WO2017113535A1 - Method and apparatus for geometric calibration of camera - Google Patents

Method and apparatus for geometric calibration of camera Download PDF

Info

Publication number
WO2017113535A1
WO2017113535A1 PCT/CN2016/078908 CN2016078908W WO2017113535A1 WO 2017113535 A1 WO2017113535 A1 WO 2017113535A1 CN 2016078908 W CN2016078908 W CN 2016078908W WO 2017113535 A1 WO2017113535 A1 WO 2017113535A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
camera
cosine distance
parameter
optimization
Prior art date
Application number
PCT/CN2016/078908
Other languages
French (fr)
Chinese (zh)
Inventor
赵博
Original Assignee
完美幻境(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 完美幻境(北京)科技有限公司 filed Critical 完美幻境(北京)科技有限公司
Publication of WO2017113535A1 publication Critical patent/WO2017113535A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Definitions

  • the present invention relates to the field of image processing, and in particular, to a camera geometric calibration processing method and apparatus.
  • Panoramic shooting usually refers to a method of shooting 360 degrees and 180 degrees vertically with a certain point as the center, and stitching a plurality of pictures taken into a single panoramic picture and a picture stitching method.
  • panoramic shooting can include at least a panoramic image and a panoramic video.
  • mapping and stitching are involved.
  • the mapping can be understood as projecting the pixel points on the original picture to the corresponding positions of the panoramic picture
  • the splicing can be understood as a fusion transition of the overlapping areas of the two adjacent original pictures.
  • the camera parameters can be obtained by means of camera geometric calibration, so that the camera point can be subsequently used for pixel point projection.
  • camera parameters may include external parameters of the camera (eg, roll, yaw, pitch, Tx, Ty, Tz) and internal parameters of the camera (eg, u, v, w, alpha, beta, gamma).
  • (Tx, Ty, Tz) represents the translation vector
  • (roll, yaw, pitch) represents the rotation matrix, which represents the z-axis rotation angle ⁇ around the camera coordinate system
  • the rotation angle around the y-axis is ⁇
  • the rotation angle around the x-axis Let ⁇ ; (u, v, w) denote the deflection distortion, and ( ⁇ , ⁇ , ⁇ ) denote the fisheye lens imaging model parameters.
  • L-M algorithm Levenberg-Marquardt algorithm
  • each iterative process needs to obtain a second-order partial derivative for each parameter to be estimated, and obtain a Hessian matrix and a Jacobian matrix.
  • the calibration process involves 12*N parameters to be estimated, which is computationally intensive and requires a lot of calculation time. It is often used for offline calibration of the server, and real-time online processing is not yet available.
  • the local optimal value of the camera parameters can be considered.
  • the local optimum value is affected by the initial value of the camera parameters. Different initial values may cause the variation matrix singularity to occur in different iterations, thus obtaining different local optimal values. Therefore, the method selects the initial value. There are also higher requirements.
  • the embodiment of the invention provides a camera geometric calibration processing method and device, which can greatly reduce the calculation amount involved in the processing process, and is beneficial to real-time online processing.
  • a camera geometric calibration processing method comprising:
  • the method further includes:
  • the determining the initial value of the camera parameter comprises:
  • a random disturbance is added based on the a priori value of the camera to obtain the initial value.
  • the way to obtain the iterative parameters is:
  • Machine learning is performed on the preset samples to obtain the iterative parameters.
  • the machine learning is performed on the preset sample, and the manner of obtaining the first iteration parameter is:
  • (M 0 , N 0 ) represents the first iteration parameter and C j represents the camera identity number.
  • Indicates the camera parameter calibration value of the jth camera Indicates the initial value of the camera parameter of the jth camera, Represents the first cosine distance of the pair of points calculated based on (M 0 , N 0 ).
  • the adjusting the initial value by using the first iteration parameter to obtain a first optimized value is:
  • a camera geometric calibration processing device comprising:
  • a cosine distance calculation unit configured to determine an initial value of the camera parameter, and obtain a first cosine distance of the pair of points calculated based on the initial value, where the pair of points is two of the two adjacent pictures corresponding to the same position of the space coordinate The coordinates of the pixel;
  • An optimization value adjustment unit configured to determine whether the first cosine distance is consistent with a preset value, and if not, acquiring a first iteration parameter, and adjusting the initial value by using the first iteration parameter to obtain a first optimization value;
  • the cosine distance calculation unit is further configured to obtain a second cosine distance of the pair of points calculated based on the first optimization value
  • the calibration value determining unit is configured to determine whether the second cosine distance matches the preset value, and if yes, determine the first optimization value as a camera parameter calibration value.
  • the device further comprises:
  • the optimization value adjustment unit is further configured to: when the second cosine distance does not match the preset value, acquire a second iteration parameter, and adjust the first optimization value by using the second iteration parameter to obtain Second optimized value;
  • the cosine distance calculation unit is further configured to obtain a third cosine distance of the pair of points calculated based on the second optimized value
  • the calibration value determining unit is further configured to determine whether the third cosine distance matches the preset value, and if yes, determine the second optimization value as a camera parameter calibration value.
  • the device further comprises:
  • An iterative parameter obtaining unit configured to perform machine learning on the preset sample, to obtain the first iteration parameter:
  • (M 0 , N 0 ) represents the first iteration parameter and C j represents the camera identity number.
  • Indicates the camera parameter calibration value of the jth camera Indicates the initial value of the camera parameter of the jth camera, Represents the first cosine distance of the pair of points calculated based on (M 0 , N 0 ).
  • the optimization value adjustment unit is specifically configured to be used according to Calculate the first optimized value
  • the scheme of the present invention uses the Taylor polynomial to fit the mapping relationship in the image mosaic process, and converts the optimization problem of the image model parameters into a nonlinear convex quadratic optimization problem of the error between the polynomial and the mapping function.
  • the pixel point projection may be performed based on the current parameter of the camera to obtain a cosine distance between the pair of projected points, and then it is determined according to the cosine distance whether camera parameter optimization is needed, and if not, the current parameter may be used as a camera parameter calibration value.
  • machine learning can be used to obtain iterative parameters to optimize the current parameters, and the optimized parameters are used for iterative calculation until the camera parameter calibration value is obtained.
  • Such a scheme can greatly reduce the amount of calculation involved in the processing process and contribute to real-time online processing.
  • FIG. 1 is a flow chart of a method for processing geometric calibration of a camera of the present invention
  • FIG. 3 is a diagram showing an effect of image stitching implemented according to the prior art solution
  • FIG. 4 is a schematic structural view of a camera geometric calibration processing apparatus of the present invention.
  • the pixel points a and b on the original picture can be mapped into the Equirectangular projection image respectively based on the current camera parameters, and a and b corresponding to the point pairs a' and b' on the Equirectangular image are obtained.
  • a' and b' can be overlapped, the best stitching effect can be achieved.
  • the cosine distance between the vectors a' and b' in the three-dimensional space can be calculated. The cosine distance can reflect the difference between a' and b', and then it can be known whether the current camera parameters are suitable for Panorama picture stitching.
  • the cosine distance can be used to judge whether the current camera parameters are suitable, and if appropriate, the panoramic picture stitching can be performed; if not, the camera parameters can be optimized to determine the camera parameters that can be used for the panorama picture stitching.
  • Calibration value determining whether the camera parameter is appropriate can be understood as whether the cosine distance matches the preset value, that is, whether the cosine distance falls within a range allowed by the preset value.
  • the preset value may be 0.1.
  • the specific value of the preset value is not limited and may be determined by the actual application.
  • a i and b i represent the i-th point pair of the adjacent original picture coincidence region
  • h(*) denotes a function formed by camera parameters to realize coordinate transformation from a point on the original picture to a point on the equidistant spherical image based on camera parameters, eg, a i is converted to a i' , b i is converted to b i′ ; h(*) can be embodied in various forms according to practical applications, and the present invention does not specifically limit this, as long as coordinate conversion can be performed based on camera parameters;
  • C(*,*) represents the cosine distance of two points on the equidistant spherical image, such as the cosine distance of point pairs a i' and b i ' .
  • FIG. 1 a flowchart of a camera geometric calibration processing method according to an embodiment of the present invention is shown, which may include the following steps:
  • S101 Determine a camera parameter initial value, and obtain a first cosine distance of the pair of points calculated based on the initial value, where the pair of points is a coordinate of two pixel points corresponding to the same position of the spatial coordinate in two adjacent pictures.
  • the invention determines whether the camera parameter optimization is needed by judging whether the cosine distance of the point pair falls within the allowable range of the preset value, so the initial value of a camera parameter may be selected first, and the point pair is performed based on the initial value. Mapping, and then extracting the first cosine distance of the pair of points corresponding to the initial value.
  • the initial value in the solution of the present invention may be set in combination with actual operational experience; or, considering that the prior value of the camera parameter is generally a superior value, the solution in the solution of the present invention may also be set according to the prior value.
  • the initial value may determine the a priori value of the camera parameter as an initial value; or, the random disturbance may be added to the camera's prior value to obtain an initial value.
  • the random disturbance value may be set according to the actual operation experience, or the random disturbance value may be set to ⁇ (a priori value / 100), which may not be specifically limited in the embodiment of the present invention.
  • C j represents the identity number of the jth camera at the time of panorama shooting.
  • a j, i and b j, i represents the i-th point pair on the original picture taken by the jth camera, which can be Substituting the formula f(x), the first cosine distance d 1 of the pair of points calculated based on the initial value is obtained.
  • S102 Determine whether the first cosine distance is consistent with a preset value. If not, obtain a first iteration parameter, and adjust the initial value by using the first iteration parameter to obtain a first optimization value.
  • a judgment as to whether or not to optimize the camera parameters can be performed, that is, whether or not d 1 matches the preset value.
  • the first cosine distance matching the preset value can be understood as d 1 ⁇ 0.1, otherwise the first cosine distance is considered to be inconsistent with the preset value.
  • the first iteration parameter may be obtained from the predetermined set of iterative parameters, and the initial value in S101 is adjusted by using the first iteration parameter to obtain the first optimized value of the camera parameter.
  • camera parameters can be optimized by the following formula: Where (M k-1 , N k-1 ) represents the kth iteration parameter, Indicates the camera parameters that the jth camera needs to be optimized, Indicates the camera parameters optimized for the jth camera.
  • the first optimized value (M 0 , N 0 ) represents the first iteration parameter, Indicates the initial value of the camera parameter of the jth camera, Represents the first cosine distance d 1 of the pair of points calculated based on (M 0 , N 0 ).
  • an iterative parameter set can be obtained by performing machine learning on a preset sample.
  • a set of iterative parameters is required for each iteration.
  • the iterative process may be ended, and the first optimized value is obtained. It is determined as the parameter calibration value of the jth camera, and the pixel stitching based on the calibration value can optimize the stitching effect of the panoramic picture.
  • the present invention uses the Taylor polynomial to fit the mapping relationship in the image stitching process, and transforms the image model parameter optimization problem into a nonlinear convex quadratic optimization problem between the polynomial and the mapping function.
  • the camera geometric calibration based on the solution of the present invention does not need to obtain the second-order partial derivative according to the existing scheme, which can greatly reduce the calculation amount involved in the processing, and is helpful for real-time online processing.
  • the invention is based on a machine learning algorithm to fit the gradient descent direction in the optimization problem, and also simplifies the process flow, which helps accelerate the convergence speed. Improve the convergence efficiency of optimization problems.
  • the camera parameter calibration value determined based on the solution of the present invention is not easy to fall into local optimum, so that the optimization precision of the solution of the present invention is higher.
  • the judgment result of S104 indicates that d 2 does not match the preset value, it indicates that the camera parameter calibration value is further obtained through a further iterative process.
  • the second iteration parameter may be obtained, and the first optimization value is adjusted by using the second iteration parameter to obtain a second optimization value; and the third point of the point pair calculated based on the second optimization value is obtained. a cosine distance; determining whether the third cosine distance matches the preset value, and if so, determining the second optimized value as a camera parameter calibration value.
  • the manner of obtaining the second optimized value the manner of calculating the third cosine distance by using the second optimized value, the manner of determining whether the third cosine distance matches the preset value, the manner of performing subsequent processing according to the determination result, and the like
  • the manner of obtaining the second optimized value the manner of calculating the third cosine distance by using the second optimized value
  • the manner of determining whether the third cosine distance matches the preset value the manner of performing subsequent processing according to the determination result, and the like
  • a set of iterative parameters can be obtained by means of machine learning.
  • training samples are used to learn the set of iterative parameters ⁇ M 0 , M 1 , . . . , M k-1 , M k ⁇ and ⁇ N 0 , which are required for each iteration.
  • the camera parameter calibration value representing the jth camera is a 12*n-dimensional vector
  • a series of point pairs ⁇ a j,i ,b j,i ⁇ , a j,i and b j,i represent the i-th point pair on the original picture taken by the jth camera;
  • Camera parameter initial value Indicates the initial value of the camera parameter of the jth camera.
  • the first iteration parameter (M 0 , N 0 ) can be obtained by solving the following linear optimization problem:
  • the solution of the present invention does not specifically limit the value of k and the value of the iterative parameter, and may be determined by practical applications.
  • an iterative parameter set can be obtained by combining machine learning and parameter verification.
  • the learning may be performed according to the process shown in the first method, and the learned iterative parameter set is referred to as a test iteration parameter set.
  • test samples such as a series of point pairs ⁇ a i , b i ⁇ of a test camera
  • inventive scheme starting from the initial value of the camera parameters, using the above test iterative parameter set for camera parameter optimization, and k times after the iteration, obtaining points ⁇ a i, b i ⁇ on the image projected spherical surface equidistant ⁇ a i ', b i' ⁇ , and thus obtain error parameters of the test camera.
  • the error parameter can be an average pixel error and a highest pixel error.
  • the error parameter matches the preset threshold, it is considered that the test iteration parameter set obtained in the learning phase is available, and is determined as the iterative parameter set in the solution of the present invention; if the error parameter does not match the preset threshold, the test phase is considered to be obtained.
  • the iterative parameter set is not available, corresponding to this, the initial value of the camera parameter in the learning phase can be adjusted.
  • the machine learning is performed based on the adjusted initial value of the camera parameter until the error parameter obtained in the parameter verification phase matches the preset threshold. As an example, adjust the camera parameter initial value during the learning phase. It is possible to add a random disturbance based on the initial value.
  • test environment involved in the verification is Intel i5 processor (3.3 GHz), Win7 Pro system.
  • the solution of the present invention is also superior to the prior art in terms of the effect of the picture stitching.
  • the effect display diagram of the picture stitching implemented according to the solution of the present invention shown in FIG. The effect display diagram of the picture stitching realized by the prior art scheme, especially the circled area in the figure.
  • the embodiment of the present invention further provides a camera geometric calibration processing device.
  • the device may include:
  • a cosine distance calculation unit 201 configured to determine a camera parameter initial value, and obtain a first cosine distance of the pair of points calculated based on the initial value, where the pair of points is two of the two adjacent pictures corresponding to the same position of the space coordinate The coordinates of the pixels;
  • the optimization value adjustment unit 202 is configured to determine whether the first cosine distance matches the preset value, and if not, acquire the first iteration parameter, and adjust the initial value by using the first iteration parameter to obtain the first Optimization value
  • the cosine distance calculation unit 201 is further configured to obtain a second cosine distance of the pair of points calculated based on the first optimization value
  • the calibration value determining unit 203 is configured to determine whether the second cosine distance matches the preset value, and if yes, determine the first optimization value as a camera parameter calibration value.
  • the device further includes:
  • the optimization value adjustment unit is further configured to: when the second cosine distance does not match the preset value, acquire a second iteration parameter, and adjust the first optimization value by using the second iteration parameter to obtain Second optimized value;
  • the cosine distance calculation unit is further configured to obtain a third cosine distance of the pair of points calculated based on the second optimized value
  • the calibration value determining unit is further configured to determine whether the third cosine distance matches the preset value, and if yes, determine the second optimization value as a camera parameter calibration value.
  • the device further includes:
  • An iterative parameter obtaining unit configured to perform machine learning on the preset sample, to obtain the first iteration parameter:
  • (M 0 , N 0 ) represents the first iteration parameter and C j represents the camera identity number.
  • Indicates the camera parameter calibration value of the jth camera Indicates the initial value of the camera parameter of the jth camera, Represents the first cosine distance of the pair of points calculated based on (M 0 , N 0 ).
  • the optimization value adjustment unit is specifically configured to be used according to Calculate the first optimized value

Abstract

Provided in the embodiments of the present invention are a method and apparatus for the geometric calibration of a camera, the method comprising: determining a camera parameter starting value, and acquiring a first cosine distance of a point pair calculated on the basis of the starting value, the point pair being the coordinates of two pixel points corresponding to the same spatial coordinate position in two adjacent pictures; determining whether the first cosine distance matches a preset value, and if not, then acquiring first iteration parameters, and using the first iteration parameters to adjust the starting value to acquire a first optimised value; acquiring a second cosine distance of the point pair calculated on the basis of the optimised value; determining whether the second cosine distance matches the preset value, and if so, then determining that the first optimised value is the camera parameter calibration value. The present solution greatly reduces the amount of calculation involved in the processing, and is beneficial for the implementation of real-time online processing.

Description

一种相机几何标定处理方法及装置Camera geometric calibration processing method and device 技术领域Technical field
本发明涉及图像处理领域,特别涉及一种相机几何标定处理方法及装置。The present invention relates to the field of image processing, and in particular, to a camera geometric calibration processing method and apparatus.
背景技术Background technique
全景拍摄,通常是指以某个点为中心进行水平360度和垂直180度拍摄,将所拍摄的多张图片拼接成一张全景图片的拍摄及图片拼接方法。一般来说,全景拍摄至少可包括全景图像和全景视频两种形式。Panoramic shooting usually refers to a method of shooting 360 degrees and 180 degrees vertically with a certain point as the center, and stitching a plurality of pictures taken into a single panoramic picture and a picture stitching method. In general, panoramic shooting can include at least a panoramic image and a panoramic video.
通常,在利用所拍摄的多张原始图片拼接成一张全景图片时,会涉及映射和拼接两部分。其中,映射可以理解为将原始图片上的像素点投射到全景图片对应的位置上,拼接可以理解为对相邻两张原始图片的重叠区域进行融合过渡。Usually, when stitching a plurality of original pictures taken into one panoramic picture, mapping and stitching are involved. The mapping can be understood as projecting the pixel points on the original picture to the corresponding positions of the panoramic picture, and the splicing can be understood as a fusion transition of the overlapping areas of the two adjacent original pictures.
为了确定空间物体表面某点的三维几何位置与其在原始图片中对应点之间的相互关系,可以通过相机几何标定的方式,获得相机参数,以便后续可以利用所述相机参数进行像素点投影。通常,相机参数可包括相机的外参(如,roll,yaw,pitch,Tx,Ty,Tz)和相机的内参(如u,v,w,α,β,γ)。其中,(Tx,Ty,Tz)表示平移向量,(roll,yaw,pitch)表示旋转矩阵,分别代表绕相机坐标系z轴旋转角度为γ,绕y轴旋转角度为β,绕x轴旋转角度为α;(u,v,w)表示偏向畸变,(α,β,γ)表示鱼眼镜头成像模型参数。In order to determine the relationship between the three-dimensional geometric position of a point on the surface of the space object and its corresponding point in the original picture, the camera parameters can be obtained by means of camera geometric calibration, so that the camera point can be subsequently used for pixel point projection. Typically, camera parameters may include external parameters of the camera (eg, roll, yaw, pitch, Tx, Ty, Tz) and internal parameters of the camera (eg, u, v, w, alpha, beta, gamma). Where (Tx, Ty, Tz) represents the translation vector, (roll, yaw, pitch) represents the rotation matrix, which represents the z-axis rotation angle γ around the camera coordinate system, the rotation angle around the y-axis is β, and the rotation angle around the x-axis Let α; (u, v, w) denote the deflection distortion, and (α, β, γ) denote the fisheye lens imaging model parameters.
目前,大多利用Levenberg-Marquardt算法(可简称为L-M算法)进行迭代计算,实现相机几何标定。该方式中,每次迭代过程都需要对每一个待估参数求二阶偏导,得到黑塞(Hessian)矩阵和雅克比(Jacobi)矩阵。当采用N个相机进行全景拍摄时,标定过程涉及12*N个待估参数,计算量庞大,需要耗费大量的计算时间,常用于服务器离线(offline)标定,目前还无法实现实时在线处理。 At present, most of them use the Levenberg-Marquardt algorithm (abbreviated as L-M algorithm) to perform iterative calculation to realize camera geometric calibration. In this method, each iterative process needs to obtain a second-order partial derivative for each parameter to be estimated, and obtain a Hessian matrix and a Jacobian matrix. When adopting N cameras for panoramic shooting, the calibration process involves 12*N parameters to be estimated, which is computationally intensive and requires a lot of calculation time. It is often used for offline calibration of the server, and real-time online processing is not yet available.
另外,基于L-M算法进行几何标定时,若迭代过程中出现两个矩阵的行列式为零,即变换矩阵奇异,则可认为得到了相机参数的局部最优值。通常,局部最优值会受相机参数初始值的影响,不同初始值可能会导致在不同的迭代过程中出现变化矩阵奇异,从而得到不同的局部最优值,因此,该方式对初始值的选取还存在较高的要求。In addition, based on the L-M algorithm for geometric calibration, if the determinant of the two matrices is zero in the iterative process, that is, the transformation matrix is singular, then the local optimal value of the camera parameters can be considered. Generally, the local optimum value is affected by the initial value of the camera parameters. Different initial values may cause the variation matrix singularity to occur in different iterations, thus obtaining different local optimal values. Therefore, the method selects the initial value. There are also higher requirements.
发明内容Summary of the invention
本发明实施例提供一种相机几何标定处理方法及装置,可大大降低处理过程所涉及的计算量,有助于实现实时在线处理。The embodiment of the invention provides a camera geometric calibration processing method and device, which can greatly reduce the calculation amount involved in the processing process, and is beneficial to real-time online processing.
一种相机几何标定处理方法,所述方法包括:A camera geometric calibration processing method, the method comprising:
确定相机参数初始值,并获得基于所述初始值计算出的点对的第一余弦距离,所述点对为两张相邻图片中对应于空间坐标同一位置的两个像素点的坐标;Determining a camera parameter initial value, and obtaining a first cosine distance of the pair of points calculated based on the initial value, the point pair being coordinates of two pixel points corresponding to the same position of the spatial coordinate in two adjacent pictures;
判断所述第一余弦距离是否与预设值相符,如果否,则获取第一迭代参数,并利用所述第一迭代参数调整所述初始值,获得第一优化值;Determining whether the first cosine distance is consistent with a preset value, if not, acquiring a first iteration parameter, and adjusting the initial value by using the first iteration parameter to obtain a first optimization value;
获得基于所述第一优化值计算出的所述点对的第二余弦距离;Obtaining a second cosine distance of the pair of points calculated based on the first optimized value;
判断所述第二余弦距离是否与所述预设值相符,如果是,则将所述第一优化值确定为相机参数标定值。Determining whether the second cosine distance matches the preset value, and if so, determining the first optimized value as a camera parameter calibration value.
优选的,如果所述第二余弦距离与所述预设值不符,所述方法还包括:Preferably, if the second cosine distance does not match the preset value, the method further includes:
获取第二迭代参数,并利用所述第二迭代参数调整所述第一优化值,获得第二优化值;Obtaining a second iteration parameter, and adjusting the first optimization value by using the second iteration parameter to obtain a second optimization value;
获得基于所述第二优化值计算出的所述点对的第三余弦距离;Obtaining a third cosine distance of the pair of points calculated based on the second optimized value;
判断所述第三余弦距离是否与所述预设值相符,如果是,则将所述第二优化值确定为相机参数标定值。Determining whether the third cosine distance matches the preset value, and if so, determining the second optimized value as a camera parameter calibration value.
优选的,所述确定相机参数初始值,包括:Preferably, the determining the initial value of the camera parameter comprises:
将所述相机参数的先验值确定为所述初始值;或者,Determining an a priori value of the camera parameter as the initial value; or
在所述相机的先验值的基础上增加随机扰动,获得所述初始值。A random disturbance is added based on the a priori value of the camera to obtain the initial value.
优选的,获得迭代参数的方式为:Preferably, the way to obtain the iterative parameters is:
对预设样本进行机器学习,获得所述迭代参数。 Machine learning is performed on the preset samples to obtain the iterative parameters.
优选的,对预设样本进行机器学习,获得所述第一迭代参数的方式为:Preferably, the machine learning is performed on the preset sample, and the manner of obtaining the first iteration parameter is:
Figure PCTCN2016078908-appb-000001
Figure PCTCN2016078908-appb-000001
其中,(M0,N0)表示第一迭代参数,Cj表示相机身份编号,
Figure PCTCN2016078908-appb-000002
表示第j个相机的相机参数标定值,
Figure PCTCN2016078908-appb-000003
表示第j个相机的相机参数初始值,
Figure PCTCN2016078908-appb-000004
表示基于(M0,N0)计算出的点对的第一余弦距离。
Where (M 0 , N 0 ) represents the first iteration parameter and C j represents the camera identity number.
Figure PCTCN2016078908-appb-000002
Indicates the camera parameter calibration value of the jth camera,
Figure PCTCN2016078908-appb-000003
Indicates the initial value of the camera parameter of the jth camera,
Figure PCTCN2016078908-appb-000004
Represents the first cosine distance of the pair of points calculated based on (M 0 , N 0 ).
优选的,所述利用所述第一迭代参数调整所述初始值,获得第一优化值
Figure PCTCN2016078908-appb-000005
的方式为:
Figure PCTCN2016078908-appb-000006
Preferably, the adjusting the initial value by using the first iteration parameter to obtain a first optimized value
Figure PCTCN2016078908-appb-000005
The way is:
Figure PCTCN2016078908-appb-000006
一种相机几何标定处理装置,所述装置包括:A camera geometric calibration processing device, the device comprising:
余弦距离计算单元,用于确定相机参数初始值,并获得基于所述初始值计算出的点对的第一余弦距离,所述点对为两张相邻图片中对应于空间坐标同一位置的两个像素点的坐标;a cosine distance calculation unit, configured to determine an initial value of the camera parameter, and obtain a first cosine distance of the pair of points calculated based on the initial value, where the pair of points is two of the two adjacent pictures corresponding to the same position of the space coordinate The coordinates of the pixel;
优化值调整单元,用于判断所述第一余弦距离是否与预设值相符,如果否,则获取第一迭代参数,并利用所述第一迭代参数调整所述初始值,获得第一优化值;An optimization value adjustment unit, configured to determine whether the first cosine distance is consistent with a preset value, and if not, acquiring a first iteration parameter, and adjusting the initial value by using the first iteration parameter to obtain a first optimization value;
所述余弦距离计算单元,还用于获得基于所述第一优化值计算出的所述点对的第二余弦距离;The cosine distance calculation unit is further configured to obtain a second cosine distance of the pair of points calculated based on the first optimization value;
标定值确定单元,用于判断所述第二余弦距离是否与所述预设值相符,如果是,则将所述第一优化值确定为相机参数标定值。The calibration value determining unit is configured to determine whether the second cosine distance matches the preset value, and if yes, determine the first optimization value as a camera parameter calibration value.
优选的,所述装置还包括:Preferably, the device further comprises:
所述优化值调整单元,还用于在所述第二余弦距离与所述预设值不符时,获取第二迭代参数,并利用所述第二迭代参数调整所述第一优化值,获得第二优化值;The optimization value adjustment unit is further configured to: when the second cosine distance does not match the preset value, acquire a second iteration parameter, and adjust the first optimization value by using the second iteration parameter to obtain Second optimized value;
所述余弦距离计算单元,还用于获得基于所述第二优化值计算出的所述点对的第三余弦距离;The cosine distance calculation unit is further configured to obtain a third cosine distance of the pair of points calculated based on the second optimized value;
所述标定值确定单元,还用于判断所述第三余弦距离是否与所述预设值相符,如果是,则将所述第二优化值确定为相机参数标定值。The calibration value determining unit is further configured to determine whether the third cosine distance matches the preset value, and if yes, determine the second optimization value as a camera parameter calibration value.
优选的,所述装置还包括:Preferably, the device further comprises:
迭代参数获得单元,用于对预设样本进行机器学习,获得所述第一迭代参数: An iterative parameter obtaining unit, configured to perform machine learning on the preset sample, to obtain the first iteration parameter:
Figure PCTCN2016078908-appb-000007
Figure PCTCN2016078908-appb-000007
其中,(M0,N0)表示第一迭代参数,Cj表示相机身份编号,
Figure PCTCN2016078908-appb-000008
表示第j个相机的相机参数标定值,
Figure PCTCN2016078908-appb-000009
表示第j个相机的相机参数初始值,
Figure PCTCN2016078908-appb-000010
表示基于(M0,N0)计算出的点对的第一余弦距离。
Where (M 0 , N 0 ) represents the first iteration parameter and C j represents the camera identity number.
Figure PCTCN2016078908-appb-000008
Indicates the camera parameter calibration value of the jth camera,
Figure PCTCN2016078908-appb-000009
Indicates the initial value of the camera parameter of the jth camera,
Figure PCTCN2016078908-appb-000010
Represents the first cosine distance of the pair of points calculated based on (M 0 , N 0 ).
优选的,所述优化值调整单元,具体用于根据
Figure PCTCN2016078908-appb-000011
计算获得第一优化值
Figure PCTCN2016078908-appb-000012
Preferably, the optimization value adjustment unit is specifically configured to be used according to
Figure PCTCN2016078908-appb-000011
Calculate the first optimized value
Figure PCTCN2016078908-appb-000012
与现有技术相比,本发明方案使用泰勒多项式拟合图片拼接过程中的映射关系,将图像模型参数的优化问题转化为多项式与映射函数之间误差的非线性凸二次优化问题。具体地,可基于相机当前参数进行像素点投影,获得所投影点对之间的余弦距离,再根据余弦距离判断是否需要进行相机参数优化,如果不需要,则可将当前参数作为相机参数标定值;如果需要,则可利用机器学习获得迭代参数优化当前参数,并利用优化后的参数进行迭代计算,直至获得相机参数标定值为止。如此方案,可大大降低处理过程所涉及的计算量,有助于实现实时在线处理。Compared with the prior art, the scheme of the present invention uses the Taylor polynomial to fit the mapping relationship in the image mosaic process, and converts the optimization problem of the image model parameters into a nonlinear convex quadratic optimization problem of the error between the polynomial and the mapping function. Specifically, the pixel point projection may be performed based on the current parameter of the camera to obtain a cosine distance between the pair of projected points, and then it is determined according to the cosine distance whether camera parameter optimization is needed, and if not, the current parameter may be used as a camera parameter calibration value. If necessary, machine learning can be used to obtain iterative parameters to optimize the current parameters, and the optimized parameters are used for iterative calculation until the camera parameter calibration value is obtained. Such a scheme can greatly reduce the amount of calculation involved in the processing process and contribute to real-time online processing.
附图说明DRAWINGS
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings used in the description of the embodiments will be briefly described below. It is obvious that the drawings in the following description are only some embodiments of the present invention. Other drawings may also be obtained from those of ordinary skill in the art in view of the drawings.
图1是本发明相机几何标定处理方法的流程图;1 is a flow chart of a method for processing geometric calibration of a camera of the present invention;
图2是基于本发明方案实现的图片拼接的效果展示图;2 is a diagram showing an effect of image stitching implemented according to the solution of the present invention;
图3是基于现有技术方案实现的图片拼接的效果展示图;FIG. 3 is a diagram showing an effect of image stitching implemented according to the prior art solution; FIG.
图4是本发明相机几何标定处理装置的结构示意图。4 is a schematic structural view of a camera geometric calibration processing apparatus of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本 发明保护的范围。The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts are The scope of the invention is protected.
在介绍本发明具体方案之前,先对本发明设计思路做简单介绍。Before introducing the specific scheme of the present invention, the design idea of the present invention will be briefly introduced.
在进行全景拍摄时,任两个相邻相机所拍摄原始图片中会存在部分重叠区域,对这部分重叠区域进行融合过渡,可获得全景图片。对应于此,我们可以理解为,对于重叠区域来说,存在如下场景:两张相邻原始图片A和B,图片A中存在一个像素点a,图片B中存在一个像素点b,且a和b均对应于空间坐标中的同一个位置。对应于此,可以将像素点a和b称为一个点对。When performing panoramic shooting, there may be a partial overlapping area in the original picture taken by two adjacent cameras, and the overlapping area is merged to obtain a panoramic picture. Corresponding to this, we can understand that for the overlapping area, there are the following scenes: two adjacent original pictures A and B, one pixel point a exists in picture A, one pixel point b exists in picture B, and both a and b Corresponds to the same position in the space coordinates. Corresponding to this, the pixel points a and b can be referred to as a point pair.
拼接过程中,可以基于当前相机参数,分别将原始图片上的像素点a和b映射到Equirectangular(等距球面)投影图像中,获得a和b对应于Equirectangular图像上的点对a′和b′,通常,若a′和b′能够重合,则可达到最佳拼接效果。作为一种示例,可以计算三维空间中向量a′和b′之间的余弦距离,通过该余弦距离可反映出a′和b′之间的差距,进而便可得知当前相机参数是否适用于全景图片拼接。During the splicing process, the pixel points a and b on the original picture can be mapped into the Equirectangular projection image respectively based on the current camera parameters, and a and b corresponding to the point pairs a' and b' on the Equirectangular image are obtained. In general, if a' and b' can be overlapped, the best stitching effect can be achieved. As an example, the cosine distance between the vectors a' and b' in the three-dimensional space can be calculated. The cosine distance can reflect the difference between a' and b', and then it can be known whether the current camera parameters are suitable for Panorama picture stitching.
也就是说,可以通过余弦距离来判断当前相机参数是否合适,如果合适,则可用其进行全景图片拼接;如果不合适,则可进行相机参数优化,以便确定出能够用于全景图片拼接的相机参数标定值。本发明方案中,判断相机参数是否合适,可以理解为余弦距离是否与预设值相符,即余弦距离是否落入预设值允许的范围内。举例来说,预设值可以为0.1,通常,预设值越小,也就是说余弦距离越趋近于0,基于优化得到的标定值拼接出的全景图片效果越好,本发明实施例对预设值的具体取值不做限定,可由实际应用而定。That is to say, the cosine distance can be used to judge whether the current camera parameters are suitable, and if appropriate, the panoramic picture stitching can be performed; if not, the camera parameters can be optimized to determine the camera parameters that can be used for the panorama picture stitching. Calibration value. In the solution of the present invention, determining whether the camera parameter is appropriate can be understood as whether the cosine distance matches the preset value, that is, whether the cosine distance falls within a range allowed by the preset value. For example, the preset value may be 0.1. Generally, the smaller the preset value is, that is, the closer the cosine distance is to 0, the better the effect of the panoramic picture stitched based on the optimized calibration value is. The specific value of the preset value is not limited and may be determined by the actual application.
综上,我们便可将全景相机几何标定过程,转化为寻找一个梯度方向步长Δx求解如下最优化问题:In summary, we can convert the panoramic camera geometry calibration process to find a gradient direction step size Δx to solve the following optimization problems:
Figure PCTCN2016078908-appb-000013
Figure PCTCN2016078908-appb-000013
其中,
Figure PCTCN2016078908-appb-000014
among them,
Figure PCTCN2016078908-appb-000014
ai和bi表示相邻原始图片重合区域的第i个点对;a i and b i represent the i-th point pair of the adjacent original picture coincidence region;
h(*)表示一个由相机参数形成的函数,以便基于相机参数实现从原始 图片上的点到等距球面图像上的点的坐标变换,如,ai转换为ai′,bi转换为bi′;根据实际应用,h(*)通常可体现为多种形式,本发明对此并不做具体限定,只要能基于相机参数进行坐标转换即可;h(*) denotes a function formed by camera parameters to realize coordinate transformation from a point on the original picture to a point on the equidistant spherical image based on camera parameters, eg, a i is converted to a i' , b i is converted to b i′ ; h(*) can be embodied in various forms according to practical applications, and the present invention does not specifically limit this, as long as coordinate conversion can be performed based on camera parameters;
C(*,*)表示求解等距球面图像上两个点的余弦距离,如点对ai′和bi′的余弦距离。C(*,*) represents the cosine distance of two points on the equidistant spherical image, such as the cosine distance of point pairs a i' and b i ' .
下面对本发明方案进行举例说明。The scheme of the present invention will be exemplified below.
参考图1,示出了本发明实施例相机几何标定处理方法的流程图,可以包括以下步骤:Referring to FIG. 1, a flowchart of a camera geometric calibration processing method according to an embodiment of the present invention is shown, which may include the following steps:
S101,确定相机参数初始值,并获得基于所述初始值计算出的点对的第一余弦距离,所述点对为两张相邻图片中对应于空间坐标同一位置的两个像素点的坐标。S101. Determine a camera parameter initial value, and obtain a first cosine distance of the pair of points calculated based on the initial value, where the pair of points is a coordinate of two pixel points corresponding to the same position of the spatial coordinate in two adjacent pictures.
本发明通过判断点对的余弦距离是否落入预设值允许范围的方式,来判断是否需要进行相机参数优化,故,可先选取一个相机参数的初始值,并基于这一初始值进行点对映射,进而求取出对应于初始值时,该点对的第一余弦距离。The invention determines whether the camera parameter optimization is needed by judging whether the cosine distance of the point pair falls within the allowable range of the preset value, so the initial value of a camera parameter may be selected first, and the point pair is performed based on the initial value. Mapping, and then extracting the first cosine distance of the pair of points corresponding to the initial value.
举例来说,可以结合实际操作经验设置本发明方案中的初始值;或者,考虑到相机参数的先验值通常已是较优的值,故还可根据先验值来设置本发明方案中的初始值,如,可以将相机参数的先验值确定为初始值;或者,可以在相机的先验值的基础上增加随机扰动,获得初始值。举例来说,可以根据实际操作经验设置随机扰动值,或者,还可将随机扰动值设置为±(先验值/100),本发明实施例对此可不做具体限定。For example, the initial value in the solution of the present invention may be set in combination with actual operational experience; or, considering that the prior value of the camera parameter is generally a superior value, the solution in the solution of the present invention may also be set according to the prior value. The initial value, for example, may determine the a priori value of the camera parameter as an initial value; or, the random disturbance may be added to the camera's prior value to obtain an initial value. For example, the random disturbance value may be set according to the actual operation experience, or the random disturbance value may be set to ± (a priori value / 100), which may not be specifically limited in the embodiment of the present invention.
举例来说,Cj表示全景拍摄时第j个相机的身份编号,
Figure PCTCN2016078908-appb-000015
表示第j个相机的相机参数初始值,aj,i和bj,i表示第j个相机所拍摄的原始图片上的第i个点对,可以将
Figure PCTCN2016078908-appb-000016
代入公式f(x),获得基于初始值计算出的点对的第一余弦距离d1
For example, C j represents the identity number of the jth camera at the time of panorama shooting.
Figure PCTCN2016078908-appb-000015
Indicates the initial value of the camera parameter of the jth camera, a j, i and b j, i represents the i-th point pair on the original picture taken by the jth camera, which can be
Figure PCTCN2016078908-appb-000016
Substituting the formula f(x), the first cosine distance d 1 of the pair of points calculated based on the initial value is obtained.
S102,判断所述第一余弦距离是否与预设值相符,如果否,则获取第一迭代参数,并利用所述第一迭代参数调整所述初始值,获得第一优化值。S102. Determine whether the first cosine distance is consistent with a preset value. If not, obtain a first iteration parameter, and adjust the initial value by using the first iteration parameter to obtain a first optimization value.
获得d1后,便可执行一次是否优化相机参数的判断,即,判断d1是 否与预设值相符。仍以预设值为0.1为例,第一余弦距离与预设值相符可以理解为d1≤0.1,否则认为第一余弦距离与预设值不相符。After obtaining d 1 , a judgment as to whether or not to optimize the camera parameters can be performed, that is, whether or not d 1 matches the preset value. Still taking the preset value as 0.1 as an example, the first cosine distance matching the preset value can be understood as d 1 ≤ 0.1, otherwise the first cosine distance is considered to be inconsistent with the preset value.
如果经判断认为需要相机参数进行优化,则可从预先确定出的迭代参数集合中,获得第一迭代参数,并利用第一迭代参数调整S101中的初始值,获得相机参数的第一优化值。If it is determined that the camera parameter is required to be optimized, the first iteration parameter may be obtained from the predetermined set of iterative parameters, and the initial value in S101 is adjusted by using the first iteration parameter to obtain the first optimized value of the camera parameter.
举例来说,可通过下述公式优化相机参数:
Figure PCTCN2016078908-appb-000017
其中,(Mk-1,Nk-1)表示第k个迭代参数,
Figure PCTCN2016078908-appb-000018
表示第j个相机需要被优化的相机参数,
Figure PCTCN2016078908-appb-000019
表示第j个相机优化后的相机参数。
For example, camera parameters can be optimized by the following formula:
Figure PCTCN2016078908-appb-000017
Where (M k-1 , N k-1 ) represents the kth iteration parameter,
Figure PCTCN2016078908-appb-000018
Indicates the camera parameters that the jth camera needs to be optimized,
Figure PCTCN2016078908-appb-000019
Indicates the camera parameters optimized for the jth camera.
本步骤中,第一优化值
Figure PCTCN2016078908-appb-000020
(M0,N0)表示第一迭代参数,
Figure PCTCN2016078908-appb-000021
表示第j个相机的相机参数初始值,
Figure PCTCN2016078908-appb-000022
表示基于(M0,N0)计算出的点对的第一余弦距离d1
In this step, the first optimized value
Figure PCTCN2016078908-appb-000020
(M 0 , N 0 ) represents the first iteration parameter,
Figure PCTCN2016078908-appb-000021
Indicates the initial value of the camera parameter of the jth camera,
Figure PCTCN2016078908-appb-000022
Represents the first cosine distance d 1 of the pair of points calculated based on (M 0 , N 0 ).
本发明方案中,可以通过对预设样本进行机器学习的方式,获得迭代参数集合,通常,每进行一次迭代就需要一组迭代参数。对于本发明获得迭代参数的方式可参见下文所做介绍,此处暂不详述。In the solution of the present invention, an iterative parameter set can be obtained by performing machine learning on a preset sample. Generally, a set of iterative parameters is required for each iteration. For the manner in which the present invention obtains iterative parameters, reference is made to the following description, which will not be described in detail herein.
S103,获得基于所述第一优化值计算出的所述点对的第二余弦距离。S103. Obtain a second cosine distance of the pair of points calculated based on the first optimized value.
S104,判断所述第二余弦距离是否与所述预设值相符,如果是,则将所述第一优化值确定为相机参数标定值。S104. Determine whether the second cosine distance matches the preset value. If yes, determine the first optimization value as a camera parameter calibration value.
与S101相类似的,获得第一优化值
Figure PCTCN2016078908-appb-000023
后,便可将
Figure PCTCN2016078908-appb-000024
代入公式f(x),获得对应于第一优化值时,该点对的第二余弦距离d2,进而再利用d2执行一次是否优化相机参数的判断。
Similar to S101, obtaining the first optimized value
Figure PCTCN2016078908-appb-000023
After that, you will be
Figure PCTCN2016078908-appb-000024
Substituting the formula f(x), the second cosine distance d 2 of the pair of points corresponding to the first optimized value is obtained, and then the determination of whether to optimize the camera parameter is performed again by using d 2 .
具体地,若判断结果表示d2与预设值相符,则可结束迭代过程,将第一优化值
Figure PCTCN2016078908-appb-000025
确定为第j个相机的参数标定值,基于该标定值进行像素点映射时,可使全景图片的拼接效果达到最佳。
Specifically, if the judgment result indicates that d 2 matches the preset value, the iterative process may be ended, and the first optimized value is obtained.
Figure PCTCN2016078908-appb-000025
It is determined as the parameter calibration value of the jth camera, and the pixel stitching based on the calibration value can optimize the stitching effect of the panoramic picture.
综上可知,本发明使用泰勒多项式拟合图片拼接过程中的映射关系,将图像模型参数的优化问题转化为多项式与映射函数之间误差的非线性凸二次优化问题。基于本发明方案实现的相机几何标定,不需如现有方案对待估参数求二阶偏导,可大大降低处理过程所涉及的计算量,有助于实现实时在线处理。另外,本发明基于机器学习的算法拟合优化问题中梯度下降方向,还使得处理流程上得以简化,有助于加速收敛速度, 提升优化问题的收敛效率。此外,基于本发明方案确定出的相机参数标定值不容易陷入局部最优,使本发明方案的优化精度更高。In summary, the present invention uses the Taylor polynomial to fit the mapping relationship in the image stitching process, and transforms the image model parameter optimization problem into a nonlinear convex quadratic optimization problem between the polynomial and the mapping function. The camera geometric calibration based on the solution of the present invention does not need to obtain the second-order partial derivative according to the existing scheme, which can greatly reduce the calculation amount involved in the processing, and is helpful for real-time online processing. In addition, the invention is based on a machine learning algorithm to fit the gradient descent direction in the optimization problem, and also simplifies the process flow, which helps accelerate the convergence speed. Improve the convergence efficiency of optimization problems. In addition, the camera parameter calibration value determined based on the solution of the present invention is not easy to fall into local optimum, so that the optimization precision of the solution of the present invention is higher.
可选地,如果S104的判断结果表示d2与预设值不符,则说明还需通过进一步的迭代过程来获得相机参数标定值。具体地,可以获取第二迭代参数,并利用所述第二迭代参数调整所述第一优化值,获得第二优化值;获得基于所述第二优化值计算出的所述点对的第三余弦距离;判断所述第三余弦距离是否与所述预设值相符,如果是,则将所述第二优化值确定为相机参数标定值。本示例中,获得第二优化值的方式、利用第二优化值计算第三余弦距离的方式、判断第三余弦距离是否与预设值相符的方式、根据判断结果进行后续处理的方式等等,均可参照上文S102~S104处所做介绍,此处不再赘述。Optionally, if the judgment result of S104 indicates that d 2 does not match the preset value, it indicates that the camera parameter calibration value is further obtained through a further iterative process. Specifically, the second iteration parameter may be obtained, and the first optimization value is adjusted by using the second iteration parameter to obtain a second optimization value; and the third point of the point pair calculated based on the second optimization value is obtained. a cosine distance; determining whether the third cosine distance matches the preset value, and if so, determining the second optimized value as a camera parameter calibration value. In this example, the manner of obtaining the second optimized value, the manner of calculating the third cosine distance by using the second optimized value, the manner of determining whether the third cosine distance matches the preset value, the manner of performing subsequent processing according to the determination result, and the like For example, reference may be made to the descriptions made at S102 to S104 above, and details are not described herein again.
下面对本发明获得迭代参数集合的方式做简单介绍。The following briefly introduces the manner in which the present invention obtains an iterative parameter set.
方式一,可通过机器学习的方式获得迭代参数集合。In the first method, a set of iterative parameters can be obtained by means of machine learning.
具体地,通过机器学习中的监督学习的思想,使用训练样本来学习出每次迭代所需的迭代参数集合{M0,M1,…,Mk-1,Mk}和{N0,N1,…,Nk-1,Nk}。Specifically, through the idea of supervised learning in machine learning, training samples are used to learn the set of iterative parameters {M 0 , M 1 , . . . , M k-1 , M k } and {N 0 , which are required for each iteration. N 1 ,...,N k-1 ,N k }.
训练样本所涉及的参数可体现如下:The parameters involved in the training sample can be reflected as follows:
一系列用于全景拍摄的相机的身份编码{Cj};a series of camera encodings for panoramic photography {C j };
相机参数标定值
Figure PCTCN2016078908-appb-000026
表示第j个相机的相机参数标定值,是一个12*n维向量;
Camera parameter calibration value
Figure PCTCN2016078908-appb-000026
The camera parameter calibration value representing the jth camera is a 12*n-dimensional vector;
一系列点对{aj,i,bj,i},aj,i和bj,i表示第j个相机所拍摄的原始图片上的第i个点对;A series of point pairs {a j,i ,b j,i }, a j,i and b j,i represent the i-th point pair on the original picture taken by the jth camera;
相机参数初始值
Figure PCTCN2016078908-appb-000027
表示第j个相机的相机参数初始值。
Camera parameter initial value
Figure PCTCN2016078908-appb-000027
Indicates the initial value of the camera parameter of the jth camera.
结合上述样本参数,可通过求解下面的线性最优化问题获得第一迭代参数(M0,N0):Combining the above sample parameters, the first iteration parameter (M 0 , N 0 ) can be obtained by solving the following linear optimization problem:
Figure PCTCN2016078908-appb-000028
Figure PCTCN2016078908-appb-000028
获得(M0,N0)后,可依据
Figure PCTCN2016078908-appb-000029
计算得到第一优化值
Figure PCTCN2016078908-appb-000030
同时,还可将
Figure PCTCN2016078908-appb-000031
代入公式f(x),计算获得
Figure PCTCN2016078908-appb-000032
进而依据下式获得本发明方案中的第二迭代参数(M1,N1):
After obtaining (M 0 , N 0 ), it can be based on
Figure PCTCN2016078908-appb-000029
Calculate the first optimized value
Figure PCTCN2016078908-appb-000030
At the same time, it can also
Figure PCTCN2016078908-appb-000031
Substituting the formula f(x), the calculation is obtained
Figure PCTCN2016078908-appb-000032
The second iterative parameter (M 1 , N 1 ) in the solution of the invention is obtained according to the following formula:
Figure PCTCN2016078908-appb-000033
Figure PCTCN2016078908-appb-000033
参照上述方式不断计算,便可确定出本发明方案所需迭代参数集合。举例来说,经上述学习过程发现k=5时可得到较好的结果,则学习结束后,可获得如下迭代参数集合{M0,M1,M2,M3,M4,M5}和{N0,N1,N2,N3,N4,N5}。本发明方案对k的取值、迭代参数的取值等不做具体限定,可由实际应用而定。By continuously calculating with reference to the above method, the set of iterative parameters required for the inventive scheme can be determined. For example, when the above learning process finds that k=5, better results are obtained, and after the end of the learning, the following iterative parameter sets {M 0 , M 1 , M 2 , M 3 , M 4 , M 5 } are obtained. And {N 0 , N 1 , N 2 , N 3 , N 4 , N 5 }. The solution of the present invention does not specifically limit the value of k and the value of the iterative parameter, and may be determined by practical applications.
方式二,可通过机器学习和参数校验相结合的方式获得迭代参数集合。In the second method, an iterative parameter set can be obtained by combining machine learning and parameter verification.
具体地,可按照方式一所示过程进行学习,并将学习得到的迭代参数集合称为测试迭代参数集合。然后利用测试样本,如某台测试相机的一系列点对{ai,bi},采用本发明方案,从相机参数初始值开始,使用上述测试迭代参数集合进行相机参数优化,并在k次迭代后,获取点对{ai,bi}在等距球面图像上的投影{ai′,bi′},进而得到该测试相机的误差参数。举例来说,误差参数可以为平均像素误差和最高像素误差。Specifically, the learning may be performed according to the process shown in the first method, and the learned iterative parameter set is referred to as a test iteration parameter set. Then using test samples, such as a series of point pairs {a i , b i } of a test camera, using the inventive scheme, starting from the initial value of the camera parameters, using the above test iterative parameter set for camera parameter optimization, and k times after the iteration, obtaining points {a i, b i} on the image projected spherical surface equidistant {a i ', b i' }, and thus obtain error parameters of the test camera. For example, the error parameter can be an average pixel error and a highest pixel error.
通常,如果误差参数与预设阈值相符,则认为学习阶段所得测试迭代参数集合可用,将其确定为本发明方案中的迭代参数集合;如果误差参数与预设阈值不符,则认为学习阶段所得测试迭代参数集合不可用,对应于此,则可调整学习阶段的相机参数初始值
Figure PCTCN2016078908-appb-000034
并基于调整后的相机参数初始值进行机器学习,直至参数校验阶段得到的误差参数与预设阈值相符为止。作为一种示例,调整学习阶段的相机参数初始值
Figure PCTCN2016078908-appb-000035
可以为,在初始值的基础上加入随机扰动。
Generally, if the error parameter matches the preset threshold, it is considered that the test iteration parameter set obtained in the learning phase is available, and is determined as the iterative parameter set in the solution of the present invention; if the error parameter does not match the preset threshold, the test phase is considered to be obtained. The iterative parameter set is not available, corresponding to this, the initial value of the camera parameter in the learning phase can be adjusted.
Figure PCTCN2016078908-appb-000034
The machine learning is performed based on the adjusted initial value of the camera parameter until the error parameter obtained in the parameter verification phase matches the preset threshold. As an example, adjust the camera parameter initial value during the learning phase.
Figure PCTCN2016078908-appb-000035
It is possible to add a random disturbance based on the initial value.
为了更好的验证本发明方案所带来的有益效果,还提供下表所示实验对比结果。需要说明的是,该验证所涉及测试环境为intel i5处理器(3.3GHz),Win7 Pro系统。In order to better verify the beneficial effects of the inventive solution, the experimental comparison results shown in the table below are also provided. It should be noted that the test environment involved in the verification is Intel i5 processor (3.3 GHz), Win7 Pro system.
  平均像素误差Average pixel error 最高像素误差Highest pixel error 迭代次数Number of iterations 运算时间(s)Operation time (s)
本发明方案Solution of the invention 1.851.85 5.205.20 55 33
现有技术current technology 3.253.25 8.758.75 2020 1616
表1 900万像素(2048×1536×3)三头全景相机标定结果 Table 1 9 million pixel (2048 × 1536 × 3) three-head panoramic camera calibration results
除上述实验对比结果之外,从图片拼接效果上来看,本发明方案亦优于现有技术,具体可参见图2所示基于本发明方案实现的图片拼接的效果展示图、图3所示基于现有技术方案实现的图片拼接的效果展示图,特别是图中所圈区域。In addition to the above-mentioned experimental comparison results, the solution of the present invention is also superior to the prior art in terms of the effect of the picture stitching. For details, refer to the effect display diagram of the picture stitching implemented according to the solution of the present invention shown in FIG. The effect display diagram of the picture stitching realized by the prior art scheme, especially the circled area in the figure.
与上文所述方法相对应地,本发明实施例还提供一种相机几何标定处理装置,参见图4,所述装置可包括:Corresponding to the method described above, the embodiment of the present invention further provides a camera geometric calibration processing device. Referring to FIG. 4, the device may include:
余弦距离计算单元201,用于确定相机参数初始值,并获得基于所述初始值计算出的点对的第一余弦距离,所述点对为两张相邻图片中对应于空间坐标同一位置的两个像素点的坐标;a cosine distance calculation unit 201, configured to determine a camera parameter initial value, and obtain a first cosine distance of the pair of points calculated based on the initial value, where the pair of points is two of the two adjacent pictures corresponding to the same position of the space coordinate The coordinates of the pixels;
优化值调整单元202,用于判断所述第一余弦距离是否与预设值相符,如果否,则获取第一迭代参数,并利用所述第一迭代参数调整所述初始值,获得第一优化值;The optimization value adjustment unit 202 is configured to determine whether the first cosine distance matches the preset value, and if not, acquire the first iteration parameter, and adjust the initial value by using the first iteration parameter to obtain the first Optimization value
所述余弦距离计算单元201,还用于获得基于所述第一优化值计算出的所述点对的第二余弦距离;The cosine distance calculation unit 201 is further configured to obtain a second cosine distance of the pair of points calculated based on the first optimization value;
标定值确定单元203,用于判断所述第二余弦距离是否与所述预设值相符,如果是,则将所述第一优化值确定为相机参数标定值。The calibration value determining unit 203 is configured to determine whether the second cosine distance matches the preset value, and if yes, determine the first optimization value as a camera parameter calibration value.
可选的,所述装置还包括:Optionally, the device further includes:
所述优化值调整单元,还用于在所述第二余弦距离与所述预设值不符时,获取第二迭代参数,并利用所述第二迭代参数调整所述第一优化值,获得第二优化值;The optimization value adjustment unit is further configured to: when the second cosine distance does not match the preset value, acquire a second iteration parameter, and adjust the first optimization value by using the second iteration parameter to obtain Second optimized value;
所述余弦距离计算单元,还用于获得基于所述第二优化值计算出的所述点对的第三余弦距离;The cosine distance calculation unit is further configured to obtain a third cosine distance of the pair of points calculated based on the second optimized value;
所述标定值确定单元,还用于判断所述第三余弦距离是否与所述预设值相符,如果是,则将所述第二优化值确定为相机参数标定值。The calibration value determining unit is further configured to determine whether the third cosine distance matches the preset value, and if yes, determine the second optimization value as a camera parameter calibration value.
可选的,所述装置还包括:Optionally, the device further includes:
迭代参数获得单元,用于对预设样本进行机器学习,获得所述第一迭代参数:An iterative parameter obtaining unit, configured to perform machine learning on the preset sample, to obtain the first iteration parameter:
Figure PCTCN2016078908-appb-000036
Figure PCTCN2016078908-appb-000036
其中,(M0,N0)表示第一迭代参数,Cj表示相机身份编号,
Figure PCTCN2016078908-appb-000037
表示第j个相机的相机参数标定值,
Figure PCTCN2016078908-appb-000038
表示第j个相机的相机参数初始值,
Figure PCTCN2016078908-appb-000039
表示基于(M0,N0)计算出的点对的第一余弦距离。
Where (M 0 , N 0 ) represents the first iteration parameter and C j represents the camera identity number.
Figure PCTCN2016078908-appb-000037
Indicates the camera parameter calibration value of the jth camera,
Figure PCTCN2016078908-appb-000038
Indicates the initial value of the camera parameter of the jth camera,
Figure PCTCN2016078908-appb-000039
Represents the first cosine distance of the pair of points calculated based on (M 0 , N 0 ).
可选的,所述优化值调整单元,具体用于根据
Figure PCTCN2016078908-appb-000040
计算获得第一优化值
Figure PCTCN2016078908-appb-000041
Optionally, the optimization value adjustment unit is specifically configured to be used according to
Figure PCTCN2016078908-appb-000040
Calculate the first optimized value
Figure PCTCN2016078908-appb-000041
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。It should be noted that each embodiment in the specification is described in a progressive manner, and each embodiment focuses on differences from other embodiments, and the same similar parts between the embodiments are referred to each other. can. For the device type embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
最后,还需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。Finally, it is also to be understood that the term "comprises", "comprising" or any other variants thereof is intended to encompass a non-exclusive inclusion, such that a process, method, article, or device comprising a plurality of elements includes Those elements, but also other elements not explicitly listed, or elements that are inherent to such a process, method, item or equipment. An element that is defined by the phrase "comprising a ..." does not exclude the presence of additional equivalent elements in the process, method, item, or device that comprises the element.
以上对本发明所提供的方案进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。 The foregoing provides a detailed description of the solution provided by the present invention. The principles and embodiments of the present invention are described herein by using specific examples. The description of the above embodiments is only for helping to understand the method and the core idea of the present invention; The present invention is not limited by the scope of the present invention, and the details of the present invention are not limited by the scope of the present invention.

Claims (10)

  1. 一种相机几何标定处理方法,其特征在于,所述方法包括:A camera geometric calibration processing method, characterized in that the method comprises:
    确定相机参数初始值,并获得基于所述初始值计算出的点对的第一余弦距离,所述点对为两张相邻图片中对应于空间坐标同一位置的两个像素点的坐标;Determining a camera parameter initial value, and obtaining a first cosine distance of the pair of points calculated based on the initial value, the point pair being coordinates of two pixel points corresponding to the same position of the spatial coordinate in two adjacent pictures;
    判断所述第一余弦距离是否与预设值相符,如果否,则获取第一迭代参数,并利用所述第一迭代参数调整所述初始值,获得第一优化值;Determining whether the first cosine distance is consistent with a preset value, if not, acquiring a first iteration parameter, and adjusting the initial value by using the first iteration parameter to obtain a first optimization value;
    获得基于所述第一优化值计算出的所述点对的第二余弦距离;Obtaining a second cosine distance of the pair of points calculated based on the first optimized value;
    判断所述第二余弦距离是否与所述预设值相符,如果是,则将所述第一优化值确定为相机参数标定值。Determining whether the second cosine distance matches the preset value, and if so, determining the first optimized value as a camera parameter calibration value.
  2. 根据权利要求1所述的方法,其特征在于,如果所述第二余弦距离与所述预设值不符,所述方法还包括:The method according to claim 1, wherein if the second cosine distance does not match the preset value, the method further comprises:
    获取第二迭代参数,并利用所述第二迭代参数调整所述第一优化值,获得第二优化值;Obtaining a second iteration parameter, and adjusting the first optimization value by using the second iteration parameter to obtain a second optimization value;
    获得基于所述第二优化值计算出的所述点对的第三余弦距离;Obtaining a third cosine distance of the pair of points calculated based on the second optimized value;
    判断所述第三余弦距离是否与所述预设值相符,如果是,则将所述第二优化值确定为相机参数标定值。Determining whether the third cosine distance matches the preset value, and if so, determining the second optimized value as a camera parameter calibration value.
  3. 根据权利要求1所述的方法,其特征在于,所述确定相机参数初始值,包括:The method of claim 1 wherein said determining camera parameter initial values comprises:
    将所述相机参数的先验值确定为所述初始值;或者,Determining an a priori value of the camera parameter as the initial value; or
    在所述相机的先验值的基础上增加随机扰动,获得所述初始值。A random disturbance is added based on the a priori value of the camera to obtain the initial value.
  4. 根据权利要求1至3任一项所述的方法,其特征在于,获得迭代参数的方式为:The method according to any one of claims 1 to 3, characterized in that the manner of obtaining the iterative parameters is:
    对预设样本进行机器学习,获得所述迭代参数。Machine learning is performed on the preset samples to obtain the iterative parameters.
  5. 根据权利要求4所述的方法,其特征在于,对预设样本进行机器学习,获得所述第一迭代参数的方式为:The method according to claim 4, wherein the machine learning is performed on the preset sample, and the first iteration parameter is obtained by:
    Figure PCTCN2016078908-appb-100001
    Figure PCTCN2016078908-appb-100001
    其中,(M0,N0)表示第一迭代参数,Cj表示相机身份编号,
    Figure PCTCN2016078908-appb-100002
    表示第j个相机的相机参数标定值,
    Figure PCTCN2016078908-appb-100003
    表示第j个相机的相机参数初始值,
    Figure PCTCN2016078908-appb-100004
    表 示基于(M0,N0)计算出的点对的第一余弦距离。
    Where (M 0 , N 0 ) represents the first iteration parameter and C j represents the camera identity number.
    Figure PCTCN2016078908-appb-100002
    Indicates the camera parameter calibration value of the jth camera,
    Figure PCTCN2016078908-appb-100003
    Indicates the initial value of the camera parameter of the jth camera,
    Figure PCTCN2016078908-appb-100004
    The first cosine distance of the pair of points calculated based on (M 0 , N 0 ) is expressed.
  6. 根据权利要求5所述的方法,其特征在于,所述利用所述第一迭代参数调整所述初始值,获得第一优化值
    Figure PCTCN2016078908-appb-100005
    的方式为:
    Figure PCTCN2016078908-appb-100006
    The method according to claim 5, wherein said adjusting said initial value by said first iteration parameter to obtain a first optimized value
    Figure PCTCN2016078908-appb-100005
    The way is:
    Figure PCTCN2016078908-appb-100006
  7. 一种相机几何标定处理装置,其特征在于,所述装置包括:A camera geometric calibration processing device, characterized in that the device comprises:
    余弦距离计算单元,用于确定相机参数初始值,并获得基于所述初始值计算出的点对的第一余弦距离,所述点对为两张相邻图片中对应于空间坐标同一位置的两个像素点的坐标;a cosine distance calculation unit, configured to determine an initial value of the camera parameter, and obtain a first cosine distance of the pair of points calculated based on the initial value, where the pair of points is two of the two adjacent pictures corresponding to the same position of the space coordinate The coordinates of the pixel;
    优化值调整单元,用于判断所述第一余弦距离是否与预设值相符,如果否,则获取第一迭代参数,并利用所述第一迭代参数调整所述初始值,获得第一优化值;An optimization value adjustment unit, configured to determine whether the first cosine distance is consistent with a preset value, and if not, acquiring a first iteration parameter, and adjusting the initial value by using the first iteration parameter to obtain a first optimization value;
    所述余弦距离计算单元,还用于获得基于所述第一优化值计算出的所述点对的第二余弦距离;The cosine distance calculation unit is further configured to obtain a second cosine distance of the pair of points calculated based on the first optimization value;
    标定值确定单元,用于判断所述第二余弦距离是否与所述预设值相符,如果是,则将所述第一优化值确定为相机参数标定值。The calibration value determining unit is configured to determine whether the second cosine distance matches the preset value, and if yes, determine the first optimization value as a camera parameter calibration value.
  8. 根据权利要求7所述的装置,其特征在于,所述装置还包括:The device according to claim 7, wherein the device further comprises:
    所述优化值调整单元,还用于在所述第二余弦距离与所述预设值不符时,获取第二迭代参数,并利用所述第二迭代参数调整所述第一优化值,获得第二优化值;The optimization value adjustment unit is further configured to: when the second cosine distance does not match the preset value, acquire a second iteration parameter, and adjust the first optimization value by using the second iteration parameter to obtain Second optimized value;
    所述余弦距离计算单元,还用于获得基于所述第二优化值计算出的所述点对的第三余弦距离;The cosine distance calculation unit is further configured to obtain a third cosine distance of the pair of points calculated based on the second optimized value;
    所述标定值确定单元,还用于判断所述第三余弦距离是否与所述预设值相符,如果是,则将所述第二优化值确定为相机参数标定值。The calibration value determining unit is further configured to determine whether the third cosine distance matches the preset value, and if yes, determine the second optimization value as a camera parameter calibration value.
  9. 根据权利要求7所述的装置,其特征在于,所述装置还包括:The device according to claim 7, wherein the device further comprises:
    迭代参数获得单元,用于对预设样本进行机器学习,获得所述第一迭代参数:An iterative parameter obtaining unit, configured to perform machine learning on the preset sample, to obtain the first iteration parameter:
    Figure PCTCN2016078908-appb-100007
    Figure PCTCN2016078908-appb-100007
    其中,(M0,N0)表示第一迭代参数,Cj表示相机身份编号,
    Figure PCTCN2016078908-appb-100008
    表示第j个相机的相机参数标定值,
    Figure PCTCN2016078908-appb-100009
    表示第j个相机的相机参数初始值,
    Figure PCTCN2016078908-appb-100010
    表示基于(M0,N0)计算出的点对的第一余弦距离。
    Where (M 0 , N 0 ) represents the first iteration parameter and C j represents the camera identity number.
    Figure PCTCN2016078908-appb-100008
    Indicates the camera parameter calibration value of the jth camera,
    Figure PCTCN2016078908-appb-100009
    Indicates the initial value of the camera parameter of the jth camera,
    Figure PCTCN2016078908-appb-100010
    Represents the first cosine distance of the pair of points calculated based on (M 0 , N 0 ).
  10. 根据权利要求9所述的装置,其特征在于,The device of claim 9 wherein:
    所述优化值调整单元,具体用于根据
    Figure PCTCN2016078908-appb-100011
    计算获得第一优化值
    Figure PCTCN2016078908-appb-100012
    The optimization value adjustment unit is specifically configured to be used according to
    Figure PCTCN2016078908-appb-100011
    Calculate the first optimized value
    Figure PCTCN2016078908-appb-100012
PCT/CN2016/078908 2015-12-30 2016-04-08 Method and apparatus for geometric calibration of camera WO2017113535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511015634.5A CN105678740B (en) 2015-12-30 2015-12-30 A kind of camera geometric calibration processing method and processing device
CN201511015634.5 2015-12-30

Publications (1)

Publication Number Publication Date
WO2017113535A1 true WO2017113535A1 (en) 2017-07-06

Family

ID=56298011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078908 WO2017113535A1 (en) 2015-12-30 2016-04-08 Method and apparatus for geometric calibration of camera

Country Status (2)

Country Link
CN (1) CN105678740B (en)
WO (1) WO2017113535A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109598715A (en) * 2018-12-05 2019-04-09 山西镭谱光电科技有限公司 Material size online test method based on machine vision
CN109785395A (en) * 2019-01-16 2019-05-21 深圳市卓简科技有限公司 A kind of panorama model parameter optimization method and system
CN110910458A (en) * 2019-12-19 2020-03-24 长光禹辰信息技术与装备(青岛)有限公司 Gray board calibration method, device, equipment and medium
CN112102417A (en) * 2020-09-15 2020-12-18 北京百度网讯科技有限公司 Method and device for determining world coordinates and external reference calibration method for vehicle-road cooperative roadside camera
CN113393529A (en) * 2020-03-12 2021-09-14 浙江宇视科技有限公司 Camera calibration method, device, equipment and medium
CN113405455A (en) * 2021-05-17 2021-09-17 中创智维科技有限公司 Method for automatically calibrating pixel ratio by calculating geometric parameters of contact network

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106875451B (en) * 2017-02-27 2020-09-08 安徽华米智能科技有限公司 Camera calibration method and device and electronic equipment
CN108320026B (en) * 2017-05-16 2022-02-11 腾讯科技(深圳)有限公司 Machine learning model training method and device
CN109166152A (en) * 2018-07-27 2019-01-08 深圳六滴科技有限公司 Bearing calibration, system, computer equipment and the storage medium of panorama camera calibration
CN110378963A (en) * 2018-12-04 2019-10-25 北京京东振世信息技术有限公司 Camera parameter scaling method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208108A (en) * 2011-04-01 2011-10-05 哈尔滨工业大学 Large-field high-precision quick field overall calibration method for camera
CN102881016A (en) * 2012-09-19 2013-01-16 中科院微电子研究所昆山分所 Vehicle 360-degree surrounding reconstruction method based on internet of vehicles
CN103745458A (en) * 2013-12-26 2014-04-23 华中科技大学 A robust method for estimating the rotation axis and mass center of a spatial target based on a binocular optical flow
CN104751486A (en) * 2015-03-20 2015-07-01 安徽大学 Moving object relay tracing algorithm of multiple PTZ (pan/tilt/zoom) cameras

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794442B (en) * 2010-01-25 2011-11-09 哈尔滨工业大学 Calibration method for extracting illumination-insensitive information from visible images
CN101957990B (en) * 2010-08-13 2012-07-04 武汉大学 Camera calibration method, image processing equipment and motor vehicle
US10033989B2 (en) * 2013-07-05 2018-07-24 Mediatek Inc. Synchronization controller for multi-sensor camera device and related synchronization method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208108A (en) * 2011-04-01 2011-10-05 哈尔滨工业大学 Large-field high-precision quick field overall calibration method for camera
CN102881016A (en) * 2012-09-19 2013-01-16 中科院微电子研究所昆山分所 Vehicle 360-degree surrounding reconstruction method based on internet of vehicles
CN103745458A (en) * 2013-12-26 2014-04-23 华中科技大学 A robust method for estimating the rotation axis and mass center of a spatial target based on a binocular optical flow
CN104751486A (en) * 2015-03-20 2015-07-01 安徽大学 Moving object relay tracing algorithm of multiple PTZ (pan/tilt/zoom) cameras

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109598715A (en) * 2018-12-05 2019-04-09 山西镭谱光电科技有限公司 Material size online test method based on machine vision
CN109598715B (en) * 2018-12-05 2023-03-24 山西镭谱光电科技有限公司 Material granularity online detection method based on machine vision
CN109785395A (en) * 2019-01-16 2019-05-21 深圳市卓简科技有限公司 A kind of panorama model parameter optimization method and system
CN110910458A (en) * 2019-12-19 2020-03-24 长光禹辰信息技术与装备(青岛)有限公司 Gray board calibration method, device, equipment and medium
CN110910458B (en) * 2019-12-19 2022-12-02 长光禹辰信息技术与装备(青岛)有限公司 Gray board calibration method, device, equipment and medium
CN113393529A (en) * 2020-03-12 2021-09-14 浙江宇视科技有限公司 Camera calibration method, device, equipment and medium
CN112102417A (en) * 2020-09-15 2020-12-18 北京百度网讯科技有限公司 Method and device for determining world coordinates and external reference calibration method for vehicle-road cooperative roadside camera
CN112102417B (en) * 2020-09-15 2024-04-19 阿波罗智联(北京)科技有限公司 Method and device for determining world coordinates
CN113405455A (en) * 2021-05-17 2021-09-17 中创智维科技有限公司 Method for automatically calibrating pixel ratio by calculating geometric parameters of contact network
CN113405455B (en) * 2021-05-17 2023-03-07 中创智维科技有限公司 Method for automatically calibrating pixel ratio by calculating geometric parameters of contact network

Also Published As

Publication number Publication date
CN105678740B (en) 2019-06-07
CN105678740A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2017113535A1 (en) Method and apparatus for geometric calibration of camera
CN108564617B (en) Three-dimensional reconstruction method and device for multi-view camera, VR camera and panoramic camera
US8131113B1 (en) Method and apparatus for estimating rotation, focal lengths and radial distortion in panoramic image stitching
WO2017161608A1 (en) Geometric calibration processing method and device for camera
CN105453131B (en) The adjust automatically of image
CN105096329B (en) Method for accurately correcting image distortion of ultra-wide-angle camera
US9900505B2 (en) Panoramic video from unstructured camera arrays with globally consistent parallax removal
US20160286138A1 (en) Apparatus and method for stitching panoramaic video
US10417750B2 (en) Image processing method, device and photographic apparatus
WO2021208486A1 (en) Camera coordinate transformation method, terminal, and storage medium
US10628967B2 (en) Calibration for multi-camera systems
EP3188129A1 (en) Image registration device, image registration method, and image registration program
CN111667398B (en) Image processing method, apparatus and computer readable storage medium
CN105023260A (en) Panorama image fusion method and fusion apparatus
CN108171735B (en) Billion pixel video alignment method and system based on deep learning
CN111340737B (en) Image correction method, device and electronic system
CN111445537B (en) Calibration method and system of camera
CN111553939A (en) Image registration algorithm of multi-view camera
Lee et al. Correction of radial distortion using a planar checkerboard pattern and its image
GB2567245A (en) Methods and apparatuses for depth rectification processing
CN116152121B (en) Curved surface screen generating method and correcting method based on distortion parameters
CN111353945B (en) Fisheye image correction method, device and storage medium
KR20180131743A (en) Method and Apparatus for Stereo Matching of Wide-Angle Images using SIFT Flow
WO2018006669A1 (en) Parallax fusion method and apparatus
Ni et al. Dual-fisheye lens stitching and error correction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16880343

Country of ref document: EP

Kind code of ref document: A1