TWI623945B - 感測裝置及其製造方法 - Google Patents

感測裝置及其製造方法 Download PDF

Info

Publication number
TWI623945B
TWI623945B TW105119267A TW105119267A TWI623945B TW I623945 B TWI623945 B TW I623945B TW 105119267 A TW105119267 A TW 105119267A TW 105119267 A TW105119267 A TW 105119267A TW I623945 B TWI623945 B TW I623945B
Authority
TW
Taiwan
Prior art keywords
nanowire
electrode
sensing device
nanowires
substrate
Prior art date
Application number
TW105119267A
Other languages
English (en)
Other versions
TW201801096A (zh
Inventor
陳學仕
陳品如
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW105119267A priority Critical patent/TWI623945B/zh
Priority to US15/625,558 priority patent/US10193006B2/en
Publication of TW201801096A publication Critical patent/TW201801096A/zh
Application granted granted Critical
Publication of TWI623945B publication Critical patent/TWI623945B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

奈米線複合結構包含奈米線核心以及金屬層,奈米線核心的材料包括硒(Se)、碲(Te)或其組合;金屬層包覆於奈米線核心上。感測裝置包含基板,第一電極及第二電極設置於基板上,以及複數個奈米線設置於基板上,且位於第一電極與第二電極之間,其中上述奈米線具有第一奈米線接觸第一電極,及第二奈米線接觸第二電極,且上述奈米線的每一個奈米線至少與另一個奈米線接觸,上述奈米線為光感測器。

Description

感測裝置及其製造方法
本發明係有關於奈米線技術,特別係有關於奈米線複合結構及其製備方法,以及由此奈米線製作的感測裝置及其製作方法。
自發現奈米碳管以來,一維奈米材料就不斷有新的材料製作出來。奈米線顧名思義是長如線狀的奈米結構。因奈米尺寸所限,奈米線沒有一般塊材晶體所含的雜質、缺陷與差排等,所以奈米線擁有良好的晶體結構,可應用在電子、光電元件或微量有毒氣體的偵測元件...等,性能較一般的塊材優異許多。另外,奈米線同時在兩個維度上受到限制,這樣結構的應用領域包括微型半導體元件製作,如單電子電晶體,場效電晶體等。此外,感光元件的應用,亦可藉由導入奈米線型結構來得到最佳的效果。
感光元件的開關訊號比(light on/off)直接影響了感光元件的靈敏度,越高的開關訊號比代表靈敏度越高,高靈敏度的感光元件則能偵測到微弱的感測信號。然而,傳統的感光元件的開關訊號比(light on/off)大多小於10,且一般感光元件的製程也需要花費不少步驟及時間,造成了成本的浪費,因此,目前亟需一種製作簡易、高開關訊號比的感光元 件以及其製備方法,提供電子、光電元件及感測器之應用。
本發明提供了一奈米線及奈米線複合結構,上述奈米線及奈米線複合結構能作為感測裝置,並且具有優異的開關訊號比。
依據本揭示的一些實施例,提供奈米線複合結構,包括奈米線核心,其中奈米線核心的材料包括硒(Se)、碲(Te)或其組合;以及金屬層,包覆於奈米線核心上。
依據本揭示之另一些實施例,提供奈米線複合結構的形成方法,包括:(A)提供第一前驅物溶液與第二前驅物溶液混合;(B)加熱第一前驅物溶液與第二前驅物溶液的混合物,形成奈米線核心;(C)加入金屬鹽類與奈米線核心混合,形成金屬層包覆於奈米線核心表面上;其中第一前驅物溶液包括界面活性劑及第一溶劑,第二前驅物溶液包括第VIA族元素和第二溶劑。
依據本揭示的一些實施例,提供奈米線的保護結構,包括金屬層,包覆於奈米線核心的表面上,其中金屬層的材料包括銀(Ag)、銅(Cu);以及金屬氧化物層,披覆於金屬層上,且位於保護結構的最外層,其中金屬氧化物層的材料包括二氧化鈦或二氧化矽。
依據本揭示的另一些實施例,提供感測裝置,包括:基板;第一電極及第二電極,設置於基板上;以及複數個奈米線,設置於基板上,且位於第一電極與第二電極之間,其中奈米線具有第一奈米線接觸第一電極,及第二奈米線接 觸第二電極,且上述奈米線的每一個奈米線至少與另一個奈米線接觸,上述奈米線為光感測器。
依據本揭示之另一些實施例,提供感測裝置的形成方法,包括提供基板;在基板上形成凹陷;將含有複數個奈米線的溶液噴灑至基板的凹陷處,使得奈米線附著在基板上和該凹陷內;貼附第一電極及第二電極至基板上,且第一電極及第二電極位於凹陷的兩側,其中上述奈米線具有第一奈米線接觸第一電極,及第二奈米線接觸第二電極,且上述奈米線的每一個奈米線至少與另一個奈米線接觸。
100‧‧‧奈米線複合結構
102‧‧‧奈米線
104‧‧‧金屬層
106‧‧‧金屬氧化物層
200‧‧‧感測裝置
202‧‧‧基板
204‧‧‧凹陷
206‧‧‧光感測器
208A‧‧‧第一電極
208B‧‧‧第二電極
為了讓本揭示之目的、特徵、及優點能更明顯易懂,以下配合所附圖式作詳細說明如下:第1A-1C圖為依據本揭示的一些實施例,奈米線及奈米線複合結構的透視圖。
第2圖為依據本揭示的一些實施例,製備奈米線複合結構的流程圖。
第3圖為依據本揭示的一些實施例,硒奈米線的掃描式電子顯微鏡照片。
第4圖為依據本揭示的一些實施例,碲奈米線的掃描式電子顯微鏡照片。
第5A-5C圖為依據本揭示的一些實施例,利用奈米線製造感測裝置的各步驟之平面示意圖。
以下針對本發明之奈米線結構及感測裝置作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本發明之不同樣態。以下所述特定的元件及排列方式儘為簡單描述本發明。當然,這些僅用以舉例而非本發明之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本發明,不代表所討論之不同實施例及/或結構之間具有任何關連性。再者,當述及一第一材料層位於一第二材料層上或之上時,包括第一材料層與第二材料層直接接觸之情形。或者,亦可能間隔有一或更多其它材料層之情形,在此情形中,第一材料層與第二材料層之間可能不直接接觸。
首先,請參閱第1A圖,第1A圖為依據本揭示的一些實施例,奈米線102的透視圖。如第1A圖所示,奈米線102為一細長的線。奈米線102的材料包括第VIA族的元素,在一些實施例中,奈米線102的材料包括硒(Se)、碲(Te)或其組合。
接著,請參閱第1B圖,第1B圖為依據本揭示的一些實施例,奈米線複合結構100的透視圖。如第1B圖所示,奈米線複合結構100包括奈米線102及金屬層104。奈米線102作為奈米線複合結構100的核心,金屬層104包覆在奈米線102的表面上。在一些實施例中,金屬層104的材料包括銀(Ag)、銅(Cu)。
接著,請參閱第1C圖,第1C圖為依據本揭示的一些實施例,奈米線複合結構100的透視圖。如第1C圖所示,奈米線複合結構100更包括一層金屬氧化物層106。金屬氧化物 層106披覆於金屬層104上,位於奈米線複合結構100的最外層,在一些實施例中,金屬氧化物層包括二氧化鈦(TiO2)、二氧化矽。
請參閱第2圖,其顯示依據一些實施例,製備奈米線複合結構100的流程圖。如第2圖所示,奈米線複合結構100的製備方法包括下列步驟:(S1)例如,在三頸瓶裡加入氧化三正辛基膦(Trioctylphosphine oxide,TOPO)(20mmol)與間苯二甲酸(Isophthalic acid,IPA)(40mmol),在氬氣下加熱至150℃持溫20-60分鐘,形成第一溶液;(S2)例如,將硒(Se)的粉末(3mmol)於真空中去除吸附的水氣,在鈍氣的環境下溶於三丁基膦(tributylphosphine,TBP)(6mmol),並超音波震盪30分鐘後形成第二溶液,將第二溶液注入三頸瓶裡與第一溶液混合,加熱至200-400℃持溫10-30分鐘,生成硒奈米線;(S3)例如,將硝酸銀(AgNO3)溶於水,注入三頸瓶與上述生成的硒奈米線混合,於溫度25-400℃持溫5-60分鐘,形成表面覆蓋銀層的硒/銀奈米線複合結構;(S4)形成硒/銀奈米線複合結構後,將甲醇倒入三頸瓶內,並超音波震盪30分鐘,將上述混合物離心移除副產物,再將硒/銀奈米線複合結構移至真空腔室在室溫下乾燥,藉由原子層沉積(atomic layer deposition,ALD)法將二氧化鈦沉積至硒/銀奈米線複合結構的表面上,形成硒/銀/二氧化鈦奈米線複合結構,其中二氧化鈦位於最外層作為保護層,披覆硒/銀奈米線複合結構。
步驟(S1)所述的間苯二甲酸作為界面活性劑,可用任何含有苯環官能基之有機酸或其鹽類取代,較佳為具有 較大立體障礙的有機酸。
步驟(S1)所述的氧化三正辛基磷作為界面活性劑的溶劑,可用其他高溫不產生裂解的溶劑取代。
步驟(S2)所述的加熱溫度一般約為200-400℃,較佳為300-360℃間。
步驟(S3)所述的硝酸銀可用其他金屬的鹽類取代,較佳為具有良好導電性質的金屬之鹽類。
步驟(S4)所述的二氧化鈦可用其他金屬氧化物取代,較佳為具有良好熱穩定性之金屬氧化物。
於第2圖所示的奈米線複合結構的製程流程圖,反應可終止於步驟(S2)、(S3)、(S4)的任一階段,分離產物與副產物的方式為在本技術領域中具有通常知識者所熟知,因此並不限定上述分離方式。反應終止於步驟(S2)可得硒奈米線;反應終止於步驟(S3)可得硒/銀奈米線複合結構;反應終止於步驟(S4)可得硒/銀/二氧化鈦奈米線複合結構。
第3圖為本實施例合成之硒奈米線的掃描式電子顯微鏡照片(SEM image),第3圖顯示本實施例合成之硒奈米線的寬度約在85-260nm之間,長度約在3-40μm之間,硒奈米線的剖面形狀可為六角形、方形、圓形。
硒奈米線可加入硝酸銀而生成硒/銀奈米線複合結構,使得硒奈米線的表面披覆了一層銀層。在一些實施例中,銀層的厚度約在10-200nm之間。銀層的厚度及銀在硒/銀奈米線複合結構的組成比例會隨著在(S3)步驟中加入的硝酸銀溶液的濃度不同而變化,在一些實施例中,銀的原子百 分比約在5-25%之間,硒的原子百分比比約在75-95%之間。
硒/銀奈米線複合結構可藉由沉積二氧化鈦而生成硒/銀/二氧化鈦奈米線複合結構,其中,二氧化鈦層披覆在硒/銀奈米線複合結構的表面上,成為奈米線複合結構的保護殼。
此外,上述奈米線或奈米線複合結構可為結晶形態。
在另一些實施例中,可以使用碲(Te)粉取代硒(Se)粉,製備碲奈米線、碲/銀奈米線複合結構或碲/銀/二氧化鈦奈米線複合結構,其製備方法的詳細步驟及製程條件與上述相同。
第4圖為本實施例合成之碲奈米線的掃描式電子顯微鏡照片(SEM image),第4圖顯示本實施例合成之碲奈米線的寬度約在0.5-5μm之間,長度約在2-100μm之間,碲奈米線的剖面形狀可為長方形、六角形。
碲奈米線可藉由加入硝酸銀而生成碲/銀奈米線複合結構,其中碲奈米線的表面披覆了一層銀層。在一些實施例中,銀層的厚度約10-200nm之間。銀層的厚度及銀在硒/銀奈米線複合結構的組成比例會隨著在(S3)步驟中加入的硝酸銀溶液的濃度不同而變化,在一些實施例中,硝酸銀的濃度為0.01M,其生成的碲/銀奈米線複合結構中,銀佔的原子百分比為21.5%,碲佔的原子百分比為78.5%。在一些實施例中,硝酸銀的濃度為0.005M,其生成的碲/銀奈米線複合結構中,銀佔的原子百分比為22.1%,碲佔的原子百分比為77.9%。 在一些實施例中,硝酸銀的濃度為0.001M,其生成的碲/銀奈米線複合結構中,銀佔的原子百分比為6.5%,碲佔的原子百分比為93.5%。
碲/銀奈米線複合結構還可藉由沉積二氧化鈦生成碲/銀/二氧化鈦奈米線複合結構。其中,二氧化鈦層披覆在碲/銀奈米線複合結構的表面上,成為奈米線複合結構的保護殼。
依據本揭示的實施例,在奈米線核心的表面包覆銀層與二氧化鈦層作為奈米線核心的保護結構,相較於奈米線核心可提供更佳的導電性及熱穩定性,雖然實施例僅提及作為硒奈米線或碲奈米線的保護結構,但此保護結構保護的對象並不限定於此,也可作為其他種類的奈米線或奈米結構的保護結構。此外,銀層也可以用其他金屬替代,例如銅。二氧化鈦層可用其他熱穩定性良好的金屬氧化物取代,例如二氧化矽。
本揭示之實施例的奈米線或奈米線複合結構可作為光感測器,設置於感測裝置中,奈米線吸收光線,使奈米線的電子激發躍遷到導電帶,同時在價帶中形成電洞,此時電子和電洞在奈米線傳輸形成了電流,藉此量測電子訊號來瞭解光的能量或功率。
第5A-5C圖為依據本揭示的一些實施例,使用奈米線或奈米線複合結構作為光感測器206,製造感測裝置200的各步驟之平面示意圖。如第5A圖所示,提供基板202,基板可為玻璃基板或可撓性基板,例如為聚對苯二甲酸乙二醇酯 (polyethylene terephthalate,PET)基板,在基板202的表面上形成一道凹陷204,形成凹陷204的方法可為以鑽石刀於基板上切割。
參閱第5B圖,將含有複數條的奈米線或奈米線複合結構分散於揮發性有機溶劑(例如乙醇、甲醇或甲苯)的溶液,並且塗佈於基板202的凹陷204處,待溶劑揮發,生成了由複數個奈米線或奈米線複合結構所組成的光感測器206。在一些實施例中,使用複數個奈米線作為光感測器206,如第5B圖所示,奈米線形成在基板202上及凹陷204上,其中每一個奈米線至少與另一個奈米線接觸,且這些奈米線呈現不規則的排列。在一些實施例中,光感測器206可為複數個硒奈米線、碲奈米線、硒/銀奈米線複合結構、碲/銀奈米線複合結構、硒/銀/二氧化鈦奈米線複合結構、碲/銀/二氧化鈦奈米線複合結構或上述組合。
參閱第5C圖,在基板202的表面上設置第一電極208A和第二電極208B,第一電極208A和第二電極208B的材料可為金屬,例如銅片。如第5C圖所示,第一電極208A和第二電極208B分別貼附在基板202的凹陷204的兩側上,且第一電極208A和第二電極208B至少接觸一個奈米線或奈米線複合結構。第一電極208A和第二電極208B設置在基板202上之後,完成感測裝置200。感測裝置200的電流訊號藉由光感測器206中的奈米線或奈米線結構而從第一電極208A傳遞至第二電極208B。在一些實施例中,光感測器206偵測的光波長的範圍介於400-700nm之間。
在一些實施例中,利用硒奈米線作為光感測器206的材料時,感測裝置200的開關訊號比為22.7,遠高於傳統光感測裝置的開關訊號比(介於1-10之間),這表示本實施例所提供的感測裝置200具有較高的靈敏度及較小的偵測極限。
使用本揭示之奈米線或奈米線複合結構作為光感測器206,由於奈米線或奈米線複合結構生成所需的時間不長,且產率也可以到達70%以上,因此可降低感測裝置200的製造成本。此外,本揭示提供的感測裝置200製程簡單,僅需要基板202、第一電極208A、第二電極208B及由奈米線或奈米線複合結構組成的光感測器206作為組件,即可製造出感測裝置200。此方法不需要額外的製程步驟就可獲得具有高開關訊號比的感測裝置200,例如,在塗佈奈米線或奈米線複合結構至基板202上的凹陷204處之製程中,並不需要施加額外的電場讓奈米線或奈米線複合結構的排列方向具有一至性,依據本揭示提供的感測裝置200,即使奈米線或奈米線複合結構的排列方式呈現不規則排列,也不會影響感測裝置200的功能。此外,與硒奈米線相比,使用硒/銀奈米複合材料作為光感測器206的材料時,可以獲得較高的開關訊號比,因此,依據本揭示的一些實施例,在硒奈米線的表面上包覆銀層可以增進感測裝置200的靈敏度。
另外,本揭示提供的光感測器206不只可運用於光感測,還可應用於彎曲感測。在一些實施例中,使用具有可撓性的PET基板作為基板202,選用碲/銀奈米線複合結構作為光感測器206,在此實施例中,感測裝置200會隨著基板202 的彎曲程度不同而偵測到不同的電流訊號。當基板202彎曲的時候,改變了碲/銀奈米線複合結構之間的距離,因而產生電阻的變化,使得第一電極208A和第二電極208B偵測到不同的電流訊號。當基板202的曲率越大時,所偵測到的電流訊號也越大,在此實施例中,彎曲基板202使其曲率介於0-140κ的範圍間時,會產生不同的電流訊號。值得注意的是,基板202的材料種類並不會影響電流訊號的大小,亦即,只有光感測器206的材料及基板202的曲率會影響第一電極208A和第二電極208B之間的電阻,導致電流訊號改變。因此,本揭示提供的感測裝置200可用於彎曲感測,並且基板202可以重複彎曲並且再使用,當基板202的曲率一樣時,量測到的電流訊號並不會隨著使用的次數增加而改變。
此外,本揭示提供的光感測器206亦可應用於體感感測(例如,軀幹彎曲不同角度造成感測器上電阻變化)及壓力感測,原理如同上述,當奈米線或奈米線結構之間的距離隨著壓力或基板彎曲而改變時,會改變第一電極208A及第二電極208B之間的電阻,導致電流訊號改變,藉此達到體感感測和壓力感測的作用。
綜上所述,本揭示提供的奈米線或奈米線複合結構及其製作而成的感測裝置具有製程簡單、製備生成時間短且產率高的優點,此感測裝置具有優異的開關訊號比,並且還可藉由感測裝置之基板的彎曲變化而運用於彎曲感測、體感感測及壓力感測等多種領域,且可重複多次使用。
雖然本發明的實施例及其優點已揭露如上,但應 該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動、替代與潤飾。此外,本發明之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本發明揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本發明使用。因此,本發明之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本發明之保護範圍也包括各個申請專利範圍及實施例的組合。

Claims (15)

  1. 一種感測裝置,包括:一基板;一第一電極及一第二電極,設置於該基板上;以及複數個奈米線,設置於該基板上,且位於該第一電極與該第二電極之間,其中該些奈米線具有一第一奈米線接觸該第一電極,及一第二奈米線接觸該第二電極,且該第一奈米線與該第二奈米線通過該第一奈米線和該第二奈米線之間的該些奈米線互相電性連接,該些奈米線為光感測器,其中該些奈米線的材料包括硒(Se)、碲(Te)或其組合。
  2. 如申請專利範圍第1項所述之感測裝置,其中該基板包括一玻璃基板或一可撓性基板。
  3. 如申請專利範圍第1項所述之感測裝置,其中該些奈米線係為不規則排列。
  4. 如申請專利範圍第2項所述之感測裝置,其中該些奈米線之間的間距隨著該可撓性基板的彎曲曲率不同而改變,該第一電極與該第二電極間產生的電流隨著該可撓性基板的彎曲曲率不同而改變,且該感測裝置用於量測該可撓性基板的彎曲程度。
  5. 如申請專利範圍第1項所述之感測裝置,係用於彎曲感測、體感感測及壓力感測。
  6. 如申請專利範圍第1項所述之感測裝置,其中該些奈米線中的每一個為一奈米線複合結構,該奈米線複合結構包括: 一奈米線核心,其中該奈米線核心的材料包括硒(Se)、碲(Te)或其組合;以及一金屬層,包覆於該奈米線核心的表面上。
  7. 如申請專利範圍第6項所述之感測裝置,其中該金屬層包括銀(Ag)或銅(Cu)。
  8. 如申請專利範圍第6項所述之感測裝置,其中該奈米線核心的材料為硒(Se),且具有介於3-40μm之間的長度和介於85-260nm之間的寬度,或該奈米線核心的材料為碲(Te),且具有介於2-100μm之間的長度和500nm的寬度。
  9. 如申請專利範圍第7項所述之感測裝置,其中該金屬層佔該奈米線複合結構的原子百分比介於6.5-21.5%之間,該奈米線核心佔該奈米線複合結構的原子百分比介於78.5-93.5%之間。
  10. 如申請專利範圍第6項所述之感測裝置,其中該奈米線複合結構更包括一金屬氧化物層披覆於該金屬層上,並位於該奈米線複合結構的最外層,且其中該金屬氧化物層包括二氧化鈦(TiO2)或二氧化矽(SiO2),該金屬氧化物層的厚度介於10-100nm之間,且該金屬層的厚度介於10-200nm之間。
  11. 一種感測裝置的製造方法,包括:提供一基板;在該基板上形成一凹陷;將一含有複數個奈米線的溶液噴灑至該基板的該凹陷處,使得該些奈米線附著在該基板上和該凹陷內,其中該些奈米線 的材料包括硒(Se)、碲(Te)或其組合;貼附一第一電極及一第二電極至該基板上,且該第一電極及該第二電極位於該凹陷的兩側,其中該些奈米線具有一第一奈米線接觸該第一電極,及一第二奈米線接觸該第二電極,且該第一奈米線與該第二奈米線通過該第一奈米線和該第二奈米線之間的該些奈米線互相電性連接。。
  12. 如申請專利範圍第11項所述之感測裝置的製造方法,其中該些奈米線包括一由硒(Se)、碲(Te)或其組合製成的奈米線核心及一金屬層包覆於該奈米線核心的表面上,其中該金屬層包括銀(Ag)、金(Au)或銅(Cu)。
  13. 如申請專利範圍第12項所述之感測裝置的製造方法,其中該些奈米線更包括一金屬氧化物層,披覆於該金屬層上且位於該些奈米線的最外層,其中該金屬氧化物層的材料包括二氧化鈦或二氧化矽。
  14. 如申請專利範圍第11項所述之感測裝置的製造方法,其中該些奈米線係為不規則排列。
  15. 如申請專利範圍第11項所述之感測裝置的製造方法,其中該基板具有可撓性。
TW105119267A 2016-06-20 2016-06-20 感測裝置及其製造方法 TWI623945B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105119267A TWI623945B (zh) 2016-06-20 2016-06-20 感測裝置及其製造方法
US15/625,558 US10193006B2 (en) 2016-06-20 2017-06-16 Nanowire composite structure and methods of forming the same, sensing device and methods of forming the same and protective structures of a nanowire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105119267A TWI623945B (zh) 2016-06-20 2016-06-20 感測裝置及其製造方法

Publications (2)

Publication Number Publication Date
TW201801096A TW201801096A (zh) 2018-01-01
TWI623945B true TWI623945B (zh) 2018-05-11

Family

ID=60660424

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105119267A TWI623945B (zh) 2016-06-20 2016-06-20 感測裝置及其製造方法

Country Status (2)

Country Link
US (1) US10193006B2 (zh)
TW (1) TWI623945B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461321B2 (en) * 2015-02-18 2019-10-29 Nanotek Instruments, Inc. Alkali metal-sulfur secondary battery containing a pre-sulfurized cathode and production process
CN112499599A (zh) * 2020-11-30 2021-03-16 北京化工大学 一种超长Se纳米线的宏量制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1524782A (zh) * 2003-09-17 2004-09-01 中国科学院长春应用化学研究所 硒化镉及碲化镉纳米棒的制备方法
TWI242539B (en) * 2003-12-11 2005-11-01 Ind Tech Res Inst ZnX (X=S,Se,Te) quantum dots preparation method
US20060284218A1 (en) * 2003-09-03 2006-12-21 The Regents Of The University Of California Nanoelectonic devices based on nanowire networks
TWI342866B (en) * 2005-12-30 2011-06-01 Ind Tech Res Inst Nanowires and a method of the same
CN103721708A (zh) * 2014-01-08 2014-04-16 济南大学 一种银/二氧化钛复合异质结构及其制备方法
CN104849317A (zh) * 2014-02-18 2015-08-19 元太科技工业股份有限公司 半导体感测装置及制作方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8294025B2 (en) * 2002-06-08 2012-10-23 Solarity, Llc Lateral collection photovoltaics
CN101101968A (zh) 2006-07-05 2008-01-09 林唯芳 光电元件的结构及其制造方法
US7906778B2 (en) * 2007-04-02 2011-03-15 Hewlett-Packard Development Company, L.P. Methods of making nano-scale structures having controlled size, nanowire structures and methods of making the nanowire structures
HUP0700480A2 (en) 2007-07-16 2010-01-28 Aliment Kft Dr Nanospheres of red and grey elemental selenium and production technology thereof
WO2009078809A1 (en) * 2007-12-18 2009-06-25 Michalewicz Marek T Quantum tunneling photodetector array
KR20090109980A (ko) * 2008-04-17 2009-10-21 한국과학기술연구원 가시광 대역 반도체 나노선 광센서 및 이의 제조 방법
US8889455B2 (en) * 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US8809834B2 (en) * 2009-07-06 2014-08-19 University Of Seoul Industry Cooperation Foundation Photodetector capable of detecting long wavelength radiation
US8399939B2 (en) 2010-12-03 2013-03-19 Massachusetts Institute Of Technology Color selective photodetector and methods of making
WO2012161857A1 (en) 2011-05-23 2012-11-29 Carestream Health, Inc. Nanowire preparation methods, compositions, and articles
US8221711B1 (en) 2011-09-13 2012-07-17 Empire Technology Development Llc Nanosorbents and methods of use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060284218A1 (en) * 2003-09-03 2006-12-21 The Regents Of The University Of California Nanoelectonic devices based on nanowire networks
CN1524782A (zh) * 2003-09-17 2004-09-01 中国科学院长春应用化学研究所 硒化镉及碲化镉纳米棒的制备方法
TWI242539B (en) * 2003-12-11 2005-11-01 Ind Tech Res Inst ZnX (X=S,Se,Te) quantum dots preparation method
TWI342866B (en) * 2005-12-30 2011-06-01 Ind Tech Res Inst Nanowires and a method of the same
CN103721708A (zh) * 2014-01-08 2014-04-16 济南大学 一种银/二氧化钛复合异质结构及其制备方法
CN104849317A (zh) * 2014-02-18 2015-08-19 元太科技工业股份有限公司 半导体感测装置及制作方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Geon Dae Moon and Unyong Jeong, "Transformation of Se@Ag2Se Core-Shell Colloids and Nanowires into Trigonal Se Nanorods and Uniform Spherical Ag2Se Colloids", Langmuir, 2009, 25 (1), pp 458–465.
Pin-Ru Chen, Shih-Jung Ho, Yih-Hsing Lob and Hsueh-Shih Chen, "One-pot synthesis of cubic ZnSe entangled nanowires and hexagonal Se nanorods", RSC Adv., 2014, 4, 52898–52902.
Zhi-Yuan Jiang, Zhao-Xiong Xie, Xian-Hua Zhang, Rong-Bin Huang and Lan-Sun Zheng, "Conversion of Se nanowires to Se/Ag2Se nanocables and Ag2Se nanotubes", Chemical Physics Letters,Volume 378, Issues 3–4, 5 September 2003, Pages 313-316.
Zhi-Yuan Jiang, Zhao-Xiong Xie, Xian-Hua Zhang, Rong-Bin Huang and Lan-Sun Zheng, "Conversion of Se nanowires to Se/Ag2Se nanocables and Ag2Se nanotubes", Chemical Physics Letters,Volume 378, Issues 3–4, 5 September 2003, Pages 313-316. Geon Dae Moon and Unyong Jeong, "Transformation of Se@Ag2Se Core-Shell Colloids and Nanowires into Trigonal Se Nanorods and Uniform Spherical Ag2Se Colloids", Langmuir, 2009, 25 (1), pp 458–465. 陶洪, 華南理工大學博士論文, "硒、碲及其化合物納米線的液相化學合成和電子器件性能的研究",2010年04月 Pin-Ru Chen, Shih-Jung Ho, Yih-Hsing Lob and Hsueh-Shih Chen, "One-pot synthesis of cubic ZnSe entangled nanowires and hexagonal Se nanorods", RSC Adv., 2014, 4, 52898–52902. *
陶洪, 華南理工大學博士論文, "硒、碲及其化合物納米線的液相化學合成和電子器件性能的研究",2010年04月

Also Published As

Publication number Publication date
US20170365729A1 (en) 2017-12-21
US10193006B2 (en) 2019-01-29
TW201801096A (zh) 2018-01-01

Similar Documents

Publication Publication Date Title
Zhang et al. One-pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes
Ge et al. Direct room temperature welding and chemical protection of silver nanowire thin films for high performance transparent conductors
Li et al. Copper nanowires in recent electronic applications: progress and perspectives
Kell et al. Versatile molecular silver ink platform for printed flexible electronics
KR102677739B1 (ko) 도전체, 그 제조 방법, 및 이를 포함하는 소자
Yang et al. High density unaggregated Au nanoparticles on ZnO nanorod arrays function as efficient and recyclable photocatalysts for environmental purification
Jiu et al. Metallic nanowires and their application
JP2018092937A (ja) 透明導電体
Ling et al. A SnO2 nanoparticle/nanobelt and Si heterojunction light-emitting diode
JP2003231097A (ja) 炭素からなる骨格を持つ薄膜状粒子を基板に載せた構造物およびその作製方法
KR102172464B1 (ko) 나노 박막의 제조 방법
KR20110081683A (ko) 금속 나노입자를 이용하고 환원된 그래핀 산화물에 기반한 양쪽극 기억소자 및 이의 제조방법
TWI623945B (zh) 感測裝置及其製造方法
KR20160118007A (ko) 도전성 복합체 및 그 제조 방법과 전자 소자
KR101878735B1 (ko) 그래핀의 제조방법
Tian et al. Optimal Pt mesoporous layer modified nanocomposite film with highly sensitive detection of ethanol at low temperature
Conklin et al. Controlling Polarization Dependent Reactions to Fabricate Multi‐Component Functional Nanostructures
KR20140129690A (ko) 표면조도가 낮은 은 나노와이어 - 그라핀 하이브리드 전극 및 그 제조 방법
TWI658155B (zh) 奈米線複合結構的製造方法
KR101364531B1 (ko) 나노 물질층을 포함하는 투명 전극 및 그 제조 방법
Peng et al. Performance Improvement of MoS₂ Gas Sensor at Room Temperature
US11695084B2 (en) Electro-optic nanoscale probes
KR20180072980A (ko) 그래핀 기반의 산화주석 나노 입자 및 탄소 나노 튜브로 적층된 3차 구조 복합체 및 상기 복합체와 멀티 어레이 칩을 갖는 가스 센서
CN105278722B (zh) 触控面板隐形感测层的雷射图案化设备及雷射图案化网栅
Kubo et al. Embedding of a gold nanofin array in a polymer film to create transparent, flexible and anisotropic electrodes