TWI627732B - Twin-bit flash memory cell structure and fabrication thereof - Google Patents

Twin-bit flash memory cell structure and fabrication thereof Download PDF

Info

Publication number
TWI627732B
TWI627732B TW104104113A TW104104113A TWI627732B TW I627732 B TWI627732 B TW I627732B TW 104104113 A TW104104113 A TW 104104113A TW 104104113 A TW104104113 A TW 104104113A TW I627732 B TWI627732 B TW I627732B
Authority
TW
Taiwan
Prior art keywords
oxide
gate
floating gate
layer
substrate
Prior art date
Application number
TW104104113A
Other languages
Chinese (zh)
Other versions
TW201630166A (en
Inventor
張明豐
廖宏魁
Original Assignee
力晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶科技股份有限公司 filed Critical 力晶科技股份有限公司
Priority to TW104104113A priority Critical patent/TWI627732B/en
Priority to CN201510081567.0A priority patent/CN105990363B/en
Publication of TW201630166A publication Critical patent/TW201630166A/en
Application granted granted Critical
Publication of TWI627732B publication Critical patent/TWI627732B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

一種雙位元快閃記憶體結構,包含位於基材上的選擇閘極氧化物層、容置於選擇閘極氧化物層中的選擇閘極,選擇閘極兩側各有一組複合閘極層。各別複合閘極層包含浮置閘極氧化層、浮置閘極、複合材料層、控制閘極與間隙壁。浮置氧化矽位於基材上。浮置閘極位於浮置氧化層上。複合材料層位於浮置閘極上。控制閘極位於複合材料層上。間隙壁位於控制閘極上。 A two-bit flash memory structure includes a selection gate oxide layer on a substrate, a selection gate contained in the selection gate oxide layer, and a set of composite gate layers on each side of the selection gate. . Each composite gate layer includes a floating gate oxide layer, a floating gate electrode, a composite material layer, a control gate electrode and a partition wall. Floating silica is on the substrate. The floating gate is located on the floating oxide layer. The composite material layer is located on the floating gate. The control gate is located on the composite layer. The gap wall is located on the control gate.

Description

雙位元快閃記憶體記憶體結構及其製造方法 Double-bit flash memory memory structure and manufacturing method thereof

本發明大致上關於一種記憶體結構及其製造方法。特別是,本發明是針對一種在單一記憶胞中能夠儲存雙位元的快閃記憶體結構及其製造方法。 The present invention generally relates to a memory structure and a manufacturing method thereof. In particular, the present invention is directed to a flash memory structure capable of storing double bits in a single memory cell and a method for manufacturing the same.

一般說來,記憶體可分成隨機存取記憶體(RAM-Random Access Memory)及唯讀記憶體(ROM-Read Only Memory)兩種,而唯讀記憶體亦可稱非揮發性記憶體(nonvolatile memory)。非揮發性記憶體在未供電下仍可保持所儲存的資訊。而且,有些非揮發性記憶體所儲存的資訊,還可以可編程與可抹除。非揮發性記憶體是現今各種電子裝置中用於儲存結構資料、程式資料等的記憶體元件。快閃記憶體(flash memory)即具有非揮發性、可編程與可抹除資訊的儲存能力,所以應用的層面十分廣泛。 Generally speaking, memory can be divided into random access memory (RAM-Random Access Memory) and read-only memory (ROM-Read Only Memory), and read-only memory can also be called nonvolatile memory (nonvolatile memory) memory). Non-volatile memory retains stored information even when power is not supplied. In addition, some non-volatile memory can be programmed and erasable. Non-volatile memory is a memory component used to store structural data, program data, and the like in various electronic devices today. Flash memory has non-volatile, programmable, and erasable information storage capabilities, so it has a wide range of applications.

快閃記憶體由於具有可進行多次資料之寫入、讀取、抹除(erase)等動作,且存入的資料在斷電後不會消失等優點,係成為個人電腦或電子設備所廣泛採用的一種非揮發性記憶體(non-volatile memory)元件。一般說來,快閃記憶體分為編碼型快閃記憶體(Nor Flash)與儲存型快閃記憶體(Nand Flash)兩種。 Flash memory is widely used in personal computers or electronic devices because it has the advantages of multiple operations such as writing, reading, erasing, etc., and the stored data will not disappear after power failure. A non-volatile memory element is used. Generally speaking, flash memory is divided into two types: coded flash memory (Nor Flash) and storage type flash memory (Nand Flash).

在一個快閃記憶體的單一記憶胞結構中,資訊係以電子群的方式儲存在位於源極與汲極之間的浮置閘極中。控制閘極則用來控制記憶胞。習知快閃記憶體元件係具有堆疊式的閘極。隨著各種電子產品朝小型化發展之趨勢以及半導體製程進入深次微米(deep sub-micron)之進程,記憶胞的設計 也必須符合高積集度、高密度之要求,因此半導體業界係致力於降低記憶體位元胞的尺寸。同時,隨著資訊電子產品處理與儲存資料量的增加,半導體產業一方面需顧及上述降低記憶體位元胞尺寸、提升積集度的需求,一方面更需要增加記憶體元件的記憶容量、確保元件的可靠度。由此可知,目前仍需要一種可兼顧上述要求的快閃記憶體結構及其製作方法。 In a single memory cell structure of flash memory, information is stored in the form of electron clusters in a floating gate between the source and the drain. The control gate is used to control the memory cell. Conventional flash memory devices have stacked gates. With the development of various electronic products toward miniaturization and the process of semiconductor processes entering the deep sub-micron, the design of memory cells It must also meet the requirements of high accumulation and high density, so the semiconductor industry is committed to reducing the size of the memory cell. At the same time, with the increase in the amount of information and electronic product processing and storage, the semiconductor industry needs to take into account the above requirements to reduce the memory cell size and increase the accumulation degree. On the one hand, it is necessary to increase the memory capacity of the memory elements and ensure the Reliability. Therefore, it is known that there is still a need for a flash memory structure and a manufacturing method thereof that can meet the above requirements.

有鑑於上述之需求,本發明即提出一種記憶體的結構及其製造方 法。本發明的記憶體結構,在單一記憶胞中能夠儲存雙位元,具體實現了記憶體高密度記憶容量的需求。此外,自行對準的浮置閘極,能夠將通道長度降低到大約20奈米左右。還有,傳統上浮置閘極與控制閘極的製程,則改以鑲嵌製程及自對準製程來應用於控制閘極。 In view of the above needs, the present invention provides a memory structure and a method for manufacturing the same. law. The memory structure of the present invention can store double bits in a single memory cell, and specifically realizes the demand for high-density memory capacity of the memory. In addition, the self-aligned floating gate can reduce the channel length to about 20 nanometers. In addition, traditionally, the manufacturing process of the floating gate and the control gate is changed to a damascene process and a self-alignment process to control the gate.

本發明在第一方面,提出一種形成記憶體結構的方法。首先,提供疊層基材。疊層基材包含基材、浮置閘極氧化物與複數個浮置閘極材料片。定義出主動區域及填入溝渠中,溝渠氧化物即嵌入基材中,溝渠氧化物的功能是作為浮動閘極之隔離。複數個浮置閘極材料片各別置於溝渠氧化物之間,並高出於溝渠氧化物之表面上。其次,形成複合材料層,以共形的方式覆蓋複數個浮置閘極材料片與溝渠氧化物。然後,形成控制閘極材料層,覆蓋複合材料層並在複數個浮置閘極材料片之間延伸。然後,形成保護層,來覆蓋控制閘極材料層。然後,一次性的蝕刻保護層、控制閘極材料層、複合材料層、複數個浮置閘極材料片及基材,而暴露出基材並形成複數個疊層材料柱。然後,形成選擇閘極氧化物層,以共形的方式覆蓋複數個疊層材料柱與基材。相鄰之複數個疊層材料柱定義位於其間而容置選擇閘極的空間。然後,以選擇閘極材料填入容置選擇閘極的空間中。選擇閘極材料夾置於選擇閘極氧化物層之間。然後,移除保護層,而暴露出控制閘極材料層的垂直部分。然後,於每個疊層材料柱上形成一組間隙壁,而依附此垂直部分。一組間隙壁定義一間隙空間。繼續,以此組間隙壁作為蝕刻遮罩,經由間隙空間 以自行對準的方式一次蝕刻控制閘極材料層、複合材料層、複數個浮置閘極材料片,而形成複數個雙位元記憶體結構。 In a first aspect, the invention provides a method for forming a memory structure. First, a laminated substrate is provided. The laminated substrate includes a substrate, a floating gate oxide, and a plurality of pieces of floating gate material. The active area is defined and filled into the trench. The trench oxide is embedded in the substrate. The function of the trench oxide is to isolate the floating gate. A plurality of pieces of floating gate material are respectively placed between the trench oxides and rise above the surface of the trench oxides. Second, a composite material layer is formed to cover a plurality of floating gate material pieces and trench oxides in a conformal manner. Then, a control gate material layer is formed, covering the composite material layer and extending between the plurality of floating gate material sheets. Then, a protective layer is formed to cover the control gate material layer. Then, the protective layer, the control gate material layer, the composite material layer, the plurality of floating gate material sheets and the substrate are etched at one time, and the substrate is exposed and a plurality of stacked material columns are formed. Then, a selective gate oxide layer is formed to cover the plurality of stacked material columns and the substrate in a conformal manner. Adjacent columns of laminated material define the space between them to accommodate the selection gate. Then, the selected gate material is filled into the space accommodating the selected gate. The selected gate material is sandwiched between the selected gate oxide layers. Then, the protective layer is removed, and a vertical portion of the control gate material layer is exposed. Then, a set of partition walls is formed on each of the stacked material columns, and the vertical portion is attached. A set of gap walls defines a gap space. Continue to use this set of gap walls as an etch mask to pass through the gap space The gate material layer, the composite material layer, and the plurality of floating gate material pieces are etched and controlled in a self-aligned manner at a time to form a plurality of double-bit memory structures.

在本發明一實施方式中,形成記憶體結構的方法,更包含以下之 步驟來得到疊層基材。首先,提供基材。其次,形成閘極氧化物層來覆蓋基材。然後,形成浮置閘極材料層來覆蓋閘極氧化物層。然後,形成圖案化硬遮罩來覆蓋浮置閘極材料層。然後,使用圖案化硬遮罩,來蝕刻浮置閘極材料層、閘極氧化物層與基材,而形成複數條單向延伸之溝渠以及複數個浮置閘極材料片。然後,使用氧化物填入溝渠中形成溝渠氧化物。然後,移除圖案化硬遮罩,暴露出位於先前圖案化硬遮罩下方之複數個浮置閘極材料片。 繼續,以溼蝕刻的方式削減氧化物的高度,使得各別浮置閘極材料片不但嵌入溝渠氧化物之間,又凸出於溝渠氧化物之表面上,即形成疊層基材。 In one embodiment of the present invention, the method for forming a memory structure further includes the following: Steps to obtain a laminated substrate. First, a substrate is provided. Next, a gate oxide layer is formed to cover the substrate. Then, a floating gate material layer is formed to cover the gate oxide layer. Then, a patterned hard mask is formed to cover the floating gate material layer. Then, a patterned hard mask is used to etch the floating gate material layer, the gate oxide layer and the substrate to form a plurality of unidirectionally extending trenches and a plurality of floating gate material sheets. The trench is then filled with oxide to form a trench oxide. Then, the patterned hard mask is removed, exposing a plurality of pieces of floating gate material under the previously patterned hard mask. Continue to reduce the height of the oxide by wet etching, so that the respective pieces of floating gate material are not only embedded between the trench oxides, but also protruded from the surface of the trench oxides to form a laminated substrate.

在本發明另一實施方式中,單向延伸之溝渠以及浮置閘極材料片交錯排列。 In another embodiment of the present invention, the unidirectionally extending trenches and the floating gate material pieces are staggered.

在本發明另一實施方式中,形成記憶體結構的方法可以調整蝕刻配方並以閘極氧化物層作為蝕刻停止層而得以次蝕刻保護層、控制閘極材料層、複合材料層、複數個浮置閘極材料片與浮置閘極氧化物層。 In another embodiment of the present invention, the method for forming a memory structure can adjust an etching recipe and use a gate oxide layer as an etch stop layer to etch a protective layer, control a gate material layer, a composite material layer, and a plurality of floating layers. A gate electrode material sheet and a floating gate oxide layer.

在本發明另一實施方式中,蝕刻配方的一次蝕刻使得複數個疊層材料柱具有垂直性質的側壁。 In another embodiment of the present invention, a single etch of the etching recipe allows the plurality of stacked material columns to have vertical sidewalls.

在本發明另一實施方式中,選擇閘極氧化物層包含選擇閘極氧化物與側壁氧化物。 In another embodiment of the present invention, the selected gate oxide layer includes a selected gate oxide and a sidewall oxide.

在本發明另一實施方式中,選擇閘極覆蓋氧化物覆蓋選擇閘極區域。 In another embodiment of the present invention, the selective gate covering oxide covers the selected gate region.

在本發明另一實施方式中,選擇閘極材料與側壁氧化物之頂表面有大致相同的高度。 In another embodiment of the present invention, the gate material is selected to have approximately the same height as the top surface of the sidewall oxide.

在本發明另一實施方式中,一組間隙壁之底部寬度介於20-40奈米。 In another embodiment of the present invention, the bottom width of a group of partition walls is between 20 and 40 nanometers.

在本發明另一實施方式中,個別雙位元記憶體結構之間距介於 30-40奈米。 In another embodiment of the present invention, the distance between the individual double-bit memory structures is between 30-40 nanometers.

本發明在第二方面,又提出一種雙位元記憶體結構。本發明的雙 位元記憶體結構,包含基材、選擇閘極氧化物層、選擇閘極與一組複合閘極層。選擇閘極氧化物層,位於基材上並包含選擇閘極氧化物、側壁氧化物。 選擇閘極氧化物、側壁氧化物共同定義一容置空間。選擇閘極即嵌入此容置空間中。一組複合閘極層位於浮置閘極氧化物上,並分別依附側壁氧化物。 各別複合閘極層包含浮置閘極氧化物、浮置閘極、複合材料層、控制閘極與控制閘極上之間隙壁。浮置閘極位於浮置閘極氧化物上,並依附側壁氧化物。 複合材料層位於浮置閘極上,並依附側壁氧化物。控制閘極位於複合材料層上,並依附側壁氧化物。間隙壁位於控制閘極上,並依附側壁氧化物。 In a second aspect, the present invention further provides a double-bit memory structure. Double of the invention The bit memory structure includes a substrate, a selected gate oxide layer, a selected gate and a group of composite gate layers. The selected gate oxide layer is located on the substrate and includes a selected gate oxide and a side wall oxide. The gate oxide and sidewall oxide are selected together to define an accommodation space. Selecting the gate is embedded in this accommodation space. A group of composite gate layers are located on the floating gate oxide and are attached to the side wall oxides, respectively. Each composite gate layer includes a floating gate oxide, a floating gate, a composite material layer, a control gate and a gap wall on the control gate. The floating gate is located on the floating gate oxide and is attached to the sidewall oxide. The composite material layer is located on the floating gate and adheres to the sidewall oxide. The control gate is located on the composite material layer and adheres to the sidewall oxide. The spacer is located on the control gate and adheres to the side wall oxide.

在本發明一實施方式中,雙位元記憶體結構更包含複數個雙位元 記憶體結構。相鄰之雙位元記憶體結構以嵌入基材之淺溝渠隔離彼此電性隔離,使得相鄰之雙位元記憶體結構之間距介於30-40奈米。 In an embodiment of the present invention, the double-bit memory structure further includes a plurality of double-bit memories. Memory structure. Adjacent double-bit memory structures are electrically isolated from each other by a shallow trench isolation embedded in the substrate, so that the distance between adjacent double-bit memory structures is between 30-40 nanometers.

在本發明另一實施方式中,雙位元記憶體結構底部之寬度不大於 100奈米。 In another embodiment of the present invention, the width of the bottom of the dual-bit memory structure is not greater than 100 nanometers.

在本發明另一實施方式中,雙位元記憶體結構的側壁氧化物為垂 直性質的絕緣壁。 In another embodiment of the present invention, the sidewall oxide of the dual-bit memory structure is vertical Straight insulating wall.

在本發明另一實施方式中,雙位元記憶體結構更包含覆蓋選擇閘 極的側壁氧化物。 In another embodiment of the present invention, the dual-bit memory structure further includes an overlay selection gate. Side oxide.

在本發明另一實施方式中,雙位元記憶體結構的各組複合閘極層 包含一對彼此絕緣之複合材料層,而因此成為雙位元記憶體結構。 In another embodiment of the present invention, each group of composite gate layers of the dual-bit memory structure Contains a pair of layers of composite material that are insulated from each other, thus becoming a two-bit memory structure.

在本發明另一實施方式中,雙位元記憶體結構的浮置閘極自行對 準於控制閘極。 In another embodiment of the present invention, the floating gate of the double-bit memory structure is self-aligned. Accurate to control the gate.

本發明再提出一種雙位元記憶體結構。本發明的雙位元記憶體結 構,包含基材、選擇閘極氧化物層、選擇閘極與一組複合閘極層。選擇閘極 氧化物層,位於基材上並由選擇閘極氧化物、側壁氧化物所組成。選擇閘極氧化物、側壁氧化物共同定義一容置空間。選擇閘極即嵌入此容置空間中,而且選擇閘極的頂表面與側壁氧化物的頂表面大致上同高。一組複合閘極層位於浮置閘極氧化物上,並分別依附側壁氧化物之兩側。各別複合閘極層包含浮置閘極氧化物、浮置閘極、複合材料層、控制閘極與控制閘極上之間隙壁。浮置閘極位於選擇閘極氧化物上,並依附第一或第二側壁氧化物。複合材料層位於浮置閘極上,並依附第一或第二側壁氧化物。控制閘極位於複合材料層上,並依附第一或第二側壁氧化物。間隙壁位於控制閘極上,並依附第一或第二側壁氧化物。 The invention further proposes a double-bit memory structure. Double-bit memory node of the present invention The structure includes a substrate, a selected gate oxide layer, a selected gate and a group of composite gate layers. Select gate The oxide layer is located on the substrate and is composed of a selected gate oxide and a side wall oxide. The gate oxide and sidewall oxide are selected together to define an accommodation space. Selecting the gate is embedded in the accommodation space, and the top surface of the selection gate is approximately the same height as the top surface of the sidewall oxide. A set of composite gate layers are located on the floating gate oxide and are attached to two sides of the side wall oxide, respectively. Each composite gate layer includes a floating gate oxide, a floating gate, a composite material layer, a control gate and a gap wall on the control gate. The floating gate is located on the selected gate oxide and is attached to the first or second sidewall oxide. The composite material layer is located on the floating gate and adheres to the first or second sidewall oxide. The control gate is located on the composite material layer and adheres to the first or second sidewall oxide. The partition wall is located on the control gate and adheres to the first or second sidewall oxide.

100‧‧‧雙位元記憶體結構 100‧‧‧ double bit memory structure

101‧‧‧基材 101‧‧‧ substrate

102‧‧‧疊層基材 102‧‧‧ laminated substrate

103‧‧‧硬遮罩層 103‧‧‧hard mask layer

104‧‧‧保護層 104‧‧‧protective layer

105‧‧‧疊層材料柱 105‧‧‧Laminated material column

110‧‧‧浮置閘極氧化物 110‧‧‧Floating gate oxide

111‧‧‧溝渠112溝渠氧化物 111‧‧‧ trench 112 trench oxide

120‧‧‧浮置閘極材料片、浮置閘極 120‧‧‧Floating gate material sheet, floating gate

121‧‧‧浮置閘極材料層 121‧‧‧Floating gate material layer

130‧‧‧複合材料 130‧‧‧ Composite

131‧‧‧複合材料層 131‧‧‧ composite material layer

140‧‧‧控制閘極材料、控制閘極 140‧‧‧Control gate material, control gate

141‧‧‧控制閘極材料層 141‧‧‧Control gate material layer

151‧‧‧選擇閘極氧化物層 151‧‧‧Select gate oxide layer

152‧‧‧選擇閘極材料 152‧‧‧Select gate material

155‧‧‧容置空間 155‧‧‧accommodation space

156、158‧‧‧側壁氧化物 156, 158‧‧‧ sidewall oxide

157‧‧‧選擇閘極氧化物 157‧‧‧Select gate oxide

159‧‧‧選擇閘極覆蓋氧化物 159‧‧‧Select gate oxide

160‧‧‧間隙壁 160‧‧‧wall

161‧‧‧一組間隙壁 161‧‧‧a group of partition walls

162‧‧‧間隙空間 162‧‧‧Gap space

170‧‧‧一組複合閘極層 170‧‧‧a group of composite gate layers

171、172‧‧‧複合閘極層 171, 172‧‧‧ composite gate layer

第1圖至第10圖繪示形成本發明記憶體結構的一種可行方法的上視圖。 1 to 10 are top views of a feasible method for forming a memory structure of the present invention.

第1A圖至第10A圖的A系列圖繪示對應於第1圖至第10圖上視圖的剖視圖。 A series of FIGS. 1A to 10A are cross-sectional views corresponding to the upper views of FIGS. 1 to 10.

第1B圖、第2B圖、第3B圖、第4B圖、第6B圖、第7B圖、第8B圖、第9B圖至第10B圖繪示對應於第1圖至第10圖上視圖的剖視圖。 FIG. 1B, FIG. 2B, FIG. 3B, FIG. 4B, FIG. 6B, FIG. 7B, FIG. 8B, FIG. 9B to FIG. 10B are sectional views corresponding to the top views of FIG. .

第7C圖與第9C圖繪示對應於第7圖與第9圖的替代性實施例的剖視圖。 7C and 9C show cross-sectional views of alternative embodiments corresponding to FIGS. 7 and 9.

第11圖、第11B圖與第11C圖繪示本發明雙位元快閃記憶體結構的示意圖。 FIG. 11, FIG. 11B and FIG. 11C are schematic diagrams showing the structure of the dual-bit flash memory of the present invention.

本發明提出一種使用鑲嵌製程及自行對準製程來製造閘極的記憶 體結構。由於每個單一記憶胞中,包含一對彼此電性絕緣的浮置閘極,使得本發明的記憶體結構成為雙位元記憶體結構。另外,因為浮置閘極自行對準於控制閘極,即可省略黃光對準的過程,以蝕刻控制的方法建立本發明的雙位元記憶體結構。 The invention proposes a memory for manufacturing a gate electrode using a mosaic process and a self-alignment process. 体 结构。 Body structure. Since each single memory cell includes a pair of floating gates that are electrically insulated from each other, the memory structure of the present invention becomes a two-bit memory structure. In addition, because the floating gate is aligned with the control gate by itself, the process of yellow light alignment can be omitted, and the dual-bit memory structure of the present invention can be established by an etching control method.

本發明首先提出一種形成記憶體結構的方法。第1圖至第10圖繪 示形成本發明記憶體結構的一種可行方法的上視圖。第1A圖至第10A圖的A系列圖中,則繪示對應於第1圖至第10圖上視圖的剖視圖,其沿著一第一方向,例如字元線(WL)方向,展開。第1B圖、第2B圖、第3B圖、第4B圖、第6B圖、第7B圖、第8B圖、第9B圖至第10B圖的B系列圖中,則繪示對應於第1圖至第10圖上視圖的剖視圖,其沿著一第二方向,例如位元線(BL)方向,展開。 The invention first proposes a method for forming a memory structure. Figures 1 to 10 A top view showing a possible method of forming the memory structure of the present invention. A series of diagrams in FIGS. 1A to 10A are cross-sectional views corresponding to the upper views in FIGS. 1 to 10, which are developed along a first direction, such as a word line (WL) direction. Figures 1B, 2B, 3B, 4B, 6B, 7B, 8B, 9B to 10B are the B series diagrams corresponding to FIGS. 1 to The cross-sectional view of the top view in FIG. 10 is unfolded along a second direction, such as the bit line (BL) direction.

首先,請參考第5圖、第5A圖與第5B圖,提供疊層基材102。 疊層基材102包含基材101、浮置閘極氧化物110與複數個浮置閘極材料片120。浮置閘極氧化物110嵌入溝渠氧化物112中。複數個浮置閘極材料片120又各別嵌入填在複數個溝渠111中的溝渠氧化物112之間。由於複數個浮置閘極材料片120的底部各別位於浮置閘極氧化物110之上,因此,複數個浮置閘極材料片120的頂部會高出、亦可視為凸出於浮置閘極氧化物110氧化物之表面上。 First, please refer to FIG. 5, FIG. 5A and FIG. 5B to provide a laminated substrate 102. The laminated substrate 102 includes a substrate 101, a floating gate oxide 110 and a plurality of floating gate material sheets 120. The floating gate oxide 110 is embedded in the trench oxide 112. The plurality of floating gate material pieces 120 are respectively embedded between the trench oxides 112 filled in the plurality of trenches 111. Since the bottoms of the plurality of floating gate material pieces 120 are located above the floating gate oxide 110, respectively, the tops of the plurality of floating gate material pieces 120 may be raised or may be regarded as protruding from the floating The gate oxide 110 is on the surface.

基材101可以是一種經摻雜或未經摻雜的半導體基材-例如矽。經 摻雜的基材101即具有適當之摻質。溝渠氧化物112及浮置閘極氧化物110通常是矽氧化物,其可經由基材101的爐管氧化或是電漿法而製得。例如,溝渠氧化物112填在複數個溝渠111中而成為淺溝渠隔離(STI)。當溝渠氧化物112的表面不平時,可以進行一次化學機械研磨(CMP)的平坦化步驟。 位於浮置閘極氧化物110上的複數個浮置閘極材料片120,其可以是經摻雜的多晶矽材料。 The substrate 101 may be a doped or undoped semiconductor substrate such as silicon. through The doped substrate 101 has a suitable dopant. The trench oxide 112 and the floating gate oxide 110 are usually silicon oxides, which can be prepared by furnace tube oxidation of the substrate 101 or plasma method. For example, trench oxide 112 is filled in a plurality of trenches 111 to form shallow trench isolation (STI). When the surface of the trench oxide 112 is uneven, a chemical mechanical polishing (CMP) planarization step may be performed. The plurality of floating gate material sheets 120 on the floating gate oxide 110 may be doped polycrystalline silicon material.

疊層基材102可以使用傳統的製程來得到。例如請參考第1圖、 第1A圖與第1B圖,先以爐管氧化法形成浮置閘極氧化物110來整體覆蓋住基材101,然後形成浮置閘極材料層121來整體覆蓋住浮置閘極氧化物110,繼續以圖案化硬遮罩103來整體覆蓋住浮置閘極材料層121,即可得到堆疊的基材102、浮置閘極氧化物110、浮置閘極材料層121與硬遮罩層103。硬遮罩層103可以是氮化矽材料層。其次,請參考第2圖、第2A圖與第2B圖, 例如以傳統的黃光佐以蝕刻製程將硬遮罩103圖案化,再使用圖案化硬遮罩103,來蝕刻浮置閘極材料層121、浮置閘極氧化物110與基材101,而在基材101中形成複數條單向延伸之溝渠111以及位於複數條單向延伸溝渠111之間的複數個浮置閘極材料片120。在本發明一實施方式中,單向延伸之溝渠111以及浮置閘極材料片120即以彼此交錯的方式排列。 The laminated substrate 102 can be obtained using a conventional process. For example, refer to Figure 1, In FIGS. 1A and 1B, a floating gate oxide 110 is first formed by the furnace tube oxidation method to cover the substrate 101 as a whole, and then a floating gate material layer 121 is formed to cover the floating gate oxide 110 as a whole. Continue to cover the floating gate material layer 121 with the patterned hard mask 103 as a whole to obtain a stacked substrate 102, a floating gate oxide 110, a floating gate material layer 121, and a hard mask layer. 103. The hard mask layer 103 may be a silicon nitride material layer. Next, please refer to Figure 2, Figure 2A and Figure 2B. For example, the hard mask 103 is patterned with a traditional yellow light and an etching process, and then the patterned hard mask 103 is used to etch the floating gate material layer 121, the floating gate oxide 110, and the substrate 101. A plurality of unidirectionally extending trenches 111 and a plurality of floating gate material pieces 120 are formed in the substrate 101 between the plurality of unidirectionally extending trenches 111. In one embodiment of the present invention, the unidirectionally extending trenches 111 and the floating gate material sheets 120 are arranged in a staggered manner.

然後,請參考第3圖、第3A圖與第3B圖,例如以高密度電漿法 (HDP)將氧化物112填入溝渠111中,並與先前之浮置閘極氧化物110合併在一起,然後以圖案化硬遮罩103為停止層,使用例如化學機械研磨(CMP)的平坦化步驟來移除多餘的氧化物112,虛線區域即表示移除掉的多餘氧化物112。雖然溝渠氧化物112會與浮置閘極氧化物110合併在一起,但是各為品質不同的氧化物。再來,請參考第4圖、第4A圖與第4B圖,例如以磷酸的溼蝕刻的方式完全移除圖案化硬遮罩103,而暴露出位於圖案化硬遮罩103下方之複數個浮置閘極材料片120。繼續,請參考第5圖與第5A圖,例如以氫氟酸溼蝕刻的方式來整體地削減掉氧化物112的高度,使得各別浮置閘極材料片120的下半部嵌入溝渠氧化物112中,而上半部則高出/凸出於氧化物112之表面上,以形成疊層基材102。附帶一提,因為削減掉氧化物112的高度所表示的步驟,對於第5B圖的繪示並沒有影響,因此可以以第4B圖來代替第5B圖。 Then, please refer to Fig. 3, Fig. 3A and Fig. 3B, for example, the high-density plasma method (HDP) Fill oxide 112 into trench 111 and merge with previous floating gate oxide 110, and then use patterned hard mask 103 as a stop layer, using a planarization such as chemical mechanical polishing (CMP) Step to remove the excess oxide 112, and the dotted area indicates the removed excess oxide 112. Although the trench oxide 112 is merged with the floating gate oxide 110, each oxide is of a different quality. Next, please refer to FIG. 4, FIG. 4A, and FIG. 4B. For example, the patterned hard mask 103 is completely removed by a wet etching method of phosphoric acid, and a plurality of floats under the patterned hard mask 103 are exposed.放 测 极 材料 片 120。 Position gate material sheet 120. Continuing, please refer to FIG. 5 and FIG. 5A. For example, the height of the oxide 112 is reduced by wet etching with hydrofluoric acid, so that the lower half of each floating gate material sheet 120 is embedded with trench oxide. 112, and the upper half is raised / projected from the surface of the oxide 112 to form a laminated substrate 102. Incidentally, because the steps shown by reducing the height of the oxide 112 have no effect on the drawing of FIG. 5B, FIG. 4B can be used instead of FIG. 5B.

其次,請參考第6A圖,又在疊層基材102上接著形成複合材料 層131、控制閘極材料層141與保護層104。例如,複合材料層131先以共形的方式覆蓋複數個浮置閘極材料片120與溝渠氧化物112,再以控制閘極材料層141來覆蓋複合材料層131,並使得控制閘極材料層141在複數個浮置閘極材料片120之間的條狀凹穴中延伸。然後,又形成保護層104來覆蓋控制閘極材料層141,例如在700℃-800℃的爐管中生成的氮化矽而作為硬遮罩之用。複合材料層131可以是一種氮化物與氧化物複合的疊層結構。例如,複合材料層131可以是氧化物-氮化物-氧化物的(O-N-O)式複合結構。複合 材料層131中各層的厚度可以是氧化物(~50Å)-氮化物(~70Å)-氧化物(~50Å)。控制閘極材料層141也可以是經摻雜的多晶矽材料。如果所形成的控制閘極材料層141的表面不平時,可以進行一次化學機械研磨(CMP)的平坦化步驟。保護層104係暫時性的覆蓋住控制閘極材料層141,而在接下來一次性的蝕刻步驟中可以保護控制閘極材料層141。保護層104的材料可以是氮化矽。 Next, please refer to FIG. 6A, and then form a composite material on the laminated substrate 102. The layer 131, the control gate material layer 141, and the protective layer 104. For example, the composite material layer 131 first covers a plurality of floating gate material sheets 120 and trench oxides 112 in a conformal manner, and then the control gate material layer 141 covers the composite material layer 131 and makes the control gate material layer 141 extends in the strip-shaped recesses between the plurality of floating gate material pieces 120. Then, a protective layer 104 is formed to cover the control gate material layer 141, for example, silicon nitride generated in a furnace tube at 700 ° C-800 ° C as a hard mask. The composite material layer 131 may be a laminated structure in which a nitride is compounded with an oxide. For example, the composite material layer 131 may be an oxide-nitride-oxide (O-N-O) type composite structure. complex The thickness of each layer in the material layer 131 may be an oxide (~ 50Å)-a nitride (~ 70Å)-an oxide (~ 50Å). The control gate material layer 141 may also be a doped polycrystalline silicon material. If the surface of the control gate material layer 141 formed is uneven, a chemical mechanical polishing (CMP) planarization step may be performed. The protective layer 104 temporarily covers the control gate material layer 141, and can protect the control gate material layer 141 in a subsequent one-time etching step. The material of the protective layer 104 may be silicon nitride.

接著,請參考第6圖與第6B圖,再進行一次性的蝕刻步驟來建 立複數個疊層材料柱105。一次性的蝕刻步驟可以是調整蝕刻配方,並以浮置閘極氧化物110作為蝕刻停止層,直接蝕刻保護層104、控制閘極材料層141、複合材料層131、複數個浮置閘極材料片120與浮置閘極氧化物110,而暴露出基材101並形成複數個疊層材料柱105。換句話說,在疊層材料柱105中有浮置閘極氧化物110、浮置閘極材料片120、複合材料130、控制閘極材料140與保護層104。在本發明一較佳實施方式中,可以調整一次性蝕刻步驟的配方,使得複數個疊層材料柱105具有垂直性質的側壁,而非傾斜化的(tapered)側壁。 Next, please refer to Figure 6 and Figure 6B, and then perform a one-time etching step to build A plurality of stacked material columns 105 are formed. The one-time etching step may be to adjust the etching formula and use the floating gate oxide 110 as an etching stop layer to directly etch the protective layer 104, the control gate material layer 141, the composite material layer 131, and a plurality of floating gate materials. The sheet 120 and the floating gate oxide 110 expose the substrate 101 and form a plurality of stacked material pillars 105. In other words, in the stacked material column 105, there are a floating gate oxide 110, a floating gate material sheet 120, a composite material 130, a control gate material 140, and a protective layer 104. In a preferred embodiment of the present invention, the formulation of the one-time etching step can be adjusted so that the plurality of stacked material pillars 105 have vertical sidewalls instead of tapered sidewalls.

接著,請參考第7圖與第7B圖,先形成選擇閘極氧化物層151, 再形成選擇閘極材料152,使得選擇閘極材料152鑲嵌在選擇閘極氧化物層151中。相鄰之複數個疊層材料柱105之間的空間即定義容置選擇閘極材料152的空間。可以先形成選擇閘極氧化物層151,以共形的方式覆蓋複數個疊層材料柱105與基材101。形成選擇閘極氧化物層151的方式可以是化學氣相沉積法(CVD)。在本發明一實施方式中,選擇閘極氧化物層151包含側壁氧化物158與選擇閘極氧化物157。較寬的側壁氧化物158有利於後續建立之選擇閘極(圖未示)與浮置閘極以及控制閘極間之電性絕緣,較薄的選擇閘極氧化物157適用於搭配選擇閘極,所以可以調整化學氣相沉積法的參數,可調整選擇閘極氧化物157及側壁氧化物158之厚度。如果有需要,在形成選擇閘極氧化物層151的步驟之前,還可以先安排預清潔(pre-clean) 的步驟。 Next, referring to FIG. 7 and FIG. 7B, a selective gate oxide layer 151 is first formed. The selection gate material 152 is formed again, so that the selection gate material 152 is embedded in the selection gate oxide layer 151. The space between the adjacent plurality of stacked material pillars 105 defines a space for accommodating the selected gate material 152. The selective gate oxide layer 151 may be formed first to cover the plurality of stacked material pillars 105 and the substrate 101 in a conformal manner. A method of forming the selective gate oxide layer 151 may be a chemical vapor deposition (CVD) method. In one embodiment of the present invention, the selected gate oxide layer 151 includes a sidewall oxide 158 and a selected gate oxide 157. The wider sidewall oxide 158 facilitates the electrical insulation between the subsequent selection gate (not shown) and the floating gate and the control gate. The thinner selection gate oxide 157 is suitable for matching the selection gate. Therefore, the parameters of the chemical vapor deposition method can be adjusted, and the thicknesses of the gate oxide 157 and the side wall oxide 158 can be adjusted. If necessary, pre-cleaning can be arranged before the step of forming the gate oxide layer 151 is selected. A step of.

然後,再形成選擇閘極材料152,使得選擇閘極材料152整片地 覆蓋住選擇閘極氧化物層151。選擇閘極材料層152也可以是經摻雜的多晶矽材料。為了使選擇閘極材料152鑲嵌在選擇閘極氧化物層151中,又會進行一次回蝕刻步驟(etching back)來移除多餘的選擇閘極材料152與位於疊層材料柱105的保護層104上的選擇閘極氧化物層151,於是得到如第7B圖所繪示的結果,虛線區域即表示移除掉多餘的選擇閘極材料152與選擇閘極氧化物層151。請注意,如第7B圖所繪示,此時選擇閘極材料152頂表面的高度可以低於保護層104頂表面的高度。或是,如第7C圖所繪示,也可以控制回蝕刻步驟,使得選擇閘極材料152頂表面的高度與保護層104頂表面的高度大致相同。也可以視為選擇閘極材料152頂表面的高度與側壁氧化物158之頂表面有大致相同的高度。 Then, the selection gate material 152 is formed again, so that the selection gate material 152 is entirely formed. The selective gate oxide layer 151 is covered. The selection gate material layer 152 may also be a doped polycrystalline silicon material. In order for the selection gate material 152 to be embedded in the selection gate oxide layer 151, an etch back step is performed to remove the excess selection gate material 152 and the protective layer 104 on the stacked material pillar 105. The selective gate oxide layer 151 on the top is then obtained as shown in FIG. 7B. The dotted area indicates that the excess selective gate material 152 and the selective gate oxide layer 151 are removed. Please note that, as shown in FIG. 7B, the height of the top surface of the selected gate material 152 may be lower than the height of the top surface of the protective layer 104. Alternatively, as shown in FIG. 7C, the etch-back step may be controlled so that the height of the top surface of the selected gate material 152 is substantially the same as the height of the top surface of the protective layer 104. It can also be considered that the height of the top surface of the selected gate material 152 is substantially the same as the top surface of the sidewall oxide 158.

之後,請參考第8圖與第8B圖,如果選擇閘極材料152頂表面 的高度低於保護層104頂表面的高度,則再以氧化物的材料,例如以選擇閘極覆蓋氧化物159的形式,覆蓋住選擇閘極材料152暴露出來的頂表面,而沉積的選擇閘極覆蓋氧化物159同時也與選擇閘極氧化物層151合併在一起,而通稱為選擇閘極氧化物層151,所以也可以視為選擇閘極覆蓋氧化物159覆蓋選擇閘極材料152。如果所沉積的選擇閘極覆蓋氧化物159的表面不平時,可以進行一次化學機械研磨(CMP)的平坦化步驟,於是得到如第8B圖所繪示的結果。 After that, please refer to Figure 8 and Figure 8B. If you choose the top surface of the gate material 152 The height of the protective layer 104 is lower than the height of the top surface of the protective layer 104, and then the oxide material, for example, in the form of a selective gate covering oxide 159, covers the exposed top surface of the selective gate material 152, and the deposited selective gate The gate covering oxide 159 is also merged with the selective gate oxide layer 151, and is commonly referred to as the selective gate oxide layer 151, so it can also be regarded as the selective gate covering oxide 159 covering the selective gate material 152. If the surface of the deposited selective gate covering oxide 159 is uneven, a chemical mechanical polishing (CMP) planarization step may be performed, and the result shown in FIG. 8B is obtained.

再來,請參考第9圖、第9A圖與第9B圖,在一次性的蝕刻步驟 與回蝕刻步驟完成後,即可移除保護層104。移除保護層104後,不但會暴露出控制閘極材料層151的側壁氧化物158,而且疊層材料柱105中則只剩下浮置閘極氧化物110、浮置閘極材料片120、複合材料130與控制閘極材料140。如果保護層104的材料為氮化矽時,可以使用例如磷酸溼蝕刻的方式來完全移除保護層104。第9C圖繪示暴露出頂表面的選擇閘極材料152。 Then, please refer to FIG. 9, FIG. 9A, and FIG. 9B. After the etch-back step is completed, the protective layer 104 can be removed. After the protective layer 104 is removed, not only the side wall oxide 158 of the control gate material layer 151 is exposed, but only the floating gate oxide 110, the floating gate material sheet 120, and the composite material are left in the stacked material column 105. Material 130 and control gate material 140. If the material of the protective layer 104 is silicon nitride, the protective layer 104 can be completely removed by using a wet etching method such as phosphoric acid. FIG. 9C illustrates the selection gate material 152 with the top surface exposed.

隨後,請參考第10圖、第10A圖與第10B圖,於每個疊層材料 柱105上形成一個間隙壁160,每個間隙壁160都會依附於最近的側壁氧化物158。一方面,每個間隙壁160都會覆蓋住疊層材料柱105部分的頂面。 另一方面,每個疊層材料柱105上的一組間隙壁161又會彼此相距一個間隙距離,因而暴露出疊層材料柱105部分的頂面。換言之,每個疊層材料柱105上的一組間隙壁161即定義出了一間隙空間162。可以使用習知的方式,例如沉積法搭配非等向性蝕刻,來形成各個間隙壁160。蝕刻前間隙壁材料的厚度可以是介於20-40奈米,蝕刻後間隙壁160底部的寬度則可以介於20-40奈米。虛線部分繪示蝕刻前所沉積的間隙壁材料層。 Then, please refer to Fig. 10, Fig. 10A and Fig. 10B. A spacer 160 is formed on the pillar 105, and each spacer 160 is attached to the nearest sidewall oxide 158. On the one hand, each spacer 160 covers the top surface of the laminated material column 105. On the other hand, a set of spacer walls 161 on each laminated material column 105 are separated from each other by a gap distance, thereby exposing the top surface of the laminated material column 105 portion. In other words, a set of partition walls 161 on each laminated material column 105 defines a clearance space 162. Each of the spacers 160 can be formed by a conventional method, such as a deposition method and anisotropic etching. The thickness of the spacer material before etching may be between 20-40 nanometers, and the width of the bottom of the spacer wall 160 after etching may be between 20-40 nanometers. The dotted line shows the spacer material layer deposited before the etching.

繼續,請參考第11圖、第11B圖與第11C圖,以此組間隙壁161 作為蝕刻遮罩,經由間隙空間162以的方式,一次蝕刻疊層材料柱105,也就是控制閘極材料層140、複合材料層130、複數個浮置閘極材料片120與浮置閘極氧化物110,而形成複數個雙位元記憶體結構100,並將控制閘極材料層140轉換為控制閘極140、複合材料130、浮置閘極120。間隙壁160的功能,一方面在此一次蝕刻步驟中當成蝕刻遮罩之用,所以這個一次蝕刻步驟在間隙壁160的輔助下,即具有自行對準的性質,使得浮置閘極120得以自行對準於控制閘極140。第11C圖繪示沒有蓋層159的實施例。附帶一提,因為第11圖、第11B圖所表示的一次性蝕刻步驟,與第10圖與第10B圖所表示的形成間隙壁160步驟,對於第11A圖的繪示都沒有影響,因此以第10A圖代替第11A圖。 Continuing, please refer to FIG. 11, FIG. 11B and FIG. As an etching mask, the stacked material column 105 is etched at one time through the gap space 162, that is, the gate material layer 140, the composite material layer 130, the plurality of floating gate material sheets 120 and the floating gate are oxidized The object 110 forms a plurality of double-bit memory structures 100, and converts the control gate material layer 140 into a control gate 140, a composite material 130, and a floating gate 120. The function of the spacer 160 is used as an etching mask in this one-step etching step. Therefore, this one-step etching step, with the assistance of the spacer 160, has a self-aligning property, so that the floating gate 120 can perform its own function Aligned to the control gate 140. FIG. 11C illustrates an embodiment without the cover layer 159. Incidentally, because the one-time etching steps shown in FIGS. 11 and 11B and the step of forming the spacer 160 shown in FIGS. 10 and 10B have no effect on the drawing of FIG. 11A, Fig. 10A replaces Fig. 11A.

另一方面,間隙壁160底部的寬度,又可以用來控制雙位元記憶 體結構100中控制閘極140與浮置閘極120的寬度。例如,當蝕刻前間隙壁160底部的寬度為25奈米時,可以調整一次蝕刻的配方,使得蝕刻後間隙壁160底部的寬度降為20奈米,所以也一併使得雙位元記憶體結構100的通道長度能夠降低到20奈米左右。還有,間隙壁160底部的寬度,也能夠用來控制相鄰的記憶體結構之間的間隙寬度。例如,蝕刻前如果疊層材料柱105底 部的寬度是70奈米-80奈米左右時,可以調整一次蝕刻的配方,使得蝕刻後相鄰的雙位元記憶體結構100之間的間隙寬度成為30奈米-40奈米左右。較小的間隙寬度,有利於實現記憶體的高密度記憶容量。 On the other hand, the width of the bottom of the partition wall 160 can be used to control dual bit memory. The body structure 100 controls the widths of the gate 140 and the floating gate 120. For example, when the width of the bottom of the spacer 160 before etching is 25 nanometers, the formula of one etching can be adjusted so that the width of the bottom of the spacer 160 after etching is reduced to 20 nanometers, so the dual-bit memory structure is also made The channel length of 100 can be reduced to about 20 nm. In addition, the width of the bottom of the gap wall 160 can also be used to control the gap width between adjacent memory structures. For example, if the bottom of the stacked material column 105 before etching When the width of the part is about 70 nanometers to 80 nanometers, the formula of one etching can be adjusted so that the gap width between adjacent two-bit memory structures 100 after etching becomes about 30 nanometers to 40 nanometers. The small gap width is conducive to achieving high-density memory capacity of the memory.

在經過上述之步驟後,即得到本發明的一種雙位元記憶體結構 100。第11B圖與第11C圖繪示本發明雙位元記憶體結構的示意圖,並可一併參酌其他圖式。本發明的雙位元記憶體結構100,包含基材101、選擇閘極氧化物層151、選擇閘極材料152與一組複合閘極層170。較佳者,雙位元記憶體結構100底部之寬度不大於100奈米左右。基材101可以是一種經摻雜或未經摻雜的半導體基材,例如矽。經摻雜的基材101即具有適當之摻質。 較佳者,基材上會有複數個雙位元記憶體結構100。 After the above steps, a double-bit memory structure of the present invention is obtained. 100. FIG. 11B and FIG. 11C are schematic diagrams showing the structure of the dual-bit memory of the present invention, and other drawings can be referred to together. The dual-bit memory structure 100 of the present invention includes a substrate 101, a selected gate oxide layer 151, a selected gate material 152, and a group of composite gate layers 170. Preferably, the width of the bottom of the dual-bit memory structure 100 is not more than about 100 nanometers. The substrate 101 may be a doped or undoped semiconductor substrate, such as silicon. The doped substrate 101 has a suitable dopant. Preferably, there will be a plurality of double-bit memory structures 100 on the substrate.

選擇閘極材料152也可以是經摻雜的多晶矽材料,並且鑲嵌在選 擇閘極氧化物層151中。選擇閘極氧化物層151,其可以是高品質的氧化矽層,並位於基材上。選擇閘極氧化物層151通常有三個部分,也就是閘極氧化物157、第一側壁氧化物156與第二側壁氧化物158。閘極氧化物157在下方、與位於左右的第一側壁氧化物156以及第二側壁氧化物158共同定義容置空間155。選擇閘極材料152即嵌入此容置空間155中的選擇閘極氧化物157上。第11B圖繪示本發明雙位元記憶體結構100更包含覆蓋選擇閘極材料152的選擇閘極覆蓋氧化物159。如第11C圖所繪示,當視情況需要的選擇閘極覆蓋氧化物159不存在時,選擇閘極氧化物層151即由選擇閘極氧化物157、第一側壁氧化物156與第二側壁氧化物158所組成。 The selection gate material 152 may also be a doped polycrystalline silicon material, and the In the gate oxide layer 151. The gate oxide layer 151 is selected, which can be a high-quality silicon oxide layer and is located on the substrate. The selected gate oxide layer 151 generally has three parts, that is, a gate oxide 157, a first sidewall oxide 156, and a second sidewall oxide 158. The gate oxide 157 defines the accommodating space 155 together with the first sidewall oxide 156 and the second sidewall oxide 158 located on the left and right sides. The selection gate material 152 is embedded on the selection gate oxide 157 in the accommodation space 155. FIG. 11B illustrates that the dual-bit memory structure 100 of the present invention further includes a selective gate covering oxide 159 covering the selected gate material 152. As shown in FIG. 11C, when the selective gate covering oxide 159 does not exist as required, the selective gate oxide layer 151 is composed of the selective gate oxide 157, the first sidewall oxide 156, and the second sidewall. Composed of oxide 158.

一組複合閘極層170位於基材101上,並分別依附第一側壁氧化 物156或第二側壁氧化物158。較寬的側壁氧化物有利於後續建立之選擇閘極材料152與浮置閘極120以及控制閘極140間之電性絕緣,較薄的選擇閘極氧化物則適用於搭配選擇閘極,所以可以調整側壁氧化物與選擇閘極氧化物的參數,使得側壁氧化物之寬度大於擇閘極氧化物之厚度。例如,第一側壁氧化物156或第二側壁氧化物158至少一者的寬度大於選擇閘極氧化物157 的厚度。在本發明一實施方式中,第一側壁氧化物156與第二側壁氧化物158為垂直性質的絕緣壁。 A set of composite gate layers 170 is located on the substrate 101 and is oxidized on the first sidewall. 物 156 或 第二 oleal oxide 158. The wider sidewall oxide facilitates the electrical insulation between the selected gate material 152, the floating gate 120, and the control gate 140 that are subsequently established, and the thinner selected gate oxide is suitable for matching the selected gate, so The parameters of the sidewall oxide and the selected gate oxide can be adjusted so that the width of the sidewall oxide is greater than the thickness of the selected gate oxide. For example, the width of at least one of the first sidewall oxide 156 or the second sidewall oxide 158 is greater than the selection gate oxide 157 thickness of. In one embodiment of the present invention, the first sidewall oxide 156 and the second sidewall oxide 158 are vertical insulating walls.

一組的複合閘極層170包含複合閘極層171與複合閘極層172。 各別複合閘極層又分別包含浮置閘極氧化物110、浮置閘極120、複合材料層130、控制閘極140與間隙壁160。浮置閘極氧化物110可以是矽的氧化物,並具有理想的厚度來配合雙位元記憶體的電子寫入與抹除。本發明的雙位元記憶體結構100適用於編碼型快閃記憶體,並可以應用通道熱電子注入(Channel Hot Electron Injection,CHEI)或F-N穿隧(Fowler-Nordheim tunneling)的方式來操作。浮置閘極120較佳包含經摻雜的多晶矽材料,其位於選擇閘極氧化物157上,並依照其相對位置依附於第一側壁氧化物156或第二側壁氧化物158,浮置閘極120即為記憶體結構100儲存電荷的位置。 A group of composite gate layers 170 includes a composite gate layer 171 and a composite gate layer 172. Each composite gate layer includes a floating gate oxide 110, a floating gate 120, a composite material layer 130, a control gate 140, and a spacer 160, respectively. The floating gate oxide 110 may be an oxide of silicon and has an ideal thickness to cooperate with the electronic writing and erasing of the dual-bit memory. The dual-bit memory structure 100 of the present invention is suitable for a coded flash memory, and can be operated by using Channel Hot Electron Injection (CHEI) or F-N tunneling (Fowler-Nordheim tunneling). The floating gate 120 preferably includes a doped polycrystalline silicon material, which is located on the selective gate oxide 157 and is attached to the first sidewall oxide 156 or the second sidewall oxide 158 according to its relative position. The floating gate 120 is the location where the memory structure 100 stores charges.

複合材料層130又位於浮置閘極上120,也依照其相對位置依附 於第一側壁氧化物156或第二側壁氧化物158。複合材料層130,其可以是一種氮化物與氧化物複合的疊層結構。例如,複合材料層130可以是氧化物-氮化物-氧化物的(O-N-O)式複合結構。複合材料層130中各層的厚度可以是氧化物(~50Å)-氮化物(~70Å)-氧化物(~50Å)。較佳者,一組複合閘極層170有一對複合材料層130。一對複合材料層130彼此絕緣,因此使得本發明的記憶體結構成為雙位元記憶體結構。控制閘極140較佳也包含經摻雜的多晶矽材料,而位於複合材料層130上。類似地,控制閘極140會依照其相對位置依附於第一側壁氧化物156或第二側壁氧化物158。間隙壁160位於控制閘極140上,是複合閘極層170的保護性頂層。間隙壁160會依照其相對位置依附於第一側壁氧化物156或第二側壁氧化物158。間隙壁160有助於雙位元記憶體結構100的浮置閘極120自行對準於控制閘極140。 The composite material layer 130 is located on the floating gate 120 and is also attached according to its relative position On the first sidewall oxide 156 or the second sidewall oxide 158. The composite material layer 130 may be a laminated structure in which a nitride and an oxide are composited. For example, the composite material layer 130 may be an oxide-nitride-oxide (O-N-O) type composite structure. The thickness of each layer in the composite material layer 130 may be an oxide (~ 50Å)-a nitride (~ 70Å)-an oxide (~ 50Å). Preferably, a group of composite gate layers 170 has a pair of composite material layers 130. The pair of composite material layers 130 are insulated from each other, thus making the memory structure of the present invention a two-bit memory structure. The control gate 140 preferably also includes a doped polycrystalline silicon material and is located on the composite material layer 130. Similarly, the control gate 140 is attached to the first sidewall oxide 156 or the second sidewall oxide 158 according to its relative position. The partition wall 160 is located on the control gate 140 and is a protective top layer of the composite gate layer 170. The partition wall 160 is attached to the first sidewall oxide 156 or the second sidewall oxide 158 according to its relative position. The partition wall 160 helps the floating gate 120 of the two-bit memory structure 100 to align itself with the control gate 140.

請參考第10A圖,在本發明一實施方式中,溝渠氧化物112又向 下嵌入基材101的多條淺溝渠111中,而作為淺溝渠隔離之用。相鄰之雙位元記憶體結構100即藉此淺溝渠隔離彼此電性隔離。較佳者,相鄰雙位元記 憶體結構110之間距介於30-40奈米左右。 Please refer to FIG. 10A. In one embodiment of the present invention, trench oxide 112 The bottom trenches 111 are embedded in the plurality of shallow trenches 111 for isolation of the shallow trenches. Adjacent double-bit memory structures 100 are electrically isolated from each other by this shallow trench isolation. Better, Adjacent Double Bits The distance between the memory structure 110 is about 30-40 nanometers.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the scope of patent application of the present invention shall fall within the scope of the present invention.

Claims (16)

一種形成記憶體結構的方法,包含:提供一疊層基材,包含:一基材;一浮置閘極氧化物,位於該基材上並嵌入該基材中;以及複數個浮置閘極材料片位於該浮置閘極氧化物上,各別嵌入該溝渠氧化物之間並高出於該溝渠氧化物之表面上;形成一複合材料層,以共形的方式覆蓋該複數個浮置閘極材料片與該溝渠氧化物;形成一控制閘極材料層,覆蓋該複合材料層並在該複數個浮置閘極材料片之間延伸;形成一保護層,來覆蓋該控制閘極材料層;一次蝕刻該保護層、該控制閘極材料層、該複合材料層、該複數個浮置閘極材料片與該浮置閘極氧化物,而暴露出該基材並形成複數個疊層材料柱;形成一選擇閘極氧化物層,以共形的方式覆蓋該複數個疊層材料柱與該基材,其中相鄰之該複數個疊層材料柱定義一選擇閘極容置空間位於其間;以一選擇閘極材料填入該選擇閘極容置空間中,而夾置於該選擇閘極氧化物層之間;移除該保護層,而暴露出該控制閘極材料層的一垂直部分;於每個該疊層材料柱上形成一組間隙壁,以依附該垂直部分,其中該組間隙壁定義一間隙空間;以及以該組間隙壁作為一蝕刻遮罩,經由該間隙空間以自行對準的方式一次蝕刻該控制閘極材料層、該複合材料層、該複數個浮置閘極材料片與該浮置閘極氧化物,即形成複數個雙位元記憶體結構。A method of forming a memory structure includes: providing a laminated substrate including: a substrate; a floating gate oxide located on the substrate and embedded in the substrate; and a plurality of floating gates The material sheet is located on the floating gate oxide, which is embedded between the trench oxides and rises above the surface of the trench oxides; a composite material layer is formed to cover the plurality of floats in a conformal manner A gate material sheet and the trench oxide; forming a control gate material layer covering the composite material layer and extending between the plurality of floating gate material sheets; forming a protective layer to cover the control gate material Layer; etch the protective layer, the control gate material layer, the composite material layer, the plurality of floating gate material pieces and the floating gate oxide at one time, and expose the substrate and form a plurality of stacks Material column; forming a selective gate oxide layer, covering the plurality of laminated material columns and the substrate in a conformal manner, wherein the adjacent plurality of laminated material columns define a selective gate accommodation space at In the meantime Fill the selection gate accommodation space and sandwich it between the selection gate oxide layers; remove the protective layer and expose a vertical portion of the control gate material layer; at each of the stacks A set of gap walls is formed on the layer material column to attach to the vertical part, wherein the set of gap walls defines a gap space; and the set of gap walls is used as an etching mask, and the etching is performed in a self-aligned manner through the gap space at one time The control gate material layer, the composite material layer, the plurality of floating gate material pieces and the floating gate oxide form a plurality of double-bit memory structures. 如請求項1形成記憶體結構的方法,更包含:提供一基材;形成一浮置閘極氧化物層,覆蓋該基材;形成一浮置閘極材料層,覆蓋該浮置閘極氧化物層;形成一圖案化硬遮罩,覆蓋該浮置閘極材料層;使用該圖案化硬遮罩,蝕刻該浮置閘極材料層、該浮置閘極氧化物與該基材,以形成複數條單向延伸之溝渠以及複數個浮置閘極材料片;使用一種氧化物填入該溝渠中;移除該圖案化硬遮罩,而暴露出位於該圖案化硬遮罩下方之該複數個浮置閘極材料片;削減該氧化物的高度,使得各別該浮置閘極材料片嵌入該氧化物之間並高出於該氧化物之表面上,以形成該疊層基材。The method for forming a memory structure according to claim 1, further comprising: providing a substrate; forming a floating gate oxide layer to cover the substrate; forming a floating gate material layer to cover the floating gate oxide Forming a patterned hard mask to cover the floating gate material layer; using the patterned hard mask to etch the floating gate material layer, the floating gate oxide, and the substrate to Forming a plurality of unidirectionally extending trenches and a plurality of floating gate material pieces; using an oxide to fill the trenches; removing the patterned hard mask, and exposing the patterned hard mask underneath the patterned hard mask A plurality of floating gate material pieces; the height of the oxide is reduced so that each of the floating gate material pieces is embedded between the oxides and rises above the surface of the oxides to form the laminated substrate . 如請求項1形成記憶體結構的方法,其中該單向延伸之溝渠以及該浮置閘極材料片交錯排列。The method for forming a memory structure according to claim 1, wherein the unidirectionally extending trenches and the floating gate material pieces are staggered. 如請求項1形成記憶體結構的方法,其中調整一蝕刻配方並以該浮置閘極氧化物層作為一蝕刻停止層而得以一次蝕刻該保護層、該控制閘極材料層、該複合材料層、該複數個浮置閘極材料片與浮置閘極氧化物及基材。For example, the method for forming a memory structure according to claim 1, wherein an etching recipe is adjusted and the floating gate oxide layer is used as an etch stop layer to etch the protective layer, the control gate material layer, and the composite material layer at one time. The plurality of floating gate material pieces, the floating gate oxide and the substrate. 如請求項4形成記憶體結構的方法,其中該蝕刻配方的一次蝕刻使得複數個該疊層材料柱具有垂直性質的側壁。The method for forming a memory structure as claimed in claim 4, wherein a single etching of the etching recipe causes a plurality of the stacked material columns to have vertical sidewalls. 如請求項1形成記憶體結構的方法,其中該選擇閘極氧化物層包含一選擇閘極氧化物與一側壁氧化物。The method of claim 1, wherein the selected gate oxide layer includes a selected gate oxide and a sidewall oxide. 如請求項6形成記憶體結構的方法,其中該選擇閘極氧化物位於該選擇閘極材料之下。A method of forming a memory structure as claimed in claim 6, wherein the selected gate oxide is located below the selected gate material. 如請求項6形成記憶體結構的方法,其中該選擇閘極材料與該側壁氧化物之頂表面有相同的高度。The method for forming a memory structure according to claim 6, wherein the selected gate material has the same height as the top surface of the sidewall oxide. 如請求項1形成記憶體結構的方法,其中該組間隙壁之底部寬度介於20-40奈米。The method for forming a memory structure according to claim 1, wherein the width of the bottom of the group of partition walls is 20-40 nanometers. 如請求項1形成記憶體結構的方法,其中個別該雙位元記憶體結構之間距介於20-40奈米。For example, the method for forming a memory structure according to claim 1, wherein the distance between the individual bit memory structures is between 20 and 40 nanometers. 一種雙位元記憶體結構,包含:一基材;一選擇閘極氧化物層,位於該基材上並包含一選擇閘極氧化物、一第一側壁氧化物與一第二側壁氧化物,該選擇閘極氧化物、該第一側壁氧化物與該第二側壁氧化物共同定義一容置空間;一選擇閘極,嵌入該容置空間中;以及一組複合閘極層,位於該基材上並分別依附該第一側壁氧化物與該第二側壁氧化物,各別複合閘極層包含:一浮置閘極氧化物層,位於該基材上;一浮置閘極,位於該浮置閘極氧化物層上並依附該第一側壁氧化物與該第二側壁氧化物其中一者;一複合材料層,位於該浮置閘極上並依附該第一側壁氧化物與該第二側壁氧化物其中一者;一控制閘極,位於該複合材料層上並依附該第一側壁氧化物與該第二側壁氧化物其中一者;以及一間隙壁,位於該控制閘極上並依附該第一側壁氧化物與該第二側壁氧化物其中一者;更包含複數個雙位元記憶體結構,而相鄰之該雙位元記憶體結構以嵌入基材之一淺溝渠隔離彼此電性隔離,使得相鄰之該雙位元記憶體結構之間距介於30-40奈米。A two-bit memory structure includes: a substrate; a selective gate oxide layer located on the substrate and including a selective gate oxide, a first sidewall oxide, and a second sidewall oxide, The selective gate oxide, the first sidewall oxide, and the second sidewall oxide together define an accommodation space; a selection gate is embedded in the accommodation space; and a set of composite gate layers is located on the base The first and second sidewall oxides are attached to the material, and the respective composite gate layers include: a floating gate oxide layer on the substrate; and a floating gate on the substrate. One of the first sidewall oxide and the second sidewall oxide is attached to the floating gate oxide layer; and a composite material layer is located on the floating gate oxide and adheres to the first sidewall oxide and the second sidewall oxide. One of the side wall oxides; a control gate located on the composite material layer and attached to one of the first side wall oxide and the second side wall oxide; and a gap wall located on the control gate and attached to the First sidewall oxide and the first One of the sidewall oxides; further comprising a plurality of two-bit memory structures, and the adjacent two-bit memory structures are electrically isolated from each other by a shallow trench isolation embedded in the substrate, so that the adjacent two-bit memory structures The distance between meta-memory structures is between 30-40 nanometers. 如請求項11之雙位元記憶體結構,其底部之寬度不大於100奈米。For example, the double-bit memory structure of claim 11 has a width at the bottom of not more than 100 nanometers. 如請求項11之雙位元記憶體結構,其中該第一側壁氧化物與該第二側壁氧化物為垂直性質的絕緣壁。For example, the dual-bit memory structure of claim 11, wherein the first sidewall oxide and the second sidewall oxide are vertical insulating walls. 如請求項11之雙位元記憶體結構,更包含一選擇閘極覆蓋氧化物而覆蓋該選擇閘極。For example, the dual-bit memory structure of claim 11 further includes a selective gate covering oxide to cover the selective gate. 如請求項11之雙位元記憶體結構,其中該組複合閘極層包含一對彼此絕緣之複合材料層,而因此成為一雙位元記憶體結構。For example, the dual-bit memory structure of claim 11, wherein the group of composite gate layers includes a pair of composite material layers insulated from each other, and thus becomes a dual-bit memory structure. 如請求項11之雙位元記憶體結構,其中該浮置閘極自行對準於該控制閘極。For example, the dual-bit memory structure of claim 11, wherein the floating gate is aligned with the control gate by itself.
TW104104113A 2015-02-06 2015-02-06 Twin-bit flash memory cell structure and fabrication thereof TWI627732B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104104113A TWI627732B (en) 2015-02-06 2015-02-06 Twin-bit flash memory cell structure and fabrication thereof
CN201510081567.0A CN105990363B (en) 2015-02-06 2015-02-15 dual bit flash memory structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104104113A TWI627732B (en) 2015-02-06 2015-02-06 Twin-bit flash memory cell structure and fabrication thereof

Publications (2)

Publication Number Publication Date
TW201630166A TW201630166A (en) 2016-08-16
TWI627732B true TWI627732B (en) 2018-06-21

Family

ID=57040908

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104104113A TWI627732B (en) 2015-02-06 2015-02-06 Twin-bit flash memory cell structure and fabrication thereof

Country Status (2)

Country Link
CN (1) CN105990363B (en)
TW (1) TWI627732B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935591B (en) * 2019-03-21 2024-03-12 北京时代全芯存储技术股份有限公司 Memory structure and manufacturing method thereof
CN110379708B (en) * 2019-07-22 2021-08-13 上海华力微电子有限公司 Manufacturing method of split gate of flash memory

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050207199A1 (en) * 2004-03-17 2005-09-22 Chiou-Feng Chen Flash memory with enhanced program and erase coupling and process of fabricating the same
TWI256130B (en) * 2003-07-30 2006-06-01 Mosel Vitelic Inc Nonvolatile memory cell with multiple floating gates formed after the select gate and having upward protrusions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466197B1 (en) * 2002-07-18 2005-01-13 주식회사 하이닉스반도체 Flash memory cell and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI256130B (en) * 2003-07-30 2006-06-01 Mosel Vitelic Inc Nonvolatile memory cell with multiple floating gates formed after the select gate and having upward protrusions
US20050207199A1 (en) * 2004-03-17 2005-09-22 Chiou-Feng Chen Flash memory with enhanced program and erase coupling and process of fabricating the same

Also Published As

Publication number Publication date
CN105990363A (en) 2016-10-05
CN105990363B (en) 2019-02-12
TW201630166A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
KR102401867B1 (en) Memory Arrays, and Methods of Forming the Memory Arrays
US7071061B1 (en) Method for fabricating non-volatile memory
JP6830947B2 (en) Split-gate non-volatile memory cell with floating gate, word line and erase gate
US9123577B2 (en) Air gap isolation in non-volatile memory using sacrificial films
US9502582B2 (en) Non-volatile memory unit and method for manufacturing the same
TWI515835B (en) Nonvolatile semiconductor memory device and manufacturing method thereof
CN111418065A (en) Memory cell, memory array and method of forming a memory array
EP3982394B1 (en) Split-gate, twin-bit non-volatile memory cell
US10312246B2 (en) Split-gate flash memory cell with improved scaling using enhanced lateral control gate to floating gate coupling
JP5389074B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
US20070284650A1 (en) Memory device and a method of forming a memory device
KR100773356B1 (en) Non-volatile memory device having separate charge trap patterns and method of fabricating the same
US20090098721A1 (en) Method of fabricating a flash memory
JP2008118136A (en) Self-aligned method of forming semiconductor memory array of floating gate memory cells with source side erase, and memory array made thereby
US7049189B2 (en) Method of fabricating non-volatile memory cell adapted for integration of devices and for multiple read/write operations
JP2016072537A (en) Semiconductor storage device and manufacturing method of the same
JP2007005380A (en) Semiconductor device
JP2013201185A (en) Nonvolatile semiconductor storage device and manufacturing method of the same
JP2009129981A (en) Nonvolatile semiconductor memory device
US20060275985A1 (en) Flash memory and manufacturing method thereof
US9337353B2 (en) Semiconductor device and method for fabricating the same
JP2010087159A (en) Nonvolatile semiconductor storage and method of manufacturing the same
JP2014222731A (en) Nonvolatile semiconductor memory device and method of manufacturing the same
TWI627732B (en) Twin-bit flash memory cell structure and fabrication thereof
KR100684885B1 (en) Nonvalitile memory device and method for fabricating the same