TWI624077B - Method of manufacturing buffer layer for solar cell - Google Patents

Method of manufacturing buffer layer for solar cell Download PDF

Info

Publication number
TWI624077B
TWI624077B TW104102648A TW104102648A TWI624077B TW I624077 B TWI624077 B TW I624077B TW 104102648 A TW104102648 A TW 104102648A TW 104102648 A TW104102648 A TW 104102648A TW I624077 B TWI624077 B TW I624077B
Authority
TW
Taiwan
Prior art keywords
precursor solution
cigs
solar cell
light absorbing
layer
Prior art date
Application number
TW104102648A
Other languages
Chinese (zh)
Other versions
TW201628209A (en
Inventor
呂宗昕
陳明慶
宋仁正
Original Assignee
呂宗昕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呂宗昕 filed Critical 呂宗昕
Priority to TW104102648A priority Critical patent/TWI624077B/en
Publication of TW201628209A publication Critical patent/TW201628209A/en
Application granted granted Critical
Publication of TWI624077B publication Critical patent/TWI624077B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一種製造太陽能電池之緩衝層的方法,包含提供前驅物溶液,其包含溶劑、主要金屬元素及VIA族元素。主要金屬元素選自由鋅、鎘、銦及其組合所構成之群組。VIA族元素選自由氧、硫、硒及其組合所構成之群組。使積層結構接觸前驅物溶液,以形成沉積層於積層結構上。將沉積層在一氣氛下進行熱處理,以形成緩衝層,其中氣氛包含VIA族元素,熱處理的溫度為50°C至300°C。A method of making a buffer layer for a solar cell, comprising providing a precursor solution comprising a solvent, a primary metal element, and a Group VIA element. The primary metal element is selected from the group consisting of zinc, cadmium, indium, and combinations thereof. Group VIA elements are selected from the group consisting of oxygen, sulfur, selenium, and combinations thereof. The laminate structure is contacted with the precursor solution to form a deposited layer on the laminate structure. The deposited layer is heat-treated under an atmosphere to form a buffer layer in which the atmosphere contains a Group VIA element, and the heat treatment temperature is from 50 ° C to 300 ° C.

Description

太陽能電池之緩衝層的製造方法Method for manufacturing buffer layer of solar cell

本發明是有關於太陽能電池之緩衝層的製造方法。The present invention relates to a method of manufacturing a buffer layer for a solar cell.

近年來由於受到全球氣候變遷、環境污染問題以及資源日趨短缺的影響,在環保意識高漲與能源危機的警訊下,刺激了太陽光電產業的蓬勃發展。在各種太陽能電池中,由於銅銦鎵硒太陽能電池(Cu(In,Ga)Se2 ,CIGS)的轉換效率高、穩定性佳、材料成本低、可製成薄膜等優點,因此受到極大的重視。In recent years, due to global climate change, environmental pollution problems and the shortage of resources, the solar photovoltaic industry has been booming under the warning of high environmental awareness and energy crisis. Among various solar cells, copper indium gallium selenide solar cells (Cu(In,Ga)Se 2 , CIGS) are highly valued because of their high conversion efficiency, good stability, low material cost, and the ability to be made into a thin film. .

一般而言,銅銦鎵硒太陽能電池包含基材、背電極、光吸收層、緩衝層、透明窗層及前電極依序堆疊。目前的緩衝層的材質大多為硫化鎘或硫化鋅,但其未能明顯幫助提昇銅銦鎵硒太陽能電池的性能。In general, a copper indium gallium selenide solar cell comprises a substrate, a back electrode, a light absorbing layer, a buffer layer, a transparent window layer and a front electrode stacked in sequence. Most of the current buffer layers are made of cadmium sulfide or zinc sulfide, but they have not significantly improved the performance of copper indium gallium selenide solar cells.

本發明的目的在於提供一種太陽能電池之緩衝層的製造方法,其可有效提升太陽能電池的性能,例如可提昇開路電壓(Voc )、短路電流(Isc )、填充因子(FF)及光電轉換效率。The object of the present invention is to provide a method for manufacturing a buffer layer of a solar cell, which can effectively improve the performance of the solar cell, for example, an open circuit voltage (V oc ), a short circuit current (I sc ), a fill factor (FF), and photoelectric conversion. effectiveness.

本發明提供之太陽能電池之緩衝層的製造方法包含提供前驅物溶液,其包含溶劑、主要金屬元素及VIA族元素。主要金屬元素選自由鋅、鎘、銦及其組合所構成之群組。VIA族元素選自由氧、硫、硒及其組合所構成之群組。使積層結構接觸前驅物溶液,以形成沉積層於積層結構上。將沉積層在一氣氛下進行熱處理,以形成緩衝層,其中氣氛包含VIA族元素,熱處理的溫度為50°C至300°C。The method for producing a buffer layer for a solar cell provided by the present invention comprises providing a precursor solution comprising a solvent, a main metal element, and a Group VIA element. The primary metal element is selected from the group consisting of zinc, cadmium, indium, and combinations thereof. Group VIA elements are selected from the group consisting of oxygen, sulfur, selenium, and combinations thereof. The laminate structure is contacted with the precursor solution to form a deposited layer on the laminate structure. The deposited layer is heat-treated under an atmosphere to form a buffer layer in which the atmosphere contains a Group VIA element, and the heat treatment temperature is from 50 ° C to 300 ° C.

根據本發明一實施例,VIA族元素包含硫、硒、氧或其組合。According to an embodiment of the invention, the Group VIA element comprises sulfur, selenium, oxygen or a combination thereof.

根據本發明一實施例,氣氛包含硫化氫、硒化氫、硫蒸氣、硒蒸氣或其組合。According to an embodiment of the invention, the atmosphere comprises hydrogen sulfide, hydrogen selenide, sulfur vapor, selenium vapor or a combination thereof.

根據本發明一實施例,氣氛更包含氫氣、惰性氣體或其組合。According to an embodiment of the invention, the atmosphere further comprises hydrogen, an inert gas or a combination thereof.

根據本發明一實施例,惰性氣體為氮氣、氬氣或其組合。According to an embodiment of the invention, the inert gas is nitrogen, argon or a combination thereof.

根據本發明一實施例,熱處理的時間為10分鐘至8小時。According to an embodiment of the invention, the heat treatment time is from 10 minutes to 8 hours.

根據本發明一實施例,前驅物溶液更包含氫氧根離子。According to an embodiment of the invention, the precursor solution further comprises hydroxide ions.

根據本發明一實施例,積層結構包含基材、背電極位於基材上及光吸收層位於背電極上,且使積層結構接觸前驅物溶液步驟包含使積層結構之光吸收層接觸前驅物溶液,以形成沉積層於光吸收層上。According to an embodiment of the invention, the laminated structure comprises a substrate, the back electrode is on the substrate, and the light absorbing layer is on the back electrode, and the step of contacting the laminated structure with the precursor solution comprises contacting the light absorbing layer of the laminated structure with the precursor solution. To form a deposited layer on the light absorbing layer.

根據本發明一實施例,前驅物溶液更包含摻雜元素,選自由IA族、鈦、鉛、錫、鎳、釤、釹及其組合所構成之群組。According to an embodiment of the invention, the precursor solution further comprises a doping element selected from the group consisting of Group IA, titanium, lead, tin, nickel, ruthenium, osmium, and combinations thereof.

根據本發明一實施例,前驅物溶液更包含酸類或鹼類。According to an embodiment of the invention, the precursor solution further comprises an acid or a base.

以下將以圖式揭露本發明之複數個實施例,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式顯示之。The embodiments of the present invention are disclosed in the following drawings, and for the purpose of illustration However, it should be understood that these practical details are not intended to limit the invention. That is, in some embodiments of the invention, these practical details are not necessary. In addition, some of the conventional structures and elements are shown in the drawings in a simplified manner in the drawings.

根據先前技術可知,目前的緩衝層未能明顯幫助提昇銅銦鎵硒太陽能電池的性能。因此,本發明提供一種製造太陽能電池之緩衝層的方法,其可有效提升太陽能電池的性能。以下將詳細敘述太陽能電池之緩衝層的製造方法的數個實施例。According to the prior art, the current buffer layer fails to significantly improve the performance of the copper indium gallium selenide solar cell. Accordingly, the present invention provides a method of fabricating a buffer layer for a solar cell that can effectively enhance the performance of the solar cell. Several embodiments of the method of manufacturing the buffer layer of the solar cell will be described in detail below.

首先,提供前驅物溶液。前驅物溶液包含溶劑、主要金屬元素及VIA族元素。溶劑可為水、醇類、酮類、醚類、胺類、鹼類、酸類或上述之組合。上述醇類包括甲醇、乙醇、丙醇、異丙醇、正丁醇、異戊醇或乙二醇;酮類包括丙酮、丁酮、甲基異丁酮;醚類包括甲醚、乙醚、甲乙醚、二苯醚、乙二醇甲醚、乙二醇丁醚或乙二醇乙醚醋酸;胺類包括乙二胺、二甲基甲醯胺、三乙醇胺或二乙醇胺;鹼類包括氫氧化鈉(NaOH)、氫氧化鉀(KOH)、氫氧化鋰(LiOH)、尿素(CON2 H4 )、氨(NH3 )、碳酸鈉(Na2 CO3 )、碳酸氫鈉(NaHCO3 )或上述之組合;酸類包含甲酸(CH3 COOH)、乙酸(C2 H5 COOH)、鹽酸(HCl)、硝酸(HNO3 )、硫酸(H2 SO4 )、碳酸(H2 CO3 )及檸檬酸(C6 H8 O7 )及其組合。在一實施例中,溶劑包含水。First, a precursor solution is provided. The precursor solution contains a solvent, a main metal element, and a Group VIA element. The solvent may be water, alcohols, ketones, ethers, amines, bases, acids or a combination of the above. The above alcohols include methanol, ethanol, propanol, isopropanol, n-butanol, isoamyl alcohol or ethylene glycol; ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone; ethers include methyl ether, diethyl ether, A Ether, diphenyl ether, ethylene glycol methyl ether, ethylene glycol butyl ether or ethylene glycol ethyl ether; amines include ethylenediamine, dimethylformamide, triethanolamine or diethanolamine; alkalis include sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), urea (CON 2 H 4 ), ammonia (NH 3 ), sodium carbonate (Na 2 CO 3 ), sodium hydrogencarbonate (NaHCO 3 ) or the like a combination comprising acid (CH 3 COOH), acetic acid (C 2 H 5 COOH), hydrochloric acid (HCl), nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), carbonic acid (H 2 CO 3 ), and citric acid (C 6 H 8 O 7 ) and combinations thereof. In an embodiment, the solvent comprises water.

主要金屬元素的來源可為含主要金屬元素的化合物,例如為含主要金屬元素的氧化物、硝酸物、鹵化物、醋酸物與硫酸物,如硝酸鎘、氯化鎘、醋酸鎘、硫酸鎘、碘化鎘、硝酸鋅、氯化鋅、醋酸鋅、硫酸鋅、碘化鋅、硝酸銦、氯化銦、醋酸銦、碘化銦或硫酸銦。但含主要金屬元素的化合物的選擇並不限於上述提及之化合物,只要是能含主要金屬元素陽離子的化合物皆適用於本發明。The main metal element may be a compound containing a main metal element, such as an oxide containing a main metal element, a nitrate, a halide, an acetate, and a sulfate such as cadmium nitrate, cadmium chloride, cadmium acetate, cadmium sulfate, Cadmium iodide, zinc nitrate, zinc chloride, zinc acetate, zinc sulfate, zinc iodide, indium nitrate, indium chloride, indium acetate, indium iodide or indium sulfate. However, the selection of the compound containing a main metal element is not limited to the above-mentioned compounds, and any compound which can contain a main metal element cation is suitable for use in the present invention.

VIA族元素選自由氧、硫、硒及其組合所構成之群組。VIA族元素的來源可為含VIA族元素的化合物,如硫脲(thiourea, SC(NH2 )2 )、硫代乙醯胺、二甲基二硫(CH3 -S-S-CH3 )、二烯丙基二硫化物(H2 C=CH-CH2 S-SCH2 -CH=CH2 )、硫粉(S)、硒粉(Se)、亞硒酸(H2 SeO3 )、硒酸(H2 SeO4 )、甲硒醇(CH4 Se)、乙硒醇(CH3 CH2 SeH)、丙硒醇(C3 H7 SeH)、丁硒醇(C4 H9 SeH)等。但含VIA族元素的化合物的選擇並不限於上述提及之化合物,只要是能含VIA族陰離子的化合物皆適用於本發明。Group VIA elements are selected from the group consisting of oxygen, sulfur, selenium, and combinations thereof. The source of the Group VIA element may be a compound containing a Group VIA element such as thiourea (SC(NH 2 ) 2 ), thioacetamide, dimethyl disulfide (CH 3 -SS-CH 3 ), Allyl disulfide (H 2 C=CH-CH 2 S-SCH 2 -CH=CH 2 ), sulfur powder (S), selenium powder (Se), selenite (H 2 SeO 3 ), selenic acid (H 2 SeO 4 ), methyl selenol (CH 4 Se), ethyl selenol (CH 3 CH 2 SeH), propenol (C 3 H 7 SeH), butenol (C 4 H 9 SeH), and the like. However, the selection of the compound containing a Group VIA element is not limited to the above-mentioned compounds, and any compound which can contain an anion of a Group VIA is suitable for use in the present invention.

在一實施例中,前驅物溶液更包含摻雜元素,選自由IA族、鈦、鉛、錫、鎳、釤、釹及其組合所構成之群組。上述摻雜元素有助於提昇太陽能電池的性能。在一實施例中,摻雜元素與主要金屬元素之莫耳比為0.01:100至8:100。In one embodiment, the precursor solution further comprises a doping element selected from the group consisting of Group IA, titanium, lead, tin, nickel, ruthenium, osmium, and combinations thereof. The above doping elements contribute to the performance of the solar cell. In one embodiment, the molar ratio of the doping element to the primary metal element is from 0.01:100 to 8:100.

在一實施例中,前驅物溶液更包含鹼類或酸類,以調整前驅物溶液的pH值。在一實施例中,前驅物溶液更包含氫氧根離子。In one embodiment, the precursor solution further comprises a base or an acid to adjust the pH of the precursor solution. In an embodiment, the precursor solution further comprises hydroxide ions.

在一實施例中,前驅物溶液更包含氨水,以調整前驅物溶液的pH值。In one embodiment, the precursor solution further comprises aqueous ammonia to adjust the pH of the precursor solution.

在提供前驅物溶液之後,使積層結構接觸前驅物溶液,以形成沉積層於積層結構上。此前驅物溶液可透過化學水浴沉積法(chemical bath deposition, CBD),成長出合適的沉積層於積層結構上。此化學水浴沉積法可在室溫至99℃的環境下進行,反應時間3分鐘至8小時。藉由控制沉積的時間,可控制沉積層的厚度。在一實施例中,積層結構包含基材、背電極及光吸收層,背電極位於基材上,光吸收層位於背電極上。然後,使積層結構之光吸收層接觸前驅物溶液,以形成沉積層於光吸收層上。After the precursor solution is provided, the laminate structure is contacted with the precursor solution to form a deposited layer on the laminate structure. The precursor solution can be chemically bathed (CC) to grow a suitable deposited layer on the laminate structure. This chemical water bath deposition method can be carried out at room temperature to 99 ° C for a reaction time of 3 minutes to 8 hours. The thickness of the deposited layer can be controlled by controlling the deposition time. In one embodiment, the laminate structure includes a substrate, a back electrode, and a light absorbing layer, the back electrode is on the substrate, and the light absorbing layer is on the back electrode. Then, the light absorbing layer of the laminate structure is brought into contact with the precursor solution to form a deposited layer on the light absorbing layer.

舉例而言,如第1圖所示,積層結構包含基材10、背電極20及光吸收層30。然後使光吸收層30接觸前驅物溶液,以形成沉積層(未繪示)於光吸收層30上。基材10可為玻璃、高分子基材、金屬基材或透明導電層。背電極20可為含鉬金屬層,例如可利用濺鍍方式形成。光吸收層30設置於背電極20之上方,其用以作為P型半導體層。光吸收層30可包含銅銦硒化合物、銅銦硫化合物、銅銦鎵硫化合物、銅銦鎵硫硒化合物、銅銦鎵硒化合物、銅鎵硒化合物、銅鎵硫化合物、銅鋅錫硒化合物、銅鋅錫硫化合物、銅鋅錫硫硒化合物、碲化鎘或上述之組合。光吸收層30的化合物結構可為黃銅礦相、鋅黃錫礦相、閃鋅礦相、kersterite結構或上述之組合。For example, as shown in FIG. 1, the laminated structure includes the substrate 10, the back electrode 20, and the light absorbing layer 30. The light absorbing layer 30 is then brought into contact with the precursor solution to form a deposited layer (not shown) on the light absorbing layer 30. The substrate 10 can be a glass, a polymeric substrate, a metal substrate, or a transparent conductive layer. The back electrode 20 may be a molybdenum containing metal layer, for example, formed by sputtering. The light absorbing layer 30 is disposed above the back electrode 20 and functions as a P-type semiconductor layer. The light absorbing layer 30 may comprise a copper indium selenide compound, a copper indium sulfide compound, a copper indium gallium sulfide compound, a copper indium gallium sulfide selenium compound, a copper indium gallium selenide compound, a copper gallium selenium compound, a copper gallium sulfur compound, a copper zinc tin selenium compound. , copper zinc tin sulphur compound, copper zinc tin sulphide selenium compound, cadmium telluride or a combination thereof. The compound structure of the light absorbing layer 30 may be a chalcopyrite phase, a zinc tin ore phase, a zinc blende phase, a kersterite structure, or a combination thereof.

然後,將沉積層在一氣氛下進行熱處理,以形成緩衝層。舉例而言,如第1圖所示,將位於光吸收層30上的沉積層進行熱處理,以形成緩衝層40。特別的是,之後緩衝層40在包含VIA族元素氣氛中進行熱處理。在一實施例中,VIA族元素包含硫、硒、氧或其組合。在一實施例中,熱處理氣氛包含硫化氫、硒化氫、硫蒸氣、硒蒸氣或其組合。在一實施例中,熱處理的溫度為50°C至300°C。在一實施例中,熱處理的溫度為120°C至250°C。在一實施例中,熱處理的溫度為100°C至180°C。在一實施例中,熱處理的時間為10分鐘至8小時。在一實施例中,熱處理的時間為15分鐘至1小時。由下述實驗例與比較例可知,熱處理有助於大幅提昇太陽能電池之開路電壓、短路電流、填充因子及轉換效率。可能是因為透過熱處理,沉積層的結晶結構中的孔洞逐漸消失,而形成緻密且覆蓋率高的緩衝層,進而使太陽能電池的光電特性可大幅提昇。Then, the deposited layer is subjected to heat treatment under an atmosphere to form a buffer layer. For example, as shown in FIG. 1, the deposited layer on the light absorbing layer 30 is subjected to heat treatment to form the buffer layer 40. In particular, the buffer layer 40 is then heat treated in an atmosphere containing a Group VIA element. In one embodiment, the Group VIA element comprises sulfur, selenium, oxygen, or a combination thereof. In an embodiment, the heat treatment atmosphere comprises hydrogen sulfide, hydrogen selenide, sulfur vapor, selenium vapor, or a combination thereof. In one embodiment, the temperature of the heat treatment is from 50 ° C to 300 ° C. In one embodiment, the temperature of the heat treatment is from 120 ° C to 250 ° C. In one embodiment, the temperature of the heat treatment is from 100 ° C to 180 ° C. In one embodiment, the heat treatment time is from 10 minutes to 8 hours. In one embodiment, the heat treatment time is from 15 minutes to 1 hour. It can be seen from the following experimental examples and comparative examples that the heat treatment contributes to a significant increase in the open circuit voltage, short circuit current, fill factor, and conversion efficiency of the solar cell. It may be because the pores in the crystal structure of the deposited layer gradually disappear through the heat treatment, and a buffer layer having a dense and high coverage is formed, so that the photoelectric characteristics of the solar cell can be greatly improved.

在一實施例中,熱處理之氣氛可包含惰性氣體,其用以作為攜帶氣體(carrier gas)。在一實施例中,惰性氣體為氮氣、氬氣或其組合。惰性氣體除了幫助具反應性的VIA族元素氣體流動之外,還可調控VIA族元素的比例。在一實施例中,惰性氣體在總氣氛中所佔莫爾比例為0至0.99。In an embodiment, the atmosphere of the heat treatment may comprise an inert gas for use as a carrier gas. In an embodiment, the inert gas is nitrogen, argon or a combination thereof. In addition to assisting the flow of reactive Group VIA gases, inert gases can also regulate the proportion of Group VIA elements. In one embodiment, the inert gas has a molar ratio of from 0 to 0.99 in the total atmosphere.

在熱處理之後,可依序形成透明窗層及前電極於緩衝層上。舉例而言,如第1圖所示,可依序形成透明窗層50及前電極60於緩衝層40上。透明窗層50可為氧化鋅(ZnO)、氧化銦錫(ITO)、氧化鋅硼(BZO)、氧化鋅鋁(AZO)、氧化鋅鎵(GZO)或其組合。透明窗層材料不受上述材料限制,僅需具有透光性即可。前電極60用以收集太陽能電池1產生的電流。前電極60的材料可例如為鎳、鎳鋁合金。After the heat treatment, the transparent window layer and the front electrode are sequentially formed on the buffer layer. For example, as shown in FIG. 1, the transparent window layer 50 and the front electrode 60 may be sequentially formed on the buffer layer 40. The transparent window layer 50 may be zinc oxide (ZnO), indium tin oxide (ITO), zinc oxide boron (BZO), zinc aluminum oxide (AZO), zinc gallium oxide (GZO), or a combination thereof. The transparent window layer material is not limited by the above materials, and only needs to have light transmissivity. The front electrode 60 is used to collect the current generated by the solar cell 1. The material of the front electrode 60 may be, for example, nickel or nickel aluminum alloy.

實驗例 1 將Cu金屬、In金屬、Ga金屬及Se元素以多元蒸鍍法沉積於基材上以形成CIGS薄膜。利用化學水浴沉積法製備銅銦鎵硒(CIGS)太陽能電池之硫化鎘薄膜。以含有硫酸鎘、硫脲、氨水的前驅物溶液,並將soda lime glass/Mo/CIGS浸泡在前驅物溶液中,以沉積硫化鎘薄膜於soda lime glass/Mo/CIGS上,形成soda lime glass/Mo/CIGS/硫化鎘。將此soda lime glass/Mo/CIGS/硫化鎘樣品置於高純度10% H2 S/ 90% N2 混合氣氛中,以120o C進行後熱處理(post-annealing treatment, PAT)4小時,獲得soda lime glass/Mo/CIGS/硫化鎘(PAT)。 Experimental Example 1 Cu metal, In metal, Ga metal, and Se element were deposited on a substrate by a multi-evaporation method to form a CIGS film. A cadmium sulfide film of a copper indium gallium selenide (CIGS) solar cell was prepared by a chemical water bath deposition method. A precursor solution containing cadmium sulfate, thiourea, ammonia water, and soda lime glass/Mo/CIGS is immersed in the precursor solution to deposit a cadmium sulfide film on soda lime glass/Mo/CIGS to form soda lime glass/ Mo/CIGS/cadmium sulfide. This soda lime glass / Mo / CIGS / CdS samples were placed in high purity 10% H 2 S / 90% N 2 mixed gas atmosphere, heat treatment is carried out after 120 o C (post-annealing treatment , PAT) 4 hours to obtain Soda lime glass/Mo/CIGS/cadmium sulfide (PAT).

以soda lime glass/Mo/CIGS/硫化鎘(PAT)/i-ZnO/ITO之結構製作銅銦鎵硒薄膜太陽能電池,再以太陽能標準光源模擬器分析銅銦鎵硒薄膜太陽能電池,實驗結果顯示開路電壓(Voc)為0.580V,短路電流(Jsc)為31.64 mA/cm2 ,填充因子(FF)為64.95%,光電轉換效率為11.92%。Copper indium gallium selenide thin film solar cells were fabricated by the structure of soda lime glass/Mo/CIGS/cadmium sulfide (PAT)/i-ZnO/ITO, and the copper indium gallium selenide thin film solar cells were analyzed by solar standard light source simulator. The experimental results show The open circuit voltage (Voc) was 0.580 V, the short circuit current (Jsc) was 31.64 mA/cm 2 , the fill factor (FF) was 64.95%, and the photoelectric conversion efficiency was 11.92%.

比較例 1 將Cu金屬、In金屬、Ga金屬及Se元素以多元蒸鍍法沉積於基材上以形成CIGS薄膜。利用化學水浴沉積法製備銅銦鎵硒(CIGS)太陽能電池之硫化鎘薄膜。以含有硫酸鎘、硫脲、氨水的前驅物溶液,並將soda lime glass/Mo/CIGS浸泡在前驅物溶液中,以沉積硫化鎘薄膜於soda lime glass/Mo/CIGS上,獲得soda lime glass/Mo/CIGS/硫化鎘。 In Comparative Example 1, Cu metal, In metal, Ga metal, and Se element were deposited on a substrate by a multi-evaporation method to form a CIGS film. A cadmium sulfide film of a copper indium gallium selenide (CIGS) solar cell was prepared by a chemical water bath deposition method. A precursor solution containing cadmium sulfate, thiourea, and ammonia is used, and soda lime glass/Mo/CIGS is immersed in the precursor solution to deposit a cadmium sulfide film on soda lime glass/Mo/CIGS to obtain soda lime glass/ Mo/CIGS/cadmium sulfide.

以soda lime glass/Mo/CIGS/硫化鎘/i-ZnO/ITO之結構製作銅銦鎵硒薄膜太陽能電池,再以太陽能標準光源模擬器分析銅銦鎵硒薄膜太陽能電池,實驗顯示開路電壓(Voc)為0.562V,短路電流(Jsc)為31.24 mA/cm2 ,填充因子(FF)為58.57%,光電轉換效率為10.29%。與未進行後熱處理之比較例1比較,經過後熱處理之硫化鎘(PAT)薄膜應用於銅銦鎵硒薄膜太陽能電池之開路電壓、短路電流、填充因子及轉換效率均明顯增加。A copper indium gallium selenide thin film solar cell was fabricated by the structure of soda lime glass/Mo/CIGS/cadmium sulfide/i-ZnO/ITO, and the copper indium gallium selenide thin film solar cell was analyzed by a solar standard light source simulator. The experiment showed that the open circuit voltage (Voc) The current is 0.562V, the short-circuit current (Jsc) is 31.24 mA/cm 2 , the fill factor (FF) is 58.57%, and the photoelectric conversion efficiency is 10.29%. Compared with Comparative Example 1 which was not subjected to post-heat treatment, the post-heat treatment cadmium sulfide (PAT) film was applied to the copper indium gallium selenide thin film solar cell, and the open circuit voltage, short circuit current, fill factor and conversion efficiency were significantly increased.

實驗例 2 將CuGa合金及In金屬以濺鍍法沉積於基材上,分別堆疊後形成前驅膜,再於高純度氮氫混合氣中,以550o C加熱0.5小時並通入硒蒸氣,以形成CIGS薄膜。利用化學水浴沉積法製備銅銦鎵硒(CIGS)太陽能電池之硫化鎘薄膜。以含有硫酸鎘、硫脲、氨水的前驅物溶液,並將soda lime glass/Mo/CIGS浸泡在前驅物溶液中,以沉積硫化鎘薄膜於soda lime glass/Mo/CIGS上,形成soda lime glass/Mo/CIGS/硫化鎘。將此soda lime glass/Mo/CIGS/硫化鎘樣品置於高純度10% H2 S/ 90% N2 混合氣氛中,以200o C進行後熱處理(post-annealing treatment, PAT) 0.5小時,獲得soda lime glass/Mo/CIGS/硫化鎘(PAT)。 Experimental Example 2 In the CuGa alloy and the metal is deposited by sputtering on the substrate, the precursor film was formed were stacked, and then the high-purity nitrogen gas mixture of hydrogen, for 0.5 hour to 550 o C and selenium vapor passed to A CIGS film is formed. A cadmium sulfide film of a copper indium gallium selenide (CIGS) solar cell was prepared by a chemical water bath deposition method. A precursor solution containing cadmium sulfate, thiourea, ammonia water, and soda lime glass/Mo/CIGS is immersed in the precursor solution to deposit a cadmium sulfide film on soda lime glass/Mo/CIGS to form soda lime glass/ Mo/CIGS/cadmium sulfide. This soda lime glass / Mo / CIGS / CdS samples were placed in high purity 10% H 2 S / 90% N 2 mixed gas atmosphere, heat treatment is carried out after 200 o C (post-annealing treatment , PAT) 0.5 hours to obtain Soda lime glass/Mo/CIGS/cadmium sulfide (PAT).

以soda lime glass/Mo/CIGS/硫化鎘(PAT)/i-ZnO/ITO之結構製作銅銦鎵硒薄膜太陽能電池,再以太陽能標準光源模擬器分析銅銦鎵硒薄膜太陽能電池,實驗結果顯示開路電壓(Voc)為0.446V,短路電流(Jsc)為33.44 mA/cm2 ,填充因子(FF)為60.36%,光電轉換效率為9.01%。Copper indium gallium selenide thin film solar cells were fabricated by the structure of soda lime glass/Mo/CIGS/cadmium sulfide (PAT)/i-ZnO/ITO, and the copper indium gallium selenide thin film solar cells were analyzed by solar standard light source simulator. The experimental results show The open circuit voltage (Voc) was 0.446 V, the short circuit current (Jsc) was 33.44 mA/cm 2 , the fill factor (FF) was 60.36%, and the photoelectric conversion efficiency was 9.01%.

比較例 2 將CuGa合金及In金屬以濺鍍法沉積於基材上,分別堆疊後形成前驅膜,再於高純度氮氫混合氣中,以550o C加熱0.5小時並通入硒蒸氣,以形成CIGS薄膜。利用化學水浴沉積法製備銅銦鎵硒(CIGS)太陽能電池之硫化鎘薄膜。以含有硫酸鎘、硫脲、氨水的前驅物溶液,並將soda lime glass/Mo/CIGS浸泡在前驅物溶液中,以沉積硫化鎘薄膜於soda lime glass/Mo/CIGS上,獲得soda lime glass/Mo/CIGS/硫化鎘。 Comparative Example 2 In the CuGa alloy and the metal is deposited by sputtering on the substrate, the precursor film was formed were stacked, and then the high-purity nitrogen gas mixture of hydrogen, for 0.5 hour to 550 o C and selenium vapor passed to A CIGS film is formed. A cadmium sulfide film of a copper indium gallium selenide (CIGS) solar cell was prepared by a chemical water bath deposition method. A precursor solution containing cadmium sulfate, thiourea, and ammonia is used, and soda lime glass/Mo/CIGS is immersed in the precursor solution to deposit a cadmium sulfide film on soda lime glass/Mo/CIGS to obtain soda lime glass/ Mo/CIGS/cadmium sulfide.

以soda lime glass/Mo/CIGS/硫化鎘/i-ZnO/ITO之結構製作銅銦鎵硒薄膜太陽能電池,再以太陽能標準光源模擬器分析銅銦鎵硒薄膜太陽能電池,實驗顯示開路電壓(Voc)為0.441V,短路電流(Jsc)為33.40 mA/cm2 ,填充因子(FF)為55.11%,光電轉換效率為8.12%。與未進行後熱處理之比較例2比較,經過後熱處理之硫化鎘(PAT)薄膜應用於銅銦鎵硒薄膜太陽能電池之開路電壓、短路電流、填充因子及轉換效率均明顯增加。A copper indium gallium selenide thin film solar cell was fabricated by the structure of soda lime glass/Mo/CIGS/cadmium sulfide/i-ZnO/ITO, and the copper indium gallium selenide thin film solar cell was analyzed by a solar standard light source simulator. The experiment showed that the open circuit voltage (Voc) The current is 0.441V, the short-circuit current (Jsc) is 33.40 mA/cm 2 , the fill factor (FF) is 55.11%, and the photoelectric conversion efficiency is 8.12%. Compared with Comparative Example 2 which was not post-heat treated, the post-heat treatment cadmium sulfide (PAT) film was applied to the copper indium gallium selenide thin film solar cell, and the open circuit voltage, short circuit current, fill factor and conversion efficiency were significantly increased.

實驗例 3 將Cu(NO3 )2 、Ga(NO3 )3 和In(NO3 )3 溶於乙醇中配製成溶液,於加入黏結劑並混合均勻後,成為前驅物溶液,利用旋轉塗佈法將前驅物溶液塗佈於玻璃基材上,加熱乾燥處理後,再通入硒蒸氣加熱,以形成CIGS薄膜。利用化學水浴沉積法製備銅銦鎵硒(CIGS)太陽能電池之硫化鎘薄膜。以含有硫酸鎘、硫脲、氨水的前驅物溶液,並將soda lime glass/Mo/CIGS浸泡在前驅物溶液中,以沉積硫化鎘薄膜於soda lime glass/Mo/CIGS上,形成soda lime glass/Mo/CIGS/硫化鎘。將此soda lime glass/Mo/CIGS/硫化鎘樣品置於高純度10% H2 S/ 90% N2 混合氣氛中,以250o C進行後熱處理(post-annealing treatment, PAT) 0.5小時,獲得soda lime glass/Mo/CIGS/硫化鎘(PAT)。 Experimental Example 3 Cu(NO 3 ) 2 , Ga(NO 3 ) 3 and In(NO 3 ) 3 were dissolved in ethanol to prepare a solution, and after adding a binder and uniformly mixing, it became a precursor solution and was spin-coated. The cloth method applies the precursor solution to the glass substrate, heats and dries the solution, and then heats the selenium vapor to form a CIGS film. A cadmium sulfide film of a copper indium gallium selenide (CIGS) solar cell was prepared by a chemical water bath deposition method. A precursor solution containing cadmium sulfate, thiourea, ammonia water, and soda lime glass/Mo/CIGS is immersed in the precursor solution to deposit a cadmium sulfide film on soda lime glass/Mo/CIGS to form soda lime glass/ Mo/CIGS/cadmium sulfide. This soda lime glass / Mo / CIGS / CdS samples were placed in high purity 10% H 2 S / 90% N 2 mixed gas atmosphere, heat treatment is carried out after 250 o C (post-annealing treatment , PAT) 0.5 hours to obtain Soda lime glass/Mo/CIGS/cadmium sulfide (PAT).

以soda lime glass/Mo/CIGS/硫化鎘(PAT)/i-ZnO/ITO之結構製作銅銦鎵硒薄膜太陽能電池,再以太陽能標準光源模擬器分析銅銦鎵硒薄膜太陽能電池,實驗結果顯示開路電壓(Voc)為0.460V,短路電流(Jsc)為32.82 mA/cm2 ,填充因子(FF)為58.07%,光電轉換效率為8.77%。Copper indium gallium selenide thin film solar cells were fabricated by the structure of soda lime glass/Mo/CIGS/cadmium sulfide (PAT)/i-ZnO/ITO, and the copper indium gallium selenide thin film solar cells were analyzed by solar standard light source simulator. The experimental results show The open circuit voltage (Voc) was 0.460 V, the short circuit current (Jsc) was 32.82 mA/cm 2 , the fill factor (FF) was 58.07%, and the photoelectric conversion efficiency was 8.77%.

比較例 3 將Cu(NO3 )2 、Ga(NO3 )3 和In(NO3 )3 溶於乙醇中配製成溶液,於加入黏結劑並混合均勻後,成為前驅物溶液,利用旋轉塗佈法將前驅物溶液塗佈於玻璃基材上,加熱乾燥處理後,再通入硒蒸氣加熱,以形成CIGS薄膜。利用化學水浴沉積法製備銅銦鎵硒(CIGS)太陽能電池之硫化鎘薄膜。以含有硫酸鎘、硫脲、氨水的前驅物溶液,並將soda lime glass/Mo/CIGS浸泡在前驅物溶液中,以沉積硫化鎘薄膜於soda lime glass/Mo/CIGS上,獲得soda lime glass/Mo/CIGS/硫化鎘。 In Comparative Example 3, Cu(NO 3 ) 2 , Ga(NO 3 ) 3 and In(NO 3 ) 3 were dissolved in ethanol to prepare a solution, and after adding a binder and uniformly mixing, it became a precursor solution and was spin-coated. The cloth method applies the precursor solution to the glass substrate, heats and dries the solution, and then heats the selenium vapor to form a CIGS film. A cadmium sulfide film of a copper indium gallium selenide (CIGS) solar cell was prepared by a chemical water bath deposition method. A precursor solution containing cadmium sulfate, thiourea, and ammonia is used, and soda lime glass/Mo/CIGS is immersed in the precursor solution to deposit a cadmium sulfide film on soda lime glass/Mo/CIGS to obtain soda lime glass/ Mo/CIGS/cadmium sulfide.

以soda lime glass/Mo/CIGS/硫化鎘/i-ZnO/ITO之結構製作銅銦鎵硒薄膜太陽能電池,再以太陽能標準光源模擬器分析銅銦鎵硒薄膜太陽能電池,實驗顯示開路電壓(Voc)為0.422V,短路電流(Jsc)為32.43 mA/cm2 ,填充因子(FF)為53.46%,光電轉換效率為7.32%。與未進行後熱處理之比較例2比較,經過後熱處理之硫化鎘(PAT)薄膜應用於銅銦鎵硒薄膜太陽能電池之開路電壓、短路電流、填充因子及轉換效率均明顯增加。A copper indium gallium selenide thin film solar cell was fabricated by the structure of soda lime glass/Mo/CIGS/cadmium sulfide/i-ZnO/ITO, and the copper indium gallium selenide thin film solar cell was analyzed by a solar standard light source simulator. The experiment showed that the open circuit voltage (Voc) ) is 0.422V, the short-circuit current (Jsc) is 32.43 mA/cm 2 , the fill factor (FF) is 53.46%, and the photoelectric conversion efficiency is 7.32%. Compared with Comparative Example 2 which was not post-heat treated, the post-heat treatment cadmium sulfide (PAT) film was applied to the copper indium gallium selenide thin film solar cell, and the open circuit voltage, short circuit current, fill factor and conversion efficiency were significantly increased.

實驗例 4 將Cu金屬、In金屬、Ga金屬及Se元素以多元蒸鍍法沈積於基材上以形成CIGS薄膜。利用化學水浴沉積法製備銅銦鎵硒(CIGS)太陽電池之緩衝層。以含有硫酸鋅、硫脲、氨水的前驅物溶液,並將soda lime glass/Mo/CIGS浸泡在前驅物溶液中,以沉積硫化鋅薄膜於soda lime glass/Mo/CIGS上,形成soda lime glass/Mo/CIGS/硫化鋅。將此soda lime glass/Mo/CIGS/硫化鋅樣品置於高純度5 % H2S/ 90% N2混合氣氛中,以180o C進行後熱處裡(post-annealing treatment, PAT) 1小時,獲得soda lime glass/Mo/CIGS/硫化鋅(PAT)。 Experimental Example 4 Cu metal, In metal, Ga metal, and Se element were deposited on a substrate by a multi-evaporation method to form a CIGS film. A buffer layer of a copper indium gallium selenide (CIGS) solar cell was prepared by a chemical water bath deposition method. A precursor solution containing zinc sulfate, thiourea, ammonia water, and soda lime glass/Mo/CIGS is immersed in the precursor solution to deposit a zinc sulfide film on soda lime glass/Mo/CIGS to form soda lime glass/ Mo/CIGS/zinc sulfide. This soda lime glass / Mo / CIGS / ZnS sample was placed in a high purity 5% H2S / 90% N2 mixed atmosphere, heat to 180 o C for years after (post-annealing treatment, PAT) 1 hour to obtain soda Lime glass/Mo/CIGS/zinc sulfide (PAT).

以soda lime glass/Mo/CIGS/硫化鋅(PAT)/i-ZnO/ITO之結構製作銅銦鎵硒薄膜太陽電池,再以太陽能標準光源模擬器分析銅銦鎵硒薄膜太陽電池,實驗結果顯示開路電壓(Voc)為0.433V,短路電流(Jsc)為32.81 mA/cm2 ,填充因子(FF)為43.78%,光電轉換效率為6.21%。The copper indium gallium selenide thin film solar cell was fabricated by the structure of soda lime glass/Mo/CIGS/zinc sulfide (PAT)/i-ZnO/ITO, and the solar indium gallium selenide thin film solar cell was analyzed by solar standard light source simulator. The experimental results show The open circuit voltage (Voc) was 0.433 V, the short circuit current (Jsc) was 32.81 mA/cm 2 , the fill factor (FF) was 43.78%, and the photoelectric conversion efficiency was 6.21%.

比較例 4 將Cu金屬、In金屬、Ga金屬及Se元素以多元蒸鍍法沈積於基材上以形成CIGS薄膜。利用化學水浴沉積法製備銅銦鎵硒(CIGS)太陽電池之緩衝層。以含有硫酸鋅、硫脲、氨水的前驅物溶液,並將soda lime glass/Mo/CIGS浸泡在前驅物溶液中,以沉積硫化鋅薄膜於soda lime glass/Mo/CIGS上,獲得soda lime glass/Mo/CIGS/硫化鋅。 In Comparative Example 4, Cu metal, In metal, Ga metal, and Se element were deposited on a substrate by a multi-evaporation method to form a CIGS film. A buffer layer of a copper indium gallium selenide (CIGS) solar cell was prepared by a chemical water bath deposition method. A precursor solution containing zinc sulfate, thiourea, ammonia water, and soda lime glass/Mo/CIGS is immersed in the precursor solution to deposit a zinc sulfide film on soda lime glass/Mo/CIGS to obtain soda lime glass/ Mo/CIGS/zinc sulfide.

以soda lime glass/Mo/CIGS/硫化鋅/i-ZnO/ITO之結構製作銅銦鎵硒薄膜太陽電池,再以太陽能標準光源模擬器分析銅銦鎵硒薄膜太陽電池,實驗顯示開路電壓(Voc)為0.341V,短路電流(Jsc)為30.56 mA/cm2 ,填充因子(FF)為30.96%,光電轉換效率為3.23%。與未進行後熱處裡之比較例4比較,經過後熱處裡之硫化鋅(PAT)薄膜應用於銅銦鎵硒薄膜太陽電池之開路電壓、短路電流、填充因子及轉換效率均明顯增加。A copper indium gallium selenide thin film solar cell was fabricated by the structure of soda lime glass/Mo/CIGS/zinc sulfide/i-ZnO/ITO, and the solar indium gallium selenide thin film solar cell was analyzed by a solar standard light source simulator. The experiment showed that the open circuit voltage (Voc) The current is 0.341V, the short-circuit current (Jsc) is 30.56 mA/cm 2 , the fill factor (FF) is 30.96%, and the photoelectric conversion efficiency is 3.23%. Compared with the comparative example 4 in the post-heating section, the open circuit voltage, short-circuit current, filling factor and conversion efficiency of the copper-indium-gallium-selenide thin film solar cell after the zinc oxide (PAT) film in the post-heating zone were significantly increased.

實驗例 5 將Cu金屬、In金屬、Ga金屬及Se元素以多元蒸鍍法沈積於基材上以形成CIGS薄膜。利用化學水浴沉積法製備銅銦鎵硒(CIGS)太陽電池之緩衝層。以含有氯化銦、硫代乙醯胺、醋酸的前驅物溶液,並將soda lime glass/Mo/CIGS浸泡在前驅物溶液中,以沉積硫化銦薄膜於soda lime glass/Mo/CIGS上,形成soda lime glass/Mo/CIGS/硫化銦。將此soda lime glass/Mo/CIGS/硫化銦樣品置於高純度5 % H2S/ 90% N2混合氣氛中,以220o C進行後熱處裡(post-annealing treatment, PAT) 1小時,獲得soda lime glass/Mo/CIGS/硫化銦(PAT)。 Experimental Example 5 Cu metal, In metal, Ga metal, and Se element were deposited on a substrate by a multi-evaporation method to form a CIGS film. A buffer layer of a copper indium gallium selenide (CIGS) solar cell was prepared by a chemical water bath deposition method. A precursor solution containing indium chloride, thioacetamide, acetic acid is used, and soda lime glass/Mo/CIGS is immersed in the precursor solution to deposit an indium sulfide film on soda lime glass/Mo/CIGS to form Soda lime glass/Mo/CIGS/indium sulfide. This soda lime glass / Mo / CIGS / indium sulfide samples were placed in high purity 5% H2S / 90% N2 mixed atmosphere, to 220 o C after heat Lane (post-annealing treatment, PAT) 1 hour to obtain soda Lime glass/Mo/CIGS/indium sulfide (PAT).

以soda lime glass/Mo/CIGS/硫化銦(PAT)/i-ZnO/ITO之結構製作銅銦鎵硒薄膜太陽電池,再以太陽能標準光源模擬器分析銅銦鎵硒薄膜太陽電池,實驗結果顯示開路電壓(Voc)為0.435V,短路電流(Jsc)為32.83 mA/cm2 ,填充因子(FF)為54.99%,光電轉換效率為7.85%。A copper indium gallium selenide thin film solar cell was fabricated by the structure of soda lime glass/Mo/CIGS/indium sulfide (PAT)/i-ZnO/ITO, and the solar indium gallium selenide thin film solar cell was analyzed by a solar standard light source simulator. The open circuit voltage (Voc) was 0.435 V, the short circuit current (Jsc) was 32.83 mA/cm 2 , the fill factor (FF) was 54.99%, and the photoelectric conversion efficiency was 7.85%.

比較例 5 將Cu金屬、In金屬、Ga金屬及Se元素以多元蒸鍍法沈積於基材上以形成CIGS薄膜。利用化學水浴沉積法製備銅銦鎵硒(CIGS)太陽電池之緩衝層。以含有氯化銦、硫代乙醯胺、醋酸的前驅物溶液,並將soda lime glass/Mo/CIGS浸泡在前驅物溶液中,以沉積硫化銦)薄膜於soda lime glass/Mo/CIGS上,獲得soda lime glass/Mo/CIGS/硫化銦。 In Comparative Example 5, Cu metal, In metal, Ga metal, and Se element were deposited on a substrate by a multi-evaporation method to form a CIGS film. A buffer layer of a copper indium gallium selenide (CIGS) solar cell was prepared by a chemical water bath deposition method. A precursor solution containing indium chloride, thioacetamide, acetic acid, and soda lime glass/Mo/CIGS is immersed in the precursor solution to deposit an indium sulfide film on the soda lime glass/Mo/CIGS, Obtained soda lime glass/Mo/CIGS/indium sulfide.

以soda lime glass/Mo/CIGS/硫化銦/i-ZnO/ITO之結構製作銅銦鎵硒薄膜太陽電池,再以太陽能標準光源模擬器分析銅銦鎵硒薄膜太陽電池,實驗顯示開路電壓(Voc)為0.394V,短路電流(Jsc)為32.36 mA/cm2 ,填充因子(FF)為51.03%,光電轉換效率為6.51%。與未進行後熱處裡之比較例5比較,經過後熱處裡之硫化銦(PAT)薄膜應用於銅銦鎵硒薄膜太陽電池之開路電壓、短路電流、填充因子及轉換效率均明顯增加。A copper indium gallium selenide thin film solar cell was fabricated by the structure of soda lime glass/Mo/CIGS/indium sulfide/i-ZnO/ITO, and the solar indium gallium selenide thin film solar cell was analyzed by a solar standard light source simulator. The experiment showed that the open circuit voltage (Voc) The current is 0.394V, the short-circuit current (Jsc) is 32.36 mA/cm 2 , the fill factor (FF) is 51.03%, and the photoelectric conversion efficiency is 6.51%. Compared with the comparative example 5 in the post-heating section, the open circuit voltage, short-circuit current, fill factor and conversion efficiency of the indium sulfide (PAT) film applied to the copper indium gallium selenide thin film were significantly increased.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and retouched without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

1‧‧‧太陽能電池
10‧‧‧基材
20‧‧‧背電極
30‧‧‧光吸收層
40‧‧‧緩衝層
50‧‧‧透明窗層
60‧‧‧前電極
1‧‧‧Solar battery
10‧‧‧Substrate
20‧‧‧Back electrode
30‧‧‧Light absorbing layer
40‧‧‧buffer layer
50‧‧‧ Transparent window layer
60‧‧‧ front electrode

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖係繪示依照本發明一實施例之太陽能電池的剖面示意圖。The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

Claims (9)

一種太陽能電池之緩衝層的製造方法,包含:提供一前驅物溶液,該前驅物溶液包含:溶劑;主要金屬元素,選自由鋅、鎘、銦及其組合所構成之群組;VIA族元素,選自由氧、硫、硒及其組合所構成之群組;以及摻雜元素,選自由鈦、鉛、錫、鎳、釤、釹及其組合所構成之群組;使一積層結構接觸該前驅物溶液,以形成一沉積層於該積層結構上,其中該積層結構包含一光吸收層,該光吸收層的化合物結構為黃銅礦相、鋅黃錫礦相、閃鋅礦相、kersterite結構或上述之組合,使該積層結構接觸該前驅物溶液步驟包含使該積層結構之該光吸收層接觸該前驅物溶液,以形成該沉積層於該光吸收層上;以及將該沉積層在一氣氛下進行一熱處理,以形成一緩衝層於該光吸收層上,其中該氣氛包含VIA族元素,該熱處理的溫度為50℃至300℃。 A method for manufacturing a buffer layer for a solar cell, comprising: providing a precursor solution comprising: a solvent; a main metal element selected from the group consisting of zinc, cadmium, indium, and combinations thereof; Group VIA element, Selecting a group consisting of oxygen, sulfur, selenium, and combinations thereof; and doping elements selected from the group consisting of titanium, lead, tin, nickel, ruthenium, osmium, and combinations thereof; contacting a laminate structure with the precursor a solution to form a deposited layer on the laminated structure, wherein the laminated structure comprises a light absorbing layer, the compound structure of the light absorbing layer is a chalcopyrite phase, a zinc tin ore phase, a sphalerite phase, a kersterite structure Or the combination of the above, the step of contacting the laminate structure with the precursor solution comprises contacting the light absorbing layer of the laminate structure with the precursor solution to form the deposition layer on the light absorbing layer; and depositing the deposition layer A heat treatment is performed under the atmosphere to form a buffer layer on the light absorbing layer, wherein the atmosphere contains a Group VIA element, and the heat treatment temperature is from 50 ° C to 300 ° C. 如請求項第1項所述之方法,其中該氣氛 之該VIA族元素包含硫、硒、氧或其組合。 The method of claim 1, wherein the atmosphere The Group VIA element comprises sulfur, selenium, oxygen or a combination thereof. 如請求項第1項所述之方法,其中該氣氛包含硫化氫、硒化氫、硫蒸氣、硒蒸氣或其組合。 The method of claim 1, wherein the atmosphere comprises hydrogen sulfide, hydrogen selenide, sulfur vapor, selenium vapor, or a combination thereof. 如請求項第1項所述之方法,其中該氣氛更包含氫氣、惰性氣體或其組合。 The method of claim 1, wherein the atmosphere further comprises hydrogen, an inert gas, or a combination thereof. 如請求項第4項所述之方法,其中該惰性氣體為氮氣、氬氣或其組合。 The method of claim 4, wherein the inert gas is nitrogen, argon or a combination thereof. 如請求項第1項所述之方法,其中該熱處理的時間為10分鐘至8小時。 The method of claim 1, wherein the heat treatment is performed for 10 minutes to 8 hours. 如請求項第1項所述之方法,其中該前驅物溶液更包含一氫氧根離子。 The method of claim 1, wherein the precursor solution further comprises a hydroxide ion. 如請求項第1項所述之方法,其中該積層結構更包含一基材及一背電極位於該基材上且位於該光吸收層之下。 The method of claim 1, wherein the laminate further comprises a substrate and a back electrode on the substrate and below the light absorbing layer. 如請求項第1項所述之方法,其中該前驅物溶液更包含酸類或鹼類。 The method of claim 1, wherein the precursor solution further comprises an acid or a base.
TW104102648A 2015-01-27 2015-01-27 Method of manufacturing buffer layer for solar cell TWI624077B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104102648A TWI624077B (en) 2015-01-27 2015-01-27 Method of manufacturing buffer layer for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104102648A TWI624077B (en) 2015-01-27 2015-01-27 Method of manufacturing buffer layer for solar cell

Publications (2)

Publication Number Publication Date
TW201628209A TW201628209A (en) 2016-08-01
TWI624077B true TWI624077B (en) 2018-05-11

Family

ID=57181873

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104102648A TWI624077B (en) 2015-01-27 2015-01-27 Method of manufacturing buffer layer for solar cell

Country Status (1)

Country Link
TW (1) TWI624077B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201005966A (en) * 2008-07-31 2010-02-01 Nexpower Technology Corp Thin film solar cell having homojunction and manufacturing method thereof
TW201203591A (en) * 2010-04-21 2012-01-16 Stion Corp Hazy zinc oxide film for shaped CIGS/CIS solar cells
TW201227981A (en) * 2010-12-31 2012-07-01 chong-zhe Huang Methods for fabricating chalcopyrite (chalcogenide) thin film solar cells
TW201300322A (en) * 2011-06-28 2013-01-01 Shanghai Inst Ceramics A method for preparing light absorption layer of copper-indium-gallium-sulfur-selenium thin film solar cells
TW201347272A (en) * 2011-11-23 2013-11-16 Academia Sinica Transition metal oxide suspensions and buffer layers and electronic devices made by the same
TW201407802A (en) * 2012-08-07 2014-02-16 Long Energy Internat Ltd Stack structure and manufacturing method of solar cell with dual N-type semiconductor thin film layer
TW201427054A (en) * 2012-11-20 2014-07-01 Fujifilm Corp Photoelectric conversion element and method of producing the same, manufacturing method for buffer layer of photoelectric conversion element, and solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201005966A (en) * 2008-07-31 2010-02-01 Nexpower Technology Corp Thin film solar cell having homojunction and manufacturing method thereof
TW201203591A (en) * 2010-04-21 2012-01-16 Stion Corp Hazy zinc oxide film for shaped CIGS/CIS solar cells
TW201227981A (en) * 2010-12-31 2012-07-01 chong-zhe Huang Methods for fabricating chalcopyrite (chalcogenide) thin film solar cells
TW201300322A (en) * 2011-06-28 2013-01-01 Shanghai Inst Ceramics A method for preparing light absorption layer of copper-indium-gallium-sulfur-selenium thin film solar cells
TW201347272A (en) * 2011-11-23 2013-11-16 Academia Sinica Transition metal oxide suspensions and buffer layers and electronic devices made by the same
TW201407802A (en) * 2012-08-07 2014-02-16 Long Energy Internat Ltd Stack structure and manufacturing method of solar cell with dual N-type semiconductor thin film layer
TW201427054A (en) * 2012-11-20 2014-07-01 Fujifilm Corp Photoelectric conversion element and method of producing the same, manufacturing method for buffer layer of photoelectric conversion element, and solar cell

Also Published As

Publication number Publication date
TW201628209A (en) 2016-08-01

Similar Documents

Publication Publication Date Title
Wang Progress in thin film solar cells based on
JP5928612B2 (en) Compound semiconductor solar cell
CN106298995A (en) A kind of Ag doping copper zinc tin sulfur selenium light absorbing zone thin-film material and application in solar cells thereof
Mkawi et al. Influence of triangle wave pulse on the properties of Cu2ZnSnS4 thin films prepared by single step electrodeposition
JP2011146594A (en) Buffer layer for photoelectric element, method of manufacturing the same, and photoelectric element
JP5564688B2 (en) CBD solution for CZTS semiconductor, method for producing buffer layer for CZTS semiconductor, and photoelectric device
CN105826425B (en) A kind of preparation method of copper-zinc-tin-sulfur film solar cell
Zhao et al. Kesterite Cu 2 Zn (Sn, Ge)(S, Se) 4 thin film with controlled Ge-doping for photovoltaic application
CN104269460B (en) A kind of method that water-bath lamination prepares solar battery obsorbing layer material C ZTS/CZTSSe
JP2014160812A (en) Solar cell and method of manufacturing solar cell
Saha A status review on Cu2ZnSn (S, Se) 4-based thin-film solar cells
TWI502762B (en) Compound solar cell and method for forming sulfide thin film consisting of sulfide single-crystal nanoparticles
Zhang Organic nanostructured thin film devices and coatings for clean energy
JP6035122B2 (en) Photoelectric conversion element and method for producing buffer layer of photoelectric conversion element
TW201327887A (en) Modifying method for the light absorption layer
Rajeshmon et al. Prospects of sprayed CZTS thin film solar cells from the perspective of material characterization and device performance
CN109671803A (en) A kind of thin-film solar cells preparation method
TWI624077B (en) Method of manufacturing buffer layer for solar cell
KR20180034248A (en) Flexible CZTS-based thin film solar cell using sodium hydroxide and manufacturing method thereof
TWI496304B (en) Solar cell and method of forming the same and method for forming n-type zns layer
JP2014130858A (en) Photoelectric conversion element and process of manufacturing buffer layer of the same
EP2860281A1 (en) Method of recycling solution, solar cell including buffer layer formed by the method, and deposition apparatus
JP2012028650A (en) Photoelectric element and manufacturing method thereof
CN105039937A (en) Method for preparing copper-zinc-tin-sulfur-selenium film based on aqueous solution
CN105529243A (en) Method for copper indium diselenide optoelectronic film by sulphate system in two-step process

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees