TWI627385B - Method and system for measuring object movement - Google Patents

Method and system for measuring object movement Download PDF

Info

Publication number
TWI627385B
TWI627385B TW106118901A TW106118901A TWI627385B TW I627385 B TWI627385 B TW I627385B TW 106118901 A TW106118901 A TW 106118901A TW 106118901 A TW106118901 A TW 106118901A TW I627385 B TWI627385 B TW I627385B
Authority
TW
Taiwan
Prior art keywords
image
transformation matrix
feature points
matrix
motion
Prior art date
Application number
TW106118901A
Other languages
Chinese (zh)
Other versions
TW201903357A (en
Inventor
郭士綱
鄭恆星
葉彥良
歐怡良
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW106118901A priority Critical patent/TWI627385B/en
Application granted granted Critical
Publication of TWI627385B publication Critical patent/TWI627385B/en
Publication of TW201903357A publication Critical patent/TW201903357A/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

一種物體運動量測方法,包括:透過影像擷取裝置在不同時間點分別取得第一影像與第二影像,其中第一影像與第二影像是對應至相同的物體;將第一影像中的多個第一特徵點配對至第二影像中的多個第二特徵點;根據第一特徵點與第二特徵點計算出轉換矩陣;對轉換矩陣做數值因式分解;以及將數值因式分解的結果與轉換矩陣模型比對以計算出6個自由度的運動參數。 An object motion measurement method includes: acquiring, by an image capturing device, a first image and a second image at different time points, wherein the first image and the second image correspond to the same object; The first feature points are paired to the plurality of second feature points in the second image; the transformation matrix is calculated according to the first feature point and the second feature point; the numerical factorization of the transformation matrix is performed; and the numerical factor factorization is performed The results are compared to the transformation matrix model to calculate the motion parameters of 6 degrees of freedom.

Description

物體運動量測方法與系統 Object motion measurement method and system

本發明是有關於一種以影像為基礎的物體運動量測方法,且特別是有關於一種只使用一台攝影機的物體運動量測方法。 The present invention relates to an image-based motion measurement method for an object, and more particularly to an object motion measurement method using only one camera.

一般來說,一台攝影機可以量測真實世界中兩個維度上的移動,如果要偵測真實世界中三維的移動,可以架設兩台攝影機,或者是一台攝影機加上一台紅外線偵測儀器。然而,使用兩台攝影機不只成本較高,而且需要較為精細的校正,因此如何使用一台攝影機來量測三維空間中的移動,為此領域技術人員所關心的議題。 In general, a camera can measure movement in two dimensions in the real world. If you want to detect three-dimensional movement in the real world, you can set up two cameras, or a camera plus an infrared detection instrument. . However, the use of two cameras is not only costly, but also requires finer corrections, so how to use a camera to measure movement in three dimensions is a topic of interest to those skilled in the art.

本發明的實施例提出一種物體運動量測方法,適用於電腦系統。此方法包括:透過影像擷取裝置在不同時間點分別取得第一影像與第二影像,其中第一影像與第二影像是對應至相同的物體;將第一影像中的多個第一特徵點配對至第二影像中的多個第二特徵點;根據第一特徵點與第二 特徵點計算出轉換矩陣;對轉換矩陣做數值因式分解;以及將數值因式分解的結果與轉換矩陣模型比對以計算出6個自由度的運動參數。 Embodiments of the present invention provide an object motion measurement method suitable for use in a computer system. The method includes: acquiring, by the image capturing device, the first image and the second image at different time points, wherein the first image and the second image correspond to the same object; and the plurality of first feature points in the first image Pairing to a plurality of second feature points in the second image; according to the first feature point and the second The feature points are calculated by the transformation matrix; the factorization decomposition is performed on the transformation matrix; and the result of the numerical factorization is compared with the transformation matrix model to calculate the motion parameters of the six degrees of freedom.

在一些實施例中,上述將第一影像中的多個第一特徵點配對至第二影像中的多個第二特徵點的步驟包括:對第一影像與第二影像執行數位影像關聯(digital image correlation)演算法。 In some embodiments, the step of pairing the plurality of first feature points in the first image to the plurality of second feature points in the second image comprises: performing digital image correlation on the first image and the second image (digital Image correlation) algorithm.

在一些實施例中,物體運動量測方法,更包括:設定轉換矩陣模型如以下方程式(1)。 In some embodiments, the object motion measurement method further includes: setting a transformation matrix model such as the following equation (1).

H=H P H A H S ...(1) H = H P H A H S ...(1)

其中H為轉換矩陣,HP為投影轉換矩陣、HA為仿射轉換矩陣、HS為相似轉換矩陣。 Where H is the transformation matrix, H P is the projection transformation matrix, H A is the affine transformation matrix, and H S is the similar transformation matrix.

在一些實施例中,對轉換矩陣做數值因式分解的步驟包括設定轉換矩陣如以下方程式(2)~(5),並根據以下方程式(6)~(10)計算出參數K、R、v、t。 In some embodiments, the step of numerical factorization of the transformation matrix comprises setting a transformation matrix such as equations (2) to (5) below, and calculating parameters K, R, v according to equations (6) to (10) below. , t.

v=H 11 -1 h 21...(6) v = H 11 -1 h 21 ...(6)

Kt=(I 2-h 12 v T )-1 h 12...(7) Kt = ( I 2 - h 12 v T ) -1 h 12 (7)

t=K -1(1+v T Kt)h 12...(10)。 t = K -1 (1+ v T Kt ) h 12 (10).

在一些實施例中,將數值因式分解的結果與轉換矩陣模型比對以計算出6個自由度的運動參數的步驟包括:根據以下方程式(11)~(17)計算出6個自由度的運動參數(tx,ty,tz,α,β,θ)。其中f為影像擷取裝置的焦距,X0、Y0、Z0為預設值。 In some embodiments, the step of comparing the result of the numerical factorization with the transformation matrix model to calculate the motion parameters of the six degrees of freedom comprises: calculating six degrees of freedom according to the following equations (11) to (17) Motion parameters (t x , t y , t z , α, β, θ). Where f is the focal length of the image capturing device, and X 0 , Y 0 , and Z 0 are preset values.

α=fHP(3,2)...(11) α = f H P (3,2)...(11)

β=-fHP(3,1)...(12) β =- f H P (3,1)...(12)

θ=-HS(1,2)…(13) θ =-H S (1,2)...(13)

以另外一個角度來說,本發明的實施例提出一種物體運動量測系統,包括物體、影像擷取裝置與電腦系統。物體具有圖案以供辨識。影像擷取裝置用以擷取對應於物體的第一影像與第二影像。電腦系統用以取得第一影像與第二影像,將第一影像中的多個第一特徵點配對至第二影像中的多個第二特徵點,根據第一特徵點與第二特徵點計算出 轉換矩陣,對轉換矩陣做一數值因式分解,並且將數值因式分解的結果與轉換矩陣模型比對以計算出6個自由度的運動參數。 In another aspect, an embodiment of the present invention provides an object motion measurement system including an object, an image capture device, and a computer system. The object has a pattern for identification. The image capturing device is configured to capture the first image and the second image corresponding to the object. The computer system is configured to acquire the first image and the second image, and match the plurality of first feature points in the first image to the plurality of second feature points in the second image, and calculate according to the first feature point and the second feature point Out The transformation matrix is subjected to a numerical factorization decomposition of the transformation matrix, and the result of the numerical factorization is compared with the transformation matrix model to calculate the motion parameters of six degrees of freedom.

在一些實施例中,電腦系統用以對第一影像與第二影像執行數位影像關聯(digital image correlation)演算法。 In some embodiments, the computer system is configured to perform a digital image correlation algorithm on the first image and the second image.

在一些實施例中,電腦系統用以設定轉換矩陣模型如上述方程式(1)。 In some embodiments, the computer system is configured to set a transformation matrix model such as equation (1) above.

在一些實施例中,電腦系統設定轉換矩陣如上述方程式(2)~(5),並且根據上述方程式(6)~(10)計算出參數K、R、v、t。 In some embodiments, the computer system sets the transformation matrix as in equations (2)-(5) above, and calculates the parameters K, R, v, t according to equations (6)-(10) above.

在一些實施例中,電腦系統根據上述方程式(11)~(17)計算出6個自由度的運動參數(tx,ty,tz,α,β,θ)。 In some embodiments, the computer system calculates motion parameters (t x , t y , t z , α, β, θ) of six degrees of freedom according to equations (11) through (17) above.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧物體運動量測系統 100‧‧‧Object motion measurement system

110‧‧‧物體 110‧‧‧ objects

111‧‧‧圖案 111‧‧‧ pattern

120‧‧‧影像擷取裝置 120‧‧‧Image capture device

130‧‧‧電腦系統 130‧‧‧ computer system

X、Y、Z‧‧‧軸 X, Y, Z‧‧‧ axes

210、220‧‧‧物體 210, 220‧‧‧ objects

tx,ty,tz,α,β,θ‧‧‧運動參數 t x , t y , t z , α, β, θ‧‧‧ exercise parameters

310‧‧‧平面座標系統 310‧‧‧planar coordinate system

311‧‧‧物體 311‧‧‧ objects

320‧‧‧投影中心 320‧‧‧Projection Center

330‧‧‧影像座標系統 330‧‧‧Image coordinate system

340‧‧‧主要軸 340‧‧‧ main axis

410‧‧‧第一影像 410‧‧‧ first image

420‧‧‧第二影像 420‧‧‧second image

411~413‧‧‧第一特徵點 411~413‧‧‧ first feature point

421~423‧‧‧第二特徵點 421~423‧‧‧second feature point

510、520‧‧‧程序 510, 520‧‧‧ procedures

511、512、521~523、530‧‧‧步驟 511, 512, 521~523, 530‧‧ steps

611、612‧‧‧軋機 611, 612‧‧‧ rolling mill

621、622‧‧‧標籤 621, 622‧‧ label

631、632‧‧‧影像擷取裝置 631, 632‧‧‧ image capture device

701~705‧‧‧步驟 701~705‧‧‧Steps

[圖1]是根據一實施例繪示物體運動量測系統的示意圖。 FIG. 1 is a schematic diagram showing an object motion measurement system according to an embodiment.

[圖2A]至[圖2D]是根據一實施例繪示物體在三維空間各種移動的示意圖。 2A to 2D are schematic views showing various movements of an object in a three-dimensional space according to an embodiment.

[圖3]是根據一實施例描述三維座標系統與影像座標系統的示意圖。 FIG. 3 is a schematic diagram of a three-dimensional coordinate system and an image coordinate system according to an embodiment.

[圖4]是根據一實施例繪示物體移動前與移動後的影像示意圖。 FIG. 4 is a schematic diagram showing an image before and after an object is moved according to an embodiment.

[圖5]是根據一實施例繪示建立正向模型與反向模型的流程圖。 FIG. 5 is a flow chart showing the establishment of a forward model and a reverse model according to an embodiment.

[圖6]是根據一實施例繪示軋延系統中應用物體運動量測方法的示意圖。 FIG. 6 is a schematic diagram showing a method for measuring the motion of an applied object in a rolling system according to an embodiment.

[圖7]是根據一實施例繪示物體運動量測方法的流程圖。 FIG. 7 is a flow chart showing a method of measuring an object motion according to an embodiment.

關於本文中所使用之『第一』、『第二』、...等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。 The terms "first", "second", "etc." used in this document are not intended to mean the order or the order, and are merely to distinguish between elements or operations described in the same technical terms.

圖1是根據一實施例繪示物體運動量測系統的示意圖,請參照圖1,物體運動量測系統100包括物體110、影像擷取裝置120與電腦系統130。物體110上具有一圖案111以供辨識,圖1中的圖案111僅為範例,本發明並不限制圖案111的大小、顏色、紋路、內容等。此圖案111可以原本就形成於物體110上(由物體110本身的顏色與形狀所構成),也可以額外地形成在物體110上(例如透過印刷、繪製、黏貼具有圖案111的貼紙等等)。圖案111必須具有足夠的特徵(feature),藉此可以辨識出物體110的移動。影像擷取裝置120例如為數位相機、攝影機、攝影鏡頭、或其他具有影像感測器的裝置,用以擷取對應至物體110的影像。電腦系 統130可執行物體運動量測方法來計算出物體110在三維空間上的運動。 1 is a schematic diagram showing an object motion measurement system according to an embodiment. Referring to FIG. 1, the object motion measurement system 100 includes an object 110, an image capture device 120, and a computer system 130. The object 110 has a pattern 111 for identification. The pattern 111 in FIG. 1 is merely an example, and the present invention does not limit the size, color, texture, content, and the like of the pattern 111. This pattern 111 may be originally formed on the object 110 (consisting of the color and shape of the object 110 itself), or may be additionally formed on the object 110 (for example, by printing, drawing, pasting a sticker having the pattern 111, etc.). The pattern 111 must have sufficient features whereby the movement of the object 110 can be recognized. The image capturing device 120 is, for example, a digital camera, a camera, a photographic lens, or other device having an image sensor for capturing an image corresponding to the object 110. Computer department The system 130 can perform an object motion measurement method to calculate the motion of the object 110 in three-dimensional space.

大致上來說,電腦系統130會透過影像擷取裝置120在不同時間點分別取得第一影像與第二影像,將第一影像中的多個第一特徵點配對至第二影像中的多個第二特徵點,根據第一特徵點與第二特徵點計算出轉換矩陣。電腦系統130也會對轉換矩陣做數值因式分解,並且將數值因式分解的結果與轉換矩陣模型比對以計算出6個自由度的運動參數。以下將詳細描述各步驟。 In general, the computer system 130 acquires the first image and the second image at different time points through the image capturing device 120, and pairs the plurality of first feature points in the first image to the plurality of the second image. The second feature point calculates a transformation matrix according to the first feature point and the second feature point. The computer system 130 also performs numerical factorization on the transformation matrix, and compares the result of the numerical factorization with the transformation matrix model to calculate the motion parameters of six degrees of freedom. Each step will be described in detail below.

首先須描述物體在三維空間的移動。圖2A至圖2D是根據一實施例繪示物體在三維空間各種移動的示意圖。在圖2A至圖2D中,X軸沿水平方向延伸,Y軸沿垂直方向延伸,而Z軸是射入紙面(亦等於影像擷取裝置的光軸)。三維空間的移動至少可分為兩類:平面運動(圖2A)與離面運動(圖2B至圖2D)。在圖2A中,物體是在X-Y平面上移動,運動前的物體210和運動後的物體220之間的轉換關係是相似轉換(similar transformation),可用三個運動參數(tx,ty,θ)來描述,其中tx表示在X軸上的位移,ty表示在Y軸上的位移,而θ表示繞著Z軸的旋轉角度。在圖2B中,物體是沿著Z軸移動,運動前的物體210與運動後的物體220之間的關係可用運動參數t z 來表示,t z 為Z軸上的位移。在圖2C中,物體是繞著Y軸旋轉,運動前的物體210與運動後的物體220之間的關係可用運動參數β來表示,β為繞著Y軸的旋轉角度。在圖2D中,物體是繞著X軸旋轉,運動前的物 體210與運動後的物體220之間的關係可用運動參數α來表示,α為繞著X軸的旋轉角度。因此,在此實施例中,物體在三維空間的移動可用六個運動參數(tx,ty,tz,α,β,θ)來表示。 The movement of the object in three dimensions must first be described. 2A-2D are schematic diagrams showing various movements of an object in a three-dimensional space, according to an embodiment. In FIGS. 2A to 2D, the X axis extends in the horizontal direction, the Y axis extends in the vertical direction, and the Z axis is incident on the paper surface (which is also equal to the optical axis of the image capturing device). The movement of three-dimensional space can be divided into at least two categories: planar motion (Fig. 2A) and off-plane motion (Fig. 2B to Fig. 2D). In FIG. 2A, the object is moved in the XY plane, and the conversion relationship between the object 210 before the motion and the object 220 after the motion is a similar transformation, and three motion parameters (t x , t y , θ can be used. To describe, where t x represents the displacement on the X axis, t y represents the displacement on the Y axis, and θ represents the angle of rotation about the Z axis. In Figure 2B, the object is moved in the Z-axis, the relationship between the object after the object 210 before movement and the movement 220 can be used to represent the motion parameter t z, t z is a Z-axis displacement. In Fig. 2C, the object is rotated about the Y axis, and the relationship between the object 210 before the motion and the object 220 after the motion can be expressed by the motion parameter β, which is the angle of rotation about the Y axis. In Fig. 2D, the object is rotated about the X axis, and the relationship between the object 210 before the motion and the object 220 after the motion can be represented by the motion parameter α, which is the angle of rotation about the X axis. Thus, in this embodiment, the movement of the object in three dimensions can be represented by six motion parameters (t x , t y , t z , α, β, θ).

接下來描述在三維座標系統與影像座標系統之間的對應關係。圖3是根據一實施例描述三維座標系統與影像座標系統的示意圖。請參照圖3,圖3中繪示有平面座標系統310、投影中心320(亦稱鏡心)和影像座標系統330。平面座標系統310與影像座標系統330都是X-Y平面上的座標系統。平面座標系統310表示物體311所在的平面,投影中心320表示影像擷取裝置120中透鏡的中心,而影像座標系統330表示影像擷取裝置120中光學感測陣列所形成的平面。投影中心320與影像座標系統330之間的垂直距離是影像擷取裝置120的焦距f。主要軸(principle axis)340是平行於Z軸且穿過投影中心320的直線,主要軸340相交於影像座標系統330上的座標點(px,py),並相交於平面座標系統310上的座標點(X0,Y0)。在此以齊次(homogeneous)表示法來描述座標。物體311在三維空間上的座標為向量X=[X i ,Y i ,Zi,1]T,投影中心320在三維空間上的座標是向量[X0,Y0,-Z0,1]T。經過光學成像以後,物體311在影像座標系統330上的投影是表示為向量x1,則向量x1與向量X具有以下方程式(1)的關係,其中向量和矩陣K分別表示為方程式(2)、(3)。 Next, the correspondence between the three-dimensional coordinate system and the image coordinate system will be described. 3 is a schematic diagram depicting a three-dimensional coordinate system and an image coordinate system, in accordance with an embodiment. Please refer to FIG. 3. FIG. 3 illustrates a planar coordinate system 310, a projection center 320 (also referred to as a mirror core), and an image coordinate system 330. Both the planar coordinate system 310 and the image coordinate system 330 are coordinate systems on the XY plane. Planar coordinate system 310 represents the plane in which object 311 is located, projection center 320 represents the center of the lens in image capture device 120, and image coordinate system 330 represents the plane formed by the optical sensing array in image capture device 120. The vertical distance between the projection center 320 and the image coordinate system 330 is the focal length f of the image capturing device 120. The principal axis 340 is a line parallel to the Z axis and passing through the projection center 320. The main axis 340 intersects the coordinate points (p x , p y ) on the image coordinate system 330 and intersects the planar coordinate system 310. The coordinate point (X 0 , Y 0 ). The coordinates are described here in a homogeneous representation. The coordinates of the object 311 in three-dimensional space are vectors X=[X i ,Y i ,Z i ,1] T , and the coordinates of the projection center 320 in the three-dimensional space are vectors [X 0 , Y 0 , -Z 0 , 1]. T. After optical imaging, the projection of the object 311 on the image coordinate system 330 is represented as a vector x 1 , and the vector x 1 and the vector X have the following equation (1), where the vector And the matrix K are expressed as equations (2) and (3), respectively.

在此設定Z i =0,因此向量X可以減少一個維度,方程式(1)可以改寫為以下方程式(4),其中矩陣L1與向量XP分別表示為方程式(5)、(6)。因此,向量x1可表示為以下方程式(7),其中向量x1已經過正規化,使得向量x1中的第三個元素為1。 Here, Z i =0 is set, so the vector X can be reduced by one dimension, and the equation (1) can be rewritten as the following equation (4), wherein the matrix L 1 and the vector X P are expressed as equations (5) and (6), respectively. Thus, vector x 1 can be expressed as equation (7) below, where vector x 1 has been normalized such that the third element in vector x 1 is one.

x 1=K L 1 X p …(4) x 1 = KL 1 X p ...(4)

X p =[X i Y i 1] T ...(6) X p =[ X i Y i 1] T ...(6)

如果物體311經過運動,假設運動過後物體在影像座標系統330上的座標是表示為向量x2。則向量x2與向量X具有以下方程式(8)的關係,其中矩陣R與向量t分別表示為方程式(9)、(10)。 If the object 311 is moving, it is assumed that the coordinates of the object on the image coordinate system 330 after the motion is represented as a vector x 2 . Then, the vector x 2 and the vector X have the relationship of the following equation (8), wherein the matrix R and the vector t are expressed as equations (9) and (10), respectively.

R=Rot(α)Rot(β)Rot(θ)...(9) R = Rot ( α ) Rot ( β ) Rot ( θ )...(9)

t=[t x t y t z ] T ...(10) t =[ t x t y t z ] T ...(10)

其中矩陣R表示在X、Y、Z軸上分別旋轉α,β,θ的角度以後所形成的位移。由於設定Z i =0,因此向量X可以減少一個維度,方程式(8)可以改寫為以下方程式(11),其中 矩陣L2表示為以下方程式(12)。 The matrix R represents the displacement formed after the angles of α, β, and θ are respectively rotated on the X, Y, and Z axes. Since Z i =0 is set, the vector X can be reduced by one dimension, and the equation (8) can be rewritten as the following equation (11), where the matrix L 2 is expressed as the following equation (12).

x 2=K L 2 X p ...(11) x 2 = KL 2 X p ...(11)

根據方程式(4)與方程式(12),向量x1與向量x2之間的關係可寫為以下方程式(13),其中轉換矩陣H的大小為3 x 3,表示為以下方程式(14)。 According to the equation (4) and the equation (12), the relationship between the vector x 1 and the vector x 2 can be written as the following equation (13), wherein the size of the transformation matrix H is 3 x 3, expressed as the following equation (14).

x 2=H x 1...(13) x 2 = H x 1 ...(13)

請參照圖1與圖4,影像擷取裝置120在物體移動前後會分別取得第一影像410與第二影像420,在此第一影像410是對應至移動前的物體,而第二影像420是對應至移動後的物體。電腦系統130會根據一個數位影像關聯(digital image correlation)的演算法,以分別在第一影像410與第二影像420中找到相互配對的兩個特徵點。例如,第一影像410中的第一特徵點411~413分別是配對至第二影像420中的第二特徵點421~423。每一組相互配對的特徵點都可以代入方程式(13)當中以提供一組解,由於轉換矩陣H中有9個未知數,因此至少需要9對相互配對的特徵點,根據這些相互配對的特徵點可以計算出轉換矩陣H。值得注意的是,本發明並不限制上述數位影像關聯演算法的具體內容,本領域具有通常知識者當可採用任意習知的演算法。 Referring to FIG. 1 and FIG. 4, the image capturing device 120 obtains the first image 410 and the second image 420 before and after the object is moved, where the first image 410 corresponds to the object before the movement, and the second image 420 is Corresponds to the object after the move. The computer system 130 finds two feature points that are paired with each other in the first image 410 and the second image 420 according to a digital image correlation algorithm. For example, the first feature points 411 - 413 in the first image 410 are respectively paired to the second feature points 421 - 423 in the second image 420 . Each set of paired feature points can be substituted into equation (13) to provide a set of solutions. Since there are 9 unknowns in the transformation matrix H, at least 9 pairs of matching feature points are needed, according to the paired feature points. The transformation matrix H can be calculated. It should be noted that the present invention does not limit the specific content of the above-mentioned digital image association algorithm, and those skilled in the art can adopt any conventional algorithm.

在計算出轉換矩陣H以後,便需要計算出上述6個自由度的運動參數(tx ,ty ,tz ,α,β,θ)。然而,要完成此步驟, 需要從攝影機投影理論出發,得到正向模型與反向模型以後,再比對正向模型與反向模型。圖5是根據一實施例繪示建立正向模型與反向模型的流程圖。請參照圖5,建立正向模型的程序510包括了步驟511、512。在步驟511中,推導轉換矩陣H,此部分已描述如以上方程式(1)~(14)。在步驟512中,對轉換矩陣H做公式因式分解以取得多個矩陣內部參數。建立反向模型的程序520包括了步驟521~523。在步驟521中,執行數位影像關聯演算法以取得相互配對的特徵點。在步驟522中,根據這些特徵點計算出轉換矩陣H。在步驟523中,對轉換矩陣H做數值因式分解以取得多個矩陣內部參數。在步驟530中,比對矩陣內部參數以計算出6個自由度的運動參數。步驟521~522已說明如上,以下將說明步驟512、523與530。 After calculating the transformation matrix H, it is necessary to calculate the above six degrees of freedom motion parameters (t x , t y , t z , α , β , θ). However, to complete this step, it is necessary to start from the camera projection theory, and then obtain the forward model and the inverse model, and then compare the forward model with the inverse model. FIG. 5 is a flow chart showing the establishment of a forward model and a reverse model, according to an embodiment. Referring to FIG. 5, the process 510 of establishing a forward model includes steps 511, 512. In step 511, the transformation matrix H is derived, which has been described as equations (1)-(14) above. In step 512, the transformation matrix H is factorized to obtain a plurality of matrix internal parameters. The process 520 of creating a reverse model includes steps 521-523. In step 521, a digital image association algorithm is executed to obtain feature points that are paired with each other. In step 522, the transformation matrix H is calculated from these feature points. In step 523, the transformation matrix H is subjected to numerical factorization to obtain a plurality of matrix internal parameters. In step 530, the matrix internal parameters are compared to calculate a motion parameter of 6 degrees of freedom. Steps 521 to 522 have been explained above, and steps 512, 523 and 530 will be explained below.

在此說明步驟512。首先必須先將轉換矩陣H解為三個矩陣的乘積,如以下方程式(15)所示,其中矩陣HP為投影(project)轉換矩陣,矩陣HA為仿設(affine)轉換矩陣,而矩陣HS為相似(similar)轉換矩陣。 Step 512 is described herein. First, it must convert the matrix H solution is the product of three matrices, such as the following equation (15), wherein the projection matrix P H (Project) transformation matrix, the matrix H A is provided imitation (Affine) transformation matrix, and the matrix H S is a similar transformation matrix.

H=H P H A H S ...(15) H = H P H A H S ...(15)

上述三個矩陣都有其特殊的格式,因此需要先將方程式(14)中的轉換矩陣H改寫,使其符合這三個矩陣的格式。轉換矩陣H重複如以下方程式(16)。 All of the above three matrices have their own special format, so the conversion matrix H in equation (14) needs to be rewritten to conform to the format of the three matrices. The transformation matrix H repeats as shown in the following equation (16).

方程式(16)可以簡化為以下方程式(17)。 Equation (16) can be simplified to the following equation (17).

其中矩陣I2為二階單位矩陣,p=[p x p y ],R 2 =[r 11 r 12 r 21 r 22 ],q=[-X 0 -Y 0 ],r=[r 31 r 32 ]Tz=t z +Z 0 。計算方程式(17)中的反矩陣以後可得到以下方程式(18)。 Where matrix I 2 is a second-order identity matrix, p = [ p x p y ], R 2 = [ r 11 r 12 ; r 21 r 22 ], q = [- X 0 - Y 0 ], r = [ r 31 r 32 ] T , z = t z + Z 0 . The following equation (18) can be obtained by calculating the inverse matrix in equation (17).

因式分解的關鍵在於,先根據以下方程式(19)拆解第二個矩陣。 The key to factorization is to first disassemble the second matrix according to equation (19) below.

因此,上述方程式(18)可以改寫為以下方程式(20),其中α=(r T R 2 -1) T β=-r T R 2 -1 t+zTherefore, the above equation (18) can be rewritten as the following equation (20), where α = ( r T R 2 -1 ) T , β = - r T R 2 -1 t + z .

方程式(20)等號右側的前兩個矩陣可以根據已方程式(21)來改寫,其中v=(α T (f I 2+ T )-1) T The first two matrices to the right of the equation (20) can be rewritten according to equation (21), where v = ( α T ( f I 2 + T ) -1 ) T

因此,方程式(20)可以改寫為以下方程式(23)。 Therefore, equation (20) can be rewritten as equation (23) below.

方程式(23)等號右側的第一個矩陣已經有矩陣HP的形式,接下來必須處理後面四個矩陣。首先合併第二 個與第三個矩陣如以下方程式(24),而第四個矩陣和第五個矩陣可以如以下方程式(25)來合併。方程式(24)、(25)的矩陣可以合併如方程式(26)的矩陣。 The first matrix to the right of the equal sign of equation (23) already has the form of matrix H P , and the next four matrices must be processed. The second and third matrices are first merged as equation (24) below, and the fourth and fifth matrices can be combined as in equation (25) below. The matrix of equations (24), (25) may incorporate a matrix as in equation (26).

然後,方程式(26)中的矩陣可以拆解為以下方程式(27)中的兩個矩陣。 Then, the matrix in equation (26) can be disassembled into two matrices in the following equation (27).

方程式(27)中左邊的矩陣具有矩陣HA的形式,右邊具有矩陣HS的形式。轉換矩陣H可以寫為以下方程式(28)的形式,並且方程式(28)與方程式(29)對應。 The matrix on the left in equation (27) has the form of matrix H A and the right has the form of matrix H S . The transformation matrix H can be written in the form of the following equation (28), and the equation (28) corresponds to the equation (29).

以下稍微簡述如何計算6個運動參數,在此先假這方程式(28)中的數值都已計算出。將上述6個運動參數與圖3中各個座標轉換的參數都代入方程式(29),並與方程式 (28)比對後,可以發現矩陣HP中的向量v可表示為以下方程式(30)。 The following is a brief description of how to calculate the six motion parameters, in which the values in equation (28) are calculated first. After 3 each coordinate conversion parameter of the six motion parameters in FIG. Are substituted into equation (29), and with equation (28) respectively, can be found in the matrix H P the vector v can be expressed as the following equation (30).

也就是說,如果向量v的數值為已知,便可以計算出運動參數α、β。另一方面,方程式(28)中的第二個矩陣HA可以正規化為以下方程式(31)。 That is, if the value of the vector v is known, the motion parameters α, β can be calculated. On the other hand, the second matrix H A in equation (28) can be normalized to the following equation (31).

將上述6個運動參數與圖3中各個座標轉換的參數都代入方程式(29)並根據一次近似的關係式(1+x)-1 1-x,可以得到以下方程式(32)與方程式(33)。 Substituting the above six motion parameters with the parameters converted by each coordinate in Fig. 3 into equation (29) and according to the first approximation (1+ x ) -1 1- x , the following equation (32) and equation (33) can be obtained.

如果矩陣K/d已知,再加上運動參數α、β已算出,則代入方程式(33)以後可以得到運動參數tzIf the matrix K/d is known, plus the motion parameters α, β have been calculated, the motion parameter t z can be obtained after substituting into equation (33).

平面運動的運動參數(tx,ty,θ)則是包含在矩陣HS當中。如果矩陣HS為已知,再加上矩陣R2可表示為以下方程式(34),則可以得到運動參數θ,即θ=-R 2 (1,2)The motion parameters (t x , t y , θ) of the plane motion are included in the matrix H S . If the matrix H S is known, and the matrix R 2 can be expressed as the following equation (34), the motion parameter θ, that is, θ = - R 2 (1, 2 ) can be obtained.

此外,比對方程式(28)與方程式(29)中的矩陣HS,可以得到以下方程式(35),從中可以得到運動參數tx,tyFurthermore, the following equation (35) can be obtained from the equations (28) and the matrix H S in equation (29), from which the motion parameters t x , t y can be obtained.

請參照回圖5,以上已經詳述步驟512。上述段落是先假設計算出方程式(28)中的數值,而實際運作時這些數值是由步驟523所計算出,在此將說明步驟523。在取得轉換矩陣H中的9個數值以後,目標是將轉換矩陣H分解為三個矩陣HP、HA與HS。首先,可先將這三個矩陣相乘,如以下方程式(36)。 Referring back to Figure 5, step 512 has been detailed above. The above paragraph assumes that the values in equation (28) are calculated first, and in actual operation these values are calculated by step 523, and step 523 will be explained here. After obtaining the nine values in the transformation matrix H, the goal is to decompose the transformation matrix H into three matrices H P , H A and H S . First, the three matrices can be multiplied first, as in equation (36) below.

接下來數值因式分解的目的便是求出參數K、R、v、t。由於是齊次表示法,因此可以將方程式(36)中的參數等比例縮放使得H(3,3)=1,縮放後如以下方程式(37),其中的參數H11、h12、h21如以下方程式(38)~(40)。 The purpose of the numerical factorization is to find the parameters K, R, v, t. Since it is a homogeneous representation, the parameters in equation (36) can be scaled so that H(3,3)=1, after scaling, as in the following equation (37), where the parameters H 11 , h 12 , h 21 For example, the following equations (38) ~ (40).

根據上述關係,可得到v T H 11=h 12 T ,進而得到v=H 11 -1 h 21而求出參數v。另一方面,由於h 12(1+v T Kt)=Kt,因此可以得到Kt=(I 2-h 12 v T )-1 h 12,求得Kt。上述方程式(38)可以改寫為以下方程式(41),理由是vTKt為已知,因此從H11便可以算出 RAccording to the above relationship, v T H 11 = h 12 T can be obtained, and v = H 11 -1 h 21 can be obtained to obtain the parameter v. On the other hand, since h 12 (1+ v T Kt )= Kt , Kt = ( I 2 - h 12 v T ) -1 h 12 can be obtained, and Kt is obtained. The above equation (38) can be rewritten as the following equation (41), since v T Kt is known, so it can be calculated from H 11 R.

根據上述方程式(33)、(34)的分析結果,矩陣與矩陣R分別表示為以下方程式(42)、(43),其中變數x,y,z,r分別表示為方程式(44)~(47)。 According to the analysis results of equations (33) and (34) above, the matrix The matrix R is represented by the following equations (42) and (43), respectively, wherein the variables x, y, z, and r are expressed as equations (44) to (47), respectively.

方程式(42)、(43)中需要計算的變數是x,y,z,θ,而矩陣 R便提供了四組解。具體來說,透過以下方程式(48)可以計算出這四個變數。 The variables that need to be calculated in equations (42) and (43) are x, y, z, θ , and the matrix R provides four sets of solutions. Specifically, these four variables can be calculated by the following equation (48).

算出上述四個變數x,y,z,θ以後,便可以求得矩陣與矩陣R,再透過以下方程式(49)可以計算出矩陣K。 After calculating the above four variables x, y, z, θ , we can find the matrix. With the matrix R, the matrix K can be calculated by the following equation (49).

最後,透過以下方程式(50)便可以計算出參數t。 Finally, the parameter t can be calculated by the following equation (50).

t=K -1(1+v T Kt)h 12...(50) t = K -1 (1+ v T Kt ) h 12 ...(50)

根據上述的計算便可以計算出四個參數K、R、v、t,如此一來便完成轉換矩陣H的數值因式分解。 According to the above calculation, four parameters K, R, v, and t can be calculated, and thus the numerical factorization of the transformation matrix H is completed.

請參照回圖5,接下來說明步驟530。首先,為了簡化計算,可以設定p x =p y =0。另外,焦距f為已知,而參數X0、Y0、Z0可透過校正或其他量測的方式來取得,也就是說參數X0、Y0、Z0可當作是預設值,本發明並不限制如何取得參數X0、Y0、Z0。根據上述的方程式(30),由於向量v的數值為已知,便可以計算出運動參數α、β,可參照以下方程式(51)、(52)。 Referring back to Figure 5, step 530 is explained next. First, to simplify the calculation, p x = p y =0 can be set. In addition, the focal length f is known, and the parameters X 0 , Y 0 , Z 0 can be obtained by means of correction or other measurement, that is, the parameters X 0 , Y 0 , Z 0 can be regarded as preset values. The invention does not limit how to obtain the parameters X 0 , Y 0 , Z 0 . According to the above equation (30), since the value of the vector v is known, the motion parameters α and β can be calculated, and the following equations (51) and (52) can be referred to.

α=fHP(3,2)...(51) α = f H P (3,2)...(51)

β=-fHP(3,1)...(52) β =- f H P (3,1)...(52)

接著,從矩陣HS可取得矩陣R2,因此根據以下方程式(53)可計算出運動參數θNext, the matrix R 2 can be taken from the matrix H S , so the motion parameter θ can be calculated according to the following equation (53).

θ=-HS(1,2)...(53) θ =-H S (1,2)...(53)

把上述方程式(35)展開以後,可得到以下方程式(54)、(55),藉此可以計算出運動參數tx、tyAfter the above equation (35) is developed, the following equations (54) and (55) are obtained, whereby the motion parameters t x and t y can be calculated.

最後,根據方程式(33)可得到以下方程式(56),藉此計算出運動參數tzFinally, according to equation (33) yields the following equation (56), thereby to calculate the motion parameters t z.

如此一來,在本發明提出的實施例中,只需要一個影像擷取裝置便可以計算出6個自由度的運動參數。 In this way, in the embodiment of the present invention, only one image capturing device is needed to calculate the motion parameters of six degrees of freedom.

在一些實施例中,上述的物體運動量測方法可 以應用在鋼廠中。圖6是根據一實施例繪示軋延系統中應用物體運動量測方法的示意圖。請參照圖6,軋延系統包括軋機611、612,而軋機611、612上分別設置有標籤621、622。標籤621、622上具有特定的圖案以供辨識。影像擷取裝置631、632分別用以取得標籤621、622的影像,並將影像傳送至電腦系統130。 In some embodiments, the object motion measurement method described above may be Used in steel mills. 6 is a schematic diagram showing a method of measuring an applied object motion in a rolling system according to an embodiment. Referring to FIG. 6, the rolling system includes rolling mills 611 and 612, and the rolling mills 611 and 612 are respectively provided with labels 621 and 622. The labels 621, 622 have a specific pattern for identification. The image capturing devices 631 and 632 are configured to acquire images of the tags 621 and 622, respectively, and transmit the images to the computer system 130.

軋機611、612是用以擠壓一材料,例如將鋼胚擠壓成鋼帶,之後再形成鋼捲。根據軋延理論,軋延時的出口厚度為材料剛性與軋機剛性的平衡點所決定。當材料受到擠壓時,會施予軋機一反作用力使得軋輥朝向間隙大(剛性小)的方向移動。在此實施例中,由電腦系統130可以根據上述的物體運動量測方法來判斷軋機611、612是否有位移,藉此可以針對設備維護效果與軋延問題進行評估。值得注意的是,圖6僅是一範例,上述的標籤621、622與影像擷取裝置631、632可以設置於任意適當的位置,例如在一些實施例中也可以只用一個影像擷取裝置來偵測兩個軋輥上的位移。在一些實施例中軋機611、612也可以是H型軋機或其他任意的軋機,本發明並不在此限。舉例來說,H型軋機具有4個軋輥,分別是兩個水平輥與兩個垂直輥,水平輥控制腹板的軋延,而垂直輥控制翼板的軋延。由於H型鋼本身結構的關係,垂直方向的剛性較大,水平方向的剛性較小,因此當間隙控制不當時,容易出現左右彎曲的現象。為了解垂直輥的彈張方向,與間隙管理是否符合預期,在一些實施例中可以在滾輪推進螺桿處貼附標籤並擷取影像以計 算出6個自由度的運動參數。 The rolling mills 611, 612 are used to extrude a material, for example by extruding a steel blank into a steel strip, and then forming a steel coil. According to the rolling theory, the thickness of the exit of the rolling delay is determined by the balance between the rigidity of the material and the rigidity of the rolling mill. When the material is squeezed, a reaction force of the rolling mill is applied to cause the rolls to move toward a large gap (small rigidity). In this embodiment, the computer system 130 can determine whether the rolling mills 611, 612 are displaced according to the above-described object motion measurement method, thereby evaluating the maintenance effect and the rolling problem of the equipment. It should be noted that FIG. 6 is only an example. The labels 621 and 622 and the image capturing devices 631 and 632 may be disposed at any suitable position. For example, in some embodiments, only one image capturing device may be used. The displacement on the two rolls is detected. In some embodiments, the rolling mills 611, 612 may also be H-type rolling mills or any other rolling mill, and the invention is not limited thereto. For example, an H-roll mill has four rolls, two horizontal rolls and two vertical rolls, the horizontal roll controls the rolling of the web, and the vertical roll controls the rolling of the wings. Due to the structure of the H-shaped steel itself, the rigidity in the vertical direction is large, and the rigidity in the horizontal direction is small. Therefore, when the gap is not properly controlled, the phenomenon of bending left and right is likely to occur. In order to understand the direction of the vertical roll, and whether the gap management is in line with expectations, in some embodiments, the label can be attached to the roller advancement screw and the image can be captured. Calculate the motion parameters of 6 degrees of freedom.

圖7是根據一實施例繪示物體運動量測方法的流程圖。請參照圖7,在步驟701中,透過影像擷取裝置在不同時間點分別取得第一影像與第二影像。在步驟702中,將第一影像中的多個第一特徵點配對至第二影像中的多個第二特徵點。在步驟703中,根據第一特徵點與第二特徵點計算出轉換矩陣。在步驟704中,對轉換矩陣做數值因式分解。在步驟705中,將數值因式分解的結果與轉換矩陣模型比對以計算出6個自由度的運動參數。圖7中各步驟已詳細說明如上,在此便不再贅述。值得注意的是,圖7中各步驟可以實作為多個程式碼或是電路,本發明並不在此限。此外,圖7的方法可以搭配以上實施例使用,也可以單獨使用。換言之,圖7的各步驟之間也可以加入其他的步驟。 7 is a flow chart showing a method of measuring an object motion according to an embodiment. Referring to FIG. 7, in step 701, the first image and the second image are respectively acquired by the image capturing device at different time points. In step 702, a plurality of first feature points in the first image are paired to a plurality of second feature points in the second image. In step 703, a conversion matrix is calculated according to the first feature point and the second feature point. In step 704, a numerical factorization is performed on the transformation matrix. In step 705, the result of the factorization is compared with the transformation matrix model to calculate the motion parameters of six degrees of freedom. The steps in Fig. 7 have been described in detail above, and will not be described again here. It should be noted that the steps in FIG. 7 can be implemented as multiple codes or circuits, and the present invention is not limited thereto. In addition, the method of FIG. 7 can be used in conjunction with the above embodiments, or can be used alone. In other words, other steps can be added between the steps of FIG.

以另外一個角度來說,本發明也提出了一電腦程式產品,此產品可由任意的程式語言及/或平台所撰寫,當此電腦程式產品被載入至電腦系統並執行時,可執行上述的物體運動量測方法。 In another aspect, the present invention also proposes a computer program product, which can be written by any programming language and/or platform. When the computer program product is loaded into a computer system and executed, the above-mentioned Object motion measurement method.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

Claims (10)

一種物體運動量測方法,適用於一電腦系統,包括:透過一影像擷取裝置在不同時間點分別取得一第一影像與一第二影像,該第一影像與該第二影像是對應至相同的物體;將該第一影像中的多個第一特徵點配對至該第二影像中的多個第二特徵點;根據該些第一特徵點與該些第二特徵點計算出一轉換矩陣;對該轉換矩陣做一數值因式分解;以及將該數值因式分解的結果與一轉換矩陣模型比對以計算出6個自由度的運動參數。 An object motion measurement method is applicable to a computer system, comprising: acquiring a first image and a second image at different time points through an image capturing device, wherein the first image and the second image are corresponding to the same image Pairing the plurality of first feature points in the first image with the plurality of second feature points in the second image; calculating a conversion matrix according to the first feature points and the second feature points Performing a numerical factorization on the transformation matrix; and comparing the result of the factorization with a transformation matrix model to calculate a motion parameter of six degrees of freedom. 如申請專利範圍第1項所述之物體運動量測方法,其中將該第一影像中的多個第一特徵點配對至該第二影像中的多個第二特徵點的步驟包括:對該第一影像與該第二影像執行一數位影像關聯(digital image correlation)演算法。 The method for measuring an object motion according to claim 1, wherein the step of pairing the plurality of first feature points in the first image to the plurality of second feature points in the second image comprises: The first image and the second image perform a digital image correlation algorithm. 如申請專利範圍第1項所述之物體運動量測方法,更包括:設定該轉換矩陣模型如以下方程式(1): H=H P H A H S ...(1)其中H為該轉換矩陣,HP為投影轉換矩陣、HA為仿射轉換矩陣、HS為相似轉換矩陣。 The object motion measurement method according to claim 1, further comprising: setting the transformation matrix model as the following equation (1): H = H P H A H S (1) where H is the conversion The matrix, H P is the projection transformation matrix, H A is the affine transformation matrix, and H S is the similar transformation matrix. 如申請專利範圍第3項所述之物體運動量測方法,其中將該轉換矩陣做該數值因式分解的步驟包括:設定該轉換矩陣如以下方程式(2)~(5); 根據以下方程式(6)~(10)計算出參數K、R、v、t:v=H 11 -1 h 21...(6) t=K -1(1+v T Kt)h 12...(10)。 The method for measuring the motion of an object according to claim 3, wherein the step of decomposing the transformation matrix by the numerical factor comprises: setting the transformation matrix as the following equations (2) to (5); Calculate the parameters K, R, v, t according to the following equations (6) to (10): v = H 11 -1 h 21 (6) t = K -1 (1+ v T Kt ) h 12 (10). 如申請專利範圍第4項所述之物體運動量測方法,其中將該數值因式分解的結果與該轉換矩陣模型比對以計算出該6個自由度的運動參數的步驟包括: 根據以下方程式(11)~(17)計算出該6個自由度的運動參數(tx ,ty ,tz ,α,β,θ):α=f HP(3,2)…(11) β=-f HP(3,1)…(12) θ=-HS(1,2)…(13) 其中f為該影像擷取裝置的焦距,X0、Y0、Z0為預設值。 The method for measuring an object motion according to claim 4, wherein the step of comparing the result of the factorization with the transformation matrix model to calculate the motion parameter of the six degrees of freedom comprises: according to the following equation (11)~(17) Calculate the motion parameters of the six degrees of freedom (t x , t y , t z , α , β , θ): α = f H P (3, 2)... (11) β = - f H P (3,1)...(12) θ =-H S (1,2)...(13) Where f is the focal length of the image capturing device, and X 0 , Y 0 , and Z 0 are preset values. 一種物體運動量測系統,包括:一物體,具有一圖案以供辨識;一影像擷取裝置,用以擷取對應於該物體的一第一影像與一第二影像;一電腦系統,用以取得該第一影像與該第二影像,將該第一影像中的多個第一特徵點配對至該第二影像中的多個第二特徵點,根據該些第一特徵點與該些第二特徵點計算出一轉換矩陣,對該轉換矩陣做一數值因式分解,並且將該數值因式分解的結果與一轉換矩陣模型比對以計算出6個自由度的運動參數。 An object motion measurement system includes: an object having a pattern for identification; an image capture device for capturing a first image and a second image corresponding to the object; a computer system for Obtaining the first image and the second image, and pairing the plurality of first feature points in the first image to the plurality of second feature points in the second image, according to the first feature points and the The second feature point calculates a transformation matrix, performs a numerical factorization on the transformation matrix, and compares the result of the factorization with a transformation matrix model to calculate a motion parameter of 6 degrees of freedom. 如申請專利範圍第6項所述之物體運動量測系統,其中該電腦系統用以對該第一影像與該第二影像執行一數位影像關聯(digital image correlation)演算法。 The object motion measurement system of claim 6, wherein the computer system is configured to perform a digital image correlation algorithm on the first image and the second image. 如申請專利範圍第6項所述之物體運動量測系統,其中該電腦系統用以設定該轉換矩陣模型如以下方程式(1):H=H P H A H S ...(1)其中H為該轉換矩陣,HP為投影轉換矩陣、HA為仿射轉換矩陣、HS為相似轉換矩陣。 The object motion measurement system according to claim 6, wherein the computer system is configured to set the transformation matrix model as the following equation (1): H = H P H A H S (1) where H For the transformation matrix, H P is a projection transformation matrix, H A is an affine transformation matrix, and H S is a similar transformation matrix. 如申請專利範圍第8項所述之物體運動量測系統,其中該電腦系統設定該轉換矩陣如以下方程式(2)~(5), 該電腦系統根據以下方程式(6)~(10)計算出參數K、R、v、t:v=H 11 -1 h 21...(6) Kt=(I 2-h 12 v T )-1 h 12...(7) t=K -1(1+v T Kt)h 12...(10)。 The object motion measurement system according to claim 8, wherein the computer system sets the conversion matrix as the following equations (2) to (5), The computer system calculates the parameters K, R, v, t according to the following equations (6) to (10): v = H 11 -1 h 21 (6) Kt = ( I 2 - h 12 v T ) - 1 h 12 ...(7) t = K -1 (1+ v T Kt ) h 12 (10). 如申請專利範圍第9項所述之物體運動量測系統,其中該電腦系統根據以下方程式(11)~(17)計算出該6個自由度的運動參數(tx ,ty ,tz ,α,β,θ):α=f HP(3,2)…(11) β=-f HP(3,1)…(12) θ=-HS(1,2)…(13) 其中f為該影像擷取裝置的焦距,X0、Y0、Z0為預設值。 The object motion measurement system according to claim 9, wherein the computer system calculates the motion parameters (t x , t y , t z , of the six degrees of freedom according to the following equations (11) to (17) . α, β, θ): α = f H P (3,2) ... (11) β = - f H P (3,1) ... (12) θ = -H S (1,2) ... (13) Where f is the focal length of the image capturing device, and X 0 , Y 0 , and Z 0 are preset values.
TW106118901A 2017-06-07 2017-06-07 Method and system for measuring object movement TWI627385B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106118901A TWI627385B (en) 2017-06-07 2017-06-07 Method and system for measuring object movement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106118901A TWI627385B (en) 2017-06-07 2017-06-07 Method and system for measuring object movement

Publications (2)

Publication Number Publication Date
TWI627385B true TWI627385B (en) 2018-06-21
TW201903357A TW201903357A (en) 2019-01-16

Family

ID=63255856

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106118901A TWI627385B (en) 2017-06-07 2017-06-07 Method and system for measuring object movement

Country Status (1)

Country Link
TW (1) TWI627385B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393866B (en) * 2008-10-14 2013-04-21 Raydium Semiconductor Corp Object moving state sensor
WO2014038629A1 (en) * 2012-09-07 2014-03-13 株式会社Ihi Moving body detection method
JP2017090144A (en) * 2015-11-06 2017-05-25 株式会社リコー Object detection device, sensing device and moving body device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393866B (en) * 2008-10-14 2013-04-21 Raydium Semiconductor Corp Object moving state sensor
WO2014038629A1 (en) * 2012-09-07 2014-03-13 株式会社Ihi Moving body detection method
JP2017090144A (en) * 2015-11-06 2017-05-25 株式会社リコー Object detection device, sensing device and moving body device

Also Published As

Publication number Publication date
TW201903357A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
Shao et al. Computer vision based target-free 3D vibration displacement measurement of structures
EP3217355A1 (en) Methods and computer program products for calibrating stereo imaging systems by using a planar mirror
Xian et al. UprightNet: geometry-aware camera orientation estimation from single images
WO2017113535A1 (en) Method and apparatus for geometric calibration of camera
EP3300025B1 (en) Image processing device and image processing method
CN112419429B (en) Large-scale workpiece surface defect detection calibration method based on multiple viewing angles
US20220180560A1 (en) Camera calibration apparatus, camera calibration method, and nontransitory computer readable medium storing program
CN110148177A (en) For determining the method, apparatus of the attitude angle of camera, calculating equipment, computer readable storage medium and acquisition entity
US20180293805A1 (en) Methods and apparatuses for determining positions of multi-directional image capture apparatuses
CN103900504A (en) Nano-scale real-time three-dimensional visual information feedback method
CN112815843A (en) Online monitoring method for workpiece surface printing deviation in 3D printing process
CN111696044B (en) Large-scene dynamic visual observation method and device
Zhang et al. A line scan camera-based structure from motion for high-resolution 3D reconstruction
Sun et al. Three-dimensional structural displacement measurement using monocular vision and deep learning based pose estimation
JP3822482B2 (en) Face orientation calculation method and apparatus
Sentenac et al. Automated thermal 3D reconstruction based on a robot equipped with uncalibrated infrared stereovision cameras
CN114119652A (en) Method and device for three-dimensional reconstruction and electronic equipment
TWI627385B (en) Method and system for measuring object movement
JP2021021577A (en) Image processing device and image processing method
JP4871315B2 (en) Compound eye photographing apparatus, control method therefor, and program
Buribayev et al. The Optimized Distance Calculation Method with Stereo Camera for an Autonomous Tomato Harvesting
CN113643363A (en) Pedestrian positioning and trajectory tracking method based on video image
JP2011118767A (en) Facial expression monitoring method and facial expression monitoring apparatus
JP2006146760A (en) Image transformation method and image transformation system
Park et al. Automated reconstruction model of a cross‐sectional drawing from stereo photographs based on deep learning

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees