TWI631682B - Semiconductor structure and method for manufacturing the same - Google Patents

Semiconductor structure and method for manufacturing the same Download PDF

Info

Publication number
TWI631682B
TWI631682B TW106128660A TW106128660A TWI631682B TW I631682 B TWI631682 B TW I631682B TW 106128660 A TW106128660 A TW 106128660A TW 106128660 A TW106128660 A TW 106128660A TW I631682 B TWI631682 B TW I631682B
Authority
TW
Taiwan
Prior art keywords
layer
conductive
stack
layers
conductive layer
Prior art date
Application number
TW106128660A
Other languages
Chinese (zh)
Other versions
TW201913943A (en
Inventor
吳冠緯
劉注雍
張耀文
楊怡箴
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW106128660A priority Critical patent/TWI631682B/en
Application granted granted Critical
Publication of TWI631682B publication Critical patent/TWI631682B/en
Publication of TW201913943A publication Critical patent/TW201913943A/en

Links

Abstract

一種半導體結構包括一基板、一堆疊、一孔洞、和一主動結構。堆疊設置在基板上。堆疊由彼此交替之複數個導電層和複數個絕緣層構成。些導電層包括一第i層導電層和設置在第i層導電層上方的一第j層導電層,第i層導電層具有厚度ti,第j層導電層具有厚度tj,tj大於ti。孔洞穿過堆疊。孔洞具有分別對應第i層導電層和第j層導電層的直徑Di和直徑Dj,Dj大於Di。主動結構設置在孔洞中。主動結構包括一通道層。該通道層沿著孔洞之一側壁設置,並與堆疊的導電層隔離。 A semiconductor structure includes a substrate, a stack, a hole, and an active structure. The stack is placed on the substrate. The stack is composed of a plurality of conductive layers and a plurality of insulating layers alternating with each other. The conductive layer comprises an ith conductive layer and a j-th conductive layer disposed above the ith conductive layer, the ith conductive layer has a thickness t i , and the j-th conductive layer has a thickness t j , where t j is greater than t i . The holes pass through the stack. The holes have diameters D i and diameters D j corresponding to the i-th conductive layer and the j-th conductive layer, respectively, and D j is greater than D i . The active structure is placed in the hole. The active structure includes a channel layer. The channel layer is disposed along one of the sidewalls of the hole and is isolated from the stacked conductive layers.

Description

半導體結構及其製造方法 Semiconductor structure and method of manufacturing same

本揭露是關於一種半導體結構及其製造方法。本揭露特別是關於一種包括補償性堆疊結構的半導體結構及其製造方法。 The present disclosure relates to a semiconductor structure and a method of fabricating the same. The present disclosure relates in particular to a semiconductor structure including a compensatory stack structure and a method of fabricating the same.

為了減少體積、降低重量、增加功率密度、和改善可攜帶性等等理由,三維(3D)半導體結構被發展出來。在一些三維半導體結構的典型製程中,可形成包括複數個層的堆疊在基板上,並接著形成一或多個孔洞和/或溝槽穿過堆疊。由於製程限制,所述孔洞和/或溝槽可能具有傾斜的側壁,從而,沿著孔洞和/或溝槽的一垂直方向,尺寸和面積逐漸改變。這可能進一步地導致一些裝置特性上的偏差,特別是在電性性質上的偏差。隨著堆疊中層的數目增加,該偏差可能會變成將影響裝置表現和操作的問題點。 Three-dimensional (3D) semiconductor structures have been developed for reasons of volume reduction, weight reduction, increased power density, and improved portability. In a typical process of some three-dimensional semiconductor structures, a stack comprising a plurality of layers can be formed on a substrate and then one or more holes and/or trenches are formed through the stack. Due to process limitations, the holes and/or trenches may have sloping sidewalls such that the size and area gradually change along a vertical direction of the holes and/or trenches. This may further lead to deviations in the characteristics of some devices, especially in terms of electrical properties. As the number of layers in the stack increases, this deviation may become a problem that will affect device performance and operation.

本揭露是針對補償性堆疊結構的提供,其補償了在沿著孔洞和/或溝槽的一垂直方向上之不同的尺寸和面積所造成 的影響。 The present disclosure is directed to the provision of a compensatory stack structure that compensates for different sizes and areas along a vertical direction of the holes and/or trenches. Impact.

根據一些實施例,提供一種半導體結構。此種半導體結構包括一基板、一堆疊、一孔洞、和一主動結構。堆疊設置在基板上。堆疊由彼此交替之複數個導電層和複數個絕緣層構成。該些導電層包括一第i層導電層和設置在第i層導電層上方的一第j層導電層,第i層導電層具有厚度ti,第j層導電層具有厚度tj,tj大於ti。孔洞穿過堆疊。孔洞具有分別對應第i層導電層和第j層導電層的直徑Di和直徑Dj,Dj大於Di。主動結構設置在孔洞中。主動結構包括一通道層。該通道層沿著孔洞之一側壁設置,並與堆疊的導電層隔離。 According to some embodiments, a semiconductor structure is provided. The semiconductor structure includes a substrate, a stack, a hole, and an active structure. The stack is placed on the substrate. The stack is composed of a plurality of conductive layers and a plurality of insulating layers alternating with each other. The conductive layer comprises an ith conductive layer and a j-th conductive layer disposed above the ith conductive layer, the ith conductive layer has a thickness t i , and the j-th conductive layer has a thickness t j , t j Greater than t i . The holes pass through the stack. The holes have diameters D i and diameters D j corresponding to the i-th conductive layer and the j-th conductive layer, respectively, and D j is greater than D i . The active structure is placed in the hole. The active structure includes a channel layer. The channel layer is disposed along one of the sidewalls of the hole and is isolated from the stacked conductive layers.

根據一些實施例,提供一種半導體結構的製造方法。此種製造方法包括下列步驟。首先,形成一堆疊在一基板上。堆疊由彼此交替之複數個犧牲層和複數個絕緣層構成。該些犧牲層包括一第i層犧牲層和形成在第i層犧牲層上方的一第j層犧牲層,第i層犧牲層具有厚度ti,第j層犧牲層具有厚度tj,tj大於ti。形成一孔洞穿過堆疊。孔洞具有分別對應第i層犧牲層和第j層犧牲層的直徑Di和直徑Dj,Dj大於Di。形成一主動結構在孔洞中。主動結構包括一通道層。該通道層沿著孔洞之一側壁形成,並與堆疊的犧牲層分離。 In accordance with some embodiments, a method of fabricating a semiconductor structure is provided. This manufacturing method includes the following steps. First, a stack is formed on a substrate. The stack is composed of a plurality of sacrificial layers and a plurality of insulating layers alternating with each other. The sacrificial layer includes an ith sacrificial layer and a j-th sacrificial layer formed over the ith sacrificial layer, the ith sacrificial layer has a thickness t i , and the j-th sacrificial layer has a thickness t j , t j Greater than t i . A hole is formed through the stack. The holes have diameters D i and diameters D j corresponding to the i-th sacrificial layer and the j-th sacrificial layer, respectively, and D j is greater than D i . An active structure is formed in the hole. The active structure includes a channel layer. The channel layer is formed along one of the sidewalls of the hole and is separated from the stacked sacrificial layer.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to better understand the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings

100、200‧‧‧半導體結構 100, 200‧‧‧ semiconductor structure

102‧‧‧基板 102‧‧‧Substrate

104、204‧‧‧堆疊 104, 204‧‧‧ Stacking

106、106(0)、106(1)、106(2)、106(3)、...、106(i)、...、106(j)、...、106(n-2)、106(n-1)、206(0)、206(1)、206(2)、206(3)、...、206(i)、...、206(j)、...、206(n-2)、206(n-1)‧‧‧導電層 106, 106 (0), 106 (1), 106 (2), 106 (3), ..., 106 (i), ..., 106 (j), ..., 106 (n-2) , 106(n-1), 206(0), 206(1), 206(2), 206(3), ..., 206(i), ..., 206(j), ..., 206(n-2), 206(n-1)‧‧‧ conductive layer

108‧‧‧絕緣層 108‧‧‧Insulation

110‧‧‧覆蓋層 110‧‧‧ Coverage

112‧‧‧孔洞 112‧‧‧ hole

114‧‧‧主動結構 114‧‧‧Active structure

116‧‧‧通道層 116‧‧‧Channel layer

118‧‧‧記憶層 118‧‧‧ memory layer

120‧‧‧絕緣材料 120‧‧‧Insulation materials

122‧‧‧導電元件 122‧‧‧Conductive components

304‧‧‧堆疊 304‧‧‧Stacking

306(0)、306(1)、306(2)、306(3)、...、306(i)、...、306(j)、...、306(n-2)、306(n-1)‧‧‧犧牲層 306(0), 306(1), 306(2), 306(3), ..., 306(i), ..., 306(j), ..., 306(n-2), 306 (n-1)‧‧‧ Sacrifice layer

352‧‧‧離子植入製程 352‧‧‧Ion implantation process

354‧‧‧開口 354‧‧‧ openings

356‧‧‧金屬材料 356‧‧‧Metal materials

358‧‧‧高介電常數材料 358‧‧‧High dielectric constant material

360‧‧‧離子植入製程 360‧‧‧Ion Implantation Process

362‧‧‧導電元件 362‧‧‧Conductive components

Ai、Aj‧‧‧導電面積 A i , A j ‧‧‧ conductive area

Di、Dj‧‧‧直徑 D i , D j ‧‧‧ diameter

G(1)、G(2)、...、G()‧‧‧群組 G(1), G(2), ..., G( )‧‧‧Group

L0、L1、L2、L3、...、Li、...、Lj、...、Ln-2、Ln-1、L’0、L’1、L’2、L’3、...、L’i、...、L’j、...、L’n-2、L’n-1‧‧‧通道長度 L 0 , L 1 , L 2 , L 3 , ..., L i , ..., L j , ..., L n-2 , L n-1 , L' 0 , L' 1 , L' 2 , L' 3 , ..., L' i , ..., L' j , ..., L' n-2 , L' n-1 ‧ ‧ channel length

t0、t1、t2、t3、...、ti、...、tj、...、tn-2、tn-1、t’0、t’1、t’2、t’3、...、t’i、...、t’j、...、t’n-2、t’n-1‧‧‧厚度 t 0 , t 1 , t 2 , t 3 , ..., t i , ..., t j , ..., t n-2 , t n-1 , t' 0 , t' 1 , t' 2 , t' 3 , ..., t' i , ..., t' j , ..., t' n-2 , t' n-1 ‧ ‧ thickness

θ‧‧‧角度 Θ‧‧‧ angle

第1圖示出根據實施例的一例示性半導體結構。 FIG. 1 illustrates an exemplary semiconductor structure in accordance with an embodiment.

第2圖示出根據實施例的另一例示性半導體結構。 FIG. 2 illustrates another exemplary semiconductor structure in accordance with an embodiment.

第3圖示出孔洞的直徑和通道長度在一方面的影響。 Figure 3 shows the effect of the diameter of the hole and the length of the channel on the one hand.

第4A~4B圖示出孔洞的直徑在另一方面的影響。 4A-4B illustrate the effect of the diameter of the hole on the other hand.

第5A~5H圖示出根據實施例的半導體結構的一例示性製造方法。 5A to 5H illustrate an exemplary manufacturing method of a semiconductor structure according to an embodiment.

以下將配合所附圖式對於各種不同的實施例進行更詳細的說明。所附圖式只用於描述和解釋目的,而不用於限制目的。為了清楚起見,元件可能並未依照實際比例繪示。此外,可能從圖式中省略一些元件和/或元件符號。在本揭露中,當以單數形式描述一元件時,亦允許包括多於一個該元件的情況。可以預期的是,一實施例中的元件和特徵,能夠被有利地納入於另一實施例中,無須進一步的闡述。 Various embodiments will be described in more detail below in conjunction with the drawings. The drawings are for illustrative purposes only and are not intended to be limiting. For the sake of clarity, the components may not be shown in actual scale. In addition, some elements and/or component symbols may be omitted from the drawings. In the present disclosure, when an element is described in the singular, it is also the case that the more than one element is included. It is contemplated that elements and features of one embodiment can be advantageously included in another embodiment without further elaboration.

請參照第1圖,其示出根據實施例的一例示性半導體結構100。半導體結構100包括一基板102、一堆疊104、一孔洞112、和一主動結構114。堆疊104設置在基板102上。堆疊104由彼此交替之複數個導電層106(106(0)~106(n-1))和複數個絕緣層108構成。導電層106包括一第i層導電層106(i)和設置在第i層導電層106(i)上方的一第j層導電層106(j),第i層導電層106(i)具有厚度ti,第j層導電層106(j)具有厚度tj, tj大於ti。孔洞112穿過堆疊104。孔洞112具有分別對應第i層導電層106(i)和第j層導電層106(j)的直徑Di和直徑Dj,Dj大於Di。主動結構114設置在孔洞112中。主動結構114包括一通道層116。通道層116沿著孔洞112之一側壁設置,並與堆疊104的導電層106隔離。 Referring to FIG. 1, an exemplary semiconductor structure 100 is illustrated in accordance with an embodiment. The semiconductor structure 100 includes a substrate 102, a stack 104, a via 112, and an active structure 114. The stack 104 is disposed on the substrate 102. The stack 104 is composed of a plurality of conductive layers 106 (106(0)-106(n-1)) and a plurality of insulating layers 108 that alternate with each other. The conductive layer 106 includes an ith conductive layer 106(i) and a j-th conductive layer 106(j) disposed over the ith conductive layer 106(i), and the ith conductive layer 106(i) has a thickness t i , the j-th conductive layer 106(j) has a thickness t j , and t j is greater than t i . The holes 112 pass through the stack 104. The hole 112 has a diameter D i and a diameter D j corresponding to the i-th conductive layer 106 (i) and the j-th conductive layer 106 (j), respectively, and D j is greater than D i . The active structure 114 is disposed in the bore 112. The active structure 114 includes a channel layer 116. The channel layer 116 is disposed along one of the sidewalls of the hole 112 and is isolated from the conductive layer 106 of the stack 104.

在一些實施例中,堆疊104設置在基板102上,一覆蓋層110進一步地設置在堆疊104上,而孔洞112穿過覆蓋層110和堆疊104。在一些實施例中,基板102與孔洞112的所述側壁之間的角度θ小於90°,例如約為87°。孔洞112可具有從下往上逐漸變大的直徑。在一些實施例中,孔洞112的直徑係介於80奈米和130奈米之間。舉例來說,孔洞112可在底部具有80奈米的直徑,並在頂端具有130奈米的直徑。對應地,導電層106可具有從下往上逐漸變厚的厚度,其細節將敘述於後續段落。在一些實施例中,導電層106可包括一金屬材料和一高介電常數材料。根據一些實施例,半導體結構100可為一記憶體結構。在這類實施例中,主動結構114可更包括一記憶層118。記憶層118設置在通道層116和堆疊104之間。記憶層118可包括一捕捉層(未繪示)。更具體地說,在一些實施例中,記憶層118可包括從孔洞112之側壁依序設置的一阻障層(未繪示)、一捕捉層(未繪示)、和一穿隧層(未繪示),並可由一氧化物-氮化物-氧化物(ONO)堆疊形成。複數個記憶胞係由主動結構114與堆疊104的導電層106之間的交點所定義,該些記憶胞構成一三維記憶胞陣列的一部分。 在一些實施例中,主動結構114可更包括一絕緣材料120。絕緣材料120填充到孔洞112的剩餘空間中。在一些實施例中,一導電元件122可設置在絕緣材料120上。在一些實施例中,該些導電層106為複數個字元線,主動結構114通過導電元件122耦接到一位元線。 In some embodiments, the stack 104 is disposed on the substrate 102, a cover layer 110 is further disposed on the stack 104, and the holes 112 pass through the cover layer 110 and the stack 104. In some embodiments, the angle θ between the substrate 102 and the sidewall of the aperture 112 is less than 90°, such as about 87°. The hole 112 may have a diameter that gradually becomes larger from the bottom to the top. In some embodiments, the diameter of the holes 112 is between 80 nm and 130 nm. For example, the aperture 112 can have a diameter of 80 nanometers at the bottom and a diameter of 130 nanometers at the top end. Correspondingly, the conductive layer 106 can have a thickness that gradually thickens from bottom to top, the details of which will be described in subsequent paragraphs. In some embodiments, conductive layer 106 can comprise a metallic material and a high dielectric constant material. According to some embodiments, the semiconductor structure 100 can be a memory structure. In such embodiments, the active structure 114 can further include a memory layer 118. A memory layer 118 is disposed between the channel layer 116 and the stack 104. Memory layer 118 can include a capture layer (not shown). More specifically, in some embodiments, the memory layer 118 may include a barrier layer (not shown), a capture layer (not shown), and a tunneling layer (s) formed sequentially from the sidewalls of the holes 112. Not shown) and may be formed by a single oxide-nitride-oxide (ONO) stack. A plurality of memory cell lines are defined by the intersection between the active structure 114 and the conductive layer 106 of the stack 104, which form part of a three dimensional memory cell array. In some embodiments, the active structure 114 can further include an insulating material 120. The insulating material 120 is filled into the remaining space of the hole 112. In some embodiments, a conductive element 122 can be disposed on the insulating material 120. In some embodiments, the conductive layers 106 are a plurality of word lines, and the active structure 114 is coupled to the one bit line by the conductive elements 122.

現在將敘述導電層106的配置細節。具體來說,導電層106可為從下往上的一第0層導電層106(0)到一第n-1層導電層106(n-1)。第0層導電層106(0)到第n-1層導電層106(n-1)分別具有厚度t0到tn-1,t0 t1 ...tn-2 tn-1。此外,此外,第0層導電層106(0)到第n-1層導電層106(n-1)能夠分別提供通道長度L0到Ln-1,L0 L1 ...Ln-2 Ln-1。根據一些實施例,通道長度L0到Ln-1係定義在一垂直方向上,於本揭露全文,垂直方向係意指實質上垂直於基板102的一方向。從而,各個通道長度(L0到Ln-1)係實質上等於對應的厚度(t0到tn-1)。在一些實施例中,厚度t0到tn-1,連帶著通道長度L0到Ln-1,係介於20奈米和60奈米之間。舉例來說,厚度t0和通道長度L0可為20奈米,而厚度tn-1和通道長度Ln-1可為60奈米。 The configuration details of the conductive layer 106 will now be described. Specifically, the conductive layer 106 may be a 0th conductive layer 106(0) to an n-1th conductive layer 106(n-1) from bottom to top. The 0th conductive layer 106(0) to the n-1th conductive layer 106(n-1) have thicknesses t 0 to t n-1 , t 0 , respectively t 1 ... t n-2 t n-1 . Further, in addition, the first conductive layers 106 0 (0) to the n-1 layer, conductive layer 106 (n-1) can be provided to a channel length L 0 L n-1, L 0, respectively L 1 ... L n-2 L n-1 . According to some embodiments, the channel lengths L 0 to L n-1 are defined in a vertical direction, and throughout the disclosure, the vertical direction means substantially perpendicular to a direction of the substrate 102. Thus, each channel length (L 0 to L n-1 ) is substantially equal to the corresponding thickness (t 0 to t n-1 ). In some embodiments, the thickness t 0 to t n-1 , with the channel lengths L 0 to L n-1 , is between 20 nm and 60 nm. For example, the thickness t 0 and the channel length L 0 may be 20 nm, and the thickness t n-1 and the channel length L n-1 may be 60 nm.

只要能夠提供補償功能,使得偏差落在可接受的範圍內,厚度t0到tn-1,連帶著通道長度L0到Ln-1,係能夠以任何適合的方式配置。在一些實施例中,如第1圖所示,各個導電層106厚於位在所述各個導電層106下方的該些導電層106。換言之,t0<t1<...<tn-2<tn-1。換言之,L0<L1<...<Ln-2<Ln-1As long as the compensation function can be provided such that the deviation falls within an acceptable range, the thickness t 0 to t n-1 , together with the channel lengths L 0 to L n-1 , can be configured in any suitable manner. In some embodiments, as shown in FIG. 1, each of the conductive layers 106 is thicker than the conductive layers 106 underlying the respective conductive layers 106. In other words, t 0 <t 1 <...<t n-2 <t n-1 . In other words, L 0 <L 1 <...<L n-2 <L n-1 .

在另一些實施例中,導電層106分為複數個群組,各個群組中的導電層106具有相同之厚度,並厚於位在所述各個群組下方的該些群組中的導電層106。在這類實施例中,對於0到n-2之中至少一整數i,ti=ti+1。換言之,對於0到n-2之中至少一整數i,Li=Li+1In other embodiments, the conductive layer 106 is divided into a plurality of groups, and the conductive layers 106 in each group have the same thickness and are thicker than the conductive layers in the groups below the respective groups. 106. In such an embodiment, for at least one integer i from 0 to n-2, t i = t i+1 . In other words, for at least one integer i from 0 to n-2, L i = L i+1 .

請參照第2圖,其示出這類實施例之中的一種特殊類別。在這種特殊類別中,導電層106等分為複數個群組,各個群組中的導電層106具有相同之厚度,並厚於位在所述各個群組下方的該些群組中的導電層106。舉例來說,導電層106能夠等分為個群組,亦即各個群組包括m個導電層,t’0=t’1=...=t’m-1<t’m...<t’n-m=...=t’n-2=t’n-1。換言之,導電層106能夠等分為個群組,L’0=L’1=...=L’m-1<...<L’n-m=...=L’n-2=L’n-1。在第2圖所示的半導體結構200中,m為2。換言之,在堆疊204中,導電層206(0)到206(n-1)等分為個群組G(1)到G(),群組G(1)到G()之中各者包括導電層206(0)到206(n-1)之中的二個,t’0=t’1<t’2=t’3<...<t’n-2=t’n-1,L’0=L’1<L’2=L’3<...<L’n-2=L’n-1Please refer to Figure 2, which shows a particular category of such embodiments. In this particular category, the conductive layer 106 is equally divided into a plurality of groups, and the conductive layers 106 in each group have the same thickness and are thicker than the conductive layers in the groups below the respective groups. Layer 106. For example, the conductive layer 106 can be equally divided Groups, that is, each group includes m conductive layers, t' 0 = t' 1 =...=t' m-1 <t' m ...<t' nm =...=t' N-2 = t' n-1 . In other words, the conductive layer 106 can be equally divided Groups, L' 0 = L' 1 =...=L' m-1 <...<L' nm =...=L' n-2 =L' n-1 . In the semiconductor structure 200 shown in FIG. 2, m is 2. In other words, in the stack 204, the conductive layers 206(0) to 206(n-1) are equally divided. Groups G(1) to G( ), group G(1) to G() Each of the conductive layers 206(0) to 206(n-1), t' 0 = t' 1 <t' 2 = t' 3 <... <t' n-2 =t' n-1 , L' 0 = L' 1 <L' 2 = L' 3 <... <L' n-2 = L' n-1 .

根據上述實施例的堆疊,例如堆疊104或204,在本揭露中稱為補償性堆疊結構。在一方面,較大的孔洞直徑意味著較小的電場,從而有著較低的編程/抹除速度和較糟的編程/抹除能力。這反映於第3圖所示的趨勢。與此相對,較大的通道長度造成較大的電場,從而有著較高的編程/抹除速度和較佳的編程/ 抹除能力。因此,在根據實施例的半導體結構中,較大的孔洞直徑對於裝置的編程/抹除操作所產生的影響,能夠由較大的通道長度所補償,其藉由較厚的導電層來達成。從而,能夠提供較佳的穩定性。 The stack according to the above embodiments, such as stack 104 or 204, is referred to as a compensating stack structure in the present disclosure. On the one hand, a larger hole diameter means a smaller electric field, resulting in lower programming/erasing speeds and poorer programming/erasing capabilities. This is reflected in the trend shown in Figure 3. In contrast, larger channel lengths result in larger electric fields, resulting in higher programming/erasing speeds and better programming/ Wipe the ability. Thus, in a semiconductor structure in accordance with an embodiment, the effect of a larger hole diameter on the programming/erasing operation of the device can be compensated for by a larger channel length, which is achieved by a thicker conductive layer. Thereby, better stability can be provided.

此外,較大的孔洞直徑意味著對應之導電層的導電面積較小,從而降低電導(conductance)。舉例來說,如第4A和4B圖所示,孔洞1122對應於導電層106(j)具有較大的直徑Dj。因此,導電層106(j)的導電面積Aj小於導電層106(i)的導電面積Ai。這不利於設置在較高處(較高位置)的導電層中的電流通過,如第4A和4B圖所示。舉例來說,在導電層為字元線的情況下,可能發生字元線電阻的減低(degradation)。然而,這種情況能夠由導電層的厚度所補償。換言之,較大的孔洞直徑對於導電層的電導所產生的影響,能夠由較厚的導電層厚度所補償。 In addition, a larger hole diameter means that the conductive area of the corresponding conductive layer is smaller, thereby reducing conductance. For example, as shown in Figures 4A and 4B, the hole 1122 has a larger diameter Dj corresponding to the conductive layer 106(j). Accordingly, the conductive layer 106 (j) of the conductive area A j is less than the conductive layer 106 (i) of the conductive area A i. This is not conducive to the passage of current in the conductive layer disposed at a higher (higher position) as shown in Figs. 4A and 4B. For example, in the case where the conductive layer is a word line, degradation of the word line resistance may occur. However, this situation can be compensated by the thickness of the conductive layer. In other words, the effect of the larger hole diameter on the conductance of the conductive layer can be compensated for by the thicker conductive layer thickness.

現在請參照第5A~5H圖,其示出根據實施例的半導體結構的一例示性製造方法。第5A~5H圖繪示藉由取代犧牲層的製程形成如第1圖所示的半導體結構。然而,其他製程也能夠用於形成根據實施例的半導體結構。舉例來說,能夠直接形成由彼此交替之複數個導電層和複數個絕緣層所構成的一堆疊,而未形成犧牲層。此外,也能夠形成根據實施例的其他半導體結構,例如第2圖所示的半導體結構。 Referring now to FIGS. 5A-5H, an exemplary method of fabricating a semiconductor structure in accordance with an embodiment is shown. FIGS. 5A-5H illustrate a semiconductor structure as shown in FIG. 1 by a process of replacing the sacrificial layer. However, other processes can also be used to form semiconductor structures in accordance with embodiments. For example, a stack of a plurality of conductive layers and a plurality of insulating layers alternated with each other can be directly formed without forming a sacrificial layer. Further, other semiconductor structures according to the embodiment, such as the semiconductor structure shown in FIG. 2, can also be formed.

如第5A圖所示,提供一基板102。基板102可為矽基板。可進行離子植入製程。形成一堆疊304在基板102上, 例如是藉由沉積製程,堆疊304由彼此交替之複數個犧牲層(306(0)到306(n-1))和複數個絕緣層108構成。絕緣層108可由氧化物形成,具有相同之厚度。犧牲層306(0)到306(n-1)可由氮化物形成。犧牲層306(0)到306(n-1)包括一第i層犧牲層306(i)和形成在第i層犧牲層306(i)上方的一第j層犧牲層306(j),第i層犧牲層306(i)具有厚度ti,第j層犧牲層306(j)具有厚度tj,tj大於ti。更具體地說,犧牲層306(0)到306(n-1)可分別具有厚度t0到tn-1,t0 t1 ...tn-2 tn-1。在第5A圖中,犧牲層306(0)到306(n-1),被繪示成犧牲層306(0)到306(n-1)之中各者厚於位在所述犧牲層306(0)到306(n-1)之中各者下方的該些犧牲層,亦即t0<t1<...<tn-2<tn-1。然而,在另一些實施例中,犧牲層306(0)到306(n-1)可具有以群組方式逐漸改變的厚度。在這類實施例中,對於0到n-2之中至少一整數i,ti=ti+1。舉例來說,犧牲層能夠等分為個群組,亦即各個群組包括m個犧牲層,t0=t1=...=tm-1<tm...<tn-m=...=tn-2=tn-1。在一些實施例中,厚度t0到tn-1係介於20奈米和60奈米之間。舉例來說,厚度t0可為20奈米,而厚度tn-1可為60奈米。在一些實施例中,可形成一覆蓋層110在堆疊304上。覆蓋層110可由氧化物形成。 As shown in FIG. 5A, a substrate 102 is provided. The substrate 102 can be a germanium substrate. The ion implantation process can be performed. A stack 304 is formed on the substrate 102, for example by a deposition process, and the stack 304 is composed of a plurality of sacrificial layers (306(0) to 306(n-1)) and a plurality of insulating layers 108 alternating with each other. The insulating layer 108 may be formed of an oxide having the same thickness. The sacrificial layers 306(0) through 306(n-1) may be formed of nitride. The sacrificial layers 306(0) to 306(n-1) include an ith sacrificial layer 306(i) and a jth sacrificial layer 306(j) formed over the ith sacrificial layer 306(i), i sacrificial layer 306 (i) having a thickness t i, j-th sacrificial layer 306 (j) having a thickness t j, t j is greater than t i. More specifically, the sacrificial layers 306(0) through 306(n-1) may have thicknesses t 0 to t n-1 , t 0 , respectively. t 1 ... t n-2 t n-1 . In FIG. 5A, sacrificial layers 306(0) through 306(n-1) are depicted with sacrificial layers 306(0) through 306(n-1) being thicker in the sacrificial layer 306. (0) The sacrificial layers below each of 306(n-1), that is, t 0 <t 1 <...<t n-2 <t n-1 . However, in other embodiments, the sacrificial layers 306(0) through 306(n-1) may have a thickness that gradually changes in a group manner. In such an embodiment, for at least one integer i from 0 to n-2, t i = t i+1 . For example, the sacrificial layer can be divided equally Groups, that is, each group includes m sacrificial layers, t 0 = t 1 =...=t m-1 <t m ...<t nm =...=t n-2 =t n -1 . In some embodiments, the thickness t 0 to t n-1 is between 20 nm and 60 nm. For example, the thickness t 0 can be 20 nanometers and the thickness t n-1 can be 60 nanometers. In some embodiments, a cap layer 110 can be formed on the stack 304. The cover layer 110 may be formed of an oxide.

如第5B圖所示,形成一孔洞112形成一堆疊304,例如是藉由蝕刻製程。舉例來說,孔洞112可具有以約為87°的角度傾斜的一側壁。孔洞112具有分別對應第i層犧牲層306(i) 和第j層犧牲層306(j)的直徑Di和直徑Dj,Dj大於Di。在一些實施例中,孔洞112的直徑係介於80奈米和130奈米之間。舉例來說,孔洞112可在底部具有80奈米的直徑,並在頂端具有130奈米的直徑。 As shown in FIG. 5B, a hole 112 is formed to form a stack 304, such as by an etching process. For example, the aperture 112 can have a sidewall that is inclined at an angle of approximately 87°. The hole 112 has a diameter D i and a diameter D j corresponding to the i-th sacrificial layer 306 (i) and the j-th sacrificial layer 306 (j), respectively, and D j is greater than D i . In some embodiments, the diameter of the holes 112 is between 80 nm and 130 nm. For example, the aperture 112 can have a diameter of 80 nanometers at the bottom and a diameter of 130 nanometers at the top end.

如第5C圖所示,形成一主動結構114在孔洞112中。主動結構114包括一通道層116。通道層116沿著孔洞112的所述側壁形成,並與堆疊304的犧牲層306(0)到306(n-1)分離。通道層116能夠藉由任何適合的絕緣材料與堆疊304隔離。在一些實施例中,一記憶層118提供隔離功能。記憶層118可包括一捕捉層(未繪示)。更具體地說,在一些實施例中,記憶層118可包括從孔洞112之側壁依序設置的一阻障層(未繪示)、一捕捉層(未繪示)、和一穿隧層(未繪示),並可由一氧化物-氮化物-氧化物(ONO)堆疊形成。根據一些實施例,主動結構114的形成可藉由先形成一ONO堆疊(亦即記憶層118)在孔洞112的所述側壁上。接著,形成一多晶矽層於其上,作為通道層116。可填充一絕緣材料120,例如氧化物,到孔洞112的剩餘空間中。因此,便形成一環繞閘極(gate-all-around)結構。在一些實施例中,可進一步地形成一導電元件122在絕緣材料120上。接著,如第5D圖所示,可進行離子植入製程352,以提供對於位元線的連接。摻雜物可為砷。 As shown in FIG. 5C, an active structure 114 is formed in the hole 112. The active structure 114 includes a channel layer 116. Channel layer 116 is formed along the sidewalls of hole 112 and is separated from sacrificial layers 306(0) through 306(n-1) of stack 304. Channel layer 116 can be isolated from stack 304 by any suitable insulating material. In some embodiments, a memory layer 118 provides an isolation function. Memory layer 118 can include a capture layer (not shown). More specifically, in some embodiments, the memory layer 118 may include a barrier layer (not shown), a capture layer (not shown), and a tunneling layer (s) formed sequentially from the sidewalls of the holes 112. Not shown) and may be formed by a single oxide-nitride-oxide (ONO) stack. According to some embodiments, the active structure 114 may be formed on the sidewall of the hole 112 by first forming an ONO stack (ie, the memory layer 118). Next, a polysilicon layer is formed thereon as the channel layer 116. An insulating material 120, such as an oxide, may be filled into the remaining space of the holes 112. Thus, a gate-all-around structure is formed. In some embodiments, a conductive element 122 can be further formed on the insulating material 120. Next, as shown in FIG. 5D, an ion implantation process 352 can be performed to provide a connection to the bit lines. The dopant can be arsenic.

接著,以複數個導電層106取代犧牲層306(0)到306(n-1)。如第5E圖所示,形成一開口354穿過堆疊304,例 如是藉由蝕刻製程。如第5F圖所示,通過開口354移除犧牲層306(0)到306(n-1),例如是藉由蝕刻製程。接著,形成導電層106。根據一些實施例,導電層106可包括一金屬材料356和一高介電常數材料358。如第5G圖所示,在一些實施例中,可形成高介電常數材料358在絕緣層108的上側和下側並環繞主動結構114。高介電常數材料358可為Al2O3。接著,填充金屬材料356到移除犧牲層306(0)到306(n-1)所產生的空間的剩餘部分中。金屬材料356可為鎢。在一些實施例中,從而提供字元線。 Next, the sacrificial layers 306(0) to 306(n-1) are replaced with a plurality of conductive layers 106. As shown in FIG. 5E, an opening 354 is formed through the stack 304, such as by an etching process. As shown in FIG. 5F, the sacrificial layers 306(0) through 306(n-1) are removed through the opening 354, for example, by an etching process. Next, a conductive layer 106 is formed. According to some embodiments, the conductive layer 106 may include a metal material 356 and a high dielectric constant material 358. As shown in FIG. 5G, in some embodiments, a high dielectric constant material 358 can be formed on the upper and lower sides of the insulating layer 108 and surround the active structure 114. The high dielectric constant material 358 can be Al 2 O 3 . Next, the metal material 356 is filled into the remaining portion of the space created by the sacrificial layers 306(0) through 306(n-1). Metal material 356 can be tungsten. In some embodiments, word lines are thus provided.

在一些實施例中,開口354係提供用於半導體結構的一源極區,並可進行一離子植入製程360,以形成源極區。摻雜物可為砷。接著,如第5H圖所示,能夠形成一導電元件362(亦即源極導電元件)在開口354中。 In some embodiments, opening 354 provides a source region for the semiconductor structure and an ion implantation process 360 can be performed to form the source region. The dopant can be arsenic. Next, as shown in FIG. 5H, a conductive element 362 (ie, a source conductive element) can be formed in the opening 354.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

Claims (9)

一種半導體結構,包括:一基板;一堆疊,設置在該基板上,該堆疊由彼此交替之複數個導電層和複數個絕緣層構成,該些導電層包括一第i層導電層和設置在該第i層導電層上方的一第j層導電層,該第i層導電層具有厚度ti,該第j層導電層具有厚度tj,tj大於ti;一孔洞,穿過該堆疊,該孔洞具有分別對應該第i層導電層和該第j層導電層的直徑Di和直徑Dj,Dj大於Di;以及一主動結構,設置在該孔洞中,該主動結構包括:一通道層,沿著該孔洞之一側壁設置,並與該堆疊的該些導電層隔離;其中,該孔洞具有從下往上逐漸變大的直徑,該些導電層具有從下往上逐漸變厚的厚度。 A semiconductor structure comprising: a substrate; a stack disposed on the substrate, the stack being composed of a plurality of conductive layers and a plurality of insulating layers alternating with each other, the conductive layers including an ith conductive layer and disposed thereon a j-th conductive layer above the i-th conductive layer, the i-th conductive layer having a thickness t i , the j-th conductive layer having a thickness t j , t j greater than t i ; a hole passing through the stack The hole has a diameter D i and a diameter D j corresponding to the ith conductive layer and the j-th conductive layer respectively, and D j is greater than D i ; and an active structure is disposed in the hole, the active structure includes: a channel layer disposed along a sidewall of the hole and isolated from the conductive layers of the stack; wherein the hole has a diameter that gradually increases from bottom to top, and the conductive layers have a thickness that gradually increases from bottom to top thickness of. 如申請專利範圍第1項所述之半導體結構,其中各該導電層厚於位在所述各該導電層下方的該些導電層。 The semiconductor structure of claim 1, wherein each of the conductive layers is thicker than the conductive layers under the respective conductive layers. 如申請專利範圍第1項所述之半導體結構,其中該些導電層分為複數個群組,各該群組中的該些導電層具有相同之厚度,並厚於位在所述各該群組下方的該些群組中的該些導電層。 The semiconductor structure of claim 1, wherein the conductive layers are divided into a plurality of groups, and the conductive layers in each group have the same thickness and are thicker than the groups. The conductive layers in the groups below the group. 如申請專利範圍第1項所述之半導體結構,其中該些導電層等分為複數個群組,各該群組中的該些導電層具有相同 之厚度,並厚於位在所述各該群組下方的該些群組中的該些導電層。 The semiconductor structure of claim 1, wherein the conductive layers are equally divided into a plurality of groups, and the conductive layers in each group have the same The thickness is thicker than the conductive layers in the groups below the respective groups. 如申請專利範圍第1項所述之半導體結構,其中該些導電層係從下往上的一第0層導電層到一第n-1層導電層,該第0層導電層到該第n-1層導電層分別提供通道長度L0到Ln-1,L0 L1 ...Ln-2 Ln-1The semiconductor structure of claim 1, wherein the conductive layer is a 0th conductive layer from bottom to top to an n-1th conductive layer, and the 0th conductive layer reaches the nth - 1 layer of conductive layer provides channel length L 0 to L n-1 , L 0 L 1 ... L n-2 L n-1 . 如申請專利範圍第5項所述之半導體結構,其中L0<L1<...<Ln-2<Ln-1The semiconductor structure of claim 5, wherein L 0 <L 1 <...<L n-2 <L n-1 . 如申請專利範圍第5項所述之半導體結構,其中對於0到n-2之中至少一整數i,Li=Li+1The semiconductor structure of claim 5, wherein for at least one integer i from 0 to n-2, L i = L i+1 . 如申請專利範圍第5項所述之半導體結構,其中該些導電層等分為個群組,L0=L1=...=Lm-1<...<Ln-m=...=Ln-2=Ln-1The semiconductor structure of claim 5, wherein the conductive layers are equally divided Groups, L 0 = L 1 =...=L m-1 <...<L nm =...=L n-2 = L n-1 . 一種半導體結構的製造方法,包括:形成一堆疊在一基板上,該堆疊由彼此交替之複數個犧牲層和複數個絕緣層構成,該些犧牲層包括一第i層犧牲層和形成在該第i層犧牲層上方的一第j層犧牲層,該第i層犧牲層具有厚度ti,該第j層犧牲層具有厚度tj,tj大於ti,該些犧牲層具有從下往上逐漸變厚的厚度;形成一孔洞穿過該堆疊,該孔洞具有分別對應該第i層犧牲層和該第j層犧牲層的直徑Di和直徑Dj,Dj大於Di,該孔洞具有從下往上逐漸變大的直徑;以及 形成一主動結構在該孔洞中,該主動結構包括:一通道層,沿著該孔洞之一側壁形成,並與該堆疊的該些犧牲層分離。 A method of fabricating a semiconductor structure, comprising: forming a stack on a substrate, the stack being composed of a plurality of sacrificial layers and a plurality of insulating layers alternating with each other, the sacrificial layers including an ith sacrificial layer and formed in the a j-th sacrificial layer above the sa-layer sacrificial layer, the ith sacrificial layer having a thickness t i , the j-th sacrificial layer having a thickness t j , t j greater than t i , the sacrificial layers having a bottom-up a thickness that gradually becomes thicker; forming a hole through the stack, the hole having a diameter D i and a diameter D j corresponding to the ith layer sacrificial layer and the j-th sacrificial layer, respectively, D j being greater than D i , the hole having a diameter that gradually increases from bottom to top; and an active structure is formed in the hole, the active structure comprising: a channel layer formed along a sidewall of the hole and separated from the sacrificial layers of the stack.
TW106128660A 2017-08-23 2017-08-23 Semiconductor structure and method for manufacturing the same TWI631682B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106128660A TWI631682B (en) 2017-08-23 2017-08-23 Semiconductor structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106128660A TWI631682B (en) 2017-08-23 2017-08-23 Semiconductor structure and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI631682B true TWI631682B (en) 2018-08-01
TW201913943A TW201913943A (en) 2019-04-01

Family

ID=63959590

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106128660A TWI631682B (en) 2017-08-23 2017-08-23 Semiconductor structure and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI631682B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201607045A (en) * 2014-08-13 2016-02-16 愛思開海力士有限公司 Semiconductor device and method of manufacturing the same
TW201640614A (en) * 2015-05-05 2016-11-16 旺宏電子股份有限公司 Semiconductor device and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201607045A (en) * 2014-08-13 2016-02-16 愛思開海力士有限公司 Semiconductor device and method of manufacturing the same
TW201640614A (en) * 2015-05-05 2016-11-16 旺宏電子股份有限公司 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
TW201913943A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
US11205656B2 (en) Trench structures for three-dimensional memory devices
US10147736B2 (en) Semiconductor memory device and method for manufacturing same
US20220165753A1 (en) Semiconductor memory device and method for manufacturing same
US10312191B2 (en) Integrated circuit devices including a vertical memory device
US9754961B2 (en) Semiconductor memory device and method for manufacturing same
US10403636B2 (en) Semiconductor memory device and method for manufacturing the same
CN108091655B (en) Semiconductor memory device with a plurality of memory cells
US10483283B2 (en) Flash memory device and manufacture thereof
KR101515673B1 (en) 3-D Flash Memory of using Fringing Effect and Method of manufacturing the same
US20130234332A1 (en) Semiconductor device and method for manufacturing the same
US9806092B1 (en) Semiconductor memory device and methods for manufacturing the same
US20190067246A1 (en) Semiconductor structure and method for manufacturing the same
TW201519370A (en) Nonvolatile semiconductor storage device
JP2021048372A (en) Semiconductor storage device and manufacturing method of semiconductor storage device
CN109427812A (en) Semiconductor structure and its manufacturing method
TWI631682B (en) Semiconductor structure and method for manufacturing the same
CN114223058A (en) Microelectronic devices including oxide materials between adjacent stacks, electronic systems, and related methods
CN112768460A (en) Memory device
CN112397522A (en) Memory device
US10020320B2 (en) Semiconductor device and method for manufacturing same
CN114242728A (en) Microelectronic devices and related methods and systems
TWI713154B (en) Memory device
CN107431074B (en) Semiconductor memory device with a memory cell having a plurality of memory cells
US10026748B2 (en) Stacked type semiconductor memory device and method for manufacturing same
US10388761B2 (en) 3-D flash memory device and manufacture thereof