TW200839911A - Method for measuring thickness of film on sidewall of trench in semiconductor device - Google Patents

Method for measuring thickness of film on sidewall of trench in semiconductor device Download PDF

Info

Publication number
TW200839911A
TW200839911A TW96109705A TW96109705A TW200839911A TW 200839911 A TW200839911 A TW 200839911A TW 96109705 A TW96109705 A TW 96109705A TW 96109705 A TW96109705 A TW 96109705A TW 200839911 A TW200839911 A TW 200839911A
Authority
TW
Taiwan
Prior art keywords
film
thickness
width
obtaining
topography
Prior art date
Application number
TW96109705A
Other languages
Chinese (zh)
Inventor
Nan-Cyi Wu
Original Assignee
Promos Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promos Technologies Inc filed Critical Promos Technologies Inc
Priority to TW96109705A priority Critical patent/TW200839911A/en
Publication of TW200839911A publication Critical patent/TW200839911A/en

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A method for measuring the thickness of a thin film formed on the sidewall of a trench in a semiconductor device is provided. The method comprises the following steps: scanning the trench with the use of a first tip to obtain a first topography before the formation of the thin film on the sidewall of the trench; scanning the trench with the use of a second tip to obtain a second topography after the formation of the thin film on the sidewall; and comparing the first topography with the second topography to obtain the thickness of the thin film.

Description

200839911 九、發明說明: 【發明所屬之技術領域】 本發縣關於―種量測半導體元件中溝雜狀薄膜厚度之 等缺點 fii,ί定而言,本發蚊—種探針量測半導體元件中溝罕 膜厚度之方法’可避免習知量財权破壞性乂g 【先前技術】 於^導體元件製造過程中,有相當大的比例在於生產各種薄 ΐ ’ Γ,ί膜厚度是否適當及均勻,將影響半導體藉運作是否^ 吊。,’介!薄膜如太薄’將可能導致 (timnelmg)、甚至造成短路(sh〇rt);而若 不利於半導體元件的積集化或不符經濟 所^ 膜厚度於-最佳值,乃半導體元件製造控, 半導體元件製造工業巾,可用於量測薄膜厚产、★= 電子顯微鏡量測方法、電阻率盥片電阻旦二/ •邢描式 測方法、X射_光二方法、反射光譜儀量 詈測方沐Μ。mf... ¥技術1測方法以及橢圓偏光 測方法及橢圓偏光量測方法。 田八电丁頒儆馈;罝 樣橫==顯式r顯 微鏡觀察試 ,鏡對料騎 壞,方能取得所需試樣。因此 ^對+¥體7^件進订破 薄膜厚度,但其離之製備方tz直接觀察並量測到 時量測,較不具經濟效益。、、、 ”、、法於生產線上進行即 橢圓偏光量測方法,复吾 相較於掃描式電子顯微鏡量^橢圓儀(Ε1_峨r)。 性且快速的方法,因此卢橢圓偏測是—種非破壞 U此廣為树所使用。其主要的個原理是以 5 200839911 光學技術量測表面薄膜厚度,亦即讓一偏極光經過薄膜表面或界 面,由於偏極光會因薄膜表面或界面之型態而使其極化狀態 (polarization states)明顯改變(例如··反射光和入射光的振幅及 相位的改變),經由觀察前述改變且配合薄膜之材料特性(例如折 射係數、吸收常數等),可利用特徵關係式而間接推算出薄膜厚度。 橢圓儀之基本構造如第1圖所示,包含一光源1〇1 (例如氦氖 雷射)、一極化裔(polarizer) 103、一分析儀(analyzer) 105 以及 一檢測器(detector) 107。其中,光源1〇1與極化器1〇3係位於入 射光線A之行進路徑上,分析儀1〇5與檢測器1〇7則位於反射光 線B之行進路徑上。橢圓儀藉由光源1〇1向基板U1上薄膜113 射入一光線且透過極化器103以極化產生入射光線A,其後藉由 分析儀105與檢測器107以偵測所產生的反射光b,從而量測反 射光B和入射光A之改變,以得知薄膜113的厚度。 、 然而’由於擴圓儀係利用反射光進行量測,因此被量測之試 樣必須具有平坦之表面,否則檢測儀將無法接收反射光之訊號。 另外,受限於光束點尺寸大小,橢圓儀之量測區域亦受限制。前 述先〇限制,致使橢圓儀無法用於半導體元件之溝渠側壁薄膜厚 度之1測。再者,若使用新開發之材料形成薄膜,而薄臈之材料 特性尚屬未知之情形下,亦無法採用橢圓量測方法。 、簡言之,橢圓儀量測方法雖提供一非破壞性且快速之間接量 ,方法,但其前述缺點,在在均使·溝渠薄 上受到限制。 f又心里/只J 辟策^述制可知,於傳統方法巾,對於半導體元件上溝渠側 之量測’尚無—可直接、非破壞性且快速之方法。'有 ϋ*丨ί供—可用以量測半導體元件中溝渠侧壁之薄膜厚度之 方法,乃為此一業界所殷切期盼者。 【發明内容】 200839911 薄膜i=;目導體元件中溝渠側壁之 使貌貌於=口;, 之薄目供;;H半導體元件中溝渠側壁 針掃描該溝渠以ί得ΐ第3貌於=膜形成後,使用-第二探 之薄目供一種量測半導體元件中溝渠側壁 使用」第二··於该溝渠側壁未形成—薄膜前, 含描^冓渠以取得—第-形貌,該第-形貌係包 已=ί=得:匕形貌:ϊ第二形貌係包=二: 卜及比較該(等)第一寬度與該(等)對應角 =(等)溝渠側壁角度,以獲得該薄臈之厚,; 探針與該第二探針係相同或不同。 ,、中以弟 薄膜ίΐ: lit直接、非破壞性且快速之方法量測溝渠側壁 易懂,ΐί之上述目的、技術特徵、和優點能更明顯 勿隱下文係以較佳實施例配合所附圖式進行詳細說明。 【實施方式】 首先多考第2圖’半導體元件進行相關餘刻製程後於基板2⑴ 200839911 亡產生-溝渠203。利用-具有探針(φ) 2〇 力顯微鏡(Atomic F嶋Mic職〇pe,鑛 f;泪原子 貌。為便於·起見,本發明將以原子力顯微形 說明。通常,原子力顯微鏡之探針2 衣針悲樣進行 (Cantilever)之一端,利用探針205尖端之斤子斑臂襟207 化,骑行測量及 般而口原、子力顯从鏡之描緣方法有三:一 (contact mode),係使探針205盥美柘 兩接觸式 Γ 205尖端之原子與基板2〇1表面之原土子 $ ’利用探針 基板201表面之高低起伏而上下移動,Η :吏探針205跟隨 訊號來進行溝渠203形貌之描移動所產生之 ^,係不使節05與基板2〇1表·;=接 本身之共振頻率内進行振動,而控私 …’、 八 表面之原子間之吸力=一與基板201 刹用表面之原子間之距離改變而改變。從而 變、=樑2G7之振動頻率,並利用此一 rt斤虎來進订溝‘ 205形貌之描繪。三為輕敲式 旱糸ΐ探針與基板201表面進行短暫接觸,控制 ίf 定值’利用懸臂標207之振幅改變所 產生之吼號來進行溝渠205形貌之描繪。 203 ΐί^ 3A圖’其為利用上述方法之一所描緣,於溝渠 制田、+、七、Γ㈣私升法/專膜於溝渠203之側壁上,並再次 j豆述ίif:描繪具有薄膜之溝渠203雜,以形成第二形 不犯圖。參考第4圖,將第—形貌與第二形貌相 4+ S、佳二ί侍相2〇9之厚度。於此,可採用相同或不同探 針’以進行該第-形貌及第二形貌之描繪。 8 200839911 可經由各式近似運算,以自一 獲得薄臈209厚度。其中之”而 定-參考深度h (由溝渠有2:3膜二=;^先如中選 J中^溝;2。3中參考深度h處之第一寬度W1; 第;| 中,在相同參考深度七處量測笫 一瓜貌 ^ ^1^209 -角彡貌上各點之切線與水平面之間,通常存在 於^=口7:=,;薄膜_係形成 薄膜209係形成於已沉積有1 ^&角又通/卜約為9G度’·而若 實際上為溝渠纽上物層之溝渠上(即’溝渠2〇3 产通當統稱),因為階梯覆蓋的影響,該角 ^佳係ii過角产之4騎不即為偏離9G度之態樣。此時, 苹乂住係透過角度之k正’以更精確量_膜厚度。 參考第5圖進-步說明上述偏離90度 貝;!,渠203之側壁2031上的薄膜,黑ii ί=ί 之間具有-角度0 ‘ 以。此時,因薄膜209之厚度甚小於溝 Κί ΐί 異甚小,視兩者為相等(θ ^),並以θ 為戈表。由第5圖可知’於參考深度h處所狀((=2) 係側壁2031與表面2091之水平距離d,並非薄 t。因此,較佳係於量測第二寬度製時 並利用以下關係式以校正獲得薄膜2〇9之實際厚度t : ’、、、 xsin6 WI-W2 ====往上計算’-般為溝, 200839911 另一近似運算為透過常態分佈(normal distribution)之近似運 算。首先,於溝渠203中選定複數個參考深度hi、h2…,依據所 得之第一形貌,量測各參考深度之溝渠203寬度,以獲得複數個 第一寬度Wll、W12…。其後,依據所得之第二形貌,在與各第 一寬度相對應之位置上,量測各參考深度之溝渠203寬度,以獲 得複數個第二寬度W21、W22···。之後,透過常態分佈之近似運 算’分別自該等第一寬度(Wll、W12···)以及第二寬度(W2卜 W22···),得到第一近似寬度w’ 1及第二近似寬度w,2,再由第一 近似寬度W,1及第二近似寬度W,2計算得到薄膜209之實際厚度 t (= (W,1_W,2) /2)。 或者,可先分別由各該第一寬度Wll、W12…,與對應之第 亡寬度W2卜W22···,計算得到對應之厚度tl、口…,再透過常 態分佈之近似運算,由該等厚度得到薄膜2〇9之實際厚度t。 ,一於上述利用常態分佈之近似運算中,如前述,由於溝渠203 通常因已包含先前沉積之物料層,故溝渠2〇3與水平面之間存在 一偏離90度之夾角,因此,較佳係於第二寬度(界2卜W22···、200839911 IX. Description of the invention: [Technical field to which the invention belongs] The present invention is concerned with the shortcomings of the thickness of the groove-like film in the semiconductor component, and the aphid-type probe measures the groove of the semiconductor component. The method of the thickness of the film can avoid the destructive 乂g of the conventional financial system. [Prior Art] In the manufacturing process of the conductor element, there is a considerable proportion of the production of various thin ΐ Γ, 膜 film thickness is appropriate and uniform, Will affect the operation of the semiconductor borrowing. , 'Intermediate! If the film is too thin, it may cause (timnelmg) or even cause a short circuit (sh〇rt); if it is not conducive to the accumulation of semiconductor components or the economic thickness of the film is - the optimum value, it is the semiconductor device manufacturing control, Industrial manufacturing of semiconductor components, can be used to measure film thickness, ★ = electron microscopy measurement method, resistivity 盥 电阻 电阻 / • • • • • • • • • • • • • • • • • • • X X X X X X X X X X X X X X Hey. Mf... ¥Technology 1 measurement method and ellipsometry method and ellipsometry method. Tian Badian Ding 儆 儆 罝; 样 横 = = = explicit r display micro-mirror observation, the mirror is difficult to ride, in order to obtain the required sample. Therefore, the thickness of the film is cut for the +¥ body, but it is directly measured and measured by the preparation side tz, which is less economical. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆 椭圆- Non-destructive U is widely used in trees. The main principle is to measure the thickness of the surface film by 5 200839911 optical technology, that is, let a polarized light pass through the surface or interface of the film, because the polarized light will be due to the surface or interface of the film. The type of polarization causes a significant change in the polarization states (eg, changes in the amplitude and phase of the reflected and incident light), by observing the aforementioned changes and matching the material properties of the film (eg, refractive index, absorption constant, etc.) The thickness of the film can be indirectly estimated by using the characteristic relationship. The basic structure of the ellipsometer, as shown in Fig. 1, includes a light source 1〇1 (for example, a laser), a polarizer 103, and a An analyzer 105 and a detector 107. The light source 1〇1 and the polarizer 1〇3 are located on the traveling path of the incident light A, and the analyzer 1〇5 and the detector 1〇7 are On the path of the reflected light B. The ellipsometer injects a light into the film 113 on the substrate U1 by the light source 1〇1 and transmits the incident light A by polarization through the polarizer 103, and then passes the analyzer 105 and detects The detector 107 detects the generated reflected light b, thereby measuring the change of the reflected light B and the incident light A to know the thickness of the thin film 113. However, since the rounding instrument is measured by the reflected light, it is The measured sample must have a flat surface, otherwise the detector will not be able to receive the reflected light signal. In addition, due to the size of the beam spot, the measurement area of the ellipsometer is also limited. It cannot be used for the measurement of the thickness of the trench sidewall film of a semiconductor device. Furthermore, if a newly developed material is used to form a thin film, and the material properties of the thin tantalum are unknown, an elliptical measurement method cannot be used. Although the ellipsometry method provides a non-destructive and fast method of connection, the above-mentioned shortcomings are limited in the thinness of the ditch and the ditch. to Conventional method towel, for the measurement of the trench side of the semiconductor component, is not available - a direct, non-destructive and fast method. 'ϋ 丨 丨 供 供 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 可用 半导体The method is eagerly expected by the industry. [Summary of the invention] 200839911 Thin film i=; the appearance of the sidewall of the trench in the target conductor element is in the mouth; the thinner is provided;; the sidewall scanning of the trench in the H semiconductor component The trench is formed by the third appearance of the film, and the second film is used for measuring the side wall of the trench in the semiconductor device. Secondly, before the film is formed on the side wall of the trench, the trace is included. The canal is obtained from the first-morphology, the first-topography has been = ί = get: 匕 shape: ϊ second topography package = two: 卜 and compare the (etc.) first width with the ( Etc.) Corresponding angle = (etc.) the sidewall angle of the trench to obtain the thickness of the thin crucible; the probe is the same as or different from the second probe system. , 中中弟膜ΐΐ: lit direct, non-destructive and fast method to measure the side wall of the trench is easy to understand, 上述ί the above purpose, technical features, and advantages can be more obvious, do not hide the following with the preferred embodiment with the attached The schema is described in detail. [Embodiment] First, the second semiconductor device is subjected to the related process, and then the substrate 2 (1) 200839911 is generated and the trench 203 is formed. Utilize-with probe (φ) 2 force microscope (Atomic F嶋Mic job pe, mine f; tear atomic appearance. For convenience, the invention will be described by atomic force microscopy. Usually, the atomic force microscope The needle 2 is one of the Cantilever's ones, and the tip of the probe 205 is used to make the 207. The riding measurement and the general method of the original force and the force force are three: one (contact) Mode), the probe 205 is 盥 柘 柘 柘 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 Followed by the signal to make the movement of the trench 203 shape, the ^ does not make the section 05 and the substrate 2〇1 table; = the vibration within the resonant frequency itself, and control the private ... ', between the eight surfaces of the atom Suction = a change with the distance between the atoms of the substrate 201 brake surface. Thus change, = the vibration frequency of the beam 2G7, and use this rt to learn the groove '205 shape description. Three for tapping The drought and moisture probe is in short contact with the surface of the substrate 201, and the control ίf setting The shape of the ditch 205 is depicted by the nickname generated by the amplitude change of the cantilever target 207. 203 ΐί^ 3AFig. 'It is the use of one of the above methods to draw the field, +, seven, Γ (4) private rise The method/film is on the side wall of the trench 203, and again, the 395 is depicted as a trench having a film to form a second shape. Referring to FIG. 4, the first topography and the second topography are The thickness of 4+ S, Jia Er 侍 〇 〇 2〇9. Here, the same or different probes can be used to describe the first and second topography. 8 200839911 can be approximated by various methods. The thickness of the thin 臈 209 is obtained from one. Among them, the reference depth h (by the ditch is 2:3 film 2 =; ^ first is selected as J middle ditch; 2. 3 is the first reference depth h) In the width W1; the first; |, measure the melon shape at the same reference depth seven ^ ^ 1 ^ 209 - between the tangent of each point on the angle and the horizontal plane, usually exist in ^ = mouth 7: =,; The film-forming film 209 is formed on a ditch that has been deposited with a 1 ^ & angle and a pass/b = about 9 G degrees. 2〇3 产通总总)), because of the influence of the step coverage, the angle ^ 佳 ii ii over the angle of the production of 4 is not a deviation from the 9G degree. At this time, the 乂 乂 透过 透过 透过 透过 透过In a more precise amount _ film thickness. Refer to Figure 5 to further explain the above deviation of 90 degrees;!, the film on the side wall 2031 of the channel 203, black ii ί = ί between - angle 0 '. Since the thickness of the film 209 is much smaller than that of the gully ί ΐ , , the two are equal (θ ^), and θ is the surface. It can be seen from Fig. 5 that 'the horizontal distance d between the side wall 2031 and the surface 2091 is not thin t. Therefore, it is preferable to measure the second width and use the following relationship. The actual thickness t of the film 2〇9 is obtained by correction: ',,, xsin6 WI-W2 ====Upward is calculated as 'the general groove', 200839911 Another approximation is the approximation operation through the normal distribution. First, a plurality of reference depths hi, h2, . . . are selected in the trench 203, and the width of the trench 203 of each reference depth is measured according to the obtained first topography to obtain a plurality of first widths W11, W12, .... And obtaining the second topography, measuring the width of the trench 203 of each reference depth at a position corresponding to each of the first widths to obtain a plurality of second widths W21, W22···, and then approximating the normal distribution The operation 'from the first width (W11, W12···) and the second width (W2 Bu W22···) respectively, to obtain a first approximate width w' 1 and a second approximate width w, 2, and then An approximate width W, 1 and a second approximate width W, 2 are calculated thin The actual thickness t of 209 is (= (W, 1_W, 2) /2). Alternatively, it may be calculated from the first widths W11, W12, ..., respectively, and the corresponding first width W2, W22, . The thickness tl, the port... and the approximate operation of the normal distribution, the actual thickness t of the film 2〇9 is obtained from the thicknesses. As in the above approximation operation using the normal distribution, as described above, since the trench 203 is usually Including the previously deposited material layer, there is an angle of deviation of 90 degrees between the trench 2〇3 and the horizontal plane. Therefore, it is preferably tied to the second width (boundary 2 Bu W22···,

)獲第一近似寬度W,1、第二近似寬度w,2、 再經由以下關係式獲得薄膜209之實際厚度t :Obtaining the first approximate width W, 1, the second approximate width w, 2, and obtaining the actual thickness t of the film 209 via the following relationship:

t近似運算,由該等厚度ti之 直(t)。詳言之,先在溝渠 再依據所得之第一形貌,量測 200839911 各參考深度之溝渠203寬度,以獲得複數個第一寬度Wll、 W12…。其後,依據所得之第二形貌,在與第一寬度相對應之位 置上1測複數個第二寬度W21、W22···,且量測複數個薄膜209 之一側表面2091與水平面之角度θ 1、02···。先經由以下關係式 計算獲得複數個薄膜209之實際厚度tl、t2… 其中i=l、2… 敢後,利用常態分佈(normal distribution)之近似運算,自該等厚 度tl、t2…獲得薄膜209實際厚度t。 予 C 上述係以薄膜形成於溝渠203兩側壁之態樣進行說明, ίίϋί法當然亦可用於僅在溝渠203 一侧壁形成有薄膜2〇9之 態樣的$測。此時,僅需移除上試算中之1/2即可。舉例言之,在 未,常態分佈之近似運算中,先於溝渠2〇3選定一來^ 第二形貌,量測溝渠2〇3中參考深度h處之第;度 :則第康^寻之第二形貌’在相同之溝渠203參考深度h,量 量測第二寬度W2之制點處量測相對庫 之薄臈209之一側表面2〇91與水平面之 關係式計算得到薄臈209實際厚度t : ,、後、、二由以下 (: K^l-^2)xsin^ 綜上所述’本發明利用探針描 抓 效量測形成於溝渠側壁之薄膜厚声形貌之^段,可有 量測之功效。鈇,上试眚#彳j _ 1丨直接、非破壞性且快速 功效,以及闡^本發明說明本發明之原理及其 明所主張之範圍。例如:針對單;句荨性之女排均屬於本發 及複數個第二形貌以進行分析 可描綠複數個第-形貌 如後述之申請專利範圍 所列。 本發明之權利保護範圍應 200839911 【圖式簡單說明】 苐1圖係擴圓儀基本構造示意圖; 第2圖係本發明技術之示意圖; 第3A圖係以本發明方法之一實施態樣所描繪第一形貌 意圖; 第3B圖,以本發明方法之一實施態樣所描緣第 意圖; 第4圖係以本發明方法之一實施態樣所描繪第一形貌與第 二形貌之比較示意圖;以及The approximation operation is straight (t) from the thickness ti. In detail, firstly, according to the first topography obtained in the trench, the width of the trench 203 of each reference depth of 200839911 is measured to obtain a plurality of first widths W11, W12, .... Thereafter, according to the obtained second topography, a plurality of second widths W21, W22, . . . are measured at positions corresponding to the first width, and one side surface 2091 of the plurality of films 209 and the horizontal plane are measured. Angle θ 1, 02···. First, the actual thicknesses t1, t2 of the plurality of films 209 are calculated by the following relational expressions: where i=l, 2... After the dignity, the film 209 is obtained from the thicknesses tl, t2... using the approximation of the normal distribution. Actual thickness t. The above is described by the fact that the film is formed on both side walls of the trench 203, and the ίίϋ method can of course be used for the measurement of the film 2〇9 only on one side wall of the trench 203. At this point, you only need to remove 1/2 of the trial. For example, in the approximate operation of the normal distribution, the second shape is selected before the trench 2〇3, and the reference depth h is measured in the trench 2〇3; The second topography 'measures the relationship between the side surface 2〇91 and the horizontal plane of the thin surface 209 of the opposite bank at the reference point depth h of the same trench 203 and the second width W2. 209 actual thickness t: , , after, and two by the following (: K ^ l - ^ 2) xsin ^ In summary, the present invention uses the probe to trace the effect of the film formed on the side wall of the trench ^ segment, can have the effect of measurement.鈇,上试眚#彳j _ 1丨 Direct, non-destructive and rapid efficacy, and the scope of the present invention is illustrated by the present invention. For example, the single-sentence female platoon belongs to the present and a plurality of second morphologies for analysis. The number of morphological features of the green is listed in the patent application scope described later. The scope of protection of the present invention should be 200839911 [Simplified description of the drawings] Fig. 1 is a schematic diagram showing the basic structure of the expander; Fig. 2 is a schematic view of the technology of the present invention; Fig. 3A is depicted by an embodiment of the method of the present invention The first topography and the second topography are depicted in an embodiment of the method of the present invention; FIG. 3B is a schematic view of an embodiment of the method of the present invention; Comparison diagram; and

第5圖係第4圖中參考深度h處之放大示意圖。 【主要元件符號說明】 光源 分析儀 基板 溝渠 探針 側表面 參考深度 餘刻或沉積前之寬度 餘刻或沉積後之寬度 101 105 111 、 201 203 205 2091 h W1 W2 Φ Θ d 103 107 113、209 2031 207 D t 極化器 檢測器 薄膜 溝渠侧壁 懸臂樑 溝渠總深度 薄膜實際厚度 切線與水平面之夹角 溥臈之一侧表面與水平面之 溝渠側壁與待量測薄蹬包丨辟 心寻膜側壁一側表面之水平距離 12Fig. 5 is an enlarged schematic view of the reference depth h in Fig. 4. [Main component symbol description] Light source analyzer substrate trench probe side surface reference depth residual or width before deposition or width after deposition 101 105 111 , 201 203 205 2091 h W1 W2 Φ Θ d 103 107 113, 209 2031 207 D t Polarizer detector film trench sidewall cantilever beam trench total depth film actual thickness tangent line and horizontal plane angle Horizontal distance from one side of the side wall 12

Claims (1)

200839911 十、申請專利範圍: 種量游導體元件巾賴讎之賴厚度之妓,其係包 形成-薄膜前,使用-第-探針掃描該溝渠以 ^亥薄膜形成後,使用一第二探針掃描該溝渠 貌;以及 1丁禾一形 =車父該第-形貌及該第二職以獲_薄膜厚度, /、中,該第一探針與該第二探針係相同或不同。 2·如請求項1之方法,其中·· 步驟係包含取得該溝渠於該薄臈形成前 之及差獲得該薄膜厚度之步_ 3_ 找第鮮二寬祕於該溝渠 4· 3之方法,其中該參考深度係該溝渠總深度之5%至 ID/ο之間。 5. 如請求項3之方法’其中該參考深度係該溝馳深度之1〇%。 6. ίΐ求項2之方法’其中該取得—第二形貌之步驟3包含取得 以弟二寬度(W2)量測點之切線與水 比較該第-寬度㈤_:寬度(W2m= 以下關係式以獲得該薄膜厚度⑴:係使用 13 0 200839911 7. 如請求項1之方法,其中: 該取得一第一形貌之步驟係包含取得複數個 W12...); 見度 IW11、 該取得一第二形貌之步驟係包含於各該第一 上取得複數個第二寬度(W2卜W22...);以及又之對應位置 該比較該第-形貌及該第二形貌以獲得該薄 包含經由使用-常態分佈之近似運算以獲得朗^步驟係 8. 如請求項7之方法,其中該使用—常態分佈之近 該薄膜厚度之步驟係包含: 建异乂獲仔 計算該等第—寬度㈤卜,...)與該等第二紐 W22..,)之對應差值(Wli_W2i),其中 i=i、2. 使用-常態分狀近似運算,由料差值麟該薄膜厚度 1。 9. ^請求^ 7之方法,其中該取得—第二形貌之步驟 f取得七寬度(W2Q之量測點上取得該量測點之切線鱼^ 包:該使用一常態分佈之― 經由以下獲得複數縛度值(t卜 tl 2 xsln贫,其中 i=l、2...;以及 使用-常悲分佈之近似運算,由該等厚度值獲得該薄膜厚度。 1〇 之ί法,其中該使用—常態分佈之近似運算以獲得 该薄膜厚度之步驟係包含: 又灯 佈J近似運算,由該等第-寬度(wn、wi2...) 獲侍一第一近似寬度(WU); 使用- ‘%分佈之近似運算,由該等第二寬度 、W22···) 14 200839911 獲得一第二近似寬度(W,2);以及 比較該第-近織度(W,〗)_第二 得該薄膜厚度。 見度(W 2),以獲 11·如請求項7之方法,其中該取得—第二形貌之 該取得第二寬度(W2i)之量測點上敢俨少驟另包含於各 单而夕。<貝點上取仔该置測點之切後盘皮 該使用-常態分佈之近似運算以獲得i Γ: =-,態分佈之近似運算,由該等第二寬度 獲侍一弟二近似寬度(W,2) ; ···、 使佈之近似運算,由該等夾角⑷、Θ2...)獲得 一近似角度(0,);以及 ^段件 經由以下關係式以獲得該薄膜厚度(t): 項1 S U項之任—項之方法,其中該探針係為原子力 顯微鏡之探針。 丁刀 項之任一項之方法,其中該第一探針與該第二探 15200839911 X. The scope of application for patents: The thickness of the conductive conductor element is determined by the thickness of the coating. Before the film is formed, the film is scanned with the -probe to form the second film. The needle scans the trench; and the first probe is the same as or different from the first probe and the second member to obtain the thickness of the film, and the first probe is the same as or different from the second probe . 2. The method of claim 1, wherein the step comprises: obtaining a thickness of the film before the formation of the trench and obtaining a thickness of the film _ 3_ finding a method for the second width to be secreted to the trench 4·3, Wherein the reference depth is between 5% and ID/o of the total depth of the trench. 5. The method of claim 3, wherein the reference depth is 1% of the depth of the ditch. 6. The method of claim 2, wherein the obtaining - the second topography step 3 comprises obtaining the tangent of the measured width of the second width (W2) and comparing the water to the first width (five) _: width (W2m = the following relationship) Obtaining the film thickness (1): using 13 0 200839911 7. The method of claim 1, wherein: the step of obtaining a first topography comprises obtaining a plurality of W12...); seeing IW11, obtaining one The second topography step includes obtaining a plurality of second widths (W2 Bu W22...) on each of the first surfaces; and comparing the first topography and the second topography to obtain the second topography The thin film comprises the approximation operation using the -normal distribution to obtain the step 8. The method of claim 7, wherein the step of using the normal-normal distribution near the thickness of the film comprises: - width (five), ...) and the corresponding difference (Wli_W2i) of the second new W22..,), where i = i, 2. using - normal fractal approximation, the difference between the film and the film Thickness 1. 9. The method of requesting ^7, wherein the obtaining - the second topography step f obtains seven widths (the tangential fish package of the measuring point on the W2Q measuring point: the use of a normal distribution - via the following Obtaining a complex bounding value (t tl 2 xsln lean, wherein i=l, 2...; and an approximation operation using a constant-sense distribution, the thickness of the film is obtained from the thickness values. The step of using the approximation operation of the normal distribution to obtain the thickness of the film comprises: a lamp J approximation operation, and a first approximation width (WU) is obtained from the first width (wn, wi2...); Using a similarity of - '% distribution, from the second width, W22···) 14 200839911, obtaining a second approximate width (W, 2); and comparing the first-near-degree (W, 〗)_ 2, the thickness of the film. See (W 2), to obtain the method of claim 7, wherein the acquisition - the second topography of the second width (W2i) of the measurement point on the test point It is also included in each single eve. <Beet point on the cut point of the cut point of the disc after the use - the approximate distribution of the normal distribution Obtain i Γ: =-, the approximate operation of the state distribution, from which the second width is obtained by the second approximation width (W, 2); ···, the approximation of the cloth, by the angles (4), Θ 2. ..) obtain an approximate angle (0,); and ^ segment by the following relationship to obtain the thickness of the film (t): Item 1 of the item of item SU, wherein the probe is a probe of atomic force microscopy needle. The method of any of the items of the present invention, wherein the first probe and the second probe
TW96109705A 2007-03-21 2007-03-21 Method for measuring thickness of film on sidewall of trench in semiconductor device TW200839911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96109705A TW200839911A (en) 2007-03-21 2007-03-21 Method for measuring thickness of film on sidewall of trench in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96109705A TW200839911A (en) 2007-03-21 2007-03-21 Method for measuring thickness of film on sidewall of trench in semiconductor device

Publications (1)

Publication Number Publication Date
TW200839911A true TW200839911A (en) 2008-10-01

Family

ID=44821003

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96109705A TW200839911A (en) 2007-03-21 2007-03-21 Method for measuring thickness of film on sidewall of trench in semiconductor device

Country Status (1)

Country Link
TW (1) TW200839911A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481836B (en) * 2009-08-21 2015-04-21 First Solar Inc Method of monitoring a substrate, and position sensitive pyrometer
TWI489080B (en) * 2012-06-13 2015-06-21 Shincron Co Ltd Film thickness measuring device and film forming device
TWI626426B (en) * 2017-01-23 2018-06-11 台灣積體電路製造股份有限公司 Method of measuring thickness of epitaxial layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481836B (en) * 2009-08-21 2015-04-21 First Solar Inc Method of monitoring a substrate, and position sensitive pyrometer
TWI489080B (en) * 2012-06-13 2015-06-21 Shincron Co Ltd Film thickness measuring device and film forming device
TWI626426B (en) * 2017-01-23 2018-06-11 台灣積體電路製造股份有限公司 Method of measuring thickness of epitaxial layer

Similar Documents

Publication Publication Date Title
Quintana et al. Synthesis of selenium nanoparticles by pulsed laser ablation
Murray et al. Creating arbitrary arrays of two-dimensional topological defects
Stranick et al. Phase separation of mixed-composition self-assembled monolayers into nanometer scale molecular domains
JP4863979B2 (en) Ellipsometry measurement method and apparatus
TW544832B (en) Evaluating sidewall coverage in a semiconductor wafer
CN103115927A (en) Nondestructive testing method for optical glass polishing sub-surface damages
TW200403785A (en) Method for in-situ monitoring of patterned substrate processing using reflectometry
KR101730668B1 (en) Arrangements and methods for improving bevel etch repeatability among substrates
CN107816949B (en) A kind of accumulation layer measured film thickness method for 3D nand memory
TW200839911A (en) Method for measuring thickness of film on sidewall of trench in semiconductor device
Mirsky et al. Optical biosensing of bacteria and cells using porous silicon based, photonic lamellar gratings
Fang et al. Measurement of micro-V-groove dihedral using white light interferometry
Ho et al. Hollow plasmonic U-cavities with high-aspect-ratio nanofins sustaining strong optical vortices for light trapping and sensing
CN108982374A (en) A kind of device and method measuring one-dimensional material multipole rate
Gkogkou et al. Characterization of anisotropically shaped silver nanoparticle arrays via spectroscopic ellipsometry supported by numerical optical modeling
Venkatachalam et al. Rapid, substrate-independent thickness determination of large area graphene layers
Chen et al. Improved SERS Intensity from Silver‐Coated Black Silicon by Tuning Surface Plasmons
Noh et al. Photoluminescence modification by a high-order photonic band with abnormal dispersion in ZnO inverse opal
Solis-Tinoco et al. Fast and accurate optical determination of gold-nanofilms thickness
Pollard et al. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains
Ualibek et al. Manipulating and probing the growth of plasmonic nanoparticle arrays using light
Takeichi et al. Anisotropic propagation of surface plasmon polaritons induced by para-sexiphenyl nanowire films
Tolansky The topography of crystal faces-II. The topography of cleavage faces of mica and selenite
Shibata et al. Optimization of metal quality for grating coupled surface plasmon resonance
Borc et al. Study of the orientation and frequency of occurrence of elementary steps on the (0 1 0) cleavage face of potassium acid phthalate single crystals