TWI626426B - Method of measuring thickness of epitaxial layer - Google Patents

Method of measuring thickness of epitaxial layer Download PDF

Info

Publication number
TWI626426B
TWI626426B TW106102362A TW106102362A TWI626426B TW I626426 B TWI626426 B TW I626426B TW 106102362 A TW106102362 A TW 106102362A TW 106102362 A TW106102362 A TW 106102362A TW I626426 B TWI626426 B TW I626426B
Authority
TW
Taiwan
Prior art keywords
epitaxial film
epitaxial
thickness
substrate
sheet resistance
Prior art date
Application number
TW106102362A
Other languages
Chinese (zh)
Other versions
TW201827783A (en
Inventor
洪世瑋
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Priority to TW106102362A priority Critical patent/TWI626426B/en
Application granted granted Critical
Publication of TWI626426B publication Critical patent/TWI626426B/en
Publication of TW201827783A publication Critical patent/TW201827783A/en

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一種磊晶薄膜的厚度量測方法,其包括下列步驟。提供第一基材,第一基材具有成長區域;將第一基材置於腔體中進行第一磊晶製程,以於成長區域上選擇性地成長第一磊晶薄膜;量測第一磊晶薄膜的片電阻值以及厚度;重覆上述步驟至少一次,以建立第一磊晶薄膜的片電阻值與厚度的關連;將第二基材置於腔體中進行第二磊晶製程,以於第二基材上選擇性地成長出第二磊晶薄膜;以及量測第二磊晶薄膜的片電阻值,並且根據第二磊晶薄膜的片電阻值以及第一磊晶薄膜的片電阻值與厚度的關連計算出第二磊晶薄膜的厚度。A method for measuring the thickness of an epitaxial film, which comprises the following steps. Providing a first substrate, the first substrate has a growth region; and the first substrate is placed in the cavity for performing a first epitaxial process to selectively grow the first epitaxial film on the growth region; The sheet resistance value and thickness of the epitaxial film; repeating the above steps at least once to establish a relationship between the sheet resistance value and the thickness of the first epitaxial film; placing the second substrate in the cavity for the second epitaxial process, Selecting a second epitaxial film selectively on the second substrate; and measuring a sheet resistance value of the second epitaxial film, and according to the sheet resistance value of the second epitaxial film and the sheet of the first epitaxial film The relationship between the resistance value and the thickness calculates the thickness of the second epitaxial film.

Description

磊晶薄膜厚度量測方法Epitaxial film thickness measurement method

本發明的實施例是有關於一種磊晶薄膜厚度量測方法。Embodiments of the present invention are directed to a method of measuring the thickness of an epitaxial film.

在現今半導體元件的製造過程中,磊晶薄膜已被廣泛地應用。在半導體元件中,磊晶薄膜的厚度對於半導體元件的表現有一定程度的影響,因此如何快速且精準地量測出磊晶薄膜的厚度變得相當重要。在現有的薄膜厚度量測技術中,以透射電子顯微技術(Transmission Electron Microscope,TEM)最常被使用,由於透射電子顯微技術對於薄膜厚度的量測所需的時間較長(數日),且透射電子顯微技術是破壞性的量測,因此,採用透射電子顯微技術進行磊晶薄膜的厚度量測仍有待改善之處。Epitaxial films have been widely used in the fabrication of semiconductor devices today. In the semiconductor element, the thickness of the epitaxial film has a certain influence on the performance of the semiconductor element, so how to measure the thickness of the epitaxial film quickly and accurately becomes very important. In the existing film thickness measurement technology, Transmission Electron Microscope (TEM) is most commonly used, because transmission electron microscopy requires a longer time for film thickness measurement (several days) And transmission electron microscopy is a destructive measurement. Therefore, there is still room for improvement in the thickness measurement of epitaxial films by transmission electron microscopy.

本發明的實施例提供一種磊晶薄膜厚度量測方法,其包括下列步驟。提供第一基材,第一基材具有成長區域;將第一基材置於腔體中進行第一磊晶製程,以於成長區域上選擇性地成長第一磊晶薄膜;量測第一磊晶薄膜的片電阻值以及厚度;重覆上述步驟至少一次,以建立第一磊晶薄膜的片電阻值與厚度的關連;將第二基材置於腔體中進行第二磊晶製程,以於第二基材上選擇性地成長出第二磊晶薄膜;以及量測第二磊晶薄膜的片電阻值,並且根據第二磊晶薄膜的片電阻值以及第一磊晶薄膜的片電阻值與厚度的關連計算出第二磊晶薄膜的厚度。Embodiments of the present invention provide a method for measuring the thickness of an epitaxial film, which includes the following steps. Providing a first substrate, the first substrate has a growth region; and the first substrate is placed in the cavity for performing a first epitaxial process to selectively grow the first epitaxial film on the growth region; The sheet resistance value and thickness of the epitaxial film; repeating the above steps at least once to establish a relationship between the sheet resistance value and the thickness of the first epitaxial film; placing the second substrate in the cavity for the second epitaxial process, Selecting a second epitaxial film selectively on the second substrate; and measuring a sheet resistance value of the second epitaxial film, and according to the sheet resistance value of the second epitaxial film and the sheet of the first epitaxial film The relationship between the resistance value and the thickness calculates the thickness of the second epitaxial film.

本發明的另一實施例提供一種磊晶薄膜厚度量測方法,其包括下列步驟。於第一基材上形成罩幕層;圖案化罩幕層以及第一基材,以於罩幕層中形成開口並於第一基材中形成凹穴;將第一基材置於腔體中進行第一磊晶製程,以於凹穴上選擇性地成長第一磊晶薄膜;量測第一磊晶薄膜的片電阻值,並且藉由電子顯微技術量測第一磊晶薄膜的厚度;重覆前述步驟至少一次,以建立第一磊晶薄膜的片電阻值與厚度的關連;將第二基材置於腔體中進行第二磊晶製程,以於第二基材上形成第二磊晶薄膜;以及量測第二磊晶薄膜的片電阻值,並且根據第二磊晶薄膜的片電阻值以及第一磊晶薄膜的片電阻值與厚度的關連計算出第二磊晶薄膜的厚度。Another embodiment of the present invention provides a method for measuring the thickness of an epitaxial film, which includes the following steps. Forming a mask layer on the first substrate; patterning the mask layer and the first substrate to form an opening in the mask layer and forming a recess in the first substrate; placing the first substrate in the cavity Performing a first epitaxial process to selectively grow a first epitaxial film on the cavity; measuring a sheet resistance value of the first epitaxial film, and measuring the first epitaxial film by electron microscopy Thickness; repeating the foregoing steps at least once to establish a relationship between the sheet resistance value and the thickness of the first epitaxial film; placing the second substrate in the cavity for performing a second epitaxial process to form on the second substrate a second epitaxial film; and measuring a sheet resistance value of the second epitaxial film, and calculating a second epitaxial layer according to a sheet resistance value of the second epitaxial film and a relationship between a sheet resistance value of the first epitaxial film and a thickness The thickness of the film.

以下揭露內容提供用於實施所提供標的物的不同特徵的許多不同實施例或實例。下文描述組件以及配置的特定實例以簡化本發明。當然,此等組件以及配置僅僅為實例且不意欲為限制性的。舉例而言,在以下描述中,第一特徵在第二特徵上方或上的形成可包含第一特徵以及第二特徵直接接觸地形成的實施例,且還可包含額外特徵可在第一特徵與第二特徵之間形成使得第一特徵與第二特徵可不直接接觸的實施例。另外,本發明可在各種實例中重複圖式元件符號以及/或字母。此重複是出於簡化以及清楚的目的,且本身並不指示所論述的各種實施例以及/或組態之間的關係。The following disclosure provides many different embodiments or examples for implementing different features of the subject matter provided. Specific components of the components and configurations are described below to simplify the present invention. Of course, such components and configurations are merely examples and are not intended to be limiting. For example, in the following description, the formation of the first feature over or over the second feature can include embodiments in which the first feature and the second feature are formed in direct contact, and can also include additional features that can be associated with the first feature Embodiments are formed between the second features such that the first feature and the second feature may not be in direct contact. In addition, the present invention may repeat the graphical element symbols and/or letters in various examples. This repetition is for the purpose of simplicity and clarity, and is not a limitation of the various embodiments and/or configurations discussed.

另外,為易於描述,本文中可使用諸如「在...之下」、「在...下方」、「下部」、「在...上方」、「上部」以及其類似者的空間相對術語,以描述如諸圖中所說明的一個元件或特徵相對於另一元件或特徵的關係。除了諸圖中所描繪的定向之外,空間相對術語意欲涵蓋裝置在使用或操作中的不同定向。設備可以其他方式定向(旋轉90度或處於其他定向),且本文中所使用的空間相對描述詞同樣可相應地進行解釋。In addition, for ease of description, spatially relatives such as "under", "below", "lower", "above", "upper", and the like may be used herein. Terminology to describe the relationship of one element or feature to another element or feature as illustrated in the figures. In addition to the orientation depicted in the figures, spatially relative terms are intended to encompass different orientations of the device in use or operation. The device may be otherwise oriented (rotated 90 degrees or at other orientations), and the spatially relative descriptors used herein may be interpreted accordingly.

圖1是根據本發明一實施例的磊晶薄膜厚度量測方法的流程圖,圖2是根據本發明另一實施例的磊晶薄膜厚度量測方法的流程圖,而圖3至圖8是根據本發明一實施例的磊晶薄膜厚度量測方法的流程示意圖。1 is a flow chart of a method for measuring thickness of an epitaxial film according to an embodiment of the present invention, and FIG. 2 is a flow chart of a method for measuring thickness of an epitaxial film according to another embodiment of the present invention, and FIGS. 3 to 8 are A schematic flow chart of a method for measuring the thickness of an epitaxial film according to an embodiment of the invention.

請參照圖1,本實施例的磊晶薄膜厚度量測方法至少包括步驟S110、步驟S120、步驟S130、步驟S140、步驟S150以及步驟S160。如圖1所示的步驟S110,首先,提供第一基材400,此第一基材400具有至少一個成長區域GR。在一些實施例中,第一基材400例如是取樣晶圓(sampling wafer),此取樣晶圓上未形成有電子元件(例如電晶體、電阻、電容等),且此取樣晶圓可用來建立磊晶薄膜的片電阻值與厚度之間的關連性,而第一基材400(即,取樣晶圓)上的成長區域GR可藉由圖2所示的步驟S210以及步驟220來形成。Referring to FIG. 1 , the method for measuring the thickness of the epitaxial film of the embodiment includes at least steps S110, S120, S130, S140, S150, and S160. As shown in step S110 of FIG. 1, first, a first substrate 400 is provided, which has at least one growth region GR. In some embodiments, the first substrate 400 is, for example, a sampling wafer on which no electronic components (such as transistors, resistors, capacitors, etc.) are formed, and the sample wafer can be used to build The relationship between the sheet resistance value and the thickness of the epitaxial film, and the growth region GR on the first substrate 400 (ie, the sampling wafer) can be formed by the step S210 and the step 220 shown in FIG.

以下將搭配圖2至圖5針對成長區域GR的形成進行舉例說明。如圖2至圖5所繪示,於第一基材400上形成罩幕層410(如圖2中的步驟S210),且罩幕層410全面性地覆蓋於第一基材400的表面上。在一些實施例中,第一基材400例如為具有n型摻雜及/或p型摻雜的矽基材,而形成在第一基材400上的罩幕層410例如為氮化矽層或其它介電材料層。接著,圖案化第一基材400上的罩幕層410以及第一基材400,以於罩幕層410中形成開口412並且於第一基材410中形成凹穴402(如圖2中的步驟S220所示)。The formation of the growth region GR will be exemplified below with reference to FIGS. 2 to 5. As shown in FIG. 2 to FIG. 5, a mask layer 410 is formed on the first substrate 400 (step S210 in FIG. 2), and the mask layer 410 is entirely covered on the surface of the first substrate 400. . In some embodiments, the first substrate 400 is, for example, a germanium substrate having an n-type doping and/or a p-type doping, and the mask layer 410 formed on the first substrate 400 is, for example, a tantalum nitride layer. Or other layers of dielectric material. Next, the mask layer 410 on the first substrate 400 and the first substrate 400 are patterned to form an opening 412 in the mask layer 410 and form a recess 402 in the first substrate 410 (as in FIG. 2). Step S220 is shown).

在一些實施例中,第一基材400以及罩幕層410的圖案化製程可包括下列步驟:首先,可藉由旋轉塗佈的方式於罩幕層410上形成光阻層PR(如圖3所繪示);接著,對光阻層PR進行曝光/顯影以將光罩(photo-mask)上的特定圖案轉移至光阻層PR上,進而於罩幕層410上形成具有特定圖案的圖案化光阻層PR’(如圖4所繪示);之後,以圖案化光阻層PR’為罩幕,例如藉由蝕刻製程來移除未被圖案化光阻層PR’所覆蓋的部分罩幕層410以及部分第一基材400(如圖5所繪示)。在一些實施例中,罩幕層410被部分地移除之後會形成開口412,而第一基材410被部分地移除之後會於開口412下方形成凹穴402,且凹穴402的深度例如介於10奈米至200奈米之間。此處,凹穴402的底表面即可被視為第一基材400的成長區域GR。在完成凹穴402以及開口412的製作之後,將圖案化光阻層PR’移除。In some embodiments, the patterning process of the first substrate 400 and the mask layer 410 may include the following steps: First, the photoresist layer PR may be formed on the mask layer 410 by spin coating (FIG. 3). Then, the photoresist layer PR is exposed/developed to transfer a specific pattern on the photo-mask to the photoresist layer PR, thereby forming a pattern with a specific pattern on the mask layer 410. The photoresist layer PR' (as shown in FIG. 4); afterwards, the patterned photoresist layer PR' is used as a mask, for example, by etching process to remove the portion not covered by the patterned photoresist layer PR' The mask layer 410 and a portion of the first substrate 400 (as shown in FIG. 5). In some embodiments, the opening 412 is formed after the mask layer 410 is partially removed, and the recess 402 is formed below the opening 412 after the first substrate 410 is partially removed, and the depth of the recess 402 is, for example, Between 10 nm and 200 nm. Here, the bottom surface of the pocket 402 can be regarded as the growth region GR of the first substrate 400. After the fabrication of the recess 402 and the opening 412 is completed, the patterned photoresist layer PR' is removed.

如圖1的步驟S120、圖2的步驟S230以及圖6所示,接著,將具有成長區域GR(即,凹穴402)的第一基材410置於腔體中進行第一磊晶製程(例如化學氣相沉積製程),以於成長區域GR(即,凹穴402的底表面)上選擇性地成長第一磊晶薄膜420。如圖6所示,第一磊晶薄膜420的成長厚度例如高於凹穴402的深度,換言之,第一磊晶薄膜420的體積例如大於凹穴402以及開口412的容積總合。在一些實施例中,成長在凹穴402中的第一磊晶薄膜420會填入凹穴402以及開口412,且第一磊晶薄膜420會突出於罩幕層410的上表面。As shown in step S120 of FIG. 1, step S230 of FIG. 2, and FIG. 6, next, the first substrate 410 having the growth region GR (ie, the recess 402) is placed in the cavity for the first epitaxial process ( For example, a chemical vapor deposition process) selectively grows the first epitaxial film 420 on the growth region GR (ie, the bottom surface of the cavity 402). As shown in FIG. 6, the thickness of the first epitaxial film 420 is, for example, higher than the depth of the cavity 402. In other words, the volume of the first epitaxial film 420 is greater than the volume of the cavity 402 and the opening 412, for example. In some embodiments, the first epitaxial film 420 grown in the cavity 402 fills the cavity 402 and the opening 412, and the first epitaxial film 420 protrudes from the upper surface of the mask layer 410.

在一些實施例中,第一磊晶薄膜420例如為硼摻雜的矽鍺磊晶層,且硼摻雜的矽鍺磊晶層中的硼摻質與鍺含量呈梯度分佈,其中硼摻雜的矽鍺磊晶層中的硼摻質濃度例如介於1E20至2.8E21之間,且硼摻雜的矽鍺磊晶層中鍺含量例如介於20%至58%之間。舉例而言,可藉由將反應氣體(例如矽甲烷(SiH 4)、甲鍺烷(GeH 4)與乙硼烷(B 2H 6))以及承載氣體(例如氫氣)通入腔體中進行前述的第一磊晶製程,以在成長區域GR上形成硼摻雜的矽鍺磊晶層。在其他實施例中,第一磊晶薄膜420例如為磷摻雜的矽鍺磊晶層,且磷摻雜的矽鍺磊晶層中的磷摻質與鍺含量呈梯度分佈,其中磷摻雜的矽鍺磊晶層中的磷摻質濃度例如介於0.5%至10%之間,且磷摻雜的矽鍺磊晶層中鍺含量例如介於20%至58%之間。舉例而言,可藉由將反應氣體(例如矽甲烷(SiH 4)、甲鍺烷(GeH 4)與磷化氫(PH 3))以及承載氣體(例如氫氣)通入腔體中進行前述的第一磊晶製程,以在成長區域GR上形成磷摻雜的矽鍺磊晶層。然而,本實施例不限定第一磊晶薄膜420中的摻質必須為硼或磷,本領域具有通常知識者可依據實際元件的設計需求而更動第一磊晶薄膜420中的摻質。 In some embodiments, the first epitaxial film 420 is, for example, a boron-doped germanium epitaxial layer, and the boron dopant and the germanium content in the boron-doped germanium epitaxial layer are in a gradient distribution, wherein the boron doping The boron dopant concentration in the germanium epitaxial layer is, for example, between 1E20 and 2.8E21, and the germanium content in the boron-doped germanium epitaxial layer is, for example, between 20% and 58%. For example, the reaction gas (for example, methane (SiH 4 ), dimethyl hydride (GeH 4 ) and diborane (B 2 H 6 )) and a carrier gas (for example, hydrogen) can be introduced into the cavity. The first epitaxial process described above forms a boron-doped germanium epitaxial layer on the growth region GR. In other embodiments, the first epitaxial film 420 is, for example, a phosphorus-doped germanium epitaxial layer, and the phosphorus dopant and the germanium content in the phosphorus-doped germanium epitaxial layer are in a gradient distribution, wherein the phosphorus doping The phosphorus dopant concentration in the germanium epitaxial layer is, for example, between 0.5% and 10%, and the germanium content in the phosphorus-doped germanium epitaxial layer is, for example, between 20% and 58%. For example, the foregoing can be carried out by introducing a reaction gas such as methane (SiH 4 ), dimethyl hydride (GeH 4 ) and phosphine (PH 3 ), and a carrier gas (for example, hydrogen) into the cavity. The first epitaxial process is to form a phosphorus-doped germanium epitaxial layer on the growth region GR. However, the present embodiment does not limit that the dopant in the first epitaxial film 420 must be boron or phosphorus. Those skilled in the art can change the dopant in the first epitaxial film 420 according to the design requirements of the actual device.

以上述的硼摻雜的矽鍺磊晶層以及磷摻雜的矽鍺磊晶層為例,由於硼、磷的摻雜濃度以及鍺的含量皆為重摻雜(heavy doping)的等級,因此硼摻雜的矽鍺磊晶層或磷摻雜的矽鍺磊晶層的片電阻值僅會與磊晶層的厚度有關連,而不會與摻質(硼、磷)的摻雜濃度以及鍺含量有關連。換言之,當硼、磷的摻雜濃度以及鍺的含量皆為重摻雜的等級時,硼摻雜的矽鍺磊晶層或磷摻雜的片電阻值不再隨著摻質(硼、磷)的摻雜濃度以及鍺含量的改變而變化,硼摻雜的矽鍺磊晶層或磷摻雜的片電阻值會隨著厚度改變而變化。Taking the boron-doped germanium epitaxial layer and the phosphorus-doped germanium epitaxial layer as an example, since boron and phosphorus doping concentrations and germanium content are all heavy doping grades, boron is used. The sheet resistance of the doped germanium epitaxial layer or the phosphorus-doped germanium epitaxial layer is only related to the thickness of the epitaxial layer, and is not related to the doping concentration of the dopant (boron, phosphorus) and germanium. The content is related. In other words, when the doping concentration of boron and phosphorus and the content of germanium are all heavily doped, the boron-doped germanium epitaxial layer or the phosphorus-doped sheet resistance value no longer follows the dopant (boron, phosphorus). The doping concentration and the change in the germanium content vary, and the boron-doped germanium epitaxial layer or the phosphorus-doped sheet resistance value changes as the thickness changes.

如圖1的步驟S130以及圖2的步驟S240所示,在完成第一磊晶薄膜420的成長之後,接著,量測位在第一基材400上的第一磊晶薄膜420的片電阻值以及厚度,並且將片電阻值與厚度的一組對應關係記錄下來。在一些實施例中,第一磊晶薄膜420的片電阻值例如是藉由四點探針法進行量測,而第一磊晶薄膜420的厚度例如是藉由電子顯微技術所量測。As shown in step S130 of FIG. 1 and step S240 of FIG. 2, after the growth of the first epitaxial film 420 is completed, the sheet resistance of the first epitaxial film 420 positioned on the first substrate 400 is then measured. And the thickness, and a set of correspondence between the sheet resistance value and the thickness is recorded. In some embodiments, the sheet resistance of the first epitaxial film 420 is measured, for example, by a four-point probe method, and the thickness of the first epitaxial film 420 is measured, for example, by electron microscopy.

在一些實施例中,形成在第一基材400上的第一磊晶薄膜420(例如,硼摻雜的矽鍺磊晶層或磷摻雜的矽鍺磊晶層)的片電阻值可介於100歐姆/平方至800歐姆/平方之間,而第一磊晶薄膜420(例如,硼摻雜的矽鍺磊晶層或磷摻雜的矽鍺磊晶層)的厚度可介於30奈米至70奈米之間。In some embodiments, the sheet resistance value of the first epitaxial film 420 (eg, a boron-doped germanium epitaxial layer or a phosphorus-doped germanium epitaxial layer) formed on the first substrate 400 may be Between 100 ohms/square and 800 ohms/square, and the thickness of the first epitaxial film 420 (for example, a boron-doped germanium epitaxial layer or a phosphorus-doped germanium epitaxial layer) may be between 30 nanometers. Rice to 70 nm.

如圖1的步驟S140以及圖2的步驟S250所示,在獲得片電阻值與厚度的一組對應關係之後,重覆上述步驟(步驟S110~步驟S130或步驟S210~步驟S240)一次或多次,以進一步獲得更多組的片電阻值與厚度的對應關係。片電阻值與厚度的多組對應關係可用以建立第一磊晶薄膜420的片電阻值與厚度的關連,而此片電阻值與厚度的關連可用查表(lookup table,LUT)、方程式等方式呈現。由於第一磊晶薄膜420的片電阻值與厚度的關連可隨著磊晶製程的條件改變而變化,故本實施例不以特定查表或方程式表示第一磊晶薄膜420的片電阻值與厚度的關連。第一磊晶薄膜420的片電阻值與厚度的關連可大致描述如下:當所量測到的第一磊晶薄膜420的片電阻值越高,則第一磊晶薄膜420的厚度越小;反之,當所量測到的第一磊晶薄膜420的片電阻值越低,則第一磊晶薄膜420的厚度越大。As shown in step S140 of FIG. 1 and step S250 of FIG. 2, after obtaining a set of correspondence between the sheet resistance value and the thickness, repeating the above steps (step S110 to step S130 or step S210 to step S240) one or more times. To further obtain the correspondence between the sheet resistance value and the thickness of more groups. The plurality of sets of resistance values of the sheet resistance and the thickness may be used to establish a relationship between the sheet resistance value and the thickness of the first epitaxial film 420, and the relationship between the sheet resistance value and the thickness may be a lookup table (LUT), an equation, or the like. Presented. Since the relationship between the sheet resistance value and the thickness of the first epitaxial film 420 may vary depending on the conditions of the epitaxial process, the present embodiment does not represent the sheet resistance of the first epitaxial film 420 by a specific look-up table or equation. The thickness is related. The relationship between the sheet resistance value and the thickness of the first epitaxial film 420 can be roughly described as follows: when the measured sheet resistance value of the first epitaxial film 420 is higher, the thickness of the first epitaxial film 420 is smaller; On the contrary, when the measured sheet resistance value of the first epitaxial film 420 is lower, the thickness of the first epitaxial film 420 is larger.

在重覆上述步驟S110~步驟S130或上述步驟S210~步驟S240的期間,可適度地改變通入腔體內的承載氣體流量、各反應氣體的流量及/或溫度等條件,以於第一基板400的成長區域GR上成長出具有不同厚度與片電阻值的第一磊晶薄膜420,並且將不同片電阻值與厚度的多組對應關係記錄下來。During the repetition of the above steps S110 to S130 or the above steps S210 to S240, conditions such as the flow rate of the carrier gas flowing into the chamber, the flow rate of each reaction gas, and/or the temperature may be appropriately changed to the first substrate 400. The first epitaxial film 420 having different thicknesses and sheet resistance values is grown on the growth region GR, and a plurality of sets of correspondences between different sheet resistance values and thicknesses are recorded.

在重覆上述步驟S110~步驟S130或上述步驟S210~步驟S240的期間,除了可以獲得片電阻值與厚度的多組對應關係之外,還可以進一步記錄各種條件(通入腔體內的承載氣體流量、各反應氣體的流量、溫度等)對於第一磊晶薄膜420的厚度的影響。以硼摻雜的矽鍺磊晶層的磊晶製程為例,增加甲鍺烷(GeH 4)的氣體流量將使硼摻雜的矽鍺磊晶層的厚度增加,而減少甲鍺烷(GeH 4)的氣體流量將使硼摻雜的矽鍺磊晶層的厚度減少;增加乙硼烷(B 2H 6)的氣體流量將使硼摻雜的矽鍺磊晶層的厚度增加,而減少乙硼烷(B 2H 6)的氣體流量將使硼摻雜的矽鍺磊晶層的厚度減少;增加氫氣的氣體流量將使硼摻雜的矽鍺磊晶層的厚度減少,而減少氫氣的氣體流量將使硼摻雜的矽鍺磊晶層的厚度增加;提高製程溫度將使硼摻雜的矽鍺磊晶層的厚度減少,而降低製程溫度將使硼摻雜的矽鍺磊晶層的厚度增加。 During the repetition of the above steps S110 to S130 or the above-described steps S210 to S240, in addition to the plurality of sets of correspondences between the sheet resistance value and the thickness, various conditions (the carrier gas flow rate into the chamber) can be further recorded. The influence of the flow rate, temperature, and the like of each reaction gas on the thickness of the first epitaxial film 420. Taking the epitaxial process of a boron-doped germanium epitaxial layer as an example, increasing the gas flow rate of the germane gas (GeH 4 ) will increase the thickness of the boron-doped germanium epitaxial layer and reduce the methotane (GeH). The gas flow rate of 4 ) will reduce the thickness of the boron-doped germanium epitaxial layer; increasing the gas flow rate of diborane (B 2 H 6 ) will increase the thickness of the boron-doped germanium epitaxial layer and decrease The gas flow rate of diborane (B 2 H 6 ) will reduce the thickness of the boron-doped germanium epitaxial layer; increasing the gas flow rate of hydrogen will reduce the thickness of the boron-doped germanium epitaxial layer and reduce hydrogen. The gas flow rate will increase the thickness of the boron-doped germanium epitaxial layer; increasing the process temperature will reduce the thickness of the boron-doped germanium epitaxial layer, while lowering the process temperature will cause boron-doped germanium epitaxial The thickness of the layer is increased.

如圖1的步驟S150、圖2的步驟S260、圖7以及圖8所示,將第二基材500置於腔體中進行第二磊晶製程,以於第二基材500上選擇性地成長出第二磊晶薄膜530。在一些實施例中,如圖7與圖8所示,第二基材500例如是用於量產的晶圓(mass production wafer),此第二基材500上已形成有絕緣體510(例如淺溝渠隔離結構)以及鰭式場效電晶體520,其中鰭式場效電晶體可為n型及/或p型鰭式場效電晶體,而鰭式場效電晶體包括位於絕緣體510之間且突出於絕緣體510的上表面的半導體鰭522以及閘極堆疊結構524,且半導體鰭522與絕緣體510被閘極堆疊結構524部分覆蓋。如圖7所示,在一些實施例中,半導體鰭522未被閘極堆疊結構524所覆蓋的部分可被移除,以於絕緣體510之間形成鰭凹穴(fin recesses)R,而第二磊晶薄膜530可選擇性地成長於鰭式場效電晶體520的半導體鰭522上,且第二磊晶薄膜530填入鰭凹穴R中並且突出於絕緣體510的表面。在其他實施例中,半導體鰭522未被閘極堆疊結構524所覆蓋的部分可被保留(即,不形成鰭凹穴R),而第二磊晶薄膜530可選擇性地成長於鰭式場效電晶體520的半導體鰭522上。As shown in step S150 of FIG. 1 and step S260, FIG. 7 and FIG. 8 of FIG. 2, the second substrate 500 is placed in the cavity for performing a second epitaxial process to selectively serve on the second substrate 500. A second epitaxial film 530 is grown. In some embodiments, as shown in FIG. 7 and FIG. 8, the second substrate 500 is, for example, a mass production wafer on which an insulator 510 has been formed (for example, shallow). a trench isolation structure) and a fin field effect transistor 520, wherein the fin field effect transistor may be an n-type and/or a p-type fin field effect transistor, and the fin field effect transistor includes a spacer 510 located between the insulator 510 and protruding from the insulator 510 The upper surface of the semiconductor fin 522 and the gate stack structure 524, and the semiconductor fin 522 and insulator 510 are partially covered by the gate stack structure 524. As shown in FIG. 7, in some embodiments, portions of semiconductor fin 522 that are not covered by gate stack structure 524 can be removed to form fin recesses R between insulators 510, while second The epitaxial film 530 is selectively grown on the semiconductor fin 522 of the FinFET 520, and the second epitaxial film 530 is filled in the fin pocket R and protrudes from the surface of the insulator 510. In other embodiments, portions of semiconductor fin 522 that are not covered by gate stack structure 524 may be retained (ie, fin recesses R are not formed), while second epitaxial film 530 may selectively grow to fin field effect The semiconductor fin 522 of the transistor 520 is on.

如圖1的步驟S160以及圖2的步驟S270所示,量測第二磊晶薄膜的片電阻值,並且根據第二磊晶薄膜的片電阻值以及第一磊晶薄膜的片電阻值與厚度的關連計算出第二磊晶薄膜的厚度。在一些實施例中,量測第二磊晶薄膜530的片電阻值例如是藉由四點探針法進行量測。由於圖5所繪示的凹穴402提供了與圖7所繪示的鰭凹穴R相當的負載效應(loading effect)、磊晶地形(topography),並且是在同一腔體內進行磊晶製程,因此,在第二基材500上所成長出的第二磊晶薄膜530的厚度可根據第一磊晶薄膜420的片電阻值與厚度的關連來計算,無須使用到電子顯微技術。As shown in step S160 of FIG. 1 and step S270 of FIG. 2, the sheet resistance value of the second epitaxial film is measured, and the sheet resistance value of the second epitaxial film and the sheet resistance value and thickness of the first epitaxial film are measured. The correlation is calculated by the thickness of the second epitaxial film. In some embodiments, measuring the sheet resistance value of the second epitaxial film 530 is measured, for example, by a four-point probe method. The recess 402 shown in FIG. 5 provides a loading effect, a topography, and an epitaxial process in the same cavity as the fin cavity R illustrated in FIG. Therefore, the thickness of the second epitaxial film 530 grown on the second substrate 500 can be calculated according to the relationship between the sheet resistance value of the first epitaxial film 420 and the thickness, without using electron microscopy.

在一些實施例中,第二磊晶薄膜530例如為硼摻雜的矽鍺磊晶層,且硼摻雜的矽鍺磊晶層中的硼摻質與鍺含量呈梯度分佈,其中硼摻雜的矽鍺磊晶層中的硼摻質濃度例如介於1E20至2.8E21之間,且硼摻雜的矽鍺磊晶層中鍺含量例如介於20%至58%之間。舉例而言,可藉由將反應氣體(例如矽甲烷(SiH 4)、甲鍺烷(GeH 4)與乙硼烷(B 2H 6))以及承載氣體(例如氫氣)通入腔體中進行前述的第一磊晶製程,以在半導體鰭522上形成硼摻雜的矽鍺磊晶層。在其他實施例中,第二磊晶薄膜530例如為磷摻雜的矽鍺磊晶層,且磷摻雜的矽鍺磊晶層中的磷摻質與鍺含量呈梯度分佈,其中磷摻雜的矽鍺磊晶層中的磷摻質濃度例如介於0.5%至10%之間,且磷摻雜的矽鍺磊晶層中鍺含量例如介於20%至58%之間。舉例而言,可藉由將反應氣體(例如矽甲烷(SiH 4)、甲鍺烷(GeH 4)與磷化氫(PH 3))以及承載氣體(例如氫氣)通入腔體中進行前述的第一磊晶製程,以在半導體鰭522上形成磷摻雜的矽鍺磊晶層。然而,本實施例不限定第二磊晶薄膜530中的摻質必須為硼或磷,本領域具有通常知識者可依據實際元件的設計需求而更動第二磊晶薄膜530中的摻質。 In some embodiments, the second epitaxial film 530 is, for example, a boron-doped germanium epitaxial layer, and the boron dopant and the germanium content in the boron-doped germanium epitaxial layer are in a gradient distribution, wherein the boron is doped The boron dopant concentration in the germanium epitaxial layer is, for example, between 1E20 and 2.8E21, and the germanium content in the boron-doped germanium epitaxial layer is, for example, between 20% and 58%. For example, the reaction gas (for example, methane (SiH 4 ), dimethyl hydride (GeH 4 ) and diborane (B 2 H 6 )) and a carrier gas (for example, hydrogen) can be introduced into the cavity. The first epitaxial process described above forms a boron doped germanium epitaxial layer on the semiconductor fin 522. In other embodiments, the second epitaxial film 530 is, for example, a phosphorus-doped germanium epitaxial layer, and the phosphorus dopant and the germanium content in the phosphorus-doped germanium epitaxial layer are in a gradient distribution, wherein the phosphorus doping The phosphorus dopant concentration in the germanium epitaxial layer is, for example, between 0.5% and 10%, and the germanium content in the phosphorus-doped germanium epitaxial layer is, for example, between 20% and 58%. For example, the foregoing can be carried out by introducing a reaction gas such as methane (SiH 4 ), dimethyl hydride (GeH 4 ) and phosphine (PH 3 ), and a carrier gas (for example, hydrogen) into the cavity. A first epitaxial process is performed to form a phosphor-doped germanium epitaxial layer on the semiconductor fin 522. However, the present embodiment does not limit that the dopant in the second epitaxial film 530 must be boron or phosphorus. Those skilled in the art can change the dopant in the second epitaxial film 530 according to the design requirements of the actual device.

上述的磊晶薄膜厚度量測方法可被應用在腔體匹配(chamber matching)以及製程監控上,藉由快速且精準地確認出磊晶薄膜(即,第二磊晶薄膜530)的厚度,可以有效率地達成腔體匹配以及製程監控的目的。The above-described epitaxial film thickness measurement method can be applied to chamber matching and process monitoring, and the thickness of the epitaxial film (ie, the second epitaxial film 530) can be quickly and accurately confirmed. Efficiently achieve cavity matching and process monitoring purposes.

前文概述若干實施例的特徵,使得所屬領域中具通常知識者可較好地理解本發明的態樣。所屬領域中具通常知識者應瞭解,其可易於使用本發明作為設計或修改用於進行本文中所引入的實施例的相同目的以及/或達成相同優勢的其他製程以及結構的基礎。所屬領域中具通常知識者亦應認識到,此類等效構造並不脫離本發明的精神以及範疇,且其可在不脫離本發明的精神以及範疇的情況下在本文中進行各種改變、替代以及更改。The foregoing has outlined the features of several embodiments, such that those of ordinary skill in the art can understand the invention. It will be appreciated by those of ordinary skill in the art that the present invention can be readily utilized as a basis for designing or modifying other processes and structures for the same purposes and/or advantages of the embodiments disclosed herein. It should be understood by those of ordinary skill in the art that the present invention is not limited to the spirit and scope of the invention, and various changes and substitutions may be made herein without departing from the spirit and scope of the invention. And changes.

S110~S160、S210~S270‧‧‧步驟
400‧‧‧第一基材
402‧‧‧凹穴
410‧‧‧罩幕層
412‧‧‧開口
420‧‧‧第一磊晶薄膜
500‧‧‧第二基材
510‧‧‧絕緣體
520‧‧‧鰭式場效電晶體
522‧‧‧半導體鰭
524‧‧‧閘極堆疊結構
530‧‧‧第二磊晶薄膜
GR‧‧‧成長區域
PR‧‧‧光阻層
PR’‧‧‧圖案化光阻層
R‧‧‧鰭凹穴
S110~S160, S210~S270‧‧‧ steps
400‧‧‧First substrate
402‧‧‧ recess
410‧‧‧ Cover layer
412‧‧‧ openings
420‧‧‧First epitaxial film
500‧‧‧Second substrate
510‧‧‧Insulator
520‧‧‧Fin field effect transistor
522‧‧‧Semiconductor fins
524‧‧ ‧ gate stack structure
530‧‧‧Second epitaxial film
GR‧‧‧ Growing Area
PR‧‧‧ photoresist layer
PR'‧‧‧ patterned photoresist layer
R‧‧‧Fin pocket

圖1是根據本發明一實施例的磊晶薄膜厚度量測方法的流程圖。 圖2是根據本發明另一實施例的磊晶薄膜厚度量測方法的流程圖。 圖3至圖8是根據本發明一實施例的磊晶薄膜厚度量測方法的流程示意圖。1 is a flow chart of a method for measuring the thickness of an epitaxial film according to an embodiment of the invention. 2 is a flow chart of a method for measuring the thickness of an epitaxial film according to another embodiment of the present invention. 3 to FIG. 8 are schematic flow charts of a method for measuring the thickness of an epitaxial film according to an embodiment of the invention.

Claims (10)

一種磊晶薄膜厚度量測方法,包括: 提供第一基材,所述第一基材具有成長區域; 將所述第一基材置於腔體中進行第一磊晶製程,以於所述成長區域上選擇性地成長第一磊晶薄膜; 量測所述第一磊晶薄膜的片電阻值以及厚度; 重覆上述步驟至少一次,以建立所述第一磊晶薄膜的片電阻值與厚度的關連; 將第二基材置於所述腔體中進行第二磊晶製程,以於所述第二基材上選擇性地成長出第二磊晶薄膜;以及 量測所述第二磊晶薄膜的片電阻值,並且根據所述第二磊晶薄膜的片電阻值以及所述第一磊晶薄膜的片電阻值與厚度的關連計算出第二磊晶薄膜的厚度。A method for measuring an epitaxial film thickness, comprising: providing a first substrate, the first substrate having a growth region; placing the first substrate in a cavity for performing a first epitaxial process, Selectively growing a first epitaxial film on the growth region; measuring a sheet resistance value and a thickness of the first epitaxial film; repeating the above steps at least once to establish a sheet resistance value of the first epitaxial film Correlating a thickness; placing a second substrate in the cavity for performing a second epitaxial process to selectively grow a second epitaxial film on the second substrate; and measuring the second a sheet resistance value of the epitaxial film, and calculating a thickness of the second epitaxial film according to a sheet resistance value of the second epitaxial film and a sheet resistance value of the first epitaxial film and a thickness. 一種磊晶薄膜厚度量測方法,包括: 於第一基材上形成罩幕層; 圖案化所述罩幕層以及所述第一基材,以於所述罩幕層中形成開口並於所述第一基材中形成凹穴; 將所述第一基材置於腔體中進行第一磊晶製程,以於所述凹穴上選擇性地成長第一磊晶薄膜; 量測所述第一磊晶薄膜的片電阻值,並且藉由電子顯微技術量測所述第一磊晶薄膜的厚度; 重覆前述步驟至少一次,以建立所述第一磊晶薄膜的片電阻值與厚度的關連; 將第二基材置於所述腔體中進行第二磊晶製程,以於所述第二基材上形成第二磊晶薄膜;以及 量測所述第二磊晶薄膜的片電阻值,並且根據所述第二磊晶薄膜的片電阻值以及所述第一磊晶薄膜的片電阻值與厚度的關連計算出第二磊晶薄膜的厚度。A method for measuring an epitaxial film thickness, comprising: forming a mask layer on a first substrate; patterning the mask layer and the first substrate to form an opening in the mask layer Forming a cavity in the first substrate; placing the first substrate in the cavity for performing a first epitaxial process to selectively grow the first epitaxial film on the cavity; measuring the a sheet resistance value of the first epitaxial film, and measuring the thickness of the first epitaxial film by electron microscopy; repeating the foregoing steps at least once to establish a sheet resistance value of the first epitaxial film Correlating a thickness; placing a second substrate in the cavity for performing a second epitaxial process to form a second epitaxial film on the second substrate; and measuring the second epitaxial film a sheet resistance value, and calculating a thickness of the second epitaxial film according to a sheet resistance value of the second epitaxial film and a sheet resistance value of the first epitaxial film and a thickness. 如申請專利範圍第1項或第2項所述的磊晶薄膜厚度量測方法,其中所述第一磊晶薄膜與所述第二磊晶薄膜的片電阻值是藉由四點探針法進行量測。The method for measuring the thickness of an epitaxial film according to the first or second aspect of the invention, wherein the sheet resistance of the first epitaxial film and the second epitaxial film is by a four-point probe method Make measurements. 如申請專利範圍第1項或第2項所述的磊晶薄膜厚度量測方法,其中所述第一磊晶製程期間通入所述腔體中的反應氣體以及承載氣體與所述第二磊晶製程期間通入所述腔體中的反應氣體以及承載氣體相同。The method for measuring the thickness of an epitaxial film according to the first or second aspect of the invention, wherein the reaction gas introduced into the cavity during the first epitaxial process and the carrier gas and the second bar are The reactive gas introduced into the chamber during the crystallizing process and the carrier gas are the same. 如申請專利範圍第4項所述的磊晶薄膜厚度量測方法,其中所述反應氣體包括矽甲烷、甲鍺烷與乙硼烷,所述承載氣體包括氫氣,而所形成的所述第一磊晶薄膜與所述第二磊晶薄膜包括硼摻雜的矽鍺磊晶層,且所述硼摻雜的矽鍺磊晶層中的硼摻質與鍺含量呈梯度分佈。The method for measuring an epitaxial film thickness according to claim 4, wherein the reaction gas comprises methane, methane and diborane, and the carrier gas comprises hydrogen, and the first is formed. The epitaxial film and the second epitaxial film comprise a boron-doped germanium epitaxial layer, and the boron dopant and the germanium content in the boron-doped germanium epitaxial layer are distributed in a gradient. 如申請專利範圍第5項所述的磊晶薄膜厚度量測方法,其中所述硼摻雜的矽鍺磊晶層中的硼摻質濃度介於1E20至2.8E21之間,而所述硼摻雜的矽鍺磊晶層中鍺含量介於20%至58%之間,且所述硼摻雜的矽鍺磊晶層的片電阻值介於100歐姆/平方至800歐姆/平方之間。The method for measuring an epitaxial film thickness according to claim 5, wherein a concentration of boron dopant in the boron-doped germanium epitaxial layer is between 1E20 and 2.8E21, and the boron is doped. The content of germanium in the germanium epitaxial layer is between 20% and 58%, and the sheet resistance of the boron-doped germanium epitaxial layer is between 100 ohms/square and 800 ohms/square. 如申請專利範圍第4項所述的磊晶薄膜厚度量測方法,其中所述反應氣體包括矽甲烷、甲鍺烷與磷化氫(PH 3),而所述承載氣體包括氫氣,而所形成的所述第一磊晶薄膜與所述第二磊晶薄膜包括磷摻雜的矽鍺磊晶層,且所述磷摻雜的矽鍺磊晶層中的磷摻質與鍺含量呈梯度分佈。 The method for measuring an epitaxial film thickness according to claim 4, wherein the reaction gas comprises methane, methane and phosphine (PH 3 ), and the carrier gas comprises hydrogen and is formed. The first epitaxial film and the second epitaxial film comprise a phosphorus-doped germanium epitaxial layer, and the phosphorus dopant and germanium content in the phosphorus-doped germanium epitaxial layer are gradiently distributed. . 如申請專利範圍第7項所述的磊晶薄膜厚度量測方法,其中所述磷摻雜的矽鍺磊晶層中的磷摻質濃度介於0.5%至10%之間,而所述磷摻雜的矽鍺磊晶層中鍺含量介於20%至58%之間,且所述磷摻雜的矽鍺磊晶層的片電阻值介於100歐姆/平方至800歐姆/平方之間。The method for measuring an epitaxial film thickness according to claim 7, wherein the phosphorus doping concentration in the phosphorus-doped germanium epitaxial layer is between 0.5% and 10%, and the phosphorus The germanium content of the doped germanium epitaxial layer is between 20% and 58%, and the sheet resistance of the phosphorus-doped germanium epitaxial layer is between 100 ohms/square and 800 ohms/square. . 如申請專利範圍第1項或第2項所述的磊晶薄膜厚度量測方法,其中所述第一基材包括取樣晶圓。The method for measuring an epitaxial film thickness according to claim 1 or 2, wherein the first substrate comprises a sampling wafer. 如申請專利範圍第1項或第2項所述的磊晶薄膜厚度量測方法,其中所述第二基材包括晶圓,所述晶圓上已形成有鰭式場效電晶體,且所述第二磊晶薄膜形成於鰭式場效電晶體的半導體鰭上。The method for measuring an epitaxial film thickness according to claim 1 or 2, wherein the second substrate comprises a wafer on which a fin field effect transistor has been formed, and A second epitaxial film is formed on the semiconductor fin of the fin field effect transistor.
TW106102362A 2017-01-23 2017-01-23 Method of measuring thickness of epitaxial layer TWI626426B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106102362A TWI626426B (en) 2017-01-23 2017-01-23 Method of measuring thickness of epitaxial layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106102362A TWI626426B (en) 2017-01-23 2017-01-23 Method of measuring thickness of epitaxial layer

Publications (2)

Publication Number Publication Date
TWI626426B true TWI626426B (en) 2018-06-11
TW201827783A TW201827783A (en) 2018-08-01

Family

ID=63256091

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106102362A TWI626426B (en) 2017-01-23 2017-01-23 Method of measuring thickness of epitaxial layer

Country Status (1)

Country Link
TW (1) TWI626426B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200839911A (en) * 2007-03-21 2008-10-01 Promos Technologies Inc Method for measuring thickness of film on sidewall of trench in semiconductor device
TWM453837U (en) * 2012-12-05 2013-05-21 Univ Southern Taiwan Sci & Tec Online detection device of film thickness
US20150042367A1 (en) * 2013-08-06 2015-02-12 Samsung Electro-Mechanics Co., Ltd. Thickness measurement device and method for measuring thickness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200839911A (en) * 2007-03-21 2008-10-01 Promos Technologies Inc Method for measuring thickness of film on sidewall of trench in semiconductor device
TWM453837U (en) * 2012-12-05 2013-05-21 Univ Southern Taiwan Sci & Tec Online detection device of film thickness
US20150042367A1 (en) * 2013-08-06 2015-02-12 Samsung Electro-Mechanics Co., Ltd. Thickness measurement device and method for measuring thickness

Also Published As

Publication number Publication date
TW201827783A (en) 2018-08-01

Similar Documents

Publication Publication Date Title
US7772059B2 (en) Method for fabricating graphene transistors on a silicon or SOI substrate
TWI385714B (en) Selective deposition of silicon-containing films
TWI467639B (en) Selective formation of silicon carbon epitaxial layer
TWI400745B (en) Selective epitaxy process control
US20150004765A1 (en) Carbon-doped cap for a raised active semiconductor region
CN104576739B (en) Semiconductor structure and its manufacture method
TW201923841A (en) Method of forming semiconductor structure
CN109216195A (en) The forming method of semiconductor device
TW201944599A (en) Semiconductor structure
TW201916260A (en) Method for manufacturing semiconductor structure
TW200832529A (en) Formation of in-situ phosphorus doped epitaxial layer containing silicon and carbon
TWI626426B (en) Method of measuring thickness of epitaxial layer
JP2009164281A (en) Manufacturing method of semiconductor device
US11610825B2 (en) Method for calibrating temperature in chemical vapor deposition
CN104779280A (en) Nitride semiconductor epitaxial wafer and nitride semiconductor device
Hikavyy et al. Cutting-edge epitaxial processes for sub 3 nm technology nodes: application to nanosheet stacks and epitaxial wrap-around contacts
JP6786939B2 (en) Silicon Carbide Semiconductor Substrate and Method for Manufacturing Silicon Carbide Semiconductor Substrate
Bauer et al. Selective epitaxial growth (SEG) of highly doped Si: P on Source/Drain areas of NMOS devices using Si3H8/PH3/Cl2 chemistry
CN110364449B (en) Monitoring method for gate oxide nitrogen-doped annealing temperature
CN106409709B (en) The method for detecting the presence and position of the defects of substrate
CN108346591A (en) The thickness measurement method of epitaxial film
CN115732459A (en) Semiconductor element with contact points of different sizes and preparation method thereof
CN107180821A (en) Semiconductor element
CN113013236A (en) Monitoring method for forming process of nitrogen-doped gate oxide layer
US8158495B2 (en) Process for forming a silicon-based single-crystal portion