TWI625948B - Twdm passive network with extended reach and capacity - Google Patents

Twdm passive network with extended reach and capacity Download PDF

Info

Publication number
TWI625948B
TWI625948B TW105136923A TW105136923A TWI625948B TW I625948 B TWI625948 B TW I625948B TW 105136923 A TW105136923 A TW 105136923A TW 105136923 A TW105136923 A TW 105136923A TW I625948 B TWI625948 B TW I625948B
Authority
TW
Taiwan
Prior art keywords
signal
line termination
optical line
optical
multiplexer
Prior art date
Application number
TW105136923A
Other languages
Chinese (zh)
Other versions
TW201729557A (en
Inventor
西追 鋒 林
良 杜
喬伊 簡長宏
班 華倫 賽古拉
祥君 趙
王道毅
Original Assignee
谷歌有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谷歌有限責任公司 filed Critical 谷歌有限責任公司
Publication of TW201729557A publication Critical patent/TW201729557A/en
Application granted granted Critical
Publication of TWI625948B publication Critical patent/TWI625948B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0261Optical medium access at the optical multiplex section layer
    • H04J14/0265Multiplex arrangements in bidirectional systems, e.g. interleaved allocation of wavelengths or allocation of wavelength groups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0209Multi-stage arrangements, e.g. by cascading multiplexers or demultiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0216Bidirectional architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0223Conversion to or from optical TDM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0279WDM point-to-point architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring

Abstract

一種通信系統(100)包含一第一多工器(320a),該第一多工器將具有一第一多工群組之一第一光學線路終端信號(SD1 )及具有一第二多工群組之一第二光學線路終端信號(SDn )多工成一第一經多工信號(SDM )。該通信系統包含一第二多工器(320b),該第二多工器將一第二經多工信號(SUM )解多工成具有該第一多工群組之一第三光學線路終端信號(SU1 )及具有該第二多工群組之一第四光學線路終端信號(SUn )。此外,該通信系統包含與該第一多工器及該第二多工器光學連接之一第三多工器(310),該第三多工器經組態以在一饋送器光學信號(STa )與該第一經多工信號及該第二經多工信號之間進行多工/解多工。該第一光學線路終端信號及該第二光學線路終端信號包含一舊型上游自由頻譜範圍,且該第三光學線路終端信號及該第四光學線路終端信號包含一舊型下游自由頻譜範圍。A communication system (100) includes a first multiplexer (320a), the first multiplexer having a first optical line termination signal (S D1 ) and a second plurality One of the second optical line termination signals (S Dn ) of the work group is multiplexed into a first multiplexed signal (S DM ). The communication system comprises a second multiplexer (320b), to the second multiplexer via a second multiplex signal (S UM) demultiplexing to have one of the first group of the third optical multiplexing circuit a terminal signal (S U1 ) and a fourth optical line termination signal (S Un ) having one of the second multiplex groups. Additionally, the communication system includes a third multiplexer (310) optically coupled to the first multiplexer and the second multiplexer, the third multiplexer configured to optical signals in a feeder ( S Ta ) performs multiplexing/demultiplexing with the first multiplexed signal and the second multiplexed signal. The first optical line termination signal and the second optical line termination signal comprise an old upstream free spectral range, and the third optical line termination signal and the fourth optical line termination signal comprise an old downstream free spectral range.

Description

具有延展範圍及容量之時間波長分割被動網路Time-division split passive network with extended range and capacity

本發明係關於具有延展範圍及容量之時間波長分割被動光學網路(TWDM-PON)架構。The present invention relates to a time wavelength division passive optical network (TWDM-PON) architecture having a range and capacity.

一基本通信系統包含將一訊息轉換為適於在一通信頻道上傳送之一電形式的一傳輸器。該通信頻道將該訊息自該傳輸器傳送至接收器。該接收器接收該訊息且將該訊息轉換回為其原始形式。 光纖通信係使用光纖作為通信頻道來將資訊自一源(傳輸器)傳輸至一目的地(接收器)的一新興方法。光纖係由薄玻璃二氧化矽或塑膠製成之撓性透明介質,其貫穿光纖之長度在源與目的地之間傳輸光。光纖通信允許在比其他已知形式之通信長之距離上且以比其他已知形式之通信高之頻寬傳輸資料。光纖係優於金屬線之一經改良通信形式,此乃因透過光纖行進之光經歷較少損耗且不受電磁干擾影響。公司使用光纖來傳輸電話信號、網際網路通信及有線電視信號。一光纖到戶(FTTH)網路或光纖存取網路使用光纖作為自服務提供者之最後一哩連接來連接終端使用者。 光纖通信提供一極低信號損耗及極高頻寬。此兩個性質允許服務提供者使用一被動光纖設備自其中心局(CO)直接連接至終端使用者,此產生資本及操作成本節省。隨著在當今網際網路中對頻寬之需求繼續增加,光纖到戶(FTTH)網路已成為運營商給客戶裝電線及給客戶換新線之一良好前瞻性技術。A basic communication system includes a transmitter that converts a message into an electrical form suitable for transmission over a communication channel. The communication channel transmits the message from the transmitter to the receiver. The receiver receives the message and converts the message back to its original form. Optical fiber communication is an emerging method of using optical fiber as a communication channel to transmit information from a source (transmitter) to a destination (receiver). An optical fiber is a flexible transparent medium made of thin glass dioxide or plastic that transmits light between the source and the destination throughout the length of the fiber. Fiber optic communications allow data to be transmitted over a longer distance than other known forms of communication and at a higher bandwidth than other known forms of communication. Fiber optics is an improved form of communication over one of the wires because the light traveling through the fiber experiences less loss and is immune to electromagnetic interference. The company uses fiber optics to transmit telephone signals, Internet communications, and cable TV signals. A fiber to the home (FTTH) network or fiber access network uses fiber optics as the last connection to the service provider to connect to the end user. Fiber optic communication provides a very low signal loss and very high frequency bandwidth. These two properties allow service providers to connect directly to their end users from their central office (CO) using a passive fiber optic device, which creates capital and operational cost savings. As the demand for bandwidth continues to increase in today's Internet, fiber-to-the-home (FTTH) networks have become a good-looking technology for operators to wire their customers and renew their lines.

在一存取網路中,自一種技術升級至另一技術或改良網路架構可由於在一中心局(CO)處及在位於客戶駐地處之光學網路單元(ONU)處之硬體中之更新而係困難的。CO中之每一光學線路終端(OLT)伺服於WDM網路中之一個ONU及TDM網路中之多個ONU。因此,升級該存取網路可由於ONU處之硬體升級之定時而具挑戰性。本發明提供一種將一存取網路升級且擴展至允許饋送器光纖之高效使用因此節省成本之一經升級/經擴展架構的系統及方法。該新架構允許CO與其他PON網路(例如,超級PON)之合併,從而減少操作成本及網路管理效率。 本發明之一項態樣提供一種包含第一多工器、第二多工器及第三多工器之通信系統。該第一多工器(例如,MUX)經組態以將具有一第一多工群組(例如,TDM)之一第一光學線路終端信號及具有一第二多工群組之一第二光學線路終端信號多工成一第一經多工信號。該第二多工器(例如,DEMUX)經組態以將一第二經多工信號解多工成具有該第一多工群組之一第三光學線路終端信號及具有該第二多工群組之一第四光學線路終端信號。該第三多工器與該第一多工器及該第二多工器光學連接。該第三多工器經組態以在一饋送器光學信號與該第一經多工信號及該第二經多工信號之間進行多工/解多工。該第一光學線路終端信號及該第二光學線路終端信號各自包含在舊型下游自由頻譜範圍中之一波長。另外,該第三光學線路終端信號及該第四光學線路終端信號各自包含各自在舊型上游自由頻譜範圍中之一上游波長。 本發明之實施方案可包含以下可選特徵中之一或多者。在某些實施方案中,該系統進一步包含一第一放大器或一第二放大器中之至少一者。該第一放大器與該第一多工器(MUX)及該第三多工器(BAND MUX)光學連接且經組態以光學放大該第一經多工信號。該第二放大器與該第二多工器(DEMUX)及該第三多工器(BAND MUX)光學連接且經組態以光學放大該第二經多工信號。在某些實例中,該第一多工群組包含一時間分割多工被動光學網路(TDM-PON)協定且該第二多工群組包含一波長分割多工被動光學網路(WDM-PON)協定,其中每一波長係一點對點鏈路。該第一光學線路終端信號及該第三光學線路終端信號可各自具有一第一協定。此外,該第二光學線路終端信號及該第四光學線路終端信號可各自具有不同於該第一協定之一第二協定。 在某些實施方案中,該系統進一步包含一第一光學線路終端及一第二光學線路終端。該第一光學線路終端具有與該第一多工器光學連接之一輸出及與該第二多工器光學連接之一輸入。該第一光學線路終端傳輸該第一光學線路終端信號且接收該第三光學線路終端信號。該第二光學線路終端具有與該第一多工器光學連接之一輸出及與該第二多工器光學連接之一輸入。該第二光學線路終端傳輸該第二(點對點)光學線路終端信號且接收該第四(點對點)光學線路終端信號。 該第一多工器進一步經組態以將一第五光學線路終端信號與該第一光學線路終端信號及該第二光學線路終端信號一起多工成該第一經多工信號。該第一光學線路終端信號可具有一第一協定。該第五光學線路終端信號可具有該第一多工群組(TDM-PON)及不同於該第一協定之一第二協定。該第二多工器進一步經組態以將該第二經多工信號解多工成該第二光學線路終端信號、該第四光學線路終端信號(點對點)及一第六光學線路終端信號。該第六光學線路終端信號具有該第一多工群組及該第二協定。該系統進一步包含具有與該第一多工器通信之一輸出及與該第二多工器通信之一輸入的一第三線路終端。該第三光學線路終端傳輸該第五光學線路終端信號且接收該第六光學線路終端信號。 在某些實施方案中,該系統進一步包含一饋送器光纖及一陣列波導光柵。該饋送器光纖與該第三多工器光學連接且經配置以傳達該饋送器光學信號。該陣列波導光柵與該饋送器光纖光學連接且經組態以在該饋送器光學信號與若干光學網路單元信號之間進行多工/解多工。每一光學網路單元信號包含在舊型上游自由頻譜範圍中之一上游波長及在舊型下游自由頻譜範圍中之一下游波長。 該系統可進一步包含一第四多工器及一第五多工器。該第四多工器與該第三多工器光學連接且經組態以將具有該第一多工群組之一第五光學線路終端信號及具有該第二多工群組之一第六光學線路終端信號(點對點)多工成一第三經多工信號。該第五多工器與該第三多工器光學連接且經組態以將一第四經多工信號解多工成具有該第一多工群組之一第七光學線路終端信號及具有該第二多工群組之一第八光學線路終端信號(點對點)。該第五光學線路終端信號及該第六(點對點)光學線路終端信號各自包含在升級下游自由頻譜範圍中之一下游波長,且該第七(TDM PON)光學線路終端信號及該第八(點對點)光學線路終端信號各自包含在上游自由頻譜範圍中之一升級上游波長。該系統可進一步包含一饋送器光纖及一陣列波導光柵。該饋送器光纖與該第三多工器光學連接且經配置以傳達該饋送器光學信號。該陣列波導光柵與該饋送器光纖光學連接且經組態以在該饋送器光學信號與若干光學網路單元信號之間進行多工/解多工。每一光學網路單元信號包含在舊型上游自由頻譜範圍中之一舊型上游波長、在舊型下游自由頻譜範圍中之一舊型下游波長、在升級上游自由頻譜範圍中之一升級上游波長及在升級下游自由頻譜範圍中之一升級第二下游波長。該系統可進一步包含一第一放大器或一第二放大器中之至少一者。該第一放大器與該第四多工器及該第三多工器光學連接且經組態以光學放大該第三經多工信號。該第二放大器與該第五多工器及該第三多工器光學連接且經組態以光學放大該第四經多工信號。在某些實例中,該系統亦包含一第三光學線路終端及一第四光學線路終端。該第三光學線路終端具有與該第四多工器通信之一輸出及與該第五多工器通信之一輸入。該第三光學線路終端傳輸該第五光學線路終端信號且接收該第七TDM-PON光學線路終端信號。該第四光學線路終端具有與該第四多工器通信之一輸出及與該第五多工器通信之一輸入,該第四光學線路終端傳輸該第六(點對點)光學線路終端信號且接收該第八(點對點)光學線路終端信號。 本發明之另一態樣提供一種方法,該方法包含在一第一多工器(MUX)處接收以下信號,且在以下信號之間進行多工/解多工:一第一經多工信號;與具有一第一多工群組之一第一光學線路終端信號及具有一第二多工群組之一第二光學線路終端信號(點對點)。該方法亦包含在一第二多工器處接收以下信號,且在以下信號之間進行多工/解多工:一第二經多工信號;與具有該第一多工群組之一第三光學線路終端信號及具有該第二多工群組之一第四光學線路終端信號。該方法亦包含在與該第一多工器及該第二多工器光學連接之一第三多工器處接收以下信號,且在以下信號之間進行多工/解多工:一饋送器光學信號;與該第一經多工信號及該第二經多工信號。該第一光學線路終端信號及該第二光學線路終端信號各自包含在舊型下游自由頻譜範圍中之一下游波長,且該第三光學線路終端信號及該第四光學線路終端信號各自包含各自在舊型上游自由頻譜範圍中之一上游波長。 此態樣可包含以下選用特徵中之一或多者。在某些實施方案中,該方法進一步包含在與該第一多工器及該第三多工器光學連接之一第一放大器處放大該第一經多工信號;或在與該第二多工器及該第三多工器光學連接之一第二放大器處放大該第二經多工信號。 在某些實例中,該第一多工群組包含一時間分割多工被動光學網路協定且該第二多工群組包含一波長分割多工(WDM)被動光學網路協定,其中每一波長係一點對點鏈路。該第一光學線路終端信號及該第三光學線路終端信號可各自具有一第一協定,且該第二光學線路終端信號及該第四光學線路終端信號可各自具有不同於該第一協定之一第二協定。 在某些實施方案中,該方法進一步包含在該第一多工器(MUX)處接收以下信號,且在以下信號之間進行多工/解多工:該第一經多工信號;與一第五光學線路終端信號、該第一光學線路終端信號及該第二光學線路終端信號。該第一光學線路終端信號具有一第一協定,且該第五光學線路終端信號(TDM-PON,λ2 )具有該第一多工群組及不同於該第一協定之一第二協定。該方法亦包含在該第二多工器處接收以下信號,且在以下信號之間進行多工/解多工:該第二經多工信號;與該第二光學線路終端信號、該第四光學線路終端信號及一第六光學線路終端信號(TDM-PON λ2 )。該第六光學線路終端信號具有該第一多工群組及該第二協定。 該方法亦可包含憑藉與該第三多工器光學連接之一饋送器光纖傳輸該饋送器光學信號。該方法亦包含在與該饋送器光纖光學連接之一陣列波導光柵處接收該饋送器光學信號與若干光學網路單元信號,且在該饋送器光學信號與若干光學網路單元信號之間進行多工/解多工。每一光學網路單元信號包含在舊型上游自由頻譜範圍中之一上游波長及在舊型下游自由頻譜範圍中之一下游波長。 在某些實施方案中,該方法包含在與該第三多工器光學連接之一第四多工器處接收以下信號,且在以下信號之間進行多工/解多工:一第三經多工信號;與具有該第一多工群組之一第五光學線路終端信號及具有該第二多工群組之一第六光學線路終端信號。該方法亦包含在與該第三多工器光學連接之一第五多工器處接收以下信號,且在以下信號之間進行多工/解多工:一第四經多工信號;與具有該第一多工群組之一第七光學線路終端信號及具有該第二多工群組之一第八光學線路終端信號(點對點)。該第五光學線路終端信號及該第六光學線路終端信號各自包含在升級下游自由頻譜範圍中之一下游波長,且該第七光學線路終端信號及該第八光學線路終端信號各自包含在升級上游自由頻譜範圍中之一上游波長。該方法可進一步包含憑藉與該第三多工器光學連接之一饋送器光纖傳輸該饋送器光學信號。該方法亦包含在與該饋送器光纖光學連接之一陣列波導光柵處接收該饋送器光學信號與若干光學網路單元信號,且在該饋送器光學信號與若干光學網路單元信號之間進行多工/解多工。每一光學網路單元信號包含在舊型上游自由頻譜範圍中之一舊型上游波長、在舊型下游自由頻譜範圍中之一舊型下游波長、在升級上游自由頻譜範圍中之一升級上游波長及在升級下游自由頻譜範圍中之一升級下游波長。 在附圖及以下說明中陳述本發明之一或多個實施方案之細節。依據說明及圖式且依據申請專利範圍,其他態樣、特徵及優點將顯而易見。In an access network, upgrading from one technology to another or improving the network architecture can be due to hardware at a central office (CO) and at an optical network unit (ONU) located at the customer premises. It is difficult to update. Each optical line terminal (OLT) in the CO is servoed to one of the ONUs in the WDM network and to the plurality of ONUs in the TDM network. Therefore, upgrading the access network can be challenging due to the timing of hardware upgrades at the ONU. The present invention provides a system and method for upgrading and extending an access network to an upgraded/expanded architecture that allows for efficient use of feeder fibers and thus cost savings. This new architecture allows the CO to be combined with other PON networks (eg, Super PON), reducing operational costs and network management efficiency. One aspect of the present invention provides a communication system including a first multiplexer, a second multiplexer, and a third multiplexer. The first multiplexer (eg, MUX) is configured to have a first optical line termination signal of one of a first multiplex group (eg, TDM) and one of a second multiplex group The optical line termination signal is multiplexed into a first multiplexed signal. The second multiplexer (eg, DEMUX) is configured to demultiplex a second multiplexed signal into a third optical line termination signal having the first multiplex group and having the second multiplex One of the fourth optical line termination signals of the group. The third multiplexer is optically coupled to the first multiplexer and the second multiplexer. The third multiplexer is configured to perform multiplexing/demultiplexing between a feeder optical signal and the first multiplexed signal and the second multiplexed signal. The first optical line termination signal and the second optical line termination signal each comprise one of wavelengths in the old downstream free spectral range. Additionally, the third optical line termination signal and the fourth optical line termination signal each comprise an upstream wavelength of one of the old upstream free spectral ranges. Embodiments of the invention may include one or more of the following optional features. In some embodiments, the system further includes at least one of a first amplifier or a second amplifier. The first amplifier is optically coupled to the first multiplexer (MUX) and the third multiplexer (BAND MUX) and is configured to optically amplify the first multiplexed signal. The second amplifier is optically coupled to the second multiplexer (DEMUX) and the third multiplexer (BAND MUX) and configured to optically amplify the second multiplexed signal. In some examples, the first multiplex group includes a time division multiplexed passive optical network (TDM-PON) protocol and the second multiplex group includes a wavelength division multiplexed passive optical network (WDM- PON) protocol, where each wavelength is a point-to-point link. The first optical line termination signal and the third optical line termination signal each may have a first agreement. Furthermore, the second optical line termination signal and the fourth optical line termination signal may each have a second agreement different from one of the first agreements. In some embodiments, the system further includes a first optical line termination and a second optical line termination. The first optical line termination has an optical output coupled to the first multiplexer and an optical connection to the second multiplexer. The first optical line terminal transmits the first optical line termination signal and receives the third optical line termination signal. The second optical line termination has an optical input to the first multiplexer and an optical input to the second multiplexer. The second optical line terminal transmits the second (point-to-point) optical line termination signal and receives the fourth (point-to-point) optical line termination signal. The first multiplexer is further configured to multiplex a fifth optical line termination signal with the first optical line termination signal and the second optical line termination signal into the first multiplexed signal. The first optical line termination signal can have a first agreement. The fifth optical line termination signal can have the first multi-work group (TDM-PON) and a second agreement different from the first agreement. The second multiplexer is further configured to demultiplex the second multiplexed signal into the second optical line termination signal, the fourth optical line termination signal (point to point), and a sixth optical line termination signal. The sixth optical line termination signal has the first multiplex group and the second protocol. The system further includes a third line terminal having an output in communication with the first multiplexer and one of the inputs to the second multiplexer. The third optical line terminal transmits the fifth optical line termination signal and receives the sixth optical line termination signal. In certain embodiments, the system further includes a feeder fiber and an array of waveguide gratings. The feeder fiber is optically coupled to the third multiplexer and configured to communicate the feeder optical signal. The arrayed waveguide grating is optically coupled to the feeder fiber and configured to perform multiplex/demultiplex between the feeder optical signal and the plurality of optical network unit signals. Each optical network unit signal includes one of an upstream wavelength in the old upstream free spectral range and one downstream wavelength in the old downstream free spectral range. The system can further include a fourth multiplexer and a fifth multiplexer. The fourth multiplexer is optically coupled to the third multiplexer and configured to have a fifth optical line termination signal of the first multiplex group and one of the second multiplex group The optical line termination signal (point-to-point) is multiplexed into a third multiplexed signal. The fifth multiplexer is optically coupled to the third multiplexer and configured to demultiplex a fourth multiplexed signal into a seventh optical line termination signal having the first multiplex group and having An eighth optical line termination signal (point-to-point) of the second multiplex group. The fifth optical line termination signal and the sixth (point-to-point) optical line termination signal each comprise one of downstream wavelengths in the upgraded downstream free spectral range, and the seventh (TDM PON) optical line termination signal and the eighth (point to point) The optical line termination signals each comprise one of the upstream free spectral ranges to upgrade the upstream wavelength. The system can further include a feeder fiber and an array of waveguide gratings. The feeder fiber is optically coupled to the third multiplexer and configured to communicate the feeder optical signal. The arrayed waveguide grating is optically coupled to the feeder fiber and configured to perform multiplex/demultiplex between the feeder optical signal and the plurality of optical network unit signals. Each optical network unit signal includes one of the old upstream spectral range of the old type, the old downstream wavelength of the old downstream free spectral range, and one of the upgraded upstream free spectral ranges. And upgrading the second downstream wavelength in one of upgrading the downstream free spectrum range. The system can further include at least one of a first amplifier or a second amplifier. The first amplifier is optically coupled to the fourth multiplexer and the third multiplexer and configured to optically amplify the third multiplexed signal. The second amplifier is optically coupled to the fifth multiplexer and the third multiplexer and configured to optically amplify the fourth multiplexed signal. In some examples, the system also includes a third optical line termination and a fourth optical line termination. The third optical line terminal has one of an output in communication with the fourth multiplexer and an input in communication with the fifth multiplexer. The third optical line terminal transmits the fifth optical line termination signal and receives the seventh TDM-PON optical line termination signal. The fourth optical line terminal has an output of one of communication with the fourth multiplexer and one of communications with the fifth multiplexer, the fourth optical line terminal transmitting the sixth (point-to-point) optical line termination signal and receiving The eighth (point-to-point) optical line termination signal. Another aspect of the present invention provides a method comprising receiving a signal at a first multiplexer (MUX) and performing multiplex/demultiplexing between: a first multiplexed signal And a first optical line termination signal having one of the first multiplex groups and a second optical line termination signal (point-to-point) having a second multiplex group. The method also includes receiving a signal at a second multiplexer and performing multiplexing/demultiplexing between the following signals: a second multiplexed signal; and having one of the first multiplexed groups a three optical line termination signal and a fourth optical line termination signal having one of the second multiplexed groups. The method also includes receiving a signal at a third multiplexer optically coupled to the first multiplexer and the second multiplexer, and multiplexing/demultiplexing between the following signals: a feeder An optical signal; and the first multiplexed signal and the second multiplexed signal. The first optical line termination signal and the second optical line termination signal each comprise a downstream wavelength of one of the old downstream free spectral ranges, and the third optical line termination signal and the fourth optical line termination signal each comprise One of the upstream upstream free spectral ranges. This aspect may include one or more of the following optional features. In some embodiments, the method further comprises amplifying the first multiplexed signal at a first amplifier optically coupled to the first multiplexer and the third multiplexer; or The second multiplexed signal is amplified by the second amplifier of one of the optical connections of the third multiplexer. In some examples, the first multiplex group includes a time division multiplexed passive optical network protocol and the second multiplex group includes a wavelength division multiplex (WDM) passive optical network protocol, each of which The wavelength is a point-to-point link. The first optical line termination signal and the third optical line termination signal each may have a first agreement, and the second optical line termination signal and the fourth optical line termination signal may each have one different from the first agreement Second agreement. In some embodiments, the method further comprises receiving the following signal at the first multiplexer (MUX) and performing multiplex/demultiplexing between: the first multiplexed signal; a fifth optical line termination signal, the first optical line termination signal, and the second optical line termination signal. The first optical line termination signal has a first agreement, and the fifth optical line termination signal (TDM-PON, λ 2 ) has the first multiplex group and a second agreement different from the first agreement. The method also includes receiving, at the second multiplexer, a signal that is multiplexed/demultiplexed between: the second multiplexed signal; and the second optical line termination signal, the fourth An optical line termination signal and a sixth optical line termination signal (TDM-PON λ 2 ). The sixth optical line termination signal has the first multiplex group and the second protocol. The method can also include transmitting the feeder optical signal by one of the feeder fibers optically coupled to the third multiplexer. The method also includes receiving the feeder optical signal and the plurality of optical network unit signals at an array of waveguide gratings optically coupled to the feeder fiber, and between the feeder optical signal and the plurality of optical network unit signals Work / solution multiplex. Each optical network unit signal includes one of an upstream wavelength in the old upstream free spectral range and one downstream wavelength in the old downstream free spectral range. In some embodiments, the method includes receiving the following signal at a fourth multiplexer optically coupled to the third multiplexer, and performing multiplex/demultiplexing between the following signals: a third a multiplex signal; and a fifth optical line termination signal having one of the first multiplex groups and a sixth optical line termination signal having one of the second multiplex groups. The method also includes receiving, at a fifth multiplexer optically coupled to the third multiplexer, the following signals, and performing multiplex/demultiplexing between the following signals: a fourth multiplexed signal; One of the first multiplexed group has a seventh optical line termination signal and one of the second multiplexed group eighth optical line termination signals (point-to-point). The fifth optical line termination signal and the sixth optical line termination signal are each included in one of the upgraded downstream free spectral ranges, and the seventh optical line termination signal and the eighth optical line termination signal are each included in the upgrade upstream One of the upstream wavelengths in the free spectrum range. The method can further include transmitting the feeder optical signal by one of the feeder fibers optically coupled to the third multiplexer. The method also includes receiving the feeder optical signal and the plurality of optical network unit signals at an array of waveguide gratings optically coupled to the feeder fiber, and between the feeder optical signal and the plurality of optical network unit signals Work / solution multiplex. Each optical network unit signal includes one of the old upstream spectral range of the old type, the old downstream wavelength of the old downstream free spectral range, and one of the upgraded upstream free spectral ranges. And upgrade downstream wavelengths in one of the upgraded downstream free spectrum ranges. The details of one or more embodiments of the invention are set forth in the drawings and the description below. Other aspects, features, and advantages will be apparent from the description and drawings.

光纖到戶(FTTH)係透過光纖將一通信信號自一中心局(CO)或光學線路終端(OLT)遞送至一使用者之一住戶或一商店。參考圖1,當今之FTTH系統主要地透過單點對多點時間分割多工(TDM)被動光學網路(PON)來提供,該單點對多點時間分割多工被動光學網路在場中使用一遠端節點70 (RN)處之一被動光學功率分離器以共用CO 40處之一共同收發器50 (OLT),或者透過點對點(pt-2-pt)直接連接來提供,其中與共用的收發器(TDM收發器)相反,一入戶(home-run)光纖一直延伸回至CO 40且每一客戶由一單獨收發器端接。PON 10將光學信號自一CO 40提供至在客戶駐地之各自包含一雙向光學收發器之若干個光學網路單元(ONU) 60且包含一光學傳輸器/接收器或收發器50。 與點對點入戶系統相比較,一TDM-PON在饋送器光纖20 (在一遠端節點70與中心局40之間)之數目方面且在CO 40處之光學收發器50之數目方面提供有益節省,同時節省用以端接光纖之插線板空間。然而,TDM-PON並不隨頻寬增長而良好地按比例縮放。每戶之頻寬通常係超額認購的,此乃因在連接至一OLT 50之所有ONU 60當中共用每中心局40處之光學線路終端收發器之頻寬。 點對點系統提供高頻寬給終端使用者30;然而,點對點使用大量主幹光纖20及光學收發器50兩者。因此,點對點系統並不隨CO 40處之OLT 50及CO 40與RN 70之間的光纖計數而良好地按比例縮放,從而產生較大空間要求、較高功率及一增加之成本。 當光纖提供實際上不受限制頻寬時光纖到戶(FTTH)被視為寬頻存取網路之終止狀態。FTTH替換當前使用之銅基礎設施(例如,電話線、同軸電纜等)。多工係在光學網路中使用以利用光學光纖之大頻寬達到其完全益處之一方法。多工使得能夠在一單個光纖上形成數個虛擬頻道。因此,對數個光學信號進行多工增加一網路基礎設施之效用。時間分割多工(TDM)係用於將數個信號多工至一光纖鏈路上之一個高速數位信號上之一方法。TDM藉由使用不同時槽建立不同虛擬頻道而對數個信號進行多工。波長分割多工(WDM)藉由使不同頻道使用不同波長而對該等信號進行多工;此等頻道由單獨雷射產生且其訊務通常不交互作用。 繼續參考圖1,CO 40接收可傳送至終端使用者30之資訊,諸如視訊媒體散佈42、網際網路資料44及語音資料46。CO 40包含將光學存取網路連接至一IP、ATM或SONET骨幹(舉例而言)之一光學線路終端(OLT) 50。因此,OLT 50係PON 10之端點且轉換由一服務提供者之裝備使用之電信號及由PON 10使用之光纖信號。另外,OLT 50協調使用者端30處之轉換裝置之間的多工。OLT 50透過一饋送器光纖20發送光纖信號,且該信號由一被動遠端節點70接收,被動遠端節點70將信號散佈至多個使用者30。在某些實例中,每一CO 40包含多個OLT 50,50a至50n。每一OLT 50經組態以將一信號提供至一群組使用者30。另外,每一OLT 50可經組態以提供在不同傳輸協定中之信號或服務,例如,一個OLT提供1G-PON中之服務且另一OLT提供10G-PON中之服務(如稍後將論述)。 一多工器(MUX)組合數個輸入信號且輸出單獨信號之一經組合信號。該經多工信號透過一實體導線(例如,單個光纖20)傳輸,此節省具有針對每一信號之多個導線之成本。如圖1中所展示,CO 40對自數個源接收之信號(諸如視訊媒體散佈42、網際網路資料44及語音資料46)進行多工,且將該等所接收信號多工成一個經多工信號,之後透過饋送器光纖20將該經多工信號發送至遠端節點70。另外,CO 40對每一OLT 50之信號進行多工,之後透過饋送器光纖20將經多工信號發送至遠端節點集合。CO 40包含用於產生一光學信號之一載波源(例如,一雷射二極體或一發光二極體),該載波源將經多工信號載運至終端使用者30。在接收器端(亦即,使用者端處之ONU 60)上,使用一解多工器發生一逆程序。該解多工器接收經多工信號且將其分割成最初經組合之單獨原始信號。在某些實例中,一光偵測器將光學波轉換回為其電形式且位於遠端節點處或位於終端使用者30處(例如,在一網路上之資料、使用麥克風轉換成電流且使用揚聲器轉換回為其原始實體形式之聲波、使用視訊攝影機轉換成電流且使用一電視轉換回為其實體形式之影像)。在TDM PON中,在電疇中之光電二極體之後發生信號之解多工。 在使用者端上之一收發器或ONU 60包含用於產生一光學信號之一載波源(例如,雷射二極體或發光二極體),該載波源將待自一終端使用者30發送之資訊載運至CO 40。一雷射係一高頻率產生器或振盪器,其需要放大、回饋及判定頻率之一調諧機構。雷射同調地發射光,使得雷射輸出係一窄光束。在某些實施方案中,一雷射包含提供放大及頻率之一介質以及提供回饋之若干個鏡。光子透過該介質彈跳離開一個鏡且返回至另一鏡以反彈以用於進一步放大。一個且有時兩個鏡可部分地傳輸光以允許發射所產生光之一分率。一雷射二極體係具有係一p-n接面之一主動介質之一電激發半導體雷射。該p-n接面係藉由摻雜而形成(亦即,將雜質引入至一純半導體中以改變其電性質)。如所展示,自CO 40至一遠端節點70採用一個饋送器光纖20,其中信號經分離且散佈至(舉例而言)光學網路單元60a至60n。 參考圖2A,最常部署之TDM-PON系統係由ITU (國際電信聯盟)標準化之GPON系統及由IEEE (電機電子工程師學會)標準化之EPON系統。一GPON系統提供在使用者30當中在饋送器光纖20上共用之2.5 Gb/s下游頻寬及1.25Gb/s上游頻寬,且連接至同一OLT收發器50。GPON系統係成熟的且非常具成本效益的。TDM PON面臨頻寬按比例調整之困難,此乃因OLT 50及ONU 60端兩者之光學收發器需要以共用同一OLT 50之所有ONU 60之聚合頻寬來操作。TDM-PON通常可具有一1:16至1:64功率分離比。每使用者及PON範圍之平均頻寬相對於分離比成反比例縮放。 TDM-PON架構包含用於將上游傳輸與下游傳輸分開之兩個波長。在G-PON及E-PON兩者中,1310-nm波長用於自客戶駐地處之ONU 60至CO 40處之OLT 50之上游傳輸且1490-nm波長用於自CO 40處之OLT 50至使用者30駐地處之ONU 60之傳輸。在一單個光纖20、22上用在雷射二極體(LD)傳輸器54及光偵測器(PD)接收器56前面之一光學波長雙工器52對上游波長及下游波長進行多工。來自OLT 50之光學信號在場中用一1:N功率分離器72進行分離以將信號廣播至伺服於不同使用者30之多個ONU 60。OLT 50與ONU 60之間的距離受OLT/ONU傳輸器功率及接收器靈敏度以及分離損耗限制。使用一TDM協定在使用者30當中在同一功率分離器72上共用OLT收發器50,從而簡化CO 40處之光纖端接且跨越多個ONU 60攤開收發器50之成本。典型GPON及EPON設計使用1:16、1:32或1:64之分離比及高達20km之一傳輸距離。 一替代FTTH架構係圖2B中所展示之WDM-PON架構。波長分割多工(WDM) PON沿每一傳輸方向給予每一使用者30一專用波長。在一WDM-PON網路中,分配一不同波長λ給每一使用者30以用於將資料上游傳輸至CO 40。因此,每一ONU 60使用一波長特定傳輸器62 (諸如一可調諧波長雷射)來將資料以不同波長λ傳輸至CO 40。可在針對每一特定路徑22 (對應於一使用者30)進行部署時調諧該可調諧波長雷射,此允許由所有使用者30使用一種類型之收發器60。WDM-PON系統提供一較大總體系統容量FTTH網路,此乃因總容量係頻道容量與所使用之波長之數目相乘。在此架構中,每一客戶ONU 60具有在CO 40處之一對應OLT 50傳輸器。因此,針對具有32個ONU 60之32個客戶,CO 40具有各自將一信號發送至一ONU 60之32個OLT 50。自一CO 40至個別ONU 60之信號使用不同波長來載運,且在場中使用一波長多工器200,200a (通常為一陣列波導光柵路由器(AWG))在光纖設備20、22中經多工。CO 40內側之另一波長多工器/解多工器200,200b在饋送器光纖20中將光學波長分開且將該等光學波長連接至個別「彩色」 OLT收發器50,50a至50n。場AWG 200通常係具有多個自由頻譜範圍(FSR)之一循環裝置且上游波長及下游波長藉由FSR分開,如圖3A至圖3C中所展示。在圖2B中,在場中及在CO中之兩個波長多工器200係循環AWG。 TDM架構及WDM架構之態樣可組合成一時間波長分割多工PON (TWDM-PON)。在一TWDM-PON架構(如圖2C中所展示,且ITU-T SG-15提議的NG-PON2努力(下一代PON2)中所提議)之一項實例中,NG-PON2之一個選項係使用一四波長整合式OLT 50。在NG-PON2中,OLT 50使用在OLT 50內側與雙工器52組合之四個下游傳輸器雷射(LD-1、LD-2、LD-3、LD-4)及四個上游接收器(PD-1、PD-2、PD-3、PD-4)。NG-PON2採用與傳統TDM-PON相容之一光纖設備20,因此OLT 50中之所有四個傳輸波長經廣播至僅具有一個接收器66之每一ONU 60。因此,ONU 60需要使用一可調諧接收器66來選擇個別下游波長。同時,ONU 60亦配備有一可調諧傳輸器65以調諧至來自一NG-PON2 OLT 50之四個可能接收波長中之一者。與其中僅ONU傳輸器65雷射需要係可調諧的(以用於存貨及容易操作)之圖2B中之WDM-PON相比較,NG-PON2 ONU 60需要具有一可調諧傳輸器65雷射及可調諧接收器66兩者,從而轉變為更昂貴硬體。另外,NG-PON2必須亦克服功率分離器72之額外損耗(與在WDM-PON中使用之AWG 200相比較,AWG 200針對大埠計數固有地具有小於功率分離器之損耗)及ONU 60中之可調諧濾波器損耗。NG-PON2之目標係藉由增加TDM速率(每波長10Gb/s)且使用多個波長而增加系統容量以實現更多使用者30及/或更高頻寬應用。然而,該設計面臨功率預算及成本挑戰。NG-PON2之另一挑戰係OLT 50及ONU 60需要管理波長槽及時槽兩者;且需要新MAC層協定。資料鏈路層(層2)之一MAC層資料通信協定還原。MAC軟體提供定址與頻道存取控制機制,從而允許數個終端或網路節點在多個存取網路內彼此通信。一媒體存取控制係實施MAC之硬體。 迅速地增加網際網路應用正使可自當前TDM-PON系統獲得之頻寬緊張。雖然所提議WDM-PON及TWDM-PON解決方案某種程度上解決存取容量問題,但其部署起來更昂貴。為了有效地克服頻寬需求成本之長期增加,圖3A中所展示之每饋送器光纖20具有較高ONU計數之一經更新TWDM-PON架構100可適應頻寬需求及取用比率之增加。TWDM-PON架構100 (如關於圖3A至圖8、圖9B及圖10所展示及闡述)組合在一單個波長上支援多個使用者30 (TDM-PON)之成本優點與WDM-PON之波長靈活性,此允許波長專用於特定用戶或應用。經升級TWDM-PON架構100使用上文(關於圖2A、圖2B及圖2C)所闡述之TDM及WDM技術\架構之一組合以使使用者30之數目及可在一單個PON上支援之容量倍增。經升級TWDM-PON 100減少光纖基礎設施之成本及構造時間且縮短網路設計循環。另外,經升級TWDM-PON 100提供將在CO 40與RN 70之間且在RN 70與ONU 60之間使用之較細光纖束20、22,此導致更易於部署之較小管道。另外,經升級TWDM-PON 100增加覆蓋距離(亦即,饋送器光纖20、22之長度)且實現極好PON設計,此允許經升級TWDM-PON 100合併且減少CO 40之數目且減少網路操作中之長期續生成本。此外,經升級TWDM-PON 100在ONU 60處不需要可調諧接收器,此顯著降低網路100之成本。經升級TWDM-PON 100可憑藉16個波長及當前GPON速度(2.5Gbps下游及1.25Gbps上游)達成每圖2C中所展示之饋送光纖之類似總體容量(NG-PON2,40Gbps)。另外,經升級TWDM-PON 100較佳地隨在饋送器光纖20、22上之傳輸距離而按比例縮放,且具有較佳功率預算及色散容限(與NG-PON2相比較)。 如先前所闡述,TDM-PON使用RN 70處之一光學功率分離器72來將多個ONU 60連接至每一OLT 50。當在TWDM-PON中經由一光學功率分離器72傳輸大量波長時,每一ONU 60包含一阻擋濾波器以阻擋出規頻帶波長。在某些實例中,一可調諧ONU 60經使用且包含一可調諧窄頻帶濾波器。一可調諧ONU 60之使用增加每一ONU 60之成本,此導致網路100之成本之一增加。此外,RN 70處之功率分離器72可不達成大分離比,此乃因一大分離器之總功率損耗係難以藉由OLT 50及ONU 60處之傳輸器54、65及接收器56、66克服的。因此,在經升級TWDM-PON架構(圖3A)中,期望使用諸如循環陣列波導光柵路由器(AWG) 200之一波長選擇性(解)多工器以極大地增加最大分離比且移除對ONU 60處之窄頻帶濾波器之需要,藉此降低成本(藉由不使用可調諧接收器)。另外,循環AWG 200將損耗自若干個埠解耦,藉此以較低損耗來達成一較高分離比。使用一AWG 200之多個TDM PON (例如,1G-PON及10G-PON)可被視為一TWDM-PON,此乃因利用WDM來增加網路之總體容量。 圖3A至圖3E圖解說明在經升級TWDM-PON架構100中使用之一例示性陣列波導光柵200 (AWG)。一AWG 200可用於在經升級TWDM-PON 100中(舉例而言,在RN 70處或在OLT 50處)對一光學信號進行解多工。AWG 200可將大量波長多工至一個光纖中,因此增加光學網路100之傳輸容量。AWG 200因此可將數個波長之頻道多工至一傳輸端處之一單個光纖上,且相應而相反地,其亦可對一光學通信網路之接收端處之不同波長頻道進行解多工。一AWG 200係在光學網路中通常用作一波長多工器及/或解多工器之一被動平面光波電路裝置。N×N AWG 200亦具有波長路由能力。若一系統具有N個等距波長λN ,則一N×N AWG 200可設計有匹配波長間距之一出口埠間距。N×N AWG 200將一入口埠210處之不同波長路由至不同出口埠220,使得所有N個波長依序映射至所有N個出口埠220N 。在兩個連續入口埠210處之相同N個波長之路由使波長映射移位一個出口側。另外,在任一入口上之波長頻道以FSR重複。在某些實施方案中,AWG 200在一第一輸入210a (例如,輸入1)處經由一第一光纖接收一第一經多工光學信號。AWG 200對所接收信號進行解多工且透過其輸出220,220a至220n (例如,輸出1至32)輸出經解多工信號。 AWG 200本質上係循環的。AWG 200之波長多工及解多工性質在稱作自由頻譜範圍(FSR)之波長週期內重複。由自由頻譜範圍(FSR)分開之多個波長沿著每一埠220傳遞。因此,藉由利用多個FSR循環,不同層服務可在同一光纖設備20、22上共存。 在某些實施方案中,為構造一低損耗循環AWG 200,應仔細地設計星形耦合器及波導光柵。應正確地工程設計光纖光柵中之陣列波導。光柵中之波導之間的相位差係判定AWG 200之FSR B1至B4之一因素。一個FSR B1至B4內之逐頻道損耗量變曲線與輸出頻道波導之特徵模態(AWG 200之自然振動)與自光柵中之波導臂繞射之小波束之間的重疊積分有關。任一FSR B1至B4之端頻道通常具有一較大損耗與折衷通頻帶。通常最佳的係設計比所要數目個頻道多大約四個或六個之頻道,因此每循環分別浪費四個或六個頻寬頻道。 使用具有小FSR之一循環AWG 200之缺點係頻道間距可在循環之間稍微變化。關於頻率之波長間距針對較短波長可係較寬的。波導臂相位差、材料色散(亦即,隨波長而改變之折射率)及波導剖面設計全部促成跨越FSR之頻道間距之變化。可藉由恰當材料選擇及波導設計最佳化頻道間距,但跨越多個FSR形成一均勻頻率間距係非常困難的。因此,在某些實例中,一較大AWG 200與分離器72組合使用(舉例而言,參見圖4)。 AWG 200可具有光學波長範圍之多個循環,其具有重複多工及解多工性質。如圖3C中所展示,每一循環B1至B4通常稱為一FSR。一多循環AWG 200沿著每一埠220,220a至220d發送由FSR分開之多個波長λ1 至λ16 。在大多數PON系統中,不同波長由於遠近效應而用於信號之上游及下游。遠近效應係其中一接收器擷取一強信號且藉此使該接收器不可能偵測到一較弱信號之一狀況。此允許使用諸如一薄膜濾波器(TFF)之一波長選擇性裝置來幫助達成上行鏈路與下行鏈路之間的所需要隔離以克服遠近效應。因此,假定一WDM-PON平台針對每一層服務使用循環AWG 200之兩個FSR循環(一個循環用於下游傳輸且另一循環用於上游傳輸)。為將一第二平台添加至一網路100,四個可用循環將允許兩個平台之同時使用。此一系統100將把信號自兩個平台遞送至使用者30中之每一者,且每一AWG輸出220將自兩個平台輸出/接收信號。每一AWG輸出220與至少一個ONU 60光學連接,然後每一ONU 60將自兩個平台接收信號。 為藉由使用一循環AWG 200之方式進一步闡釋兩個平台之使用,圖3C展示具有一輸入210a及四個輸出220,220a至220b之一循環AWG 200。循環AWG 200接收四個FSR (頻帶) B1至B4,如圖3D中所展示。FSR B1及B2用於上游而FSR B3及B4用於下游。FSR B1包含波長λ1 至λ4 ,FSR B2包含波長λ5 至λ8 ,FSR B3包含波長λ9 至λ12 ,且FSR B4包含波長λ13 至λ16 ;其中λ1 < λ2 < λ3 < ….< λ15 < λ16 。當循環AWG 200在其輸入210處接收波長λ1 至λ16 時,每一波長λ1 至λ16 以一循環方式自一不同輸出220輸出。因此,第一FSR B1之第一波長λ1 透過循環AWG 200之第一輸出220a輸出,第一FSR B1之第二波長λ2 透過循環AWG 200之第二輸出220b輸出,第一FSR B1之第三波長λ3 透過循環AWG 200之第三輸出220c輸出,且第一FSR B1之第四波長λ4 透過循環AWG 200之第四輸出220d輸出,從而完成第一循環。當第二FSR B2之第一波長λ5 透過循環AWG 200之第一輸出220a輸出時開始第二循環,第二FSR B2之第二波長λ6 透過循環AWG 200之第二輸出220b輸出,第二FSR B2之第三波長λ7 透過循環AWG 200之第三輸出220c輸出,且第二FSR B2之第四波長λ8 透過循環AWG 200之第四輸出220d輸出,從而完成第二循環。第三循環以第三FSR B3之第一波長λ9 透過循環AWG 200之第一輸出220a輸出開始,第三FSR B3之第二波長λ10 透過循環AWG 200之第二輸出220b輸出,第三FSR B3之第三波長λ11 透過循環AWG 200之第三輸出220c輸出,且第三FSR B3之第四波長λ12 透過循環AWG 200之第四輸出220d輸出,從而完成第三循環。第四循環以第四FSR B4之第一波長λ13 透過循環AWG 200之第一輸出220a輸出開始,第四FSR B4之第二波長λ14 透過循環AWG 200之第二輸出220b輸出,第四FSR B4之第三波長λ15 透過循環AWG 200之第三輸出220c輸出,且第四FSR B4之第四波長λ16 透過循環AWG 200之第四輸出220d輸出,從而完成第四循環。在此情形中,每一FSR B1至B4包含四個波長λ1 至λ16 (FSR B1包含波長λ1 至λ4 ,FSR B2包含波長λ5 至λ8 ,FSR B3包含波長λ9 至λ12 ,FSR B4包含波長λ13 至λ16 ),且循環AWG 200包含四個輸出220。因此,來自每一FSR B1至B4之一個波長輸出每一AWG輸出220。換言之,每一AWG輸出220輸出來自一FSR B1至B4之一波長。如所闡述,一第一平台可針對上游傳輸使用第一FSR B1且針對下游使用第三FSR B3,而且第二平台可針對上游傳輸使用第二FSR B2且針對下游使用第四FSR B4。類似地,網路100可藉由使用六個FSR循環而支援三個平台,從而將三個平台提供至每一使用者30。該網路亦可藉由使用八個FSR循環而提供四個平台,藉由使用10個FSR循環而提供五個平台,依此類推。在一TWDM-PON架構中,每一波長λ擔負多個使用者30,因此,網路100可經組態以同時操作不同速率之PON以供應不同層服務(例如,1G-PON及10G-PON)。舉例而言,CO 40處之服務提供者可想要在一較高速率PON上提供一商務進階版服務且在一較低速率PON上提供標準住宅服務。參考關於圖2C所論述之實例,商務進階版服務可使用第一FSR B1及第三FSR B3或者第二FSR B2及第四FSR B4中之一者,且低速率PON可使用第一FSR B1及第三FSR B3或者第二FSR B2及第四FSR B4中之另一者。使用者30接收之服務由其各別ONU 60判定,ONU 60係客戶駐地裝備(CPE)之一部分。CPE可經組態以接收商務進階版服務或低速率服務中之一者或另一者。在某些實例中,若使用者30想要自低速率服務升級至商務進階版服務,則使用者30必須改變/升級其CPE以能夠接收係自CO 40傳輸之經升級/優質信號。 圖3E展示僅具有每一者四個波長(λ1 至λ4 及λ5 至λ8 ) (總計八個波長)之兩個FSR B1、B2之一系統。如所展示,上行鏈路及下行鏈路使用相同波長。儘管此對於當今大多數商業PON係非典型的,但存在此一技術之諸多提議,包含在ONU 60處使用反射半導體光學放大器之彼等提議。另外,在AWG 200之入口處之信號針對八個不同TDM-PON在八個不同波長(λ1 至λ4 及λ5 至λ8 )上載運上行鏈路信號及下行鏈路信號兩者。在RN 70處使用具有四個波長之一FSR之一循環AWG 200,因此沿著AWG之每一出口埠220a至220d發送兩個TDM-PON服務。此系統因此與圖3D中所展示之系統完全相同地工作,惟無法使用諸如TFF之波長選擇性技術作為在OLT 50或ONU 60處之雙工器除外。代替地,諸如一光學循環器之一定向裝置必須提供輸入與輸出之間的全部所需光學隔離。仍將在OLT 50及ONU 60兩者處使用一波長選擇性組件以選擇自由頻譜範圍。若此一技術在未來將變得容易獲得,則在部署具有圖3D中所闡述之波長計劃之場AWG之後,可期望升級服務以針對上游及下游使用相同波長,因此實現至每一AWG出口埠之高達四個不同服務。 圖4展示自CO 40至與終端使用者30相關聯之ONU 60之TWDM網路100之高階架構之一示意圖。諸如G-PON或E-PON之TDM-PON系統通常由於其成本及頻寬效率而係所部署商業FTTH系統。系統通常使用諸如1:16、1:32及1:64之比率。在TDM-PON中,增加分離比會降低總體OLT成本且減少饋送器光纖絞合線20、22,但亦減小至每一使用者30之容量及範圍,此乃因較大分離器具有一較大損耗。舉例而言,具有一1:32分離比之為20,000個通道(passing)之一CO 40意味自CO 40至RN 70必須使用最少625個光纖絞合線20。為100,000個通道之一極大CO 20需要3125個光纖20。較大服務區意味使用者30與CO之間的平均距離更大,從而進一步增加網路中所需要之光纖量。由於高光纖成本及在一粗光纖電纜20之一光纖切割之事件中恢復之經增加平均時間,此大量饋送器光纖20使大CO 40不具吸引力。另外,在地下使用較大大小之管道來裝納粗光纖20。對於空中光纖構造,粗光纖意味對電線桿之重負載。因此,經升級TWDM-PON 100藉由組合TDM及WDM兩者與一可擴縮TWDM架構而減少自CO 40之饋送器光纖20、22之數目以為相同數目個使用者30服務。如圖4中所展示,經升級TWDM-PON 100包含使用波長分割多工堆疊在一單個饋送器電纜20上之多個TDM-PON。因此,若使用10對波長(由一十埠循環AWG之兩個FSR涵蓋),則可將10個TDM-PON多工至一單個饋送器光纖20上,從而使自一CO 40需要之饋送器光纖20之數目減少十倍。在某些實例中,在場中使用一AWG 200以首先將波長對分開。AWG 200之每一輸出埠220後續接著一功率分離器72以分離至個別ONU 60之TDM信號,如在傳統TDM PON中(圖2A)。每饋送器光纖20之使用者30或ONU 60之總數目係M ×N ,其中M 係WDM分離器(例如,AWG 200)之輸出埠220之數目且N 係功率分離器72之TDM功率分離比。因此,光纖數目、管道大小及一光纖切割之平均維修時間(MTTR)減少M 之一因數。 圖5A展示使用1G-PON來表示TDM-PON之經升級TWDM架構100。然而,G-PON波長經移位。CO 40處之「1G-PON λ1」意味具有經修改光學層之一G-PON OLT 50,使得G-PON OLT 50在循環AWG 200之上游FSR B1之波長λ1上傳輸且自對應下游FSR B3中之成對波長λ9接收。在某些實例中,1G-PON OLT 50在循環AWG 200之上游FSR B2之波長λ5上傳輸且自對應上游FSR B4中之成對波長λ13接收。當CO 40包含一個以上OLT 50時,在將每一OLT之信號發送至遠端節點70之前使每一OLT之信號與其他OLT (例如,包含多工器310、320之光學系統300)之信號進行多工。 另外,圖5A展示允許將TWDM系統背負至一商業G-PON OLT底盤上之離散OLT收發器50。因此,為升級網路,一ISP切換G-PON OLT收發器與以定製波長設計之收發器50且插入多工器310、320及放大器330 (若需要)。離散OLT收發器50 (與一WDM-PON中所使用之整合式陣列OLT收發器相反)允許使用不同協定(例如,1 G-PON及10 G-PON)之靈活性,其中每一協定在一不同波長上(參見圖5B)。 參考圖5B,在某些實例中,循環AWG 200之波長λ1,1用於1G-PON協定(OLT 50aa),然而波長λ2,1用於10G-PON協定(OLT 50ab)。因此連接至AWG輸出埠220之λ1,1之在功率分離器72外面懸掛之ONU 60全部係可調諧1G-PON-ONU 60且連接至AWG輸出埠220之λ2,1之ONU 60全部係可調諧10G-PON ONU。 返回參考圖5A及圖5B,在某些實施方案中,一光學系統300包含用於單獨傳輸連接(下游信號SDM )及接收連接(上游信號SUM )之雙工光纖,此不同於包含具有分開OLT 50內之上游及下游信號之一內建雙工器之一單個光纖介面的習用G-PON OLT收發器。光學系統300包含一頻帶多工器310、用於對來自OLT 50之信號(在L紅色頻帶中)進行多工之一下游多工器320a及用於對自ONU 60接收之信號(在C紅色頻帶中)進行解多工之一解多工器320b。頻帶多工器310充當一雙工器,此乃因其將上游OLT信號SDM (在C紅色頻帶中)及下游OLT信號SUM (在L紅色頻帶中)多工成一個傳輸信號ST 信號。光學系統300之設計使用一下游多工器320a來將來自一或多個OLT 50之下游信號SD1 至SDn 多工成一個下游信號SDM ,且使用一上游解多工器320b來將一經多工上游信號SUM 解多工成至每一OLT 50之一或多個上游信號SU1 至SUn 。 在某一實施方案中,光學系統300可分別在下游及上游方向上包含一信號增幅器330及/或一信號前置放大器340。信號增幅器330及/或信號放大器340可係一摻餌光纖放大器(EDFA)。一EDFA係用於使透過饋送器光纖載運之光學信號之強度增幅之一光學中繼器裝置。EDFA信號增幅器330與下游多工器320a及頻帶多工器310光學連接且憑藉一較高功率EDFA使經多工下游信號SDM 之功率增幅,之後經多工下游信號SDM 進入長光纖饋送器20或具有大損耗之一裝置(例如,功率分離器),因此其到達ONU 60。EDFA信號放大器340與上游解多工器320b及頻帶多工器310光學連接且使經多工上游信號SUM 之功率增幅。EDFA信號放大器340經定位使得在經多工上游信號SUM 作為一弱信號到達光學系統300時放大經多工上游信號SUM 。由於EDFA信號增幅器330使包含來自多個OLT 50之信號SD1 至SDn 之經多工下游信號SDM 增幅,且EDFA信號放大器340放大包含至多個OLT 50之信號SU1 至SUn 之經多工上游信號SUM ,因此然後在所有TWDM波長λ當中共用每一EDFA 330、340之成本,從而產生具成本效益經升級TWDM-PON 100架構。在某些實例中,如所闡述之光學系統300使用一1:32路分離器72將饋送器光纖20之範圍自CO 40延展至50千米之一範圍。為達成進一步範圍,另一組EDFA 330、340可放置在RN 70處。然而,將EDFA 330、340放置在RN 70處會將RN 70自一被動RN 70改變為一動力RN 70。 作為光學系統300之一部分之EDFA 330、340之使用係可選的且取決於經升級TWDM-PON 100之範圍及大小。此外,EDFA放鬆對OLT 50及ONU 60收發器之要求,從而降低ONU 60及OLT 50兩者之所需傳輸器雷射功率及接收器靈敏度。憑藉恰當鏈路設計,EDFA之共用成本改良收發器良率且降低總體經升級TWDM-PON 100架構成本。 在某些實施方案中,網路100之ONU 60包含可調諧傳輸器雷射。另外,AWG 200之一或多個輸出埠220可與一功率分離器72光學連接以用於將一輸出信號自AWG 200傳達至多個ONU 60。將功率分離器72連接至AWG 200以低於單獨使用功率分離器來達成分離比之總體損耗提供經升級TWDM-PON 100且因此增加經升級TWDM-PON 100之可擴縮性。如所闡述,ONU 60可包含一可調諧雷射;然而,亦可使用一非可調諧雷射。由於每一ONU 60在一特定波長λ上接收/傳輸信號,因此一雷射用於在正確波長上傳輸一信號。因此,ISP可使用各自具有一不同雷射之多個ONU來適應所接收之不同波長。 在某些實施方案中,AWG 200之邊緣輸出埠220a、220b、220m、220n連接至ONU 60處之點對點(點對點) WDM-PON收發器。由於經升級TWDM-PON 100經組態以在CO 40處使用離散收發器,因此收發器50由於容易在同一光纖設備20上混合波長特定TDM-PON與點對點 WDM-PON而可為點對點 WDM或TDM收發器。在某些實例中,經升級TWDM-PON 100可包含20個波長。ISP可為TDM-PON預留中心16個波長且為點對點純WDM傳輸預留四個邊緣波長頻道(亦即,邊緣輸出埠220a、220b、220m、220n),AWG之每一端兩個邊緣波長頻道。一AWG 200之邊緣頻道(亦即,邊緣輸出埠220a、220b、220m、220n)通常遭受較高損耗。因此,此等頻道(亦即,邊緣輸出埠220a、220b、220m、220n)用於點對點連接,點對點連接不穿過有損耗功率分離器72 (導致更多功率損耗)。點對點 WDM-PON頻道可用於載運優質服務,諸如需要有保證頻寬之10Gbps企業網路連接。 如先前所闡述,為升級或增加經升級TWDM-PON 100容量,通常期望將多個服務或平台疊置於同一光纖20上。舉例而言,在TWDM-PON架構100中,藉由針對如關於圖3D闡述而疊置之每一平台使用一不同對波長(一個用於上游且一個用於下游)而達成疊置多個服務。如所展示,ISP利用循環AWG 200之重複FSR B1至B4來更新或擴展經升級TWDM-PON 100。返回參考圖3D,展示四個FSR B1至B4,經升級TWDM-PON 100可針對現有服務使用第一FSR B1 (上游FSR)及第三FSR B3 (下游FSR),且針對經升級或擴展服務使用第二FSR B2 (上游FSR)及第四FSR B4 (下游FSR)。或者經升級TWDM-PON 100可針對現有服務使用第二FSR B2 (上游FSR)及第四FSR B4 (下游FSR),且針對經升級或擴展服務使用第一FSR B1 (上游FSR)及第三FSR B3 (下游FSR)。FSR B1至B4係交錯的使得上游及下游波長彼此分開,此使ONU 60內側之雙工器設計容易。(收發器之)每一ONU接收器配備有一頻帶濾波器以針對所關注之特定服務選擇合意FSR B1至B4。因此,ONU 60處不需要一可調諧接收器。 參考圖5C及圖5D,每一ONU 60包含一雙工器62,雙工器62將雙工器之第一埠P1及第二埠P2多工成一第三埠P3。第一埠P1及第二埠P2上之信號佔據不相交頻帶,亦即,在不同FSR B1至B4上;因此,第一埠P1及第二埠P2上之信號可共存於第三埠P3上。因此,兩個較短波長頻帶FSR B1及FSR B2用於上行鏈路且兩個較長波長頻帶FSR B3及FSR B4用於下行鏈路。此放鬆對ONU 60中之彩色雙工器之要求。此外,每一ONU 60包含在雙工器62前面之帶通濾波器64以移除來自OLT 50之用於其他服務之不想要之下行鏈路頻道。固定帶通濾波器64使在一特定範圍內之頻率或波長λ通過且拒斥(亦即,衰減)在彼範圍外之頻率或波長λ。因此,每一帶通濾波器64使與所要服務相關聯之所要波長λ通過。在某些實施方案中,在每一ONU 60內側之雙工器62亦用作在接收器Rx前面之帶通濾波器64以移除來自OLT 50之用於其他服務之不想要之下行鏈路頻道。圖5C展示經組態以接收/傳輸第一FSR B1及第三FSR B3上之信號之一實例性ONU 60。而圖5D展示經組態以接收/傳輸第二FSR B2及第四FSR B4上之信號之一實例性ONU 60。 返回參考圖5A及圖5B,系統100可包含與AWG 200之每一輸出220通信之一或多個光學分離器72。光學分離器72進一步擴展網路100。每一光學分離器72將自AWG 200之每一埠220輸出之信號傳達至ONU 60。舉例而言,自AWG 200之第一非邊緣埠220c輸出之具有波長λ1 之第一信號由功率分離器72分離,然後將具有波長λ1 之第一信號傳達至與傳輸具有波長λ1 之第一信號之分離器72光學連接之ONU 60。在此情形中,係使用G-PON MAC之一ONU 60a之第一ONU 60a接收自第一OLT 50aa傳輸之具有波長λ1 之所輸出信號。第二ONU 60k可係使用G-PON MAC之一ONU 60k (如圖5A中所展示)或一10G-PON ONU 60a (如圖5B中所展示)且接收/傳輸來自/去往第二OLT 50ab之具有波長λ2 之一信號,第二OLT 50ab係使用G-PON MAC之一OLT (如圖5A中所展示)或一10G-PON OLT (如圖5B中所展示)。每一ONU 60a、60k包含對ONU 60可接收之波長進行濾波之帶通濾波器64 (圖5C及圖5D)。 參考圖6A及圖6B,為升級或增加經升級TWDM-PON架構100之容量,包含四個埠312a、312b、312c、312d且使用第一埠312a及第二埠312b之頻帶多工器310擴展其第三埠312c及第四埠312d之使用。波長λn,m 表示AWG埠220之FSR m之第n個波長。舉例而言,波長λ1,1 表示用於上游傳輸之第一FSR B1 (或用於下游傳輸之第三FSR B3)之第一波長λ1 。波長λ2,1 表示用於上游傳輸之第一FSR B1 (或用於下游傳輸之第三FSR B3)之第二波長λ2 。圖6A展示類似於圖5A之一TWDM網路100,其具有使用G-PON MAC之兩個OLT 50aa、50ab;而圖6B展示類似於圖5B之一TWDM網路100,其具有使用G-PON MAC之一OLT 50aa及一10G-PON OLT 50ab。 參考圖7,為升級/擴展經升級TWDM-PON 100,ISP將新經升級或經擴展OLT 50,50ba至50bn首先疊置於擴展FSR B2、B4上。然後,終端使用者30可交換其舊型ONU 60與經組態以自擴展FSR B2、B4接收經更新信號之經升級ONU 60。在已用新經升級ONU 60換出所有舊型ONU 60之後,可廢棄舊型OLT 50,50aa至50an,從而使其最初佔用之FSR (例如,FSR B1及FSR B2)可用於升級至甚至更加新的服務。如所展示,舊型系統使用FSR B1及B3且經擴展或經升級系統使用FSR B2及B4;然而,舊型系統可使用FSR B2及B4且經擴展或經升級系統使用FSR B1及B3。 圖7之光學系統300另外包含用於對來自OLT 50之信號(在L藍色頻帶中)進行多工之一下游多工器320c及用於對自ONU 60接收之信號(在C藍色頻帶中)進行解多工之一解多工器320d。頻帶多工器310將上游OLT信號SUM (在C紅色頻帶及C藍色頻帶中)及下游OLT信號SDM (在L紅色頻帶及L藍色頻帶中)多工成一個傳輸信號ST 信號。光學系統300之設計使用一下游多工器320c來將來自一或多個OLT 50ba至50bn之下游信號SD1 至SDn 多工成一個下游信號SDM 且使用一上游解多工器320d來將一經多工上游信號SUM 解多工為至每一OLT 50ba至50bn之一或多個上游信號SU1 至SUn 。 在某一實施方案中,光學系統300可分別在下游及上游方向上包含一第二信號增幅器330b及/或一第二信號前置放大器340b (除類似於上文所闡述之彼等裝置之第一信號增幅器330a及/或一第一信號前置放大器340a之外)。作為光學系統300之一部分之EDFA 330b、340b之使用係可選的且取決於經升級TWDM-PON 100之範圍及大小。 在某些實施方案中,額外對FSR B2、B4允許兩個經升級服務共存於同一光纖設備20上,舉例而言10G-PON及100G pt-2pt。如所展示,1G-PON及10G 點對點服務透過循環AWG 200之第一FSR B1及第三FSR B3來供應,然而10G-PON及100G 點對點服務透過循環AWG 200之第二FSR B2及第四FSR B4來供應。憑藉此設計,每一分離器可連接至一1G-PON ONU或10G-PON ONU,且每一點對點鏈路可係一10G鏈路或100G鏈路。ONU 60使用具有適合調諧範圍之可調諧雷射進行上游傳輸且使用在接收器前面之內建頻帶濾波器來選擇正確服務波長。每一使用者接收之服務因此完全由ONU硬體控制。WDM頻帶多工濾波器74用於分開疊置在同一AWG輸出埠上之點對點服務。 參考圖8A及8B,在某些實施方案中,經升級TWDM-PON 100使用分別用於上游及下游傳輸之C頻帶及L頻帶。C頻帶及L頻帶中之每一者進一步隔離成兩個FSR B1至B4,藍色(短波長)及紅色(長波長)。每一FSR中之波長之數目取決於頻道間距。對於100GHz隔開波長,每一FSR可支援大致20個波長。在某些實例中,使用FSR B1及B3之舊型OLT 50aa至50an使用C頻帶及L頻帶中之每一者之短波長(亦即,藍色) (圖8A)。然而,在其它實例中且如圖8B中所展示,舊型OLT 50aa使用長波長(亦即,紅色)且經擴展或經更新系統使用短波長(亦即,藍色)。用於WDM-PON及TWDM-PON之C頻帶及L頻帶波長提供玻璃光纖之最低損耗,因此提供較長傳輸距離及較低功率傳輸之使用。此外,C頻帶及L頻帶係容易地放大之EDFA,其係最成熟光纖技術。此允許關於較長傳輸距離及超大型CO之實施。此外,由於DWDM經濟系統已經存在於C頻帶及L頻帶中,且容易在C頻帶及L頻帶中獲得WDM及可調諧雷射。 參考圖9A及圖9B,其展示當前TDM架構與經升級TWDM架構100之一比較,圖9A之系統展示一典型光纖設備中之光纖電纜之分支。光纖束之大小隨著光纖越來越靠近於終端使用者ONU 60而變得越來越小。此圖表示較大大小管道用於更靠近於CO 40之較粗電纜。相比之下,小大小管道用於經升級TWDM-PON 100。事實上,一標準單一大小管道可用於所有構造,從而簡化經升級TWDM-PON 100設計。 經升級TWDM-PON 100設計允許較少CO 40之使用,此乃因每一CO 40可伺服於更多ONU。因此,CO 40之集中化簡化經升級TWDM-PON 100操作且節省續生操作成本,此乃因需要較少作用CO及因此較少職員來管理及操作網路。 自CO至終端使用者30,光纖電纜20、22經過若干分支以伺服於不同地區。如圖9A中所圖解說明,一典型網路以一非常寬之主幹開始且分支22變得越來越細,此亦減小所需管道大小。較大管道比較細管道構造起來更慢且更昂貴。事實上,饋送器光纖20、22之大小之減小係足夠顯著的使得可貫穿經升級TWDM-PON 100自CO 40至終端使用者30使用一單一大小管道。此不僅減少光纖設備20、22構造之成本及時間,而且簡化經升級TWDM-PON 100設計(使得僅需要路線設計且不需要擔憂管道大小)。亦可改良網路設計速度及准許過程。 參考圖10,用於升級/擴展一經升級TWDM網路100 (如圖4至圖8及圖9B中所闡述)之一方法1000包含在方塊1002處,在一第一多工器(MUX) 320a處接收以下信號,且在以下信號之間進行多工/解多工:一第一經多工信號SDM ;與具有一第一多工群組(TDM-PON)之一第一光學線路終端信號SD1 及具有一第二多工群組(點對點)之一第二光學線路終端信號SDn 。在方塊1004處,方法1000包含在一第二多工器320b處接收以下信號,且在以下信號之間進行多工/解多工:一第二經多工信號SUM ;與具有該第一多工群組(TDM-PON)之一第三光學線路終端信號SU1 及具有該第二多工群組(點對點)之一第四光學線路終端信號SUn 。在方塊1006處,方法1000包含在與第一多工器320a及第二多工器320b光學連接之一第三多工器310 (例如,BAND MUX)處接收以下信號,且在以下信號之間進行多工/解多工:一饋送器光學信號STa ;與第一經多工信號SDM 及第二經多工信號SUM 。第一光學線路終端信號SD1 (TDM-PON,λ1 )及第二光學線路終端信號SDn (點對點)各自包含在一舊型下游自由頻譜範圍FSR B3或FSR B4中之一波長,且第三光學線路終端信號SU1 及第四光學線路終端信號SUn 各自包含在一舊型上游自由頻譜範圍FSR B1或FSR B2中之一波長。 方法1000可進一步包含在與第一多工器320a及第三多工器310 (BAND MUX)光學連接之一第一放大器330a處放大第一經多工信號SDM ;或在與第二多工器320b及第三多工器310 (BAND MUX)光學連接之一第二放大器340b處放大第二經多工信號SUM 。 在某些實例中,第一多工群組包含一TDM-PON協定且第二多工群組(點對點)包含一WDM-PON協定。第一光學線路終端信號SD1 及第三光學線路終端信號SU1 可各自具有一第一協定(TDM-PON,λ1 ,例如,1G-PON),且第二光學線路終端信號SDn 及第四光學線路終端信號SUn 可各自具有不同於該第一協定之一第二協定(10G 點對點)。 在某些實施方案中,方法1000進一步包含在第一多工器320a (MUX)處接收以下信號,且在以下信號之間進行多工/解多工:第一經多工信號SDM ;與一第五光學線路終端信號SD2 (TDM-PON,λ2,1 )、第一光學線路終端信號SD1 (TDM-PON,λ1,1 )及第二光學線路終端信號SDn (點對點)。第一光學線路終端信號SD1 具有一第一協定(TDM-PON,λ1,1 ,例如,1G-PON),且第五光學線路終端信號SD2 (TDM-PON1 )具有第一多工群組(TDM-PON)及不同於第一協定(TDM-PON,λ1,1 ,例如,1G-PON)之一第二協定(TDM-PON λ2,1 ,例如,10G-PON)。方法1000亦包含在第二多工器320b處接收以下信號,且在以下信號之間進行多工/解多工:第二經多工信號SUM ;與第二光學線路終端信號SDN 、第四光學線路終端信號SU2 (點對點)及一第六光學線路終端信號SU2 (TDM-PON)。第六光學線路終端信號SU2 具有第一多工群組(TDM-PON)及第二協定(TDM-PON λ2,1 ),如圖6B中所展示。 方法1000亦可包含憑藉與第三多工器310 (BAND MUX)光學連接之一饋送器光纖20傳輸饋送器光學信號STa 。方法1000亦包含在與饋送器光纖20光學連接之一AWG 200處接收以下信號,且在以下信號之間進行多工/解多工:饋送器光學信號STa 與光學網路單元信號501 至50n 。每一光學網路單元信號501 至50n 包含在舊型上游自由頻譜範圍FSR 1或FSR 2中之一上游波長及在舊型下游自由頻譜範圍FSR 3或FSR 4中之一下游波長。 另外參考圖7,在某些實施方案中,方法1000包含在與第三多工器310光學連接之一第四多工器320c (MUX)處接收以下信號,且在以下信號之間進行多工/解多工:一第三經多工信號SDm+ ;與具有第一多工群組(TDM-PON)之一第五光學線路終端信號SD1 及具有第二多工群組(點對點)之一第六光學線路終端信號SDn 。方法1000亦包含在與第三多工器310光學連接之一第五多工器320d處接收以下信號,且在以下信號之間進行多工/解多工:一第四經多工信號SUM+ ;與具有第一多工群組(TDM-PON)之一第七光學線路終端信號SU1 及具有第二多工群組(點對點)之一第八光學線路終端信號SUn 。第五光學線路終端信號SD2 及第六光學線路終端信號SDn 各自具有在一升級上游自由頻譜範圍FSR 1或FSR 2中之波長,且第七(TDM-PON)光學線路終端信號SU1 及第八光學線路終端信號SUn (點對點)各自具有在一升級下游自由頻譜範圍FSR 3或FSR 4中之波長。方法1000可進一步包含憑藉與第三多工器310 (BAND MUX)光學連接之一饋送器光纖20傳輸饋送器光學信號STa 。方法1000亦包含在與饋送器光纖20光學連接之一AWG 200處接收以下信號,且在以下信號之間進行多工/解多工:饋送器光學信號STa 與光學網路單元信號501 至50n 。每一光學網路單元信號501 至50n 包含在舊型上游自由頻譜範圍FSR 1或FSR 2中之一舊型上游波長、在舊型下游自由頻譜範圍FSR 3或FSR 4中之一舊型下游波長、在升級上游自由頻譜範圍中之一升級上游波長及在升級下游自由頻譜範圍中之一升級第二下游波長。 已闡述若干個實施方案。不過,將理解,可在不背離本發明之精神及範疇之情況下做出各種修改。因此,其他實施方案亦在以下申請專利範圍之範疇內。舉例而言,申請專利範圍中所引用之動作可以一不同次序來執行且仍達成合意結果。Fiber to the Home (FTTH) delivers a communication signal from a central office (CO) or optical line termination (OLT) to a household or a store via a fiber optic. Referring to Figure 1, today's FTTH systems are primarily provided by a point-to-multipoint time division multiplexed (TDM) passive optical network (PON), which is present in a single point-to-multipoint time division multiplexed passive optical network. Using a passive optical power splitter at one of the remote nodes 70 (RN) to share one of the co-transceivers 50 (OLT) at the CO 40, or through a point-to-point (pt-2-pt) direct connection, where In contrast to the transceiver (TDM transceiver), a home-run fiber is extended back to the CO 40 and each client is terminated by a separate transceiver. The PON 10 provides optical signals from a CO 40 to a number of optical network units (ONUs) 60 that each include a bidirectional optical transceiver at a customer premises and includes an optical transmitter/receiver or transceiver 50. A TDM-PON provides beneficial savings in terms of the number of feeder fibers 20 (between a remote node 70 and the central office 40) and the number of optical transceivers 50 at the CO 40 as compared to a point-to-point home system. At the same time, save the space of the patch panel for terminating the fiber. However, TDM-PON does not scale well with bandwidth growth. The bandwidth of each household is typically oversubscribed as the bandwidth of the optical line termination transceivers at each central office 40 is shared among all ONUs 60 connected to an OLT 50. The point-to-point system provides high frequency bandwidth to the end user 30; however, a large number of backbone fibers 20 and optical transceivers 50 are used point-to-point. Therefore, the point-to-point system does not scale well with the OLT 50 at the CO 40 and the fiber count between the CO 40 and the RN 70, resulting in greater space requirements, higher power, and an increased cost. Fiber to the home (FTTH) is considered the termination state of the broadband access network when the fiber provides virtually unlimited bandwidth. FTTH replaces the copper infrastructure currently in use (eg, telephone lines, coaxial cables, etc.). Multiplex systems are used in optical networks to take advantage of the large bandwidth of optical fibers to achieve one of their full benefits. Multiplexing enables the formation of several virtual channels on a single fiber. Therefore, the multiplexing of several optical signals increases the utility of a network infrastructure. Time Division Multiplex (TDM) is a method used to multiplex several signals onto one high speed digital signal on a fiber link. TDM multiplexes several signals by using different time slots to create different virtual channels. Wavelength Division Multiplexing (WDM) multiplexes these signals by using different wavelengths for different channels; these channels are generated by separate lasers and their traffic typically does not interact. With continued reference to FIG. 1, the CO 40 receives information that can be transmitted to the end user 30, such as video media distribution 42, internet material 44, and voice material 46. The CO 40 includes an optical line termination (OLT) 50 that connects the optical access network to an IP, ATM or SONET backbone, for example. Thus, OLT 50 is the endpoint of PON 10 and translates the electrical signals used by the equipment of a service provider and the fiber optic signals used by PON 10. Additionally, the OLT 50 coordinates the multiplexing between the switching devices at the user end 30. The OLT 50 transmits a fiber optic signal through a feeder fiber 20, and the signal is received by a passive remote node 70 that distributes the signal to a plurality of users 30. In some examples, each CO 40 includes a plurality of OLTs 50, 50a through 50n. Each OLT 50 is configured to provide a signal to a group of users 30. Additionally, each OLT 50 can be configured to provide signals or services in different transport protocols, for example, one OLT provides services in a 1G-PON and another OLT provides services in a 10G-PON (as will be discussed later) ). A multiplexer (MUX) combines several input signals and outputs one of the individual signals to combine the signals. The multiplexed signal is transmitted through a physical conductor (e.g., a single optical fiber 20), which saves the cost of having multiple conductors for each signal. As shown in FIG. 1, the CO 40 multiplexes signals received from a number of sources, such as video media distribution 42, internet data 44, and voice material 46, and multiplexes the received signals into one The multiplex signal is then transmitted to the remote node 70 via the feeder fiber 20. In addition, the CO 40 multiplexes the signals of each OLT 50 and then transmits the multiplexed signals to the set of remote nodes via the feeder fibers 20. The CO 40 includes a carrier source (e.g., a laser diode or a light emitting diode) for generating an optical signal that is carried by the multiplex signal to the end user 30. At the receiver end (i.e., ONU 60 at the user end), an inverse procedure occurs using a demultiplexer. The demultiplexer receives the multiplexed signal and splits it into separate original signals that are initially combined. In some instances, a photodetector converts optical waves back to their electrical form and is located at a remote node or at an end user 30 (eg, data on a network, converted to current using a microphone, and used) The loudspeaker is converted back to its original physical form of sound waves, converted to electrical current using a video camera and converted back to its physical form using a television). In TDM PON, signal demultiplexing occurs after the photodiode in the domain. One of the transceivers or ONUs 60 on the user side includes a carrier source (eg, a laser diode or a light emitting diode) for generating an optical signal to be sent from an end user 30. The information is carried to the CO 40. A laser is a high frequency generator or oscillator that requires one of the tuning, feedback, and decision frequency tuning mechanisms. The laser emits light in a homogenous manner such that the laser output is a narrow beam of light. In some embodiments, a laser includes a plurality of mirrors that provide a medium of amplification and frequency and provide feedback. Photons bounce off the mirror through the medium and return to another mirror to bounce for further magnification. One and sometimes two mirrors may partially transmit light to allow for a fraction of the light produced. A laser diode system has one of the active dielectrics of a pn junction electrically excited semiconductor laser. The pn junction is formed by doping (i.e., introducing impurities into a pure semiconductor to change its electrical properties). As shown, a feed fiber 20 is employed from CO 40 to a remote node 70, wherein the signals are separated and spread, for example, to optical network units 60a through 60n. Referring to FIG. 2A, the most commonly deployed TDM-PON system is a GPON system standardized by the ITU (International Telecommunication Union) and an EPON system standardized by the IEEE (Institute of Electrical and Electronics Engineers). A GPON system provides a 2.5 Gb/s downstream bandwidth and a 1.25 Gb/s upstream bandwidth shared among the subscribers 30 on the feeder fiber 20 and is coupled to the same OLT transceiver 50. GPON systems are mature and very cost effective. The difficulty of scaling the bandwidth of the TDM PON is due to the fact that the optical transceivers of both the OLT 50 and the ONU 60 need to operate with the aggregate bandwidth of all ONUs 60 sharing the same OLT 50. A TDM-PON can typically have a power separation ratio of 1:16 to 1:64. The average bandwidth per user and PON range is inversely scaled relative to the separation ratio. The TDM-PON architecture includes two wavelengths for separating the upstream transmission from the downstream transmission. In both G-PON and E-PON, the 1310-nm wavelength is used for upstream transmission from the ONU 60 at the customer premises to the OLT 50 at the CO 40 and the 1490-nm wavelength is used for the OLT 50 from the CO 40 The transmission of the ONU 60 at the location of the user 30. The upstream and downstream wavelengths are multiplexed on a single fiber 20, 22 by an optical wavelength duplexer 52 in front of a laser diode (LD) transmitter 54 and a photodetector (PD) receiver 56. . The optical signals from OLT 50 are separated in the field by a 1:N power splitter 72 to broadcast signals to a plurality of ONUs 60 that are servoed to different users 30. The distance between the OLT 50 and the ONU 60 is limited by the OLT/ONU transmitter power and receiver sensitivity as well as the separation loss. The OLT transceiver 50 is shared among the users 30 on the same power splitter 72 using a TDM protocol, thereby simplifying the cost of fiber termination at the CO 40 and spreading the transceiver 50 across multiple ONUs 60. Typical GPON and EPON designs use a separation ratio of 1:16, 1:32 or 1:64 and a transmission distance of up to 20km. An alternative FTTH architecture is the WDM-PON architecture shown in Figure 2B. A wavelength division multiplex (WDM) PON gives each user 30 a dedicated wavelength along each direction of transmission. In a WDM-PON network, a different wavelength λ is assigned to each user 30 for upstream transmission of data to the CO 40. Thus, each ONU 60 uses a wavelength specific transmitter 62 (such as a tunable wavelength laser) to transmit data to the CO 40 at different wavelengths λ. The tunable wavelength laser can be tuned for deployment for each particular path 22 (corresponding to a user 30), which allows one type of transceiver 60 to be used by all users 30. The WDM-PON system provides a larger overall system capacity FTTH network by multiplying the total capacity channel capacity by the number of wavelengths used. In this architecture, each customer ONU 60 has one of the OLT 50 transmitters at the CO 40. Thus, for 32 customers with 32 ONUs 60, the CO 40 has 32 OLTs 50 each transmitting a signal to an ONU 60. Signals from a CO 40 to an individual ONU 60 are carried using different wavelengths, and a wavelength multiplexer 200, 200a (typically an array of waveguide grating routers (AWG)) is used in the field in the fiber optic equipment 20, 22 work. Another wavelength multiplexer/demultiplexer 200, 200b inside the CO 40 separates the optical wavelengths in the feeder fiber 20 and connects the optical wavelengths to individual "color" OLT transceivers 50, 50a through 50n. Field AWG 200 typically has one of a plurality of free spectral ranges (FSR) cycling devices and the upstream and downstream wavelengths are separated by FSR, as shown in Figures 3A-3C. In Figure 2B, the two wavelength multiplexers 200 in the field and in the CO cycle the AWG. The TDM architecture and the WDM architecture can be combined into a time wavelength division multiplexing PON (TWDM-PON). In an example of a TWDM-PON architecture (as proposed in Figure 2C and proposed in the NG-PON2 effort (Next Generation PON2) proposed by ITU-T SG-15), one option of NG-PON2 is used. A four-wavelength integrated OLT 50. In NG-PON2, the OLT 50 uses four downstream transmitter lasers (LD-1, LD-2, LD-3, LD-4) and four upstream receivers combined with the duplexer 52 inside the OLT 50. (PD-1, PD-2, PD-3, PD-4). The NG-PON 2 employs one of the fiber optic devices 20 that is compatible with conventional TDM-PON, so all four transmission wavelengths in the OLT 50 are broadcast to each ONU 60 having only one receiver 66. Therefore, the ONU 60 needs to use a tunable receiver 66 to select individual downstream wavelengths. At the same time, the ONU 60 is also equipped with a tunable transmitter 65 to tune to one of the four possible receive wavelengths from an NG-PON2 OLT 50. The NG-PON2 ONU 60 needs to have a tunable transmitter 65 laser compared to the WDM-PON in Figure 2B where only the ONU transmitter 65 laser needs to be tunable (for inventory and easy operation). Both receivers 66 can be tuned to transform into more expensive hardware. In addition, NG-PON2 must also overcome the additional losses of power splitter 72 (the AWG 200 inherently has less than the power splitter loss for large turns compared to the AWG 200 used in WDM-PON) and ONU 60 Tunable filter loss. The goal of NG-PON2 is to increase system capacity by increasing the TDM rate (10 Gb/s per wavelength) and using multiple wavelengths to achieve more user 30 and/or higher frequency wide applications. However, this design faces power budget and cost challenges. Another challenge for NG-PON 2 is that both OLT 50 and ONU 60 need to manage both wavelength slots and time slots; and a new MAC layer protocol is required. One of the data link layers (layer 2) MAC layer data communication protocol reduction. The MAC software provides addressing and channel access control mechanisms to allow several terminals or network nodes to communicate with each other within multiple access networks. A media access control system implements the hardware of the MAC. The rapid increase in Internet applications is making the bandwidth available from current TDM-PON systems tense. Although the proposed WDM-PON and TWDM-PON solutions address access capacity issues to some extent, they are more expensive to deploy. In order to effectively overcome the long-term increase in bandwidth demand cost, one of the higher ONU counts per feeder fiber 20 shown in FIG. 3A is updated to accommodate the increase in bandwidth requirements and access ratios of the TWDM-PON architecture 100. The TWDM-PON architecture 100 (as shown and described with respect to Figures 3A-8, 9B, and 10) combines the cost advantages of supporting multiple users 30 (TDM-PON) on a single wavelength with the wavelength of WDM-PON Flexibility, this allows wavelengths to be specific to a particular user or application. The upgraded TWDM-PON architecture 100 uses one of the TDM and WDM technology\architectures set forth above (with respect to Figures 2A, 2B, and 2C) to enable the number of users 30 and the capacity that can be supported on a single PON. Multiply. The upgraded TWDM-PON 100 reduces the cost and construction time of the fiber infrastructure and shortens the network design cycle. In addition, the upgraded TWDM-PON 100 provides a thinner fiber bundle 20, 22 that will be used between the CO 40 and the RN 70 and between the RN 70 and the ONU 60, which results in a smaller pipe that is easier to deploy. In addition, the upgraded TWDM-PON 100 increases the coverage distance (ie, the length of the feeder fibers 20, 22) and achieves an excellent PON design, which allows the upgraded TWDM-PON 100 to be combined and reduces the number of COs 40 and reduces the network Long-term recurring costs in operation. In addition, the upgraded TWDM-PON 100 does not require a tunable receiver at the ONU 60, which significantly reduces the cost of the network 100. The upgraded TWDM-PON 100 can achieve a similar overall capacity (NG-PON2, 40 Gbps) of the feed fibers shown in Figure 2C with 16 wavelengths and current GPON speeds (2.5 Gbps downstream and 1.25 Gbps upstream). In addition, the upgraded TWDM-PON 100 is preferably scaled with the transmission distance on the feeder fibers 20, 22, and has a better power budget and dispersion tolerance (compared to NG-PON2). As previously explained, the TDM-PON uses one of the optical power splitters 72 at the RN 70 to connect multiple ONUs 60 to each OLT 50. When a large number of wavelengths are transmitted via an optical power splitter 72 in a TWDM-PON, each ONU 60 includes a blocking filter to block the band wavelength. In some examples, a tunable ONU 60 is used and includes a tunable narrowband filter. The use of a tunable ONU 60 increases the cost per ONU 60, which results in an increase in the cost of the network 100. In addition, the power splitter 72 at the RN 70 may not achieve a large separation ratio because the total power loss of a large splitter is difficult to overcome by the transmitters 54, 65 and receivers 56, 66 at the OLT 50 and ONU 60. of. Therefore, in the upgraded TWDM-PON architecture (Fig. 3A), it is desirable to use a wavelength selective (de)multiplexer such as a cyclic arrayed waveguide grating router (AWG) 200 to greatly increase the maximum separation ratio and remove the ONU The need for a narrowband filter at 60, thereby reducing cost (by not using a tunable receiver). In addition, the circulating AWG 200 decouples losses from several turns, thereby achieving a higher separation ratio with lower losses. The use of multiple TDM PONs of one AWG 200 (eg, 1G-PON and 10G-PON) can be considered a TWDM-PON due to the use of WDM to increase the overall capacity of the network. 3A-3E illustrate an exemplary arrayed waveguide grating 200 (AWG) for use in an upgraded TWDM-PON architecture 100. An AWG 200 can be used to demultiplex an optical signal in the upgraded TWDM-PON 100 (for example, at the RN 70 or at the OLT 50). The AWG 200 can multiplex a large number of wavelengths into one fiber, thus increasing the transmission capacity of the optical network 100. The AWG 200 can therefore multiplex channels of several wavelengths onto a single fiber at one of the transmission ends, and conversely, it can also demultiplex multiple wavelength channels at the receiving end of an optical communication network. . An AWG 200 system is commonly used in optical networks as one of a wavelength multiplexer and/or a demultiplexer passive planar lightwave circuit device. The N x N AWG 200 also has wavelength routing capabilities. If a system has N equidistant wavelengths λ N An N x N AWG 200 can be designed with one of the matching wavelength spacings. The N x N AWG 200 routes the different wavelengths at an entrance port 210 to different exit ports 220 such that all N wavelengths are sequentially mapped to all N exit ports 220 N . The routing of the same N wavelengths at the two consecutive inlet ports 210 shifts the wavelength map by one exit side. In addition, the wavelength channel on either inlet is repeated in FSR. In some embodiments, AWG 200 receives a first multiplexed optical signal via a first fiber at a first input 210a (eg, input 1). The AWG 200 demultiplexes the received signals and outputs a demultiplexed signal through its outputs 220, 220a through 220n (e.g., outputs 1 through 32). The AWG 200 is essentially cyclic. The wavelength multiplexing and demultiplexing properties of the AWG 200 are repeated over a wavelength period called the free spectral range (FSR). A plurality of wavelengths separated by a free spectral range (FSR) are transmitted along each turn 220. Thus, by utilizing multiple FSR cycles, different layer services can coexist on the same fiber optic device 20, 22. In certain embodiments, to construct a low loss cycle AWG 200, the star coupler and the waveguide grating should be carefully designed. Array waveguides in fiber gratings should be properly engineered. The phase difference between the waveguides in the grating determines one of the FSRs B1 to B4 of the AWG 200. The channel-by-channel loss-volume curve in an FSR B1 to B4 is related to the eigenmode of the output channel waveguide (the natural vibration of the AWG 200) and the overlap integral between the beamlets radiated from the waveguide arm in the grating. The end channels of any of the FSRs B1 through B4 typically have a large loss and tradeoff passband. Usually the best system design has about four or six more channels than the desired number of channels, so four or six bandwidth channels are wasted each cycle. The disadvantage of using a circular AWG 200 with one of the small FSRs is that the channel spacing can vary slightly between cycles. The wavelength spacing with respect to frequency can be relatively wide for shorter wavelengths. The waveguide arm phase difference, material dispersion (i.e., refractive index that varies with wavelength), and waveguide profile design all contribute to variations in channel spacing across the FSR. Channel spacing can be optimized by proper material selection and waveguide design, but it is very difficult to form a uniform frequency spacing across multiple FSRs. Thus, in some instances, a larger AWG 200 is used in combination with separator 72 (see, for example, Figure 4). AWG 200 can have multiple cycles of optical wavelength range with repetitive multiplex and demultiplexing properties. As shown in Figure 3C, each cycle B1 through B4 is commonly referred to as an FSR. A multi-cycle AWG 200 transmits multiple wavelengths λ separated by FSR along each of 220, 220a to 220d 1 To λ 16 . In most PON systems, different wavelengths are used upstream and downstream of the signal due to the near-far effect. The near-far effect is one in which a receiver picks up a strong signal and thereby makes it impossible for the receiver to detect a condition of a weaker signal. This allows the use of one of the wavelength selective devices, such as a thin film filter (TFF), to help achieve the required isolation between the uplink and the downlink to overcome the near-far effect. Therefore, it is assumed that a WDM-PON platform uses two FSR cycles of the cyclic AWG 200 for each layer of service (one cycle for downstream transmissions and another cycle for upstream transmissions). To add a second platform to a network 100, four available cycles will allow simultaneous use of both platforms. This system 100 will deliver signals from each of the two platforms to the user 30, and each AWG output 220 will output/receive signals from both platforms. Each AWG output 220 is optically coupled to at least one ONU 60, and then each ONU 60 will receive signals from both platforms. To further illustrate the use of the two platforms by using a recirculating AWG 200, FIG. 3C shows an AWG 200 having one input 210a and four outputs 220, 220a through 220b. The cyclic AWG 200 receives four FSRs (bands) B1 through B4, as shown in Figure 3D. FSR B1 and B2 are used upstream and FSR B3 and B4 are used downstream. FSR B1 contains wavelength λ 1 To λ 4 , FSR B2 contains wavelength λ 5 To λ 8 , FSR B3 contains wavelength λ 9 To λ 12 And FSR B4 contains wavelength λ 13 To λ 16 Where λ 1 < λ 2 < λ 3 <....< λ 15 < λ 16 . When the circulating AWG 200 receives the wavelength λ at its input 210 1 To λ 16 Time, each wavelength λ 1 To λ 16 Output from a different output 220 in a round-robin fashion. Therefore, the first wavelength λ of the first FSR B1 1 Output through the first output 220a of the circulating AWG 200, the second wavelength λ of the first FSR B1 2 Outputting through the second output 220b of the circulating AWG 200, the third wavelength λ of the first FSR B1 3 Output through the third output 220c of the circulating AWG 200, and the fourth wavelength λ of the first FSR B1 4 The first cycle is completed by outputting the fourth output 220d of the circulating AWG 200. When the first wavelength of the second FSR B2 is λ 5 The second cycle begins when the first output 220a of the circulating AWG 200 is output, and the second wavelength of the second FSR B2 6 Output through the second output 220b of the circulating AWG 200, the third wavelength λ of the second FSR B2 7 Output through the third output 220c of the circulating AWG 200, and the fourth wavelength λ of the second FSR B2 8 The second cycle is completed by outputting the fourth output 220d of the circulating AWG 200. The third cycle is the first wavelength λ of the third FSR B3 9 The second wavelength λ of the third FSR B3 is started by the output of the first output 220a of the circulating AWG 200. 10 Output through the second output 220b of the circulating AWG 200, the third wavelength λ of the third FSR B3 11 Output through the third output 220c of the circulating AWG 200, and the fourth wavelength λ of the third FSR B3 12 The third cycle is completed by outputting the fourth output 220d of the circulating AWG 200. The fourth cycle is the first wavelength λ of the fourth FSR B4 13 The second wavelength λ of the fourth FSR B4 is started by the output of the first output 220a of the circulating AWG 200. 14 Output through the second output 220b of the circulating AWG 200, the third wavelength λ of the fourth FSR B4 15 Output through the third output 220c of the circulating AWG 200, and the fourth wavelength λ of the fourth FSR B4 16 The fourth cycle is completed by outputting the fourth output 220d of the circulating AWG 200. In this case, each FSR B1 to B4 contains four wavelengths λ 1 To λ 16 (FSR B1 contains wavelength λ 1 To λ 4 , FSR B2 contains wavelength λ 5 To λ 8 , FSR B3 contains wavelength λ 9 To λ 12 , FSR B4 contains wavelength λ 13 To λ 16 And the cyclic AWG 200 contains four outputs 220. Therefore, one wavelength from each of the FSRs B1 to B4 is outputted to each AWG output 220. In other words, each AWG output 220 outputs a wavelength from one of the FSRs B1 to B4. As illustrated, a first platform may use the first FSR B1 for upstream transmissions and a third FSR B3 for downstream, and the second platform may use the second FSR B2 for upstream transmissions and the fourth FSR B4 for downstream. Similarly, network 100 can support three platforms by using six FSR cycles, thereby providing three platforms to each user 30. The network can also provide four platforms by using eight FSR cycles, five platforms by using 10 FSR cycles, and so on. In a TWDM-PON architecture, each wavelength λ is responsible for multiple users 30, so network 100 can be configured to simultaneously operate PONs of different rates to supply different layer services (eg, 1G-PON and 10G-PON) ). For example, a service provider at the CO 40 may want to provide a business advancement service on a higher rate PON and a standard residential service on a lower rate PON. Referring to the example discussed with respect to FIG. 2C, the Business Advanced Edition service may use one of the first FSR B1 and the third FSR B3 or the second FSR B2 and the fourth FSR B4, and the low rate PON may use the first FSR B1 And the other of the third FSR B3 or the second FSR B2 and the fourth FSR B4. The services received by user 30 are determined by their respective ONUs 60, which are part of Customer Premises Equipment (CPE). The CPE can be configured to receive one or the other of a Business Advanced Edition service or a low rate service. In some instances, if user 30 wants to upgrade from a low rate service to a business upgrade service, user 30 must change/upgrade its CPE to be able to receive the upgraded/quality signal from the CO 40 transmission. Figure 3E shows that there are only four wavelengths each (λ 1 To λ 4 And λ 5 To λ 8 ) (of a total of eight wavelengths) of one of the two FSRs B1, B2. As shown, the same wavelength is used for the uplink and downlink. While this is atypical for most commercial PON systems today, there are many proposals for this technology, including their proposals to use reflective semiconductor optical amplifiers at the ONU 60. In addition, the signal at the entrance to the AWG 200 is for eight different TDM-PONs at eight different wavelengths (λ 1 To λ 4 And λ 5 To λ 8 ) Upload both the uplink signal and the downlink signal. The AWG 200 is cycled at the RN 70 using one of the FSRs having one of four wavelengths, thus transmitting two TDM-PON services along each of the exit ports 220a to 220d of the AWG. This system therefore works exactly the same as the system shown in Figure 3D, except that wavelength selective techniques such as TFF cannot be used as duplexers at the OLT 50 or ONU 60. Instead, an orientation device such as an optical circulator must provide all of the required optical isolation between the input and output. A wavelength selective component will still be used at both OLT 50 and ONU 60 to select the free spectral range. If this technology will become readily available in the future, after deploying a field AWG with the wavelength plan set forth in Figure 3D, it may be desirable to upgrade the service to use the same wavelength for upstream and downstream, thus implementing to each AWG exit埠Up to four different services. 4 shows a schematic diagram of one of the higher order architectures of the TWDM network 100 from the CO 40 to the ONU 60 associated with the end user 30. TDM-PON systems such as G-PON or E-PON are typically deployed commercial FTTH systems due to their cost and bandwidth efficiency. The system typically uses ratios such as 1:16, 1:32, and 1:64. In TDM-PON, increasing the separation ratio reduces the overall OLT cost and reduces the feeder fiber strands 20, 22, but also reduces the capacity and range to each user 30, since larger separators have a Great loss. For example, having a 1:32 separation ratio of one of 20,000 passes CO 40 means that a minimum of 625 fiber strands 20 must be used from CO 40 to RN 70. 3125 fibers 20 are required for a very large CO 20 of 100,000 channels. A larger service area means that the average distance between the user 30 and the CO is greater, thereby further increasing the amount of fiber required in the network. This large number of feeder fibers 20 makes the large CO 40 unattractive due to the high fiber cost and increased average time of recovery in the event of fiber cutting in one of the thick fiber optic cables 20. In addition, a larger sized pipe is used underground to accommodate the coarse fiber 20. For airborne fiber construction, thick fiber means heavy load on the pole. Thus, the upgraded TWDM-PON 100 reduces the number of feeder fibers 20, 22 from the CO 40 to serve the same number of users 30 by combining both TDM and WDM with a scalable TWDM architecture. As shown in FIG. 4, the upgraded TWDM-PON 100 includes a plurality of TDM-PONs stacked on a single feeder cable 20 using wavelength division multiplexing. Thus, if 10 pairs of wavelengths (covered by two FSRs of a ten-turn AWG) are used, then 10 TDM-PONs can be multiplexed onto a single feeder fiber 20, thereby enabling a feeder from a CO 40 The number of optical fibers 20 is reduced by a factor of ten. In some instances, an AWG 200 is used in the field to first separate the wavelength pairs. Each output 埠 220 of the AWG 200 is followed by a power splitter 72 to separate the TDM signals to the individual ONUs 60, as in a conventional TDM PON (Fig. 2A). The total number of users 30 or ONUs 60 per feeder fiber 20 is M × N ,among them M Is the number of outputs 埠 220 of the WDM separator (eg, AWG 200) and N The TDM power separation ratio of the power splitter 72. Therefore, the number of fibers, the size of the pipe, and the mean time to repair (MTTR) of a fiber cut are reduced. M One factor. FIG. 5A shows an upgraded TWDM architecture 100 representing a TDM-PON using a 1G-PON. However, the G-PON wavelength is shifted. "1G-PON λ1" at CO 40 means having one of the modified optical layers G-PON OLT 50, such that G-PON OLT 50 is transmitted on wavelength λ1 of FSR B1 upstream of cyclic AWG 200 and from corresponding downstream FSR B3 The pair is received at a wavelength λ9. In some examples, the 1G-PON OLT 50 transmits over the wavelength λ5 of the upstream FSR B2 of the circulating AWG 200 and is received from the pair of wavelengths λ13 in the corresponding upstream FSR B4. When the CO 40 includes more than one OLT 50, the signal of each OLT is signaled to other OLTs (e.g., the optical system 300 including the multiplexers 310, 320) prior to transmitting the signals of each OLT to the remote node 70. Do multiplex. In addition, FIG. 5A shows a discrete OLT transceiver 50 that allows a TWDM system to be piggybacked onto a commercial G-PON OLT chassis. Thus, to upgrade the network, an ISP switches the G-PON OLT transceiver to the transceiver 50 designed with custom wavelengths and plugs into the multiplexers 310, 320 and amplifier 330 (if needed). Discrete OLT transceiver 50 (as opposed to an integrated array OLT transceiver used in a WDM-PON) allows flexibility in using different protocols (eg, 1 G-PON and 10 G-PON), where each protocol is in one At different wavelengths (see Figure 5B). Referring to Figure 5B, in some examples, the wavelength λ1,1 of the cyclic AWG 200 is for the 1G-PON protocol (OLT 50aa), whereas the wavelength λ2,1 is for the 10G-PON protocol (OLT 50ab). Therefore, the ONUs 60 connected to the λ1,1 of the AWG output port 220 and suspended outside the power splitter 72 are all tunable 1G-PON-ONU 60 and connected to the λ2 of the AWG output port 220, and the ONUs 60 of all 1 are tunable. 10G-PON ONU. Referring back to Figures 5A and 5B, in some embodiments, an optical system 300 is included for separate transmission connections (downstream signal S DM ) and receiving connection (upstream signal S) UM A duplex fiber, which is different from a conventional G-PON OLT transceiver that includes a single fiber interface with one of the upstream and downstream signals separated by one of the upstream and downstream signals within the OLT 50. The optical system 300 includes a band multiplexer 310, a downstream multiplexer 320a for multiplexing signals from the OLT 50 (in the L red band), and a signal for receiving from the ONU 60 (in C red) In the frequency band, one of the demultiplexing solutions multiplexer 320b is performed. Band multiplexer 310 acts as a duplexer because it will upstream OLT signal S DM (in the C red band) and the downstream OLT signal S UM (in the L red band) multiplexed into a transmission signal S T signal. The design of optical system 300 uses a downstream multiplexer 320a to pass downstream signals S from one or more OLTs 50. D1 To S Dn Multiple work into a downstream signal S DM And using an upstream demultiplexer 320b to pass the multiplex upstream signal S UM Solving multiplexes to one or more upstream signals S of each OLT 50 U1 To S Un . In one embodiment, optical system 300 can include a signal amplifier 330 and/or a signal preamplifier 340 in the downstream and upstream directions, respectively. Signal booster 330 and/or signal amplifier 340 can be an erbium doped fiber amplifier (EDFA). An EDFA is an optical repeater device used to increase the intensity of an optical signal carried through a feeder fiber. The EDFA signal amplifier 330 is optically coupled to the downstream multiplexer 320a and the band multiplexer 310 and enables the multiplexed downstream signal S by means of a higher power EDFA DM Power increase, followed by multiplex downstream signal S DM Entering the long fiber feeder 20 or one of the devices with large losses (eg, a power splitter), it reaches the ONU 60. The EDFA signal amplifier 340 is optically coupled to the upstream demultiplexer 320b and the band multiplexer 310 and causes the multiplexed upstream signal S UM The increase in power. The EDFA signal amplifier 340 is positioned such that the multiplexed upstream signal S UM Amplifying the multiplexed upstream signal S as a weak signal arrives at the optical system 300 UM . Since the EDFA signal booster 330 includes signals S from multiple OLTs 50 D1 To S Dn Multi-process downstream signal S DM Amplifying, and the EDFA signal amplifier 340 amplifies the signal S containing the plurality of OLTs 50 U1 To S Un Multi-process upstream signal S UM Thus, the cost of each EDFA 330, 340 is then shared among all TWDM wavelengths λ, resulting in a cost effective upgraded TWDM-PON 100 architecture. In some examples, optical system 300 as illustrated uses a 1:32 way splitter 72 to extend the range of feeder fibers 20 from CO 40 to one of 50 kilometers. To achieve further scope, another set of EDFAs 330, 340 can be placed at the RN 70. However, placing the EDFAs 330, 340 at the RN 70 will change the RN 70 from a passive RN 70 to a powered RN 70. The use of EDFAs 330, 340 as part of optical system 300 is optional and depends on the scope and size of the upgraded TWDM-PON 100. In addition, the EDFA relaxes the requirements for the OLT 50 and ONU 60 transceivers, thereby reducing the required transmitter laser power and receiver sensitivity for both the ONU 60 and the OLT 50. With proper link design, EDFA's shared cost improves transceiver yield and reduces overall upgraded TWDM-PON 100 architecture costs. In some embodiments, the ONU 60 of the network 100 includes a tunable transmitter laser. Additionally, one or more of the output dies 220 of the AWG 200 can be optically coupled to a power splitter 72 for communicating an output signal from the AWG 200 to the plurality of ONUs 60. Connecting the power splitter 72 to the AWG 200 to achieve a separation over the overall loss of the power splitter provides the upgraded TWDM-PON 100 and thus increases the scalability of the upgraded TWDM-PON 100. As illustrated, the ONU 60 can include a tunable laser; however, a non-tunable laser can also be used. Since each ONU 60 receives/transmits a signal at a particular wavelength λ, a laser is used to transmit a signal at the correct wavelength. Thus, an ISP can use multiple ONUs each having a different laser to accommodate the different wavelengths received. In some embodiments, the edge outputs 埠 220a, 220b, 220m, 220n of the AWG 200 are connected to a point-to-point (point-to-point) WDM-PON transceiver at the ONU 60. Since the upgraded TWDM-PON 100 is configured to use discrete transceivers at the CO 40, the transceiver 50 can be point-to-point WDM or TDM due to the ease of mixing wavelength-specific TDM-PONs with point-to-point WDM-PONs on the same fiber optic device 20. transceiver. In some examples, the upgraded TWDM-PON 100 can include 20 wavelengths. The ISP can reserve 16 wavelengths for the TDM-PON and reserve four edge wavelength channels for the point-to-point pure WDM transmission (ie, edge outputs 埠 220a, 220b, 220m, 220n), and two edge wavelength channels at each end of the AWG. . The edge channels of an AWG 200 (i.e., edge outputs 埠 220a, 220b, 220m, 220n) typically suffer from higher losses. Thus, these channels (i.e., edge outputs 埠 220a, 220b, 220m, 220n) are used for point-to-point connections that do not pass through the lossy power splitter 72 (resulting in more power loss). Point-to-point WDM-PON channels can be used to carry premium services, such as 10Gbps enterprise network connections that require guaranteed bandwidth. As previously stated, to upgrade or add upgraded TWDM-PON 100 capacity, it is often desirable to have multiple services or platforms stacked on the same fiber 20. For example, in the TWDM-PON architecture 100, multiple services are stacked by using a different pair of wavelengths (one for the upstream and one for the downstream) for each platform that is stacked as illustrated with respect to Figure 3D. . As shown, the ISP updates or extends the upgraded TWDM-PON 100 with repeated FSRs B1 through B4 of the cyclic AWG 200. Referring back to FIG. 3D, four FSRs B1 through B4 are shown, and the upgraded TWDM-PON 100 can use the first FSR B1 (upstream FSR) and the third FSR B3 (downstream FSR) for existing services, and is used for upgraded or extended services. Second FSR B2 (upstream FSR) and fourth FSR B4 (downstream FSR). Or the upgraded TWDM-PON 100 can use the second FSR B2 (upstream FSR) and the fourth FSR B4 (downstream FSR) for existing services, and use the first FSR B1 (upstream FSR) and the third FSR for upgraded or extended services. B3 (downstream FSR). The FSRs B1 to B4 are staggered such that the upstream and downstream wavelengths are separated from each other, which makes the duplexer inside the ONU 60 easy to design. Each ONU receiver (of the transceiver) is equipped with a band filter to select the desired FSRs B1 through B4 for the particular service of interest. Therefore, a tunable receiver is not required at the ONU 60. Referring to FIGS. 5C and 5D, each ONU 60 includes a duplexer 62 that multiplexes the first 埠P1 and the second 埠P2 of the duplexer into a third 埠P3. The signals on the first 埠P1 and the second 埠P2 occupy the disjoint frequency band, that is, on different FSRs B1 to B4; therefore, the signals on the first 埠P1 and the second 埠P2 can coexist on the third 埠P3 . Therefore, two shorter wavelength bands, FSR B1 and FSR B2, are used for the uplink and two longer wavelength bands, FSR B3 and FSR B4, are used for the downlink. This relaxes the requirements for the color duplexer in the ONU 60. In addition, each ONU 60 includes a bandpass filter 64 in front of the duplexer 62 to remove unwanted downlink channels from the OLT 50 for other services. The fixed bandpass filter 64 passes frequencies and wavelengths λ within a particular range and rejects (i.e., attenuates) frequencies or wavelengths λ outside of the range. Thus, each bandpass filter 64 passes the desired wavelength λ associated with the desired service. In some embodiments, the duplexer 62 inside each ONU 60 also acts as a bandpass filter 64 in front of the receiver Rx to remove unwanted downstream links from the OLT 50 for other services. Channel. FIG. 5C shows an exemplary ONU 60 configured to receive/transmit one of the signals on the first FSR B1 and the third FSR B3. While FIG. 5D shows an exemplary ONU 60 configured to receive/transmit one of the signals on the second FSR B2 and the fourth FSR B4. Referring back to FIGS. 5A and 5B , system 100 can include one or more optical splitters 72 in communication with each output 220 of AWG 200 . Optical splitter 72 further expands network 100. Each optical splitter 72 communicates a signal output from each of the AWGs 200 to the ONU 60. For example, the first non-edge 埠 220c output from the AWG 200 has a wavelength λ 1 The first signal is separated by a power splitter 72 and will then have a wavelength λ 1 The first signal is transmitted to and transmitted with a wavelength λ 1 The first signal separator 72 is optically coupled to the ONU 60. In this case, the first ONU 60a, which uses one of the G-PON MACs ONU 60a, receives the wavelength λ transmitted from the first OLT 50aa. 1 The output signal. The second ONU 60k may use one of the G-PON MACs ONU 60k (as shown in FIG. 5A) or a 10G-PON ONU 60a (as shown in FIG. 5B) and receive/transmit from/to the second OLT 50ab. Wavelength λ 2 One of the signals, the second OLT 50ab is one of the G-PON MACs (as shown in Figure 5A) or a 10G-PON OLT (as shown in Figure 5B). Each ONU 60a, 60k includes a bandpass filter 64 that filters the wavelengths that the ONU 60 can receive (Figs. 5C and 5D). Referring to FIG. 6A and FIG. 6B, in order to upgrade or increase the capacity of the upgraded TWDM-PON architecture 100, the band multiplexer 310 including four ports 312a, 312b, 312c, 312d and using the first port 312a and the second port 312b is extended. The use of the third 312c and the fourth 312d. Wavelength λ n,m Indicates the nth wavelength of the FSR m of the AWG 埠220. For example, wavelength λ 1,1 Indicates the first wavelength λ of the first FSR B1 for upstream transmission (or the third FSR B3 for downstream transmission) 1 . Wavelength λ 2,1 Indicates the second wavelength λ of the first FSR B1 for upstream transmission (or the third FSR B3 for downstream transmission) 2 . 6A shows a TWDM network 100 similar to FIG. 5A with two OLTs 50aa, 50ab using a G-PON MAC; and FIG. 6B shows a TWDM network 100 similar to FIG. 5B with G-PON One of the MAC OLT 50aa and one 10G-PON OLT 50ab. Referring to Figure 7, for upgrading/expanding the upgraded TWDM-PON 100, the ISP will first stack the newly upgraded or extended OLT 50, 50ba to 50bn first on the extended FSR B2, B4. The end user 30 can then exchange its legacy ONU 60 with the upgraded ONU 60 configured to receive the updated signals from the extended FSRs B2, B4. After all the old ONUs 60 have been swapped out with the newly upgraded ONU 60, the old OLT 50, 50aa to 50an can be discarded, so that the FSR (for example, FSR B1 and FSR B2) that was originally occupied can be used to upgrade to even more New service. As shown, legacy systems use FSR B1 and B3 and use FSR B2 and B4 in an extended or upgraded system; however, older systems can use FSR B2 and B4 and use FSR B1 and B3 in an extended or upgraded system. The optical system 300 of Figure 7 additionally includes a downstream multiplexer 320c for multiplexing the signals from the OLT 50 (in the L blue band) and for receiving signals from the ONU 60 (in the C blue band) Medium) Demultiplexing one of the multiplexers 320d. Band multiplexer 310 will upstream OLT signal S UM (in C red band and C blue band) and downstream OLT signal S DM (in the L red band and the L blue band) multiplexed into one transmission signal S T signal. The optical system 300 is designed to use a downstream multiplexer 320c to pass downstream signals S from one or more OLTs 50ba to 50bn. D1 To S Dn Multiple work into a downstream signal S DM And using an upstream demultiplexer 320d to pass the multiplex upstream signal S UM Demultiplexing to one or more upstream signals S to each OLT 50ba to 50bn U1 To S Un . In an embodiment, the optical system 300 can include a second signal booster 330b and/or a second signal preamplifier 340b in the downstream and upstream directions, respectively (except for devices similar to those described above) The first signal booster 330a and/or a first signal preamplifier 340a). The use of EDFAs 330b, 340b as part of optical system 300 is optional and depends on the scope and size of the upgraded TWDM-PON 100. In some embodiments, the additional pair of FSRs B2, B4 allows two upgraded services to coexist on the same fiber optic device 20, for example 10G-PON and 100G pt-2pt. As shown, 1G-PON and 10G point-to-point services are supplied through the first FSR B1 and third FSR B3 of the cyclic AWG 200, while the 10G-PON and 100G point-to-point services pass through the second FSR B2 and the fourth FSR B4 of the cyclic AWG 200. Come to supply. With this design, each splitter can be connected to a 1G-PON ONU or 10G-PON ONU, and each point-to-point link can be a 10G link or a 100G link. The ONU 60 uses a tunable laser with a suitable tuning range for upstream transmission and uses a built-in band filter in front of the receiver to select the correct service wavelength. The services received by each user are therefore completely controlled by the ONU hardware. The WDM band multiplex filter 74 is used to separate point-to-point services that are stacked on the same AWG output port. Referring to Figures 8A and 8B, in certain embodiments, the upgraded TWDM-PON 100 uses C and L bands for upstream and downstream transmission, respectively. Each of the C band and the L band is further isolated into two FSRs B1 to B4, blue (short wavelength) and red (long wavelength). The number of wavelengths in each FSR depends on the channel spacing. For 100 GHz spaced wavelengths, each FSR can support approximately 20 wavelengths. In some instances, the old OLTs 50aa through 50an using FSR B1 and B3 use short wavelengths (i.e., blue) for each of the C and L bands (Fig. 8A). However, in other examples and as shown in Figure 8B, the legacy OLT 50aa uses long wavelengths (i.e., red) and the extended or updated system uses short wavelengths (i.e., blue). The C-band and L-band wavelengths for WDM-PON and TWDM-PON provide the lowest loss of glass fiber, thus providing longer transmission distances and lower power transmission. In addition, the C-band and the L-band are EDFAs that are easily amplified, which is the most mature fiber technology. This allows for the implementation of longer transmission distances and very large COs. In addition, since the DWDM economic system already exists in the C band and the L band, it is easy to obtain WDM and tunable laser in the C band and the L band. Referring to Figures 9A and 9B, which show a current TDM architecture compared to one of the upgraded TWDM architectures 100, the system of Figure 9A shows a branch of a fiber optic cable in a typical fiber optic equipment. The size of the bundle becomes smaller as the fiber gets closer to the end user ONU 60. This figure shows a larger sized pipe for a thicker cable that is closer to the CO 40. In contrast, small-sized pipes are used for the upgraded TWDM-PON 100. In fact, a standard single-size pipe can be used for all configurations, simplifying the upgraded TWDM-PON 100 design. The upgraded TWDM-PON 100 design allows for the use of less CO 40, as each CO 40 can be servoed to more ONUs. Thus, the centralization of the CO 40 simplifies operation of the upgraded TWDM-PON 100 and saves on ongoing operating costs due to the need for less CO and therefore fewer staff to manage and operate the network. From the CO to the end user 30, the fiber optic cables 20, 22 pass through several branches to servo in different regions. As illustrated in Figure 9A, a typical network begins with a very wide backbone and branches 22 become thinner and smaller, which also reduces the required pipe size. Larger pipes are slower and more expensive to construct than thinner pipes. In fact, the reduction in the size of the feeder fibers 20, 22 is sufficiently significant that a single size pipe can be used from the CO 40 to the end user 30 through the upgraded TWDM-PON 100. This not only reduces the cost and time of fiber optic equipment 20, 22 construction, but also simplifies the upgraded TWDM-PON 100 design (so that only route design is required and there is no need to worry about pipe size). It also improves the speed of the network design and the licensing process. Referring to Figure 10, a method 1000 for upgrading/expanding an upgraded TWDM network 100 (as illustrated in Figures 4-8 and 9B) is included at block 1002 at a first multiplexer (MUX) 320a. Receiving the following signals and performing multiplex/demultiplex between the following signals: a first multiplexed signal S DM And a first optical line terminal signal S having a first multiplex group (TDM-PON) D1 And a second optical line terminal signal S having a second multiplex group (point to point) Dn . At block 1004, method 1000 includes receiving the following signals at a second multiplexer 320b and performing multiplexing/demultiplexing between the following signals: a second multiplexed signal S UM And a third optical line terminal signal S having the first multiplex group (TDM-PON) U1 And having the fourth optical line terminal signal S of the second multiplex group (point to point) Un . At block 1006, method 1000 includes receiving, at a third multiplexer 310 (eg, a BAND MUX) optically coupled to first multiplexer 320a and second multiplexer 320b, between the following signals Perform multiplex/demultiplex: a feeder optical signal S Ta ; with the first multiplex signal S DM And the second multiplex signal S UM . First optical line terminal signal S D1 (TDM-PON, λ 1 And the second optical line terminal signal S Dn (point-to-point) each containing one of the wavelengths in the old downstream free spectral range FSR B3 or FSR B4, and the third optical line termination signal S U1 And fourth optical line terminal signal S Un Each contains one of the wavelengths in the old free spectral range FSR B1 or FSR B2. The method 1000 can further include amplifying the first multiplexed signal S at one of the first amplifiers 330a optically coupled to the first multiplexer 320a and the third multiplexer 310 (BAND MUX). DM Or amplifying the second multiplexed signal S at a second amplifier 340b optically coupled to the second multiplexer 320b and the third multiplexer 310 (BAND MUX) UM . In some examples, the first multiplex group includes a TDM-PON protocol and the second multiplex group (peer-to-peer) includes a WDM-PON protocol. First optical line terminal signal S D1 And the third optical line terminal signal S U1 Can each have a first agreement (TDM-PON, λ 1 , for example, 1G-PON), and the second optical line terminal signal S Dn And fourth optical line terminal signal S Un Each may have a second agreement (10G point-to-point) different from one of the first agreements. In certain embodiments, the method 1000 further includes receiving the following signals at the first multiplexer 320a (MUX) and performing multiplex/demultiplexing between the following signals: the first multiplexed signal S DM ; with a fifth optical line terminal signal S D2 (TDM-PON, λ 2,1 ), the first optical line terminal signal S D1 (TDM-PON, λ 1,1 And the second optical line terminal signal S Dn (peer to peer). First optical line terminal signal S D1 Has a first agreement (TDM-PON, λ 1,1 , for example, 1G-PON), and the fifth optical line terminal signal S D2 (TDM-PON 1 ) has a first multiplex group (TDM-PON) and is different from the first protocol (TDM-PON, λ) 1,1 , for example, 1G-PON), a second agreement (TDM-PON λ 2,1 For example, 10G-PON). The method 1000 also includes receiving the following signals at the second multiplexer 320b and performing multiplexing/demultiplexing between the following signals: a second multiplexed signal S UM ; with the second optical line terminal signal S DN Fourth optical line terminal signal S U2 (point-to-point) and a sixth optical line terminal signal S U2 (TDM-PON). Sixth optical line terminal signal S U2 Has a first multiplex group (TDM-PON) and a second protocol (TDM-PON λ 2,1 ), as shown in Figure 6B. The method 1000 can also include transmitting the feeder optical signal S by one of the feeder fibers 20 optically coupled to the third multiplexer 310 (BAND MUX). Ta . The method 1000 also includes receiving the following signals at one of the AWGs 200 optically coupled to the feeder fiber 20, and multiplexing/demultiplexing between the following signals: the feeder optical signal S Ta And optical network unit signal 50 1 To 50 n . Each optical network unit signal 50 1 To 50 n The upstream wavelength of one of the old-type upstream free-spectrum range FSR 1 or FSR 2 and one of the old-type downstream free-spectrum range FSR 3 or FSR 4 are included. With additional reference to FIG. 7, in some embodiments, method 1000 includes receiving the following signals at one of fourth multiplexers 320c (MUX) optically coupled to third multiplexer 310, and multiplexing between the following signals / Solution multiplex: a third multiplex signal S Dm+ And a fifth optical line terminal signal S having one of the first multiplexed groups (TDM-PON) D1 And a sixth optical line terminal signal S having a second multiplex group (point to point) Dn . The method 1000 also includes receiving the following signal at one of the fifth multiplexers 320d optically coupled to the third multiplexer 310, and performing multiplexing/demultiplexing between the following signals: a fourth multiplexed signal S UM+ And a seventh optical line terminal signal S having one of the first multiplexed groups (TDM-PON) U1 And an eighth optical line terminal signal S having a second multiplex group (point to point) Un . Fifth optical line terminal signal S D2 And the sixth optical line terminal signal S Dn Each has a wavelength in an upgraded upstream free spectral range FSR 1 or FSR 2, and a seventh (TDM-PON) optical line termination signal S U1 And the eighth optical line terminal signal S Un (Point-to-point) each has a wavelength in an upgraded downstream free spectral range FSR 3 or FSR 4. The method 1000 can further include transmitting the feeder optical signal S by one of the feeder fibers 20 optically coupled to the third multiplexer 310 (BAND MUX) Ta . The method 1000 also includes receiving the following signals at one of the AWGs 200 optically coupled to the feeder fiber 20, and multiplexing/demultiplexing between the following signals: the feeder optical signal S Ta And optical network unit signal 50 1 To 50 n . Each optical network unit signal 50 1 To 50 n One of the old upstream wavelengths included in the old upstream free spectral range FSR 1 or FSR 2, one of the old downstream free spectral range FSR 3 or FSR 4, the old downstream wavelength, and one of the upgraded upstream free spectral ranges Upgrade the upstream wavelength and upgrade the second downstream wavelength in one of the upgraded downstream free spectral ranges. Several embodiments have been described. It will be understood, however, that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are also within the scope of the following claims. For example, the actions recited in the scope of the claims can be performed in a different order and still achieve a desired result.

10‧‧‧被動光學網路10‧‧‧ Passive optical network

20‧‧‧饋送器光纖/主幹光纖/光纖/光纖設備/光纖束/饋送器光纖絞合線/粗光纖電纜/粗光纖/饋送器電纜20‧‧‧Feeder Fiber/Trunk Fiber/Fiber/Fiber Device/Fiber Bundle/Feeder Fiber Stranded Wire/Rough Fiber Cable/Coarse Fiber/Feeder Cable

22‧‧‧光纖/特定路徑/光纖設備/光纖束/饋送器光纖/饋送器光纖絞合線22‧‧‧Optical/Specific Path/Fiber Optic Equipment/Fiber Bundle/Feeder Fiber/Feeder Fiber Stranded Wire

30‧‧‧終端使用者/使用者端/使用者30‧‧‧End User/User/User

40‧‧‧中心局40‧‧‧ Central Bureau

42‧‧‧視訊媒體散佈42‧‧‧Video media distribution

44‧‧‧網際網路資料44‧‧‧Internet data

46‧‧‧語音資料46‧‧‧Voice data

50‧‧‧收發器/光學收發器/光學線路終端/光學線路終端收發器50‧‧‧Transceiver/Optical Transceiver/Optical Line Terminal/Optical Line Terminal Transceiver

50a‧‧‧光學線路終端/光學線路終端收發器50a‧‧‧Optical line terminal/optical line terminal transceiver

50aa‧‧‧光學線路終端/舊型光學線路終端/第一光學線路終端50aa‧‧‧optical line terminal/old optical line terminal/first optical line terminal

50ab‧‧‧第二光學線路終端/第三光學線路終端50ab‧‧‧second optical line terminal/third optical line terminal

50an‧‧‧學線路終端/舊型光學線路終端/第二光學線路終端50an‧‧‧Study line terminal/old optical line terminal/second optical line terminal

50b‧‧‧光學線路終端/光學線路終端收發器50b‧‧‧Optical Line Terminal/Optical Line Terminal Transceiver

50ba‧‧‧光學線路終端50ba‧‧‧Optical line terminal

50bb‧‧‧第一光學線路終端50bb‧‧‧First optical line terminal

50bn‧‧‧光學線路終端/第二光學線路終端50bn‧‧‧optical line terminal / second optical line terminal

50n‧‧‧光學線路終端/光學線路終端收發器50n‧‧‧Optical line terminal/optical line terminal transceiver

52‧‧‧光學波長雙工器/雙工器52‧‧‧Optical wavelength duplexer/duplexer

60‧‧‧光學網路單元/收發器60‧‧‧Optical Network Unit/Transceiver

60a‧‧‧光學網路單元/第一光學網路單元60a‧‧‧Optical Network Unit / First Optical Network Unit

60k‧‧‧光學網路單元/第二光學網路單元60k‧‧‧Optical Network Unit / Second Optical Network Unit

60n‧‧‧光學網路單元60n‧‧‧Optical Network Unit

62‧‧‧波長特定傳輸器/雙工器62‧‧‧ Wavelength Specific Transmitter/Duplexer

64‧‧‧帶通濾波器64‧‧‧Bandpass filter

65‧‧‧可調諧傳輸器65‧‧‧Tuneable transmitter

66‧‧‧接收器/可調諧接收器66‧‧‧Receiver/tunable receiver

70‧‧‧遠端節點/被動遠端節點70‧‧‧Remote node/passive remote node

72‧‧‧功率分離器/光學功率分離器/分離器/光學分離器72‧‧‧Power splitter/optical power splitter/separator/optical splitter

74‧‧‧波長分割多工頻帶多工濾波器74‧‧‧Wavelength division multiplexed-band multiplex filter

100‧‧‧經更新時間波長分割多工光學被動網路架構/經升級時間波長分割多工光學被動網路架構/時間波長分割多工光學被動網路架構/網路/經升級時間波長分割多工光學被動網路/光學網路/系統/時間波長分割多工網路/經升級時間波長分割多工架構100‧‧‧Updated wavelength division multiplexed optical passive network architecture / upgraded time wavelength division multiplexed optical passive network architecture / time wavelength division multiplex optical passive network architecture / network / upgraded time wavelength division Work optical passive network / optical network / system / time wavelength division multiplexing network / upgraded time wavelength division multiplexing architecture

200‧‧‧波長多工器/波長解多工器/場陣列波導光柵路由器/陣列波導光柵路由器/循環陣列波導光柵路由器/多循環陣列波導光柵路由器/陣列波導光柵200‧‧‧wavelength multiplexer/wavelength demultiplexer/field array waveguide grating router/array waveguide grating router/circular array waveguide grating router/multi-cycle array waveguide grating router/array waveguide grating

200a‧‧‧波長多工器200a‧‧‧wavelength multiplexer

200b‧‧‧波長解多工器200b‧‧‧wavelength demultiplexer

210‧‧‧入口埠/輸入210‧‧‧Entry埠/Input

210a‧‧‧第一輸入/輸入210a‧‧‧First Input/Input

220‧‧‧出口埠/輸出/埠/陣列波導光柵輸出220‧‧‧Export 埠/output/埠/array waveguide grating output

220a‧‧‧埠/輸出/輸出埠/第一輸出/邊緣輸入埠220a‧‧‧埠/output/output埠/first output/edge input埠

220b‧‧‧埠/輸出/輸出埠/第二輸出220b‧‧‧埠/output/output埠/second output

220c‧‧‧埠/輸出/輸出埠/第三輸出220c‧‧‧埠/output/output埠/third output

220d‧‧‧埠/輸出/輸出埠/第四輸出220d‧‧‧埠/output/output埠/fourth output

220m‧‧‧埠/輸出/輸出埠220m‧‧‧埠/output/output埠

220n‧‧‧埠/輸出/輸出埠220n‧‧‧埠/output/output埠

300‧‧‧光學系統300‧‧‧Optical system

310‧‧‧多工器/頻帶多工器/第三多工器310‧‧‧Multiplexer/band multiplexer/third multiplexer

312a‧‧‧埠/第一埠312a‧‧‧埠/埠

312b‧‧‧埠/第二埠312b‧‧‧埠/第二埠

312c‧‧‧埠/第三埠312c‧‧‧埠/third

312d‧‧‧埠/第四埠312d‧‧‧埠/四埠

320‧‧‧多工器320‧‧‧Multiplexer

320a‧‧‧下游多工器/第一多工器320a‧‧‧Downstream multiplexer/first multiplexer

320b‧‧‧解多工器/上游解多工器/第二多工器320b‧‧‧Solution multiplexer/upstream solution multiplexer/second multiplexer

320c‧‧‧下游多工器/第四多工器320c‧‧‧Downstream multiplexer/fourth multiplexer

320d‧‧‧解多工器/上游解多工器/第五多工器320d‧‧‧Solution multiplexer/upstream solution multiplexer/fifth multiplexer

330‧‧‧第一放大器/摻餌光纖放大器330‧‧‧First Amplifier/Budded Fiber Amplifier

330a‧‧‧第一信號增幅器/第一放大器330a‧‧‧First Signal Amplifier/First Amplifier

330b‧‧‧第二信號增幅器/摻餌光纖放大器330b‧‧‧Second Signal Amplifier/Doped Fiber Amplifier

340‧‧‧信號前置放大器/信號放大器/摻餌光纖放大器/摻餌光纖放大器信號放大器/第二放大器340‧‧‧Signal Preamplifier/Signal Amplifier/Budded Fiber Amplifier/Budded Fiber Amplifier Signal Amplifier/Secondary Amplifier

340a‧‧‧第一信號前置放大器/第二放大器340a‧‧‧First Signal Preamplifier / Second Amplifier

340b‧‧‧第二信號前置放大器/第二放大器/摻餌光纖放大器340b‧‧‧second signal preamplifier/secondary amplifier/doped fiber amplifier

B1‧‧‧自由頻譜範圍/循環/第一自由頻譜範圍/上游自由頻譜範圍/較短波長頻帶B1‧‧‧Free Spectrum Range/Cycle/First Free Spectrum Range/Upstream Free Spectrum Range/Short Wavelength Band

B2‧‧‧自由頻譜範圍/循環/第二自由頻譜範圍/上游自由頻譜範圍/較短波長頻帶B2‧‧‧Free Spectrum Range/Cycle/Second Free Spectrum Range/Upstream Free Spectrum Range/Short Wavelength Band

B3‧‧‧自由頻譜範圍/循環/第三自由頻譜範圍/下游自由頻譜範圍/較長波長頻帶B3‧‧‧Free spectrum range/cycle/third free spectrum range/downstream free spectrum range/longer wavelength band

B4‧‧‧自由頻譜範圍/循環/第四自由頻譜範圍/下游自由頻譜範圍/較長波長頻帶B4‧‧‧Free spectrum range/cycle/fourth free spectrum range/downstream free spectrum range/longer wavelength band

P1‧‧‧第一埠P1‧‧‧ first

P2‧‧‧第二埠P2‧‧‧Second

P3‧‧‧第三埠P3‧‧‧third

Rx‧‧‧接收器Rx‧‧‧ Receiver

SD1‧‧‧下游信號/信號/第一光學線路終端信號/第五光學線路終端信號S D1 ‧‧‧downstream signal/signal/first optical line termination signal/fifth optical line termination signal

SD2‧‧‧下游信號/信號/第五光學線路終端信號S D2 ‧‧‧Downstream signal/signal/fifth optical line termination signal

SDM‧‧‧下游信號/經多工下游信號/第一經多工信號/下游光學線路終端信號S DM ‧‧‧ downstream signal / multiplex downstream signal / first multiplex signal / downstream optical line terminal signal

SDM+‧‧‧第三經多工信號S DM+ ‧‧‧ third multiplex signal

SDn‧‧‧下游信號/信號/第二光學線路終端信號/第六光學線路終端信號S Dn ‧‧‧downstream signal/signal/second optical line termination signal/sixth optical line termination signal

STa‧‧‧饋送器光學信號S Ta ‧‧‧ feeder optical signal

SU1‧‧‧上游信號/信號S U1 ‧‧‧Upstream signal/signal

SU2‧‧‧上游信號/信號S U2 ‧‧‧Upstream signal/signal

SUM‧‧‧上游信號/經多工上游信號/第二經多工信號/上游光學線路終端信號S UM ‧‧‧Upstream signal / multiplexed upstream signal / second multiplexed signal / upstream optical line termination signal

SUM+‧‧‧第四經多工信號S UM+ ‧‧‧ fourth multiplex signal

SUn‧‧‧上游信號/信號/第三光學線路終端信號/第七光學線路終端信號S Un ‧‧‧Upstream signal/signal/third optical line termination signal/seventh optical line termination signal

λ1‧‧‧波長/第一波長λ 1 ‧‧‧wavelength / first wavelength

λ2‧‧‧波長/第二波長λ 2 ‧‧‧wavelength/second wavelength

λ3‧‧‧波長/第三波長λ 3 ‧‧‧wavelength/third wavelength

λ4‧‧‧波長/第四波長λ 4 ‧‧‧wavelength/fourth wavelength

λ5‧‧‧波長/第一波長λ 5 ‧‧‧wavelength / first wavelength

λ6‧‧‧波長/第二波長λ 6 ‧‧‧wavelength/second wavelength

λ7‧‧‧波長/第三波長λ 7 ‧‧‧wavelength/third wavelength

λ8‧‧‧波長/第四波長λ 8 ‧‧‧wavelength/fourth wavelength

λ9‧‧‧波長/第一波長λ 9 ‧‧‧wavelength / first wavelength

λ10‧‧‧波長/第二波長λ 10 ‧‧‧wavelength/second wavelength

λ11‧‧‧波長/第三波長λ 11 ‧‧‧wavelength/third wavelength

λ12‧‧‧波長/第四波長λ 12 ‧‧‧wavelength/fourth wavelength

λ13‧‧‧波長/第一波長λ 13 ‧‧‧wavelength / first wavelength

λ14‧‧‧波長/第二波長λ 14 ‧‧‧wavelength/second wavelength

λ15‧‧‧波長/第三波長λ 15 ‧‧‧wavelength/third wavelength

λ16‧‧‧波長/第四波長λ 16 ‧‧‧wavelength/fourth wavelength

圖1係一先前技術PON架構之一示意圖。 圖2A係一先前技術TDM-PON架構之一示意圖。 圖2B係一先前技術WDM-PON架構之一示意圖。 圖2C係一先前技術NG-PON2架構之一示意圖。 圖3A係一實例性TWDM-PON架構之一示意圖。 圖3B及圖3C係實例性陣列波導光柵(AWG)之示意圖。 圖3D係圖2A及圖2B之實例性AWG之循環行為之一示意圖。 圖3E係圖2A及圖2B之實例性AWG之一循環行為之一示意圖,其中上行鏈路及下行鏈路使用同一波長。 圖4係具有一個二層服務之一實例性TWDM-PON架構之一示意圖。 圖5A及圖5B係實例性TWDM-PON架構之示意圖。 圖5C及圖5D係在圖5A及圖5B之TWDM-PON架構中使用之一實例性ONU之示意圖。 圖6A及圖6B係經組態以經升級/經擴展之一實例性TWDM-PON架構之示意圖。 圖7係一實例性經擴展/經升級TWDM-PON架構之一示意圖。 圖8A及圖8B係經擴展/經升級TWDM-PON架構之實例性頻譜分配之示意圖。 圖9A係一先前技術TDM-PON網路之一實例性示意圖。 圖9B係一實例性TWDM-PON網路之一實例性示意圖。 圖10係升級/擴展一舊型網路之一方法之操作之一實例性配置。 在各圖式中,相似參考符號指示相似元件。1 is a schematic diagram of a prior art PON architecture. 2A is a schematic diagram of a prior art TDM-PON architecture. 2B is a schematic diagram of a prior art WDM-PON architecture. 2C is a schematic diagram of a prior art NG-PON2 architecture. 3A is a schematic diagram of an exemplary TWDM-PON architecture. 3B and 3C are schematic views of an exemplary arrayed waveguide grating (AWG). Figure 3D is a schematic illustration of the cyclic behavior of the exemplary AWG of Figures 2A and 2B. 3E is a schematic diagram of one of the cyclic behaviors of the exemplary AWG of FIGS. 2A and 2B in which the same wavelength is used for the uplink and downlink. Figure 4 is a schematic diagram of one of the exemplary TWDM-PON architectures with one Layer 2 service. 5A and 5B are schematic diagrams of an exemplary TWDM-PON architecture. 5C and 5D are schematic diagrams of an exemplary ONU used in the TWDM-PON architecture of FIGS. 5A and 5B. 6A and 6B are schematic diagrams of an exemplary TWDM-PON architecture configured to be upgraded/expanded. 7 is a schematic diagram of an exemplary extended/upgraded TWDM-PON architecture. 8A and 8B are schematic diagrams of exemplary spectrum allocations of an extended/upgraded TWDM-PON architecture. 9A is an exemplary schematic diagram of one prior art TDM-PON network. 9B is an exemplary schematic diagram of an exemplary TWDM-PON network. Figure 10 is an exemplary configuration of one of the operations of upgrading/expanding an old network. Like reference symbols indicate like elements in the various figures.

Claims (12)

一種通信系統,其包括:一中心局(central office);一第一多工器,其經組態以將具有一時間分割多工被動光學網路協定(time-division-multiplexing passive optical network protocol)之一第一光學線路終端信號及具有一波長分割多工被動光學網路協定(wavelength-division-multiplexing passive optical network protocol)之一第二光學線路終端信號多工成一第一經多工信號;一第二多工器,其經組態以將一第二經多工信號解多工成具有該時間分割多工被動光學網路協定之一第三光學線路終端信號及具有該波長分割多工被動光學網路協定之一第四光學線路終端信號;一第三多工器,其與該第一多工器及該第二多工器光學連接,該第三多工器經組態以在一饋送器光學信號與該第一經多工信號及該第二經多工信號之間進行多工/解多工;一第四多工器,其與該第三多工器光學連接且經組態以將具有該時間分割多工被動光學網路協定之一第五光學線路終端信號及具有該波長分割多工被動光學網路協定之一第六光學線路終端信號多工成一第三經多工信號;及一第五多工器,其與該第三多工器光學連接且經組態以將一第四經多工信號解多工成具有該時間分割多工被動光學網路協定之 一第七光學線路終端信號及具有該波長分割多工被動光學網路協定之一第八光學線路終端信號,一饋送器光纖,其與該第三多工器光學連接且經配置以傳達該饋送器光學信號;及一陣列波導光柵,其與該饋送器光纖光學連接且經組態以在該饋送器光學信號與若干光學網路單元信號之間進行多工/解多工,每一光學網路單元信號包括在一舊型上游自由頻譜範圍(legacy upstream free spectral range)中之一舊型上游波長、在一舊型下游自由頻譜範圍中之一舊型下游波長、一升級上游自由頻譜範圍(upgrade upstream free spectral range)中之一升級上游波長及一升級下游自由頻譜範圍中之一升級下游波長,其中該第一光學線路終端信號及該第二光學線路終端信號中之每一者包括在該舊型下游自由頻譜範圍中之該舊型下游波長,該第三光學線路終端信號及該第四光學線路終端信號中之每一者包括在該舊型上游自由頻譜範圍中之該舊型上游波長,該第五光學線路終端信號及該第六光學線路終端信號中之每一者包括在該升級下游自由頻譜範圍中之該升級下游波長,且該第七光學線路終端信號及該第八光學線路終端信號中之每一者包括在該升級上游自由頻譜範圍中之該升級上游波長。 A communication system comprising: a central office; a first multiplexer configured to have a time-division-multiplexing passive optical network protocol (time-division-multiplexing passive optical network protocol) One of the first optical line termination signals and one of the second optical line termination signals having a wavelength-division-multiplexing passive optical network protocol is multiplexed into a first multiplexed signal; a second multiplexer configured to demultiplex a second multiplexed signal into a third optical line termination signal having the time division multiplexed passive optical network protocol and having the wavelength division multiplex passive a fourth optical line termination signal of the optical network protocol; a third multiplexer optically coupled to the first multiplexer and the second multiplexer, the third multiplexer configured to a multiplexer/demultiplexing between the feeder optical signal and the first multiplexed signal and the second multiplexed signal; a fourth multiplexer optically coupled to the third multiplexer and grouped State a fifth optical line termination signal having one of the time division multiplexed passive optical network protocols and a sixth optical line termination signal having one of the wavelength division multiplexed passive optical network protocols multiplexed into a third multiplex signal; a fifth multiplexer optically coupled to the third multiplexer and configured to demultiplex a fourth multiplexed signal to have the time division multiplexed passive optical network protocol a seventh optical line termination signal and an eighth optical line termination signal having the wavelength division multiplexed passive optical network protocol, a feeder fiber optically coupled to the third multiplexer and configured to communicate the feed Optical signal; and an array of waveguide gratings optically coupled to the feeder fiber and configured to perform multiplexing/demultiplexing between the feeder optical signal and the plurality of optical network unit signals, each optical network The path unit signal includes one of the legacy upstream free spectral range, one of the old upstream wavelengths, one of the old downstream free spectral ranges, the old downstream wavelength, and an upgraded upstream free spectral range ( One of the upgrade upstream free spectral range) upgrades the upstream wavelength and one of the upgraded downstream free spectral ranges to upgrade the downstream wavelength, wherein each of the first optical line termination signal and the second optical line termination signal is included The old downstream wavelength in the old downstream free spectral range, the third optical line termination signal and the fourth optical line termination signal Each of the old optical upstream wavelengths in the old upstream free spectral range, the fifth optical line termination signal and the sixth optical line termination signal being included in the upgraded downstream free spectral range The upstream wavelength is upgraded, and each of the seventh optical line termination signal and the eighth optical line termination signal includes the upgraded upstream wavelength in the upgraded upstream free spectral range. 如請求項1之系統,其進一步包括以下各項中之至少一者:一第一放大器,其與該第一多工器及該第三多工器光學連接且經組態以光學放大該第一經多工信號;或 一第二放大器,其與該第二多工器及該第三多工器光學連接且經組態以光學放大該第二經多工信號。 The system of claim 1, further comprising at least one of: a first amplifier optically coupled to the first multiplexer and the third multiplexer and configured to optically amplify the first Once a multiplex signal; or A second amplifier optically coupled to the second multiplexer and the third multiplexer and configured to optically amplify the second multiplexed signal. 如請求項1之系統,其中該第一光學線路終端信號及該第三光學線路終端信號各自具有一第一協定,且該第二光學線路終端信號及該第四光學線路終端信號各自具有不同於該第一協定之一第二協定。 The system of claim 1, wherein the first optical line termination signal and the third optical line termination signal each have a first agreement, and the second optical line termination signal and the fourth optical line termination signal each have a different The second agreement of one of the first agreements. 如請求項1之系統,其進一步包括:一第一光學線路終端,其具有與該第一多工器光學連接之一輸出及與該第二多工器光學連接之一輸入,該第一光學線路終端傳輸該第一光學線路終端信號且接收該第三光學線路終端信號;及一第二光學線路終端,其具有與該第一多工器光學連接之一輸出及與該第二多工器光學連接之一輸入,該第二光學線路終端傳輸該第二光學線路終端信號(SDn)且接收該第四光學線路終端信號。 The system of claim 1, further comprising: a first optical line termination having an optical connection with the first multiplexer and an optical connection with the second multiplexer, the first optical a line terminal transmitting the first optical line termination signal and receiving the third optical line termination signal; and a second optical line termination having an optical connection with the first multiplexer and outputting the second multiplexer One of the optical connections is input, the second optical line terminal transmits the second optical line termination signal (S Dn ) and receives the fourth optical line termination signal. 如請求項1之系統,其中:該第一多工器進一步經組態以將一第九光學線路終端信號與該第一光學線路終端信號及該第二光學線路終端信號一起多工成該第一經多工信號,該第一光學線路終端信號具有一第一協定,該第九光學線路終端信號具有該時間分割多工被動光學網路協定及不同於該第一協定之一第二協定;且該第二多工器進一步經組態以將該第二經多工信號解多工成該第二光學線路終端信號、該第四光學線路終端信號及一第十光學線路 終端信號,該第十光學線路終端信號(SU2)具有該時間分割多工被動光學網路協定及該第二協定。 The system of claim 1, wherein: the first multiplexer is further configured to multiplex a ninth optical line termination signal with the first optical line termination signal and the second optical line termination signal into the first After the multiplex signal, the first optical line termination signal has a first agreement, the ninth optical line termination signal having the time division multiplexed passive optical network protocol and a second agreement different from the first agreement; And the second multiplexer is further configured to demultiplex the second multiplexed signal into the second optical line termination signal, the fourth optical line termination signal, and a tenth optical line termination signal, the The ten optical line termination signal (S U2 ) has the time division multiplexed passive optical network protocol and the second protocol. 如請求項5之系統,其進一步包括具有與該第一多工器光學連接之一輸出及與該第二多工器光學連接之一輸入的一第三光學線路終端,該第三光學線路終端傳輸該第九光學線路終端信號且接收該第十光學線路終端信號。 The system of claim 5, further comprising a third optical line termination having an optical connection with the first multiplexer and an optical connection with the second multiplexer, the third optical line termination The ninth optical line termination signal is transmitted and the tenth optical line termination signal is received. 如請求項1之系統,其進一步包括以下各項中之至少一者:一第三放大器,其與該第四多工器及該第三多工器光學連接且經組態以光學放大該第三經多工信號;或一第四放大器,其與該第五多工器及該第三多工器光學連接且經組態以光學放大該第四經多工信號。 The system of claim 1, further comprising at least one of: a third amplifier optically coupled to the fourth multiplexer and the third multiplexer and configured to optically amplify the first A three-pass multiplex signal; or a fourth amplifier optically coupled to the fifth multiplexer and the third multiplexer and configured to optically amplify the fourth multiplexed signal. 如請求項7之系統,其進一步包括:一第三光學線路終端,其具有與該第四多工器通信之一輸出及與該第五多工器通信之一輸入,該第三光學線路終端傳輸該第五光學線路終端信號且接收該第七光學線路終端信號;及一第四光學線路終端,其具有與該第四多工器通信之一輸出及與該第五多工器通信之一輸入,該第四光學線路終端傳輸該第六光學線路終端信號且接收該第八光學線路終端信號。 The system of claim 7, further comprising: a third optical line terminal having one of an output in communication with the fourth multiplexer and an input in communication with the fifth multiplexer, the third optical line terminal Transmitting the fifth optical line termination signal and receiving the seventh optical line termination signal; and a fourth optical line termination having one of communicating with the fourth multiplexer and communicating with the fifth multiplexer Input, the fourth optical line terminal transmits the sixth optical line termination signal and receives the eighth optical line termination signal. 一種通信方法,其包括: 在一中心局之一第一多工器處接收以下信號,且在以下信號之間進行多工/解多工:一第一經多工信號;與具有一時間分割多工被動光學網路協定之一第一光學線路終端信號及具有一波長分割多工被動光學網路協定之一第二光學線路終端信號;在該中心局之一第二多工器處接收以下信號,且在以下信號之間進行多工/解多工:一第二經多工信號;與具有該時間分割多工被動光學網路協定之一第三光學線路終端信號及具有該波長分割多工被動光學網路協定之一第四光學線路終端信號;在與該第一多工器及該第二多工器光學連接之一第三多工器處接收以下信號,且在以下信號之間進行多工/解多工:一饋送器光學信號;與該第一經多工信號及該第二經多工信號;在與該第三多工器光學連接之該中心局之一第四多工器處接收以下信號,且在以下信號之間進行多工/解多工:一第三經多工信號;與具有該時間分割多工被動光學網路協定之一第五光學線路終端信號及具有該波長分割多工被動光學網路協定之一第六光學線路終端信號;及在與該第三多工器光學連接之該中心局之一第五多工器處接收以 下信號,且在以下信號之間進行多工/解多工:一第四經多工信號;與具有該時間分割多工被動光學網路協定之一第七光學線路終端信號及具有該波長分割多工被動光學網路協定之一第八光學線路終端信號;憑藉與該第三多工器光學連接之一饋送器光纖來傳輸該饋送器光學信號;及在與該饋送器光纖光學連接之一陣列波導光柵處接收該饋送器光學信號與若干光學網路單元信號且在該饋送器光學信號與該等光學網路單元信號之間進行多工/解多工,每一光學網路單元信號包括在一舊型上游自由頻譜範圍中之一舊型上游波長、在一舊型下游自由頻譜範圍中之一舊型下游波長、一升級上游自由頻譜範圍中之一升級上游波長及一升級下游自由頻譜範圍中之一升級下游波長,其中該第一光學線路終端信號及該第二光學線路終端信號中之每一者包括在該舊型下游自由頻譜範圍中之該舊型下游波長,該第三光學線路終端信號及該第四光學線路終端信號中之每一者包括在該舊型上游自由頻譜範圍中之該舊型上游波長,該第五光學線路終端信號及該第六光學線路終端信號中之每一者包括在該升級下游自由頻譜範圍中之該升級下游波長,且該第七光學線路終端信號及該第八光學線路終端信號中之每一者包括在該升級上游自由頻譜範圍中之該升級上游波長。 A communication method comprising: Receiving the following signals at one of the first multiplexers of a central office, and performing multiplex/demultiplexing between the following signals: a first multiplexed signal; and having a time division multiplexed passive optical network protocol a first optical line termination signal and a second optical line termination signal having a wavelength division multiplexed passive optical network protocol; receiving the following signals at one of the second multiplexers of the central office, and in the following signals Multiplex/demultiplexing: a second multiplexed signal; and a third optical line termination signal having the time division multiplexed passive optical network protocol and having the wavelength division multiplexed passive optical network agreement a fourth optical line termination signal; receiving the following signal at a third multiplexer optically coupled to the first multiplexer and the second multiplexer, and performing multiplex/demultiplexing between the following signals : a feeder optical signal; and the first multiplexed signal and the second multiplexed signal; receiving the following signal at a fourth multiplexer of the central office optically coupled to the third multiplexer, And between the following signals Work/demultiplexing: a third multiplexed signal; a fifth optical line termination signal having one of the time division multiplexed passive optical network protocols and a sixth of the wavelength division multiplexed passive optical network protocol An optical line termination signal; and received at a fifth multiplexer of the central office optically coupled to the third multiplexer Down signal, and multiplexing/demultiplexing between: a fourth multiplexed signal; and a seventh optical line termination signal having the time division multiplexed passive optical network protocol and having the wavelength division An eighth optical line termination signal of a multiplexed passive optical network protocol; transmitting the optical signal of the feeder by one of the optical fibers optically coupled to the third multiplexer; and optically connecting to the optical fiber of the feeder Receiving the feeder optical signal and the plurality of optical network unit signals at the arrayed waveguide grating and performing multiplexing/demultiplexing between the feeder optical signal and the optical network unit signals, each optical network unit signal including Upgrading the upstream wavelength and upgrading the downstream free spectrum in one of the old upstream free spectral range, one of the old downstream downstream free spectral range, one of the old upstream downstream wavelengths, and one of the upgraded upstream free spectral ranges One of the ranges upgrades the downstream wavelength, wherein each of the first optical line termination signal and the second optical line termination signal is included downstream of the old type Depending on the old downstream wavelength in the spectrum range, each of the third optical line termination signal and the fourth optical line termination signal includes the old upstream wavelength in the old upstream free spectral range, the first Each of the fifth optical line termination signal and the sixth optical line termination signal includes the upgraded downstream wavelength in the upgraded downstream free spectral range, and the seventh optical line termination signal and the eighth optical line termination signal Each of these includes the upgraded upstream wavelength in the upstream free spectral range of the upgrade. 如請求項9之方法,其進一步包括: 在與該第一多工器及該第三多工器光學連接之一第一放大器處放大該第一經多工信號;或在與該第二多工器及該第三多工器光學連接之一第二放大器處放大該第二經多工信號。 The method of claim 9, further comprising: Amplifying the first multiplexed signal at a first amplifier optically coupled to the first multiplexer and the third multiplexer; or optically connecting to the second multiplexer and the third multiplexer One of the second amplifiers amplifies the second multiplexed signal. 如請求項9之方法,其中該第一光學線路終端信號及該第三光學線路終端信號各自具有一第一協定,且該第二光學線路終端信號及該第四光學線路終端信號各自具有不同於該第一協定之一第二協定。 The method of claim 9, wherein the first optical line termination signal and the third optical line termination signal each have a first agreement, and the second optical line termination signal and the fourth optical line termination signal each have a different The second agreement of one of the first agreements. 如請求項9之方法,其進一步包括:在該第一多工器處接收以下信號,且在以下信號之間進行多工/解多工:該第一經多工信號;與一第九光學線路終端信號(SD2)、該第一光學線路終端信號及該第二光學線路終端信號,其中該第一光學線路終端信號具有一第一協定,且該第九光學線路終端信號具有該時間分割多工被動光學網路協定及不同於該第一協定之一第二協定;及在該第二多工器處接收以下信號,且在以下信號之間進行多工/解多工:該第二經多工信號;與該第二光學線路終端信號、該第四光學線路終端信號及一第十光學線路終端信號, 其中該第十光學線路終端信號具有該時間分割多工被動光學網路協定及該第二協定。The method of claim 9, further comprising: receiving the following signal at the first multiplexer, and performing multiplex/demultiplexing between: the first multiplexed signal; and a ninth optical a line termination signal (S D2 ), the first optical line termination signal, and the second optical line termination signal, wherein the first optical line termination signal has a first agreement, and the ninth optical line termination signal has the time division a multiplexed passive optical network protocol and a second protocol different from the first protocol; and receiving the following signals at the second multiplexer and performing multiplex/demultiplexing between the following signals: the second a multiplexed signal; the second optical line termination signal, the fourth optical line termination signal, and a tenth optical line termination signal, wherein the tenth optical line termination signal has the time division multiplexed passive optical network protocol The second agreement.
TW105136923A 2015-11-11 2016-11-11 Twdm passive network with extended reach and capacity TWI625948B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/938,146 US9749080B2 (en) 2015-11-11 2015-11-11 TWDM passive network with extended reach and capacity
US14/938,146 2015-11-11

Publications (2)

Publication Number Publication Date
TW201729557A TW201729557A (en) 2017-08-16
TWI625948B true TWI625948B (en) 2018-06-01

Family

ID=57421621

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105136923A TWI625948B (en) 2015-11-11 2016-11-11 Twdm passive network with extended reach and capacity

Country Status (6)

Country Link
US (2) US9749080B2 (en)
EP (1) EP3169010B1 (en)
KR (2) KR101879850B1 (en)
CN (1) CN106877970B (en)
TW (1) TWI625948B (en)
WO (1) WO2017083081A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11714247B2 (en) 2018-12-29 2023-08-01 Huawei Technologies Co., Ltd. Optical splitting apparatus

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9749080B2 (en) * 2015-11-11 2017-08-29 Google Inc. TWDM passive network with extended reach and capacity
SG11201807356VA (en) 2016-03-22 2018-09-27 Lyteloop Technologies Llc Data in motion storage system and method
US10516922B2 (en) * 2017-01-20 2019-12-24 Cox Communications, Inc. Coherent gigabit ethernet and passive optical network coexistence in optical communications module link extender related systems and methods
US11502770B2 (en) 2017-01-20 2022-11-15 Cox Communications, Inc. Optical communications module link extender, and related systems and methods
US10205552B2 (en) * 2017-01-20 2019-02-12 Cox Communications, Inc. Optical communications module link, systems, and methods
US10735130B2 (en) 2017-10-16 2020-08-04 Arris Enterprises Llc Striping of signal to groups of nodes for flexible service group sizing
US11558140B2 (en) 2018-06-11 2023-01-17 Delta Electronics, Inc. Intelligence-defined optical tunnel network system
JP2021532526A (en) 2018-08-02 2021-11-25 ライトループ・テクノロジーズ・エルエルシーLyteloop Technologies, Llc Devices and methods for storing wave signals in cavities
IL278261B2 (en) 2018-08-10 2023-11-01 Lyteloop Tech Llc System and method for extending path length of a wave signal using angle multiplexing
BR112021004133A8 (en) 2018-11-05 2023-05-09 Lyteloop Tech Llc SYSTEMS AND METHODS FOR CONSTRUCTING, OPERATING AND CONTROLLING MULTIPLE AMPLIFIERS, REGENERATORS AND TRANSCEIVERS USING THE COMMON SHARED COMPONENTS
US10993003B2 (en) 2019-02-05 2021-04-27 Cox Communications, Inc. Forty channel optical communications module link extender related systems and methods
US10999658B2 (en) 2019-09-12 2021-05-04 Cox Communications, Inc. Optical communications module link extender backhaul systems and methods
US10992387B2 (en) * 2019-09-12 2021-04-27 Google Llc Port replicator
WO2021176497A1 (en) * 2020-03-02 2021-09-10 日本電信電話株式会社 Wavelength multiplex communication system and wavelength multiplex communication method
US11283538B2 (en) * 2020-03-05 2022-03-22 At&T Intellectual Property I, L.P. Single fiber combining module
US11317177B2 (en) 2020-03-10 2022-04-26 Cox Communications, Inc. Optical communications module link extender, and related systems and methods
EP3937401B1 (en) * 2020-07-07 2023-04-12 ADVA Optical Networking SE Method and device for migrating data traffic from an existing optical wdm transmission system to a new optical wdm transmission system
US11271670B1 (en) 2020-11-17 2022-03-08 Cox Communications, Inc. C and L band optical communications module link extender, and related systems and methods
US11146350B1 (en) 2020-11-17 2021-10-12 Cox Communications, Inc. C and L band optical communications module link extender, and related systems and methods
US11689287B2 (en) 2021-02-12 2023-06-27 Cox Communications, Inc. Optical communications module link extender including ethernet and PON amplification
US11523193B2 (en) 2021-02-12 2022-12-06 Cox Communications, Inc. Optical communications module link extender including ethernet and PON amplification
US11323788B1 (en) 2021-02-12 2022-05-03 Cox Communications, Inc. Amplification module
CN115278410A (en) * 2021-04-30 2022-11-01 台达电子工业股份有限公司 Intelligent defined light tunnel network system
US11438088B1 (en) * 2021-08-25 2022-09-06 At&T Intellectual Property I, L.P. Expanded single fiber combining module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150030334A1 (en) * 2013-07-23 2015-01-29 Adva Optical Networking Se Method, System, and Transceiver Device for Bi-Directionally Transmitting Digital Optical Signals Over an Optical Transmission Link
WO2015044036A1 (en) * 2013-09-30 2015-04-02 Alcatel Lucent Optical line terminal for a passive optical wavelength division multiplex network
KR20150122600A (en) * 2014-04-23 2015-11-02 한국전자통신연구원 Tunable Optical Network Unit for multiple wavelengths Passive Optical Network and its operation method

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155127B2 (en) * 2001-08-15 2006-12-26 Nippon Telegraph And Telephone Corporation Optical communication system, optical communication unit, and optical transceiving package
KR100532307B1 (en) * 2003-03-17 2005-11-29 삼성전자주식회사 Wavelength Division Multiplexing - Passive Optical Network for Integrating Broadcasting and Telecommunication
CN100571095C (en) * 2003-05-28 2009-12-16 日本电信电话株式会社 Optical wavelength multiplex access system
US7245829B1 (en) * 2004-01-12 2007-07-17 Nortel Networks Limited Architecture for dynamic connectivity in an edge photonic network architecture
KR100675834B1 (en) * 2004-10-28 2007-01-29 한국전자통신연구원 Loop-back wavelength division multiplexing passive optical network
KR100683833B1 (en) * 2005-12-28 2007-02-16 한국과학기술원 Multiple star wavelength division multiplexing passive optical networks using a wavelength assignment method
CN101009530B (en) * 2006-01-23 2012-02-15 华为技术有限公司 Passive optical network, multiplexing/de-multiplexing device and method supporting the multicast service
US9014561B2 (en) 2006-02-03 2015-04-21 At&T Intellectual Property Ii, L.P. Wavelength upgrade for passive optical networks
KR100813897B1 (en) * 2006-11-07 2008-03-18 한국과학기술원 Method and network architecture for upgrading legacy passive optical network to wavelength division multiplexing passive optical network based next-generation passive optical network
GB0710327D0 (en) * 2007-05-31 2007-07-11 Ericsson Telefon Ab L M An optical network using passive dpsk demodulation
CN101345599A (en) * 2007-07-13 2009-01-14 华为技术有限公司 Upgrading method of time division multiple access passive optical network and passive optical network system
KR100948831B1 (en) * 2007-10-19 2010-03-22 한국전자통신연구원 Tdm and wdma passive optical network appratus
US8005363B2 (en) 2007-12-14 2011-08-23 Hitachi Communication Technologies, Inc. Passive optical network with wavelength division multiplexing
KR100921797B1 (en) * 2007-12-18 2009-10-15 한국전자통신연구원 Wavelength Division Multiplexing - Passive Optical Network system
US8554078B2 (en) * 2008-05-21 2013-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Passive optical network with plural optical line terminals
CN101873189B (en) * 2009-04-21 2015-01-28 中兴通讯股份有限公司 Wavelength division multiplex (WDM) compatible with two types of passive optical networks (PONs)
US8781322B2 (en) * 2011-08-08 2014-07-15 Google Inc. Migratable wavelength division multiplexing passive optical network
US8320760B1 (en) * 2011-11-03 2012-11-27 Google Inc. Passive optical network with asymmetric modulation scheme
US8849119B2 (en) * 2012-02-09 2014-09-30 Electronics And Telecommunications Research Institute Wavelength-shifted bidirectional wavelength division multiplexing optical network
TWI445333B (en) 2012-02-29 2014-07-11 Univ Nat Taiwan Science Tech Time/wavelength-division multiplexed pon (twpon)
US9332323B2 (en) * 2012-10-26 2016-05-03 Guohua Liu Method and apparatus for implementing a multi-dimensional optical circuit switching fabric
US20140161446A1 (en) 2012-11-28 2014-06-12 Electronics And Telecommunications Research Institute Optical amplifier (oa)-based reach extender and passive optical network system including the same
CN107294637B (en) * 2013-02-06 2019-06-04 上海诺基亚贝尔股份有限公司 A method of for automatically configuring the wavelength of optical network unit
US20140233954A1 (en) * 2013-02-21 2014-08-21 Electronics And Telecommunications Research Institute Link establishment method for multi-wavelength passive optical network system
US9197352B2 (en) 2013-03-11 2015-11-24 Google Inc. Increasing the capacity of a WDM-PON with wavelength reuse
US9425918B2 (en) * 2013-04-19 2016-08-23 Futurewei Technologies, Inc. Flexible TWDM PON with load balancing and power saving
WO2014186601A1 (en) * 2013-05-16 2014-11-20 Huawei Technologies Co., Ltd. Statistical optical design enabled via twdm-pon
EP2989737B1 (en) 2013-05-16 2018-01-03 Huawei Technologies Co., Ltd. Reconfigurable optical access network architectures
US20150229429A1 (en) * 2013-06-21 2015-08-13 Futurewei Technologies, Inc. Multiplexer with Non-Interleaved Channel Plan
US20150055955A1 (en) 2013-08-26 2015-02-26 Electronics And Telecommunications Research Institute Channel management method in time and wavelength division multiplexing-passive optical network (twdm-pon)
US9432140B2 (en) 2013-11-13 2016-08-30 Futurewei Technologies, Inc. Flexible grid TWDM-PON architecture and intelligent set-up for TWDM-PON
CN105960769B (en) * 2013-12-31 2019-02-22 英国电讯有限公司 There is the optical-fiber network of work recovery capability
KR20150144273A (en) * 2014-06-16 2015-12-24 한국전자통신연구원 Wavelength tuning sequences for tunable ONUs in time and wavelength division multiplexing - passive optical network
US9749080B2 (en) * 2015-11-11 2017-08-29 Google Inc. TWDM passive network with extended reach and capacity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150030334A1 (en) * 2013-07-23 2015-01-29 Adva Optical Networking Se Method, System, and Transceiver Device for Bi-Directionally Transmitting Digital Optical Signals Over an Optical Transmission Link
WO2015044036A1 (en) * 2013-09-30 2015-04-02 Alcatel Lucent Optical line terminal for a passive optical wavelength division multiplex network
KR20150122600A (en) * 2014-04-23 2015-11-02 한국전자통신연구원 Tunable Optical Network Unit for multiple wavelengths Passive Optical Network and its operation method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
L'ubomir Scholtz et al, "Tunable thin film filters for the next generation PON stage 2 (NG-PON2)", IEEE ELEKTRO, 2014, 08 July 2014
Marilet De Andrade et al, "Evaluating strategies for evolution of passive optical networks", IEEE Communications Magazine, Year: 2011, Volume: 49, Issue: 7
Wolfgang Pohlmann et al, "Low cost TWDM by wavelength-set division multiplexing", Bell Labs Technical Journal, Year: 2013, Volume: 18, Issue: 3
Wolfgang Pohlmann et al, "Low cost TWDM by wavelength-set division multiplexing", Bell Labs Technical Journal, Year: 2013, Volume: 18, Issue: 3 L'ubomir Scholtz et al, "Tunable thin film filters for the next generation PON stage 2 (NG-PON2)", IEEE ELEKTRO, 2014, 08 July 2014 Marilet De Andrade et al, "Evaluating strategies for evolution of passive optical networks", IEEE Communications Magazine, Year: 2011, Volume: 49, Issue: 7 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11714247B2 (en) 2018-12-29 2023-08-01 Huawei Technologies Co., Ltd. Optical splitting apparatus

Also Published As

Publication number Publication date
KR20180083957A (en) 2018-07-23
CN106877970A (en) 2017-06-20
EP3169010A1 (en) 2017-05-17
CN106877970B (en) 2019-07-30
US20170134113A1 (en) 2017-05-11
EP3169010B1 (en) 2018-11-07
KR101879850B1 (en) 2018-07-19
TW201729557A (en) 2017-08-16
KR20180030733A (en) 2018-03-23
US20170317778A1 (en) 2017-11-02
WO2017083081A1 (en) 2017-05-18
US9749080B2 (en) 2017-08-29

Similar Documents

Publication Publication Date Title
TWI625948B (en) Twdm passive network with extended reach and capacity
Grobe et al. PON in adolescence: from TDMA to WDM-PON
Kani Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems
US7706688B2 (en) Wavelength reconfigurable optical network
US20020196491A1 (en) Passive optical network employing coarse wavelength division multiplexing and related methods
US10097907B2 (en) Systems and methods of wavelength division multiplex passive optical networking
KR20140027502A (en) Migratable wavelength division multiplexing passive optical network
US20100322626A1 (en) Multiple passive optical network system
US9692546B2 (en) Increasing the capacity of a WDM-PON with wavelength reuse
US10158930B2 (en) Upgrading PON systems using a multi-cycle field AWG
Mohamed et al. Options and challenges in next-generation optical access networks (NG-OANs)
Grobe et al. PON Evolution from TDMA to WDM-PON
Zhao et al. Field trial of Long-reach TWDM PON for fixed-line wireless convergence
US20150229429A1 (en) Multiplexer with Non-Interleaved Channel Plan
CA2593891C (en) Wavelength reconfigurable optical network
Syuhaimi et al. Highly utilized fiber plant with extended reach and high splitting ratio based on AWG and EDFA characteristics
Bock et al. 10 CWDM for Fiber Access
Iannone 8 Next-Generation Wired Access
Mohamed A Frequency Reuse-Based Design for Flexible and Scalable Passive Optical Networks (PONs)
DE202016006902U1 (en) Passive TWDM network with extended range and capacity