪示,本實施方式的製造方法與前述實施方式的製造方法大致相同,主要相異在於,形成該第二摻雜區123後,不跟第1G圖一樣要形成凹槽129於第二摻雜區123中,而是直接形成第三摻雜區124於第一摻雜區122與第二摻雜區123中,其中第三摻雜區124的底部深度大於第二摻雜區123的底部深度。 2 is a cross-sectional view showing steps of a method of fabricating a semiconductor device 100 in accordance with another embodiment of the present invention. As shown in FIG. 2, the manufacturing method of the present embodiment is substantially the same as the manufacturing method of the above-described embodiment, and the main difference is that after the second doping region 123 is formed, the groove 129 is not formed as in the first G-figure. In the second doping region 123, a third doping region 124 is directly formed in the first doping region 122 and the second doping region 123, wherein the bottom doping depth of the third doping region 124 is greater than the second doping region The bottom depth of zone 123.

第3圖繪示依照本發明又一實施方式之半導體元件100的製造方法各步驟的剖面圖。如第3圖所繪示,本實施 方式的製造方法與第1G圖的製造方法大致相同,主要相異在於,在本實施方式中,沒有形成凹槽129與第三摻雜區124。另外,第一摻雜區122為P-型。第二摻雜區123為P+型。應了解到,以上所舉第一摻雜區122與第二摻雜區123的具體實施方式僅為例示,並非用以限制本發明,本發明所屬技術領域中具有通常知識者,應視實際需要,彈性選擇第一摻雜區122與第二摻雜區123的具體實施方式。 3 is a cross-sectional view showing the steps of a method of fabricating the semiconductor device 100 in accordance with still another embodiment of the present invention. As shown in Figure 3, this implementation The manufacturing method of the method is substantially the same as the manufacturing method of the first G diagram, and mainly differs in that the groove 129 and the third doping region 124 are not formed in the present embodiment. In addition, the first doping region 122 is P-type. The second doping region 123 is of the P+ type. It should be understood that the specific embodiments of the first doping region 122 and the second doping region 123 are merely illustrative and are not intended to limit the present invention. Those skilled in the art to which the present invention pertains should be considered as needed. A specific embodiment of the first doping region 122 and the second doping region 123 is elastically selected.

第4A圖至第4B圖繪示依照本發明又一實施方式之半導體元件100的製造方法各步驟的剖面圖。本實施方式的製造方法與前述實施方式的製造方法大致相同,以下主要將介紹其相異處。 4A to 4B are cross-sectional views showing respective steps of a method of fabricating the semiconductor device 100 according to still another embodiment of the present invention. The manufacturing method of the present embodiment is substantially the same as the manufacturing method of the above-described embodiment, and the differences will be mainly described below.

如第4A圖所繪示,在移除部分屏蔽層140的時候,使留下的屏蔽層140的頂面140t的設置高度約等於磊晶層120的頂面120t的設置高度。 As shown in FIG. 4A, when the partial shield layer 140 is removed, the top surface 140t of the remaining shield layer 140 is disposed at a height approximately equal to the set height of the top surface 120t of the epitaxial layer 120.

如第4B圖所繪示,在形成閘極150的時候,因為第四介電層135的頂面的設置高度大於或等於磊晶層120的頂面120t的設置高度,所以閘極150將不會設置於屏蔽層140的上半部分140u的上方。換句話說,閘極150沒有設置於第四介電層135的頂面上。 As shown in FIG. 4B, when the gate 150 is formed, since the height of the top surface of the fourth dielectric layer 135 is greater than or equal to the set height of the top surface 120t of the epitaxial layer 120, the gate 150 will not It will be placed above the upper half 140u of the shield layer 140. In other words, the gate 150 is not disposed on the top surface of the fourth dielectric layer 135.

如第4C圖所繪示,本實施方式所形成的半導體元件100基本上與第1G圖所形成的半導體元件100相同,主要差異在於,在本實施方式中,屏蔽層140的頂面140t的設置高度約等於磊晶層120的頂面120t的設置高度(第一摻雜區122、第二摻雜區123與第三摻雜區124為形成於磊晶層120中),所以 閘極150沒有設置於屏蔽層140的上半部分140u的上方。進一步來說,在前述製程中,因為第四介電層135的頂面的設置高度大於或等於磊晶層120的頂面120t的設置高度,所以部分第四介電層135將會凸出於磊晶層120。在形成金屬矽化層171之前,將凸出於磊晶層120的介電層135移除,因而裸露屏蔽層140。於是,金屬矽化層171亦電性連接屏蔽層140。具體而言,移除凸出於磊晶層120的第四介電層135的方法可為化學機械平坦化製程(Chemical Mechanical Planarization,CMP)。 As shown in FIG. 4C, the semiconductor device 100 formed in the present embodiment is basically the same as the semiconductor device 100 formed in FIG. 1G. The main difference is that in the present embodiment, the top surface 140t of the shield layer 140 is disposed. The height is approximately equal to the set height of the top surface 120t of the epitaxial layer 120 (the first doped region 122, the second doped region 123, and the third doped region 124 are formed in the epitaxial layer 120), so The gate 150 is not disposed above the upper half 140u of the shield layer 140. Further, in the foregoing process, since the top surface of the fourth dielectric layer 135 is disposed at a height greater than or equal to the set height of the top surface 120t of the epitaxial layer 120, a portion of the fourth dielectric layer 135 will protrude. Epitaxial layer 120. Prior to forming the metal deuteration layer 171, the dielectric layer 135 protruding from the epitaxial layer 120 is removed, thereby exposing the shield layer 140. Thus, the metal deuteration layer 171 is also electrically connected to the shielding layer 140. Specifically, the method of removing the fourth dielectric layer 135 protruding from the epitaxial layer 120 may be a Chemical Mechanical Planarization (CMP).

第5圖繪示依照本發明再一實施方式之半導體元件100的製造方法各步驟的剖面圖。如第5圖所繪示,本實施方式的製造方法與前述第4A圖至第4C圖實施方式的製造方法大致相同,主要相異在於,形成該第二摻雜區123後,沒有形成凹槽129直接形成第三摻雜區124於第一摻雜區122與第二摻雜區123中,其中第三摻雜區124的底部深度大於第二摻雜區123的底部深度。 FIG. 5 is a cross-sectional view showing steps of a method of fabricating a semiconductor device 100 according to still another embodiment of the present invention. As shown in FIG. 5, the manufacturing method of the present embodiment is substantially the same as the manufacturing method of the fourth embodiment to the fourth embodiment, and the main difference is that after the second doping region 123 is formed, no groove is formed. 129 directly forms the third doping region 124 in the first doping region 122 and the second doping region 123 , wherein the bottom doping depth of the third doping region 124 is greater than the bottom doping depth of the second doping region 123 .

第6圖繪示依照本發明再一實施方式之半導體元件100的製造方法各步驟的剖面圖。如第6圖所繪示,本實施方式的製造方法與第4A圖至第4C圖的製造方法大致相同,主要相異在於,在本實施方式中,沒有形成凹槽129與第三摻雜區124。另外,第一摻雜區122為P-型。第二摻雜區123為P+型。應了解到,以上所舉第一摻雜區122與第二摻雜區123的具體實施方式僅為例示,並非用以限制本發明,本發明所屬技 術領域中具有通常知識者,應視實際需要,彈性選擇第一摻雜區122與第二摻雜區123的具體實施方式。 FIG. 6 is a cross-sectional view showing steps of a method of fabricating a semiconductor device 100 according to still another embodiment of the present invention. As shown in FIG. 6, the manufacturing method of the present embodiment is substantially the same as the manufacturing method of FIGS. 4A to 4C, and mainly differs in that, in the present embodiment, the recess 129 and the third doping region are not formed. 124. In addition, the first doping region 122 is P-type. The second doping region 123 is of the P+ type. It should be understood that the specific embodiments of the first doping region 122 and the second doping region 123 are merely illustrative and are not intended to limit the present invention. A person having ordinary knowledge in the field of art should flexibly select a specific embodiment of the first doping region 122 and the second doping region 123 as needed.

在半導體元件中,因為閘極可以產生的短通道效應,所以半導體元件將可以產生類似於蕭特基二極體的低導通電壓。於是,半導體元件的導通效能損失將能降低,同時可以具有高溫時優良的可靠度表現。進一步來說,因為位於閘極旁邊的介電層的厚度較薄,所以半導體元件的導通電壓可以進一步降低。 In a semiconductor device, a semiconductor device can produce a low on-voltage similar to a Schottky diode because of the short channel effect that the gate can produce. As a result, the conduction efficiency loss of the semiconductor element can be reduced, and at the same time, it can have excellent reliability performance at a high temperature. Further, since the thickness of the dielectric layer located beside the gate is thin, the on-voltage of the semiconductor element can be further lowered.

本製造方法可以相容於傳統功率半導體元件的相關製程,因此僅需微調原有製程即可製造半導體元件。另外,在閘極下方的介電層的厚度夠厚,所以使半導體元件在具有低導通電壓的同時可以承載較高的逆向電壓。 The manufacturing method can be compatible with the related processes of the conventional power semiconductor device, so that the semiconductor device can be manufactured only by fine-tuning the original process. In addition, the thickness of the dielectric layer under the gate is sufficiently thick, so that the semiconductor element can carry a high reverse voltage while having a low on-voltage.

進一步來說,利用熱氧化屏蔽層的方式,僅需要使用一個製程就可以形成設置於閘極與屏蔽層之間的介電層。於是,相較於傳統製程,製造半導體元件所需的製程將能大幅減少,進而有效降低製造成本。 Further, by thermally oxidizing the shielding layer, it is only necessary to use one process to form a dielectric layer disposed between the gate and the shielding layer. Thus, the process required to fabricate semiconductor components can be substantially reduced compared to conventional processes, thereby effectively reducing manufacturing costs.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

Claims (15)

一種半導體元件的製造方法,包含:形成一磊晶層於一基板上;形成一第一溝渠於該磊晶層中;依序形成一第一介電層、一第二介電層以及一第三介電層於該磊晶層上,其中該第三介電層形成一第二溝渠,該第二溝渠位於該第一溝渠中;形成一屏蔽層於該第二溝渠中;移除該第三介電層的一上半部分,以使該屏蔽層的一上半部分凸出於該第三介電層;形成一第四介電層於該屏蔽層的該上半部分;移除未被該第三介電層覆蓋的該第二介電層與該第一介電層,以裸露該磊晶層;形成一第五介電層於該第一介電層上,並暴露出部分的該第一介電層;形成一閘極於該第三介電層上,並使該第五介電層介於該閘極與該磊晶層之間;以及形成多個摻雜區於該閘極之四周的該磊晶層中。 A method for fabricating a semiconductor device, comprising: forming an epitaxial layer on a substrate; forming a first trench in the epitaxial layer; sequentially forming a first dielectric layer, a second dielectric layer, and a first a third dielectric layer on the epitaxial layer, wherein the third dielectric layer forms a second trench, the second trench is located in the first trench; a shielding layer is formed in the second trench; An upper half of the three dielectric layers such that an upper portion of the shielding layer protrudes from the third dielectric layer; a fourth dielectric layer is formed on the upper portion of the shielding layer; The second dielectric layer and the first dielectric layer are covered by the third dielectric layer to expose the epitaxial layer; a fifth dielectric layer is formed on the first dielectric layer, and a portion is exposed The first dielectric layer; forming a gate on the third dielectric layer and interposing the fifth dielectric layer between the gate and the epitaxial layer; and forming a plurality of doped regions In the epitaxial layer around the gate. 如請求項1所述之半導體元件的製造方法,其中該第四介電層為藉由熱氧化該屏蔽層而形成。 The method of fabricating a semiconductor device according to claim 1, wherein the fourth dielectric layer is formed by thermally oxidizing the shielding layer. 如請求項1所述之半導體元件的製造方法,其中該屏蔽層的頂面高度低於該磊晶層的頂面高度。 The method of fabricating a semiconductor device according to claim 1, wherein a top surface height of the shielding layer is lower than a top surface height of the epitaxial layer. 如請求項1所述之半導體元件的製造方法,其中形成該多個摻雜區包括:形成一第一摻雜區,於位於該閘極之四周的該磊晶層中,以做為一基體區;以及形成一第二摻雜區,於位於該閘極之四周的該第一摻雜區的上面部分中,以做為一源極區。 The method of fabricating a semiconductor device according to claim 1, wherein the forming the plurality of doped regions comprises: forming a first doped region in the epitaxial layer located around the gate as a substrate And forming a second doped region in the upper portion of the first doped region around the gate as a source region. 如請求項4所述之半導體元件的製造方法,其中形成該第二摻雜區後,更包括:形成一凹槽於該第二摻雜區中;以及根據該凹槽位置,形成一第三摻雜區於該第一摻雜區中。 The method of fabricating a semiconductor device according to claim 4, wherein after forming the second doped region, further comprising: forming a recess in the second doped region; and forming a third according to the recess position A doped region is in the first doped region. 如請求項4所述之半導體元件的製造方法,其中形成該第二摻雜區後,更包括:形成一第三摻雜區於該第一摻雜區中,其中該第三摻雜區的底部深度大於該第二摻雜區的底部深度。 The method of manufacturing the semiconductor device of claim 4, wherein after the forming the second doped region, further comprising: forming a third doped region in the first doped region, wherein the third doped region The bottom depth is greater than the bottom depth of the second doped region. 如請求項1所述之半導體元件的製造方法,其中該第四介電層的頂面高度大於或等於該磊晶層的頂面高度。 The method of fabricating a semiconductor device according to claim 1, wherein a top surface height of the fourth dielectric layer is greater than or equal to a top surface height of the epitaxial layer. 一種半導體元件,包含:一基板;一磊晶層,位於該基板上; 一第三介電層,設置於該磊晶層的一第一溝渠中,並形成一第二溝渠於該第一溝渠中;一屏蔽層,具有一上半部分與一下半部分,其中該下半部分設置於該第二溝渠中,該上半部分凸出於該第三介電層;一第四介電層;一閘極,設置於該磊晶層中與該第三介電層上,其中該第四介電層設置於該屏蔽層與該閘極之間;多個摻雜區,設置於位於該閘極之四周的該磊晶層中;以及一第五介電層,設置於該摻雜區與該閘極之間,其中在該第五介電層與該第一介電層的連接處,該第五介電層的厚度小於該第一介電層的厚度。 A semiconductor component comprising: a substrate; an epitaxial layer on the substrate; a third dielectric layer disposed in a first trench of the epitaxial layer and forming a second trench in the first trench; a shielding layer having an upper half and a lower half, wherein the lower layer a half portion is disposed in the second trench, the upper portion protrudes from the third dielectric layer; a fourth dielectric layer; a gate disposed in the epitaxial layer and the third dielectric layer The fourth dielectric layer is disposed between the shielding layer and the gate; a plurality of doped regions are disposed in the epitaxial layer around the gate; and a fifth dielectric layer is disposed Between the doped region and the gate, wherein the fifth dielectric layer has a thickness smaller than a thickness of the first dielectric layer at a junction of the fifth dielectric layer and the first dielectric layer. 如請求項8所述之半導體元件,其中該屏蔽層的頂面高度低於該磊晶層的頂面高度,至少部分該閘極位於該屏蔽層的該上半部分的上方。 The semiconductor device of claim 8, wherein a top surface height of the shielding layer is lower than a top surface height of the epitaxial layer, at least a portion of the gate is located above the upper half of the shielding layer. 如請求項8所述之半導體元件,其中該第四介電層的頂面高度大於或等於該磊晶層的頂面高度。 The semiconductor device of claim 8, wherein a top surface height of the fourth dielectric layer is greater than or equal to a top surface height of the epitaxial layer. 如請求項8所述之半導體元件,其中該第四介電層藉由熱氧化該屏蔽層形成。 The semiconductor device of claim 8, wherein the fourth dielectric layer is formed by thermally oxidizing the shielding layer. 如請求項8所述之半導體元件,更包含:該第三介電層之材質為四乙氧基矽烷; 一第一介電層,設置於該磊晶層與該第一介電層之間,其中該第一介電層之材質為二氧化矽;以及一第二介電層,設置於該第一介電層與該第三介電層之間,其中該第二介電層之材質為氮化矽。 The semiconductor device of claim 8, further comprising: the third dielectric layer is made of tetraethoxy decane; a first dielectric layer is disposed between the epitaxial layer and the first dielectric layer, wherein the first dielectric layer is made of germanium dioxide; and a second dielectric layer is disposed on the first Between the dielectric layer and the third dielectric layer, wherein the second dielectric layer is made of tantalum nitride. 如請求項8所述之半導體元件,其中該些摻雜區包括:一第一摻雜區,位於該閘極之四周的該磊晶層中,以做為一基體區;以及一第二摻雜區,位於該閘極之四周的該第一摻雜區的上面部分中,以做為一源極區。 The semiconductor device of claim 8, wherein the doped regions comprise: a first doped region in the epitaxial layer around the gate as a base region; and a second doping A miscellaneous region is located in the upper portion of the first doped region around the gate as a source region. 如請求項13所述之半導體元件,更包括:一第三摻雜區,位於該第一摻雜區中,其中該第二摻雜區具有一凹槽,該第三摻雜區的位置對應於該凹槽的位置。 The semiconductor device of claim 13, further comprising: a third doped region located in the first doped region, wherein the second doped region has a recess, and the position of the third doped region corresponds to At the location of the groove. 如請求項13所述之半導體元件,更包括:一第三摻雜區,位於該第一摻雜區中,其中該第三摻雜區的底部深度大於該第二摻雜區的底部深度。 The semiconductor device of claim 13, further comprising: a third doped region located in the first doped region, wherein a bottom depth of the third doped region is greater than a bottom depth of the second doped region.
TW106129041A 2017-08-25 2017-08-25 Semiconductor device and method for manufacturing the same TWI631705B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106129041A TWI631705B (en) 2017-08-25 2017-08-25 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106129041A TWI631705B (en) 2017-08-25 2017-08-25 Semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI631705B true TWI631705B (en) 2018-08-01
TW201914004A TW201914004A (en) 2019-04-01

Family

ID=63959937

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129041A TWI631705B (en) 2017-08-25 2017-08-25 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI631705B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201023302A (en) * 2008-11-14 2010-06-16 Semiconductor Components Ind Semiconductor component and method of manufacture
TW201330286A (en) * 2005-06-10 2013-07-16 Fairchild Semiconductor Charge balance field effect transistor
TWI567979B (en) * 2016-06-22 2017-01-21 Sinopower Semiconductor Inc Trench power transistor
TW201705300A (en) * 2015-07-31 2017-02-01 帥群微電子股份有限公司 Trench power transistor structure and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201330286A (en) * 2005-06-10 2013-07-16 Fairchild Semiconductor Charge balance field effect transistor
TW201023302A (en) * 2008-11-14 2010-06-16 Semiconductor Components Ind Semiconductor component and method of manufacture
TW201705300A (en) * 2015-07-31 2017-02-01 帥群微電子股份有限公司 Trench power transistor structure and manufacturing method thereof
TWI567979B (en) * 2016-06-22 2017-01-21 Sinopower Semiconductor Inc Trench power transistor

Also Published As

Publication number Publication date
TW201914004A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
US8008734B2 (en) Power semiconductor device
WO2016080269A1 (en) Semiconductor device and method for producing semiconductor device
JP6666671B2 (en) Semiconductor device
JP2017162909A (en) Semiconductor device
JP5902116B2 (en) Semiconductor device
JP7247061B2 (en) Semiconductor device and its manufacturing method
US8835935B2 (en) Trench MOS transistor having a trench doped region formed deeper than the trench gate
JP2016063004A (en) Semiconductor device and method of manufacturing the same
CN104465348A (en) Method of manufacturing a semiconductor device
US20140077261A1 (en) Power semiconductor device and method of manufacturing power semiconductor device
CN107403838B (en) Power metal oxide semiconductor field effect transistor
JP2021106179A (en) Semiconductor device
WO2015008444A1 (en) Semiconductor device
JP2016035989A (en) Semiconductor device
JP2019036688A (en) Semiconductor device and method of manufacturing the same
CN109119473B (en) Transistor and manufacturing method thereof
TWI631705B (en) Semiconductor device and method for manufacturing the same
JP6771433B2 (en) Semiconductor device
JPWO2006082618A1 (en) Semiconductor device and manufacturing method thereof
JP2016058485A (en) Semiconductor device
JP2008251757A (en) Semiconductor device
JP7157719B2 (en) Semiconductor device manufacturing method
TWI621162B (en) Semiconductor device and method for manufacturing the same
JP6092680B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP6555284B2 (en) Semiconductor device