TWI629652B - Intelligent network marketing analysis and judgment method - Google Patents
Intelligent network marketing analysis and judgment method Download PDFInfo
- Publication number
- TWI629652B TWI629652B TW104113820A TW104113820A TWI629652B TW I629652 B TWI629652 B TW I629652B TW 104113820 A TW104113820 A TW 104113820A TW 104113820 A TW104113820 A TW 104113820A TW I629652 B TWI629652 B TW I629652B
- Authority
- TW
- Taiwan
- Prior art keywords
- analysis
- user
- word
- information
- browsing
- Prior art date
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Information Transfer Between Computers (AREA)
Abstract
一種智慧型網路行銷分析及判斷方法,至少包括以下步驟:埋設一程式碼於至少一合作網站上;透過該程式碼蒐集於該合作網站瀏覽之至少一使用者之資料,該使用者之資料包含一信息(Cookie);透過字詞語意研判法則分析該使用者之資料;針對該使用者之資料分析結果建立一使用者資料庫;建立一總加權值與該使用者資料庫相比對;決定至少一行銷資訊,該行銷資訊係根據該使用者資料庫、時間因素、日期因素、所瀏覽網頁、該總加權值,或上述任意組合而決定;以及輸出該行銷資訊給該使用者。本創作透過上述方法,交叉比對分析每個Cookie瀏覽紀錄,並根據瀏覽日期、瀏覽時間、所瀏覽之網站等因素,可以提供最容易引起其興趣之行銷資料給使用者。A smart network marketing analysis and judgment method includes at least the steps of: embedding a code on at least one cooperation website; collecting, by the code, information of at least one user browsed on the cooperation website, the user's data Include a message (Cookie); analyze the user's data through the word meaning judgment rule; establish a user database for the user's data analysis result; establish a total weight value compared with the user database; Deciding to sell at least one line of information based on the user database, time factor, date factor, page viewed, total weighted value, or any combination thereof; and outputting the marketing information to the user. Through the above method, this creation cross-checks and analyzes each cookie browsing record, and according to factors such as browsing date, browsing time, and website visited, can provide the marketing information that is most likely to cause interest to the user.
Description
本創作涉及一種智慧型網路行銷分析及判斷方法,尤指一種可針對每個使用者(Cookie),分析其瀏覽行為並演算出一加權值,透過該加權值提供最容易引起其興趣之行銷資料之智慧型網路行銷分析及判斷方法。This creation involves a smart network marketing analysis and judgment method, especially for each user (cookie), analyzing its browsing behavior and calculating a weight value through which to provide the marketing that is most likely to cause interest. Smart network marketing analysis and judgment methods for data.
按, 隨著高速計算機與寬帶網絡的到來,人們習慣於在網絡上獲取資訊以及朋友保持聯絡分享信息。此外,隨著網絡購物的普遍,帶來龐大的網路購物商機,許多實體商店紛紛加入電子商務的戰場,使得網路購物、拍賣平台蓬勃興起,以方便消費者通過他們的網路商店進行消費。Press, with the advent of high-speed computers and broadband networks, people are accustomed to getting information on the Internet and friends to keep in touch and share information. In addition, with the popularity of online shopping, bringing huge online shopping opportunities, many physical stores have joined the battlefield of e-commerce, making online shopping and auction platforms booming to facilitate consumers to consume through their online stores. .
另外,為了刺激買氣以及吸引消費者,網路商店主人常常會向網站購買欄位,放置廣告吸引消費者點擊,並進入其網路商店購物。由於網站瀏覽流量直接反應了點擊廣告的或然率,因此,流量較高的入口網站往往是廣告主購買廣告欄位的首選。然而,流量較高的入口網站其廣告欄位價格也相對高昂,長期購買對網路商店主人而言是非常大的負擔。因此,便演伸出了透過廣告點擊次數計價的收費模式,即是一種廣告聯播網的概念。In addition, in order to stimulate buying and attracting consumers, online store owners often buy sites from websites, place advertisements to attract consumers to click, and enter their online stores to shop. Since the traffic of the website directly reflects the probability of clicking on the advertisement, the portal with higher traffic is often the first choice for the advertiser to purchase the advertisement field. However, the portal site with higher traffic has a relatively high price for advertising, and long-term purchase is a very large burden for online store owners. Therefore, it is a concept of an advertising network that extends the pricing model that is priced by the number of clicks on advertisements.
在琳瑯滿目的廣告商品及有限的廣告欄位中,如何抓住消費者購買慾望激增的那瞬間,推薦最容易吸引其注意的相關商品吸引消費者點擊,已經成為網路廣告聯播網廠商戮力研究之方向,對於消費買氣的增加,也有著莫大的助益。而現今網路行銷的推薦模式,大多可分為三種:再行銷、興趣行銷以及內容行銷。In the dazzling array of advertising products and limited advertising fields, how to grasp the moment when consumers' desire for purchase surges, recommend the relevant products that are most likely to attract their attention to attract consumers to click, and have become a researcher of online advertising network manufacturers. The direction is also of great help to the increase in consumer buying. Most of the current online marketing recommendation models can be divided into three types: remarketing, interest marketing, and content marketing.
再行銷是紀錄消費者曾經去過的網站,持續遞送該網站的行銷資訊給予該消費者,引起該消費者之注意。然而,由於許多廣告主皆採用再行銷的方案,導致很多網站內,同一個頁面可能出現很多同一個廣告主的廣告。Remarketing is a record of the websites that consumers have visited, and the marketing information of the website is continuously delivered to the consumer, causing the attention of the consumer. However, since many advertisers adopt a remarketing scheme, many websites may have many advertisements of the same advertiser on the same page.
興趣行銷是針對消費者曾經去過網站的類別與特性,並透過網站的類別,與廣告類別做比對,然後遞送該類別的廣告給予消費者吸引其注意。然而,消費者於不同時間點前往網站的目的有可能不一樣,其類型也差異較大,因此興趣行銷有精準度較低的缺點。Interest marketing is aimed at the categories and characteristics of the websites that consumers have visited, and compares them with the categories of advertisements through the categories of the websites, and then delivers advertisements of this category to attract consumers' attention. However, the purpose of consumers going to the website at different time points may be different, and the types are also different, so interest marketing has the disadvantage of low precision.
內容行銷是直接提供與所瀏覽網頁內容相關性較高的廣告素材,其優點是不需要了解消費者之興趣及瀏覽紀錄,可直接遞送與瀏覽網頁有關聯性的行銷資訊予以消費者。然而,由於網頁內容詞彙很多,透過機器去比對精準度不高,容易判斷錯誤遞送不適合之行銷資訊。Content marketing is a kind of creative that directly provides high relevance to the content of the webpage being browsed. The advantage is that it does not need to understand the consumer's interest and browsing history, and can directly deliver marketing information related to browsing the webpage to the consumer. However, due to the large amount of vocabulary of webpage content, the precision of the comparison is not high through the machine, and it is easy to judge the misleading marketing information.
是以,如何遞送容易引起消費者注意之行銷資訊,進而吸引消費者點擊,便成為相關廠商以及相關研發人員所共同努力的目標,也必定成為未來趨勢的一項課題。Therefore, how to deliver marketing information that is easy to attract consumers' attention, and then attract consumers to click, has become the goal of related manufacturers and related R&D personnel, and it must become a topic of future trends.
本創作之主要目的在於改善習知技術於網路行銷資訊推薦時,無法準確抓住消費者的意向,所提供的行銷資訊精準度較低等缺點,乃積極著手進行開發,以期可以改進上述既有之缺點,經過不斷地試驗及努力,終於開發出本發明。The main purpose of this creation is to improve the shortcomings of the prior art in the promotion of online marketing information, the inability to accurately grasp the consumer's intentions, the low accuracy of the marketing information provided, etc., and actively proceed to develop, in order to improve the above There are disadvantages, and after continuous trial and effort, the present invention has finally been developed.
為了達到上述目的,本創作係採取以下之技術手段予以達成,其中,本創作之智慧型網路行銷分析及判斷方法,至少包括以下步驟:埋設一程式碼於至少一合作網站上;透過該程式碼蒐集於該合作網站瀏覽之至少一使用者之資料,該使用者之資料包含一信息(Cookie),該信息包括瀏覽頁數、瀏覽時間及所瀏覽網頁之內容;透過字詞語意研判法則分析該使用者之資料,該字詞語意研判法則係包含:字詞頻度分析、字詞脈絡分析、字詞矩陣群集分析,或上述任意組合;針對該使用者之資料分析結果建立一使用者資料庫;建立一總加權值與該使用者資料庫相比對;決定至少一行銷資訊,該行銷資訊係根據該使用者資料庫、時間因素、日期因素、所瀏覽網頁、該總加權值,或上述任意組合而決定;以及輸出該行銷資訊給該使用者。In order to achieve the above objectives, the present invention is achieved by the following technical means. The intelligent network marketing analysis and judgment method of the present invention includes at least the following steps: embedding a code on at least one cooperation website; The code collects information of at least one user browsed on the cooperation website, the user's information includes a message (cookie), the information includes the number of pages viewed, the browsing time and the content of the browsed webpage; The user's data, the word meaning judgment rule includes: word frequency analysis, word context analysis, word matrix cluster analysis, or any combination of the above; a user database is established for the user's data analysis result Establishing a total weighted value compared to the user database; determining at least one line of sales information based on the user database, time factor, date factor, page viewed, total weighted value, or Determined by any combination; and output the marketing information to the user.
藉由上述之方法,本創作利用交叉比對分析每個Cookie瀏覽紀錄,演算出一加權值,並透過該加權值根據瀏覽日期、瀏覽時間、所瀏覽之網站等因素,提供最容易引起其興趣之行銷資料給使用者,吸引其點擊瀏覽該行銷資訊。By the above method, the author uses cross-matching analysis to analyze each cookie browsing record, and calculates a weighting value, and through the weighting value, provides the most interesting interest according to factors such as browsing date, browsing time, and website visited. The marketing information is given to the user, and the user is attracted to click on the marketing information.
為達成上述目的及功效,本創作所採用之技術手段及構造,茲繪圖就本創作較佳實施例詳加說明其特徵與功能如下,俾利完全了解。In order to achieve the above objectives and effects, the technical means and structure adopted by the present invention are described in detail in the preferred embodiment of the present creation, and the features and functions are as follows.
請同時參閱圖1及2所示, 其為本創作智慧型網路行銷分析及判斷方法較佳實施例之流程圖以及示意圖。本創作之智慧型網路行銷分析及判斷方法,係應用於網際網路之資訊傳遞,至少包括以下步驟:Please refer to FIG. 1 and FIG. 2 at the same time, which is a flowchart and a schematic diagram of a preferred embodiment of the creative intelligent network marketing analysis and judgment method. The intelligent network marketing analysis and judgment method of this creation is applied to the information transmission of the Internet, and at least includes the following steps:
步驟110:埋設一程式碼 (11,11a,11b)於至少一合作網站(10,10a,10b)上。該程式碼 (11,11a,11b)為一電腦程式編碼,當一使用者 4於該合作網站上瀏覽時,可以抓取並紀錄該使用者 4之瀏覽紀錄,該使用者 4可以定義為一瀏覽單元(個人電腦、行動裝置)。Step 110: Embed a code (11, 11a, 11b) on at least one of the cooperation websites (10, 10a, 10b). The code (11, 11a, 11b) is a computer program code. When a user 4 browses on the cooperation website, the user 4 can browse and record the browsing history of the user 4. The user 4 can be defined as one. Browsing unit (personal computer, mobile device).
步驟120:透過該程式碼 (11,11a)蒐集於該合作網站(10,10a)瀏覽之至少一使用者之資料 (12,12a),該使用者之資料 (12,12a)包含一信息(Cookie),該信息包括瀏覽頁數、瀏覽時間及所瀏覽網頁之內容。當一使用者 4透過網際網路前來該網站瀏覽時,該程式碼 (11,11a)可以抓取及蒐集該使用者 4瀏覽網頁行為之資料,該使用者之資料 (12,12a)包含一信息(Cookie),該信息包括了該使用者 4於瀏覽該網站時,瀏覽之頁數、瀏覽之時間長短、所瀏覽網頁之內容,以及執行了哪些動作,例如輸入字詞進行搜尋等行為。Step 120: Collect, through the code (11, 11a), at least one user's data (12, 12a) browsed on the cooperation website (10, 10a), the user's data (12, 12a) contains a message (12, 12a) Cookie), this information includes the number of pages viewed, the time of browsing, and the content of the pages viewed. When a user 4 browses the website through the Internet, the code (11, 11a) can capture and collect information about the behavior of the user 4 browsing the webpage, and the user's data (12, 12a) includes a message (Cookie), the information including the number of pages viewed by the user 4 when browsing the website, the length of the browsing, the content of the browsed webpage, and the actions performed, such as inputting words for searching, etc. .
步驟130:透過字詞語意研判法則分析該使用者之資料 (12,12a),該字詞語意研判法則係包含:字詞頻度分析 211、字詞脈絡分析 212、字詞矩陣群集分析 213,或上述任意組合。當該程式碼 (11,11a)蒐集完該使用者之資料 (12,12a)後,可透過網際網路將該使用者之資料 (12,12a)傳送至一處理裝置 2,該處理裝置 2可包括:一分析單元 21、一使用者資料庫 22、一資料庫 23以及一智慧投遞單元 24,該分析單元 21與該使用者資料庫 22電性連接,該智慧投遞單元 24與該分析單元 21、該使用者資料庫 22以及該資料庫 23電性連接。該處理裝置 2可針對該使用者 4於不同合作網站(10,10a)之資料,進行統整以及分析,其可以為一遠端伺服器,用以分析該使用者之資料 (12,12a)。於本實施例中,該分析單元 21先針對該使用者之資料 (12,12a)中瀏覽網頁之內容進行斷句斷詞後,篩選出有意義的字詞,其中,該分析單元 21進行篩選之要素包括:內容分析、瀏覽行為以及社群影響,但不限於此。該內容分析包括:內容斷詞分析、斷詞之詞性比對、斷詞之詞性分析以及瀏覽網頁之標題與內文斷詞分類分析。該瀏覽行為包括:瀏覽網頁上線(抓取)時間、瀏覽網頁被瀏覽數、瀏覽網頁停留之時間、瀏覽網頁當下時間(包含年、日、時、分)、瀏覽網頁跳出率、瀏覽網頁停留點、使用者興趣水管圖以及使用者觀看文章關聯性數值等。該社群影響係包括社群網站之分享數、點讚數以及回應數。之後,該分析單元 21再利用字詞語意研判法則分析該使用者之資料 (12,12a),該字詞語意研判法則至少包含:字詞頻度分析 211、字詞脈絡分析 212、字詞矩陣群集分析 213,或上述任意組合。Step 130: Analyze the user's data (12, 12a) by using the word meaning judgment rule, the word meaning judgment rule includes: word frequency analysis 211, word context analysis 212, word matrix cluster analysis 213, or Any combination of the above. After the code (11, 11a) collects the user's data (12, 12a), the user's data (12, 12a) can be transmitted to a processing device 2 via the Internet. The processing device 2 The analysis unit 21, a user database 22, a database 23, and a smart delivery unit 24, the analysis unit 21 is electrically connected to the user database 22, the smart delivery unit 24 and the analysis unit 21. The user database 22 and the database 23 are electrically connected. The processing device 2 can perform integration and analysis on the data of the user 4 on different cooperation websites (10, 10a), which can be a remote server for analyzing the data of the user (12, 12a) . In this embodiment, the analyzing unit 21 first screens out meaningful words for the content of the webpage in the user's data (12, 12a), and then selects a meaningful word, wherein the analyzing unit 21 performs the screening element. Includes: content analysis, browsing behavior, and community impact, but not limited to this. The content analysis includes: content word segmentation analysis, word-of-speech comparison of word-breaking words, word-of-speech analysis of word-breaking words, and classification of the title and internal word segmentation of the browsing page. The browsing behavior includes: browsing the online (crawling) time of the webpage, browsing the number of webpages viewed, the time of browsing the webpage, browsing the current time of the webpage (including the year, day, hour, minute), browsing the webpage bounce rate, browsing the webpage staying point User interest pipe map and user view article relevance value. This community impact includes the number of shares, likes, and responses for the social networking site. Then, the analyzing unit 21 analyzes the user's data (12, 12a) by using a word-and-speech rule, and the word-study rule includes at least: a word frequency analysis 211, a word context analysis 212, and a word matrix cluster. Analysis 213, or any combination of the above.
該字詞頻度分析 211係指根據字詞詞性、字數及出現頻率進行分析及統計,例如將該等字詞透過名詞、動詞亦或是人為設定進行分類,統計其出現之頻率以及次數後,以表格、統計圖表等方式呈現。該字詞脈絡分析 212係指根據字詞間相互之關聯性進行演算及分析,找出最適合該等字詞的主題。該字詞矩陣群集分析 213係指根據字詞間相互之關聯性及類別進行分類及歸納,以區分出不同之區塊。例如將該等字詞,透過字詞間相互之關聯性及類別進行分類,轉化成矩陣群集表,相似度越高則字詞間排列越為緊密,反之則越為鬆散。The term frequency analysis 211 refers to the analysis and statistics according to the part-of-speech part-of-speech, the number of words and the frequency of occurrence. For example, the words are classified by nouns, verbs or artificial settings, and the frequency and frequency of occurrence are counted. Presented in the form of tables, statistical charts, etc. The word context analysis 212 refers to the calculation and analysis based on the mutual correlation between words to find the topic that is most suitable for the words. The word matrix cluster analysis 213 refers to classifying and summarizing according to the mutual relevance and category of words to distinguish different blocks. For example, the words are classified into a matrix cluster table by classifying the correlations and categories between words, and the higher the similarity, the more closely the words are arranged, and vice versa.
步驟140:針對該使用者之資料 (12,12a)分析結果建立一使用者資料庫 22。該處理裝置 2將該使用者之資料 (12,12a)分析結果,建立及儲存於該使用者資料庫 22,其中,該使用者資料庫 22包含:瀏覽日期、瀏覽網址、IP位址、瀏覽分類、網頁標題、關鍵字詞、字詞語意研判法則分析結果,或上述任意組合。Step 140: Establish a user database 22 for the analysis result of the user (12, 12a). The processing device 2 creates and stores the analysis result of the user's data (12, 12a) in the user database 22, wherein the user database 22 includes: browsing date, browsing website address, IP address, browsing Classification, page title, keyword words, word vocabulary analysis results, or any combination of the above.
步驟150:建立一總加權值與該使用者資料庫相比對,並決定至少一行銷資訊 (25,25a),該行銷資訊 (25,25a)係根據該使用者資料庫 22、時間因素、日期因素、所瀏覽網頁,或上述任意組合而決定。該使用者資料庫 22建立完成後,當該使用者 4進入任一合作網站(10,10a,10b)瀏覽時,該智慧投遞單元 24根據下列因素判斷出最適合該使用者 4之行銷資訊 (25,25a):文章上線(抓取)時間,其可提供即時最新之內容,以避免遞送該使用者 4已看過重複之內容。文章瀏覽數,其係指該文章,越多人瀏覽(本創作透過程式碼 (11,11a)抓取的瀏覽次數越多),代表越符合時事內容。文章分類,遞送網友曾看過之相同類別文章,可以有助於提升點擊率。字詞比對,透過字詞語意研判法則分析結果,可明確地判斷該使用者 4喜好之關鍵字。文章停留時間,其可明確判斷文章內容可讀性。社群推薦數,透過如facebook、微博、推特等社群網站之推薦數量,可以明確判斷文章橫向發展數量。文章跳出率,其可明確判斷文章內容與標題間之準確性。文章停留時間點,其可明確判斷使用者 4離開該網頁時所觀看完文章之比例。使用者興趣圖,其可明確了解網友當下所看文章及類別之前後關聯。使用者觀看文章關聯性數值,其可明確了解網友當下所看文章及前後所看文章之關聯,以及瀏覽當下的時間早晚、瀏覽的日期。根據上述因素,該智慧投遞單元 24可分析出該使用者 4當下最有可能感到興趣之行銷資訊 (25,25a)。Step 150: Establish a total weight value compared with the user database, and determine at least one line of sales information (25, 25a), the marketing information (25, 25a) is based on the user database 22, time factor, Date factor, page viewed, or any combination of the above. After the user database 22 is created, when the user 4 enters any of the cooperation websites (10, 10a, 10b), the smart delivery unit 24 determines the marketing information most suitable for the user 4 according to the following factors ( 25, 25a): The article goes online (crawling) time, which provides instant and up-to-date content to avoid delivering the content that the user 4 has seen. The number of articles viewed, which refers to the article, the more people browse (the more views the author crawls through the code (11, 11a)), the more representative the current affairs. Article categorization, which delivers the same category of articles that users have seen, can help improve clickthrough rates. The word comparison is used to analyze the result of the word and the meaning of the rule, and the keyword of the user 4 can be clearly determined. The article stays in time, which can clearly determine the readability of the article content. The number of community recommendations, through the number of recommendations on social networking sites such as facebook, Weibo, Twitter, etc., can clearly determine the horizontal development of the article. The article bounce rate, which can clearly determine the accuracy of the content between the article and the title. The article stays at a point in time, which can clearly determine the proportion of articles that the user 4 viewed when leaving the web page. The user interest map, which can clearly understand the associations of the users before they read the articles and categories. The user can view the relevance value of the article, which can clearly understand the association between the article viewed by the user and the article viewed before and after, and the time of browsing the current time and the date of browsing. Based on the above factors, the smart delivery unit 24 can analyze the marketing information (25, 25a) that the user 4 is most likely to be interested in at the moment.
而該行銷資訊 (25,25a)係儲存於該資料庫 23中,該資料庫 23可儲存有至少一廣告、至少一社群推薦機制、至少一優惠訊息、至少一活動資訊,但不限於此,該行銷資訊 (25,25a)可以為上述任一種或是其任意組合。以及該資料庫 23係以動態的、自動的、排定的或週期性的更新,管理者可以根據客戶需求,以動態的、自動的、排定的或週期性的更新該資料庫 23。The marketing information (25, 25a) is stored in the database 23, and the database 23 can store at least one advertisement, at least one community recommendation mechanism, at least one preferential message, and at least one activity information, but is not limited thereto. The marketing information (25, 25a) may be any of the above or any combination thereof. And the database 23 is updated dynamically, automatically, scheduled or periodically, and the manager can update the database 23 dynamically, automatically, scheduled or periodically according to customer needs.
值得一提的是,該資料庫 23可以根據不同因素,將該等行銷資訊 (25,25a)進行分類,其分類的考慮因素敘述如下:商品資訊、商品瀏覽資料以及商品行銷資料。該商品資訊包括:商品價格、商品分類、商品標題、商品關鍵字、商品於該類別之數量比例以及該商品上線時間。該商品瀏覽資料包括:該商品頁面之平均停留時間(所有流量)、該商品頁面導入後之跳出率(所有流量)、該商品頁面離開率(所有流量)、該商品頁面結帳數(所有流量)、該商品丟入購物車但卻沒有結帳之比例(所有流量)、購買該商品同時,也購買其他商品之比例(所有流量)、點選該商品廣告進入網站後,卻購買其他商品之比例。該商品行銷資料包括:該商品過往之廣告點擊數(本創作統計流量)、該商品過往之廣告曝光數(本創作統計流量)、該商品過往之廣告點擊率(本創作統計流量)、該商品過往點擊後之平均停留時間(本創作統計流量)、該商品過往點擊後之跳出率(本創作統計流量)、該商品過往點擊後之離開率(本創作統計流量)、該商品過往點擊後之結帳數(本創作統計流量)、該商品過往點擊且丟入購物車但未結帳之比例(本創作統計流量)以及該商品過往點擊後購買,且同時購買其他商品之比例(本創作統計流量)。It is worth mentioning that the database 23 can classify the marketing information (25, 25a) according to different factors, and the classification considerations are as follows: product information, product browsing materials and product marketing materials. The product information includes: product price, product classification, product title, product keyword, the quantity ratio of the product in the category, and the time when the product was launched. The product browsing data includes: the average stay time of the product page (all traffic), the bounce rate after the product page is imported (all traffic), the exit rate of the product page (all traffic), the number of checkouts of the product page (all traffic) ), the product is thrown into the shopping cart but there is no proportion of checkout (all traffic), the purchase of the product, the proportion of other products purchased (all traffic), click on the product advertisement to enter the website, but buy other products proportion. The product marketing information includes: the number of past advertisement clicks of the product (the statistical flow of the creation), the past advertisement exposure of the product (the statistical flow of the creation), the past advertisement click rate of the product (the statistical flow of the creation), the product The average stay time after the previous click (the statistical flow of the creation), the bounce rate of the product after the past click (the statistical flow of the creation), the departure rate of the product after the past click (the statistical flow of the creation), and the past click of the product. The number of checkouts (the statistical traffic of this creation), the proportion of the product that was clicked in the past and dropped into the shopping cart but not settled (the statistical traffic of this creation), and the proportion of the purchase of the product after the previous click, and the purchase of other goods at the same time (this creation statistics) flow).
其中,該資料庫 23針對上述因素對所有行銷資訊 (25,25a)分別計算六種權重值,該六種權重值係為:強度牽引、擴散張力、相關差異、分類邏輯、向量分佈以及稀疏離散度。並代入數學公式計算後,可以得到每個行銷資訊 (25,25a)的總加權值。將該總加權值與該智慧投遞單元 24分析結果統整後,可以決定出適合度最高的至少一行銷資訊 (25,25a)。其中,計算該六種權重值的統計方法係包括:非線性回歸、灰色理論、聯合分析法、中介變項分析法、確定性決策法以及廣義估計方程式(Generalized estimating equation, GEE)分析等,但不限於此。The database 23 calculates six weight values for all marketing information (25, 25a) for the above factors, namely: intensity traction, diffusion tension, correlation difference, classification logic, vector distribution, and sparse dispersion. degree. After substituting the mathematical formula, the total weighting value of each marketing information (25, 25a) can be obtained. After the total weighting value is integrated with the analysis result of the smart delivery unit 24, at least one line of sales information (25, 25a) with the highest fitness can be determined. Among them, the statistical methods for calculating the six weight values include: nonlinear regression, grey theory, joint analysis method, mediation variable analysis method, deterministic decision method, and generalized estimating equation (GEE) analysis, but Not limited to this.
舉例來說,根據分析結果,該智慧投遞單元 24判斷出該使用者 4於禮拜五下午四點三十分時於體育新聞網站瀏覽時,對美食方面之行銷資訊 (25,25a)感到興趣之機率值最高。更進一步的,該智慧投遞單元 24可以比對該資料庫 23中的行銷資訊 (25,25a),其比對結果指出與該使用者 4總加權值最高的行銷資訊 (25,25a)為泡芙。因此,該智慧投遞單元 24決定推薦與泡芙有關之行銷資訊給予該使用者 4。For example, based on the analysis result, the smart delivery unit 24 determines that the user 4 is interested in the marketing information (25, 25a) of the food when browsing on the sports news website at 4:30 pm on Friday. The probability value is the highest. Further, the smart delivery unit 24 can compare the marketing information (25, 25a) in the database 23, and the comparison result indicates that the marketing information (25, 25a) with the highest total weight value of the user 4 is a bubble. Fu. Therefore, the smart delivery unit 24 decides to recommend marketing information related to the puff to the user 4.
步驟160:輸出該行銷資訊 (25,25a)給該使用者 4。當該智慧投遞單元 24決定欲推薦的行銷資訊 (25,25a)後,即可透過網際網路將該行銷資訊 (25,25a)傳送至該使用者 4所瀏覽之該合作網站 10b,以及該合作網站 10b可將該行銷資訊 (25,25a)顯示於瀏覽畫面上,以吸引該消費者之注意及點擊。Step 160: Output the marketing information (25, 25a) to the user 4. After the smart delivery unit 24 determines the marketing information (25, 25a) to be recommended, the marketing information (25, 25a) can be transmitted to the cooperation website 10b browsed by the user 4 via the Internet, and the The cooperation website 10b can display the marketing information (25, 25a) on the browsing screen to attract the attention and click of the consumer.
綜合上述,本創作提出之智慧型網路行銷分析及判斷方法與習用技術相較,確實具有下列優點: (1)本創作之智慧型網路行銷分析及判斷方法,可以增加行銷資訊被使用者點擊的次數。 (2) 本創作之智慧型網路行銷分析及判斷方法,可以避免同一個頁面出現同一個廣告主的廣告。 (3) 本創作之智慧型網路行銷分析及判斷方法,透過多方因素分析使用者之瀏覽紀錄,可提供精準度較高的行銷資訊吸引消費者點擊。In summary, the intelligent network marketing analysis and judgment method proposed by this creation has the following advantages compared with the conventional technology: (1) The intelligent network marketing analysis and judgment method of this creation can increase the marketing information to be used by users. The number of clicks. (2) The intelligent network marketing analysis and judgment method of this creation can avoid the advertisement of the same advertiser on the same page. (3) The intelligent network marketing analysis and judgment method of this creation analyzes the user's browsing history through multiple factors, and can provide high-precision marketing information to attract consumers to click.
故,可充分顯示本創作之目的及功效上均具有實施之進步性,極具產業之利用性價值,且為目前市面上前所未見之新發明,完全符合發明專利要件,爰依法提出申請。Therefore, it can fully demonstrate that the purpose and efficacy of this creation are both progressive in implementation, highly exploitable in the industry, and are new inventions that have never been seen before on the market, fully comply with the requirements of invention patents, and apply in accordance with the law. .
唯,以上所述僅為本發明之較佳實施例而已,當不能用以限定本發明所實施之範圍。即凡依本發明專利範圍所作之均等變化與修飾,皆應屬於本發明專利涵蓋之範圍內,謹請 貴審查委員明鑑,並祈惠准,是所至禱。The above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the invention. All changes and modifications made in accordance with the scope of the invention shall fall within the scope covered by the patent of the invention. I would like to ask your review committee to give a clear explanation and pray for it.
10,10a,10b‧‧‧合作網站
11,11a,11b‧‧‧程式碼
12,12a‧‧‧使用者之資料
2‧‧‧處理裝置
21‧‧‧分析單元
211‧‧‧字詞頻度分析
212‧‧‧字詞脈絡分析
213‧‧‧字詞矩陣群集分析
22‧‧‧使用者資料庫
23‧‧‧資料庫
24‧‧‧智慧投遞單元
25,25a‧‧‧行銷資訊
4‧‧‧使用者
步驟110‧‧‧埋設一程式碼於至少一合作網站上
步驟120‧‧‧透過該程式碼蒐集於該合作網站瀏覽之至少一使用者之資料
步驟130‧‧‧透過字詞語意研判法則分析該使用者之資料
步驟140‧‧‧針對該使用者之資料分析結果建立一使用者資料庫
步驟150‧‧‧建立一總加權值與該使用者資料庫相比對,並決定至少一行銷資訊
步驟160‧‧‧輸出該行銷資訊給該使用者10,10a,10b‧‧‧Cooperative website
11,11a,11b‧‧‧code
12,12a‧‧‧ User information
2‧‧‧Processing device
21‧‧‧Analysis unit
211‧‧‧ frequency analysis of words
212‧‧‧word analysis
213‧‧‧Word matrix cluster analysis
22‧‧‧User database
23‧‧‧Database
24‧‧‧Smart Delivery Unit
25,25a‧‧‧Marketing Information
4 ‧ ‧ User Steps 110 ‧ ‧ bury a code on at least one partner website Step 120 ‧ ‧ Collect the information of at least one user viewed on the partner website through the code Step 130‧‧‧ The term meaning analysis rule analyzes the user's data. Step 140‧‧ Establish a user database for the user's data analysis. Step 150‧‧ Establish a total weighting value compared to the user database, and Decide to sell at least one line of information. Step 160‧‧‧ Export the marketing information to the user
圖1所示為本創作智慧型網路行銷分析及判斷方法一較佳實施例之流程圖; 圖2所示為本創作智慧型網路行銷分析及判斷方法一較佳實施例之示意圖。1 is a flow chart of a preferred embodiment of a smart network marketing analysis and determination method. FIG. 2 is a schematic diagram of a preferred embodiment of a smart network marketing analysis and determination method.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104113820A TWI629652B (en) | 2015-04-30 | 2015-04-30 | Intelligent network marketing analysis and judgment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104113820A TWI629652B (en) | 2015-04-30 | 2015-04-30 | Intelligent network marketing analysis and judgment method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201638847A TW201638847A (en) | 2016-11-01 |
TWI629652B true TWI629652B (en) | 2018-07-11 |
Family
ID=57850346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104113820A TWI629652B (en) | 2015-04-30 | 2015-04-30 | Intelligent network marketing analysis and judgment method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI629652B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI765131B (en) * | 2018-12-21 | 2022-05-21 | 健康力股份有限公司 | Intelligent marketing advertising classification system |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106878372B (en) | 2016-11-07 | 2020-10-02 | 阿里巴巴集团控股有限公司 | Information pushing method and device |
TWI640944B (en) * | 2016-12-14 | 2018-11-11 | 玉山商業銀行股份有限公司 | Automated intention extraction device and method thereof |
TWI633448B (en) * | 2017-07-24 | 2018-08-21 | 優像數位媒體科技股份有限公司 | Method of analyzing the interest preferences of website readers |
CN107678931A (en) * | 2017-09-26 | 2018-02-09 | 泰康保险集团股份有限公司 | Reading behavior evaluation method and device, storage medium and electronic equipment |
TWI715817B (en) * | 2017-12-26 | 2021-01-11 | 人因設計所股份有限公司 | Advertisement recommendation system method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102364468A (en) * | 2011-09-29 | 2012-02-29 | 北京亿赞普网络技术有限公司 | User network behavior analysis method, device and system |
CN104111941A (en) * | 2013-04-18 | 2014-10-22 | 阿里巴巴集团控股有限公司 | Method and equipment for information display |
-
2015
- 2015-04-30 TW TW104113820A patent/TWI629652B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102364468A (en) * | 2011-09-29 | 2012-02-29 | 北京亿赞普网络技术有限公司 | User network behavior analysis method, device and system |
CN104111941A (en) * | 2013-04-18 | 2014-10-22 | 阿里巴巴集团控股有限公司 | Method and equipment for information display |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI765131B (en) * | 2018-12-21 | 2022-05-21 | 健康力股份有限公司 | Intelligent marketing advertising classification system |
Also Published As
Publication number | Publication date |
---|---|
TW201638847A (en) | 2016-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI629652B (en) | Intelligent network marketing analysis and judgment method | |
KR101392696B1 (en) | Framework for selecting and delivering advertisements over a network based on combined short-term and long-term user behavioral interests | |
CN103886074B (en) | Commercial product recommending system based on social media | |
US10134053B2 (en) | User engagement-based contextually-dependent automated pricing for non-guaranteed delivery | |
US20130138507A1 (en) | Predictive modeling for e-commerce advertising systems and methods | |
CN105894332A (en) | Commodity recommendation method, device and system based on user behavior analysis | |
CN113792176A (en) | Image evaluation | |
CN105719156A (en) | System and method for identifying and promoting goods with labels already added thereto | |
JP2014508333A (en) | Method and system for displaying cross-website information | |
US20150278877A1 (en) | User Engagement-Based Contextually-Dependent Automated Reserve Price for Non-Guaranteed Delivery Advertising Auction | |
WO2022095701A1 (en) | Method and device for recommending objects, equipment, and storage medium | |
JP2001282982A (en) | Web marketing system | |
CN106062743A (en) | Systems and methods for keyword suggestion | |
KR20110053457A (en) | Information sharing in an online community | |
Alazab et al. | Maximising competitive advantage on E-business websites: A data mining approach | |
TWI550535B (en) | The recommendation of promotion discount combo based on others shopping list | |
TW201528181A (en) | Systems and methods for search results targeting | |
KR20200087571A (en) | Product information analysis and provision system and method thereof | |
TWI611362B (en) | Personalized internet marketing recommendation method | |
KR102397385B1 (en) | Method for providing online to offline based customized coupon service using storage coupon | |
Siriaraya et al. | Using categorized web browsing history to estimate the user's latent interests for web advertisement recommendation | |
Ghose et al. | Analyzing search engine advertising: firm behavior and cross-selling in electronic markets | |
CN107209897A (en) | User data is handled and analyzes to determine keyword quality | |
US12026749B2 (en) | Content optimization on a social media platform based on third-party data | |
Ming | Application research of customer big data analysis for online shop based on smart cloud platform tools |