WO2017161608A1 - Geometric calibration processing method and device for camera - Google Patents

Geometric calibration processing method and device for camera Download PDF

Info

Publication number
WO2017161608A1
WO2017161608A1 PCT/CN2016/078905 CN2016078905W WO2017161608A1 WO 2017161608 A1 WO2017161608 A1 WO 2017161608A1 CN 2016078905 W CN2016078905 W CN 2016078905W WO 2017161608 A1 WO2017161608 A1 WO 2017161608A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
coordinate system
spatial
image
camera
Prior art date
Application number
PCT/CN2016/078905
Other languages
French (fr)
Chinese (zh)
Inventor
赵博
Original Assignee
完美幻境(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 完美幻境(北京)科技有限公司 filed Critical 完美幻境(北京)科技有限公司
Publication of WO2017161608A1 publication Critical patent/WO2017161608A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to the field of image processing, and in particular, to a camera geometric calibration processing method and apparatus.
  • Panoramic shooting usually refers to a method of shooting 360 degrees and 180 degrees vertically with a certain point as the center, and stitching a plurality of pictures taken into a single panoramic picture and a picture stitching method.
  • panoramic shooting can include at least a panoramic image and a panoramic video.
  • mapping and stitching are involved.
  • the mapping can be understood as projecting the pixel points on the original picture to the corresponding positions of the panoramic picture
  • the splicing can be understood as a fusion transition of the overlapping areas of the two adjacent original pictures.
  • the camera parameters can be obtained by means of camera geometric calibration, so that the camera point can be subsequently used for pixel point projection.
  • camera parameters may include the external parameters of the camera and the internal parameters of the camera.
  • the commonly used external parameter estimation method mainly has two-step calibration method and Zhang Zhengyou calibration method.
  • the spatial points are not coplanar when solving the external parameters, and the external parameters cannot be obtained if the coplanar is coplanar. Therefore, for the coplanar flat calibration block, other methods must be used for external parameter estimation.
  • the two-step calibration method assumes that the lens has only radial distortion, and the estimation error of the fisheye lens imaging is large.
  • Zhang Youzheng calibration method instead of considering various distortions, all the points are substituted into the solution. However, the distortion of the pixels that are usually far from the center of the image is very large. If these pixels are also regarded as pixels without distortion, Substituting the solution will obviously increase the error of solving the initial value. Similarly, Zhang Youzheng's calibration method only considers radial distortion and does not apply to fisheye lenses.
  • the embodiment of the invention provides a camera geometric calibration processing method and device, which can effectively avoid the defects existing in the existing calibration scheme.
  • a camera geometric calibration processing method comprising:
  • the panoramic camera captures the spatial point, and obtains the image point corresponding to the spatial point, where the spatial point is a point on a spatial coordinate system, and the image point is a point on the image coordinate system;
  • the acquiring a panoramic camera imaging model comprises:
  • the panoramic camera imaging model is established based on points on the spatial coordinate system and points on the image coordinate system.
  • the points on the sensor coordinate system are converted to points on the image coordinate system by the following formula:
  • the panoramic camera imaging model is established based on a point on the space coordinate system and a point on the image coordinate system, including:
  • the outer parameter determining unit is configured to determine an outer parameter of the panoramic camera by using coordinates of the spatial point, coordinates of the image point, and the panoramic camera imaging model.
  • a linear transformation unit configured to linearly transform a point on the spatial coordinate system to obtain a point on a lens coordinate system of the panoramic camera
  • the conversion of the spatial coordinate system to the lens coordinate system is a linear transformation, which can be obtained by the first rotation matrix r and the three-dimensional translation vector t.
  • r and t describe It is a parameter of the external scene of the camera, that is, the camera external reference in the present invention.

Abstract

Embodiments of the present invention provide a geometric calibration processing method and device for a camera. The method comprises: obtaining coordinates of a spatial point and coordinates of an image point, a panorama camera shoots the spatial point to obtain the image point corresponding to the spatial point, the spatial point being a point on a spatial coordinate system and the image point is a point on an image coordinate system; obtaining a panoramic camera imaging model, the panoramic camera imaging model being used for indicating a conversion relationship between a point on the spatial coordinate system and a point on an image coordinate system; and by using the coordinates of the spatial point, the coordinates of the image point and the panoramic camera imaging model, determining an external parameter of the panorama camera. In the solution, there is no defect that spatial points are coplanar according to a two-step calibration method and there is no defect that an initial value error is large because various distortion factors are not considered according to the calibration method put forwarded by Zhang Youzheng.

Description

一种相机几何标定处理方法及装置Camera geometric calibration processing method and device 技术领域Technical field
本发明涉及图像处理领域,特别涉及一种相机几何标定处理方法及装置。The present invention relates to the field of image processing, and in particular, to a camera geometric calibration processing method and apparatus.
背景技术Background technique
全景拍摄,通常是指以某个点为中心进行水平360度和垂直180度拍摄,将所拍摄的多张图片拼接成一张全景图片的拍摄及图片拼接方法。一般来说,全景拍摄至少可包括全景图像和全景视频两种形式。Panoramic shooting usually refers to a method of shooting 360 degrees and 180 degrees vertically with a certain point as the center, and stitching a plurality of pictures taken into a single panoramic picture and a picture stitching method. In general, panoramic shooting can include at least a panoramic image and a panoramic video.
通常,在利用所拍摄的多张原始图片拼接成一张全景图片时,会涉及映射和拼接两部分。其中,映射可以理解为将原始图片上的像素点投射到全景图片对应的位置上,拼接可以理解为对相邻两张原始图片的重叠区域进行融合过渡。Usually, when stitching a plurality of original pictures taken into one panoramic picture, mapping and stitching are involved. The mapping can be understood as projecting the pixel points on the original picture to the corresponding positions of the panoramic picture, and the splicing can be understood as a fusion transition of the overlapping areas of the two adjacent original pictures.
为了确定空间物体表面某点的三维几何位置与其在原始图片中对应点之间的相互关系,可以通过相机几何标定的方式,获得相机参数,以便后续可以利用所述相机参数进行像素点投影。通常,相机参数可包括相机的外参和相机的内参。In order to determine the relationship between the three-dimensional geometric position of a point on the surface of the space object and its corresponding point in the original picture, the camera parameters can be obtained by means of camera geometric calibration, so that the camera point can be subsequently used for pixel point projection. Typically, camera parameters may include the external parameters of the camera and the internal parameters of the camera.
目前,常用的外参估计法主要有两步标定法和张正友标定法。At present, the commonly used external parameter estimation method mainly has two-step calibration method and Zhang Zhengyou calibration method.
对于两步标定法来说,在求解外参时要求空间点不共面,如果共面则无法求出外参,故对于共面的平板标定块,必须使用其他方法进行外参估计。另外,二步标定法中假设镜头只有径向畸变,对鱼眼镜头成像的估计误差很大。For the two-step calibration method, the spatial points are not coplanar when solving the external parameters, and the external parameters cannot be obtained if the coplanar is coplanar. Therefore, for the coplanar flat calibration block, other methods must be used for external parameter estimation. In addition, the two-step calibration method assumes that the lens has only radial distortion, and the estimation error of the fisheye lens imaging is large.
对于张友正标定法来说,先不考虑各种畸变,而是将所有点代入求解,但是,通常远离图像中心的像素点的畸变都很大,若将这些像素点也看作没有畸变的像素点代入求解的话,显然会加大求解初值的误差。同样地,张友正标定法也只考虑了径向畸变,并不适用于鱼眼镜头。 For the Zhang Youzheng calibration method, instead of considering various distortions, all the points are substituted into the solution. However, the distortion of the pixels that are usually far from the center of the image is very large. If these pixels are also regarded as pixels without distortion, Substituting the solution will obviously increase the error of solving the initial value. Similarly, Zhang Youzheng's calibration method only considers radial distortion and does not apply to fisheye lenses.
发明内容Summary of the invention
本发明实施例提供一种相机几何标定处理方法及装置,可以有效避免现有标定方案中存在的缺陷。The embodiment of the invention provides a camera geometric calibration processing method and device, which can effectively avoid the defects existing in the existing calibration scheme.
一种相机几何标定处理方法,所述方法包括:A camera geometric calibration processing method, the method comprising:
获取空间点的坐标和图像点的坐标,全景相机拍摄所述空间点,获得与所述空间点相对应的所述图像点,所述空间点为空间坐标系上的点,所述图像点为图像坐标系上的点;Obtaining coordinates of the spatial point and coordinates of the image point, and the panoramic camera captures the spatial point, and obtains the image point corresponding to the spatial point, where the spatial point is a point on a spatial coordinate system, and the image point is a point on the image coordinate system;
获取全景相机成像模型,所述全景相机成像模型用于表示所述空间坐标系上的点与所述图像坐标系上的点之间的转换关系;Obtaining a panoramic camera imaging model for representing a conversion relationship between a point on the spatial coordinate system and a point on the image coordinate system;
利用所述空间点的坐标、所述图像点的坐标以及所述全景相机成像模型,确定全景相机的外参。The outer parameters of the panoramic camera are determined using the coordinates of the spatial point, the coordinates of the image point, and the panoramic camera imaging model.
优选的,所述获取全景相机成像模型,包括:Preferably, the acquiring a panoramic camera imaging model comprises:
对所述空间坐标系上的点进行线性变换,获得全景相机的镜头坐标系上的点;Performing a linear transformation on a point on the spatial coordinate system to obtain a point on a lens coordinate system of the panoramic camera;
对所述镜头坐标系上的点进行非线性变换,获得镜头的传感器坐标系上的点;Performing a nonlinear transformation on a point on the lens coordinate system to obtain a point on the sensor coordinate system of the lens;
对所述传感器坐标系上的点进行仿射变换,获得所述图像坐标系上的点;Performing an affine transformation on a point on the sensor coordinate system to obtain a point on the image coordinate system;
基于所述空间坐标系上的点和所述图像坐标系上的点,建立所述全景相机成像模型。The panoramic camera imaging model is established based on points on the spatial coordinate system and points on the image coordinate system.
优选的,通过以下公式,将所述空间坐标系上的点转换为所述镜头坐标系上的点:Preferably, the points on the spatial coordinate system are converted to points on the lens coordinate system by the following formula:
Figure PCTCN2016078905-appb-000001
Figure PCTCN2016078905-appb-000001
其中,(xij,yij,zij)表示空间坐标系上的点,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐标系上的点,
Figure PCTCN2016078905-appb-000002
λij表示归一化参数,Pi表示第一旋转矩阵r和三维平移向量t,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点。
Where (x ij , y ij , z ij ) represents a point on the spatial coordinate system, and (u′′ ij , v′′ ij , f(u′′ ij , v′′ ij )) represent points on the lens coordinate system,
Figure PCTCN2016078905-appb-000002
λ ij denotes a normalization parameter, P i denotes a first rotation matrix r and a three-dimensional translation vector t, i denotes an i-th camera of the panoramic camera, and j denotes a j-th point on the coordinate system.
优选的,通过以下公式,将所述镜头坐标系上的点转换为所述传感器坐标系上的点:Preferably, the points on the lens coordinate system are converted to points on the sensor coordinate system by the following formula:
g(u″ij,v″ij)=(u″ij,v″ij,f(u″ij,v″ij))T g(u" ij ,v" ij )=(u" ij ,v" ij ,f(u" ij ,v" ij )) T
其中,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐标系上的点,(u″ij,v″ij)表示传感器坐标系上的点,T表示转置,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点,
Figure PCTCN2016078905-appb-000003
Where (u" ij , v" ij , f ( u " ij , v " ij )) represent points on the lens coordinate system, (u" ij , v" ij ) represents points on the sensor coordinate system, and T represents Let i denote the i-th camera of the panoramic camera and j denote the j-th point on the coordinate system.
Figure PCTCN2016078905-appb-000003
优选的,通过以下公式,将所述传感器坐标系上的点转换为所述图像坐标系上的点:Preferably, the points on the sensor coordinate system are converted to points on the image coordinate system by the following formula:
u″ij=Au′ij+t1,v″ij=Av′ij+t1 u" ij =Au' ij +t 1 ,v" ij =Av' ij +t 1
其中,(u″ij,v″ij)表示传感器坐标系上的点,(u′ij,v′ij)表示图像坐标系上的点,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点,A表示第二旋转矩阵,t1表示平移矩阵。Where (u" ij , v" ij ) represents a point on the sensor coordinate system, (u' ij , v' ij ) represents a point on the image coordinate system, i represents the ith camera of the panoramic camera, and j represents the coordinate system On the jth point, A represents the second rotation matrix, and t 1 represents the translation matrix.
优选的,基于所述空间坐标系上的点和所述图像坐标系上的点,建立所述全景相机成像模型,包括:Preferably, the panoramic camera imaging model is established based on a point on the space coordinate system and a point on the image coordinate system, including:
获得所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式:Obtaining a correspondence between a point on the spatial coordinate system and a point on the image coordinate system:
Figure PCTCN2016078905-appb-000004
Figure PCTCN2016078905-appb-000004
其中,(xij,yij,zij)表示空间坐标系上的点,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐标系上的点,
Figure PCTCN2016078905-appb-000005
(u′ij,v′ij)表示图像坐标系上的点,λij表示归一化参数,Pi表示第一旋转矩阵r和三维平移向量t,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点,A表示第二旋转矩阵,t1表示平移矩阵;
Where (x ij , y ij , z ij ) represents a point on the spatial coordinate system, and (u′′ ij , v′′ ij , f(u′′ ij , v′′ ij )) represent points on the lens coordinate system,
Figure PCTCN2016078905-appb-000005
(u' ij , v' ij ) denotes a point on the image coordinate system, λ ij denotes a normalization parameter, P i denotes a first rotation matrix r and a three-dimensional translation vector t, i denotes an i-th camera of the panoramic camera, j Representing the jth point on the coordinate system, A represents the second rotation matrix, and t 1 represents the translation matrix;
若zij为0,则所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式为:If z ij is 0, the correspondence between the point on the space coordinate system and the point on the image coordinate system is:
Figure PCTCN2016078905-appb-000006
Figure PCTCN2016078905-appb-000006
若等式两端同时叉乘pij,则所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式为:If both ends of the equation are multiplied by p ij at the same time, the correspondence between the point on the space coordinate system and the point on the image coordinate system is:
Figure PCTCN2016078905-appb-000007
Figure PCTCN2016078905-appb-000007
分解叉乘得到的对应关系式,获得全景相机的第i个摄像头的成像模型:The corresponding relation obtained by the decomposition fork is obtained, and the imaging model of the i-th camera of the panoramic camera is obtained:
v′j·(r31xj+r32yj+t3)-f(ρj)·(r21xj+r22yj+t2)=0v' j ·(r 31 x j +r 32 y j +t 3 )-f(ρ j )·(r 21 x j +r 22 y j +t 2 )=0
f(ρj)·(r11xj+r12yj+t1)-u′j·(r31xj+r32yj+t3)=0。f(ρ j )·(r 11 x j +r 12 y j +t 1 )-u' j ·(r 31 x j +r 32 y j +t 3 )=0.
u′j·(r21xj+r22yj+t2)-v′j·(r11xj+r12yj+t1)=0u' j ·(r 21 x j +r 22 y j +t 2 )-v' j ·(r 11 x j +r 12 y j +t 1 )=0
一种相机几何标定处理装置,所述装置包括:A camera geometric calibration processing device, the device comprising:
坐标获取单元,用于获取空间点的坐标和图像点的坐标,全景相机拍摄所述空间点,获得与所述空间点相对应的所述图像点,所述空间点为空间坐标系上的点,所述图像点为图像坐标系上的点;a coordinate acquiring unit, configured to acquire coordinates of the spatial point and coordinates of the image point, and the panoramic camera captures the spatial point, and obtains the image point corresponding to the spatial point, where the spatial point is a point on the spatial coordinate system The image point is a point on the image coordinate system;
成像模型获取单元,用于获取全景相机成像模型,所述全景相机成像模型用于表示所述空间坐标系上的点与所述图像坐标系上的点之间的转换关系;An imaging model acquisition unit, configured to acquire a panoramic camera imaging model, the panoramic camera imaging model is configured to represent a conversion relationship between a point on the spatial coordinate system and a point on the image coordinate system;
外参确定单元,用于利用所述空间点的坐标、所述图像点的坐标以及所述全景相机成像模型,确定全景相机的外参。The outer parameter determining unit is configured to determine an outer parameter of the panoramic camera by using coordinates of the spatial point, coordinates of the image point, and the panoramic camera imaging model.
优选的,所述成像模型获取单元包括:Preferably, the imaging model obtaining unit comprises:
线性变换单元,用于对所述空间坐标系上的点进行线性变换,获得全景相机的镜头坐标系上的点;a linear transformation unit configured to linearly transform a point on the spatial coordinate system to obtain a point on a lens coordinate system of the panoramic camera;
非线性变换单元,用于对所述镜头坐标系上的点进行非线性变换,获得镜头的传感器坐标系上的点;a nonlinear transform unit configured to perform nonlinear transformation on a point on the lens coordinate system to obtain a point on a sensor coordinate system of the lens;
仿射变换单元,用于对所述传感器坐标系上的点进行仿射变换,获得所述图像坐标系上的点;An affine transformation unit, configured to perform affine transformation on a point on the sensor coordinate system to obtain a point on the image coordinate system;
成像模型建立单元,用于基于所述空间坐标系上的点和所述图像坐标系上的点,建立所述全景相机成像模型。An imaging model establishing unit configured to establish the panoramic camera imaging model based on a point on the spatial coordinate system and a point on the image coordinate system.
优选的,所述线性变换单元,用于通过以下公式,将所述空间坐标系上的点转换为所述镜头坐标系上的点: Preferably, the linear transformation unit is configured to convert a point on the spatial coordinate system to a point on the lens coordinate system by using the following formula:
Figure PCTCN2016078905-appb-000008
Figure PCTCN2016078905-appb-000008
所述非线性变换单元,用于通过以下公式,将所述镜头坐标系上的点转换为所述传感器坐标系上的点:The nonlinear transformation unit is configured to convert a point on the lens coordinate system to a point on the sensor coordinate system by using the following formula:
g(u″ij,v″ij)=(u″ij,v″ij,f(u″ij,v″ij))Tg(u" ij ,v" ij )=(u" ij ,v" ij ,f(u" ij ,v" ij )) T ;
所述仿射变换单元,用于通过以下公式,将所述传感器坐标系上的点转换为所述图像坐标系上的点:The affine transformation unit is configured to convert a point on the sensor coordinate system to a point on the image coordinate system by using the following formula:
u″ij=Au′ij+t1,v″ij=Av′ij+t1 u" ij =Au' ij +t 1 ,v" ij =Av' ij +t 1
其中,(xij,yij,zij)表示空间坐标系上的点,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐标系上的点,
Figure PCTCN2016078905-appb-000009
λij表示归一化参数,Pi表示第一旋转矩阵r和三维平移向量t,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点,(u″ij,v″ij)表示传感器坐标系上的点,T表示转置,(u′ij,v′ij)表示图像坐标系上的点,A表示第二旋转矩阵,t1表示平移矩阵。
Where (x ij , y ij , z ij ) represents a point on the spatial coordinate system, and (u′′ ij , v′′ ij , f(u′′ ij , v′′ ij )) represent points on the lens coordinate system,
Figure PCTCN2016078905-appb-000009
λ ij denotes a normalization parameter, P i denotes a first rotation matrix r and a three-dimensional translation vector t, i denotes an i-th camera of the panoramic camera, and j denotes a j-th point on the coordinate system, (u′′ ij , v′′ Ij ) represents a point on the sensor coordinate system, T represents a transpose, (u′ ij , v′ ij ) represents a point on the image coordinate system, A represents a second rotation matrix, and t 1 represents a translation matrix.
优选的,成像模型建立单元,用于获得全景相机的第i个摄像头的成像模型:Preferably, an imaging model establishing unit is configured to obtain an imaging model of the i-th camera of the panoramic camera:
获得所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式:Obtaining a correspondence between a point on the spatial coordinate system and a point on the image coordinate system:
Figure PCTCN2016078905-appb-000010
Figure PCTCN2016078905-appb-000010
其中,(xij,yij,zij)表示空间坐标系上的点,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐标系上的点,
Figure PCTCN2016078905-appb-000011
(u′ij,v′ij)表示图像坐标系上的点,λij表示归一化参数,Pi表示第一旋转矩阵r和三维平移向量t,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点,A表示第二旋转矩阵,t1表示平移矩阵;
Where (x ij , y ij , z ij ) represents a point on the spatial coordinate system, and (u′′ ij , v′′ ij , f(u′′ ij , v′′ ij )) represent points on the lens coordinate system,
Figure PCTCN2016078905-appb-000011
(u' ij , v' ij ) denotes a point on the image coordinate system, λ ij denotes a normalization parameter, P i denotes a first rotation matrix r and a three-dimensional translation vector t, i denotes an i-th camera of the panoramic camera, j Representing the jth point on the coordinate system, A represents the second rotation matrix, and t 1 represents the translation matrix;
若zij为0,则所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式为: If z ij is 0, the correspondence between the point on the space coordinate system and the point on the image coordinate system is:
Figure PCTCN2016078905-appb-000012
Figure PCTCN2016078905-appb-000012
若等式两端同时叉乘pij,则所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式为:If both ends of the equation are multiplied by p ij at the same time, the correspondence between the point on the space coordinate system and the point on the image coordinate system is:
Figure PCTCN2016078905-appb-000013
Figure PCTCN2016078905-appb-000013
分解叉乘得到的对应关系式,获得全景相机的第i个摄像头的成像模型:The corresponding relation obtained by the decomposition fork is obtained, and the imaging model of the i-th camera of the panoramic camera is obtained:
v′j·(r31xj+r32yj+t3)-f(ρj)·(r21xj+r22yj+t2)=0v' j ·(r 31 x j +r 32 y j +t 3 )-f(ρ j )·(r 21 x j +r 22 y j +t 2 )=0
f(ρj)·(r11xj+r12yj+t1)-u′j·(r31xj+r32yj+t3)=0。f(ρ j )·(r 11 x j +r 12 y j +t 1 )-u' j ·(r 31 x j +r 32 y j +t 3 )=0.
u′j·(r21xj+r22yj+t2)-v′j·(r11xj+r12yj+t1)=0u' j ·(r 21 x j +r 22 y j +t 2 )-v' j ·(r 11 x j +r 12 y j +t 1 )=0
与现有技术相比,本发明方案通过研究空间点转换成图像点的过程,获得表示空间点与图像点之间转换关系的全景相机成像模型,同时,还可实时获取空间点坐标以及对应的图像点坐标,进而确定出全景相机的外参。如此方案,既不存在两步标定法要求空间点不共面的缺陷,也不存在张友正标定法不考虑各种畸变导致初值误差大的缺陷。Compared with the prior art, the solution of the present invention obtains a panoramic camera imaging model representing a conversion relationship between a spatial point and an image point by studying a process of converting a spatial point into an image point, and simultaneously acquires a spatial point coordinate and a corresponding time in real time. Image point coordinates, which in turn determine the external parameters of the panoramic camera. In this scheme, there is no defect that the two-step calibration method requires that the spatial points are not coplanar, and there is no defect that the Zhangyouzheng calibration method does not consider various distortions and causes large initial value errors.
另外,本发明方案在建立成像模型时,考虑到了空间坐标系到镜头坐标系线性变换、镜头坐标系到传感器坐标系的非线性变换、以及传感器坐标系到图像坐标系的仿射变换,不仅考虑了径向畸变,还考虑了桶型畸变,有助于提高本发明外参估计的精度。In addition, the inventive scheme considers the linear transformation from the space coordinate system to the lens coordinate system, the nonlinear transformation of the lens coordinate system to the sensor coordinate system, and the affine transformation from the sensor coordinate system to the image coordinate system when establishing the imaging model, not only considering Radial distortion, barrel distortion is also considered, which helps to improve the accuracy of the external parameter estimation of the present invention.
另外,求解全景相机的外参具体值时,可以通过机器学习的方法求解最小二乘问题,如此,可以大幅减少计算量,使本发明方案适用于嵌入式系统的实时外参估计。In addition, when solving the specific value of the external parameter of the panoramic camera, the least squares problem can be solved by the machine learning method, so that the calculation amount can be greatly reduced, and the solution of the present invention is applied to the real-time external parameter estimation of the embedded system.
附图说明DRAWINGS
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅 仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings used in the description of the embodiments will be briefly described below. Obviously, the drawings in the following description are only It is only some embodiments of the present invention, and other drawings can be obtained from those skilled in the art without any inventive labor.
图1是本发明相机几何标定处理方法的流程图;1 is a flow chart of a method for processing geometric calibration of a camera of the present invention;
图2是本发明中建立全景相机成像模型的方法的流程图;2 is a flow chart of a method of establishing a panoramic camera imaging model in the present invention;
图3是本发明相机几何标定处理装置的结构示意图。3 is a schematic structural view of a camera geometric calibration processing apparatus of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
参考图1,示出了本发明实施例相机几何标定处理方法的流程图,可以包括以下步骤:Referring to FIG. 1, a flowchart of a camera geometric calibration processing method according to an embodiment of the present invention is shown, which may include the following steps:
S101,获取空间点的坐标和图像点的坐标,全景相机拍摄所述空间点,获得与所述空间点相对应的所述图像点,所述空间点为空间坐标系上的点,所述图像点为图像坐标系上的点。S101. Acquire coordinates of a spatial point and coordinates of an image point. The panoramic camera captures the spatial point, and obtains the image point corresponding to the spatial point, where the spatial point is a point on a spatial coordinate system, and the image is The point is a point on the image coordinate system.
为了实现水平360度和垂直180度拍摄,全景相机通常包括多个摄像头,用于进行多角度拍摄。每个摄像头均可拍摄空间坐标系上的空间点,使之形成图像坐标系上的对应图像点。例如,全景相机包括m个摄像头,本步骤可以针对每个摄像头,获得L组空间点坐标和图像点坐标,即,针对该全景相机可获得m*L组空间点坐标和图像点坐标。通常,L的取值可以尽量大,即针对每个摄像头可以尽量多的选取空间点和图像点。作为一种示例,L可以不小于10。In order to achieve horizontal 360 degree and vertical 180 degree shooting, panoramic cameras typically include multiple cameras for multi-angle shooting. Each camera can capture spatial points on the spatial coordinate system to form corresponding image points on the image coordinate system. For example, the panoramic camera includes m cameras, and this step can obtain L sets of spatial point coordinates and image point coordinates for each camera, that is, for the panoramic camera, m*L group spatial point coordinates and image point coordinates can be obtained. In general, the value of L can be as large as possible, that is, as many as possible, space points and image points can be selected for each camera. As an example, L may be not less than 10.
S102,获取全景相机成像模型,所述全景相机成像模型用于表示所述空间坐标系上的点与所述图像坐标系上的点之间的转换关系。S102. Acquire a panoramic camera imaging model, where the panoramic camera imaging model is used to represent a conversion relationship between a point on the spatial coordinate system and a point on the image coordinate system.
本发明中全景相机成像模型可以理解为,全景相机包括的M个摄像头各自对应的成像模型,也就是说,M个摄像头的成像模型共同形成全景相机成像模型。建立摄像头成像模型的过程可以参见下文图2处所做介绍,此处暂不详述。 The panoramic camera imaging model in the present invention can be understood as the imaging model corresponding to each of the M cameras included in the panoramic camera, that is, the imaging models of the M cameras collectively form a panoramic camera imaging model. The process of establishing a camera imaging model can be found in Figure 2 below, which is not detailed here.
作为一种示例,本发明中的获取全景相机成像模型,可以是预先建立并保存成像模型,并在需要进行外参估计时直接读取,例如,可以将成像模型保存在全景相机本地,或者其他可与全景相机通信的第三方设备,本发明对此可不做具体限定。另外,本发明中的获取全景相机成像模型,还可以是在需要进行外参估计时,实时建立成像模型。As an example, in the acquiring the panoramic camera imaging model in the present invention, the imaging model may be pre-established and saved, and directly read when external parameter estimation is needed, for example, the imaging model may be saved locally in the panoramic camera, or other The third party device that can communicate with the panoramic camera is not specifically limited in the present invention. In addition, in the acquisition of the panoramic camera imaging model in the present invention, it is also possible to establish an imaging model in real time when external parameter estimation is required.
需要说明的是,本发明方案可以如图1所示,先获取空间点和图像点的坐标,然后再获取全景相机成像模型;或者,也可以先获取全景相机成像模型,再获取空间点和图像点的坐标;再者,还可以同时执行两个步骤,本发明对此可不做具体限定。It should be noted that, according to the solution of the present invention, the coordinates of the spatial point and the image point may be acquired first, and then the panoramic camera imaging model may be acquired; or the panoramic camera imaging model may be acquired first, and then the spatial point and the image are acquired. The coordinates of the point; in addition, two steps can be performed at the same time, which is not specifically limited in the present invention.
S103,利用所述空间点的坐标、所述图像点的坐标以及所述全景相机成像模型,确定全景相机的外参。S103. Determine an external parameter of the panoramic camera by using coordinates of the spatial point, coordinates of the image point, and the panoramic camera imaging model.
需要说明的是,全景相机拍摄空间点并生成对应图像点的过程中,相机外参起着重要作用,故本发明的全景相机成像模型中包括有相机外参,即可以通过成像模型体现出外参在空间点转换为图像点的过程中所起的作用。It should be noted that the camera external camera plays an important role in the process of capturing the spatial point and generating the corresponding image point. Therefore, the panoramic camera imaging model of the present invention includes a camera external parameter, that is, the external parameter can be reflected by the imaging model. The role played by spatial points in the process of converting to image points.
利用本发明方案进行几何标定时,在空间点以及对应图像点坐标已知、成像模型已知的情况下,便可确定出全景相机的外参。具体过程可参见下文,此处暂不详述。The geometrical calibration is performed by the solution of the present invention. When the spatial point and the corresponding image point coordinates are known and the imaging model is known, the external reference of the panoramic camera can be determined. The specific process can be seen below, and will not be detailed here.
参考图2,示出了本发明中建立全景相机成像模型的方法的流程图。也即,建立全景相机包括的每个摄像头的成像模型的方法,可以包括以下步骤:Referring to Figure 2, a flow chart of a method of establishing a panoramic camera imaging model in the present invention is shown. That is, the method of establishing an imaging model of each camera included in the panoramic camera may include the following steps:
S201,对所述空间坐标系上的点进行线性变换,获得全景相机的镜头坐标系上的点。S201, linearly transform a point on the space coordinate system to obtain a point on a lens coordinate system of the panoramic camera.
空间点转换为图像点至少可包括三个转换过程:空间坐标系转换为镜头坐标系、镜头坐标系转换为传感器坐标系、传感器坐标系转换为图像坐标系,下面分别进行解释说明。The conversion of the spatial point into the image point may include at least three conversion processes: the spatial coordinate system is converted into the lens coordinate system, the lens coordinate system is converted into the sensor coordinate system, and the sensor coordinate system is converted into the image coordinate system, which are explained below.
作为一种示例,空间坐标系到镜头坐标系的转换为线性变换,具体可以通过第一旋转矩阵r和三维平移向量t得到。其中,r和t描述的便 是相机的外部场景的参数,即本发明中的相机外参。As an example, the conversion of the spatial coordinate system to the lens coordinate system is a linear transformation, which can be obtained by the first rotation matrix r and the three-dimensional translation vector t. Where r and t describe It is a parameter of the external scene of the camera, that is, the camera external reference in the present invention.
空间坐标系与镜头坐标系的转换关系可以体现为如下公式:The conversion relationship between the space coordinate system and the lens coordinate system can be expressed as the following formula:
Figure PCTCN2016078905-appb-000014
Figure PCTCN2016078905-appb-000014
其中,X表示空间坐标系上的点,可具体体现为(xij,yij,zij);pij表示镜头坐标系上的点,可具体体现为(u″ij,v″ij,f(u″ij,v″ij));Pi表示第一旋转矩阵r和三维平移向量t;λij表示归一化参数,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点。Where X represents a point on the space coordinate system, which can be embodied as (x ij , y ij , z ij ); p ij represents a point on the lens coordinate system, which can be embodied as (u′′ ij , v′′ ij , f (u" ij , v" ij )); P i denotes a first rotation matrix r and a three-dimensional translation vector t; λ ij denotes a normalization parameter, i denotes an i-th camera of the panoramic camera, and j denotes a coordinate system j points.
S202,对所述镜头坐标系上的点进行非线性变换,获得镜头的传感器坐标系上的点。S202, performing nonlinear transformation on a point on the lens coordinate system to obtain a point on a sensor coordinate system of the lens.
空间点X处的光线通过镜头的光学中心,经过多组镜片的折射,光路发生弯曲,成像到传感器(Sensor)上的点位置会出现偏移,这一过程的变换是非线性的。也就是说,镜头坐标系到Sensor坐标系的转换为非线性变换。The light at the point X of the space passes through the optical center of the lens, and is refracted by the plurality of sets of lenses. The path of the light is bent, and the position of the image on the sensor is shifted. The transformation of this process is nonlinear. That is to say, the conversion of the lens coordinate system to the Sensor coordinate system is a nonlinear transformation.
作为一种示例,可以用一个泰勒多项式来表示镜头投影方式的一般化模型。具体地,镜头坐标系与Sensor坐标系的转换关系可以体现为如下公式:As an example, a Taylor polynomial can be used to represent a generalized model of the lens projection. Specifically, the conversion relationship between the lens coordinate system and the Sensor coordinate system can be embodied as follows:
pij=g(u″ij,v″ij)=(u″ij,v″ij,f(u″ij,v″ij))T    (2)p ij =g(u" ij ,v" ij )=(u" ij ,v" ij ,f(u" ij ,v" ij )) T (2)
其中,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐标系上的点,(u″ij,v″ij)表示传感器坐标系上的点,T表示转置,
Figure PCTCN2016078905-appb-000015
本发明对N的取值可不做具体限定,N会在后续的处理过程中被抵消掉。
Where (u" ij , v" ij , f ( u " ij , v " ij )) represent points on the lens coordinate system, (u" ij , v" ij ) represents points on the sensor coordinate system, and T represents Set,
Figure PCTCN2016078905-appb-000015
The value of N in the present invention may not be specifically limited, and N will be cancelled out in the subsequent processing.
需要说明的是,f(u″ij,v″ij)是一个关于ρ的非线性函数,故还可以表示为f(ρ),其中,ρ表示点(u″ij,v″ij)到传感器坐标原点的距离。如此,使得本发明的成像模型既考虑了径向畸变,又考虑到了桶型畸变,有助于提高本发明外参估计的精度。It should be noted that f(u" ij , v" ij ) is a nonlinear function with respect to ρ, so it can also be expressed as f(ρ), where ρ represents a point (u" ij , v" ij ) to the sensor The distance from the origin of the coordinates. Thus, the imaging model of the present invention allows both radial distortion and barrel distortion to be considered, which helps to improve the accuracy of the external parameter estimation of the present invention.
S203,对所述传感器坐标系上的点进行仿射变换,获得所述图像坐标系上的点。 S203: Perform affine transformation on a point on the sensor coordinate system to obtain a point on the image coordinate system.
作为一种示例,在虚拟传感器成像平面上建立的坐标系是以物理单位mm为单位,而最终成像的图像坐标系是以pixel为单位,两者的坐标原点位置不同。故可以通过仿射变换将传感器坐标系转换到图像坐标系。As an example, the coordinate system established on the virtual sensor imaging plane is in physical unit mm, and the final image coordinate system is in pixel units, and the coordinate origin positions of the two are different. Therefore, the sensor coordinate system can be converted to the image coordinate system by affine transformation.
传感器坐标系与图像坐标系的转换关系可以体现为如下公式:The conversion relationship between the sensor coordinate system and the image coordinate system can be expressed as the following formula:
u″ij=Au′ij+t1,v″ij=Av′ij+t1    (3)u′′ ij =Au′ ij +t 1 ,v′′ ij =Av′ ij +t 1 (3)
其中,(u″ij,v″ij)表示传感器坐标系上的点,(u′ij,v′ij)表示图像坐标系上的点,A表示第二旋转矩阵,t1表示平移矩阵,A和t1主要取决于选用的摄像头。Where (u" ij , v" ij ) represents a point on the sensor coordinate system, (u' ij , v' ij ) represents a point on the image coordinate system, A represents a second rotation matrix, and t 1 represents a translation matrix, A And t 1 depends mainly on the camera chosen.
S204,基于所述空间坐标系上的点和所述图像坐标系上的点,建立所述全景相机成像模型。S204. The panoramic camera imaging model is established based on a point on the spatial coordinate system and a point on the image coordinate system.
具体地,基于上述三种转换公式,便可获得空间坐标系上的点与图像坐标系上的点之间的对应关系式:Specifically, based on the above three conversion formulas, a correspondence between points on the space coordinate system and points on the image coordinate system can be obtained:
Figure PCTCN2016078905-appb-000016
Figure PCTCN2016078905-appb-000016
作为一种示例,在不失一般性的情况下,可以选取一些特殊的空间点,以便于获得本发明的成像模型。例如,选取zij为0的空间点,则空间坐标系上的点与图像坐标系上的点之间的对应关系式可以为:As an example, some special spatial points may be selected without loss of generality in order to obtain the imaging model of the present invention. For example, if a spatial point where z ij is 0 is selected, the correspondence between the point on the spatial coordinate system and the point on the image coordinate system may be:
Figure PCTCN2016078905-appb-000017
Figure PCTCN2016078905-appb-000017
作为一种示例,为了便于计算成像模型,可以在公式(5)的等式两端同时叉乘pij,令等式为0:As an example, in order to facilitate the calculation of the imaging model, p ij can be multiplied at both ends of the equation of equation (5) to make the equation 0:
Figure PCTCN2016078905-appb-000018
Figure PCTCN2016078905-appb-000018
也即,空间坐标系上的点与图像坐标系上的点之间的对应关系式可以为: That is, the correspondence between the points on the space coordinate system and the points on the image coordinate system can be:
Figure PCTCN2016078905-appb-000019
Figure PCTCN2016078905-appb-000019
最后,分解公式(7),便可获得全景相机包括的每个摄像头的成像模型,例如第i个摄像头的成像模型可以为:Finally, by decomposing the formula (7), an imaging model of each camera included in the panoramic camera can be obtained. For example, the imaging model of the i-th camera can be:
v′j·(r31xj+r32yj+t3)-f(ρj)·(r21xj+r22yj+t2)=0v' j ·(r 31 x j +r 32 y j +t 3 )-f(ρ j )·(r 21 x j +r 22 y j +t 2 )=0
f(ρj)·(r11xj+r12yj+t1)-u′1·(r31xj+r32yj+t3)=0。f(ρ j )·(r 11 x j +r 12 y j +t 1 )-u' 1 ·(r 31 x j +r 32 y j +t 3 )=0.
u′j·(r21xj+r22yj+t2)-v′j·(r11xj+r12yj+t1)=0u' j ·(r 21 x j +r 22 y j +t 2 )-v' j ·(r 11 x j +r 12 y j +t 1 )=0
综上,便可获得每个摄像头的成像模型,进而得到本发明中的全景相机成像模型。In summary, an imaging model of each camera can be obtained, thereby obtaining a panoramic camera imaging model in the present invention.
如上文S103处所做介绍,在每个摄像头对应的空间点坐标、图像点坐标以及成像模型均已知的情况下,便可根据这些已知信息确定出本发明的相机外参。下面对各个摄像头外参的求解过程进行解释说明。As described above at S103, in the case where the spatial point coordinates, image point coordinates, and imaging model corresponding to each camera are known, the camera external reference of the present invention can be determined based on these known information. The following explains the solution process of each camera external parameter.
首先,将摄像头的成像模型改写成向量形式:M·H=0,其中,First, the imaging model of the camera is rewritten into a vector form: M·H=0, where
Figure PCTCN2016078905-appb-000020
Figure PCTCN2016078905-appb-000020
进行模型改写后,便可获得一个超正定方程,可以采用最小二乘法求解这个方程组,即求解min||M·H||2After the model is rewritten, a super-positive equation can be obtained, which can be solved by the least squares method, ie, min||M·H|| 2 is solved.
采用最小二乘法求解出r11,r12,r21,r22,t1,t2的取值后,考虑到第一旋转矩阵r具有如下特性:|r1 r2 r3|=1,故可以利用已求解出的r11,r12,r21,r22继续求解r31,r32的取值。如此,便可以获得摄像头外参r11,r12,r21,r22,r31,r32,t1,t2的具体取值。After solving the values of r 11 , r 12 , r 21 , r 22 , t 1 , t 2 by the least squares method, it is considered that the first rotation matrix r has the following characteristics: |r 1 r 2 r 3 |=1, Therefore, it is possible to continue to solve the values of r 31 and r 32 by using the solved r 11 , r 12 , r 21 , and r 22 . Thus, the specific values of the camera external parameters r 11 , r 12 , r 21 , r 22 , r 31 , r 32 , t 1 , t 2 can be obtained.
作为一种示例,采用最小二乘法求解方程组时,可以采用SVD(英文:Singular Value Decomposition,中文:奇异值分解)算法实现;或者,也可以通过如下的机器学习方式实现,本发明对此可不做具体限定。As an example, the SVD (English: Singular Value Decomposition) algorithm can be used to solve the system of equations by using the least squares method; or it can be implemented by the following machine learning method, which is not Make specific limits.
相对于SVD算法,基于机器学习方式求解最小二乘问题,可以大幅减少计算量,使本发明方案适用于嵌入式系统的实时外参估计。下面对此进行解释说明。 Compared with the SVD algorithm, solving the least squares problem based on the machine learning method can greatly reduce the amount of calculation, and the scheme of the present invention is applicable to the real-time external parameter estimation of the embedded system. This is explained below.
需要说明的是,本方式主要是通过机器学习的方法,确定出一个包括若干迭代参数的集合,进而便可在摄像头外参初值的基础上,利用迭代参数进行逐步的迭代优化,最终确定出较优的相机外参。It should be noted that the method mainly determines a set including a plurality of iterative parameters by means of machine learning, and then gradually iteratively optimizes the iterative parameters based on the initial value of the camera, and finally determines Better camera external parameters.
作为一种示例,可以结合实际操作经验设置外参初值;或者,考虑到相机参数的先验值通常已是较优的值,故还可根据先验值来设置外参初值,例如可以将先验值确定为外参初值;或者,可以在先验值的基础上增加随机扰动,获得外参初值。举例来说,可以根据实际操作经验设置随机扰动值,或者,还可将随机扰动值设置为±(先验值/100),本发明对此可不做具体限定。As an example, the initial value of the external parameter can be set in combination with the actual operating experience; or, considering that the prior value of the camera parameter is usually a better value, the initial value of the external parameter can also be set according to the prior value, for example, The a priori value is determined as the initial value of the external reference; or, the random disturbance can be added on the basis of the prior value to obtain the initial value of the external reference. For example, the random disturbance value may be set according to the actual operation experience, or the random disturbance value may be set to ± (prior value / 100), which is not specifically limited in the present invention.
本发明方案中,迭代前的外参xk-1与迭代后的外参xk之间的关系,可以体现为如下迭代公式:xk=xk-1+Pk-1M·H(xk-1)+Qk-1,因此,求解最小二乘问题就转化为了求解迭代参数Pk-1和Qk-1In the solution of the present invention, the relationship between the external parameter x k-1 before iteration and the external parameter x k after iteration can be embodied as the following iterative formula: x k = x k-1 + P k-1 M·H ( x k-1 ) + Q k-1 , therefore, solving the least squares problem translates to solving the iterative parameters P k-1 and Q k-1 .
具体地,求解迭代参数的过程可以分为学习阶段和验证阶段。Specifically, the process of solving the iterative parameters can be divided into a learning phase and a verification phase.
1.学习阶段Learning phase
选取训练样本,并通过机器学习中的监督学习的思想,使用训练样本学习获得如下迭代参数集合:{P0,P1,…,Pk-1,Pk}和{Q0,Q1,…,Qk-1,Qk}。The training samples are selected, and through the idea of supervised learning in machine learning, the following iterative parameter sets are obtained using training samples: {P 0 , P 1 ,..., P k-1 , P k } and {Q 0 , Q 1 , ..., Q k-1 , Q k }.
需要说明的是,本发明中训练样本的参数可以体现如下:样本全景相机包括的样本摄像头的身份编码;每个样本摄像头对应的空间点坐标和图像点坐标;每个样本摄像头的外参初始值;每个样本摄像头的外参估计值,即较优的相机外参。It should be noted that the parameters of the training sample in the present invention may be as follows: the identity code of the sample camera included in the sample panoramic camera; the spatial point coordinates and image point coordinates corresponding to each sample camera; the initial value of the external reference of each sample camera The estimated value of the external parameter of each sample camera, that is, the optimal camera external parameter.
2.验证阶段2. Verification phase
通常,k=5时,即迭代参数集合为{P0,P1,P2,P3,P4,P5}和{Q0,Q1,Q2,Q3,Q4,Q5}时,在摄像头外参初值的基础上进行迭代,可以得到该摄像头较优的外参估计值。本发明对迭代次数可不做具体限定,可以结合实际应用情况而定。Usually, when k=5, the iterative parameter set is {P 0 , P 1 , P 2 , P 3 , P 4 , P 5 } and {Q 0 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 }, iteratively based on the initial value of the camera external reference, can obtain the optimal external parameter estimation value of the camera. The present invention does not specifically limit the number of iterations, and may be determined in combination with actual application conditions.
与上文所述方法相对应地,本发明实施例还提供一种相机几何标定处理装置,参见图3,所述装置可包括:Corresponding to the method described above, the embodiment of the present invention further provides a camera geometric calibration processing device. Referring to FIG. 3, the device may include:
坐标获取单元301,用于获取空间点的坐标和图像点的坐标,全景相 机拍摄所述空间点,获得与所述空间点相对应的所述图像点,所述空间点为空间坐标系上的点,所述图像点为图像坐标系上的点;a coordinate acquiring unit 301, configured to acquire coordinates of a spatial point and coordinates of an image point, and a panoramic phase Taking the space point to obtain the image point corresponding to the space point, the space point is a point on a space coordinate system, and the image point is a point on an image coordinate system;
成像模型获取单元302,用于获取全景相机成像模型,所述全景相机成像模型用于表示所述空间坐标系上的点与所述图像坐标系上的点之间的转换关系;An imaging model acquiring unit 302, configured to acquire a panoramic camera imaging model, where the panoramic camera imaging model is used to represent a conversion relationship between a point on the spatial coordinate system and a point on the image coordinate system;
外参确定单元303,用于利用所述空间点的坐标、所述图像点的坐标以及所述全景相机成像模型,确定全景相机的外参。The external parameter determining unit 303 is configured to determine an external parameter of the panoramic camera by using coordinates of the spatial point, coordinates of the image point, and the panoramic camera imaging model.
可选地,所述成像模型获取单元包括:Optionally, the imaging model acquiring unit includes:
线性变换单元,用于对所述空间坐标系上的点进行线性变换,获得全景相机的镜头坐标系上的点;a linear transformation unit configured to linearly transform a point on the spatial coordinate system to obtain a point on a lens coordinate system of the panoramic camera;
非线性变换单元,用于对所述镜头坐标系上的点进行非线性变换,获得镜头的传感器坐标系上的点;a nonlinear transform unit configured to perform nonlinear transformation on a point on the lens coordinate system to obtain a point on a sensor coordinate system of the lens;
仿射变换单元,用于对所述传感器坐标系上的点进行仿射变换,获得所述图像坐标系上的点;An affine transformation unit, configured to perform affine transformation on a point on the sensor coordinate system to obtain a point on the image coordinate system;
成像模型建立单元,用于基于所述空间坐标系上的点和所述图像坐标系上的点,建立所述全景相机成像模型。An imaging model establishing unit configured to establish the panoramic camera imaging model based on a point on the spatial coordinate system and a point on the image coordinate system.
可选地,Optionally,
所述线性变换单元,用于通过以下公式,将所述空间坐标系上的点转换为所述镜头坐标系上的点:The linear transformation unit is configured to convert a point on the spatial coordinate system to a point on the lens coordinate system by using the following formula:
Figure PCTCN2016078905-appb-000021
Figure PCTCN2016078905-appb-000021
所述非线性变换单元,用于通过以下公式,将所述镜头坐标系上的点转换为所述传感器坐标系上的点:The nonlinear transformation unit is configured to convert a point on the lens coordinate system to a point on the sensor coordinate system by using the following formula:
g(u″ij,v″ij)=(u″ij,v″ij,f(u″ij,v″ij))Tg(u" ij ,v" ij )=(u" ij ,v" ij ,f(u" ij ,v" ij )) T ;
所述仿射变换单元,用于通过以下公式,将所述传感器坐标系上的点转换为所述图像坐标系上的点:The affine transformation unit is configured to convert a point on the sensor coordinate system to a point on the image coordinate system by using the following formula:
u″ij=Au′ij+t1,v″ij=Av′ij+t1 u" ij =Au' ij +t 1 ,v" ij =Av' ij +t 1
其中,(xij,yij,zij)表示空间坐标系上的点,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐 标系上的点,
Figure PCTCN2016078905-appb-000022
λij表示归一化参数,Pi表示第一旋转矩阵r和三维平移向量t,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点,(u″ij,v″ij)表示传感器坐标系上的点,T表示转置,(u′ij,v′ij)表示图像坐标系上的点,A表示第二旋转矩阵,t1表示平移矩阵。
Where (x ij , y ij , z ij ) represents a point on the space coordinate system, and (u′′ ij , v′′ ij , f(u′′ ij , v′′ ij )) represent points on the lens coordinate system,
Figure PCTCN2016078905-appb-000022
λ ij denotes a normalization parameter, P i denotes a first rotation matrix r and a three-dimensional translation vector t, i denotes an i-th camera of the panoramic camera, and j denotes a j-th point on the coordinate system, (u′′ ij , v′′ Ij ) represents a point on the sensor coordinate system, T represents a transpose, (u′ ij , v′ ij ) represents a point on the image coordinate system, A represents a second rotation matrix, and t 1 represents a translation matrix.
可选地,成像模型建立单元,用于获得全景相机的第i个摄像头的成像模型:Optionally, an imaging model establishing unit is configured to obtain an imaging model of the i-th camera of the panoramic camera:
获得所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式:Obtaining a correspondence between a point on the spatial coordinate system and a point on the image coordinate system:
Figure PCTCN2016078905-appb-000023
Figure PCTCN2016078905-appb-000023
其中,(xij,yij,zij)表示空间坐标系上的点,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐标系上的点,
Figure PCTCN2016078905-appb-000024
(u′ij,v′ij)表示图像坐标系上的点,λij表示归一化参数,Pi表示第一旋转矩阵r和三维平移向量t,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点,A表示第二旋转矩阵,t1表示平移矩阵;
Where (x ij , y ij , z ij ) represents a point on the spatial coordinate system, and (u′′ ij , v′′ ij , f(u′′ ij , v′′ ij )) represent points on the lens coordinate system,
Figure PCTCN2016078905-appb-000024
(u' ij , v' ij ) denotes a point on the image coordinate system, λ ij denotes a normalization parameter, P i denotes a first rotation matrix r and a three-dimensional translation vector t, i denotes an i-th camera of the panoramic camera, j Representing the jth point on the coordinate system, A represents the second rotation matrix, and t 1 represents the translation matrix;
若zij为0,则所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式为:If z ij is 0, the correspondence between the point on the space coordinate system and the point on the image coordinate system is:
Figure PCTCN2016078905-appb-000025
Figure PCTCN2016078905-appb-000025
若等式两端同时叉乘pij,则所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式为:If both ends of the equation are multiplied by p ij at the same time, the correspondence between the point on the space coordinate system and the point on the image coordinate system is:
Figure PCTCN2016078905-appb-000026
Figure PCTCN2016078905-appb-000026
分解叉乘得到的对应关系式,获得全景相机的第i个摄像头的成像模型: The corresponding relation obtained by the decomposition fork is obtained, and the imaging model of the i-th camera of the panoramic camera is obtained:
v′j·(r31xj+r32yj+t3)-f(ρj)·(r21xj+r22yj+t2)=0v' j ·(r 31 x j +r 32 y j +t 3 )-f(ρ j )·(r 21 x j +r 22 y j +t 2 )=0
f(ρj)·(r11xj+r12yj+t1)-u′j·(r31xj+r32yj+t3)=0。f(ρ j )·(r 11 x j +r 12 y j +t 1 )-u' j ·(r 31 x j +r 32 y j +t 3 )=0.
u′j·(r21xj+r22yj+t2)-v′j·(r11xj+r12yj+t1)=0u' j ·(r 21 x j +r 22 y j +t 2 )-v' j ·(r 11 x j +r 12 y j +t 1 )=0
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。It should be noted that each embodiment in the specification is described in a progressive manner, and each embodiment focuses on differences from other embodiments, and the same similar parts between the embodiments are referred to each other. can. For the device type embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
最后,还需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。Finally, it is also to be understood that the term "comprises", "comprising" or any other variants thereof is intended to encompass a non-exclusive inclusion, such that a process, method, article, or device comprising a plurality of elements includes Those elements, but also other elements not explicitly listed, or elements that are inherent to such a process, method, item or equipment. An element that is defined by the phrase "comprising a ..." does not exclude the presence of additional equivalent elements in the process, method, item, or device that comprises the element.
以上对本发明所提供的方案进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。 The foregoing provides a detailed description of the solution provided by the present invention. The principles and embodiments of the present invention are described herein by using specific examples. The description of the above embodiments is only for helping to understand the method and the core idea of the present invention; The present invention is not limited by the scope of the present invention, and the details of the present invention are not limited by the scope of the present invention.

Claims (10)

  1. 一种相机几何标定处理方法,其特征在于,所述方法包括:A camera geometric calibration processing method, characterized in that the method comprises:
    获取空间点的坐标和图像点的坐标,全景相机拍摄所述空间点,获得与所述空间点相对应的所述图像点,所述空间点为空间坐标系上的点,所述图像点为图像坐标系上的点;Obtaining coordinates of the spatial point and coordinates of the image point, and the panoramic camera captures the spatial point, and obtains the image point corresponding to the spatial point, where the spatial point is a point on a spatial coordinate system, and the image point is a point on the image coordinate system;
    获取全景相机成像模型,所述全景相机成像模型用于表示所述空间坐标系上的点与所述图像坐标系上的点之间的转换关系;Obtaining a panoramic camera imaging model for representing a conversion relationship between a point on the spatial coordinate system and a point on the image coordinate system;
    利用所述空间点的坐标、所述图像点的坐标以及所述全景相机成像模型,确定全景相机的外参。The outer parameters of the panoramic camera are determined using the coordinates of the spatial point, the coordinates of the image point, and the panoramic camera imaging model.
  2. 根据权利要求1所述的方法,其特征在于,所述获取全景相机成像模型,包括:The method of claim 1 wherein said acquiring a panoramic camera imaging model comprises:
    对所述空间坐标系上的点进行线性变换,获得全景相机的镜头坐标系上的点;Performing a linear transformation on a point on the spatial coordinate system to obtain a point on a lens coordinate system of the panoramic camera;
    对所述镜头坐标系上的点进行非线性变换,获得镜头的传感器坐标系上的点;Performing a nonlinear transformation on a point on the lens coordinate system to obtain a point on the sensor coordinate system of the lens;
    对所述传感器坐标系上的点进行仿射变换,获得所述图像坐标系上的点;Performing an affine transformation on a point on the sensor coordinate system to obtain a point on the image coordinate system;
    基于所述空间坐标系上的点和所述图像坐标系上的点,建立所述全景相机成像模型。The panoramic camera imaging model is established based on points on the spatial coordinate system and points on the image coordinate system.
  3. 根据权利要求2所述的方法,其特征在于,通过以下公式,将所述空间坐标系上的点转换为所述镜头坐标系上的点:The method of claim 2, wherein the points on the spatial coordinate system are converted to points on the lens coordinate system by the following formula:
    Figure PCTCN2016078905-appb-100001
    Figure PCTCN2016078905-appb-100001
    其中,(xij,yij,zij)表示空间坐标系上的点,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐标系上的点,
    Figure PCTCN2016078905-appb-100002
    Figure PCTCN2016078905-appb-100003
    λij表示归一化参数,Pi表示第一旋转矩阵r和三维平移向量t,i表示全景相机的 第i个摄像头,j表示坐标系上的第j个点。
    Where (x ij , y ij , z ij ) represents a point on the spatial coordinate system, and (u′′ ij , v′′ ij , f(u′′ ij , v′′ ij )) represent points on the lens coordinate system,
    Figure PCTCN2016078905-appb-100002
    Figure PCTCN2016078905-appb-100003
    λ ij denotes a normalization parameter, P i denotes a first rotation matrix r and a three-dimensional translation vector t, i denotes an i-th camera of the panoramic camera, and j denotes a j-th point on the coordinate system.
  4. 根据权利要求2所述的方法,其特征在于,通过以下公式,将所述镜头坐标系上的点转换为所述传感器坐标系上的点:The method of claim 2 wherein the points on the lens coordinate system are converted to points on the sensor coordinate system by the following formula:
    g(u″ij,v″ij)=(u″ij,v″ij,f(u″ij,v″ij))T g(u" ij ,v" ij )=(u" ij ,v" ij ,f(u" ij ,v" ij )) T
    其中,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐标系上的点,(u″ij,v″ij)表示传感器坐标系上的点,T表示转置,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点,
    Figure PCTCN2016078905-appb-100004
    Figure PCTCN2016078905-appb-100005
    Where (u" ij , v" ij , f ( u " ij , v " ij )) represent points on the lens coordinate system, (u" ij , v" ij ) represents points on the sensor coordinate system, and T represents Let i denote the i-th camera of the panoramic camera and j denote the j-th point on the coordinate system.
    Figure PCTCN2016078905-appb-100004
    Figure PCTCN2016078905-appb-100005
  5. 根据权利要求2所述的方法,其特征在于,通过以下公式,将所述传感器坐标系上的点转换为所述图像坐标系上的点:The method of claim 2 wherein the points on the sensor coordinate system are converted to points on the image coordinate system by the following formula:
    u″ij=Au′ij+t1,v″ij=Av′ij+t1 u" ij =Au' ij +t 1 ,v" ij =Av' ij +t 1
    其中,(u″ij,v″ij)表示传感器坐标系上的点,(u′ij,v′ij)表示图像坐标系上的点,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点,A表示第二旋转矩阵,t1表示平移矩阵。Where (u" ij , v" ij ) represents a point on the sensor coordinate system, (u' ij , v' ij ) represents a point on the image coordinate system, i represents the ith camera of the panoramic camera, and j represents the coordinate system On the jth point, A represents the second rotation matrix, and t 1 represents the translation matrix.
  6. 根据权利要求2所述的方法,其特征在于,基于所述空间坐标系上的点和所述图像坐标系上的点,建立所述全景相机成像模型,包括:The method according to claim 2, wherein the panoramic camera imaging model is established based on a point on the spatial coordinate system and a point on the image coordinate system, including:
    获得所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式:Obtaining a correspondence between a point on the spatial coordinate system and a point on the image coordinate system:
    Figure PCTCN2016078905-appb-100006
    Figure PCTCN2016078905-appb-100006
    其中,(xij,yij,zij)表示空间坐标系上的点,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐标系上的点,
    Figure PCTCN2016078905-appb-100007
    Figure PCTCN2016078905-appb-100008
    (u′ij,v′ij)表示图像坐标系上的点,λij表示归一化参数,Pi表示第一旋转矩阵r和三维平移向量t,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点,A表示第二旋转矩阵,t1表示平移矩阵;
    Where (x ij , y ij , z ij ) represents a point on the spatial coordinate system, and (u′′ ij , v′′ ij , f(u′′ ij , v′′ ij )) represent points on the lens coordinate system,
    Figure PCTCN2016078905-appb-100007
    Figure PCTCN2016078905-appb-100008
    (u' ij , v' ij ) denotes a point on the image coordinate system, λ ij denotes a normalization parameter, P i denotes a first rotation matrix r and a three-dimensional translation vector t, i denotes an i-th camera of the panoramic camera, j Representing the jth point on the coordinate system, A represents the second rotation matrix, and t 1 represents the translation matrix;
    若zij为0,则所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式为: If z ij is 0, the correspondence between the point on the space coordinate system and the point on the image coordinate system is:
    Figure PCTCN2016078905-appb-100009
    Figure PCTCN2016078905-appb-100009
    若等式两端同时叉乘pij,则所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式为:If both ends of the equation are multiplied by p ij at the same time, the correspondence between the point on the space coordinate system and the point on the image coordinate system is:
    Figure PCTCN2016078905-appb-100010
    Figure PCTCN2016078905-appb-100010
    分解叉乘得到的对应关系式,获得全景相机的第i个摄像头的成像模型:The corresponding relation obtained by the decomposition fork is obtained, and the imaging model of the i-th camera of the panoramic camera is obtained:
    v′j·(r31xj+r32yj+t3)-f(ρj)·(r21xj+r22yj+t2)=0v' j ·(r 31 x j +r 32 y j +t 3 )-f(ρ j )·(r 21 x j +r 22 y j +t 2 )=0
    f(ρj)·(r11xj+r12yj+t1)-u′j·(r31xj+r32yj+t3)=0。f(ρ j )·(r 11 x j +r 12 y j +t 1 )-u' j ·(r 31 x j +r 32 y j +t 3 )=0.
    u′j·(r21xj+r22yj+t2)-v′j·(r11xj+r12yj+t1)=0u' j ·(r 21 x j +r 22 y j +t 2 )-v' j ·(r 11 x j +r 12 y j +t 1 )=0
  7. 一种相机几何标定处理装置,其特征在于,所述装置包括:A camera geometric calibration processing device, characterized in that the device comprises:
    坐标获取单元,用于获取空间点的坐标和图像点的坐标,全景相机拍摄所述空间点,获得与所述空间点相对应的所述图像点,所述空间点为空间坐标系上的点,所述图像点为图像坐标系上的点;a coordinate acquiring unit, configured to acquire coordinates of the spatial point and coordinates of the image point, and the panoramic camera captures the spatial point, and obtains the image point corresponding to the spatial point, where the spatial point is a point on the spatial coordinate system The image point is a point on the image coordinate system;
    成像模型获取单元,用于获取全景相机成像模型,所述全景相机成像模型用于表示所述空间坐标系上的点与所述图像坐标系上的点之间的转换关系;An imaging model acquisition unit, configured to acquire a panoramic camera imaging model, the panoramic camera imaging model is configured to represent a conversion relationship between a point on the spatial coordinate system and a point on the image coordinate system;
    外参确定单元,用于利用所述空间点的坐标、所述图像点的坐标以及所述全景相机成像模型,确定全景相机的外参。The outer parameter determining unit is configured to determine an outer parameter of the panoramic camera by using coordinates of the spatial point, coordinates of the image point, and the panoramic camera imaging model.
  8. 根据权利要求7所述的装置,其特征在于,所述成像模型获取单元包括:The apparatus according to claim 7, wherein the imaging model acquisition unit comprises:
    线性变换单元,用于对所述空间坐标系上的点进行线性变换,获得全景相机的镜头坐标系上的点;a linear transformation unit configured to linearly transform a point on the spatial coordinate system to obtain a point on a lens coordinate system of the panoramic camera;
    非线性变换单元,用于对所述镜头坐标系上的点进行非线性变换,获得镜头的传感器坐标系上的点; a nonlinear transform unit configured to perform nonlinear transformation on a point on the lens coordinate system to obtain a point on a sensor coordinate system of the lens;
    仿射变换单元,用于对所述传感器坐标系上的点进行仿射变换,获得所述图像坐标系上的点;An affine transformation unit, configured to perform affine transformation on a point on the sensor coordinate system to obtain a point on the image coordinate system;
    成像模型建立单元,用于基于所述空间坐标系上的点和所述图像坐标系上的点,建立所述全景相机成像模型。An imaging model establishing unit configured to establish the panoramic camera imaging model based on a point on the spatial coordinate system and a point on the image coordinate system.
  9. 根据权利要求8所述的装置,其特征在于,The device of claim 8 wherein:
    所述线性变换单元,用于通过以下公式,将所述空间坐标系上的点转换为所述镜头坐标系上的点:The linear transformation unit is configured to convert a point on the spatial coordinate system to a point on the lens coordinate system by using the following formula:
    Figure PCTCN2016078905-appb-100011
    Figure PCTCN2016078905-appb-100011
    所述非线性变换单元,用于通过以下公式,将所述镜头坐标系上的点转换为所述传感器坐标系上的点:The nonlinear transformation unit is configured to convert a point on the lens coordinate system to a point on the sensor coordinate system by using the following formula:
    g(u″ij,v″ij)=(u″ij,v″ij,f(u″ij,v″ij))Tg(u" ij ,v" ij )=(u" ij ,v" ij ,f(u" ij ,v" ij )) T ;
    所述仿射变换单元,用于通过以下公式,将所述传感器坐标系上的点转换为所述图像坐标系上的点:The affine transformation unit is configured to convert a point on the sensor coordinate system to a point on the image coordinate system by using the following formula:
    u″ij=Au′ij+t1,v″ij=Av′ij+t1 u" ij =Au' ij +t 1 ,v" ij =Av' ij +t 1
    其中,(xij,yij,zij)表示空间坐标系上的点,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐标系上的点,
    Figure PCTCN2016078905-appb-100012
    Figure PCTCN2016078905-appb-100013
    λij表示归一化参数,Pi表示第一旋转矩阵r和三维平移向量t,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点,(u″ij,v″ij)表示传感器坐标系上的点,T表示转置,(u′ij,v′ij)表示图像坐标系上的点,A表示第二旋转矩阵,t1表示平移矩阵。
    Where (x ij , y ij , z ij ) represents a point on the spatial coordinate system, and (u′′ ij , v′′ ij , f(u′′ ij , v′′ ij )) represent points on the lens coordinate system,
    Figure PCTCN2016078905-appb-100012
    Figure PCTCN2016078905-appb-100013
    λ ij denotes a normalization parameter, P i denotes a first rotation matrix r and a three-dimensional translation vector t, i denotes an i-th camera of the panoramic camera, and j denotes a j-th point on the coordinate system, (u′′ ij , v′′ Ij ) represents a point on the sensor coordinate system, T represents a transpose, (u′ ij , v′ ij ) represents a point on the image coordinate system, A represents a second rotation matrix, and t 1 represents a translation matrix.
  10. 根据权利要求8所述的装置,其特征在于,成像模型建立单元,用于获得全景相机的第i个摄像头的成像模型:The apparatus according to claim 8, wherein the imaging model establishing unit is configured to obtain an imaging model of the i-th camera of the panoramic camera:
    获得所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式: Obtaining a correspondence between a point on the spatial coordinate system and a point on the image coordinate system:
    Figure PCTCN2016078905-appb-100014
    Figure PCTCN2016078905-appb-100014
    其中,(xij,yij,zij)表示空间坐标系上的点,(u″ij,v″ij,f(u″ij,v″ij))表示镜头坐标系上的点,
    Figure PCTCN2016078905-appb-100015
    Figure PCTCN2016078905-appb-100016
    (u′ij,v′ij)表示图像坐标系上的点,λij表示归一化参数,Pi表示第一旋转矩阵r和三维平移向量t,i表示全景相机的第i个摄像头,j表示坐标系上的第j个点,A表示第二旋转矩阵,t1表示平移矩阵;
    Where (x ij , y ij , z ij ) represents a point on the spatial coordinate system, and (u′′ ij , v′′ ij , f(u′′ ij , v′′ ij )) represent points on the lens coordinate system,
    Figure PCTCN2016078905-appb-100015
    Figure PCTCN2016078905-appb-100016
    (u' ij , v' ij ) denotes a point on the image coordinate system, λ ij denotes a normalization parameter, P i denotes a first rotation matrix r and a three-dimensional translation vector t, i denotes an i-th camera of the panoramic camera, j Representing the jth point on the coordinate system, A represents the second rotation matrix, and t 1 represents the translation matrix;
    若zij为0,则所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式为:If z ij is 0, the correspondence between the point on the space coordinate system and the point on the image coordinate system is:
    Figure PCTCN2016078905-appb-100017
    Figure PCTCN2016078905-appb-100017
    若等式两端同时叉乘pij,则所述空间坐标系上的点与所述图像坐标系上的点之间的对应关系式为:If both ends of the equation are multiplied by p ij at the same time, the correspondence between the point on the space coordinate system and the point on the image coordinate system is:
    Figure PCTCN2016078905-appb-100018
    Figure PCTCN2016078905-appb-100018
    分解叉乘得到的对应关系式,获得全景相机的第i个摄像头的成像模型:The corresponding relation obtained by the decomposition fork is obtained, and the imaging model of the i-th camera of the panoramic camera is obtained:
    v′j·(r31xj+r32yj+t3)-f(ρj)·(r21xj+r22yj+t2)=0v' j ·(r 31 x j +r 32 y j +t 3 )-f(ρ j )·(r 21 x j +r 22 y j +t 2 )=0
    f(ρj)·(r11xj+r12yj+t1)-u′j·(r31xj+r32yj+t3)=0。f(ρ j )·(r 11 x j +r 12 y j +t 1 )-u' j ·(r 31 x j +r 32 y j +t 3 )=0.
    u′j·(r21xj+r22yj+t2)-v′j·(r11xj+r112yj+t1)=0 u' j ·(r 21 x j +r 22 y j +t 2 )-v' j ·(r 11 x j +r 112 y j +t 1 )=0
PCT/CN2016/078905 2016-03-21 2016-04-08 Geometric calibration processing method and device for camera WO2017161608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610164954.5 2016-03-21
CN201610164954.5A CN105701837A (en) 2016-03-21 2016-03-21 Geometric calibration processing method and apparatus for camera

Publications (1)

Publication Number Publication Date
WO2017161608A1 true WO2017161608A1 (en) 2017-09-28

Family

ID=56231625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078905 WO2017161608A1 (en) 2016-03-21 2016-04-08 Geometric calibration processing method and device for camera

Country Status (2)

Country Link
CN (1) CN105701837A (en)
WO (1) WO2017161608A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109598765A (en) * 2018-12-21 2019-04-09 浙江大学 Join combined calibrating method outside monocular camera and millimetre-wave radar based on spherical calibration object
CN110009689A (en) * 2019-03-21 2019-07-12 上海交通大学 A kind of image data set fast construction method for the robot pose estimation that cooperates
CN110060302A (en) * 2019-03-18 2019-07-26 盎锐(上海)信息科技有限公司 Analysis system and method for camera and projector calibrating
CN110298892A (en) * 2019-07-05 2019-10-01 河南科技大学 A kind of single line array camera inside and outside parameter scaling method
CN110675458A (en) * 2019-10-08 2020-01-10 Oppo广东移动通信有限公司 Method and device for calibrating camera and storage medium
CN110796596A (en) * 2019-08-30 2020-02-14 深圳市德赛微电子技术有限公司 Image splicing method, imaging device and panoramic imaging system
CN110969664A (en) * 2018-09-30 2020-04-07 北京初速度科技有限公司 Dynamic calibration method for external parameters of camera
CN111223038A (en) * 2019-12-02 2020-06-02 上海赫千电子科技有限公司 Automatic splicing method and display device for vehicle-mounted all-around images
CN111260733A (en) * 2020-01-13 2020-06-09 魔视智能科技(上海)有限公司 External parameter estimation method and system of vehicle-mounted all-around multi-camera system
CN111489288A (en) * 2019-01-28 2020-08-04 北京初速度科技有限公司 Image splicing method and device
CN111784783A (en) * 2020-08-14 2020-10-16 支付宝(杭州)信息技术有限公司 System and method for calibrating external parameters of camera
CN111915681A (en) * 2019-05-08 2020-11-10 长沙智能驾驶研究院有限公司 External parameter calibration method and device for multi-group 3D camera group, storage medium and equipment
CN112132906A (en) * 2020-09-22 2020-12-25 西安电子科技大学 External reference calibration method and system between depth camera and visible light camera
CN112184806A (en) * 2020-09-14 2021-01-05 国家电网有限公司 Space distance measurement method based on three-dimensional live-action transformer substation
CN112509064A (en) * 2020-12-22 2021-03-16 北京百度网讯科技有限公司 Method, device, equipment and storage medium for displaying camera calibration progress
CN112651261A (en) * 2020-12-30 2021-04-13 凌云光技术股份有限公司 Calculation method for conversion relation between high-precision 2D camera coordinate system and mechanical coordinate system
CN113963068A (en) * 2021-10-25 2022-01-21 季华实验室 Global calibration method for mirror image type single-camera omnidirectional stereoscopic vision sensor
CN114095657A (en) * 2021-11-22 2022-02-25 成都天翼空间科技有限公司 Automatic calibration method and system based on newly-added camera
TWI830094B (en) * 2021-11-25 2024-01-21 信驊科技股份有限公司 Testing device and testing method for detecting stitching defect of panoramic camera

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106447735A (en) * 2016-10-14 2017-02-22 安徽协创物联网技术有限公司 Panoramic camera geometric calibration processing method
CN106558079B (en) * 2016-10-18 2019-07-26 安徽协创物联网技术有限公司 A kind of the panorama camera layout and scaling method of raising depth of field measurement accuracy
CN106856003B (en) * 2016-12-31 2019-06-25 南京理工大学 The expansion bearing calibration of shaft-like workpiece side surface defects detection image
CN108109179B (en) * 2017-12-29 2021-05-18 天津科技大学 Camera attitude correction method based on pinhole camera model
CN108596826A (en) * 2017-12-29 2018-09-28 广东工业大学 Based on spherical surface camera lens image-pickup method, system, device and readable storage medium storing program for executing
CN108550171B (en) * 2018-04-20 2021-06-29 东北大学 Linear array camera calibration method containing eight-diagram coding information based on cross ratio invariance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008530A (en) * 2014-05-30 2014-08-27 长城汽车股份有限公司 Picture synthesis calibration method
CN104399435A (en) * 2014-10-24 2015-03-11 无锡伊佩克科技有限公司 Efficient vehicle-mounted air purifying agent and preparation method thereof
CN104677277A (en) * 2015-02-16 2015-06-03 武汉天远视科技有限责任公司 Method and system measuring geometric attribute of object or distance
CN104933717A (en) * 2015-06-17 2015-09-23 合肥工业大学 Camera intrinsic and extrinsic parameter automatic calibration method based on directional calibration target

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750084B2 (en) * 2007-08-07 2011-08-17 日本電信電話株式会社 Calibration method and calibration apparatus
KR100961616B1 (en) * 2008-07-16 2010-06-04 중앙대학교 산학협력단 Method and system for calibrating of omnidirectional camera based on contour matching
CN103871071B (en) * 2014-04-08 2018-04-24 北京经纬恒润科技有限公司 Join scaling method outside a kind of camera for panoramic parking system
CN104019829B (en) * 2014-06-09 2017-02-15 武汉克利福昇科技有限责任公司 Vehicle-mounted panorama camera based on POS (position and orientation system) and external parameter calibrating method of linear array laser scanner
CN104156972B (en) * 2014-08-25 2017-01-25 西北工业大学 Perspective imaging method based on laser scanning distance measuring instrument and multiple cameras

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008530A (en) * 2014-05-30 2014-08-27 长城汽车股份有限公司 Picture synthesis calibration method
CN104399435A (en) * 2014-10-24 2015-03-11 无锡伊佩克科技有限公司 Efficient vehicle-mounted air purifying agent and preparation method thereof
CN104677277A (en) * 2015-02-16 2015-06-03 武汉天远视科技有限责任公司 Method and system measuring geometric attribute of object or distance
CN104933717A (en) * 2015-06-17 2015-09-23 合肥工业大学 Camera intrinsic and extrinsic parameter automatic calibration method based on directional calibration target

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110969664A (en) * 2018-09-30 2020-04-07 北京初速度科技有限公司 Dynamic calibration method for external parameters of camera
CN110969664B (en) * 2018-09-30 2023-10-24 北京魔门塔科技有限公司 Dynamic calibration method for external parameters of camera
CN109598765A (en) * 2018-12-21 2019-04-09 浙江大学 Join combined calibrating method outside monocular camera and millimetre-wave radar based on spherical calibration object
CN109598765B (en) * 2018-12-21 2023-01-03 浙江大学 Monocular camera and millimeter wave radar external parameter combined calibration method based on spherical calibration object
CN111489288A (en) * 2019-01-28 2020-08-04 北京初速度科技有限公司 Image splicing method and device
CN111489288B (en) * 2019-01-28 2023-04-07 北京魔门塔科技有限公司 Image splicing method and device
CN110060302A (en) * 2019-03-18 2019-07-26 盎锐(上海)信息科技有限公司 Analysis system and method for camera and projector calibrating
CN110060302B (en) * 2019-03-18 2023-02-07 盎维云(深圳)计算有限公司 Analysis system and method for calibrating camera and projector
CN110009689A (en) * 2019-03-21 2019-07-12 上海交通大学 A kind of image data set fast construction method for the robot pose estimation that cooperates
CN110009689B (en) * 2019-03-21 2023-02-28 上海交通大学 Image data set rapid construction method for collaborative robot pose estimation
CN111915681B (en) * 2019-05-08 2023-12-29 长沙智能驾驶研究院有限公司 External parameter calibration method, device, storage medium and equipment for multi-group 3D camera group
CN111915681A (en) * 2019-05-08 2020-11-10 长沙智能驾驶研究院有限公司 External parameter calibration method and device for multi-group 3D camera group, storage medium and equipment
CN110298892A (en) * 2019-07-05 2019-10-01 河南科技大学 A kind of single line array camera inside and outside parameter scaling method
CN110298892B (en) * 2019-07-05 2022-10-11 河南科技大学 Method for calibrating internal and external parameters of single-line-array camera
CN110796596A (en) * 2019-08-30 2020-02-14 深圳市德赛微电子技术有限公司 Image splicing method, imaging device and panoramic imaging system
CN110675458B (en) * 2019-10-08 2023-03-31 Oppo广东移动通信有限公司 Method and device for calibrating camera and storage medium
CN110675458A (en) * 2019-10-08 2020-01-10 Oppo广东移动通信有限公司 Method and device for calibrating camera and storage medium
CN111223038B (en) * 2019-12-02 2023-06-09 上海赫千电子科技有限公司 Automatic splicing method of vehicle-mounted looking-around images and display device
CN111223038A (en) * 2019-12-02 2020-06-02 上海赫千电子科技有限公司 Automatic splicing method and display device for vehicle-mounted all-around images
CN111260733A (en) * 2020-01-13 2020-06-09 魔视智能科技(上海)有限公司 External parameter estimation method and system of vehicle-mounted all-around multi-camera system
CN111260733B (en) * 2020-01-13 2023-03-24 魔视智能科技(上海)有限公司 External parameter estimation method and system of vehicle-mounted all-around multi-camera system
CN111784783A (en) * 2020-08-14 2020-10-16 支付宝(杭州)信息技术有限公司 System and method for calibrating external parameters of camera
CN112184806A (en) * 2020-09-14 2021-01-05 国家电网有限公司 Space distance measurement method based on three-dimensional live-action transformer substation
CN112132906B (en) * 2020-09-22 2023-07-25 西安电子科技大学 External parameter calibration method and system between depth camera and visible light camera
CN112132906A (en) * 2020-09-22 2020-12-25 西安电子科技大学 External reference calibration method and system between depth camera and visible light camera
CN112509064A (en) * 2020-12-22 2021-03-16 北京百度网讯科技有限公司 Method, device, equipment and storage medium for displaying camera calibration progress
CN112651261A (en) * 2020-12-30 2021-04-13 凌云光技术股份有限公司 Calculation method for conversion relation between high-precision 2D camera coordinate system and mechanical coordinate system
CN112651261B (en) * 2020-12-30 2023-11-10 凌云光技术股份有限公司 Calculation method for conversion relation between high-precision 2D camera coordinate system and mechanical coordinate system
CN113963068A (en) * 2021-10-25 2022-01-21 季华实验室 Global calibration method for mirror image type single-camera omnidirectional stereoscopic vision sensor
CN113963068B (en) * 2021-10-25 2022-08-23 季华实验室 Global calibration method for mirror image type single-camera omnidirectional stereoscopic vision sensor
CN114095657A (en) * 2021-11-22 2022-02-25 成都天翼空间科技有限公司 Automatic calibration method and system based on newly-added camera
CN114095657B (en) * 2021-11-22 2024-02-27 成都天翼空间科技有限公司 Automatic calibration method and system based on newly added camera
TWI830094B (en) * 2021-11-25 2024-01-21 信驊科技股份有限公司 Testing device and testing method for detecting stitching defect of panoramic camera

Also Published As

Publication number Publication date
CN105701837A (en) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2017161608A1 (en) Geometric calibration processing method and device for camera
CN106875339B (en) Fisheye image splicing method based on strip-shaped calibration plate
KR102227583B1 (en) Method and apparatus for camera calibration based on deep learning
CN106875451B (en) Camera calibration method and device and electronic equipment
Hughes et al. Equidistant fish-eye calibration and rectification by vanishing point extraction
JP6629454B2 (en) Image fusion method and device, and terminal device
US8131113B1 (en) Method and apparatus for estimating rotation, focal lengths and radial distortion in panoramic image stitching
CN112767542A (en) Three-dimensional reconstruction method of multi-view camera, VR camera and panoramic camera
CN105096329B (en) Method for accurately correcting image distortion of ultra-wide-angle camera
US20150093042A1 (en) Parameter calibration method and apparatus
WO2017113535A1 (en) Method and apparatus for geometric calibration of camera
US8531505B2 (en) Imaging parameter acquisition apparatus, imaging parameter acquisition method and storage medium
CN111612842B (en) Method and device for generating pose estimation model
US11620730B2 (en) Method for merging multiple images and post-processing of panorama
WO2016155110A1 (en) Method and system for correcting image perspective distortion
CN111445537B (en) Calibration method and system of camera
WO2019232793A1 (en) Two-camera calibration method, electronic device and computer-readable storage medium
US20220405968A1 (en) Method, apparatus and system for image processing
CN108444452B (en) Method and device for detecting longitude and latitude of target and three-dimensional space attitude of shooting device
GB2567245A (en) Methods and apparatuses for depth rectification processing
WO2016208404A1 (en) Device and method for processing information, and program
Maalek et al. Automated calibration of smartphone cameras for 3D reconstruction of mechanical pipes
WO2020257999A1 (en) Method, apparatus and platform for image processing, and storage medium
TW201523516A (en) Video frame stabilization method for the moving camera
JP2016114445A (en) Three-dimensional position calculation device, program for the same, and cg composition apparatus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894961

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16894961

Country of ref document: EP

Kind code of ref document: A1