TWI626765B - Semiconductor structures having active regions comprising ingan, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures - Google Patents
Semiconductor structures having active regions comprising ingan, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures Download PDFInfo
- Publication number
- TWI626765B TWI626765B TW103109798A TW103109798A TWI626765B TW I626765 B TWI626765 B TW I626765B TW 103109798 A TW103109798 A TW 103109798A TW 103109798 A TW103109798 A TW 103109798A TW I626765 B TWI626765 B TW I626765B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- semiconductor structure
- gan
- active region
- growth
- Prior art date
Links
Landscapes
- Led Devices (AREA)
Abstract
本發明提供半導體結構,其包括介於複數個InGaN層之間的作用區域。該作用區域可至少實質上包含InGaN。複數個InGaN層包括至少一個含有InwGa1-wN的井層,及至少一個含有InbGa1-bN、緊鄰該至少一個井層的障壁層。在一些實施例中,該井層之InwGa1-wN中之w值可大於或等於約0.10且在一些實施例中可小於或等於約0.40,且該至少一個障壁層之InbGa1-bN中之b值可大於或等於約0.01且小於或等於約0.10。形成半導體結構之方法包括使此等InGaN層生長以形成諸如LED之發光裝置的作用區域。發光體裝置包括此等LED。 The present invention provides a semiconductor structure that includes an active region between a plurality of InGaN layers. The active region can comprise at least substantially InGaN. The plurality of InGaN layers include at least one well layer containing In w Ga 1-w N and at least one barrier layer containing In b Ga 1-b N in close proximity to the at least one well layer. In some embodiments, the w value in the In w Ga 1-w N of the well layer can be greater than or equal to about 0.10 and in some embodiments can be less than or equal to about 0.40, and the at b Ga of the at least one barrier layer The b value in 1-b N can be greater than or equal to about 0.01 and less than or equal to about 0.10. A method of forming a semiconductor structure includes growing such InGaN layers to form an active region of a light emitting device such as an LED. The illuminator device includes such LEDs.
Description
本案之標的與美國專利申請案第___號(代理人案號3356-11388US(F12/0504JFD GLA))(該案以Debray等人之名義與本案同日提申)及美國專利申請案第___號(代理人案號3356-11802US(F13/0208JFD GLA))(該案以Debray等人的名義與本案同日提申)之標的相關,該等申請案之揭示內容以全文引用的方式併入本文中。 The subject matter of this case is in US Patent Application No. ___ (Attorney's Case No. 3356-11388US (F12/0504JFD GLA)) (the case is filed on the same day as Debray et al.) and US Patent Application No. ___ ( The agent's case number 3356-11802US (F13/0208 JFD GLA)) (which is filed on the same day as the case of Debray et al.) is incorporated by reference in its entirety.
本發明係關於具有包含InGaN之作用區域的半導體結構及由此等半導體結構製成的發光裝置;製造此等發光裝置的方法;及包括此等發光裝置的裝置。 The present invention relates to a semiconductor device having a semiconductor structure comprising an active region of InGaN and a semiconductor device made therefrom; a method of fabricating such a light-emitting device; and a device comprising such a light-emitting device.
諸如發光二極體(LED)的發光裝置為當跨越LED之介於陽極與陰極之間的作用區域施加電壓時,發射呈可見光形式之電磁輻射的電氣裝置。LED典型地包含一或多個半導體材料層,陽極所供應之電子與陰極所供應之電洞在此等半導體材料層內重合。當電子與電洞在LED 之作用區域內重合時,能量以LED之作用區域所發射的光子形式釋放。 A light emitting device, such as a light emitting diode (LED), is an electrical device that emits electromagnetic radiation in the form of visible light when a voltage is applied across an active region of the LED between the anode and the cathode. The LED typically comprises one or more layers of semiconductor material, the electrons supplied by the anode and the holes supplied by the cathode being coincident within the layers of semiconductor material. When the electronics and holes are in the LED When the active regions overlap, energy is released as photons emitted by the active region of the LED.
LED經製造可包括多種不同類型的半導體材料,包括例如III至V族半導體材料及II至V族半導體材料。任何特定LED所發射的光波長和電子與電洞重合時所釋放的能量有關。因此,LED所發射的光波長和電子能級與電洞能級之間的相對能差有關。電子能級及電洞能級至少部分地與半導體材料組成、摻雜類型及濃度、半導體材料組態(亦即晶體結構及取向)、及電子與電洞發生再結合所在之半導體材料的品質有關。因此,LED所發射的光波長可藉由選擇性地定製LED內半導體材料之組成及組態來選擇性地定製。 LEDs can be fabricated to include a variety of different types of semiconductor materials including, for example, Group III to V semiconductor materials and Group II to V semiconductor materials. The wavelength of light emitted by any particular LED and the energy released when electrons coincide with the hole. Therefore, the wavelength of light emitted by the LED and the relative energy difference between the electron energy level and the hole energy level are related. The electronic energy level and the hole energy level are at least partially related to the composition of the semiconductor material, the doping type and concentration, the configuration of the semiconductor material (ie, the crystal structure and orientation), and the quality of the semiconductor material in which the electron and the hole are recombined. . Thus, the wavelength of light emitted by the LED can be selectively customized by selectively customizing the composition and configuration of the semiconductor material within the LED.
在此項技術中已知可製造包含III至V族半導體材料(諸如III族氮化物材料)的LED。已知此等III族氮化物LED能夠發射電磁輻射譜之藍色及綠色可見光區域中的輻射且已知能夠在比較高的功率及光度下操作。 It is known in the art to fabricate LEDs comprising Group III to V semiconductor materials, such as Group III nitride materials. It is known that such Group III nitride LEDs are capable of emitting radiation in the blue and green visible regions of the electromagnetic radiation spectrum and are known to operate at relatively high power and luminosity.
此發明內容係為了以簡化形式引入所選概念而提供。此等概念進一步詳述於下文之本發明實施方式中。不希望此發明內容可鑑別所主張標的之關鍵特徵或基本特徵,亦不希望此發明內容用於限制所主張標的之範圍。 This Summary is provided to introduce selected concepts in a simplified form. These concepts are further detailed in the embodiments of the invention below. It is not intended that the scope of the claimed subject matter should be construed as limiting the scope of the claimed subject matter.
在一些實施例中,本發明包括一種包含GaN基底層之半導體結構,該GaN基底層具有生長面晶格參數大於或等於約3.189埃(Angstroms)的極性生長面。作用區域安置於基底層上,且作用區域包含複數個InGaN層。複數個InGaN層包括至少一個InwGa1-wN井層,其中0.10w0.40;及至少一個InbGa1-bN障壁層,其中0.01b0.10。電子阻擋層安置於作用區域之與GaN基底層相對的一側上。p型本體層安置於電子阻擋層上,且p型本體層包含InpGa1-pN,其中 0.01p0.08。p型接觸層安置於p型本體層上,且p型接觸層包含IncGa1-cN,其中0.00c0.10。 In some embodiments, the invention includes a semiconductor structure comprising a GaN substrate layer having a polar growth plane having a growth face lattice parameter greater than or equal to about 3.189 Angstroms. The active area is disposed on the base layer, and the active area includes a plurality of InGaN layers. The plurality of InGaN layers include at least one In w Ga 1-w N well layer, wherein 0.10 w 0.40; and at least one In b Ga 1-b N barrier layer, wherein 0.01 b 0.10. An electron blocking layer is disposed on a side of the active region opposite the GaN substrate layer. The p-type body layer is disposed on the electron blocking layer, and the p-type body layer includes In p Ga 1-p N, wherein 0.01 p 0.08. The p-type contact layer is disposed on the p-type body layer, and the p-type contact layer includes In c Ga 1-c N, wherein 0.00 c 0.10.
在其他實施例中,本發明包括由此等半導體結構製成的發光裝置。舉例而言,在其他實施例中,本發明包括一種包含GaN基底層之發光裝置,該GaN基底層具有生長面晶格參數大於或等於約3.189埃的極性生長面。作用區域安置於基底層上。作用區域包含複數個InGaN層,且複數個InGaN層包括至少一個井層及至少一個障壁層。電子阻擋層安置於作用區域上。p型InpGa1-pN本體層安置於電子阻擋層上,且p型IncGa1-cN接觸層安置於p型InpGa1-pN本體層上。另外,發光裝置之臨界應變能可為約4500(a.u.)或小於4500(a.u.)。 In other embodiments, the invention includes a light emitting device made from such a semiconductor structure. For example, in other embodiments, the invention includes a light emitting device comprising a GaN base layer having a polar growth surface having a growth face lattice parameter greater than or equal to about 3.189 angstroms. The active area is placed on the substrate layer. The active region includes a plurality of InGaN layers, and the plurality of InGaN layers includes at least one well layer and at least one barrier layer. The electron blocking layer is disposed on the active area. The p-type In p Ga 1-p N bulk layer is disposed on the electron blocking layer, and the p-type In c Ga 1-c N contact layer is disposed on the p-type In p Ga 1-p N bulk layer. Additionally, the critical strain energy of the illuminating device can be about 4500 (au) or less than 4500 (au).
本發明之其他實施例包括製造此等結構及裝置的方法。舉例而言,在一些實施例中,本發明包括一種形成半導體結構的方法,其中所提供之GaN基底層具有生長面晶格參數大於或等於約3.189Å的極性生長面。複數個InGaN層生長而在基底層上形成作用區域。複數個InGaN層之生長包括使至少一個包含InwGa1-wN之井層生長,其中0.10w0.40,及使位於至少一個井層上之至少一個障壁層生長,該至少一個障壁層包含InbGa1-bN,其中0.01b0.10。電子阻擋層生長於作用區域上。p型InpGa1-pN本體層生長於電子阻擋層上,其中0.01p0.08,且p型IncGa1-cN接觸層生長於p型InpGa1-pN本體層上,其中0.00c0.10。 Other embodiments of the invention include methods of making such structures and devices. For example, in some embodiments, the invention includes a method of forming a semiconductor structure in which a GaN substrate layer is provided having a polar growth plane having a growth face lattice parameter greater than or equal to about 3.189 Å. A plurality of InGaN layers are grown to form an active region on the substrate layer. The growth of the plurality of InGaN layers includes growing at least one well layer comprising In w Ga 1-w N, wherein 0.10 w 0.40, and growing at least one barrier layer on at least one of the well layers, the at least one barrier layer comprising In b Ga 1-b N, wherein 0.01 b 0.10. The electron blocking layer is grown on the active area. The p-type In p Ga 1-p N bulk layer is grown on the electron blocking layer, wherein 0.01 p 0.08, and a p-type In c Ga 1-c N contact layer is grown on the p-type In p Ga 1-p N bulk layer, wherein 0.00 c 0.10.
100‧‧‧半導體結構 100‧‧‧Semiconductor structure
102‧‧‧基底層 102‧‧‧ basal layer
104‧‧‧p型接觸層 104‧‧‧p-type contact layer
106‧‧‧作用區域 106‧‧‧Action area
108‧‧‧電子阻擋層 108‧‧‧Electronic barrier
110‧‧‧p型本體層 110‧‧‧p-type body layer
112‧‧‧GaN基底層 112‧‧‧ GaN basal layer
113‧‧‧生長模板 113‧‧‧ Growth template
114‧‧‧InGaN井層 114‧‧‧InGaN well
116‧‧‧InGaN障壁層 116‧‧‧InGaN barrier layer
118‧‧‧間隔層 118‧‧‧ spacer
120‧‧‧IncpGa1-cpN帽層 120‧‧‧In cp Ga 1-cp N cap layer
122‧‧‧插圖 122‧‧‧ illustration
124‧‧‧GaN層 124‧‧‧GaN layer
126‧‧‧AleGa1-eN層 126‧‧‧Al e Ga 1-e N layer
128‧‧‧傳導帶 128‧‧‧Transmission belt
130‧‧‧導電能級 130‧‧‧Electrical energy level
132‧‧‧傳導帶能級 132‧‧‧ Conduction band energy level
134‧‧‧傳導帶能級 134‧‧‧ Conduction band energy level
136‧‧‧插圖 136‧‧‧ illustration
138‧‧‧GaN層 138‧‧‧ GaN layer
140‧‧‧AleGa1-eN層 140‧‧‧Al e Ga 1-e N layer
200‧‧‧半導體結構 200‧‧‧Semiconductor structure
202‧‧‧電子中止層 202‧‧‧Electronic stop layer
204‧‧‧插圖 204‧‧‧ illustration
206‧‧‧AlstGa1-stN層 206‧‧‧Al st Ga 1-st N layer
208‧‧‧GaN層 208‧‧‧GaN layer
210‧‧‧插圖 210‧‧‧ illustration
228‧‧‧傳導帶 228‧‧‧Transmission belt
300‧‧‧半導體結構 300‧‧‧Semiconductor structure
302‧‧‧應變釋放層 302‧‧‧ strain release layer
304‧‧‧插圖 304‧‧‧ illustration
306‧‧‧InsraGa1-sraN層 306‧‧‧In sra Ga 1-sra N layer
308‧‧‧InsrbGa1-srbN層 308‧‧‧In srb Ga 1-srb N layer
310‧‧‧插圖 310‧‧‧ illustration
328‧‧‧傳導帶 328‧‧‧Transmission belt
400‧‧‧半導體結構 400‧‧‧Semiconductor structure
402‧‧‧GaN障壁層 402‧‧‧GaN barrier layer
406‧‧‧作用區域 406‧‧‧Action area
428‧‧‧傳導帶 428‧‧‧Transmission belt
500‧‧‧半導體結構 500‧‧‧Semiconductor structure
506‧‧‧作用區域 506‧‧‧Action area
514A‧‧‧第一量子井 514 A ‧‧‧First Quantum Well
514B‧‧‧第二量子井 514 B ‧‧‧Second quantum well
516A‧‧‧第一障壁區 516 A ‧‧‧First barrier area
516B‧‧‧第二障壁區 516 B ‧‧‧Second barrier area
516C‧‧‧第三障壁區 516 C ‧‧‧ Third barrier area
528‧‧‧傳導帶能量 528‧‧‧Transmission band energy
550A‧‧‧第一障壁區516A之帶隙能 550 A ‧‧‧ Band gap energy of 516 A in the first barrier zone
550B‧‧‧第二障壁區516B之帶隙能 550 B ‧‧‧ Band gap energy of 516 B in the second barrier zone
550C‧‧‧第三障壁區516C之帶隙能 550 C ‧‧‧ Band gap energy of 516 C in the third barrier zone
552‧‧‧價帶能量 552‧‧‧Price energy
552A‧‧‧帶隙能 552 A ‧‧‧Gap energy
552B‧‧‧帶隙能 552 B ‧‧‧Gap energy
552C‧‧‧帶隙能 552 C ‧‧‧Gap energy
554A‧‧‧電洞能量障壁 554 A ‧‧‧Curtain energy barrier
554B‧‧‧電洞能量障壁 554 B ‧‧‧Curtain energy barrier
554C‧‧‧電洞能量障壁 554 C ‧‧‧Curtain energy barrier
556‧‧‧LED 556‧‧‧LED
558‧‧‧作用區域 558‧‧‧Action area
560‧‧‧基底層 560‧‧‧ basal layer
562‧‧‧InGaN井層 562‧‧‧InGaN well layer
564‧‧‧GaN障壁層 564‧‧‧ GaN barrier layer
566‧‧‧第一間隔層 566‧‧‧First spacer
568‧‧‧第二間隔層 568‧‧‧Second spacer
570‧‧‧電子阻擋層 570‧‧‧Electronic barrier
572‧‧‧電極層 572‧‧‧electrode layer
574‧‧‧傳導帶 574‧‧‧Transmission belt
576‧‧‧價帶 576‧‧‧Price band
600‧‧‧LED 600‧‧‧LED
602‧‧‧傳導帶 602‧‧‧Transmission belt
604‧‧‧價帶 604‧‧‧Price band
650‧‧‧中間半導體結構 650‧‧‧Intermediate semiconductor structure
652‧‧‧犧牲基板 652‧‧‧ sacrificial substrate
654‧‧‧順應材料層 654‧‧‧ compliant material layer
656‧‧‧InsGa1-sN晶種層 656‧‧‧In s Ga 1-s N seed layer
658‧‧‧支撐基板 658‧‧‧Support substrate
660‧‧‧介電材料層/接合層 660‧‧‧Dielectric material layer/bonding layer
662‧‧‧極性生長面 662‧‧‧Polar growth surface
680‧‧‧半導體結構 680‧‧‧Semiconductor structure
682‧‧‧生長堆疊 682‧‧‧ growth stack
700‧‧‧發光裝置 700‧‧‧Lighting device
702‧‧‧第一電極接點 702‧‧‧First electrode contact
704‧‧‧第二電極接點 704‧‧‧Second electrode contacts
800‧‧‧發光裝置 800‧‧‧Lighting device
802‧‧‧第一電極接點 802‧‧‧First electrode contact
804‧‧‧第二電極接點 804‧‧‧Second electrode contacts
900‧‧‧發光體裝置 900‧‧‧Lighting device
902‧‧‧容器 902‧‧‧ Container
904‧‧‧支撐結構 904‧‧‧Support structure
906‧‧‧第一電接觸結構 906‧‧‧First electrical contact structure
908‧‧‧第二電接觸結構 908‧‧‧Second electrical contact structure
910‧‧‧導線 910‧‧‧Wire
912‧‧‧容器902之內表面 912‧‧‧ Inside surface of container 902
QW1‧‧‧第一號量子井 QW1‧‧‧No. 1 Quantum Well
QW2‧‧‧第二號量子井 QW2‧‧‧ Quantum Well No. 2
QW3‧‧‧第三號量子井 QW3‧‧‧No. 3 Quantum Well
QW4‧‧‧第四號量子井 QW4‧‧‧No. 4 Quantum Well
QW5‧‧‧第五號量子井 QW5‧‧‧No. 5 Quantum Well
T b ‧‧‧障壁層116的平均層厚度 Average thickness of the barrier layer 116 of T b ‧‧‧
T b2 ‧‧‧GaN障壁層402的平均層厚度 Average thickness of the T b2 ‧‧‧ GaN barrier layer 402
T c ‧‧‧p型接觸層104的平均層厚度 Average layer thickness of T c ‧‧‧p type contact layer 104
T cp ‧‧‧IncpGa1-cpN帽層120的平均層厚度 Average layer thickness of T cp ‧‧‧In cp Ga 1-cp N cap layer 120
T e ‧‧‧電子阻擋層108的平均層厚度 T e ‧‧‧ average layer thickness of the electron blocking layer 108
T n ‧‧‧InGaN第n層之平均總厚度 Average total thickness of the nth layer of T n ‧‧‧InGaN
T p ‧‧‧p型本體層110之平均層厚度 Average layer thickness of the T p ‧‧‧p type body layer 110
T s ‧‧‧InsGa1-sN晶種層的總層厚度 Total layer thickness T s ‧‧‧In s Ga 1-s N seed layer
T sp ‧‧‧InspGa1-spN間隔層118的平均層厚度 Average layer thickness of the T sp ‧‧‧In sp Ga 1-sp N spacer layer 118
T st ‧‧‧電子中止層202之平均層厚度 Average thickness of the electron stop layer 202 of T st ‧‧‧
T w ‧‧‧井層114的平均層厚度 Average thickness of the well layer 114 of T w ‧‧‧
圖1A為半導體結構之簡化側視圖,其在根據本發明實施例之半導體結構的作用區域中包括一或多個InGaN井層及一或多個InGaN障壁層。 1A is a simplified side view of a semiconductor structure including one or more InGaN well layers and one or more InGaN barrier layers in an active region of a semiconductor structure in accordance with an embodiment of the present invention.
圖1B為簡圖,其以能帶圖說明圖1A半導體結構之不同層中之不同材料在傳導帶能級方面的相對差異。 FIG. 1B is a diagram illustrating the relative differences in conduction band energy levels of different materials in different layers of the semiconductor structure of FIG. 1A in a band diagram.
圖2A為另一種半導體結構的簡化側視圖,其類似於圖1A之半導體結構,但進一步包括介於半導體結構之作用區域與基底層之間的電子中止層。 2A is a simplified side view of another semiconductor structure similar to the semiconductor structure of FIG. 1A, but further including an electron stop layer between the active region of the semiconductor structure and the substrate layer.
圖2B為圖2A半導體結構之簡化傳導帶圖。 2B is a simplified conduction band diagram of the semiconductor structure of FIG. 2A.
圖3A為另一種半導體結構的簡化側視圖,其類似於圖1A之半導體結構,但進一步包括介於半導體結構之作用區域與基底層之間的應變釋放層。 3A is a simplified side view of another semiconductor structure similar to the semiconductor structure of FIG. 1A, but further including a strain relief layer between the active region of the semiconductor structure and the substrate layer.
圖3B為圖3A半導體結構之簡化傳導帶圖。 Figure 3B is a simplified conduction band diagram of the semiconductor structure of Figure 3A.
圖4A為另一種半導體結構之簡化側視圖,其類似於圖1A之半導體結構,但進一步包括位於半導體結構之作用區域內的其他薄GaN障壁層。 4A is a simplified side view of another semiconductor structure similar to the semiconductor structure of FIG. 1A, but further including other thin GaN barrier layers in the active regions of the semiconductor structure.
圖4B為圖4A半導體結構之簡化傳導帶圖。 4B is a simplified conduction band diagram of the semiconductor structure of FIG. 4A.
圖5A為另一種半導體結構之簡化側視圖,其類似於圖1A之半導體結構,但進一步包括位於半導體結構之作用區域內的井溢流結構。 5A is a simplified side view of another semiconductor structure similar to the semiconductor structure of FIG. 1A, but further including a well overflow structure located within the active region of the semiconductor structure.
圖5B為圖5A半導體結構之簡化能帶圖。 Figure 5B is a simplified energy band diagram of the semiconductor structure of Figure 5A.
圖6A為中間半導體結構之簡化俯視平面圖,該中間半導體結構可用於根據本發明之方法實施例製造供製造半導體結構用的生長模板。 6A is a simplified top plan view of an intermediate semiconductor structure that can be used to fabricate a growth template for fabricating a semiconductor structure in accordance with an embodiment of the method of the present invention.
圖6B為圖6A之中間半導體結構的局部橫截面側視圖。 Figure 6B is a partial cross-sectional side view of the intermediate semiconductor structure of Figure 6A.
圖6C為生長模板之局部橫截面側視圖,該生長模板可用於根據本發明之方法實施例製造半導體結構。 Figure 6C is a partial cross-sectional side view of a growth template that can be used to fabricate a semiconductor structure in accordance with an embodiment of the method of the present invention.
圖6D說明在如圖6C之生長模板上磊晶式沈積而成之生長堆疊的各層。 Figure 6D illustrates the layers of the growth stack that are epitaxially deposited on the growth template of Figure 6C.
圖7為利用半導體結構根據本發明之方法實施例製成之發光裝置的局部橫截面側視圖。 Figure 7 is a partial cross-sectional side view of a light emitting device fabricated using a semiconductor structure in accordance with an embodiment of the method of the present invention.
圖8為利用半導體結構根據本發明之方法實施例製成之另一發光 裝置的局部橫截面側視圖。 Figure 8 is another luminescence made using a semiconductor structure in accordance with an embodiment of the method of the present invention A partial cross-sectional side view of the device.
圖9為說明半導體結構之內部量子效率與總應變能之間關係的圖,該等半導體結構係根據本發明之方法實施例形成。 Figure 9 is a graph illustrating the relationship between internal quantum efficiency and total strain energy of a semiconductor structure formed in accordance with an embodiment of the method of the present invention.
圖10A為先前已知之LED的簡化側視圖,其在該LED之作用區域中包括InGaN井層及GaN障壁層。 Figure 10A is a simplified side view of a previously known LED including an InGaN well layer and a GaN barrier layer in the active area of the LED.
圖10B為圖10A之LED的簡化傳導帶圖。 Figure 10B is a simplified conduction band diagram of the LED of Figure 10A.
圖11A為說明在跨越圖10A之LED作用區域施加的電壓為零時,針對傳導帶及價帶所計算之能帶邊緣的圖,此等計算值係使用LED之電腦模型獲得。 Figure 11A is a diagram illustrating the band edges calculated for the conduction band and the valence band when the voltage applied across the LED active region of Figure 10A is zero, and such calculated values are obtained using a computer model of the LED.
圖11B為類似於圖11A的圖,但本圖係說明因跨越LED之作用區域施加電壓而流過作用區域的電流密度為125A/cm2時,針對傳導帶及價帶所計算的能帶邊緣。 Fig. 11B is a view similar to Fig. 11A, but this figure illustrates the band edge calculated for the conduction band and the valence band when the current density flowing through the active region is 125 A/cm 2 by applying a voltage across the active region of the LED. .
圖11C為說明圖11A之LED中之各InGaN量子井層的發射輻射強度計算值與波長之關係的圖。 Figure 11C is a graph illustrating the calculated emission intensity versus wavelength for each InGaN quantum well layer in the LED of Figure 11A.
圖11D為說明圖11A之LED之載子注入效率計算值與跨越作用區域施加之電流密度之關係的圖。 Figure 11D is a graph illustrating the relationship between the calculated value of the carrier injection efficiency of the LED of Figure 11A and the current density applied across the active region.
圖11E為說明圖11A之LED之內部量子效率計算值與跨越作用區域施加之電流密度之關係的圖。 Figure 11E is a graph illustrating the relationship between the calculated internal quantum efficiency of the LED of Figure 11A and the current density applied across the active region.
圖12A為本發明之LED的簡化側視圖,該LED類似於圖1A之LED且在LED之作用區域中包括InGaN井層及InGaN障壁層。 12A is a simplified side view of an LED of the present invention similar to the LED of FIG. 1A and including an InGaN well layer and an InGaN barrier layer in the active area of the LED.
圖12B為圖12A之LED的簡化傳導帶圖。 Figure 12B is a simplified conduction band diagram of the LED of Figure 12A.
圖13A為說明在跨越圖12A之LED作用區域施加的電壓為零時,針對傳導帶及價帶所計算之能帶邊緣的圖,此等計算值係使用LED之電腦模型獲得。 Figure 13A is a diagram illustrating the band edges calculated for the conduction band and the valence band when the voltage applied across the active area of the LED of Figure 12A is zero, and such calculated values are obtained using a computer model of the LED.
圖13B為類似於圖13A的圖,但圖13B說明因跨越LED之作用區域施加電壓而流過作用區域的電流密度為125A/cm2時,針對傳導帶及 價帶所計算的能帶邊緣。 Fig. 13B is a view similar to Fig. 13A, but Fig. 13B illustrates the band edge calculated for the conduction band and the valence band when the current density flowing through the active region is 125 A/cm 2 by applying a voltage across the active region of the LED.
圖13C為說明圖13A之LED中之各InGaN量子井層的發射輻射強度計算值與波長之關係的圖。 Figure 13C is a graph illustrating the calculated emission intensity versus wavelength for each InGaN quantum well layer in the LED of Figure 13A.
圖13D為說明圖13A之LED之載子注入效率計算值與跨越作用區域施加之電流密度之關係的圖。 Figure 13D is a graph illustrating the relationship between the calculated value of the carrier injection efficiency of the LED of Figure 13A and the current density applied across the active region.
圖13E為說明圖13A之LED之內部量子效率計算值與跨越作用區域施加之電流密度之關係的圖。 Figure 13E is a graph illustrating the relationship between the calculated internal quantum efficiency of the LED of Figure 13A and the current density applied across the active region.
圖14說明包括本發明LED之發光裝置的實例。 Figure 14 illustrates an example of a light-emitting device including the LED of the present invention.
本文呈現之圖示不欲為任何特定半導體材料、結構或裝置之真實視圖,而僅為用於描述本發明實施例的理想化體現。 The illustrations presented herein are not intended to be a true view of any particular semiconductor material, structure or device, but are merely idealized embodiments for describing embodiments of the invention.
圖1A說明半導體結構100之一實施例。半導體結構100包含複數個III族氮化物層(例如氮化銦、氮化鎵、氮化鋁及其合金)且包括基底層102、p型接觸層104及安置於基底層102與p型接觸層104之間的作用區域106,作用區域106包含複數個InGaN層。另外,作用區域106包含至少一個InGaN井層及至少一個InGaN障壁層。在一些實施例中,作用區域106可至少實質上包含InGaN(但其中存在摻雜劑)。半導體結構100進一步包含安置於作用區域106上之電子阻擋層108、安置於電子阻擋層108上之p型本體層110及安置於p型本體層110上的p型接觸層104。 FIG. 1A illustrates one embodiment of a semiconductor structure 100. The semiconductor structure 100 includes a plurality of Ill-nitride layers (eg, indium nitride, gallium nitride, aluminum nitride, and alloys thereof) and includes a base layer 102, a p-type contact layer 104, and a base layer 102 and a p-type contact layer. An active region 106 between 104, the active region 106 includes a plurality of InGaN layers. Additionally, the active region 106 includes at least one InGaN well layer and at least one InGaN barrier layer. In some embodiments, the active region 106 can comprise at least substantially InGaN (but with dopants present therein). The semiconductor structure 100 further includes an electron blocking layer 108 disposed on the active region 106, a p-type body layer 110 disposed on the electron blocking layer 108, and a p-type contact layer 104 disposed on the p-type body layer 110.
基底層102可包含GaN基底層112,其中GaN基底層112之生長面為生長面晶格參數大於或等於約3.189埃的極面。諸如發光二極體之發光裝置可由半導體結構100製成,如下文中詳細所述。然而,簡言之,第一電極接點可形成於GaN基底層112之一部分上,且第二電極接點可形成於p型接觸層104之一部分上,使得可在跨越作用區域106之電極接點之間供應電壓,從而使由半導體結構100製成之發光裝置 發射電磁輻射(例如可見光)。 The base layer 102 can include a GaN base layer 112, wherein the growth face of the GaN base layer 112 is a pole face having a growth face lattice parameter greater than or equal to about 3.189 angstroms. A light emitting device such as a light emitting diode can be made from semiconductor structure 100, as described in detail below. However, in short, the first electrode contact may be formed on a portion of the GaN base layer 112, and the second electrode contact may be formed on a portion of the p-type contact layer 104 such that the electrode may be connected across the active region 106. A voltage is supplied between the dots to thereby make the light-emitting device made of the semiconductor structure 100 Emission of electromagnetic radiation (eg visible light).
本發明之半導體結構實施例(包括含有至少一個InGaN井層及至少一個InGaN障壁層的作用區域)可使用使III族氮化物層(諸如InGaN)生長或以其他方式形成的各類方法製成。作為非限制實例,各個III族氮化物層可使用以下一或多種方法生長或以其他方式沈積:化學氣相沈積(CVD)方法、金屬有機化學氣相沈積方法(MOCVD)、氣相磊晶(VPE)方法、原子層沈積(ALD)方法、氫化物氣相磊晶(HVPE)方法、分子束磊晶(MBE)方法、原子層沈積(ALD)方法、化學束磊晶(CBE)方法等。 Embodiments of the semiconductor structures of the present invention, including active regions comprising at least one InGaN well layer and at least one InGaN barrier layer, can be fabricated using various methods of growing or otherwise forming a Group III nitride layer, such as InGaN. As a non-limiting example, each of the Group III nitride layers may be grown or otherwise deposited using one or more of the following methods: chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), vapor phase epitaxy ( VPE) method, atomic layer deposition (ALD) method, hydride vapor epitaxy (HVPE) method, molecular beam epitaxy (MBE) method, atomic layer deposition (ALD) method, chemical beam epitaxy (CBE) method, and the like.
在一些實施例中,如一或所有以下文獻中所揭示的方法可用於使各個III族氮化物層生長或以其他方式沈積:美國專利申請公開案第US 2010/0176490 A1號,其以Letertre等人之名義公開於2010年7月15日;美國專利申請公開案第US 2010/0109126號,其以Arena之名義公開於2010年5月6日;美國專利申請公開案第US 2012/0211870號,其以Figuet之名義公開於2012年8月23日;及美國專利申請公開案第US 2012/0225539號,其以Figuet之名義公開於2012年9月6日,該等申請案各自之揭示內容以全文引用的方式併入本文中。此等方法能夠製造具有如下文中所述之組成及厚度的III族氮化物層,諸如InGaN層(及其他視情況可選III族氮化物層)。此等方法可用於形成生長模板113,可在生長模板113上形成隨後III族氮化物層。 In some embodiments, the methods disclosed in one or all of the following documents can be used to grow or otherwise deposit individual Group III nitride layers: US Patent Application Publication No. US 2010/0176490 A1 to Letertre et al. The name is disclosed in the U.S. Patent Application Publication No. US 2010/0109126, which is hereby incorporated by reference in its entirety in Published in the name of Figuet on August 23, 2012; and U.S. Patent Application Publication No. US 2012/0225539, published in the name of Figuet on September 6, 2012, the respective disclosures of each of which are hereby incorporated by reference. The manner of reference is incorporated herein. These methods enable the fabrication of Group III nitride layers having compositions and thicknesses as described below, such as InGaN layers (and other optionally Group III nitride layers). These methods can be used to form the growth template 113, and a subsequent III-nitride layer can be formed on the growth template 113.
下文參考圖6A至6C簡要描述可用於根據本發明實施例製造生長模板113之此方法的實例。 An example of such a method that can be used to fabricate the growth template 113 in accordance with an embodiment of the present invention is briefly described below with reference to Figures 6A through 6C.
圖6A為用於形成生長模板113(圖1A)之中間半導體結構650的俯視平面圖,可在生長模板113上製造本發明之一或多個半導體結構及隨後的發光裝置,且圖6B為用於形成生長模板113之中間半導體結構650之一部分的簡化橫截面圖。生長模板113可如上述美國專利申請公 開案第US 2010/0176490 A1號及/或美國專利申請公開案第US 2010/0109126號中所揭示製造。如其中所揭示,中間半導體結構650可包括犧牲基板652、安置於犧牲基板652上的一層順應材料654,及一或多個InsGa1-sN晶種層656,該等晶種層各自包含一層安置於順應材料654上的III族氮化物材料。一或多個InsGa1-sN晶種層656可用作「晶種」,可在晶種上形成本文所述之半導體結構100的各個隨後層。 Figure 6A is a top plan view of an intermediate semiconductor structure 650 for forming a growth template 113 (Figure 1A) on which one or more semiconductor structures of the present invention and subsequent illumination devices can be fabricated, and Figure 6B is for A simplified cross-sectional view of a portion of intermediate semiconductor structure 650 forming growth template 113. The growth template 113 can be manufactured as disclosed in the above-mentioned U.S. Patent Application Publication No. US 2010/0176490 A1 and/or U.S. Patent Application Publication No. US 2010/0109126. As disclosed therein, the intermediate semiconductor structure 650 can include a sacrificial substrate 652, a layer of compliant material 654 disposed on the sacrificial substrate 652, and one or more In s Ga 1-s N seed layers 656, each of the seed layers A layer III nitride material disposed on compliant material 654 is included. One or more In s Ga 1-s N seed layers 656 can be used as "seeds" on which various subsequent layers of the semiconductor structure 100 described herein can be formed.
初始InsGa1-sN晶種層可形成於初始生長基板上且隨後使用諸如離子植入、接合及隨後分離初始InsGa1-sN晶種層之一部分來轉移至犧牲基板652上(未圖示)。初始生長基板可包含特徵在於生長面晶格與初始InsGa1-sN晶種層錯配以便以著色方式形成InsGa1-sN晶種層的生長基板。舉例而言,初始生長基板可包含藍寶石基板,其包括鎵極性GaN晶種層,使得所形成之InsGa1-sN晶種層包含經受拉伸應變的鎵極性InsGa1-sN晶種層。 The initial In s Ga 1-s N seed layer may be formed on the initial growth substrate and then transferred to the sacrificial substrate 652 using a portion such as ion implantation, bonding, and subsequent separation of the initial In s Ga 1-s N seed layer. (not shown). The initial growth substrate may include a growth substrate characterized by a growth face lattice mismatched with the initial In s Ga 1-s N seed layer to form the In s Ga 1-s N seed layer in a colored manner. For example, the initial growth substrate may comprise a sapphire substrate comprising a gallium polar GaN seed layer such that the formed In s Ga 1-s N seed layer comprises gallium polarity In s Ga 1-s N subjected to tensile strain Seed layer.
可形成或生長初始InsGa1-sN晶種層,以使得InsGa1-sN晶種層包含含有III族氮化物極面之生長面。舉例而言,可形成生長面,以使得InsGa1-sN晶種層包含鎵極面。另外,可生長或以其他方式形成初始InsGa1-sN晶種層,以使得InsGa1-sN晶種層之組成滿足0.02s0.05。作為一個特定非限制實例,InsGa1-sN晶種層中之n值可等於約0.03。亦可使InsGa1-sN晶種層生長或以其他方式形成為大於約兩百奈米(200nm)之厚度。然而,InsGa1-sN晶種層可以InsGa1-sN晶種層不超過InsGa1-sN晶種層臨界厚度的方式形成,InsGa1-sN晶種層臨界厚度為InsGa1-sN晶種層之應變可因其他缺陷形成而鬆弛時的厚度。此現象在此項技術中通常稱為相分離。因此,InsGa1-sN晶種層可包含已發生應變的高品質晶種材料。 The initial In s Ga 1-s N seed layer may be formed or grown such that the In s Ga 1-s N seed layer comprises a growth face containing a III-nitride pole face. For example, a growth face can be formed such that the In s Ga 1-s N seed layer comprises a gallium pole face. In addition, the initial In s Ga 1-s N seed layer may be grown or otherwise formed such that the composition of the In s Ga 1-s N seed layer satisfies 0.02. s 0.05. As a specific, non-limiting example, the value of n in the In s Ga 1-s N seed layer can be equal to about 0.03. The In s Ga 1-s N seed layer may also be grown or otherwise formed to a thickness greater than about two hundred nanometers (200 nm). However, In s Ga 1-s N seed layer may In s Ga 1-s N seed layer does not exceed the critical thickness of the In s Ga 1-s N seed layer is formed, In s Ga 1-s N seed crystal The critical thickness of the layer is the thickness at which the strain of the In s Ga 1-s N seed layer can be relaxed due to the formation of other defects. This phenomenon is commonly referred to as phase separation in the art. Therefore, the In s Ga 1-s N seed layer may contain a high-quality seed material that has undergone strain.
作為非限制性實例,工業中已知為SMART-CUT方法的方法可用於將InsGa1-sN晶種層656轉移至犧牲基板652,犧牲基板652使用順應 材料層654作為接合層。此等方法詳細描述於例如Bruel之美國專利第RE39,484號、Aspar等人之美國專利第6,303,468號、Aspar等人之美國專利第6,335,258號、Moriceau等人之美國專利第6,756,286號、Aspar等人之美國專利第6,809,044號及Aspar等人之美國專利第6,946,365號中,該等專利各自之揭示內容以全文引用的方式併入本文中。 By way of non-limiting example, methods known in the industry as SMART-CUT process may be used In s Ga 1-s N seed layer 656 is transferred to the sacrificial substrate 652, sacrificial substrate 652 used as a bonding material layer 654 compliant layer. Such methods are described in detail in, for example, U.S. Patent No. RE 39,484 to Bruel, U.S. Patent No. 6,303,468 to Aspar et al., U.S. Patent No. 6,335,258 to Aspar et al., U.S. Patent No. 6,756,286 to Moriceau et al., Aspar et al. The disclosures of each of these patents are hereby incorporated by reference in their entirety in their entireties in the entire disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of
犧牲基板652可包含均質材料或非均質(亦即複合)材料。作為非限制性實例,支撐基板652可包含藍寶石、矽、III族砷化物、石英(SiO2)、熔融二氧化矽(SiO2)玻璃、玻璃陶瓷複合材料(諸如Schott North America,Inc.,Duryea,PA以商標ZERODUR®所售者)、熔融二氧化矽玻璃複合材料(諸如SiO2-TiO2或Cu2-Al2O3-SiO2)、氮化鋁(AlN)或碳化矽(SiC)。 The sacrificial substrate 652 can comprise a homogeneous material or a heterogeneous (ie, composite) material. As a non-limiting example, support substrate 652 can comprise sapphire, germanium, group III arsenide, quartz (SiO 2 ), molten cerium oxide (SiO 2 ) glass, glass ceramic composite (such as Schott North America, Inc., Duryea) , PA sold under the trademark ZERODUR®), fused cerium oxide glass composites (such as SiO 2 -TiO 2 or Cu 2 -Al 2 O 3 -SiO 2 ), aluminum nitride (AlN) or tantalum carbide (SiC) .
順應材料層654可包含例如玻璃轉移溫度(Tg)小於或等於約800℃的材料。順應材料層654的厚度可在約0.1μm至約10μm範圍內,更特定言之,在約1μm至約5μm範圍內。作為非限制實例,順應材料層100可包含以下至少一者:氧化物、磷矽酸鹽玻璃(PSG)、硼矽酸鹽(BSG)、硼磷矽酸鹽玻璃(BPSG)、聚醯亞胺、摻雜或無摻雜準無機性矽氧烷旋塗玻璃(SOG)、無機旋塗玻璃(亦即甲基-、乙基-、苯基-或丁基),及摻雜或無摻雜矽酸鹽。 The compliant material layer 654 can comprise, for example, a material having a glass transition temperature ( Tg ) less than or equal to about 800 °C. The thickness of the compliant material layer 654 can range from about 0.1 [mu]m to about 10 [mu]m, and more specifically, from about 1 [mu]m to about 5 [mu]m. As a non-limiting example, compliant material layer 100 can comprise at least one of: oxide, phosphonium silicate glass (PSG), borosilicate (BSG), borophosphonite glass (BPSG), polyimine , doped or undoped quasi-inorganic oxirane spin-on glass (SOG), inorganic spin-on glass (ie methyl-, ethyl-, phenyl- or butyl), and doped or undoped Citrate.
順應材料層654可使用例如烘箱、熔爐或沈積反應器加熱至足以使順應材料層654之黏度降低、從而使順應材料層654回焊的溫度,從而使一或多個InsGa1-sN晶種層656的晶格應變至少部分地鬆弛。藉由降低順應材料層654之黏度,可使InsGa1-sN晶種層656之拉伸應變至少部分地鬆弛或甚至可消除,從而形成生長面晶格參數大於或等於約3.189埃的InsGa1-sN晶種層656。 The compliant material layer 654 can be heated, for example, by an oven, furnace, or deposition reactor to a temperature sufficient to reduce the viscosity of the compliant material layer 654, thereby reflowing the compliant material layer 654, thereby causing one or more In s Ga 1-s N The lattice strain of the seed layer 656 is at least partially relaxed. By reducing the viscosity of the compliant material layer 654, the tensile strain of the In s Ga 1-s N seed layer 656 can be at least partially relaxed or even eliminated, thereby forming a growth surface lattice parameter greater than or equal to about 3.189 angstroms. In s Ga 1-s N seed layer 656.
因此,藉由使InsGa1-sN內之至少一部分晶格應變發生鬆弛,可使InsGa1-sN之生長面晶格參數大於或等於約3.189埃。大於或等於3.189 埃之生長面晶格參數可對應於纖鋅礦GaN之平衡生長面晶格常數。因此,根據本發明之一些實施例,在本發明之InsGa1-sN層上或上方形成的一或多個GaN層可以無應變狀態形成,亦即實質上無晶格應變。 Thus, by making In s Ga 1-s at least a portion of the lattice strain relaxation occurs within the N, allows growth plane lattice parameter In s Ga 1-s N is greater than or equal to about 3.189 Å. The growth plane lattice parameter greater than or equal to 3.189 angstroms may correspond to the equilibrium growth plane lattice constant of wurtzite GaN. Thus, in accordance with some embodiments of the present invention, one or more GaN layers formed on or over the In s Ga 1-s N layer of the present invention may be formed in an unstrained state, i.e., substantially free of lattice strain.
一或多個InsGa1-sN晶種層656一經至少部分鬆弛,InsGa1-sN晶種層656即可轉移至支撐基板上,且隨後可移除順應材料654及犧牲基板652以形成生長模板113,如圖1A及圖6C中所說明。詳細參看圖6B及圖6C,至少部分鬆弛的InsGa1-sN晶種層656可附著至支撐基板658,且可使用諸如雷射提離、濕式蝕刻、乾式蝕刻及化學機械拋光中之一或多種方法移除犧牲基板652及順應材料654。 Once the one or more In s Ga 1-s N seed layers 656 are at least partially relaxed, the In s Ga 1-s N seed layer 656 can be transferred onto the support substrate, and then the compliant material 654 and the sacrificial substrate can be removed. 652 is formed to form a growth template 113 as illustrated in Figures 1A and 6C. Referring in detail to Figures 6B and 6C, an at least partially relaxed In s Ga 1-s N seed layer 656 can be attached to the support substrate 658 and can be used, for example, in laser lift-off, wet etching, dry etching, and chemical mechanical polishing. The sacrificial substrate 652 and the compliant material 654 are removed by one or more methods.
支撐基板658可包含均質材料或非均質(亦即複合)材料。作為非限制性實例,支撐基板658可包含藍寶石、矽、III族砷化物、石英(SiO2)、熔融二氧化矽(SiO2)玻璃、玻璃陶瓷複合材料(諸如Schott North America,Inc.,Duryea,PA以商標ZERODUR®所售者)、熔融二氧化矽玻璃複合材料(諸如SiO2-TiO2或Cu2-Al2O3-SiO2)、氮化鋁(AlN)或碳化矽(SiC)。 Support substrate 658 can comprise a homogeneous material or a heterogeneous (ie, composite) material. As a non-limiting example, support substrate 658 can comprise sapphire, germanium, group III arsenide, quartz (SiO 2 ), molten cerium oxide (SiO 2 ) glass, glass ceramic composite (such as Schott North America, Inc., Duryea) , PA sold under the trademark ZERODUR®), fused cerium oxide glass composites (such as SiO 2 -TiO 2 or Cu 2 -Al 2 O 3 -SiO 2 ), aluminum nitride (AlN) or tantalum carbide (SiC) .
如圖6C中所示,在一些實施例中,生長模板113視情況可包括覆蓋支撐基板100的介電材料層660。介電材料層660視情況可在支撐基板658或一或多個InsGa1-sN晶種層656之主要表面上形成,其中介電材料660係用作接合層以促進InsGa1-sN晶種層656接合至支撐基板658。介電材料層660可包括例如氮氧化矽(SiON)、氮化矽(Si3N4)或二氧化矽(SiO2),且可使用例如化學氣相沈積(CVD)、物理氣相沈積(PVD)或原子層沈積(ALD)形成。因此,如圖1A及圖6C中所示,生長模板113包含支撐基板658及安置於支撐基板658上的InsGa1-sN晶種層656。 As shown in FIG. 6C, in some embodiments, the growth template 113 can optionally include a layer of dielectric material 660 that covers the support substrate 100. Dielectric material layer 660 may optionally be formed on the main surface of support substrate 658 or one or more In s Ga 1-s N seed layers 656, wherein dielectric material 660 is used as a bonding layer to facilitate In s Ga 1 The -s N seed layer 656 is bonded to the support substrate 658. The dielectric material layer 660 may include, for example, hafnium oxynitride (SiON), tantalum nitride (Si 3 N 4 ), or hafnium oxide (SiO 2 ), and may be, for example, chemical vapor deposition (CVD), physical vapor deposition ( PVD) or atomic layer deposition (ALD) formation. Therefore, as shown in FIGS. 1A and 6C, the growth template 113 includes a support substrate 658 and an In s Ga 1-s N seed layer 656 disposed on the support substrate 658.
另外,InsGa1-sN晶種層656可形成於支撐基板658上,使得InsGa1-sN晶種層656之組成範圍可為0.02s0.05。作為一個非限制性特定實例,InsGa1-sN晶種層656中之s值可等於約0.03。此外,InsGa1-sN晶種 層656可具有生長面晶格參數大於或等於約3.189埃的極性生長面662。亦可形成總層厚度 T s 大於約一百奈米(100nm)的InsGa1-sN晶種層。 In addition, the In s Ga 1-s N seed layer 656 may be formed on the support substrate 658 such that the composition range of the In s Ga 1-s N seed layer 656 may be 0.02. s 0.05. As a non-limiting specific example, the s value in the In s Ga 1-s N seed layer 656 can be equal to about 0.03. Additionally, the In s Ga 1-s N seed layer 656 can have a polar growth surface 662 having a growth face lattice parameter greater than or equal to about 3.189 angstroms. An In s Ga 1-s N seed layer having a total layer thickness T s greater than about one hundred nanometers (100 nm) may also be formed.
生長模板113形成圖1A之基底層102的一部分。在一些實施例中,基底層亦可包括GaN基底層112,其中GaN基底層繼承相鄰InsGa1-sN晶種層656之晶體特性。因此,GaN基底層112亦可包含生長面晶格參數大於或等於約3.189埃的極性生長面,例如鎵極性生長面。 Growth template 113 forms part of base layer 102 of Figure 1A. In some embodiments, the base layer may also include a GaN base layer 112, wherein the GaN base layer inherits the crystal characteristics of the adjacent In s Ga 1-s N seed layer 656. Therefore, the GaN underlayer 112 may also include a polar growth plane having a growth plane lattice parameter greater than or equal to about 3.189 angstroms, such as a gallium polar growth plane.
GaN基底層112可至少實質上包含GaN(但其中存在摻雜劑)。GaN基底層112的平均層厚度T n 可介於約十奈米(10nm)與約三千奈米(3,000nm)之間,或在一些實施例中,介於約十奈米(10nm)與約一千奈米(1,000nm)之間。GaN基底層112視情況可摻雜。舉例而言,GaN基底層112可藉由摻雜電子供體元素(諸如矽或鍺)而n型摻雜。GaN基底層112中之摻雜劑濃度的範圍可為約3e17cm-3至約1e20cm-3,或在一些實施例中,為約5e17cm-3至約1e19cm-3。 The GaN underlayer 112 can comprise at least substantially GaN (but with dopants present therein). GaN underlying layer of the average layer thickness 112 T n may be between about ten nanometers (10 nm) between and about three thousand (3,000 nm) nm, or in some embodiments, between about ten nanometers (10 nm) and About one thousand nanometers (1,000 nm). The GaN underlayer 112 may be doped as appropriate. For example, the GaN underlayer 112 can be n-doped by doping with an electron donor element such as germanium or antimony. The dopant concentration in the GaN base layer 112 can range from about 3e 17 cm -3 to about 1e 20 cm -3 or, in some embodiments, from about 5e 17 cm -3 to about 1e 19 cm -3 .
形成半導體結構100之包含InGaN之一或多個其他各個層之後,可在GaN基底層112之一部分上形成第一電極接點,以利用半導體結構100製造發光裝置。 After forming one or more of the other layers of InGaN including the semiconductor structure 100, a first electrode contact may be formed on a portion of the GaN substrate layer 112 to fabricate the light emitting device using the semiconductor structure 100.
如圖1A中所示,所完成之基底層102包含如上文所述之生長模板113,及GaN基底層112。半導體結構100之各個III族氮化物層可以下文進一步詳述之逐層方法生長或以其他方式形成。在一些實施例中,基底層102可包含上面生長或以其他方式形成半導體結構100之其他層的基底。因此,半導體結構100之各個III族氮化物層可如下生長或以其他方式依序形成:自基底層102開始且自圖1A之角度自左往右的方向移動,但該結構之取向實際上可使得基底層102在製造期間安置於底部上。換言之,在製造期間,該結構取向可與圖1A之方向呈逆時針九十度。 As shown in FIG. 1A, the completed substrate layer 102 comprises a growth template 113 as described above, and a GaN substrate layer 112. Each of the Ill-nitride layers of the semiconductor structure 100 can be grown or otherwise formed in a layer-by-layer process as described in further detail below. In some embodiments, the base layer 102 can include a substrate on which other layers of the semiconductor structure 100 are grown or otherwise formed. Thus, each of the Ill-nitride layers of the semiconductor structure 100 can be grown or otherwise formed sequentially as follows: starting from the base layer 102 and moving from left to right from the perspective of FIG. 1A, but the orientation of the structure can actually The substrate layer 102 is placed on the bottom during manufacture. In other words, during fabrication, the structural orientation can be ninety degrees counterclockwise from the direction of Figure 1A.
如下文進一步詳細論述,作用區域106安置於基底層102與p型接觸層104之間。作用區域106包含至少一個InGaN井層114及至少一個InGaN障壁層116。在一些實施例中,作用區域106可至少實質上包含InGaN(但其中存在摻雜劑)。詳言之,作用區域106可包含至少一個井層114,井層114包含InwGa1-wN,其中0.10w0.40,或在一些實施例中,其中0.12w0.25,或在其他實施例中,其中w等於約0.14。作用區域106亦包含至少一個障壁層116,障壁層116包含InbGa1-bN,其中0.01b0.10,或在一些實施例中,其中0.03b0.08,或在其他實施例中,其中b等於約0.05。在一些實施例中,InGaN障壁層116可緊鄰(例如直接鄰接於)至少一個InGaN井層114。 As discussed in further detail below, the active region 106 is disposed between the base layer 102 and the p-type contact layer 104. The active region 106 includes at least one InGaN well layer 114 and at least one InGaN barrier layer 116. In some embodiments, the active region 106 can comprise at least substantially InGaN (but with dopants present therein). In particular, the active area 106 can include at least one well layer 114, and the well layer 114 includes In w Ga 1-w N, where 0.10 w 0.40, or in some embodiments, where 0.12 w 0.25, or in other embodiments, where w is equal to about 0.14. The active region 106 also includes at least one barrier layer 116, the barrier layer 116 comprising In b Ga 1-b N, wherein 0.01 b 0.10, or in some embodiments, where 0.03 b 0.08, or in other embodiments, wherein b is equal to about 0.05. In some embodiments, the InGaN barrier layer 116 can be in close proximity (eg, directly adjacent) to at least one InGaN well layer 114.
在製成發光裝置(諸如發光二極體(LED))時,半導體結構之作用區域106為半導體結構之區域,其中電子與電洞彼此重合而產生LED所發射的光子。在一些實施例中,光子以可見光形式發射。至少一些可見光可具有約三百八十奈米(380nm)至約五百六十奈米(560nm)電磁輻射譜範圍內的波長。 In the fabrication of a light-emitting device, such as a light-emitting diode (LED), the active region 106 of the semiconductor structure is the region of the semiconductor structure in which the electrons and the holes coincide with each other to produce photons emitted by the LED. In some embodiments, the photons are emitted in the form of visible light. At least some of the visible light may have a wavelength in the range of about three hundred and eighty nanometers (380 nm) to about five hundred and sixty nanometers (560 nm) of electromagnetic radiation.
如上文所提及,半導體結構100之作用區域106包含一或多個InGaN井層114及一或多個InGaN障壁層116,且在一些實施例中可至少實質上包含InGaN(但是其中存在摻雜劑)。因此,在一些實施例中,作用區域106可主要由InGaN組成。作用區域106包含一或多對包括一個井層114及一個障壁層116的相鄰層,其中各井層114包含InwGa1-wN,其中0.10w0.40,且其中各障壁層116包含InbGa1-bN,其中0.01b0.10。 As mentioned above, the active region 106 of the semiconductor structure 100 includes one or more InGaN well layers 114 and one or more InGaN barrier layers 116, and in some embodiments may at least substantially comprise InGaN (but with dopants present therein) Agent). Thus, in some embodiments, the active region 106 can be composed primarily of InGaN. The active region 106 includes one or more pairs of adjacent layers including a well layer 114 and a barrier layer 116, wherein each well layer 114 includes In w Ga 1-w N, of which 0.10 w 0.40, and wherein each barrier layer 116 comprises In b Ga 1-b N, wherein 0.01 b 0.10.
在圖1A及圖1B所說明的實施例中,半導體結構100之作用區域106包括一(1)對作用層(一個井層114及一個障壁層116),但是在其他實施例中,半導體結構100之作用區域106可包括超過一對作用層。舉例而言,半導體結構100之作用區域106可包括一(1)至二十五(25)對相 鄰作用層,各對包括一個井層114及一個障壁層116,使得作用區域106包括交替井層114與障壁層116之堆疊(在包括超過一對的實施例中)。然而應瞭解,障壁層116數目可不等於井層114數目。井層114彼此間可由障壁層116分隔。因此,在一些實施例中,障壁層116數目可等於井層114數目,比井層114數目多一個或少一個。 In the embodiment illustrated in FIGS. 1A and 1B, the active region 106 of the semiconductor structure 100 includes a (1) pair of active layers (a well layer 114 and a barrier layer 116), but in other embodiments, the semiconductor structure 100 The active area 106 can include more than a pair of active layers. For example, the active region 106 of the semiconductor structure 100 can include one (1) to twenty-five (25) pairs of phases. Adjacent layers, each pair includes a well layer 114 and a barrier layer 116 such that the active region 106 includes a stack of alternating well layers 114 and barrier layers 116 (in embodiments including more than one pair). It should be understood, however, that the number of barrier layers 116 may not be equal to the number of well layers 114. The well layers 114 may be separated from one another by a barrier layer 116. Thus, in some embodiments, the number of barrier layers 116 may be equal to the number of well layers 114, one or more more than the number of well layers 114.
繼續參看圖1A,各井層114的平均層厚度 T W 可介於約一奈米(1nm)與約一千奈米(1,000nm)之間、約一奈米(1nm)與約一百奈米(100nm)之間,或甚至約一奈米(1nm)與約十奈米(10nm)之間。在一些實施例中,井層114可包含量子井。在此等實施例中,各井層114可具有約十奈米(10nm)或小於十奈米之平均層厚度 T W 。在其他實施例中,井層114可不包含量子井,且各井層114可具有大於約十奈米(10nm)的平均層厚度 T W 。在此等實施例中,作用區域106可包含此項技術中稱為「雙異質結構」者。各障壁層116的平均層厚度T B 可介於約一奈米(1nm)與約五十奈米(50nm)之間,或甚至介於約一奈米(1nm)與約十奈米(10nm)之間,但障壁層116在其他實施例中可更厚。 With continued reference to FIG. 1A, the average layer thickness T W of each well layer 114 can be between about one nanometer (1 nm) and about one thousand nanometers (1,000 nm), about one nanometer (1 nm) and about one hundred nanometers. Between meters (100 nm), or even between about one nanometer (1 nm) and about ten nanometers (10 nm). In some embodiments, the well layer 114 can comprise a quantum well. In such an embodiment, each of the well layer 114 may have about ten nanometers (10 nm) or less than ten nm of the average layer thickness T W. In other embodiments, quantum well layer 114 may not include wells, and each well layer 114 may be greater than about ten nanometers (10 nm) in average layer thickness T W. In such embodiments, the active area 106 may comprise what is referred to in the art as a "double heterostructure." The average layer thickness T B of each barrier layer 116 may be between about one nanometer (1 nm) and about fifty nanometers (50 nm), or even between about one nanometer (1 nm) and about ten nanometers (10 nm). Between, but the barrier layer 116 may be thicker in other embodiments.
井層114與障壁層116之一或兩者可經摻雜。舉例而言,井層114與障壁層116之一或兩者可藉由摻雜電子供體元素(諸如矽或鍺)而n型摻雜。井層114中之摻雜劑濃度的範圍可為約3e17cm-3至約1e19cm-3,或在一些實施例中,可為約3e17cm-3至約5e17cm-3。類似地,障壁層116中之摻雜劑濃度的範圍可為約3e17cm-3至約1e19cm-3,或在一些實施例中,可為約1e18cm-3至約3e18cm-3。 One or both of the well layer 114 and the barrier layer 116 may be doped. For example, one or both of the well layer 114 and the barrier layer 116 may be n-doped by doping with an electron donor element such as germanium or antimony. The dopant concentration in the well layer 114 can range from about 3e 17 cm -3 to about 1e 19 cm -3 or, in some embodiments, from about 3e 17 cm -3 to about 5e 17 cm -3 . Similarly, the dopant concentration in the barrier layer 116 can range from about 3e 17 cm -3 to about 1e 19 cm -3 or, in some embodiments, from about 1e 18 cm -3 to about 3e 18 cm -3 .
井層114與障壁層116之一或兩者可具有纖鋅礦晶體結構。另外,在一些實施例中,井層114與障壁層116之一或兩者可包含極性生長面,諸如鎵極性生長面,平行於井層114與障壁層116之間界面之生長面的平均晶格常數大於或等於約3.189埃。更特定言之,在一些實施例中,平均生長面晶格常數c可介於約3.189埃與約3.2埃之間。 One or both of the well layer 114 and the barrier layer 116 may have a wurtzite crystal structure. Additionally, in some embodiments, one or both of the well layer 114 and the barrier layer 116 may comprise a polar growth surface, such as a gallium polar growth surface, parallel to the average crystal growth surface of the interface between the well layer 114 and the barrier layer 116. The lattice constant is greater than or equal to about 3.189 angstroms. More specifically, in some embodiments, the average growth face lattice constant c can be between about 3.189 angstroms and about 3.2 angstroms.
包含至少一個井層及至少一個障壁層之作用區域106的平均總厚度範圍可為約四十奈米(40nm)至約一千奈米(1000nm)、約四十奈米(40nm)至約七百五十奈米(750nm),或甚至為約四十奈米(40nm)至約兩百奈米(200nm)。 The average total thickness of the active region 106 comprising at least one well layer and at least one barrier layer may range from about forty nanometers (40 nm) to about one thousand nanometers (1000 nm), about forty nanometers (40 nm) to about seven One hundred and fifty nanometers (750 nm), or even about forty nanometers (40 nm) to about two hundred nanometers (200 nm).
繼續參看圖1A,半導體結構100視情況可包括介於作用區域106與p型接觸層104之間及/或介於作用區域106與基底層102之間的其他層。舉例而言,在一些實施例中,半導體結構100可包含介於作用區域106與基底層102之間的間隔層118。 With continued reference to FIG. 1A, semiconductor structure 100 can optionally include other layers between active region 106 and p-type contact layer 104 and/or between active region 106 and substrate layer 102. For example, in some embodiments, semiconductor structure 100 can include a spacer layer 118 between active region 106 and substrate layer 102.
視情況存在之間隔層118可包含InspGa1-spN層,其中0.01sp0.10,或其中0.03sp0.06,或其中sp等於約0.05。間隔層118可用於提供基底層102與作用區域106之各層之間更漸近的過渡,其相對於GaN基底層112可具有不同組成(且因此具有不同晶格參數)。因此,在一些實施例中,InspGa1-spN間隔層118可直接安置於基底層102與作用區域106之間。藉由提供基底層102與作用區域106之間更漸近的過渡,可降低各個InGaN層晶格內的應力,且因此可減少此等應力所引起的缺陷。InspGa1-spN間隔層118的平均層厚度 T sp 可介於約一奈米(1nm)與約一百奈米(100nm)之間,或約一奈米(1nm)與約一百奈米(100nm)之間。作為一個非限制性特定實例,平均層厚度 T sp 可等於約十奈米(10nm)。 The spacer layer 118, as the case may be, may comprise an In sp Ga 1-sp N layer, wherein 0.01 Sp 0.10, or 0.03 of them Sp 0.06, or where sp is equal to about 0.05. The spacer layer 118 can be used to provide a more asymptotic transition between the substrate layer 102 and the layers of the active region 106, which can have different compositions (and therefore different lattice parameters) relative to the GaN substrate layer 112. Thus, in some embodiments, the In sp Ga 1-sp N spacer layer 118 can be disposed directly between the substrate layer 102 and the active region 106. By providing a more asymptotic transition between the base layer 102 and the active region 106, the stress within the lattice of each InGaN layer can be reduced, and thus defects caused by such stresses can be reduced. The average layer thickness T sp of the In sp Ga 1-sp N spacer layer 118 may be between about one nanometer (1 nm) and about one hundred nanometers (100 nm), or about one nanometer (1 nm) and about one hundred Between nanometers (100nm). As a non-limiting specific example, the average layer thickness T sp may be equal to about ten nanometers (10nm).
InspGa1-spN間隔層118視情況可摻雜。舉例而言,InspGa1-spN間隔層118可藉由摻雜電子供體元素(諸如矽或鍺)而n型摻雜。間隔層118中之摻雜劑濃度的範圍可為約3e17cm-3至約1e19cm-3。作為一個非限制性特定實例,間隔層118中之摻雜劑濃度可等於約2e18cm-3。 The In sp Ga 1-sp N spacer layer 118 may be doped as appropriate. For example, the In sp Ga 1-sp N spacer layer 118 can be n-doped by doping with an electron donor element such as germanium or antimony. The dopant concentration in the spacer layer 118 can range from about 3e 17 cm -3 to about 1e 19 cm -3 . As a non-limiting specific example, the dopant concentration in the spacer layer 118 can be equal to about 2e 18 cm -3 .
繼續參看圖1A,半導體結構100可進一步包括視情況存在之IncpGa1-cpN帽層120,帽層120安置於作用區域106與p型接觸層104之間。視情況存在之IncpGa1-cpN帽層120可包含IncpGa1-cpN層,其中 0.01cp0.10,或其中0.03cp0.07。作為一個非限制性特定實例,cp值可等於約0.05。IncpGa1-cpN帽層120可用於一經隨後高溫加工即可避免作用區域106之下伏層中之銦溶解及/或蒸發,且/或可發揮間隔層之相同功能。 With continued reference to FIG. 1A, the semiconductor structure 100 can further include an In cp Ga 1-cp N cap layer 120, as appropriate, with the cap layer 120 disposed between the active region 106 and the p-type contact layer 104. The In cp Ga 1-cp N cap layer 120 may optionally include an In cp Ga 1-cp N layer, wherein 0.01 Cp 0.10, or 0.03 of them Cp 0.07. As a non-limiting specific example, the cp value can be equal to about 0.05. The In cp Ga 1-cp N cap layer 120 can be used to avoid indium dissolution and/or evaporation in the underlying layer of the active region 106 after subsequent high temperature processing, and/or can function as the spacer layer.
IncpGa1-cpN帽層120的平均層厚度 T cp 可介於約一奈米(1nm)與約一百奈米(100nm)之間,或約一奈米(1nm)與約二十五奈米(25nm)之間。作為一個非限制性特定實例, T cp 可等於約十奈米(10nm)。帽層120視情況可摻雜。舉例而言,帽層120可藉由摻雜電子受體元素(諸如鎂、鋅及碳)而p型摻雜。然而在其他實施例中,帽層120可為n型摻雜。帽層120中之摻雜劑濃度的範圍可為約3e17cm-3至約1e19cm-3,或可為約1e18cm-3至約5e18cm-3。作為一個非限制性特定實例,帽層120中之摻雜劑濃度在一些實施例中可為約2e18cm-3。 The average layer thickness T cp of the In cp Ga 1-cp N cap layer 120 may be between about one nanometer (1 nm) and about one hundred nanometers (100 nm), or about one nanometer (1 nm) and about twenty. Between five nanometers (25nm). As a non-limiting specific example, T cp can be equal to about ten nanometers (10 nm). The cap layer 120 can be doped as appropriate. For example, cap layer 120 can be p-doped by doping with electron acceptor elements such as magnesium, zinc, and carbon. In other embodiments, however, cap layer 120 can be n-type doped. The dopant concentration in the cap layer 120 can range from about 3e 17 cm -3 to about 1e 19 cm -3 , or can range from about 1e 18 cm -3 to about 5e 18 cm -3 . As a non-limiting specific example, the dopant concentration in the cap layer 120 can be about 2e 18 cm -3 in some embodiments.
本發明之半導體結構100可進一步包括安置於作用區域106與p型接觸層104之間的一或多個電子阻擋層(EBL)。此等電子阻擋層可包含其中傳導帶之能帶邊緣能級相對高於作用區域106之傳導帶能帶邊緣的材料,其可用於將電子限制於作用區域106內且防止載子自作用區域106中溢流。 The semiconductor structure 100 of the present invention can further include one or more electron blocking layers (EBL) disposed between the active region 106 and the p-type contact layer 104. The electron blocking layers can comprise a material in which the edge energy levels of the conduction band are relatively higher than the conduction band energy band edges of the active region 106, which can be used to confine electrons within the active region 106 and prevent carrier self-active regions 106. Overflow.
作為非限制性實例,圖1A說明安置於帽層120之與作用區域106相對一側上的電子阻擋層108。如圖1A中所示,在包括p型本體層110的實施例中,電子阻擋層108可直接安置於帽層120與p型本體層110之間。 As a non-limiting example, FIG. 1A illustrates an electron blocking layer 108 disposed on a side of the cap layer 120 opposite the active region 106. As shown in FIG. 1A, in an embodiment that includes a p-type body layer 110, the electron blocking layer 108 can be disposed directly between the cap layer 120 and the p-type body layer 110.
電子阻擋層108包含III族氮化物。作為非限制性實例,電子阻擋層108可至少實質上包含IneGa1-eN(但其中存在摻雜劑),其中0.00e0.02,且在一些實施例中,可至少實質上包含GaN(但其中存在摻雜劑)。在其他實施例中,電子阻擋層108可至少實質上包含AleGa1-eN,其中0.00e0.20。在一些實施例中,電子阻擋層108可至 少實質上包含AleGa1-eN(但其中存在摻雜劑)。 The electron blocking layer 108 comprises a Group III nitride. As a non-limiting example, the electron blocking layer 108 can comprise at least substantially In e Ga 1-e N (but with dopants present therein), wherein 0.00 e 0.02, and in some embodiments, can comprise at least substantially GaN (but with dopants present therein). In other embodiments, the electron blocking layer 108 can comprise at least substantially Al e Ga 1-e N, wherein 0.00 e 0.20. In some embodiments, the electron blocking layer 108 can comprise at least substantially Al e Ga 1-e N (but with dopants present therein).
電子阻擋層108用一或多種選自由鎂、鋅及碳組成之群的摻雜劑p型摻雜。電子阻擋層108內之一或多種摻雜劑濃度可在約1e17cm-3至約1e21cm-3範圍內,或在一些實施例中,可等於約3e19cm-3。在一些實施例中,電子阻擋層108可具有約五奈米(5nm)至約五十奈米(50nm)範圍內之平均層厚度 T e ,或在一些實施例中,可具有等於約二十奈米(20nm)之平均層厚度 T e 。 The electron blocking layer 108 is doped with one or more dopants selected from the group consisting of magnesium, zinc, and carbon. The one or more dopant concentrations in the electron blocking layer 108 may range from about 1e 17 cm -3 to about 1e 21 cm -3 or, in some embodiments, may be equal to about 3e 19 cm -3 . In some embodiments, the electron blocking layer 108 can have an average layer thickness T e ranging from about five nanometers (5 nm) to about fifty nanometers (50 nm), or in some embodiments, can have equal to about twenty The average layer thickness T e of nanometers (20 nm).
在本發明之半導體結構100的其他實施例中,半導體結構100可具有類似於電子阻擋層108的電子阻擋層,但其中該電子阻擋層具有包含不同材料之交替層的超晶格結構,如圖1A之插圖122中所說明。舉例而言,電子阻擋層108可具有包含GaN 124與IneGa1-eN 126之交替層的超晶格結構,其中0.01e0.02。在其他實施例中,電子阻擋層可具有包含GaN 124與AleGa1-eN 126之交替層的超晶格結構,其中0.01e0.20。此等超晶格結構中之各層可具有約一奈米(1nm)至約二十奈米(20nm)的平均層厚度。 In other embodiments of the semiconductor structure 100 of the present invention, the semiconductor structure 100 can have an electron blocking layer similar to the electron blocking layer 108, but wherein the electron blocking layer has a superlattice structure comprising alternating layers of different materials, as shown The illustration of 1A is illustrated in Figure 122. For example, the electron blocking layer 108 can have a superlattice structure comprising alternating layers of GaN 124 and In e Ga 1-e N 126, wherein 0.01 e 0.02. In other embodiments, the electron blocking layer may have a superlattice structure comprising alternating layers of GaN 124 and Al e Ga 1-e N 126, wherein 0.01 e 0.20. Each of the superlattice structures may have an average layer thickness of from about one nanometer (1 nm) to about twenty nanometers (20 nm).
如上文所提及,本發明之半導體結構100可進一步包括安置於電子阻擋層108與p型接觸層104之間的p型本體層110。此等p型本體層可包含p摻雜型III族氮化物材料,諸如p摻雜型InpGa1-pN。此等p型本體層可用作例如電洞載子源,以增強導電性及來往於作用區域106之光提取。 As mentioned above, the semiconductor structure 100 of the present invention can further include a p-type body layer 110 disposed between the electron blocking layer 108 and the p-type contact layer 104. These p-type body layers may comprise a p-doped Group III nitride material, such as p-doped In p Ga 1-p N. These p-type body layers can be used, for example, as a hole carrier source to enhance conductivity and light extraction to and from the active region 106.
p型本體層110可至少實質上包含InpGa1-pN,其中0.01p0.08(但其中存在摻雜劑)。作為一個非限制性特定實例,p型本體層110可至少實質上包含InpGa1-pN,其中p等於約0.02。p型本體層110可用一或多種選自由鎂、鋅及碳組成之群的摻雜劑p型摻雜。p型本體層110內之一或多種摻雜劑濃度可在約1e17cm-3至約1e21cm-3範圍內。作為一個非限制性特定實例,p型本體層110中之摻雜劑濃度可等於約3e19 cm-3。在一些實施例中,p型本體層110可具有約五十奈米(50nm)至約六百奈米(600nm)範圍內之平均層厚度 T p 。作為一個非限制性特定實例,p型本體層110可具有等於約一百七十五奈米(175nm)的平均層厚度 T p 。 The p-type body layer 110 may at least substantially comprise In p Ga 1-p N, wherein 0.01 p 0.08 (but with dopants present). As a non-limiting specific example, p-type body layer 110 can comprise at least substantially In p Ga 1-p N, where p is equal to about 0.02. The p-type body layer 110 may be doped with one or more dopants selected from the group consisting of magnesium, zinc, and carbon. One or more dopant concentrations in the p-type body layer 110 can range from about 1e 17 cm -3 to about 1e 21 cm -3 . As a non-limiting specific example, the dopant concentration in the p-type body layer 110 can be equal to about 3e 19 cm -3 . In some embodiments, p is type body layer 110 may have about fifty nanometers (50 nm) to about six hundred nm the average layer (of 600 nm) range of the thickness T p. As a non-limiting specific example, P-type body layer 110 may be equal to about one hundred seventy-five (175nm) nm average layer thickness T p.
半導體結構100可進一步包括安置於p型本體層110之與電子阻擋層108相對一側上的p型接觸層104。p型接觸層104可包含III族氮化物。此等p型接觸層可用於例如增強電洞傳導至作用區域106內。p型接觸層104可包含較高濃度的一或多種摻雜劑,諸如p型摻雜劑,以便在利用半導體結構100製造發光裝置期間限制在p型接觸層之一部分上所形成之電極接點的電阻。 The semiconductor structure 100 can further include a p-type contact layer 104 disposed on a side of the p-type body layer 110 opposite the electron blocking layer 108. The p-type contact layer 104 can comprise a group III nitride. These p-type contact layers can be used, for example, to enhance hole conduction into the active region 106. The p-type contact layer 104 can include a higher concentration of one or more dopants, such as p-type dopants, to limit electrode contacts formed on a portion of the p-type contact layer during fabrication of the light-emitting device using the semiconductor structure 100. The resistance.
作為一個非限制性實例,p型接觸層104可包含p型摻雜的IncGa1-cN。舉例而言,p型接觸層104可至少實質上包含IncGa1-cN,其中0.01c0.10(但其中存在摻雜劑),且在一些實施例中,p型接觸層104可至少實質上包含GaN(但其中存在摻雜劑)。p型接觸層104可用一或多種選自由鎂、鋅及碳組成之群的摻雜劑p型摻雜。p型接觸層104內之一或多種摻雜劑濃度可在約1e17cm-3至約1e21cm-3範圍內。作為一個非限制性特定實例,p型接觸層104內之一或多種摻雜劑濃度可等於約1e20cm-3。p型接觸層104可具有約兩奈米(2nm)至約五十奈米(50nm)範圍內之平均層厚度 T c 。作為一個非限制性特定實例,p型接觸層104可具有等於約十五奈米(15nm)的平均層厚度 T c 。如圖1A中所示,p型接觸層104可直接形成於p型本體層110上。 As a non-limiting example, p-type contact layer 104 can comprise p-type doped In c Ga 1-c N. For example, the p-type contact layer 104 can comprise at least substantially In c Ga 1-c N, wherein 0.01 c 0.10 (but with dopants present therein), and in some embodiments, p-type contact layer 104 can comprise at least substantially GaN (but with dopants present therein). The p-type contact layer 104 may be doped with one or more dopants selected from the group consisting of magnesium, zinc, and carbon. One or more dopant concentrations in the p-type contact layer 104 can range from about 1e 17 cm -3 to about 1e 21 cm -3 . As a non-limiting specific example, one or more dopant concentrations within the p-type contact layer 104 can be equal to about 1e 20 cm -3 . p-type contact layer 104 may have about two nanometers (2nm) to about fifty nanometers average inner layer (50 nm) range of the thickness T c. As a non-limiting specific example, p-type contact layer 104 may be equal to about fifteen (15nm) nm average layer thickness T c. As shown in FIG. 1A, the p-type contact layer 104 can be formed directly on the p-type body layer 110.
如下文中詳細所述,所完成之半導體結構100可用於製造一或多種半導體發光裝置,諸如LED。簡言之,電極接點可形成於基底層102之半導體層的一部分上,諸如GaN基底層112之一部分上,且另一電極接點可形成於p型接觸層104之一部分上,藉此將電荷載子注入作用區域106內,從而發射出可呈可見光形式的電磁輻射。 As described in detail below, the completed semiconductor structure 100 can be used to fabricate one or more semiconductor light emitting devices, such as LEDs. In short, the electrode contacts may be formed on a portion of the semiconductor layer of the base layer 102, such as on a portion of the GaN substrate layer 112, and another electrode contact may be formed on a portion of the p-type contact layer 104, thereby The charge carriers are injected into the active region 106 to emit electromagnetic radiation in the form of visible light.
圖1B為簡圖,其說明圖1A之半導體結構100之各個層之不同半導體材料在傳導帶128之能級(在能帶圖中)方面的相對差異(注意支撐基板658及接合層660省去)。圖1B垂直地與圖1A之半導體結構100對齊。圖1B中之垂直虛線與圖1A之半導體結構100之各個層之間的界面對齊。圖1B中之垂直軸為能量,其中較高能級垂直地位於較低能級上方。應注意,圖1B說明實例半導體結構100之傳導帶能級的非限制實例。因此,水平傳導帶相對能級的相對位置可至少隨個別半導體層之組成及摻雜、各個半導體層之組成範圍(範圍如上文中所述)而變。因此,圖1B可用於瞭解半導體結構100之各個層之傳導帶128之能級的相對差異。如圖1B中所示,井層114之傳導帶128的能級可低於半導體結構100之其他層之傳導帶128的能級。 1B is a diagram illustrating the relative differences in the energy levels (in the energy band diagram) of different semiconductor materials of the various layers of the semiconductor structure 100 of FIG. 1A (note that the support substrate 658 and the bonding layer 660 are omitted). ). FIG. 1B is vertically aligned with the semiconductor structure 100 of FIG. 1A. The vertical dashed line in FIG. 1B is aligned with the interface between the various layers of the semiconductor structure 100 of FIG. 1A. The vertical axis in Figure 1B is energy, with the higher energy level being vertically above the lower energy level. It should be noted that FIG. 1B illustrates a non-limiting example of the conduction band energy levels of the example semiconductor structure 100. Thus, the relative position of the horizontal conduction band relative to the energy level can vary with at least the composition and doping of the individual semiconductor layers, the compositional range of the individual semiconductor layers (the range is as described above). Thus, FIG. 1B can be used to understand the relative differences in the energy levels of the conduction bands 128 of the various layers of the semiconductor structure 100. As shown in FIG. 1B, the energy level of the conduction band 128 of the well layer 114 can be lower than the energy level of the conduction band 128 of the other layers of the semiconductor structure 100.
如此項技術中所知,對於III族氮化物層(諸如InGaN)而言,傳導帶128之能級隨包括(但不限於)銦含量及摻雜劑含量之多種變數而變。井層114及障壁層116可經形成而一個組成且以其他方式組態成使得井層114之傳導帶128的能級低於障壁層116之傳導帶128的能級。因此,由半導體結構100製成之發光裝置在操作期間,電荷載子(例如電子)可積聚於井層114中,且障壁層116可用來阻止電荷載子(例如電子)遷移越過作用區域106。因此,在一些實施例中,各井層114中之銦含量可高於各障壁層116中之銦含量。舉例而言,各井層114中之銦含量與各障壁層116中之銦含量之間的差異可大於或等於約0.05(亦即w-b0.05),或在一些實施例中,可大於或等於約0.20(亦即w-b0.20)。在一些實施例中,障壁層116中之摻雜劑濃度可不同於井層114中之摻雜劑濃度。高摻雜濃度可導致InGaN晶體結構中產生缺陷,且此等缺陷可引起電子-電洞對之非輻射性結合。在一些實施例中,井層114中之摻雜劑濃度可低於障壁層116中之摻雜劑濃度,以使井層114中之電子-電洞對之非輻射性結合速率降低(相對於障壁層116中之電子-電洞 對之非輻射性結合速率)。在其他實施例中,障壁層116中之摻雜劑濃度可高於井層114中之摻雜劑濃度。 As is known in the art, for a Group III nitride layer, such as InGaN, the energy level of the conduction band 128 varies with a variety of variables including, but not limited to, indium content and dopant content. The well layer 114 and the barrier layer 116 may be formed to be one and otherwise configured such that the energy level of the conductive strip 128 of the well layer 114 is lower than the energy level of the conductive strip 128 of the barrier layer 116. Thus, during operation of the illuminating device made of semiconductor structure 100, charge carriers (e.g., electrons) may accumulate in well layer 114, and barrier layer 116 may be used to prevent charge carriers (e.g., electrons) from migrating across active region 106. Thus, in some embodiments, the indium content in each well layer 114 can be higher than the indium content in each barrier layer 116. For example, the difference between the indium content in each well layer 114 and the indium content in each barrier layer 116 can be greater than or equal to about 0.05 (ie, wb) 0.05), or in some embodiments, may be greater than or equal to about 0.20 (ie, wb 0.20). In some embodiments, the dopant concentration in the barrier layer 116 can be different than the dopant concentration in the well layer 114. High doping concentrations can cause defects in the InGaN crystal structure, and such defects can cause non-radiative bonding of electron-hole pairs. In some embodiments, the dopant concentration in the well layer 114 can be lower than the dopant concentration in the barrier layer 116 to reduce the rate of non-radiative bonding of the electron-holes in the well layer 114 (as opposed to The non-radiative bonding rate of electron-hole pairs in the barrier layer 116). In other embodiments, the dopant concentration in the barrier layer 116 can be higher than the dopant concentration in the well layer 114.
如圖1B中所說明,電子阻擋層108所提供之能量障壁可由電子阻擋層108與帽層120(或在電子阻擋層108之最靠近作用區域106之一側上與電子阻擋層108直接相鄰的其他層)之傳導帶128之能級差引起。 能量障壁高度可藉由改變電子阻擋層108之組成而改變。舉例而言,如圖1B所說明,導電能級130(如實線所示)可說明至少實質上包含GaN之電子阻擋層(但其中存在摻雜劑)的傳導帶能級。如傳導帶能級132所說明(顯示為虛線),可藉由形成至少實質上包含IneGa1-eN(其中0.01e0.02)之電子阻擋層相對於GaN電子阻擋層來降低電子阻擋層內之傳導帶能級。在其他實施例中,如傳導帶能級134所說明(顯示為虛線),可藉由形成至少實質上包含AleGa1-eN(其中0.01e0.20)之電子阻擋層來相對於GaN電子阻擋層增大傳導帶能級。因此,電子阻擋層內之傳導帶能級可加以改變以提供半導體結構100之電子阻擋層108與其他III族氮化物層之間的所要傳導帶偏移。 As illustrated in FIG. 1B, the energy barrier provided by the electron blocking layer 108 can be directly adjacent to the electron blocking layer 108 by the electron blocking layer 108 and the cap layer 120 (or on the side of the electron blocking layer 108 closest to the active region 106). The other layers of the conduction band 128 are caused by the difference in energy levels. The energy barrier height can be varied by changing the composition of the electron blocking layer 108. For example, as illustrated in FIG. 1B, a conductive level 130 (shown by the solid line) can illustrate a conduction band level that at least substantially comprises an electron blocking layer of GaN (but in which a dopant is present). As illustrated by the conduction band level 132 (shown as a dashed line), it can be formed by at least substantially including In e Ga 1-e N (where 0.01 e The electron blocking layer of 0.02) reduces the conduction band energy level within the electron blocking layer relative to the GaN electron blocking layer. In other embodiments, as illustrated by the conduction band level 134 (shown as a dashed line), it may be formed by at least substantially comprising Al e Ga 1-e N (where 0.01 e An electron blocking layer of 0.20) increases the conduction band level relative to the GaN electron blocking layer. Thus, the conduction band energy levels within the electron blocking layer can be varied to provide the desired conduction band offset between the electron blocking layer 108 of the semiconductor structure 100 and the other Group III nitride layers.
在半導體結構100之實施例(其中電子阻擋層108具有包含不同材料之交替層的超晶格結構)中,傳導帶能級可以類似於週期的方式增大及降低,如圖1B之插圖136中所說明。舉例而言,電子阻擋層108可具有包含GaN 138與AleGa1-eN 140之交替層的超晶格結構,其中0.01e0.20,或者,超晶格結構可包含GaN與IneGa1-eN之交替層,其中0.01e0.02。不同材料之交替層之間的傳導帶能級偏移之量級可依據GaN層與AleGa1-eN或IneGa1-eN層之間的組成性差異加以選擇。 In embodiments of the semiconductor structure 100 in which the electron blocking layer 108 has a superlattice structure comprising alternating layers of different materials, the conduction band energy levels can be increased and decreased similarly to the periodic manner, as illustrated in Figure 136 of FIG. 1B. Explained. For example, the electron blocking layer 108 may have a superlattice structure including alternating layers of GaN 138 and Al e Ga 1-e N 140, where 0.01 e 0.20, or, the superlattice structure may comprise alternating layers of GaN and In e Ga 1-e N, wherein 0.01 e 0.02. The magnitude of the conduction band energy level shift between alternating layers of different materials can be selected depending on the compositional difference between the GaN layer and the Al e Ga 1-e N or In e Ga 1-e N layer.
本發明之半導體結構可進一步包括安置於半導體結構之作用區域與半導體結構之GaN基底層之間的電子中止層。此等電子中止層可包含n摻雜型III族氮化物材料,其中傳導帶之能帶邊緣能級相對高於GaN基底層及/或InspGa1-spN基底層之傳導帶的能帶邊緣,其可用來進 一步將電子限制於作用區域內且可防止載子自作用區域中溢流,藉此改良載子在作用區域內之均一性。 The semiconductor structure of the present invention may further comprise an electron stop layer disposed between the active region of the semiconductor structure and the GaN substrate layer of the semiconductor structure. The electron-sustaining layer may comprise an n-doped Group III nitride material, wherein the energy band edge energy level of the conduction band is relatively higher than the energy band of the GaN substrate layer and/or the conduction band of the In sp Ga 1-sp N substrate layer. The edge, which can be used to further confine the electrons within the active area and prevent the carrier from overflowing from the active area, thereby improving the uniformity of the carrier within the active area.
作為非限制性實例,圖2A及2B說明包括此電子中止層202之半導體結構200的實施例。半導體結構200類似於半導體結構100且包括包含一或多個InGaN井層114及一或多個InGaN障壁層116的作用區域106,如先前針對半導體結構100所述。半導體結構200亦包括基底層102、間隔層118、帽層120、電子阻擋層108、p型本體層110及p型接觸層104,如先前針對半導體結構100所述。半導體結構200之電子中止層202安置於GaN基底層112與間隔層118之間。 By way of non-limiting example, FIGS. 2A and 2B illustrate an embodiment of a semiconductor structure 200 that includes such an electron stop layer 202. The semiconductor structure 200 is similar to the semiconductor structure 100 and includes an active region 106 comprising one or more InGaN well layers 114 and one or more InGaN barrier layers 116, as previously described for the semiconductor structure 100. The semiconductor structure 200 also includes a base layer 102, a spacer layer 118, a cap layer 120, an electron blocking layer 108, a p-type body layer 110, and a p-type contact layer 104, as previously described for the semiconductor structure 100. An electron stop layer 202 of the semiconductor structure 200 is disposed between the GaN base layer 112 and the spacer layer 118.
電子中止層202包含III族氮化物。作為非限制性實例,電子中止層202可包含n型摻雜的AlGaN。舉例而言,在一些實施例中,電子中止層202可至少實質上包含AlstGa1-stN(但其中存在摻雜劑),其中0.01st0.20。在其他實施例中,電子中止層202可具有超晶格結構,如插圖204所說明,其包含AlstGa1-stN層206(其中0.01st0.20)與GaN層208之交替層。半導體結構200可包括任何數目個(例如約一(1)至約二十(20)個)AlstGa1-stN層206與GaN層208之交替層。此超晶格結構中之層206與208可具有約一奈米(1nm)至約一百奈米(100nm)之平均層厚度。 The electron stop layer 202 comprises a Group III nitride. As a non-limiting example, the electron stop layer 202 can comprise n-doped AlGaN. For example, in some embodiments, the electron suspend layer 202 can comprise at least substantially Al st Ga 1-st N (but with dopants present therein), wherein 0.01 St 0.20. In other embodiments, the electron stop layer 202 can have a superlattice structure, as illustrated by inset 204, which includes an Al st Ga 1-st N layer 206 (of which 0.01 St 0.20) alternating layers with GaN layer 208. Semiconductor structure 200 can include any number (eg, from about one (1) to about twenty (20)) alternating layers of Al St Ga 1-st N layer 206 and GaN layer 208. Layers 206 and 208 in the superlattice structure can have an average layer thickness of from about one nanometer (1 nm) to about one hundred nanometers (100 nm).
電子中止層202可用一或多種選自由矽及鍺組成之群的摻雜劑n型摻雜。電子中止層202內之一或多種摻雜劑的濃度可在約0.1e18cm-3至20e18cm-3範圍內。在一些實施例中,電子中止層202可具有約一奈米(1nm)至約五十奈米(50nm)範圍內之平均層厚度 T st 。 The electron stop layer 202 may be doped with one or more dopants selected from the group consisting of ruthenium and osmium. The concentration of one or more dopants in the electron stop layer 202 can range from about 0.1e 18 cm -3 to 20e 18 cm -3 . In some embodiments, the electron stop layer 202 can have an average layer thickness T st in the range of from about one nanometer (1 nm) to about fifty nanometers (50 nm).
圖2B為簡化的傳導帶圖且說明半導體結構200中之各種材料之傳導帶228的相對能級。如圖2B中所示,在圖2A之半導體結構200之實施例中,半導體結構200(圖2B)之電子中止層202之至少一部分內之傳導帶228的能級相對高於GaN基底層112內之傳導帶200的能級及/或 間隔層118內之傳導帶228的能級。在電子中止層202包含如圖2B之插圖210所說明之超晶格結構的實施例中(該超晶格結構包含AlstGa1-stN層206(其中0.01st0.20)與GaN層208之交替層),傳導帶能級可以週期性方式變化。 2B is a simplified conduction band diagram and illustrates the relative energy levels of conductive strips 228 of various materials in semiconductor structure 200. As shown in FIG. 2B, in the embodiment of the semiconductor structure 200 of FIG. 2A, the energy level of the conductive strip 228 in at least a portion of the electron stop layer 202 of the semiconductor structure 200 (FIG. 2B) is relatively higher than that in the GaN base layer 112. The energy level of the conduction band 200 and/or the energy level of the conduction band 228 within the spacer layer 118. In the embodiment where the electron stop layer 202 comprises a superlattice structure as illustrated in the inset 210 of FIG. 2B (the superlattice structure comprises an Al st Ga 1-st N layer 206 (of which 0.01 St 0.20) and alternating layers of GaN layer 208), the conduction band energy levels can be varied in a periodic manner.
在其他實施例中,本發明之半導體結構可包括介於作用區域與GaN基底層之間的一或多個材料層,該等材料層用於促進半導體結構之製造。舉例而言,在一些實施例中,本發明之半導體結構及由此等結構製成的一或多種發光裝置可包括一或多個安置於作用區域與GaN基底層之間的應變釋放層,其中該等應變釋放層組成且組態成可接納半導體結構之介於GaN基底層與p型接觸層之間的各個層之晶體結構的晶格應變,該等層可以逐層方法彼此一層接一層磊晶式生長 In other embodiments, the semiconductor structure of the present invention can include one or more layers of material between the active region and the GaN substrate layer, the layers of materials being used to facilitate fabrication of the semiconductor structure. For example, in some embodiments, the semiconductor structure of the present invention and one or more of the light-emitting devices fabricated therefrom can include one or more strain relief layers disposed between the active region and the GaN substrate layer, wherein The strain relief layers are configured and configured to receive a lattice strain of a crystal structure of each layer of the semiconductor structure between the GaN base layer and the p-type contact layer, the layers being layer-by-layer Crystal growth
作為非限制性實例,圖3A及3B說明包括此應變釋放層302之半導體結構300的實施例。半導體結構300類似於半導體結構100且包括包含一或多個InGaN井層114及一或多個InGaN障壁層116的作用區域106,如先前針對半導體結構100所述。半導體結構300亦包括基底層102、間隔層118、帽層120、電子阻擋層108、p型本體層110及p型接觸層104,如先前針對半導體結構100所述。半導體結構300之應變釋放層302安置於GaN基底層112與間隔層118之間。在圖3A及3B之實施例中,應變釋放層302直接安置於GaN基底層112與InspGa1-spN間隔層118之間。 By way of non-limiting example, FIGS. 3A and 3B illustrate an embodiment of a semiconductor structure 300 including the strain relief layer 302. Semiconductor structure 300 is similar to semiconductor structure 100 and includes an active region 106 comprising one or more InGaN well layers 114 and one or more InGaN barrier layers 116, as previously described for semiconductor structure 100. The semiconductor structure 300 also includes a base layer 102, a spacer layer 118, a cap layer 120, an electron blocking layer 108, a p-type body layer 110, and a p-type contact layer 104, as previously described for the semiconductor structure 100. A strain relief layer 302 of the semiconductor structure 300 is disposed between the GaN base layer 112 and the spacer layer 118. In the embodiment of FIGS. 3A and 3B, the strain relief layer 302 is disposed directly between the GaN base layer 112 and the In sp Ga 1-sp N spacer layer 118.
應變釋放層302可包含III族氮化物。作為非限制性實例,應變釋放層302可具有超晶格結構,如插圖304所說明,該超晶格結構包含InsraGa1-sraN層306(其中0.01sra0.10)與InsrbGa1-srbN層308(其中0.01srb0.10)之交替層。此外,sra可大於srb。半導體結構300可包括任何數目個(例如約一(1)至約二十(20)個)InsraGa1-sraN層306與InsrbGa1-srbN層308之交替層。此超晶格結構中之層306及308可具有約 一奈米(1nm)至約二十奈米(20nm)的平均層厚度。 The strain relief layer 302 can comprise a Group III nitride. As a non-limiting example, strain relief layer 302 can have a superlattice structure, as illustrated by inset 304, which includes an In sra Ga 1-sra N layer 306 (of which 0.01 Sra 0.10) with In srb Ga 1-srb N layer 308 (of which 0.01 Srb Alternate layers of 0.10). In addition, sra can be larger than srb. Semiconductor structure 300 can include any number (eg, from about one (1) to about twenty (20)) alternating layers of In sra Ga 1-sra N layer 306 and In srb Ga 1-srb N layer 308. Layers 306 and 308 in the superlattice structure can have an average layer thickness of from about one nanometer (1 nm) to about twenty nanometers (20 nm).
應變釋放層302可用一或多種選自由矽及鍺組成之群的摻雜劑n型摻雜。應變釋放層302內之一或多種摻雜劑的濃度可在約0.1e18cm-3至20e18cm-3範圍內。在一些實施例中,應變釋放層302可具有約一奈米(1nm)至約五十奈米(50nm)範圍內之平均層厚度。 The strain relief layer 302 may be doped with one or more dopants selected from the group consisting of ruthenium and osmium. The concentration of one or more dopants in the strain relief layer 302 can range from about 0.1e 18 cm -3 to 20e 18 cm -3 . In some embodiments, the strain relief layer 302 can have an average layer thickness ranging from about one nanometer (1 nm) to about fifty nanometers (50 nm).
圖3B為簡化的傳導帶圖且說明半導體結構300中之各種材料之傳導帶328的相對能級。如圖3B中所示,在圖3A之半導體結構300的實施例中,半導體結構300(圖3A)之應變釋放層302之至少一部分內的傳導帶328之能級可相對低於GaN基底層112內之傳導帶328的能級及/或間隔層118內之傳導帶328的能級。在其他實施例中,半導體結構300(圖3A)之應變釋放層302之至少一部分內的傳導帶328之能級可相對高於InGaN基底層112內之傳導帶328的能級及/或間隔層118內之傳導帶328的能級。在應變釋放層302包含如圖3B之插圖310所說明之超晶格結構(該超晶格結構包含InsraGa1-sraN層306與InsrbGa1-srbN 308之交替層)的實施例中,傳導帶能級可以週期性方式變化。 FIG. 3B is a simplified conduction band diagram and illustrates the relative energy levels of conductive strips 328 of various materials in semiconductor structure 300. As shown in FIG. 3B, in the embodiment of the semiconductor structure 300 of FIG. 3A, the energy level of the conduction band 328 in at least a portion of the strain relief layer 302 of the semiconductor structure 300 (FIG. 3A) can be relatively lower than the GaN substrate layer 112. The energy level of the conductive strip 328 and/or the energy level of the conductive strip 328 within the spacer layer 118. In other embodiments, the energy level of the conduction band 328 in at least a portion of the strain relief layer 302 of the semiconductor structure 300 (FIG. 3A) can be relatively higher than the energy level and/or spacer layer of the conduction band 328 within the InGaN substrate layer 112. The energy level of the conduction band 328 within 118. The implementation of the strain relief layer 302 comprising a superlattice structure as illustrated by inset 310 of FIG. 3B (the superlattice structure comprising alternating layers of In sra Ga 1-sra N layer 306 and In srb Ga 1-srb N 308) In an example, the conduction band energy level can be varied in a periodic manner.
圖4A及4B說明本發明之半導體結構400的又一個實施例。半導體結構400類似於半導體結構100且包括包含一或多個InGaN井層114及一或多個InGaN障壁層116的作用區域406,如先前針對半導體結構100所述。半導體結構400亦包括基底層102、間隔層118、帽層120、電子阻擋層108、p型本體層110及p型接觸層104,如先前針對半導體結構100所述。半導體結構400之作用區域406進一步包括其他GaN障壁層402。其他GaN障壁層402各自可安置於InGaN井層114與InGaN障壁層116之間。其他GaN障壁層402可用來進一步將電子限制於井層114內,電子在井層114中更可能與電洞重合且使得輻射發射機率增大。 4A and 4B illustrate yet another embodiment of a semiconductor structure 400 of the present invention. Semiconductor structure 400 is similar to semiconductor structure 100 and includes an active region 406 comprising one or more InGaN well layers 114 and one or more InGaN barrier layers 116, as previously described for semiconductor structure 100. The semiconductor structure 400 also includes a base layer 102, a spacer layer 118, a cap layer 120, an electron blocking layer 108, a p-type body layer 110, and a p-type contact layer 104, as previously described for the semiconductor structure 100. The active region 406 of the semiconductor structure 400 further includes other GaN barrier layers 402. Other GaN barrier layers 402 may each be disposed between the InGaN well layer 114 and the InGaN barrier layer 116. Other GaN barrier layers 402 can be used to further confine electrons within the well layer 114, where electrons are more likely to coincide with the holes in the well layer 114 and increase the radiation transmitter rate.
在一些實施例中,各GaN障壁層402可用一或多種選自由矽及鍺 組成之群的摻雜劑n型摻雜。舉例而言,GaN障壁層402內之一或多種摻雜劑的濃度可在約1.0e17cm-3至50e17cm-3範圍內。在一些實施例中,各GaN障壁層402可具有約二分之一奈米(0.5nm)至約二十奈米(20nm)範圍內的平均層厚度 T b2 。 In some embodiments, each GaN barrier layer 402 can be doped with one or more dopants selected from the group consisting of ruthenium and osmium. For example, the concentration of one or more dopants within the GaN barrier layer 402 can range from about 1.0e 17 cm -3 to 50e 17 cm -3 . In some embodiments, each GaN barrier layer 402 can have an average layer thickness T b2 ranging from about one-half nanometer (0.5 nm) to about twenty nanometers (20 nm).
圖4B為簡化的傳導帶圖且說明半導體結構400中之各種材料之傳導帶428的相對能級。如圖4B中所示,在圖4A之半導體結構400的實施例中,GaN障壁層402(圖4A)內之傳導帶428的能級可相對高於InGaN障壁層116內之傳導帶428的能級且高於InGaN井層114內之傳導帶428的能級。 FIG. 4B is a simplified conduction band diagram and illustrates the relative energy levels of conductive strips 428 of various materials in semiconductor structure 400. As shown in FIG. 4B, in the embodiment of semiconductor structure 400 of FIG. 4A, the energy level of conductive strip 428 within GaN barrier layer 402 (FIG. 4A) can be relatively higher than the conductivity of conductive strip 428 within InGaN barrier layer 116. The level is higher than the energy level of the conduction band 428 within the InGaN well layer 114.
圖5A及5B說明本發明之包含半導體結構500之其他實施例。在此等實施例中,可利用如美國專利申請案第13/362,866號(2012年1月31日以Arena等人的名義申請)中所揭示的方法形成作用區域506。半導體結構500類似於半導體結構100且包括包含一或多個InGaN井層514及一或多個InGaN障壁層516的作用區域506,如先前針對半導體結構100所述。半導體結構500亦包括基底層、間隔層、帽層、電子阻擋層、p型本體層100及p型接觸層,如先前針對半導體結構100所述。為清楚起見,僅說明包圍作用區域506的層,且此等層可包含視情況存在之間隔層118及帽層120以及GaN基底層112及電子阻擋層108。若半導體結構500省去視情況存在之層,則作用區域506可直接安置於GaN基底層112與電子阻擋層108之間。 5A and 5B illustrate other embodiments of the semiconductor structure 500 of the present invention. In such embodiments, the active region 506 can be formed by a method as disclosed in U.S. Patent Application Serial No. 13/362,866, filed on Jan. 31, 2012, in the name of Semiconductor structure 500 is similar to semiconductor structure 100 and includes an active region 506 comprising one or more InGaN well layers 514 and one or more InGaN barrier layers 516, as previously described for semiconductor structure 100. The semiconductor structure 500 also includes a base layer, a spacer layer, a cap layer, an electron blocking layer, a p-type body layer 100, and a p-type contact layer, as previously described for the semiconductor structure 100. For the sake of clarity, only the layers surrounding the active region 506 are illustrated, and such layers may include spacer layer 118 and cap layer 120 as well as GaN underlayer 112 and electron blocking layer 108, as appropriate. If the semiconductor structure 500 eliminates the layer that is present as appropriate, the active region 506 can be disposed directly between the GaN underlayer 112 and the electron blocking layer 108.
半導體結構500之作用區域506類似於半導體結構100之作用區域,但進一步包括兩個或兩個以上InGaN障壁層,其中如圖5A及圖5B中所檢視,後續障壁層之間的帶隙能自右向左(亦即自帽層120延伸至間隔層118的方向)逐步增強。半導體結構500中之作用區域506之此組態可藉由防止載子自作用區域506中溢流而有助於將電荷載子限制於作用區域500內,藉此使由半導體結構500所製成之發光裝置的效率增 大。 The active region 506 of the semiconductor structure 500 is similar to the active region of the semiconductor structure 100, but further includes two or more InGaN barrier layers, wherein the bandgap between subsequent barrier layers can be self-examined as viewed in Figures 5A and 5B. The right to left (i.e., the direction extending from the cap layer 120 to the spacer layer 118) is gradually enhanced. This configuration of the active region 506 in the semiconductor structure 500 can help confine the charge carriers within the active region 500 by preventing the carrier from overflowing from the active region 506, thereby being made of the semiconductor structure 500. Increased efficiency of the illuminating device Big.
障壁區516A-C的材料組成及結構組態經選擇可使得各障壁區516A-C具有各別的帶隙能550A-C,其中帶隙能係由包含半導體結構500之各種半導體材料的傳導帶能量528與價帶能量552之間的能量差得到。第一障壁區516A之帶隙能550A可小於第二障壁區516B之帶隙能550B,且第二障壁區516B之帶隙能550B可小於第三障壁區516C之帶隙能550C,如圖5B之能帶圖中所示。此外,量子井區之各帶隙能552A-C可實質上相等且可小於障壁區516A-C之各帶隙能550A-C。 The barrier region 516 AC structural configuration and material composition may be selected such that each of the barrier region 516 AC having respective bandgap energy 550 AC, wherein the band gap energy of various conductive line 500 by the band energy of the semiconductor material 528 and a semiconductor structure comprising The energy difference between the valence band energy 552 is obtained. A band gap of the first barrier region 516 can be 550 A 516 B may be less than the band gap energy of the second barrier region 550 B, the second barrier region 516 and the band gap energy of 550 B B C 516 may be smaller than the band region of the third barrier The gap energy is 550 C as shown in the energy band diagram of Figure 5B. Further, each band gap energy of the quantum well region is substantially equal to 552 AC and may be less than the respective barrier regions 516 AC bandgap energy 550 AC.
在此組態中,第一量子井514A與第二量子井514B之間的電洞能量障壁554A可小於第二量子井514B與第三量子井514C之間的電洞能量障壁554B。換言之,跨越障壁區516A-C的電洞能量障壁554A-C可在自帽層120向間隔層118延伸的方向上跨越作用區域506逐步增大。電洞能量障壁554A-C為跨越量子井區514A-C與相鄰障壁區516A-C之間界面的價帶552之能差。作為自帽層120移向間隔層108之跨越障壁區516A-C之電洞能量障壁554A-C增大的結果,可使得作用區域506內之電洞分佈均一性增強,從而改良由半導體500所製成之發光裝置在操作期間的效率。 In this configuration, the hole energy barrier 554 A between the first quantum well 514 A and the second quantum well 514 B may be smaller than the hole energy barrier between the second quantum well 514 B and the third quantum well 514 C 554 B. In other words, the cavity energy barrier 554 AC across the barrier region 516 AC may gradually increase across the active region 506 in a direction extending from the cap layer 120 to the spacer layer 118. The hole energy barrier 554 AC is the energy difference across the valence band 552 at the interface between the quantum well region 514 AC and the adjacent barrier region 516 AC . As a result of the increase in the hole energy barrier 554 AC of the barrier layer 516 AC from the cap layer 120 to the spacer layer 108, the uniformity of the hole distribution in the active region 506 can be enhanced, thereby improving the fabrication by the semiconductor 500. The efficiency of the illumination device during operation.
如上文所提及,障壁區516A-C的材料組成及結構組態可經選擇以使得各障壁區516A-C具有不同的各別帶隙能550A-C。作為非限制實例,各障壁區516A-C可包含三元III族氮化物材料,諸如Inb3Ga1-b3N,其中b3為至少約0.01。使障壁區516A-C之Inb3Ga1-b3N中的銦含量降低(亦即降低b3值)可增大障壁區516A-C之帶隙能。因此,第二障壁區516B可具有低於第一障壁區516A的銦含量,且第三障壁區516C可具有低於第二障壁區516B的銦含量。另外,障壁區516A-C及井區514A-C可摻雜且可具有如先前針對半導體結構100所述的平均層厚度。 As mentioned above, the material composition and structure of the barrier region 516 AC configuration may be selected such that each barrier region 516 AC having different respective band gap energy 550 AC. As a non-limiting example, each barrier region 516 AC can comprise a ternary III-nitride material, such as In b3 Ga 1-b3 N, where b3 is at least about 0.01. In making the barrier region 516 AC b3 Ga 1-b3 N indium content is reduced (i.e., decrease the value of b3) may increase the band gap of 516 AC energy barrier region. Accordingly, the second barrier region 516 B may have an indium content lower than the first barrier region 516 A , and the third barrier region 516 C may have an indium content lower than the second barrier region 516 B . Additionally, barrier region 516 AC and well region 514 AC may be doped and may have an average layer thickness as previously described for semiconductor structure 100.
如上文所提及,根據本發明之實施例,作用區域106(圖1A)可包 含至少一個InGaN井層及至少一個InGaN障壁層,且在一些實施例中,可至少實質上包含InGaN(例如可主要由InGaN組成,但其中存在摻雜劑)。先前已知之包含InGaN井層之大部分發光裝置結構包括GaN(至少實質上不含銦)障壁層。InGaN井層與GaN障壁層之間的傳導帶能級差相對較高,根據此項技術中之教示,此可使電荷載子於井層內之限制得到改良且可改良LED結構之效率。然而,先前技術結構及方法可因載子溢流及壓電性極化而導致裝置效率降低。 As mentioned above, in accordance with an embodiment of the present invention, the active area 106 (Fig. 1A) can be packaged At least one InGaN well layer and at least one InGaN barrier layer are included, and in some embodiments, may comprise at least substantially InGaN (eg, may consist essentially of InGaN, but with dopants present therein). Most of the previously known luminescent device structures comprising InGaN well layers include GaN (at least substantially free of indium) barrier layers. The conduction band energy level difference between the InGaN well layer and the GaN barrier layer is relatively high. According to the teachings in the art, the limitation of the charge carriers in the well layer can be improved and the efficiency of the LED structure can be improved. However, prior art structures and methods may result in reduced device efficiency due to carrier flooding and piezoelectric polarization.
在載子溢流理論中,一或多個量子井層可類似於水桶,其捕捉及容納所注入之載子的能力在載子注入較高時減弱。當所注入之載子未被捕捉或容納時,其溢出作用區域且浪費,導致裝置效率降低。包含InGaN量子井及GaN障壁層之先前技術結構的帶偏移(亦即量子井與障壁之間的傳導帶能級差)顯著大於實質上包含InGaN之作用區域的帶偏移,如本文實施例中所述。本文所述結構中之帶偏移減少可使所注入之載子更有效地遍佈於作用區域之量子井區上,從而使由本文所述半導體結構製成之發光裝置的效率增大。 In the theory of carrier overflow, one or more quantum well layers can be similar to a water bucket, and its ability to capture and accommodate the injected carriers is attenuated when the carrier injection is high. When the injected carrier is not captured or contained, it overflows the active area and is wasted, resulting in a decrease in device efficiency. The band offset of the prior art structure comprising the InGaN quantum well and the GaN barrier layer (ie, the conduction band energy level difference between the quantum well and the barrier) is significantly larger than the band offset substantially including the active region of InGaN, as in the embodiments herein. Said in the middle. The reduction in band offset in the structures described herein allows the implanted carriers to be more effectively distributed over the quantum well regions of the active region, thereby increasing the efficiency of the illumination device made from the semiconductor structures described herein.
另外,由於InGaN井層與GaN障壁層之間的晶格錯配,因此此等發光裝置結構之作用區域內發生相對較強的壓電性極化。在發光裝置結構之作用區域內,壓電性極化可使電子之波函數與電洞之波函數之間的重疊減少。如例如J.H.Son及J.L.Lee,Numerical Analysis of Efficiency Droop Induced by Piezoelectric Polarization in InGaN/GaN Light-Emitting Diodes,Appl.Phys.Lett.97,032109(2010)中所揭示,壓電性極化在此等發光裝置結構(例如LED)中可導致所謂的「效率下降」。效率下降現象為隨著電流密度增大,LED結構之內部量子效率(IQE)曲線中的下降(減小)。 In addition, due to the lattice mismatch between the InGaN well layer and the GaN barrier layer, relatively strong piezoelectric polarization occurs in the active region of the illuminating device structure. In the active region of the structure of the illuminating device, the piezoelectric polarization reduces the overlap between the wave function of the electron and the wave function of the hole. As shown, for example, in JHSon and JLLee, Numerical Analysis of Efficiency Droop Induced by Piezoelectric Polarization in InGaN/GaN Light-Emitting Diodes , Appl. Phys. Lett. 97, 032109 (2010), piezoelectric polarization is used in such illumination devices. Structures such as LEDs can cause so-called "efficiency degradation." The decrease in efficiency is a decrease (decrease) in the internal quantum efficiency (IQE) curve of the LED structure as the current density increases.
發光結構(諸如本發明之LED結構)之實施例可減少或克服先前已知之具有InGaN井層及GaN障壁層之LED結構的問題,此等問題與晶 格錯配、載子溢流、壓電性極化現象及效率下降有關。本發明之LED之實施例(諸如由圖1A及1B之半導體結構100製成的LED結構)可經組態成且其能帶結構可設計成使得作用區域106展現減少之壓電性極化效應、及電子波函數與電洞波函數之重疊增加。因此,諸如LED之發光裝置可展現電荷載子跨越作用區域106之改良均一性,及隨著電流密度增加而減少之效率下降。 Embodiments of light emitting structures, such as the LED structures of the present invention, can reduce or overcome the previously known problems of LED structures having InGaN well layers and GaN barrier layers, such problems It is related to lattice mismatch, carrier overflow, piezoelectric polarization and efficiency degradation. Embodiments of the LEDs of the present invention, such as LED structures made from the semiconductor structure 100 of FIGS. 1A and 1B, can be configured and have an energy band structure that can be designed such that the active region 106 exhibits reduced piezoelectric polarization effects. And the overlap of the electronic wave function and the hole wave function increases. Thus, a light emitting device such as an LED can exhibit improved uniformity of charge carriers across the active region 106 and a reduced efficiency as the current density increases.
下文參考圖10A及10B、11A-11E、12A及12B、及13A-13E進一步論述可經由本發明實施例獲得的此等優勢。圖10A及10B說明類似於先前已知之LED之LED 556的實施例。LED 556包括作用區域558,作用區域558包含五(5)個InGaN井層562及安置於InGaN井層562之間的GaN障壁層564。LED 556亦包括基底層560、第一間隔層566、第二間隔層568、電子阻擋層570及電極層572。在LED 556中,InGaN井層562包含各具有約二又二分之一奈米(2.5nm)之平均層厚度的In0.18Ga0.82N層。障壁層564包含GaN層,其可具有約十奈米(10nm)之平均層厚度。基底層560包含平均層厚度為約三百二十五奈米(325nm)的摻雜GaN層,其經約5e18cm-3濃度之矽n型摻雜。第一間隔層566可包含平均層厚度為約二十五奈米(25nm)的無摻雜GaN。第二間隔層568亦可包含平均層厚度為約二十五奈米(25nm)的無摻雜GaN。電子阻擋層可包含p摻雜型AlGaN。電極層572可包含摻雜GaN層,此電極層可具有約一百二十五奈米(125nm)之平均層厚度,其經約5e17cm-3濃度之鎂p型摻雜。圖10B為類似於圖1B的簡化傳導帶圖,且說明圖10A之LED 556之各個層之不同材料之傳導帶574的相對能級差(在能帶圖中)。圖10B之垂直虛線與圖10A之LED 556中之各個層之間的界面對齊。 These advantages, which may be obtained via embodiments of the present invention, are further discussed below with reference to Figures 10A and 10B, 11A-11E, 12A and 12B, and 13A-13E. 10A and 10B illustrate an embodiment of an LED 556 similar to previously known LEDs. The LED 556 includes an active region 558 that includes five (5) InGaN well layers 562 and a GaN barrier layer 564 disposed between the InGaN well layers 562. The LED 556 also includes a base layer 560, a first spacer layer 566, a second spacer layer 568, an electron blocking layer 570, and an electrode layer 572. In LED 556, InGaN well layer 562 comprises In 0.18 Ga 0.82 N layers each having an average layer thickness of about two and a half nanometers (2.5 nm). The barrier layer 564 includes a GaN layer that can have an average layer thickness of about ten nanometers (10 nm). The base layer 560 comprises a doped GaN layer having an average layer thickness of about three hundred and twenty-five nanometers (325 nm), which is doped with a 矽n-type concentration of about 5e 18 cm -3 . The first spacer layer 566 can comprise undoped GaN having an average layer thickness of about twenty-five nanometers (25 nm). The second spacer layer 568 can also include undoped GaN having an average layer thickness of about twenty-five nanometers (25 nm). The electron blocking layer may comprise p-doped AlGaN. The electrode layer 572 may comprise a doped GaN layer, which may have an average layer thickness of about one hundred and twenty-five nanometers (125 nm), which is doped with magnesium p-type at a concentration of about 5e 17 cm -3 . Figure 10B is a simplified conduction band diagram similar to Figure 1B and illustrating the relative energy level difference (in the energy band diagram) of the conductive strips 574 of the different materials of the various layers of LED 556 of Figure 10A. The vertical dashed line of Figure 10B is aligned with the interface between the various layers in LED 556 of Figure 10A.
如此項技術中所知,揭示於例如S.L.Chuang及C.S.Chang,k‧p Method for Strained Wurtzite Semiconductors,Phys.Rev.B 54,2491
(1996)中之8×8 Kane模型可用於表徵III族氮化物材料(諸如GaN及InGaN)之價帶的結構。可假定位於布里淵區(Brillouin zone)中心之價帶之重、輕及分裂分支的分裂為不依賴於內建電場。因此,價次帶可由泊松與遷移聯立方程式(coupled Poisson and transport equations)之解獲得。可假定電子及電洞之波函數分別呈以下形式:u n Ψ v .exp(k n .r),及u p,s Ψ v,s .exp(k p .r),其中u n 及u p,s 為對應於布里淵區中心之電子及電洞的布洛赫振幅,k n 及k p 為共平面準力矩向量,Ψ v 及Ψ v,s 為包絡函數,且下標「s」可為重電洞(hh)、輕電洞(lh)或分裂(so)電洞。電子及電洞包絡函數之一維薛丁格方程式(Schrödinger equations)分別為:
其中及為電子及電洞在量子井中之有效電位,E v 及E v,s 為電子及電洞能級,且及為電子及電洞在磊晶生長方向上的有效質量。藉由在對應邊界條件下對上述薛丁格方程式求解,接著由以下獲得電子與電洞波函數之間的重疊積分:
如S.L.Chuang,Physics of Phonic Devices,第2版(Wiley,New Jersey,2009)所述,電子與電洞之輻射重合速率可由以下得到:
圖11A為曲線圖,其說明圖10A及10B之LED 550之傳導帶574及價帶576之能帶邊緣能量計算值(其中跨越LED 556施加的電流為零)與始於基底層560之與作用區域558相對之表面跨越LED 556之位置(以奈米計)的關係。圖11B為類似於圖11A的曲線圖,但圖11B說明圖10A及10B之LED 556在跨越LED 556施加之電流密度為每平方公分一百二十五安培(125A/cm2)時,傳導帶574及價帶576的能帶邊緣能量計算值。圖11C為曲線圖,其說明在跨越LED 550施加之電流密度為每平方公分一百二十五安培(125A/cm2)時,LED 556之五個量子井層562中之每一者的強度計算值與波長的關係。自圖10A及10B之角度,QW1為最左邊的量子井層562,且QW5為最右邊的量子井層562。圖11D說明LED 556之注入效率計算值與所施加電流密度的關係。如圖11D中所示,LED 550在125A/cm2之所施電流密度下可展現約75.6%之注入效率。圖11E說明LED 556之內部量子效率(IQE)計算值與所施電流密度的關係。如圖11E中所示,LED 556在125A/cm2之所施電流密度下可展現約45.2%之內部量子效率。亦如圖11E中所示,LED 556之內部量子效率可自逾50%(所施電流密度為約20A/cm2時)下降至40%以下(所施電流密度為250A/cm2)。如先前所論述,IQE之此下降在此項技術中稱為效率下降。 Figure 11A is a graph illustrating the band edge energy calculations for the conduction band 574 and the valence band 576 of the LED 550 of Figures 10A and 10B (where the current applied across the LED 556 is zero) and the interaction with the substrate layer 560. The relationship of the area 558 relative to the surface across the position of the LED 556 (in nanometers). 11B is a graph similar to FIG. 11A, but FIG. 11B illustrates the conduction band of the LED 556 of FIGS. 10A and 10B when the current density applied across the LED 556 is one hundred and twenty-five amps (125 A/cm 2 ) per square centimeter. The calculated energy of the edge energy of 574 and the price band 576. 11C is a graph illustrating the intensity of each of the five quantum well layers 562 of the LED 556 when the current density applied across the LED 550 is one hundred and twenty-five amps (125 A/cm 2 ) per square centimeter. Calculate the relationship between the value and the wavelength. From the perspective of Figures 10A and 10B, QW1 is the leftmost quantum well layer 562, and QW5 is the rightmost quantum well layer 562. Figure 11D illustrates the relationship between the calculated injection efficiency of LED 556 and the applied current density. As shown in FIG. 11D, the LED 550 exhibited an implantation efficiency of about 75.6% at a current density of 125 A/cm 2 . Figure 11E illustrates the relationship between the calculated internal quantum efficiency (IQE) of LED 556 and the applied current density. As shown in FIG. 11E, LED 556 exhibited an internal quantum efficiency of about 45.2% at a current density of 125 A/cm 2 . As also shown in FIG. 11E, the internal quantum efficiency of the LED 556 can be reduced from more than 50% (when the applied current density is about 20 A/cm 2 ) to less than 40% (the applied current density is 250 A/cm 2 ). As discussed previously, this decline in IQE is known in the art as a drop in efficiency.
下表1顯示針對圖10A及10B之LED 550之五個量子井層562中之每一者所計算的波函數重疊及峰值輻射重合速率。 Table 1 below shows the wave function overlap and peak radiation coincidence rate calculated for each of the five quantum well layers 562 of LEDs 550 of Figures 10A and 10B.
如自圖11C及上表1可見,輻射重合主要來自最後一個井層562(最靠近p摻雜側,或陽極),在LED 556中,其為第五號量子井(亦即 QW5)。此外,如圖11E中所示,LED 556展現效率下降,此至少部分地由於壓電性極化所致,壓電性極化如本文先前所論述係因使用InGaN井層562及GaN障壁層564所引起。 As can be seen from Figure 11C and Table 1 above, the radiation coincidence is mainly from the last well 562 (closest to the p-doped side, or anode), and in LED 556, it is the fifth quantum well (ie QW5). Furthermore, as shown in FIG. 11E, LED 556 exhibits a decrease in efficiency, which is due, at least in part, to piezoelectric polarization, which was previously discussed herein due to the use of InGaN well layer 562 and GaN barrier layer 564. Caused by.
包括含有至少一個InGaN井層及至少一個InGaN障壁層之作用區域(諸如LED 100之作用區域106)的本發明LED實施例可展現發生於井層中之輻射重合的改良均一性,且可展現減少之效率下降。參考圖12A及12B,以及下述圖13A至13E,提供本發明之LED實施例與LED 550之比較。 An LED embodiment of the present invention comprising an active region comprising at least one InGaN well layer and at least one InGaN barrier layer, such as active region 106 of LED 100, can exhibit improved uniformity of radiation coincidence occurring in the well layer and can exhibit reduced The efficiency is reduced. Referring to Figures 12A and 12B, and Figures 13A through 13E below, a comparison of LED embodiments of the present invention with LEDs 550 is provided.
圖12A及12B說明本發明之LED 600之實施例的另一實例。LED 600包括作用區域106,作用區域106包含五(5)個InGaN井層114及安置於InGaN井層114之間的InGaN障壁層116。InGaN井層114及InGaN障壁層116可如先前參考圖1A及1B針對半導體結構100所述。LED 600亦包括基底層112、第一間隔層118、帽層120及InGaN電極層104。在LED 600中,InGaN井層114包含各具有約二又二分之一奈米(2.5nm)之平均層厚度的In0.18Ga0.82N層。障壁層116包含In0.08Ga0.92N層,且可各自具有約十奈米(10nm)之平均層厚度。基底層112包含平均層厚度為約三百奈米(300nm)的摻雜In0.05Ga0.95N層,其經約5e18cm-3濃度之矽n型摻雜。第一間隔層118可包含平均層厚度為約二十五奈米(25nm)的無摻雜In0.08Ga0.92N。帽層120亦可包含平均層厚度為約二十五奈米(25nm)的無摻雜In0.08Ga0.92N。電極層104可包含平均層厚度為約一百五十奈米(150nm)之摻雜In0.05Ga0.95N層,其經約5e17cm-3濃度之鎂p型摻雜。圖12B為簡化傳導帶圖,其說明圖12A之LED 600之各個層之不同材料之傳導帶602的相對能級差(在能帶圖中)。 12A and 12B illustrate another example of an embodiment of the LED 600 of the present invention. The LED 600 includes an active region 106 that includes five (5) InGaN well layers 114 and an InGaN barrier layer 116 disposed between the InGaN well layers 114. InGaN well layer 114 and InGaN barrier layer 116 may be as described above with respect to semiconductor structure 100 with reference to FIGS. 1A and 1B. The LED 600 also includes a base layer 112, a first spacer layer 118, a cap layer 120, and an InGaN electrode layer 104. In LED 600, InGaN well layer 114 comprises In 0.18 Ga 0.82 N layers each having an average layer thickness of about two and a half nanometers (2.5 nm). The barrier layer 116 comprises an In 0.08 Ga 0.92 N layer and may each have an average layer thickness of about ten nanometers (10 nm). The base layer 112 comprises a doped In 0.05 Ga 0.95 N layer having an average layer thickness of about three hundred nanometers (300 nm), which is doped with a 矽n-type concentration of about 5e 18 cm -3 . The first spacer layer 118 can comprise undoped In 0.08 Ga 0.92 N having an average layer thickness of about twenty-five nanometers (25 nm). Cap layer 120 may also comprise undoped In 0.08 Ga 0.92 N having an average layer thickness of about twenty-five nanometers (25 nm). Electrode layer 104 can comprise a doped In 0.05 Ga 0.95 N layer having an average layer thickness of about one hundred and fifty nanometers (150 nm), which is p-doped with magnesium at a concentration of about 5e 17 cm -3 . Figure 12B is a simplified conduction band diagram illustrating the relative energy level difference (in the energy band diagram) of the conductive strips 602 of the different materials of the various layers of LED 600 of Figure 12A.
圖13A為曲線圖,其說明圖12A及12B之LED 600之傳導帶602及價帶604之能帶邊緣能量計算值(其中跨越LED 600施加的電流為零)與始於基底層112之與作用區域106相對之表面跨越LED 600之位置(以奈 米計)的關係。圖13B為類似於圖13A的曲線圖,但圖13B說明圖12A及12B之LED 600在跨越LED 600施加之電流密度為每平方公分一百二十五安培(125A/cm2)時,傳導帶602及價帶604的能帶邊緣能量計算值。 圖13C為曲線圖,其說明在跨越LED 600施加之電流密度為每平方公分一百二十五安培(125A/cm2)時,LED 600之五個量子井層108中之每一者的強度計算值與波長的關係。自圖12A及12B之角度,QW1為最左邊的量子井層108,且QW5為最右邊的量子井層108。圖13D說明LED 600之注入效率計算值與所施電流密度的關係。如圖13D中所示,LED 600在125A/cm2之所施電流密度下可展現約87.8%之注入效率,且在約20A/cm2至約250A/cm2範圍內之電流密度下可展現至少約80%之載子注入效率。圖13E說明LED 600之內部量子效率(IQE)計算值與所施電流密度的關係。如圖13E中所示,LED 600在125A/cm2之所施電流密度下可展現約58.6%之內部量子效率。亦如圖13E中所示,在約20A/cm2至250A/cm2範圍內之所施電流密度下,LED 600之內部量子效率可保持在約55%與約60%之間。因此,LED 600展現極小的效率下降,且效率下降顯著小於LED 500所展現之效率下降(LED 500不符合本發明之實施例)。 Figure 13A is a graph illustrating the band edge energy calculations for the conduction band 602 and the valence band 604 of the LEDs 600 of Figures 12A and 12B (where the current applied across the LED 600 is zero) and the interaction with the substrate layer 112. The relationship of the area 106 relative to the surface across the position of the LED 600 (in nanometers). 13B is a graph similar to FIG. 13A, but FIG. 13B illustrates the conduction band of the LED 600 of FIGS. 12A and 12B when the current density applied across the LED 600 is one hundred and twenty-five amps (125 A/cm 2 ) per square centimeter. The calculated energy of the edge energy of 602 and the price band 604. Figure 13C is a graph illustrating the intensity of each of the five quantum well layers 108 of the LED 600 when the current density applied across the LED 600 is one hundred and twenty-five amps (125 A/cm 2 ) per square centimeter. Calculate the relationship between the value and the wavelength. From the perspective of Figures 12A and 12B, QW1 is the leftmost quantum well layer 108 and QW5 is the rightmost quantum well layer 108. Figure 13D illustrates the relationship between the calculated injection efficiency of LED 600 and the applied current density. As shown in FIG. 13D, the LED 600 can exhibit an implantation efficiency of about 87.8% at a current density of 125 A/cm 2 and can exhibit at a current density in the range of about 20 A/cm 2 to about 250 A/cm 2 . At least about 80% of the carrier injection efficiency. Figure 13E illustrates the relationship between the calculated internal quantum efficiency (IQE) of LED 600 and the applied current density. As shown in Figure 13E, LED 600 can exhibit an internal quantum efficiency of about 58.6% at a current density of 125 A/cm 2 . As also shown in Figure 13E, the internal quantum efficiency of LED 600 can be maintained between about 55% and about 60% at a current density in the range of from about 20 A/cm 2 to about 250 A/cm 2 . Thus, LED 600 exhibits minimal efficiency degradation, and the efficiency degradation is significantly less than the efficiency degradation exhibited by LED 500 (LED 500 does not conform to embodiments of the present invention).
下表2顯示針對圖12A及12B之LED 600之五個量子井層108中之每一者所計算的波函數重疊及峰值輻射重合速率。 Table 2 below shows the wave function overlap and peak radiation coincidence rates calculated for each of the five quantum well layers 108 of LEDs 600 of Figures 12A and 12B.
如自圖13C及上表2可見,與LED 500中之井層508相比,跨越LED 600之井層108的輻射重合更均一。 As can be seen from FIG. 13C and Table 2 above, the radiation overlap across well layer 108 of LED 600 is more uniform than well layer 508 in LED 500.
使用SiLENSe軟體對圖10A及10B之LED 550以及圖12A及12B之LED 600建立模型,SiLENSe軟體可購自STR Group,Inc.。SiLENSe軟 體亦用於產生圖11A至11E及圖13A至13E之曲線圖,及獲得表1及2中所列之資料。 The LEDs 550 of Figures 10A and 10B and the LEDs 600 of Figures 12A and 12B were modeled using SiLENSe software, which is commercially available from STR Group, Inc. SiLENSe soft The body is also used to generate the graphs of Figures 11A through 11E and Figures 13A through 13E, and to obtain the data listed in Tables 1 and 2.
根據本發明之一些實施例,LED在約20A/cm2至約250A/cm2範圍內之電流密度下可展現至少約45%之內部量子效率,在約20A/cm2至約250A/cm2範圍內之電流密度下可展現至少約50%之內部量子效率,或在約20A/cm2至約250A/cm2範圍內之電流密度下甚至可展現至少約55%之內部量子效率。此外,LED在約20A/cm2至約250A/cm2範圍內之電流密度下可展現至少實質上恆定的載子注入效率。在一些實施例中,本發明LED在約20A/cm2至約250A/cm2範圍內之電流密度下可展現至少約80%的載子注入效率。 According to some embodiments of the present invention, LED at a current density within the range of about 20A / cm 2 to about 250A / cm 2 it may exhibit internal quantum efficiency of at least about 45% of at about 20A / cm 2 to about 250A / cm 2 An internal quantum efficiency of at least about 50% can be exhibited at current densities within the range, or at least about 55% of internal quantum efficiency can be exhibited at current densities ranging from about 20 A/cm 2 to about 250 A/cm 2 . Moreover, the LED can exhibit at least substantially constant carrier injection efficiency at current densities ranging from about 20 A/cm 2 to about 250 A/cm 2 . In some embodiments, LEDs of the present invention can exhibit a carrier injection efficiency of at least about 80% at current densities ranging from about 20 A/cm 2 to about 250 A/cm 2 .
下文參考圖6C至圖6D簡要描述可用於製造本發明實施例之半導體結構及發光裝置(諸如LED)之方法的非限制性實例,且參考圖7及圖8描述藉由此等方法所製造之發光裝置之實例。 A non-limiting example of a method that can be used to fabricate a semiconductor structure and a light-emitting device (such as an LED) of an embodiment of the present invention is briefly described below with reference to FIGS. 6C through 6D, and is manufactured by such methods with reference to FIGS. 7 and 8. An example of a light emitting device.
參看圖6C,可將生長模板113(如上文中先前所述製造)安置於沈積室內,且可在生長模板113之一或多個晶種層656上磊晶式依序生長包含III族氮化物材料的層,通常稱為生長堆疊682(參見圖6D)。應注意,雖然晶種層說明為一或多個III族氮化物材料島,但在一些實施例中,晶種層可包含位於支撐基板658上的連續薄膜。 Referring to FIG. 6C, a growth template 113 (manufactured as previously described above) may be disposed within the deposition chamber, and epitaxially grown on the one or more seed layers 656 of the growth template 113 may comprise a group III nitride material. The layer, commonly referred to as growth stack 682 (see Figure 6D). It should be noted that while the seed layer is illustrated as one or more Ill-nitride material islands, in some embodiments, the seed layer may comprise a continuous film on the support substrate 658.
圖6D說明半導體結構680,其包含含有兩個晶種層656的生長模板113,各層上面沈積有圖1A及1B之半導體結構100的各個層。詳言之,半導體結構100之GaN基底層112直接磊晶式沈積於各晶種層結構656上,在生長模板112上磊晶式依序沈積InGaN間隔層118、InGaN井層114、InGaN障壁層116、InGaN帽層120、電子阻擋層108、p型本體層110及p型接觸層104。 Figure 6D illustrates a semiconductor structure 680 comprising a growth template 113 comprising two seed layers 656, each layer having a plurality of layers of the semiconductor structure 100 of Figures 1A and 1B deposited thereon. In detail, the GaN underlayer 112 of the semiconductor structure 100 is directly epitaxially deposited on each of the seed layer structures 656, and the InGaN spacer layer 118, the InGaN well layer 114, and the InGaN barrier layer are deposited in the epitaxial manner on the growth template 112. 116, InGaN cap layer 120, electron blocking layer 108, p-type body layer 110 and p-type contact layer 104.
包含生長堆疊682之半導體結構680的各個層可使用例如金屬有機化學氣相沈積(MOCVD)方法及系統在單一沈積室內沈積,亦即在 沈積過程中無需裝載或卸載生長堆疊。沈積室內之壓力可降低至介於約50毫托(mTorr)與約500毫托之間。沈積過程期間反應室內之壓力可在生長堆疊682沈積期間增加及/或減小,且因此可針對所沈積之特定層定製。作為非限制性實例,在GaN基底層112、間隔層118、一或多個井114/障壁層116、帽層120及電子障壁層108沈積期間,反應室內之壓力可在約50毫托至約500毫托範圍內,且在一些實施例中可等於約440毫托。對於p型本體層110及p型接觸層104沈積,反應室內之壓力可在約50毫托至約250毫托範圍內,且在一些實施例中可等於約100毫托。 The various layers of semiconductor structure 680 comprising growth stack 682 can be deposited in a single deposition chamber using, for example, a metal organic chemical vapor deposition (MOCVD) method and system, ie, There is no need to load or unload the growth stack during deposition. The pressure within the deposition chamber can be reduced to between about 50 milliTorr (mTorr) and about 500 milliTorr. The pressure within the reaction chamber during the deposition process can be increased and/or decreased during deposition of the growth stack 682, and thus can be tailored to the particular layer being deposited. As a non-limiting example, during deposition of the GaN substrate layer 112, the spacer layer 118, the one or more wells 114/barrier layer 116, the cap layer 120, and the electron barrier layer 108, the pressure within the reaction chamber can range from about 50 mTorr to about Within 500 mTorr, and in some embodiments may be equal to about 440 mTorr. For p-type body layer 110 and p-type contact layer 104 deposition, the pressure within the reaction chamber can range from about 50 millitorr to about 250 millitorr, and in some embodiments can be equal to about 100 millitorr.
生長模板113可在沈積室內加熱至約600℃與約1,000℃之間的溫度。接著可促使金屬有機前驅物氣體及其他前驅物氣體(及視情況存在之載氣及/或吹掃氣體)流經沈積室且流過生長模板113之一或多個晶種層656。金屬有機前驅物氣體可以使II族氮化物層(諸如InGaN層)磊晶式沈積於生長模板113上之方式反應,分解,或反應且分解。 The growth template 113 can be heated in the deposition chamber to a temperature between about 600 ° C and about 1,000 ° C. Metal-organic precursor gases and other precursor gases (and optionally carrier gases and/or purge gases) may then be caused to flow through the deposition chamber and through one or more seed layers 656 of the growth template 113. The metal organic precursor gas may react, decompose, or react and decompose the Group II nitride layer (such as an InGaN layer) by epitaxial deposition on the growth template 113.
作為非限制性實例,可使用三甲基銦(TMI)作為InGaN之銦的金屬有機前驅物,可使用三乙基鎵(TMG)作為InGaN之鎵的金屬有機前驅物,可使用三乙基鋁(TMA)作為AlGaN的金屬有機前驅物,且可使用氨作為III族氮化物層之氮的前驅物。需要n型摻雜III族氮化物時,可使用SiH4作為前驅物以將矽引入InGaN中,且需要p型摻雜III族氮化物時,可使用Cp2Mg(雙(環戊二烯基)鎂)作為前驅物以將鎂引入III族氮化物中。定製銦前驅物(例如三甲基銦)與鎵前驅物(例如三乙基鎵)之比率可為有利的,此可使銦併入InGaN中的濃度靠近在沈積溫度下銦於InGaN中的飽和點。由於InGaN係藉由控制生長溫度來進行磊晶式生長,因此可控制併入InGaN中之銦百分比。在相對較低的溫度下,銦併入量相對較高,且在相對較高的溫度下,銦併入量相對較低。作為非限制性實例,InGaN井層108可在約600℃至約950℃範圍內 之溫度下沈積。 As a non-limiting example, trimethylindium (TMI) can be used as the metal organic precursor of InGaN of InGaN, and triethylgallium (TMG) can be used as the metal organic precursor of gallium of InGaN, and triethylaluminum can be used. (TMA) is a metal organic precursor of AlGaN, and ammonia can be used as a precursor of nitrogen of the group III nitride layer. When an n-type doped Group III nitride is required, SiH 4 can be used as a precursor to introduce germanium into InGaN, and when a p-type doped group III nitride is required, Cp 2 Mg (bis(cyclopentadienyl) can be used. Magnesium) acts as a precursor to introduce magnesium into the Group III nitride. It may be advantageous to tailor the ratio of indium precursor (eg, trimethylindium) to gallium precursor (eg, triethylgallium), which allows the concentration of indium incorporated into InGaN to be close to that of indium in InGaN at deposition temperatures. Saturation point. Since InGaN is epitaxially grown by controlling the growth temperature, the percentage of indium incorporated into InGaN can be controlled. At relatively low temperatures, the amount of indium incorporated is relatively high, and at relatively high temperatures, the amount of indium incorporated is relatively low. As a non-limiting example, the InGaN well layer 108 can be deposited at temperatures ranging from about 600 °C to about 950 °C.
生長堆疊100之各個層的沈積溫度可在沈積過程中提高及/或降低且因此可針對所沈積之特定層定製。作為非限制性實例,在GaN基底層112、p型本體層110及p型接觸層104沈積期間,沈積溫度可在約600℃至約950℃範圍內,且在一些實施例中可等於約900℃。GaN基底層112、p型本體層110及p型接觸層104之生長速率可在每分鐘約一奈米(1nm/min)至每分鐘約五十奈米(50nm/min)範圍內,且在一些實施例中,GaN基底層112、p型本體層110及p型接觸層104之生長速率可等於每分鐘約6奈米(6nm/min)。 The deposition temperatures of the various layers of the growth stack 100 can be increased and/or decreased during the deposition process and can therefore be tailored to the particular layer being deposited. As a non-limiting example, during deposition of GaN substrate layer 112, p-type body layer 110, and p-type contact layer 104, the deposition temperature may range from about 600 °C to about 950 °C, and in some embodiments may be equal to about 900. °C. The growth rate of the GaN base layer 112, the p-type body layer 110, and the p-type contact layer 104 may range from about one nanometer (1 nm/min) per minute to about fifty nanometers (50 nm/min) per minute, and In some embodiments, the growth rate of GaN substrate layer 112, p-type body layer 110, and p-type contact layer 104 can be equal to about 6 nanometers (6 nm/min) per minute.
在其他非限制性示例實施例中,在間隔層118、一或多個井層114、一或多個障壁層116、帽層120及電子阻擋層108沈積期間,沈積溫度可在約600℃至約950℃範圍內,且在一些實施例中可等於約750℃。間隔層118、一或多個井層114、一或多個障壁層116、帽層120及電子阻擋層108之生長速率可在每分鐘約一奈米(1nm/min)至每分鐘約三十奈米(30nm/min)範圍內,且在一些實施例中,間隔層118、一或多個井114/障壁層116、帽層120及電子阻擋層108之生長速率可等於每分鐘約一奈米(1nm/min)。 In other non-limiting example embodiments, during deposition of the spacer layer 118, the one or more well layers 114, the one or more barrier layers 116, the cap layer 120, and the electron blocking layer 108, the deposition temperature may be between about 600 ° C and It is in the range of about 950 ° C, and in some embodiments may be equal to about 750 ° C. The growth rate of the spacer layer 118, the one or more well layers 114, the one or more barrier layers 116, the cap layer 120, and the electron blocking layer 108 may range from about one nanometer (1 nm/min) per minute to about thirty minutes per minute. In the range of nanometers (30 nm/min), and in some embodiments, the growth rate of the spacer layer 118, the one or more wells 114/barrier layer 116, the cap layer 120, and the electron blocking layer 108 may be equal to about one nanometer per minute. Meter (1 nm/min).
在包含沈積InGaN層的實施例中,可選擇前驅物氣體之流速比以得到高品質的InGaN層。舉例而言,形成半導體結構100之InGaN層的方法可包含選擇氣體比率以得到缺陷密度較低、實質上不含應變鬆弛且實質上不含表面凹坑的一或多個InGaN層。 In embodiments that include depositing an InGaN layer, the flow rate ratio of the precursor gas can be selected to yield a high quality InGaN layer. For example, a method of forming an InGaN layer of semiconductor structure 100 can include selecting a gas ratio to obtain one or more InGaN layers that have a lower defect density, are substantially free of strain relaxation, and are substantially free of surface pits.
在非限制實例中,三甲基銦(TMI)與三乙基鎵(TMG)之流速比(%)可定義為:
且此流速比在沈積過程期間可提高及/或降低且因此可針對所沈 積之特定InGaN層定製。作為非限制實例,在p型本體層110沈積期間的流速比可在約50%至約95%範圍內,且在一些實施例中可等於約85%。在其他實施例中,在間隔層118、一或多個障壁層116及帽層120沈積期間的流速比可在約1%至約50%範圍內,且在一些實施例中可等於約2%。在其他實施例中,在一或多個量子井層114沈積期間的流速比可在約1%至約50%範圍內,且在一些實施例中可等於約30%。 And this flow rate ratio can be increased and/or decreased during the deposition process and can therefore be The specific InGaN layer is customized. As a non-limiting example, the flow rate ratio during deposition of the p-type body layer 110 can range from about 50% to about 95%, and in some embodiments can be equal to about 85%. In other embodiments, the flow rate ratio during deposition of the spacer layer 118, the one or more barrier layers 116, and the cap layer 120 can range from about 1% to about 50%, and in some embodiments can be equal to about 2%. . In other embodiments, the flow rate ratio during deposition of one or more quantum well layers 114 may range from about 1% to about 50%, and in some embodiments may be equal to about 30%.
生長模板113視情況可在沈積過程中在沈積室內旋轉。作為非限制性實例,生長模板113可在沈積過程期間在沈積室內以每分鐘約50轉(RPM)與每分鐘約1500轉(RPM)之間的轉速旋轉,且在一些實施例中可以等於每分鐘約450轉(RPM)之轉速旋轉。在沈積期間,可提高及/或降低沈積過程中的轉速,且因此可針對所沈積之特定層定製。作為非限制性實例,在GaN基底層112、間隔層118、一或多個井層114、一或多個障壁層116、帽層120及電子障壁層108沈積期間,生長模板之轉速可介於每分鐘約50轉(RPM)與每分鐘約1500轉(RPM)之範圍內,且在一些實施例中可以等於每分鐘約440轉(RPM)之轉速旋轉。在p型本體層110及p型接觸層104沈積期間,生長模板113之轉速可在每分鐘約50轉(RPM)至每分鐘約1500轉(RPM)範圍內,且在一些實施例中可以等於每分鐘約1000轉(RPM)之轉速旋轉。 The growth template 113 can be rotated in the deposition chamber during deposition as appropriate. As a non-limiting example, the growth template 113 can be rotated in the deposition chamber at a rotational speed between about 50 revolutions per minute (RPM) and about 1500 revolutions per minute (RPM) during the deposition process, and in some embodiments can be equal to each The rotation of about 450 revolutions (RPM) in minutes. During deposition, the rotational speed during deposition can be increased and/or reduced, and thus can be tailored to the particular layer being deposited. As a non-limiting example, during deposition of the GaN substrate layer 112, the spacer layer 118, the one or more well layers 114, the one or more barrier layers 116, the cap layer 120, and the electron barrier layer 108, the rotational speed of the growth template may be between It is in the range of about 50 revolutions per minute (RPM) and about 1500 revolutions per minute (RPM), and in some embodiments can be rotated at a speed equal to about 440 revolutions per minute (RPM). During deposition of the p-type body layer 110 and the p-type contact layer 104, the rotational speed of the growth template 113 can range from about 50 revolutions per minute (RPM) to about 1500 revolutions per minute (RPM), and in some embodiments can be equal to Rotate at a speed of approximately 1000 revolutions per minute (RPM).
在包含沈積III族氮化物及尤其InGaN層之本發明半導體結構之實施例中,磊晶式沈積於生長模板113上、包含生長堆疊682之一或多個InGaN層的應變能可影響由此等半導體結構製成之發光裝置的效率。在一些實施例中,生長堆疊682內所產生之總應變能可與本發明半導體結構之效率(如利用內部量子效率(IQE)所定義)有關。 In an embodiment of the semiconductor structure of the present invention comprising a deposited Group III nitride and in particular an InGaN layer, strain energy deposited epitaxially on the growth template 113, comprising one or more InGaN layers of the growth stack 682 can affect thereby The efficiency of a light-emitting device made of a semiconductor structure. In some embodiments, the total strain energy generated within growth stack 682 can be related to the efficiency of the semiconductor structures of the present invention (as defined by internal quantum efficiency (IQE)).
更詳細而言,InGaN第n層內所儲存之應變能與InGaN第n層之平均總厚度 T n 及InGaN第n層內銦濃度% In n 成比例。另外,包含生長堆疊682之複數個InGaN層所儲存的總應變能與各InGaN層之平均總厚度 T n 之總和及各InGaN層內銦濃度% In n 成比例,因此包含生長堆疊702之InGaN層內的總應變能可使用以下關係式估算:總應變能(a.u.)Σ(%In n ×T n ),其中第n層之平均總厚度 T n 係以奈米(nm)表示,且第n InGaN層內之銦濃度% In n 係以原子百分比表示。舉例而言,若InGaN第n層具有一百五十奈米(150nm)之平均總厚度 T n 及2.0at%之銦濃度% In n ,則InGaN第n層內之應變能可與約300a.u.成比例(300=150(2))。 In more detail, the strain energy stored in the nth layer of InGaN is proportional to the average total thickness T n of the nth layer of InGaN and the indium concentration % In n of the nth layer of InGaN. In addition, the total strain energy stored in the plurality of InGaN layers including the growth stack 682 is proportional to the sum of the average total thickness T n of each InGaN layer and the indium concentration % In n in each InGaN layer, thus including the InGaN layer of the growth stack 702. The total strain energy within can be estimated using the following relationship: total strain energy (au) Σ(% In n × T n ), wherein the average total thickness T n of the nth layer is expressed in nanometers (nm), and the indium concentration % In n in the nth InGaN layer is expressed by atomic percentage. For example, if the nth layer of InGaN has an average total thickness T n of one hundred and fifty nanometers (150 nm) and an indium concentration % In n of 2.0 at%, the strain energy in the nth layer of InGaN can be about 300a. u. Proportional (300=150(2)).
圖9說明曲線圖900,其顯示本發明半導體結構之IQE(a.u.)與總應變能(a.u.)之間的關係。在半導體結構之稱為「臨界應變能」(如曲線圖900之線條902所說明)之總應變能值處,本發明半導體結構之IQE可降低。低於臨界應變能之半導體結構的IQE(如線條904所示)可實質上大於高於臨界應變能之半導體結構的IQE(如線條906所示)。舉例而言,曲線圖900說明本發明之若干半導體結構的IQE值(如矩形指示符所示)。在一些實施例中,低於臨界應變能之IQE可比高於臨界應變能之IQE大約500%。在其他實施例中,低於臨界應變能之IQE可比高於臨界應變能之IQE大約250%。在其他實施例中,低於臨界應變能之IQE可比高於臨界應變能之IQE大約100%。 Figure 9 illustrates a graph 900 showing the relationship between IQE (a.u.) and total strain energy (a.u.) of a semiconductor structure of the present invention. At the total strain energy value of the semiconductor structure referred to as "critical strain energy" (as illustrated by line 902 of graph 900), the IQE of the semiconductor structure of the present invention can be reduced. The IQE of the semiconductor structure below the critical strain energy (as indicated by line 904) may be substantially greater than the IQE of the semiconductor structure above the critical strain energy (as indicated by line 906). For example, graph 900 illustrates the IQE values of several semiconductor structures of the present invention (as indicated by the rectangular indicator). In some embodiments, the IQE below the critical strain energy can be about 500% higher than the IQE of the critical strain energy. In other embodiments, the IQE below the critical strain energy can be about 250% higher than the IQE of the critical strain energy. In other embodiments, the IQE below the critical strain energy can be about 100% greater than the IQE above the critical strain energy.
對於本發明之半導體結構,臨界應變能(a.u.)902可具有約1800(a.u.)或小於1800(a.u.)、約2800(a.u.)或小於2800(a.u.),或甚至約4500(a.u.)或小於4500(a.u.)的值。 For the semiconductor structure of the present invention, the critical strain energy (au) 902 can have about 1800 (au) or less than 1800 (au), about 2800 (au), or less than 2800 (au), or even about 4500 (au) or less than 4500. The value of (au).
在本發明中,圖6D之包含生長堆疊682的複數個III族氮化物層可以使得生長堆疊682發生實質上完全應變以匹配生長模板113之InsGa1-sN晶種層656之晶格的方式沈積。在其中生長堆疊682以實質上完全應變(亦即實質上無應變鬆弛)方式生長的此等實施例中,生長堆疊可繼承InsGa1-sN晶種層之晶格參數。在本發明之某些實施例中,InsGa1-sN晶種層可展現大於或等於約3.189埃之生長面晶格參數,且生長堆疊可 展現大於或等於約3.189埃之生長面晶格參數。因此,在非限制性實例中,半導體結構100、200、300、400及500可以由完全應變材料組成的方式形成,且可具有此生長面晶格參數。在一些實施例中,當GaN基底層112以與InsGa1-sN晶種層656晶格匹配的方式生長時,在InsGa1-sN晶種層656上所形成的GaN基底層112以鬆弛方式生長。 In the present invention, the plurality of Ill-nitride layers comprising the growth stack 682 of FIG. 6D may cause the growth stack 682 to undergo substantially complete strain to match the lattice of the In s Ga 1-s N seed layer 656 of the growth template 113. The way to deposit. In such embodiments in which the growth stack 682 is grown in a substantially fully strained (ie, substantially strain free) manner, the growth stack can inherit the lattice parameters of the In s Ga 1-s N seed layer. In certain embodiments of the invention, the In s Ga 1-s N seed layer may exhibit growth face lattice parameters greater than or equal to about 3.189 angstroms, and the growth stack may exhibit growth face crystals greater than or equal to about 3.189 angstroms. Grid parameters. Thus, in a non-limiting example, semiconductor structures 100, 200, 300, 400, and 500 can be formed from a fully strained material and can have such growth face lattice parameters. In some embodiments, the GaN substrate formed on the In s Ga 1-s N seed layer 656 when the GaN underlayer 112 is grown in lattice matching with the In s Ga 1-s N seed layer 656 Layer 112 is grown in a relaxed manner.
在其他實施例中,圖6D之包含生長堆疊682的複數個III族氮化物層可以使得生長堆疊682部分鬆弛的方式沈積,亦即,生長堆疊682之晶格參數不同於下伏InsGa1-sN晶種層。在此等實施例中,應變鬆弛 (R) 百分比可定義為:
其中a為生長堆疊682之平均生長面晶格參數,as為InsGa1-sN晶種之平均生長面晶格參數且a1為生長堆疊之平衡態(或自然狀態)平均生長面晶格參數。舉例而言,在一些實施例中,生長堆疊682可展現小於約0.5%之應變鬆弛 (R) 百分比;在其他實施例中,生長堆疊682可展現小於約10%之應變鬆弛 (R) 百分比;且在其他實施例中,生長堆疊682可展現小於約50%之應變鬆弛 (R) 百分比。 Where a is the average growth face lattice parameter of the growth stack 682, a s is the average growth face lattice parameter of the In s Ga 1-s N seed crystal, and a 1 is the equilibrium growth state (or natural state) average growth surface of the growth stack. Lattice parameters. For example, in some embodiments, growth stack 682 can exhibit a strain relaxation (R) percentage of less than about 0.5%; in other embodiments, growth stack 682 can exhibit a strain relaxation (R) percentage of less than about 10%; And in other embodiments, the growth stack 682 can exhibit a strain relaxation (R) percentage of less than about 50%.
在包含III族氮化物材料之半導體結構的各個層磊晶式沈積之後,可進行進一步加工以將半導體結構製成發光裝置,諸如LED。舉例而言,可使用此項技術中已知的方法在III族氮化物材料層上形成電極接點且下文參考圖7及圖8對此進行簡要描述。 After epitaxial deposition of the various layers of the semiconductor structure comprising the III-nitride material, further processing can be performed to form the semiconductor structure into a light-emitting device, such as an LED. For example, electrode contacts can be formed on the Ill-nitride material layer using methods known in the art and are briefly described below with reference to Figures 7 and 8.
由半導體結構100製成之發光裝置700(諸如LED)之實例說明於圖7中。雖然以下說明描述由半導體結構100製造發光裝置之實施例,但應注意此等製造方法亦可應用於半導體結構200、300、400及500。 An example of a light emitting device 700 (such as an LED) made from semiconductor structure 100 is illustrated in FIG. Although the following description describes embodiments in which the light emitting device is fabricated from the semiconductor structure 100, it should be noted that such manufacturing methods can also be applied to the semiconductor structures 200, 300, 400, and 500.
更詳細而言,可移除半導體結構100的一部分,藉此暴露GaN基底層112的一部分。移除半導體結構100的所選部分可藉由向半導體結 構100之p型接觸層的暴露表面塗覆光敏化學劑來實現(未圖示)。經由圖案化透明板暴露於電磁輻射且隨後顯影,可使用光敏層作為「遮罩層」以便選擇性移除GaN基底層112上之III族氮化物層。將GaN基底層112上之III族氮化物層的所選部分移除可包含蝕刻方法,例如濕式化學蝕刻及/或基於電漿之乾式蝕刻(例如反應性離子蝕刻、感應式耦合電漿蝕刻)。 In more detail, a portion of the semiconductor structure 100 can be removed, thereby exposing a portion of the GaN substrate layer 112. Removing a selected portion of the semiconductor structure 100 may be by way of a semiconductor junction The exposed surface of the p-type contact layer of the structure 100 is coated with a photosensitive chemical (not shown). The photosensitive layer can be used as a "mask layer" to selectively remove the group III nitride layer on the GaN substrate layer 112 by exposure to electromagnetic radiation through the patterned transparent plate and subsequent development. Removing selected portions of the Ill-nitride layer on the GaN substrate layer 112 may include etching methods such as wet chemical etching and/or plasma-based dry etching (eg, reactive ion etching, inductively coupled plasma etching). ).
第一電極接點702可形成於所暴露之GaN基底層112的一部分上。 第一電極接點702可包含一或多種金屬,其可包括鈦、鋁、鎳、金及其一或多種合金。第二電極接點704可形成於p型接觸層104的一部分上,第二電極接點704可包含一或多個金屬層,其可包括鎳、金、鉑、銀及其一或多種合金。第一電極接點702及第二電極接點704一經形成,即可使電流通過發光裝置700以產生電磁輻射,例如呈可見光形式的電磁輻射。應注意,發光裝置700在此項技術中通常稱為「橫向裝置」,因為第一電極接點702與第二電極接點704之間的至少一部分電流路徑包含橫向路徑。 A first electrode contact 702 can be formed on a portion of the exposed GaN substrate layer 112. The first electrode contact 702 can comprise one or more metals, which can include titanium, aluminum, nickel, gold, and one or more alloys thereof. The second electrode contact 704 can be formed on a portion of the p-type contact layer 104, and the second electrode contact 704 can include one or more metal layers, which can include nickel, gold, platinum, silver, and one or more alloys thereof. Once the first electrode contact 702 and the second electrode contact 704 are formed, current can be passed through the illumination device 700 to generate electromagnetic radiation, such as electromagnetic radiation in the form of visible light. It should be noted that illumination device 700 is commonly referred to in the art as a "transverse device" because at least a portion of the current path between first electrode contact 702 and second electrode contact 704 includes a lateral path.
由半導體結構100製成之發光裝置800(諸如LED)的另一實例說明於圖8中,雖然以下說明再次描述由半導體結構100製造發光裝置發光裝置的實施例,但應注意,此等製造方法亦可應用於半導體結構200、300、400及500。 Another example of a light emitting device 800 (such as an LED) made of semiconductor structure 100 is illustrated in FIG. 8, although the following description again describes an embodiment in which a light emitting device light emitting device is fabricated from semiconductor structure 100, it should be noted that such manufacturing methods It can also be applied to semiconductor structures 200, 300, 400, and 500.
更詳細而言,可自半導體結構100移除生長模板113的全部或一部分,以能夠暴露InsGa1-sN層656或在一些實施例中能夠暴露GaN基底層112。移除生長模板113之全部或一部分可包含一或多種移除方法,包括濕式蝕刻、乾式蝕刻、化學機械拋光、研磨及雷射提離。生長模板113之全部或一部分一經移除,即可將第一電極接點802施加至GaN基底層112上,如上文中所述。隨後,可將第二電極接點804施加至p型接觸層104的一部分上,從而形成發光裝置800。第一電極接點802 及第二電極接點804一經形成,即可使電流通過發光裝置800以產生電磁輻射,例如呈可見光形式的電磁輻射。應注意,發光裝置800在此項技術中通常稱為「垂直裝置」,因為第一電極層802與第二電極層804之間的電流路徑包含實質上垂直的路徑。 In more detail, all or a portion of the growth template 113 can be removed from the semiconductor structure 100 to be capable of exposing the In s Ga 1-s N layer 656 or, in some embodiments, capable of exposing the GaN substrate layer 112. Removal of all or a portion of the growth template 113 may include one or more removal methods including wet etching, dry etching, chemical mechanical polishing, grinding, and laser lift-off. The first electrode contact 802 can be applied to the GaN substrate layer 112 as soon as all or a portion of the growth template 113 is removed, as described above. Subsequently, a second electrode contact 804 can be applied to a portion of the p-type contact layer 104 to form the light emitting device 800. Once the first electrode contact 802 and the second electrode contact 804 are formed, current can be passed through the illumination device 800 to generate electromagnetic radiation, such as electromagnetic radiation in the form of visible light. It should be noted that illumination device 800 is commonly referred to in the art as a "vertical device" because the current path between first electrode layer 802 and second electrode layer 804 includes a substantially vertical path.
除上文中所述之製造非限制實例發光裝置700及800的製造方法及製程之外,應注意,亦可使用此項技術中已知的其他方法及製程,諸如表面粗糙化以改良光提取、接合至金屬性載體以改良熱耗散,及此項技術中已知為「覆晶接合」的製程,以及其他熟知的製造方法。 In addition to the methods of manufacture and processes for fabricating the non-limiting example illumination devices 700 and 800 described above, it should be noted that other methods and processes known in the art, such as surface roughening to improve light extraction, may also be used. Bonding to a metallic carrier to improve heat dissipation, and processes known in the art as "cladding bonding", as well as other well known fabrication methods.
可製造根據本發明實施例的發光裝置(諸如LED)且以其中合併一或多個LED的任何類型發光裝置使用。本發明之LED實施例可特別適用於受益於在相對較高功率下操作之LED且需要相對較高光度的應用。舉例而言,本發明之LED可特別適用於LED燈及基於LED之燈泡,其可用於建築物照明、街道照明、汽車照明等。 A light emitting device (such as an LED) in accordance with an embodiment of the present invention can be fabricated and used in any type of light emitting device in which one or more LEDs are incorporated. The LED embodiments of the present invention are particularly well suited for applications that benefit from LEDs that operate at relatively high power and that require relatively high luminosity. For example, the LED of the present invention is particularly suitable for LED lamps and LED-based bulbs, which can be used for building lighting, street lighting, automotive lighting, and the like.
本發明之其他實施例包括用於發光的發光體裝置,包括一或多個如本文所述的LED,該等發光體裝置諸如圖7之發光裝置700及圖8之發光裝置800。作為非限制性實例,發光體裝置可如例如美國專利第6,600,175號(2003年7月29日頒予Baretz等人,該專利之揭示內容以全文引用的方式併入本文中)中所述,但包括一或多個如本文所述的LED。 Other embodiments of the invention include an illuminator device for illuminating, including one or more LEDs as described herein, such as illuminating device 700 of Figure 7 and illuminating device 800 of Figure 8. By way of non-limiting example, the illuminant device can be as described in, for example, U.S. Patent No. 6,600,175 (issued to Baretz et al. on Jul. 29, 2003, the disclosure of each of One or more LEDs as described herein are included.
圖14說明包括發光裝置之本發明發光體裝置900的示例實施例,此裝置700、800如參考圖7及圖8所述。如圖14中所示,發光體裝置900可包括容器902,其至少一部分對於電磁輻射譜之可見區內的電磁輻射至少實質上為透明的。容器902可包含例如例如非晶形或晶體陶瓷材料(例如玻璃)或聚合物材料。LED 800安置於容器902內,且可安裝於容器902內之支撐結構904(例如印刷電路板或其他基板)上。發光體裝置900進一步包括第一電接觸結構906及第二電接觸結構908。第 一電接觸結構906可與LED之電極接點之一,諸如第一電極接點802(圖8)電連通,且第二電接觸結構908可與LED之電極接點之另一者,諸如第二電極接點804(圖8)電連通。作為非限制性實例,第一電接觸結構906可經由支撐結構904與第一電極接點804電連通,且導線910可用於第二電接觸結構908與第二電極接點804之電耦合。因此,可向發光體裝置900之第一電接觸結構906與第二電接觸結構908之間施加電壓,以向LED之第一電極接點802與第二電極接點804之間提供電壓及相應電流,從而促使LED發射輻射。 Figure 14 illustrates an example embodiment of an illuminant device 900 of the present invention including a illuminating device, as described with reference to Figures 7 and 8. As shown in Figure 14, illuminant device 900 can include a container 902 at least a portion that is at least substantially transparent to electromagnetic radiation in the visible region of the electromagnetic radiation spectrum. Container 902 can comprise, for example, an amorphous or crystalline ceramic material (eg, glass) or a polymeric material. The LED 800 is disposed within the container 902 and can be mounted to a support structure 904 (e.g., a printed circuit board or other substrate) within the container 902. Luminaire device 900 further includes a first electrical contact structure 906 and a second electrical contact structure 908. First An electrical contact structure 906 can be in electrical communication with one of the electrode contacts of the LED, such as the first electrode contact 802 (FIG. 8), and the second electrical contact structure 908 can be coupled to the other of the electrode contacts of the LED, such as The two electrode contacts 804 (Fig. 8) are in electrical communication. As a non-limiting example, first electrical contact structure 906 can be in electrical communication with first electrode contact 804 via support structure 904, and wire 910 can be used for electrical coupling of second electrical contact structure 908 with second electrode contact 804. Accordingly, a voltage can be applied between the first electrical contact structure 906 of the illuminant device 900 and the second electrical contact structure 908 to provide a voltage and corresponding voltage between the first electrode contact 802 and the second electrode contact 804 of the LED. Current, which causes the LED to emit radiation.
發光體裝置900視情況可進一步包括螢光或磷光材料,此材料當藉由吸收由容器902內之一或多個LED 800發射之電磁輻射而受刺激或激發時自身將發射電磁輻射(例如可見光)。舉例而言,容器902之內表面912可至少部分地塗有此螢光或磷光材料。一或多個LED 800可發射一或多種特定波長的電磁輻射,且螢光或磷光材料可包括發射不同可見光波長之輻射之不同材料的混合物,使得發光體裝置900自容器902向外發射白光。各種類型的螢光及磷光材料已知於此項技術中且可用於本發明之發光體裝置實施例中。舉例而言,一些此等材料揭示於上述美國專利第6,600,175號中。 Luminaire device 900 can optionally include a fluorescent or phosphorescent material that will emit electromagnetic radiation (e.g., visible light) when stimulated or excited by electromagnetic radiation emitted by one or more LEDs 800 within container 902. ). For example, inner surface 912 of container 902 can be at least partially coated with such a fluorescent or phosphorescent material. One or more of the LEDs 800 can emit one or more electromagnetic radiation of a particular wavelength, and the fluorescent or phosphorescent material can include a mixture of different materials that emit radiation of different visible wavelengths such that the illuminant device 900 emits white light outward from the container 902. Various types of fluorescent and phosphorescent materials are known in the art and can be used in the illuminant device embodiments of the present invention. For example, some of these materials are disclosed in the aforementioned U.S. Patent No. 6,600,175.
本發明實施例之其他非限制性實例闡述於下文中。 Other non-limiting examples of embodiments of the invention are set forth below.
實施例1:一種半導體結構,包含:GaN基底層,其具有生長面晶格參數大於或等於約3.189埃的極性生長面;安置於該基底層上的作用區域,該作用區域包含複數個InGaN層,該複數個InGaN層包括至少一個InwGa1-wN井層,其中0.10w0.40,及至少一個InbGa1-bN障壁層,其中0.01b0.10;電子阻擋層,其安置於作用區域之與GaN基底層相對的一側上;安置於電子阻擋層上的p型本體層,該p型本體層包含InpGa1-pN,其中0.01p0.08;及安置於p型本體層上的p型接觸層,該p型接觸層包含IncGa1-cN,其中0.00c0.10。 Embodiment 1: A semiconductor structure comprising: a GaN base layer having a growth face having a growth face lattice parameter greater than or equal to about 3.189 angstroms; an active region disposed on the base layer, the active region comprising a plurality of InGaN layers The plurality of InGaN layers include at least one In w Ga 1-w N well layer, wherein 0.10 w 0.40, and at least one In b Ga 1-b N barrier layer, of which 0.01 b 0.10; an electron blocking layer disposed on a side of the active region opposite to the GaN base layer; a p-type body layer disposed on the electron blocking layer, the p-type body layer comprising In p Ga 1-p N, wherein 0.01 p 0.08; and a p-type contact layer disposed on the p-type body layer, the p-type contact layer comprising In c Ga 1-c N, wherein 0.00 c 0.10.
實施例2:如實施例1之半導體結構,其中該基底層進一步包含生長模板,該生長模板包含:支撐基板;及安置於該支撐基板上的InsGa1-sN晶種層,其中該InsGa1-sN晶種層之生長面為生長面晶格參數大於或等於約3.189埃的極面,其中0.02s0.05,且其中該GaN基底層與InsGa1-sN晶種層之生長面實質上為晶格匹配的。 Embodiment 2: The semiconductor structure of Embodiment 1, wherein the base layer further comprises a growth template, the growth template comprising: a support substrate; and an In s Ga 1-s N seed layer disposed on the support substrate, wherein The growth surface of the In s Ga 1-s N seed layer is a polar plane with a growth plane lattice parameter greater than or equal to about 3.189 angstroms, of which 0.02 s 0.05, and wherein the growth face of the GaN substrate layer and the In s Ga 1-s N seed layer is substantially lattice matched.
實施例3:如實施例3之半導體結構,其進一步包含InspGa1-spN間隔層,該InspGa1-spN間隔層安置於InsGa1-sN晶種層之與該GaN基底層相對的一側上,其中0.01sp0.10。 Example 3: The semiconductor structure of Example 3 of such embodiments, further comprising In sp Ga 1-sp N spacer layer, the In sp Ga 1-sp N spacer layer disposed In s Ga 1-s N seed layer of the On the opposite side of the GaN basal layer, of which 0.01 Sp 0.10.
實施例4:如實施例1至實施例3中任一項之半導體結構,其進一步包含安置於該作用區域與電子阻擋層之間的IncpGa1-cpN帽層,其中0.01cp0.10。 The semiconductor structure of any one of embodiments 1 to 3, further comprising an In cp Ga 1-cp N cap layer disposed between the active region and the electron blocking layer, wherein 0.01 Cp 0.10.
實施例5:如實施例1至實施例4中任一項之半導體結構,其中該電子阻擋層包含IneGa1-eN,其中0.01e0.02。 The semiconductor structure of any one of embodiments 1 to 4, wherein the electron blocking layer comprises In e Ga 1-e N, wherein 0.01 e 0.02.
實施例6:如實施例1至實施例5中任一項之半導體結構,其中該電子阻擋層至少實質上包含GaN。 The semiconductor structure of any of embodiments 1 to 5, wherein the electron blocking layer comprises at least substantially GaN.
實施例7:如實施例1至實施例6中任一項之半導體結構,其中該電子阻擋層至少實質上包含AleGa1-eN,其中0.1e0.2。 The semiconductor structure of any one of embodiments 1 to 6, wherein the electron blocking layer comprises at least substantially Al e Ga 1-e N, wherein 0.1 e 0.2.
實施例8:如實施例7之半導體結構,其中該電子阻擋層具有包含GaN與AleGa1-eN交替層的超晶格結構,其中0.1e0.2。 Embodiment 8: The semiconductor structure of Embodiment 7, wherein the electron blocking layer has a superlattice structure comprising alternating layers of GaN and Al e Ga 1-e N, wherein 0.1 e 0.2.
實施例9:如實施例1至實施例9中任一項之半導體,其進一步包含安置於該GaN基底層與該作用區域之間的電子中止層,其中該電子中止層包含AlstGa1-stN,其中0.01st0.20。 The semiconductor of any one of embodiments 1 to 9, further comprising an electron stop layer disposed between the GaN substrate layer and the active region, wherein the electron stop layer comprises Al st Ga 1- St N, where 0.01 St 0.20.
實施例10:如實施例9之半導體結構,其中該電子中止層具有包含GaN與AlstGa1-stN交替層的超晶格結構,其中0.01st0.2。 Embodiment 10: The semiconductor structure of Embodiment 9, wherein the electron arresting layer has a superlattice structure comprising alternating layers of GaN and Al st Ga 1-st N, wherein 0.01 St 0.2.
實施例11:如實施例1至實施例10中任一項之半導體結構,其進一步包含安置於該GaN基底層與該作用區域之間的應變釋放層,該應 變釋放層具有包含InsraGasraN與InsrbGa1-srbN之交替層的超晶格結構,其中0.01sra0.10,其中0.01srb0.10,且其中sra大於srb。 The semiconductor structure of any one of embodiments 1 to 10, further comprising a strain relief layer disposed between the GaN substrate layer and the active region, the strain relief layer having In sra Ga sra Superlattice structure of alternating layers of N and In srb Ga 1-srb N, of which 0.01 Sra 0.10, of which 0.01 Srb 0.10, and where sra is greater than srb.
實施例12:如實施例1至實施例11中任一項之半導體結構,其中該作用區域進一步包含安置於該至少一個井層與該至少一個障壁層之間的另一含GaN障壁層。 The semiconductor structure of any of embodiments 1 to 11, wherein the active region further comprises another GaN-containing barrier layer disposed between the at least one well layer and the at least one barrier layer.
實施例13:如實施例1至實施例12中任一項之半導體結構,其中該半導體結構之臨界應變能為約4500(a.u.)或小於4500(a.u.)。 The semiconductor structure of any one of embodiments 1 to 12, wherein the semiconductor structure has a critical strain energy of about 4500 (a.u.) or less than 4500 (a.u.).
實施例14:如實施例1至實施例13中任一項之半導體結構,其中該GaN基底層、該作用區域、該電子阻擋層、該p型本體層及該p型接觸層界定展現小於1%之應變鬆弛百分比的生長堆疊。 The semiconductor structure of any one of embodiments 1 to 13, wherein the GaN substrate layer, the active region, the electron blocking layer, the p-type body layer, and the p-type contact layer define a presentation of less than 1 Growth stack of % strain relaxation percentage.
實施例15:如實施例1至實施例14中任一項之半導體結構,其中該p型接觸層至少實質上包含GaN。 The semiconductor structure of any of embodiments 1 to 14, wherein the p-type contact layer comprises at least substantially GaN.
實施例16:如實施例1至實施例15中任一項之半導體結構,其進一步包含位於該GaN基底層之至少一部分上的第一電極接點及位於該p型接觸層之至少一部分上的第二電極接點。 The semiconductor structure of any of embodiments 1 to 15, further comprising a first electrode contact on at least a portion of the GaN substrate layer and on at least a portion of the p-type contact layer Second electrode contact.
實施例17:一種發光裝置,包含:GaN基底層,其具有生長面晶格參數大於或等於約3.189埃的極性生長面;安置於該基底層上的作用區域,該作用區域包含複數個InGaN層,該複數個InGaN層包括至少一個井層及至少一個障壁層;安置於該作用區域上的電子阻擋層;安置於該電子阻擋層上的p型InpGa1-pN本體層;及安置於該p型InpGa1-pN本體層上的p型IncGa1-cN接觸層,其中該發光裝置之臨界應變能為約4500(a.u.)或小於4500(a.u.)。 Embodiment 17: A light-emitting device comprising: a GaN base layer having a growth face having a growth face lattice parameter greater than or equal to about 3.189 angstroms; an active region disposed on the base layer, the active region comprising a plurality of InGaN layers The plurality of InGaN layers include at least one well layer and at least one barrier layer; an electron blocking layer disposed on the active region; a p-type In p Ga 1-p N bulk layer disposed on the electron blocking layer; and a p-type In c Ga 1-c N contact layer on the p-type In p Ga 1-p N bulk layer, wherein the luminescent device has a critical strain energy of about 4500 (au) or less than 4500 (au).
實施例18:如實施例17之發光裝置,其中該至少一個井層包含InwGa1-wN,其中0.10w0.40。 Embodiment 18: The illumination device of Embodiment 17, wherein the at least one well layer comprises In w Ga 1-w N, wherein 0.10 w 0.40.
實施例19:如實施例17或實施例18之發光裝置,其中該至少一個障壁層包含InbGa1-bN,其中0.01b0.10。 The illuminating device of embodiment 17 or embodiment 18, wherein the at least one barrier layer comprises In b Ga 1-b N, wherein 0.01 b 0.10.
實施例20:如實施例17至實施例19中任一項之發光裝置,其中該電子阻擋層至少實質上包含GaN。 The illuminating device of any one of embodiments 17 to 19, wherein the electron blocking layer comprises at least substantially GaN.
實施例21:如實施例17至實施例20中任一項之發光裝置,其中在該p型InpGa1-pN本體層中,0.01p0.08。 The illuminating device of any one of embodiments 17 to 20, wherein in the p-type In p Ga 1-p N bulk layer, 0.01 p 0.08.
實施例22:如實施例17至實施例21中任一項之發光裝置,其中在該p型IncGa1-cN接觸層中,0.01c0.10。 Embodiment 22: The light-emitting device of any one of Embodiments 17 to 21, wherein in the p-type In c Ga 1-c N contact layer, 0.01 c 0.10.
實施例23:如實施例17至實施例22中任一項之半導體結構,其中該p型IncGa1-cN接觸層實質上包含GaN。 The semiconductor structure of any one of embodiments 17 to 22, wherein the p-type In c Ga 1-c N contact layer substantially comprises GaN.
實施例24:如實施例17至實施例23中任一項之發光裝置,其進一步包含位於該GaN基底層之至少一部分上的第一電極接點及位於該p型IncGa1-cN接觸層之至少一部分上的第二電極接點。 The illuminating device of any one of embodiments 17 to 23, further comprising a first electrode contact on at least a portion of the GaN substrate layer and the p-type In c Ga 1-c N a second electrode contact on at least a portion of the contact layer.
實施例25:如實施例17至實施例24中任一項之半導體結構,其中該GaN基底層、該作用區域、該電子阻擋層、該p型本體層及該p型接觸層界定展現小於1%之應變鬆弛百分比的生長堆疊。 The semiconductor structure of any one of embodiments 17 to 24, wherein the GaN substrate layer, the active region, the electron blocking layer, the p-type body layer, and the p-type contact layer define a presentation of less than 1 Growth stack of % strain relaxation percentage.
實施例26:一種形成半導體結構的方法,包含:提供GaN基底層,該GaN基底層具有生長面晶格參數大於或等於約3.189Å的極性生長面;使複數個InGaN層生長而在該基底層上形成作用區域,使該複數個InGaN層生長包含:使包含InwGa1-wN的至少一個井層生長,其中0.10w0.40,及使位於該至少一個井層上之至少一個障壁層生長,該至少一個障壁層包含InbGa1-bN,其中0.01b0.10;使位於該作用區域上的電子阻擋層生長;使位於該電子阻擋層上的p型InpGa1-pN本體層生長,其中0.01p0.08;及使位於該p型InpGa1-pN本體層上的p型IncGa1-cN接觸層生長,其中0.00c0.10。 Embodiment 26: A method of forming a semiconductor structure, comprising: providing a GaN underlayer having a polar growth plane having a growth plane lattice parameter greater than or equal to about 3.189 Å; growing a plurality of InGaN layers at the basal layer Forming an active region thereon, the growing the plurality of InGaN layers comprising: growing at least one well layer comprising In w Ga 1-w N, wherein 0.10 w 0.40, and growing at least one barrier layer on the at least one well layer, the at least one barrier layer comprising In b Ga 1-b N, wherein 0.01 b 0.10; growing an electron blocking layer on the active region; growing a p-type In p Ga 1-p N bulk layer on the electron blocking layer, wherein 0.01 p 0.08; and growing a p-type In c Ga 1-c N contact layer on the p-type In p Ga 1-p N bulk layer, wherein 0.00 c 0.10.
實施例27:如實施例26之方法,其中形成該基底層進一步包含形成生長模板,形成該生長模板包含:提供支撐基板;及使InsGa1-sN晶種層接合至該支撐基板,其中該InsGa1-sN晶種層之生長面為生長面 晶格參數大於或等於約3.189埃的極面,且其中在InsGa1-sN晶種層中,0.02s0.05。 The method of embodiment 26, wherein the forming the substrate layer further comprises forming a growth template, the forming the growth template comprising: providing a support substrate; and bonding the In s Ga 1-s N seed layer to the support substrate, Wherein the growth surface of the In s Ga 1-s N seed layer is a pole surface having a growth plane lattice parameter greater than or equal to about 3.189 angstroms, and wherein in the In s Ga 1-s N seed layer, 0.02 s 0.05.
實施例28:如實施例27之方法,進一步包含使InspGa1-spN間隔層生長,該InspGa1-spN間隔層位於該InsGa1-sN晶種層上之與該GaN基底層相對的一側上,其中在該InspGa1-spN間隔層中,0.01sp0.10。 Embodiment 28: The method of Embodiment 27, further comprising growing an In sp Ga 1-sp N spacer layer, the In sp Ga 1-sp N spacer layer being on the In s Ga 1-s N seed layer On the opposite side of the GaN substrate layer, wherein in the In sp Ga 1-sp N spacer layer, 0.01 Sp 0.10.
實施例29:如實施例26至實施例28中任一項之方法,進一步包含使安置於該作用區域與該電子阻擋層之間的IncpGa1-cpN帽層生長,其中在該IncpGa1-cpN帽層中,0.01cp0.10。 The method of any one of embodiments 26 to 28, further comprising growing an In cp Ga 1-cp N cap layer disposed between the active region and the electron blocking layer, wherein the In Cp Ga 1-cp N cap layer, 0.01 Cp 0.10.
實施例30:如實施例26至實施例29中任一項之方法,其中使該電子阻擋層生長包含使至少實質上包含IneGa1-eN之該電子阻擋層生長,其中0.00e0.02。 The method of any one of embodiments 26 to 29, wherein the growing the electron blocking layer comprises growing the electron blocking layer comprising at least substantially In e Ga 1-e N, wherein 0.00 e 0.02.
實施例31:如實施例26至實施例30中任一項之方法,其中使該電子阻擋層生長包含使至少實質上包含GaN之該電子阻擋層生長。 The method of any one of embodiments 26 to 30, wherein growing the electron blocking layer comprises growing the electron blocking layer comprising at least substantially GaN.
實施例32:如實施例26至實施例31中任一項之方法,其中使該電子阻擋層生長包含使至少實質上包含AleGa1-eN之該電子阻擋層生長,其中0.1e0.2。 The method of any one of embodiments 26 to 31, wherein the growing the electron blocking layer comprises growing the electron blocking layer comprising at least substantially Al e Ga 1-e N, wherein 0.1 e 0.2.
實施例33:如實施例26至實施例29中任一項之方法,其中使該電子阻擋層生長包含使具有包含GaN與AleGa1-eN交替層之超晶格結構的該電子阻擋層生長,其中0.1e0.2。 The method of any one of embodiments 26 to 29, wherein the electron blocking layer growth comprises the electron blocking of a superlattice structure having alternating layers of GaN and Al e Ga 1-e N Layer growth, of which 0.1 e 0.2.
實施例34:如實施例26至實施例33中任一項之方法,進一步包含使安置於該GaN基底層與該作用區域之間的電子中止層生長,其中該電子中止層至少實質上包含AlstGa1-stN,其中0.01st0.20。 The method of any one of embodiments 26 to 33, further comprising growing an electron stop layer disposed between the GaN substrate layer and the active region, wherein the electron stop layer comprises at least substantially Al St Ga 1-st N, of which 0.01 St 0.20.
實施例35:如實施例26至實施例34中任一項之方法,其進一步包含使安置於該GaN基底層與該作用區域之間的應變釋放層生長,該應變釋放層具有包含InsraGasraN與InsrbGa1-srbN之交替層的超晶格結構,其中0.01sra0.10,其中0.01srb0.10,且其中sra大於srb。 The method of any one of embodiments 26 to 34, further comprising: growing a strain relief layer disposed between the GaN substrate layer and the active region, the strain relief layer having In sra Ga Superlattice structure of alternating layers of sra N and In srb Ga 1-srb N, of which 0.01 Sra 0.10, of which 0.01 Srb 0.10, and where sra is greater than srb.
實施例36:如實施例26至實施例35中任一項之方法,其中形成該作用區域進一步包含使安置於該至少一個井層與該至少一個障壁層之間的一或多個其他含GaN障壁層生長。 The method of any one of embodiments 26 to 35, wherein forming the active region further comprises one or more other GaN-containing regions disposed between the at least one well layer and the at least one barrier layer The barrier layer grows.
實施例37:如實施例26至實施例36中任一項之方法,其中該GaN基底層、該作用區域、該電子阻擋層、該p型本體層及該p型接觸層一起界定展現小於1%之應變鬆弛百分比的生長堆疊。 The method of any one of embodiments 26 to 36, wherein the GaN substrate layer, the active region, the electron blocking layer, the p-type body layer, and the p-type contact layer together define a presentation of less than 1 Growth stack of % strain relaxation percentage.
實施例38:如實施例37之方法,進一步包含形成具有約2800(a.u.)或小於2800(a.u.)之臨界應變能的生長堆疊。 Embodiment 38: The method of Embodiment 37, further comprising forming a growth stack having a critical strain energy of about 2800 (a.u.) or less than 2800 (a.u.).
實施例39:如實施例26至實施例38中任一項之方法,其中使該p型接觸層生長包含使至少實質上包含GaN之該p型接觸層生長。 The method of any one of embodiments 26 to 38, wherein growing the p-type contact layer comprises growing the p-type contact layer comprising at least substantially GaN.
實施例40:如實施例37或實施例38之方法,進一步包含使該生長堆疊在單一化學氣相沈積系統中、在約50毫托與約500毫托之間的壓力下生長。 Embodiment 40: The method of Embodiment 37 or Embodiment 38, further comprising growing the growth in a single chemical vapor deposition system at a pressure of between about 50 mTorr and about 500 mTorr.
實施例41:如實施例26至實施例40中任一項之方法,進一步包含在使三甲基銦(TMI)及三乙基鎵(TMG)流動通過腔室的同時、使該p型InpGa1-pN本體層在該腔室中生長,其中三甲基銦(TMI)流速與三乙基鎵(TMG)流速之流速比(%)介於約50%與約95%之間。 The method of any one of embodiments 26 to 40, further comprising: causing the p-type In while flowing trimethylindium (TMI) and triethylgallium (TMG) through the chamber A p Ga 1-p N bulk layer is grown in the chamber, wherein a flow rate ratio (%) of trimethyl indium (TMI) flow rate to triethylgallium (TMG) flow rate is between about 50% and about 95% .
上述本發明之示例實施例不限制本發明之範疇,因為此等實施例僅為本發明實施例之實例,本發明之範疇係由隨附申請專利範圍及其法律等效物限定。希望本發明之範疇內涵蓋任何等效實施例。實際上,除本文所示及所述者之外,熟習此項技術者根據說明書將顯而易知本發明之各種潤飾,諸如所述元件之替代有用組合。亦希望此等潤飾及實施例屬於隨附申請專利範圍之範疇內。 The above-described embodiments of the present invention are not intended to limit the scope of the invention, and the embodiments are only examples of the embodiments of the invention, and the scope of the invention is defined by the scope of the appended claims and their legal equivalents. It is intended that any equivalent embodiments be included within the scope of the invention. In fact, various modifications of the present invention, such as alternative useful combinations of the elements, will be apparent to those skilled in the art in light of this disclosure. It is also expected that such retouching and embodiments are within the scope of the accompanying claims.
Claims (15)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361789792P | 2013-03-15 | 2013-03-15 | |
US61/789,792 | 2013-03-15 | ||
??1300923 | 2013-04-12 | ||
FR1300923A FR3004585B1 (en) | 2013-04-12 | 2013-04-12 | SEMICONDUCTOR STRUCTURES WITH ACTIVE REGIONS COMPRISING INGAN |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201501348A TW201501348A (en) | 2015-01-01 |
TWI626765B true TWI626765B (en) | 2018-06-11 |
Family
ID=52718062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103109798A TWI626765B (en) | 2013-03-15 | 2014-03-14 | Semiconductor structures having active regions comprising ingan, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI626765B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1698212A (en) * | 2003-06-25 | 2005-11-16 | Lg伊诺特有限公司 | Light emitting device using nitride semiconductor and fabrication method of the same |
CN101027791B (en) * | 2004-08-26 | 2011-08-10 | Lg伊诺特有限公司 | Nitride semiconductor light emitting device and fabrication method thereof |
TW201138149A (en) * | 2009-08-21 | 2011-11-01 | Univ California | Anisotropic strain control in semipolar nitride quantum wells by partially or fully relaxed aluminum indium gallium nitride layers with misfit dislocations |
-
2014
- 2014-03-14 TW TW103109798A patent/TWI626765B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1698212A (en) * | 2003-06-25 | 2005-11-16 | Lg伊诺特有限公司 | Light emitting device using nitride semiconductor and fabrication method of the same |
CN101027791B (en) * | 2004-08-26 | 2011-08-10 | Lg伊诺特有限公司 | Nitride semiconductor light emitting device and fabrication method thereof |
TW201138149A (en) * | 2009-08-21 | 2011-11-01 | Univ California | Anisotropic strain control in semipolar nitride quantum wells by partially or fully relaxed aluminum indium gallium nitride layers with misfit dislocations |
Also Published As
Publication number | Publication date |
---|---|
TW201501348A (en) | 2015-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI648872B (en) | Semiconductor structures having active regions comprising ingan, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures | |
TWI593135B (en) | Semiconductor stuctures having active regions comprising ingan, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures | |
US9397258B2 (en) | Semiconductor structures having active regions comprising InGaN, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures | |
TWI451591B (en) | Nitride-based light emitting device | |
CN104810442B (en) | A kind of LED epitaxial slice and its growing method | |
JP2012519953A (en) | Boron Introduced Group III Nitride Light Emitting Diode Device | |
KR20140123410A (en) | Uv light emitting device | |
JP2016513880A (en) | Light emitting diode semiconductor structure having an active region containing InGaN | |
US8314436B2 (en) | Light emitting device and manufacturing method thereof | |
CN108281520A (en) | A kind of GaN base LED epitaxial structure and preparation method thereof | |
KR101198759B1 (en) | Nitride light emitting device | |
TWI626765B (en) | Semiconductor structures having active regions comprising ingan, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures | |
KR102120682B1 (en) | SEMICONDUCTOR LIGHT EMITTING STRUCTURE HAVING ACTIVE REGION COMPRISING InGaN AND METHOD OF ITS FABRICATION | |
TWI714891B (en) | Light-emitting device and manufacturing metode thereof | |
US20180122986A1 (en) | Light-emitting device and manufacturing method thereof | |
CN106340572B (en) | Light emitting diode and forming method thereof | |
TWI641160B (en) | Light-emitting device and manufacturing metode thereof | |
JP2013077690A (en) | Semiconductor light-emitting device and method of manufacturing semiconductor light-emitting device | |
JP2014112599A (en) | Semiconductor light-emitting element and method of manufacturing the same |