TWI627773B - Semiconductor structure and method for forming the same - Google Patents

Semiconductor structure and method for forming the same Download PDF

Info

Publication number
TWI627773B
TWI627773B TW106114836A TW106114836A TWI627773B TW I627773 B TWI627773 B TW I627773B TW 106114836 A TW106114836 A TW 106114836A TW 106114836 A TW106114836 A TW 106114836A TW I627773 B TWI627773 B TW I627773B
Authority
TW
Taiwan
Prior art keywords
bottom electrode
forming
barrier layer
memory
memory element
Prior art date
Application number
TW106114836A
Other languages
Chinese (zh)
Other versions
TW201843852A (en
Inventor
李岱螢
吳昭誼
林榆瑄
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW106114836A priority Critical patent/TWI627773B/en
Application granted granted Critical
Publication of TWI627773B publication Critical patent/TWI627773B/en
Publication of TW201843852A publication Critical patent/TW201843852A/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

一種半導體結構包括一記憶結構。該記憶結構包括一記憶元件、一第一阻障層、和一第二阻障層。記憶元件包括氧氮化鈦。第一阻障層包括矽和氧化矽之中至少一者。第一阻障層設置在記憶元件上。第二阻障層包括鈦和氧化鈦之中至少一者。第二阻障層設置在第一阻障層上。 A semiconductor structure includes a memory structure. The memory structure includes a memory element, a first barrier layer, and a second barrier layer. The memory element includes titanium oxynitride. The first barrier layer includes at least one of tantalum and tantalum oxide. The first barrier layer is disposed on the memory element. The second barrier layer includes at least one of titanium and titanium oxide. The second barrier layer is disposed on the first barrier layer.

Description

半導體結構及其形成方法 Semiconductor structure and method of forming same

本揭露是關於一種半導體結構及其形成方法。本揭露特別是關於一種包括記憶結構的半導體結構及其形成方法。 The present disclosure is directed to a semiconductor structure and method of forming the same. The present disclosure relates in particular to a semiconductor structure including a memory structure and a method of forming the same.

可變電阻式記憶體(RRAM)是一種類型的非揮發性記憶體,其提供簡單的結構、小的記憶胞尺寸、可擴縮性(scalability)、超高速操作、低功率操作、與互補金屬氧化物半導體(CMOS)的相容性、和低成本等優點。RRAM包括記憶元件,其可具有能夠藉由施加電脈衝而在二或更多個穩定的電阻範圍之間改變的電阻。RRAM可更包括元件如頂電極、和底電極等等。用於形成記憶元件和RRAM之其他元件的材料,可加以選擇和調整。藉此,可達成較大的感測區間(sensing window)、較長的保存時間、較佳的耐久性、和/或其他性能方面的改善。 Variable Resistive Memory (RRAM) is a type of non-volatile memory that provides a simple structure, small memory cell size, scalability, ultra-high speed operation, low power operation, and complementary metals. Oxide semiconductor (CMOS) compatibility, and low cost. The RRAM includes a memory element that can have a resistance that can be varied between two or more stable resistance ranges by applying an electrical pulse. The RRAM may further include elements such as a top electrode, a bottom electrode, and the like. The materials used to form the memory elements and other elements of the RRAM can be selected and adjusted. Thereby, a larger sensing window, longer shelf life, better durability, and/or other performance improvements can be achieved.

本揭露是關於記憶裝置的改善,特別是對於RRAM的改善。 The present disclosure relates to improvements in memory devices, particularly for RRAM.

根據一些實施例,提供一種半導體結構。此種半導體結構包括一記憶結構。該記憶結構包括一記憶元件、一第一阻障層、和一第二阻障層。記憶元件包括氧氮化鈦。第一阻障層包括矽和氧化矽之中至少一者。第一阻障層設置在記憶元件上。第二阻障層包括鈦和氧化鈦之中至少一者。第二阻障層設置在第一阻障層上。 According to some embodiments, a semiconductor structure is provided. Such a semiconductor structure includes a memory structure. The memory structure includes a memory element, a first barrier layer, and a second barrier layer. The memory element includes titanium oxynitride. The first barrier layer includes at least one of tantalum and tantalum oxide. The first barrier layer is disposed on the memory element. The second barrier layer includes at least one of titanium and titanium oxide. The second barrier layer is disposed on the first barrier layer.

根據一些實施例,提供一種半導體結構的形成方法。此種形成方法包括形成一記憶結構,其包括下列步驟。形成一記憶元件。記憶元件包括氧氮化鈦。在記憶元件上形成一第一阻障層。第一阻障層包括矽和氧化矽之中至少一者。在第一阻障層上形成一第二阻障層。第二阻障層包括鈦和氧化鈦之中至少一者。 According to some embodiments, a method of forming a semiconductor structure is provided. This method of formation includes forming a memory structure that includes the following steps. A memory element is formed. The memory element includes titanium oxynitride. A first barrier layer is formed on the memory element. The first barrier layer includes at least one of tantalum and tantalum oxide. A second barrier layer is formed on the first barrier layer. The second barrier layer includes at least one of titanium and titanium oxide.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to better understand the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings

100、200‧‧‧記憶結構 100,200‧‧‧ memory structure

102、202‧‧‧底電極 102, 202‧‧‧ bottom electrode

104、204‧‧‧記憶元件 104, 204‧‧‧ memory components

106、206‧‧‧第一阻障層 106, 206‧‧‧ first barrier layer

108、208‧‧‧第二阻障層 108, 208‧‧‧ second barrier layer

110、210‧‧‧頂電極 110, 210‧‧‧ top electrode

120、220‧‧‧初步結構 120, 220‧‧‧ preliminary structure

130、230‧‧‧電晶體 130, 230‧‧‧Optoelectronics

132、134、232、234‧‧‧重摻雜區 132, 134, 232, 234‧‧‧ heavily doped areas

136、236‧‧‧閘電極 136, 236‧‧ ‧ gate electrode

138、238‧‧‧閘介電質 138, 238‧‧ ‧ thyristor

140、142、240、242‧‧‧輕摻雜區 140, 142, 240, 242‧‧‧lightly doped areas

144、244‧‧‧基板 144, 244‧‧‧ substrate

146、246‧‧‧介電層 146, 246‧‧‧ dielectric layer

148、150、248、250‧‧‧導電連接件 148, 150, 248, 250‧‧‧ conductive connectors

158、258‧‧‧金屬層 158, 258‧‧‧ metal layer

160、260‧‧‧部分 160, 260‧‧‧ part

162、262‧‧‧部分 Section 162, 262‧‧‧

252‧‧‧殘留部分 252‧‧‧Residual parts

256‧‧‧殘留部分 256‧‧‧ residual parts

302、402‧‧‧底電極材料 302, 402‧‧‧ bottom electrode material

304‧‧‧記憶元件材料 304‧‧‧Memory component materials

306、406‧‧‧第一阻障材料 306, 406‧‧‧ first barrier material

308、408‧‧‧第二阻障材料 308, 408‧‧‧ second barrier material

310、410‧‧‧頂電極材料 310, 410‧‧‧ top electrode material

452‧‧‧第一絕緣材料 452‧‧‧First insulation material

454‧‧‧開口 454‧‧‧ openings

456‧‧‧第二絕緣材料 456‧‧‧Second insulation material

502‧‧‧線 502‧‧‧ line

504‧‧‧線 504‧‧‧ line

512‧‧‧線 512‧‧‧ line

514‧‧‧線 514‧‧‧ line

4021‧‧‧部分 Section 4021‧‧‧

4022‧‧‧部分 Section 4022‧‧‧

4023‧‧‧部分 Section 4023‧‧‧

H1‧‧‧第一高度 H1‧‧‧ first height

H2‧‧‧第二高度 H2‧‧‧second height

W1‧‧‧第一寬度 W1‧‧‧ first width

W2‧‧‧第二寬度 W2‧‧‧ second width

W3‧‧‧第三寬度 W3‧‧‧ third width

第1圖繪示根據實施例之一例示性半導體結構。 FIG. 1 illustrates an exemplary semiconductor structure in accordance with an embodiment.

第2圖繪示根據實施例之另一例示性半導體結構。 FIG. 2 illustrates another exemplary semiconductor structure in accordance with an embodiment.

第3A~3H圖繪示根據實施例之一例示性半導體結構的形成方法。 3A-3H illustrate a method of forming an exemplary semiconductor structure according to an embodiment.

第4A~4M圖繪示根據實施例之另一例示性半導體結構的形成方法。 4A-4M illustrate a method of forming another exemplary semiconductor structure in accordance with an embodiment.

第5A~5B圖示出根據實施例之半導體結構的電性性質。 5A-5B illustrate electrical properties of a semiconductor structure in accordance with an embodiment.

以下將參照所附圖式對於各種不同的實施例進行更詳細的說明。為了利於理解,在可能的情況下,相同的元件符號係用於各圖中共通之相同元件。可以預期的是,一實施例中的元件和特徵,能夠被有利地納入於另一實施例中,然而並未對此作進一步的列舉。 Various embodiments will be described in more detail below with reference to the drawings. For the sake of understanding, the same element symbols are used for the same elements common to the figures in the figures. It is contemplated that elements and features of one embodiment can be advantageously incorporated into another embodiment, which is not further enumerated.

請參照第1圖,其示出根據實施例之一例示性半導體結構。該半導體結構包括一記憶結構100。雖不受限於此,但記憶結構100在此被繪示成一RRAM結構。記憶結構100包括一記憶元件104、一第一阻障層106、和一第二阻障層108。記憶元件104包括氧氮化鈦(TiOxNy)。第一阻障層106包括矽和氧化矽(SiOx)之中至少一者。第一阻障層106設置在記憶元件104上。第二阻障層108包括鈦和氧化鈦(TiOx)之中至少一者。第二阻障層108設置在第一阻障層106上。 Please refer to FIG. 1, which illustrates an exemplary semiconductor structure in accordance with an embodiment. The semiconductor structure includes a memory structure 100. Although not limited thereto, the memory structure 100 is illustrated herein as an RRAM structure. The memory structure 100 includes a memory element 104, a first barrier layer 106, and a second barrier layer 108. Memory element 104 includes titanium oxynitride (TiO x N y ). The first barrier layer 106 includes at least one of tantalum and niobium oxide (SiO x ). The first barrier layer 106 is disposed on the memory element 104. The second barrier layer 108 includes at least one of titanium and titanium oxide (TiO x ). The second barrier layer 108 is disposed on the first barrier layer 106.

特別是,雖不受限於此,但整個記憶元件104可由氧氮化鈦形成,其具有適於RRAM應用的可編程電阻。第一阻障層106可由矽形成。或者,第一阻障層106可由氧化矽形成。矽或氧化矽阻障層的配置有利於改善含TiOxNy之記憶結構的保存性。第二阻障層108可由鈦形成。或者,第二阻障層108可由氧化鈦形成。鈦或氧化鈦阻障層的配置有利於改善含TiOxNy之記憶結構的耐久性以及擴大其感測區間。 In particular, although not limited thereto, the entire memory element 104 may be formed of titanium oxynitride having a programmable resistor suitable for RRAM applications. The first barrier layer 106 may be formed of tantalum. Alternatively, the first barrier layer 106 may be formed of yttrium oxide. The configuration of the tantalum or yttria barrier layer is advantageous for improving the preservation of the memory structure containing TiO x N y . The second barrier layer 108 may be formed of titanium. Alternatively, the second barrier layer 108 may be formed of titanium oxide. Configuring titanium or titanium oxide barrier layer will help to improve the durability of the memory structure containing TiO x N y, and the expansion of its sensing range.

記憶結構100可更包括一頂電極110。頂電極110可包括氮化鈦(TiNx),例如是整個皆由氮化鈦形成。頂電極110設置在第二阻障層108上。記憶結構100可更包括一底電極102。底電極102可包括氮化鈦,例如是整個皆由氮化鈦形成。記憶元件104設置在底電極102上。 The memory structure 100 can further include a top electrode 110. The top electrode 110 may include titanium nitride (TiN x ), for example, which is entirely formed of titanium nitride. The top electrode 110 is disposed on the second barrier layer 108. The memory structure 100 can further include a bottom electrode 102. The bottom electrode 102 may include titanium nitride, for example, which is entirely formed of titanium nitride. The memory element 104 is disposed on the bottom electrode 102.

如第1圖所示,半導體結構可更包括一導電連接件150,例如是一接點(contact)或一導孔(via)。導電連接件150能夠用於將記憶結構100耦接至一對應的存取裝置,例如第3A圖所示之電晶體130、或一二極體。底電極102設置在導電連接件150上。 As shown in FIG. 1, the semiconductor structure may further include a conductive connection member 150, such as a contact or a via. The conductive connector 150 can be used to couple the memory structure 100 to a corresponding access device, such as the transistor 130 shown in FIG. 3A, or a diode. The bottom electrode 102 is disposed on the conductive connector 150.

請參照第2圖,其示出根據實施例之另一例示性半導體結構。該半導體結構包括一記憶結構200。記憶結構200包括一記憶元件204、一第一阻障層206、和一第二阻障層208。記憶元件204包括氧氮化鈦。第一阻障層206包括矽和氧化矽之中至少一者。第一阻障層206設置在記憶元件204上。第二阻障層208包括鈦和氧化鈦之中至少一者。第二阻障層208設置在第一阻障層206上。記憶結構200可更包括一頂電極210。記憶結構200可更包括一底電極202。半導體結構可更包括一導電連接件250。第一阻障層206、第二阻障層208、頂電極210、和導電連接件250,可類似於第1圖所示的對應元件。第2圖所示的半導體結構與第1圖所示的半導體結構之不同點在於,第2圖所示的半導體結構包括一側壁式底電極202、以及連帶之一較小的 記憶元件204。其細節將在以下的段落中加以敘述。 Please refer to FIG. 2, which illustrates another exemplary semiconductor structure in accordance with an embodiment. The semiconductor structure includes a memory structure 200. The memory structure 200 includes a memory element 204, a first barrier layer 206, and a second barrier layer 208. Memory element 204 includes titanium oxynitride. The first barrier layer 206 includes at least one of tantalum and tantalum oxide. The first barrier layer 206 is disposed on the memory element 204. The second barrier layer 208 includes at least one of titanium and titanium oxide. The second barrier layer 208 is disposed on the first barrier layer 206. The memory structure 200 can further include a top electrode 210. The memory structure 200 can further include a bottom electrode 202. The semiconductor structure can further include a conductive connector 250. The first barrier layer 206, the second barrier layer 208, the top electrode 210, and the conductive connection 250 may be similar to the corresponding elements shown in FIG. The semiconductor structure shown in FIG. 2 is different from the semiconductor structure shown in FIG. 1 in that the semiconductor structure shown in FIG. 2 includes a sidewall type bottom electrode 202 and a small one of the associated layers. Memory element 204. The details will be described in the following paragraphs.

底電極202具有一L形形狀。在一些實施例中,底電極202具有一第一寬度W1,底電極202設置於其上之導電連接件250具有一第二寬度W2,W1/W2<1/2。例如,第一寬度W1可為10Å至200Å。第二寬度W2可為1000Å至5000Å。設置在底電極202上的記憶元件也可具有第一寬度W1。相較於記憶元件104,記憶元件204能夠具有更小的尺寸,從而有利於記憶裝置如RRAM裝置的尺度化。在一些實施例中,記憶元件204具有一第一高度H1,底電極202具有一第二高度H2,H1/H21/10。 The bottom electrode 202 has an L shape. In some embodiments, the bottom electrode 202 has a first width W1, and the conductive connection member 250 on which the bottom electrode 202 is disposed has a second width W2, W1/W2 < 1/2. For example, the first width W1 may be from 10 Å to 200 Å. The second width W2 can be from 1000 Å to 5000 Å. The memory element disposed on the bottom electrode 202 can also have a first width W1. Memory element 204 can have a smaller size than memory element 104, thereby facilitating the scaling of memory devices such as RRAM devices. In some embodiments, memory element 204 has a first height H1 and bottom electrode 202 has a second height H2, H1/H2 1/10.

敘述內容現在導向根據實施例之半導體結構的形成方法。請參照第3A~3H圖,其繪示一例示性形成方法。第3A~3H圖被繪示成形成如第1圖所示之半導體結構。 The description now refers to the method of forming a semiconductor structure in accordance with an embodiment. Please refer to FIGS. 3A-3H for an exemplary formation method. Figures 3A-3H are depicted as forming a semiconductor structure as shown in Figure 1.

所述方法包括形成一記憶結構100。在形成記憶結構100之前,可提供一初步結構120,使得記憶結構100能夠於其上形成。特別是,第3A圖所示,這樣的一初步結構120可包括一導電連接件150,其中記憶結構100將形成在導電連接件150上。 The method includes forming a memory structure 100. Prior to forming the memory structure 100, a preliminary structure 120 can be provided to enable the memory structure 100 to be formed thereon. In particular, as shown in FIG. 3A, such a preliminary structure 120 can include a conductive connector 150 in which the memory structure 100 will be formed on the conductive connector 150.

在一些實施例中,第3A圖所示,初步結構120包括一電晶體130,作為記憶結構100的存取裝置。電晶體130可包括二個相對的重摻雜區132和134、以及設置在重摻雜區132和134之間的一閘電極136和一閘介電質138。電晶體130可更 包括二個輕摻雜區140和142,分別對應重摻雜區132和134。在一些實施例中,重摻雜區132和134、以及輕摻雜區140和142,可為n型摻雜區。閘電極136可由多晶矽形成。閘介電質138可由氧化物形成。重摻雜區132和134、以及輕摻雜區140和142,可設置在初步結構120的一基板144中,基板144例如是矽基板。閘電極136和閘介電質138設置在基板144上,且閘電極136設置在閘介電質138上。初步結構120的一介電層146可設置在基板144上,並覆蓋閘電極136和閘介電質138。初步結構120可包括二個導電連接件148和150。導電連接件148和150穿過介電層146,並連接至存取裝置的二個端子。在此一方法中,所述二個端子為重摻雜區132和134。 In some embodiments, shown in FIG. 3A, the preliminary structure 120 includes a transistor 130 as an access device for the memory structure 100. The transistor 130 can include two opposing heavily doped regions 132 and 134, and a gate electrode 136 and a gate dielectric 138 disposed between the heavily doped regions 132 and 134. The transistor 130 can be more Two lightly doped regions 140 and 142 are included, corresponding to heavily doped regions 132 and 134, respectively. In some embodiments, heavily doped regions 132 and 134, and lightly doped regions 140 and 142, can be n-type doped regions. The gate electrode 136 may be formed of polysilicon. The gate dielectric 138 can be formed of an oxide. The heavily doped regions 132 and 134, and the lightly doped regions 140 and 142, may be disposed in a substrate 144 of the preliminary structure 120, such as a germanium substrate. The gate electrode 136 and the gate dielectric 138 are disposed on the substrate 144, and the gate electrode 136 is disposed on the gate dielectric 138. A dielectric layer 146 of the preliminary structure 120 can be disposed over the substrate 144 and over the gate electrode 136 and the gate dielectric 138. The preliminary structure 120 can include two conductive connectors 148 and 150. Conductive connectors 148 and 150 pass through dielectric layer 146 and are connected to the two terminals of the access device. In this method, the two terminals are heavily doped regions 132 and 134.

在其他一些實施例中,代替電晶體130,初步結構120包括一二極體(未示出)、或其他適合作為記憶結構100之存取裝置的裝置。 In other embodiments, instead of transistor 130, preliminary structure 120 includes a diode (not shown), or other device suitable as an access device for memory structure 100.

接著,形成記憶結構100。首先,如第3B圖所示,可在如第3A圖所示之初步結構120上形成一底電極材料302。底電極材料302可為但不限制為氮化鈦。 Next, the memory structure 100 is formed. First, as shown in Fig. 3B, a bottom electrode material 302 can be formed on the preliminary structure 120 as shown in Fig. 3A. The bottom electrode material 302 can be, but is not limited to, titanium nitride.

如第3C圖所示,形成一記憶元件材料304,例如形成在底電極材料302上。記憶元件材料304包括氧氮化鈦。然而,在一些實施例中,其他適合材料可用於形成記憶元件之一或多層額外的層。在底電極材料302為氮化鈦且記憶元件材料304為氧氮化鈦的案例中,記憶元件材料304可藉由氧化底電極材料 302來形成。該氧化製程能夠為O2電漿製程、O2處理製程、或O3處理製程等等。 As shown in FIG. 3C, a memory element material 304 is formed, for example, formed on the bottom electrode material 302. Memory element material 304 includes titanium oxynitride. However, in some embodiments, other suitable materials can be used to form one or more additional layers of the memory element. In the case where the bottom electrode material 302 is titanium nitride and the memory element material 304 is titanium oxynitride, the memory element material 304 can be oxidized by the bottom electrode material. 302 to form. The oxidation process can be an O2 plasma process, an O2 process, or an O3 process, and the like.

如第3D圖所示,在記憶元件材料304上形成一第一阻障材料306。第一阻障材料306包括矽和氧化矽之中至少一者。例如,第一阻障材料306可為矽或氧化矽。為矽的第一阻障材料306,可藉由一沉積製程形成。為氧化矽的第一阻障材料306,可藉由沉積一矽層、以及氧化該矽層來形成。 As shown in FIG. 3D, a first barrier material 306 is formed over the memory device material 304. The first barrier material 306 includes at least one of tantalum and tantalum oxide. For example, the first barrier material 306 can be tantalum or tantalum oxide. The first barrier material 306, which is tantalum, can be formed by a deposition process. The first barrier material 306, which is yttrium oxide, can be formed by depositing a layer of tantalum and oxidizing the layer of tantalum.

如第3E圖所示,在第一阻障材料306上形成一第二阻障材料308。第二阻障材料308包括鈦和氧化鈦之中至少一者。例如,第二阻障材料308可為鈦或氧化鈦。為鈦的第二阻障材料308,可藉由一沉積製程形成。為氧化鈦的第二阻障材料308,可藉由沉積一鈦層、以及氧化該鈦層來形成。 As shown in FIG. 3E, a second barrier material 308 is formed on the first barrier material 306. The second barrier material 308 includes at least one of titanium and titanium oxide. For example, the second barrier material 308 can be titanium or titanium oxide. The second barrier material 308, which is titanium, can be formed by a deposition process. The second barrier material 308, which is titanium oxide, can be formed by depositing a titanium layer and oxidizing the titanium layer.

如第3F圖所示,可在第二阻障材料308上形成一頂電極材料310。頂電極材料310可為但不限制為氮化鈦。頂電極材料310可藉由一沉積製程形成。 As shown in FIG. 3F, a top electrode material 310 can be formed on the second barrier material 308. The top electrode material 310 can be, but is not limited to, titanium nitride. The top electrode material 310 can be formed by a deposition process.

接著,如第3G圖所示,可進行一圖案化製程,以移除多餘的頂電極材料310、第二阻障材料308、第一阻障材料306、記憶元件材料304、和底電極材料302,從而形成記憶結構100。在其他一些實施例中,用於記憶結構100的材料可只在希望的區域依序形成,因此不需要圖案化製程。 Next, as shown in FIG. 3G, a patterning process can be performed to remove excess top electrode material 310, second barrier material 308, first barrier material 306, memory device material 304, and bottom electrode material 302. Thereby forming a memory structure 100. In other embodiments, the materials used for memory structure 100 may be formed sequentially only in the desired regions, thus eliminating the need for a patterning process.

在形成記憶結構100之後,如第3H圖所示,可形成一金屬層158。金屬層158可包括設置在導電連接件148上並 耦接至導電連接件148的一部分160、以及設置在記憶結構100上並耦接至記憶結構100的一部分162。金屬層158可藉由一沉積製程和一蝕刻製程來形成。根據一些實施例,之後可進行傳統的後段(BEOL)製程。 After forming the memory structure 100, as shown in FIG. 3H, a metal layer 158 can be formed. The metal layer 158 can include a conductive connection 148 and A portion 160 coupled to the conductive connector 148 and a portion 162 disposed on the memory structure 100 and coupled to the memory structure 100. The metal layer 158 can be formed by a deposition process and an etching process. According to some embodiments, a conventional back end of the line (BEOL) process can then be performed.

請參照第4A~4M圖,其繪示根據實施例之另一例示性半導體結構的形成方法。第4A~4M圖被繪示成形成如第2圖所示之半導體結構。 Please refer to FIGS. 4A-4M, which illustrate a method of forming another exemplary semiconductor structure in accordance with an embodiment. Figures 4A-4M are depicted as forming a semiconductor structure as shown in Figure 2.

所述方法包括形成一記憶結構200。在形成記憶結構200之前,可提供一初步結構220,使得結構200能夠於其上形成。特別是,如第4A圖所示,這樣的一初步結構220可包括一導電連接件250,其中記憶結構200將形成在導電連接件250上。 The method includes forming a memory structure 200. Prior to forming the memory structure 200, a preliminary structure 220 can be provided to enable the structure 200 to be formed thereon. In particular, as shown in FIG. 4A, such a preliminary structure 220 can include a conductive connector 250 in which the memory structure 200 will be formed on the conductive connector 250.

在一些實施例中,如第4A圖所示,初步結構220包括一電晶體230,作為記憶結構200的存取裝置。電晶體230可包括二個相對的重摻雜區232和234、以及設置在重摻雜區232和234之間的一閘電極236和一閘介電質238。電晶體230可更包括二個輕摻雜區240和242,分別對應重摻雜區232和234。在一些實施例中,重摻雜區232和234、以及輕摻雜區240和242,可為n型摻雜區。閘電極236可由多晶矽形成。閘介電質238可由氧化物形成。重摻雜區232和234、以及輕摻雜區240和242,可設置在初步結構220的一基板244中,基板244例如是矽基板。閘電極236和閘介電質238設置在基板244上,且閘電極236設 置在閘介電質238上。初步結構220的一介電層246可設置在基板244上,並覆蓋閘電極236和閘介電質238。初步結構220可包括二個導導電連接件248和250。導電連接件248和250穿過介電層246,並連接至存取裝置的二個端子。在此一方法中,所述二個端子為重摻雜區232和234。 In some embodiments, as shown in FIG. 4A, the preliminary structure 220 includes a transistor 230 as an access device for the memory structure 200. The transistor 230 can include two opposing heavily doped regions 232 and 234, and a gate electrode 236 and a gate dielectric 238 disposed between the heavily doped regions 232 and 234. The transistor 230 can further include two lightly doped regions 240 and 242 corresponding to the heavily doped regions 232 and 234, respectively. In some embodiments, heavily doped regions 232 and 234, and lightly doped regions 240 and 242, can be n-type doped regions. The gate electrode 236 may be formed of polysilicon. The gate dielectric 238 can be formed of an oxide. The heavily doped regions 232 and 234, and the lightly doped regions 240 and 242, may be disposed in a substrate 244 of the preliminary structure 220, such as a germanium substrate. The gate electrode 236 and the gate dielectric 238 are disposed on the substrate 244, and the gate electrode 236 is provided Placed on the gate dielectric 238. A dielectric layer 246 of the preliminary structure 220 can be disposed over the substrate 244 and over the gate electrode 236 and the gate dielectric 238. The preliminary structure 220 can include two conductive connections 248 and 250. Conductive connectors 248 and 250 pass through dielectric layer 246 and are connected to the two terminals of the access device. In this method, the two terminals are heavily doped regions 232 and 234.

在其他一些實施例中,代替電晶體230,初步結構220包括一二極體(未示出)、或其他適合作為記憶結構200之存取裝置的裝置。 In other embodiments, instead of transistor 230, preliminary structure 220 includes a diode (not shown), or other device suitable as an access device for memory structure 200.

接著,形成記憶結構200。首先,可形成一底電極202。如第4B圖所示,可在如第4A圖所示之初步結構220上形成一第一絕緣材料452。第一絕緣材料452可為但不限制為氮化矽(SiNx)。第一絕緣材料452可藉由一沉積製程形成。第一絕緣材料452可具有1000Å至2000Å的一厚度,例如是1500Å。 Next, the memory structure 200 is formed. First, a bottom electrode 202 can be formed. As shown in FIG. 4B, a first insulating material 452 can be formed on the preliminary structure 220 as shown in FIG. 4A. The first insulating material 452 can be, but is not limited to, tantalum nitride (SiN x ). The first insulating material 452 can be formed by a deposition process. The first insulating material 452 may have a thickness of 1000 Å to 2000 Å, for example, 1500 Å.

如第4C圖所示,在第一絕緣材料452中形成一開口454。記憶結構200將形成於其上之導電連接件250的一部分,被開口454暴露出來。例如,在一些實施例中,導電連接件250大約一半的上表面面積由開口454暴露出來。在一些實施例中,開口454可形成為一溝槽。 As shown in FIG. 4C, an opening 454 is formed in the first insulating material 452. A portion of the conductive connector 250 on which the memory structure 200 will be formed is exposed by the opening 454. For example, in some embodiments, approximately half of the upper surface area of the conductive connector 250 is exposed by the opening 454. In some embodiments, the opening 454 can be formed as a groove.

如第4D圖所示,可在具有開口454的第一絕緣材料452上以保形方式(conformally)形成一底電極材料402。底電極材料402可為但不限制為氮化鈦。底電極材料402可藉由一沉積製程形成,該沉積製程例如是化學氣相沉積(CVD)製程、或物 理氣相沉積(PVD)製程。底電極材料402可具有50Å至200Å的一厚度,例如是100Å。底電極材料402的厚度、以及連帶之底電極202的第一寬度W1,能夠藉由所述沉積製程加以控制。接著,如第4E圖所示,圖案化底電極材料402,使得底電極材料402的一殘留部分具有一Z形形狀,該Z形形狀包括位在第一絕緣材料452上的一部分4021、位在開口454之一側壁上的一部分4022、和位在開口454之一底部上的一部分4023。 As shown in FIG. 4D, a bottom electrode material 402 can be conformally formed on the first insulating material 452 having the opening 454. The bottom electrode material 402 can be, but is not limited to, titanium nitride. The bottom electrode material 402 can be formed by a deposition process such as a chemical vapor deposition (CVD) process, or Processed vapor deposition (PVD) process. The bottom electrode material 402 can have a thickness of 50 Å to 200 Å, for example, 100 Å. The thickness of the bottom electrode material 402, and the associated first width W1 of the bottom electrode 202, can be controlled by the deposition process. Next, as shown in FIG. 4E, the bottom electrode material 402 is patterned such that a residual portion of the bottom electrode material 402 has a zigzag shape including a portion 4021 located on the first insulating material 452. A portion 4022 on one of the sidewalls of the opening 454 and a portion 4023 on the bottom of one of the openings 454.

如第4F圖所示,可在第一絕緣材料452和底電極材料402的殘留部分上形成一第二絕緣材料456。第二絕緣材料456填充至開口454中。第二絕緣材料456可為但不限制為氧化物。例如,第一絕緣材料452和第二絕緣材料456二者皆可為氮化矽、氧化物、或其他適合的絕緣材料。第二絕緣材料456可藉由一沉積製程形成,該沉積製程例如是過程中使用四乙氧基矽烷(TEOS)的一沉積製程。 As shown in FIG. 4F, a second insulating material 456 may be formed on the remaining portions of the first insulating material 452 and the bottom electrode material 402. A second insulating material 456 is filled into the opening 454. The second insulating material 456 can be, but is not limited to, an oxide. For example, both the first insulating material 452 and the second insulating material 456 can be tantalum nitride, oxide, or other suitable insulating material. The second insulating material 456 can be formed by a deposition process such as a deposition process using tetraethoxy decane (TEOS) in the process.

如第4G圖所示,可進行一平坦化製程,使得位在第一絕緣材料452上的第二絕緣材料456、和底電極材料402之所述(Z形形狀)殘留部分中位在第一絕緣材料452上的部分4021被移除。如此一來,底電極材料402的上表面便被暴露出來。該平坦化製程可為化學機械平坦化(CMP)製程。 As shown in FIG. 4G, a planarization process may be performed such that the (Z-shaped) residual portion of the second insulating material 456 and the bottom electrode material 402 on the first insulating material 452 is in the first position. Portion 4021 on insulating material 452 is removed. As a result, the upper surface of the bottom electrode material 402 is exposed. The planarization process can be a chemical mechanical planarization (CMP) process.

接著,如第4H圖所示,形成一記憶元件204。記憶元件204包括氧氮化鈦。在底電極材料402為氮化鈦且記憶元件204為氧氮化鈦的案例中,記憶元件204可藉由氧化底電極材 料402來形成。該氧化製程能夠為O2電漿製程、O2處理製程、或O3處理製程等等。 Next, as shown in Fig. 4H, a memory element 204 is formed. Memory element 204 includes titanium oxynitride. In the case where the bottom electrode material 402 is titanium nitride and the memory element 204 is titanium oxynitride, the memory element 204 can be oxidized by the bottom electrode material. Material 402 is formed. The oxidation process can be an O2 plasma process, an O2 process, or an O3 process, and the like.

底電極材料402的殘留部分用作為底電極202。在一些實施例中,底電極202具有一第一寬度W1,底電極202設置於其上之導電連接件250具有一第二寬度W2,W1/W2<1/2。例如,第一寬度W1可為10Å至200Å。第二寬度W2可為1000Å至5000Å。由於記憶元件204是藉由氧化底電極材料402來形成,記憶元件204也可具有第一寬度W1。在一些實施例中,記憶元件204具有一第一高度H1,底電極202具有一第二高度H2,H1/H21/10。第一高度H1能夠藉由調整所述氧化製程期間的條件加以控制。第一高度H1和第二高度H2的總和,可等於第一絕緣材料452的厚度,其可為1000Å至2000Å,例如是1500Å。 The remaining portion of the bottom electrode material 402 is used as the bottom electrode 202. In some embodiments, the bottom electrode 202 has a first width W1, and the conductive connection member 250 on which the bottom electrode 202 is disposed has a second width W2, W1/W2 < 1/2. For example, the first width W1 may be from 10 Å to 200 Å. The second width W2 can be from 1000 Å to 5000 Å. Since the memory element 204 is formed by oxidizing the bottom electrode material 402, the memory element 204 can also have a first width W1. In some embodiments, memory element 204 has a first height H1 and bottom electrode 202 has a second height H2, H1/H2 1/10. The first height H1 can be controlled by adjusting conditions during the oxidation process. The sum of the first height H1 and the second height H2 may be equal to the thickness of the first insulating material 452, which may be 1000 Å to 2000 Å, for example, 1500 Å.

如第4I圖所示,在記憶元件204上形成一第一阻障材料406。第一阻障材料406包括矽和氧化矽之中至少一者。例如,第一阻障材料406可為矽或氧化矽。為矽的第一阻障材料406,可藉由一沉積製程形成。為氧化矽的第一阻障材料406,可藉由沉積一矽層、以及氧化該矽層來形成。第一阻障材料406可具有5Å至50Å的一厚度,例如是10Å。 As shown in FIG. 4I, a first barrier material 406 is formed over the memory element 204. The first barrier material 406 includes at least one of tantalum and tantalum oxide. For example, the first barrier material 406 can be tantalum or tantalum oxide. The first barrier material 406, which is germanium, can be formed by a deposition process. The first barrier material 406, which is yttrium oxide, can be formed by depositing a layer of tantalum and oxidizing the layer of tantalum. The first barrier material 406 can have a thickness of 5 Å to 50 Å, for example, 10 Å.

如第4J圖所示,在第一阻障材料406上形成一第二阻障材料408。第二阻障材料408包括鈦和氧化鈦之中至少一者。例如,第二阻障材料408可為鈦或氧化鈦。為鈦的第二阻障 材料408,可藉由一沉積製程形成。為氧化鈦的第二阻障材料408,可藉由沉積一鈦層、以及氧化該鈦層來形成。第二阻障材料408可具有5Å至50Å的一厚度,例如是10Å。 As shown in FIG. 4J, a second barrier material 408 is formed on the first barrier material 406. The second barrier material 408 includes at least one of titanium and titanium oxide. For example, the second barrier material 408 can be titanium or titanium oxide. Second barrier for titanium Material 408 can be formed by a deposition process. The second barrier material 408, which is titanium oxide, can be formed by depositing a titanium layer and oxidizing the titanium layer. The second barrier material 408 can have a thickness of 5 Å to 50 Å, for example, 10 Å.

如第4K圖所示,可在第二阻障材料408上形成一頂電極材料410。頂電極材料410可為但不限制為氮化鈦。頂電極材料410可藉由一沉積製程形成。頂電極材料410可具有50Å至500Å的一厚度,例如是400Å。 As shown in FIG. 4K, a top electrode material 410 may be formed on the second barrier material 408. The top electrode material 410 can be, but is not limited to, titanium nitride. The top electrode material 410 can be formed by a deposition process. The top electrode material 410 may have a thickness of 50 Å to 500 Å, for example, 400 Å.

如第4L圖所示,可進行一圖案化製程,以移除多餘的頂電極材料410、第二阻障材料408、和第一阻障材料406,從而形成記憶結構200。在其他一些實施例中,這些材料可只在希望的區域依序形成,因此不需要圖案化製程。在此一例示性形成方法中,除了底電極202和記憶元件204之外,第一絕緣材料452之一殘留部分252和第二絕緣材料456之一殘留部分256也設置在導電連接件250和第一阻障層206之間。記憶結構200可具有一第三寬度W3,W3>W2。例如,第二寬度W2可為約0.3μm,第三寬度W3可為約0.5μm。 As shown in FIG. 4L, a patterning process can be performed to remove excess top electrode material 410, second barrier material 408, and first barrier material 406 to form memory structure 200. In other embodiments, these materials may be formed sequentially only in the desired regions, thus eliminating the need for a patterning process. In this exemplary formation method, in addition to the bottom electrode 202 and the memory element 204, a residual portion 252 of one of the first insulating material 452 and a residual portion 256 of the second insulating material 456 are also disposed on the conductive connecting member 250 and the first Between a barrier layer 206. The memory structure 200 can have a third width W3, W3 > W2. For example, the second width W2 may be about 0.3 [mu]m and the third width W3 may be about 0.5 [mu]m.

在形成記憶結構200之後,如第4M圖所示,可形成一金屬層258。金屬層258可包括設置在導電連接件248上並耦接至導電連接件248的一部分260、以及設置在記憶結構200上並耦接至記憶結構200的一部分262。金屬層258可藉由一沉積製程和一蝕刻製程來形成。根據一些實施例,之後可進行傳統的後段製程。 After forming the memory structure 200, as shown in FIG. 4M, a metal layer 258 can be formed. The metal layer 258 can include a portion 260 disposed on the conductive connector 248 and coupled to the conductive connector 248, and a portion 262 disposed on the memory structure 200 and coupled to the memory structure 200. The metal layer 258 can be formed by a deposition process and an etching process. According to some embodiments, a conventional back end process can then be performed.

根據實施例之半導體結構提供較佳的記憶裝置性能,特別是較佳的RRAM性能。第5A圖示出根據實施例之半導體結構的電性性質,其中線502對應設定(SET)狀態,線504對應重設(RESET)狀態。如第5A圖所示,該半導體結構提供較高的RESET電阻和較低的SET電阻。因此,便在SET狀態和RESET狀態之間得到較大的感測區間(大於10倍)。此外,該半導體結構的記憶結構,例如一RRAM裝置,能夠在一寬的電流範圍中操作。這有利於施加最佳化的操作電流,以改善資料保存時間。 The semiconductor structure in accordance with the embodiments provides better memory device performance, particularly better RRAM performance. Figure 5A illustrates the electrical properties of a semiconductor structure in accordance with an embodiment wherein line 502 corresponds to a set (SET) state and line 504 corresponds to a reset (RESET) state. As shown in Figure 5A, the semiconductor structure provides a higher RESET resistance and a lower SET resistance. Therefore, a larger sensing interval (greater than 10 times) is obtained between the SET state and the RESET state. In addition, the memory structure of the semiconductor structure, such as an RRAM device, is capable of operating over a wide range of currents. This facilitates the application of an optimized operating current to improve data retention time.

第5B圖出根據實施例之半導體結構在一保存性測試之後的電性性質,該保存性測試是在250℃進行3天,其中線102對應SET狀態,線514對應RESET狀態。如第5B圖所示,在保存性測試之後,該半導體結構仍具有大的感測區間。該半導體結構顯示出良好的可靠性。 Figure 5B illustrates the electrical properties of a semiconductor structure according to an embodiment after a preservative test conducted at 250 °C for 3 days, with line 102 corresponding to the SET state and line 514 corresponding to the RESET state. As shown in Figure 5B, the semiconductor structure still has a large sensing interval after the preservative test. The semiconductor structure shows good reliability.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

Claims (10)

一種半導體結構,包括:一記憶結構,包括:一記憶元件,由氧氮化鈦形成,具有可編程電阻;一第一阻障層,包括矽和氧化矽之中至少一者,該第一阻障層設置在該記憶元件上;以及一第二阻障層,包括鈦和氧化鈦之中至少一者,該第二阻障層設置在該第一阻障層上。 A semiconductor structure comprising: a memory structure comprising: a memory element formed of titanium oxynitride having a programmable resistance; a first barrier layer comprising at least one of germanium and germanium oxide, the first resist The barrier layer is disposed on the memory element; and a second barrier layer includes at least one of titanium and titanium oxide, and the second barrier layer is disposed on the first barrier layer. 如申請專利範圍第1項所述之半導體結構,其中該記憶結構更包括一底電極,該記憶元件設置在該底電極上。 The semiconductor structure of claim 1, wherein the memory structure further comprises a bottom electrode, the memory element being disposed on the bottom electrode. 如申請專利範圍第2項所述之半導體結構,其中該底電極具有一L形形狀。 The semiconductor structure of claim 2, wherein the bottom electrode has an L-shape. 如申請專利範圍第2項所述之半導體結構,更包括:一導電連接件,其中該底電極設置在該導電連接件上;其中該底電極具有一第一寬度W1,該導電連接件具有一第二寬度W2,W1/W2<1/2。 The semiconductor structure of claim 2, further comprising: a conductive connecting member, wherein the bottom electrode is disposed on the conductive connecting member; wherein the bottom electrode has a first width W1, and the conductive connecting member has a The second width W2, W1/W2 < 1/2. 如申請專利範圍第4項所述之半導體結構,其中該第一寬度W1為10Å至200Å。 The semiconductor structure of claim 4, wherein the first width W1 is from 10 Å to 200 Å. 如申請專利範圍第4項所述之半導體結構,其中該第二寬度W2為1000Å至5000Å。 The semiconductor structure of claim 4, wherein the second width W2 is from 1000 Å to 5000 Å. 如申請專利範圍第2項所述之半導體結構,其中該記憶元件具有一第一高度H1,該底電極具有一第二高度H2,H1/H21/10。 The semiconductor structure of claim 2, wherein the memory element has a first height H1, and the bottom electrode has a second height H2, H1/H2 1/10. 一種半導體結構的形成方法,包括:形成一記憶結構,包括:由氧氮化鈦形成一記憶元件,該記憶元件具有可編程電阻;在該記憶元件上形成一第一阻障層,該第一阻障層包括矽和氧化矽之中至少一者;以及在該第一阻障層上形成一第二阻障層,該第二阻障層包括鈦和氧化鈦之中至少一者。 A method for forming a semiconductor structure, comprising: forming a memory structure, comprising: forming a memory element from titanium oxynitride, the memory element having a programmable resistor; forming a first barrier layer on the memory element, the first The barrier layer includes at least one of tantalum and tantalum oxide; and a second barrier layer is formed on the first barrier layer, the second barrier layer comprising at least one of titanium and titanium oxide. 如申請專利範圍第8項所述之形成方法,其中形成該記憶結構的步驟更包括:在形成該記憶元件之前,形成一底電極,其中該記憶元件形成在該底電極上;其中形成該記憶元件的步驟包括氧化一底電極材料。 The method of forming the memory structure of claim 8, wherein the forming the memory structure further comprises: forming a bottom electrode before forming the memory element, wherein the memory element is formed on the bottom electrode; wherein the memory is formed The step of the component includes oxidizing a bottom electrode material. 如申請專利範圍第8項所述之形成方法,其中形成該記憶結構的步驟更包括:在形成該記憶元件之前,形成一底電極,其中該記憶元件形成在該底電極上,其中形成該底電極的步驟包括:形成一第一絕緣材料;在該第一絕緣材料中形成一開口; 在具有該開口的該第一絕緣材料上以保形方式形成一底電極材料;圖案化該底電極材料,使得該底電極材料的一殘留部分具有一Z形形狀,該Z形形狀包括位在該第一絕緣材料上的一部分、位在該開口之一側壁上的一部分、和位在該開口之一底部上的一部分;在該第一絕緣材料和該底電極材料的該殘留部分上形成一第二絕緣材料,該第二絕緣材料填充至該開口中;以及進行一平坦化製程,使得位在該第一絕緣材料上的該第二絕緣材料、和該底電極材料之該殘留部分中位在該第一絕緣材料上的該部分被移除。 The method of forming the memory structure of claim 8, wherein the forming the memory structure further comprises: forming a bottom electrode before forming the memory element, wherein the memory element is formed on the bottom electrode, wherein the bottom is formed The step of forming an electrode includes: forming a first insulating material; forming an opening in the first insulating material; Forming a bottom electrode material on the first insulating material having the opening in a conformal manner; patterning the bottom electrode material such that a residual portion of the bottom electrode material has a zigzag shape including a portion of the first insulating material, a portion of the sidewall of the opening, and a portion of the bottom of the opening; forming a portion of the first insulating material and the remaining portion of the bottom electrode material a second insulating material, the second insulating material is filled into the opening; and performing a planarization process such that the second insulating material on the first insulating material and the residual portion of the bottom electrode material are in a neutral position The portion on the first insulating material is removed.
TW106114836A 2017-05-04 2017-05-04 Semiconductor structure and method for forming the same TWI627773B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106114836A TWI627773B (en) 2017-05-04 2017-05-04 Semiconductor structure and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106114836A TWI627773B (en) 2017-05-04 2017-05-04 Semiconductor structure and method for forming the same

Publications (2)

Publication Number Publication Date
TWI627773B true TWI627773B (en) 2018-06-21
TW201843852A TW201843852A (en) 2018-12-16

Family

ID=63256182

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106114836A TWI627773B (en) 2017-05-04 2017-05-04 Semiconductor structure and method for forming the same

Country Status (1)

Country Link
TW (1) TWI627773B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI707449B (en) * 2019-09-02 2020-10-11 華邦電子股份有限公司 Resistive random access memories and method for fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200924184A (en) * 2007-11-14 2009-06-01 Macronix Int Co Ltd Phase change memory cell including a thermal protect bottom electrode and manufacturing methods
TW201016880A (en) * 2008-09-08 2010-05-01 Applied Materials Inc In-situ chamber treatment and deposition process
TW201508963A (en) * 2013-08-19 2015-03-01 Sk Hynix Inc Semiconductor device having vertical channel, resistive memory device including the same, and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200924184A (en) * 2007-11-14 2009-06-01 Macronix Int Co Ltd Phase change memory cell including a thermal protect bottom electrode and manufacturing methods
TW201016880A (en) * 2008-09-08 2010-05-01 Applied Materials Inc In-situ chamber treatment and deposition process
TW201508963A (en) * 2013-08-19 2015-03-01 Sk Hynix Inc Semiconductor device having vertical channel, resistive memory device including the same, and method of manufacturing the same

Also Published As

Publication number Publication date
TW201843852A (en) 2018-12-16

Similar Documents

Publication Publication Date Title
US10629811B2 (en) Resistance variable memory structure and method of forming the same
KR101671632B1 (en) An improved resistive random access memory (rram) structure
TWI573304B (en) Resistance random access memory device and method for forming resistance random access memory stack
CN102217067B (en) Non-volatile memory device and method for producing same
TWI535086B (en) Rram process with metal protection layer
US9847480B2 (en) Resistance variable memory structure and method of forming the same
US11107986B2 (en) Resistive random access memory device
JP2003100996A (en) Stacked capacitor and its manufacturing method
US9425391B1 (en) Damascene process of RRAM top electrodes
TWI627773B (en) Semiconductor structure and method for forming the same
TW201711167A (en) Semiconductor structure and method for manufacturing the same
US20140061572A1 (en) Semiconductor device and method of manufacturing the same
US9997567B1 (en) Semiconductors structure having an RRAM structure and method for forming the same
CN108878643B (en) Semiconductor structure and forming method thereof
US11818966B2 (en) Resistive random access memory and manufacturing method thereof
TWI550610B (en) Damascene process of rram top electrodes
TWI536574B (en) Semiconductor device and method for forming the same
KR100947932B1 (en) Resistance memory device and method for fabricating the same
KR20140030968A (en) Resistance random access memory device and method of manufacturing the same
KR20040089289A (en) Method for fabricating capacitor in semiconductor device
TW201250937A (en) Non-volatile memory device and method of fabricating the same